WO2018205086A1 - 一种二维材料异质结可饱和吸收镜及其制备方法 - Google Patents

一种二维材料异质结可饱和吸收镜及其制备方法 Download PDF

Info

Publication number
WO2018205086A1
WO2018205086A1 PCT/CN2017/083437 CN2017083437W WO2018205086A1 WO 2018205086 A1 WO2018205086 A1 WO 2018205086A1 CN 2017083437 W CN2017083437 W CN 2017083437W WO 2018205086 A1 WO2018205086 A1 WO 2018205086A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional material
laser
saturable absorption
absorption mirror
heterojunction
Prior art date
Application number
PCT/CN2017/083437
Other languages
English (en)
French (fr)
Inventor
闫培光
陈浩
邢凤飞
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/083437 priority Critical patent/WO2018205086A1/zh
Publication of WO2018205086A1 publication Critical patent/WO2018205086A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1063Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a solid state device provided with at least one potential jump barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06712Polarising fibre; Polariser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Definitions

  • the invention belongs to the field of laser technology, and in particular relates to a two-dimensional material heterojunction saturable absorption mirror and a preparation method thereof.
  • passive mode-locking technology is an effective way to achieve ultra-fast pulse output of fiber lasers, and the key technology of passive mode-locking is the need for saturable absorption in fiber laser resonators.
  • researchers have used a variety of saturable absorption effects to obtain passive mode-locked ultrafast pulse outputs in fiber lasers.
  • SESAM semiconductor saturable absorption mirrors
  • the technical problem to be solved by the present invention is to provide a two-dimensional material heterojunction saturable absorption mirror, a preparation method thereof, and a pulsed fiber laser, which are intended to solve the problem that the commercial SESAM used in the prior art is expensive, complicated in production process, and reliable. Low defect.
  • the present invention is achieved by a two-dimensional material heterojunction saturable absorption mirror comprising a substrate etched with an electrode, a gold film layer overlying the substrate, and an atomic level overlying the gold film layer Two-dimensional material pn junction film;
  • the two-dimensional material heterojunction saturable absorption mirror further includes an adjustable DC power source coupled to the electrode.
  • the gold film layer has a thickness of 30 to 300 nm.
  • the atomic-level two-dimensional material p-n junction film is formed by stacking atomic-level two-dimensional p-type and n-type semiconductor materials with different band gaps.
  • the p-type semiconductor material and the n-type semiconductor material include indium selenide, tungsten disulfide, tungsten diselenide, molybdenum disulfide, molybdenum diselenide, tungsten dithride, molybdenum dichloride, and antimony disulfide. , bismuth selenide, zirconium diselenide, zirconium disulfide, antimony diselenide, antimony disulfide, tin disulfide and tin diselenide.
  • the two-dimensional material heterojunction saturable absorption mirror further comprises a package protection layer covering the atomic level two-dimensional material p-n junction film.
  • the invention also provides a preparation method of a two-dimensional material heterojunction saturable absorption mirror, comprising the following steps:
  • the surface of the gold target is ionized to generate a gold plasma, and the gold plasma is deposited on the substrate by magnetron sputtering deposition to form a gold film layer, and the gold film is controlled by controlling deposition time.
  • the layer reaches the required thickness
  • Two-dimensional p-type and n-type semiconductor materials with different band gaps are transferred to the gold film layer with the electrodes to form an atomic-level two-dimensional material pn junction film, and the two-dimensional material heterojunction can be saturated. mirror.
  • preparation method further includes:
  • the two-dimensional material heterojunction saturable absorption mirror is encapsulated using hexagonal boron nitride to obtain a package protective layer.
  • the present invention also provides a pulsed fiber laser comprising a sequentially connected semiconductor pump laser, an optical wavelength division multiplexer, a gain fiber, an optical coupler, an optical isolator, an optical circulator, and the like
  • the two-dimensional material heterojunction saturable absorption mirror, and the optical circulator is connected to the optical wavelength division multiplexer to form an annular cavity structure; wherein the optical isolator is used for isolating the mode-locked laser, Allowing only the mode-locked laser to be unidirectionally output within the pulsed fiber laser;
  • the pump light generated by the semiconductor pump laser is coupled to the gain fiber through the optical wavelength division multiplexer to generate a laser pulse required for mode locking and amplify the laser pulse;
  • the optical coupler outputs a portion of the amplified laser pulse to the outside of the cavity and another portion to the optical circulator, and the laser pulse entering the optical circulator is coupled into the heterojunction.
  • the saturation absorption mirror performs mode locking, and the mode-locked laser pulse is returned to the optical wavelength division multiplexer via the optical circulator, and then amplified by the gain fiber and then outputted by the optical coupler. laser.
  • the pulsed fiber laser further includes a polarization controller located between the optical isolator and the optical circulator, and a polarization controller is configured to control a polarization state of the laser within the pulsed fiber laser.
  • the present invention has the beneficial effects of the two-dimensional material heterojunction saturable absorption mirror provided by the embodiment of the present invention, wherein the atomic-level two-dimensional material pn junction film is composed of a p-type two-dimensional atomic layer material and The material of the n-type two-dimensional atomic layer is superposed.
  • the formed two-dimensional material heterojunction saturable absorption mirror (satutable absorber) can be used as a high reflection mirror of the pulsed fiber laser.
  • the laser in the pulsed fiber laser cavity is reflected by the two-dimensional material heterojunction saturable absorption mirror
  • the laser can be modulated by it.
  • the atomic-level two-dimensional p-n-type semiconductor thin film material is mainly used to realize the self-starting, pulse compression and suppression of noise in the cavity of the pulsed fiber laser, thereby improving the pulse stability in the cavity of the pulsed fiber laser.
  • the nonlinear optical properties of the two-dimensional material heterojunction saturable absorption mirror further optimize the laser characteristics of the pulsed fiber laser.
  • the preparation method of the two-dimensional material heterojunction saturable absorption mirror provided by the embodiment of the invention can be carried out step by step according to the structural characteristics of the two-dimensional material heterojunction saturable absorption mirror, and the preparation process is simple.
  • the material of the p-type two-dimensional atomic layer and the material of the n-type two-dimensional atomic layer are inexpensive, and the two-dimensional material heterojunction saturable absorption mirror thus obtained has excellent performance.
  • FIG. 1 is a schematic structural view of a two-dimensional material heterojunction saturable absorption mirror according to a first embodiment of the present invention; wherein FIG. 1a is a plan view and FIG. 1b is a perspective view;
  • FIG. 2 is a schematic structural view of a pulsed fiber laser according to a third embodiment of the present invention.
  • a first embodiment of the present invention provides a two-dimensional material heterojunction saturable absorption mirror 100, comprising a substrate 101 for etching an electrode 102, a gold film layer 103 covering the substrate 101, and a gold film layer 103 overlying the gold film layer 103.
  • the two-dimensional material heterojunction saturable absorption mirror 100 further includes an adjustable DC power source 106 that is coupled to the electrode 102.
  • the two-dimensional material heterojunction saturable absorption mirror provided by the first embodiment of the present invention comprises an atomic level two-dimensional material pn junction film, and the two-dimensional material heterojunction saturable absorption mirror can be used as a high reflection mirror of a pulsed fiber laser.
  • the laser in the cavity of the pulsed fiber laser is reflected by the two-dimensional material heterojunction saturable absorption mirror, the laser can be modulated by the laser.
  • a two-dimensional material heterojunction saturable absorption mirror is added into the laser cavity by increasing the pumping
  • the power reaches the pulse laser start threshold, which enables the generation of ultrashort pulses.
  • the absorption mirror can compress the pulse width of the pulse transmitted in the laser cavity and At the same time, the generation of noise in the cavity is suppressed, thereby improving the pulse stability in the cavity of the pulsed fiber laser.
  • the two-dimensional material heterojunction saturable absorption mirror provided by the first embodiment of the present invention has high reliability, the optical band gap of the saturable absorber is tunable, the environment compatibility is high, the application range is wide, and the materials used are low in cost. It is suitable for the transformation of results and has broad application prospects.
  • the substrate is silicon or silicon carbide.
  • the gold film layer has a thickness of 30-300 nm.
  • the atomic-level two-dimensional material p-n junction film is formed by stacking atomic-level two-dimensional p-type and n-type semiconductor materials with different band gaps.
  • the atomic-level two-dimensional material film refers to a two-dimensional material film having a thickness of a single atomic layer, and the atomic-level two-dimensional p-type and n-type two-dimensional semiconductor film materials have different in-band relaxation times and carrier concentrations.
  • the p-type two-dimensional semiconductor film provides holes, and the n-type two-dimensional semiconductor film provides electrons.
  • Adding a bias voltage of different amplitudes to the electrode can realize active regulation of the optical band gap of the saturable absorbing material of the pn junction region of the two-dimensional material and modulation of the carrier concentration of the junction region, thereby controlling Dimensional material heterojunction can be nonlinear optical specific to the saturable absorption mirror, including modulation depth, saturable absorption bandwidth, and saturated light intensity.
  • the composition of the atomic-level two-dimensional material p-n junction film includes hexagonal boron nitride, transition metal sulfide, and indium selenide.
  • the transition metal sulfide includes tungsten disulfide, tungsten diselenide, molybdenum disulfide, molybdenum diselenide, tungsten dithide, molybdenum dichloride, antimony disulfide, antimony diselenide, zirconium diselenide, and At least one of zirconium sulfide, bismuth selenide, antimony disulfide, tin disulfide, and tin diselenide.
  • the p-type semiconductor material and the n-type semiconductor material which can be used for preparing the atomic layer two-dimensional material pn junction film include indium selenide, tungsten disulfide, tungsten diselenide, molybdenum disulfide, and selenium. Molybdenum, tungsten dioxide, molybdenum disulfide, antimony disulfide, antimony diselenide, zirconium diselenide, zirconium disulfide, antimony diselenide, antimony disulfide, tin disulfide and tin diselenide.
  • the two-dimensional material heterojunction saturable absorption mirror further includes a package protection layer covering the atomic-level two-dimensional material p-n junction film.
  • a second embodiment of the present invention provides the method for preparing a two-dimensional material heterojunction saturable absorption mirror described above, comprising the following steps:
  • the surface of the gold target is ionized to generate a gold plasma, and the gold plasma is deposited on the substrate by chemical vapor deposition or magnetron sputtering deposition to form a gold film layer, by controlling deposition time Bringing the gold film layer to a desired thickness;
  • Two-dimensional p-type and n-type semiconductor materials with different band gaps are transferred to the gold film layer with the electrodes to form an atomic-level two-dimensional material pn junction film, and the two-dimensional material heterojunction can be saturated. mirror.
  • the preparation method further includes
  • the two-dimensional material heterojunction saturable absorption mirror is encapsulated using hexagonal boron nitride to obtain a package encapsulation protective layer.
  • atomic-level two-dimensional p-type and n-type semiconductor materials of different band gaps are transferred to the gold mirror, mainly using an organic high molecular polymer such as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • the transfer process is as follows: 1) preparing a two-dimensional material (including a p-type material and an n-type material) of a desired atomic level using a chemical vapor deposition method on a sapphire/silicon substrate; 2) sapphire/silicon in which a material is grown The surface of the substrate is covered with a suitable thickness of PMMA and placed in a drying oven to cure the PMMA into a film; 3) the substrate coated with the PMMA film is placed in a suitable concentration of NaOH solution to separate the PMMA film from the substrate (this) The atomic-scale two-dimensional material is transferred to the surface of the PMMA); 4) the PMMA film coated with the material is placed in an acetone solution to dissolve the PMMA; 5) the two-dimensional material of
  • a third embodiment of the present invention provides a pulsed fiber laser 200 including a sequentially connected semiconductor pump laser 1, an optical wavelength division multiplexer 2, a gain fiber 3, and an optical coupler 4.
  • the optical isolator 5, the optical circulator 7 and the heterojunction saturable absorption mirror 8 described above, and the optical circulator 7 is connected to the optical wavelength division multiplexer 2 to form an annular cavity structure; wherein the optical isolator 5 is used After isolating the mode-locked laser, only the mode-locked laser is allowed to output in one direction in the pulsed fiber laser 200;
  • the pump light generated by the semiconductor pump laser 1 is coupled via the optical wavelength division multiplexer 2 into the gain fiber 3 to generate a laser pulse required for mode locking and amplify the laser pulse;
  • the optical coupler 4 outputs a part of the amplified laser pulse to the outside of the cavity and another part to the optical circulator 7, and the laser pulse entering the optical circulator 7 is coupled to the heterojunction saturable absorption mirror 8 for performing.
  • the mode-locked laser pulse is returned to the optical wavelength division multiplexer 2 via the optical circulator 7, and then subjected to mode-locking amplification by the gain fiber 3, and then the pulsed laser is output through the optical coupler 4.
  • the optical wavelength division multiplexer 2 couples the pump light generated by the semiconductor pump laser 1 into the gain fiber 3; the gain fiber 3 generates laser light required for mode locking and The mode-locked pulse is amplified; the optical coupler 4 outputs part of the laser to the outside of the cavity; the optical isolator 5 isolates the reverse-transmitted laser, allowing only the mode-locked laser to be transmitted in one direction in the laser cavity; the optical circulator 7 will gain
  • the laser generated by the optical fiber 3 is coupled into the two-dimensional material heterojunction and the saturable absorption mirror 8 is used for mode-locking; the two-dimensional material heterojunction can be used in the saturable absorption mirror 8 to adjust the two-dimensional material heterojunction.
  • the electrodes in the saturable absorption mirror 8 apply external bias voltages of different amplitudes, and by changing the magnitude of the external bias voltage, the nonlinear optical characteristics of the actively tunable saturable absorption mirror are realized, and the laser of the mode-locked fiber laser is further optimized. characteristic.
  • the mode-locked laser light After being reflected by the saturable absorption mirror, the mode-locked laser light is returned to the optical wavelength division multiplexer 2 via the optical circulator 7, and then amplified by the gain fiber 3 to output a pulsed laser light through the optical coupler 4.
  • the two-dimensional material heterojunction saturable absorption mirror has the advantages of high reliability, strong modulation capability, high environmental compatibility, wide application range, low cost, wideband modulation of light, and the like as a light mirror. A key component for pulsed laser generation in laser systems.
  • the pulsed fiber laser 200 further includes a polarization controller 6 connected between the optical isolator 5 and the optical circulator 7; the polarization controller 6 is used to control the laser in the annular cavity of the laser Polarization state.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Lasers (AREA)

Abstract

一种二维材料异质结可饱和吸收镜(100),适用于激光技术领域。所述二维材料异质结可饱和吸收镜(100)包括刻蚀有电极(102)的基底(101)、覆盖在所述基底(101)上的金膜层(103)及覆盖在所述金膜层(103)上的原子层级二维材料p-n结薄膜(104);所述二维材料异质结可饱和吸收镜(100)还包括可调直流电源(106),所述可调直流电源(106)与所述电极(102)连接。该二维材料异质结可饱和吸收镜(100)通过可调直流电源(106)将不同幅值的外部直流偏置电压施加于这种二维材料异质结可饱和吸收镜(100)的对称电极(102),改变外置直流偏置电压幅值的大小,从而主动优化所述二维材料异质结可饱和吸收镜(100)的非线性光学特性,进一步优化脉冲光纤激光器(200)的激光特性。

Description

一种二维材料异质结可饱和吸收镜及其制备方法 技术领域
本发明属于激光技术领域,尤其涉及一种二维材料异质结可饱和吸收镜及其制备方法。
背景技术
利用被动锁模技术是光纤激光器实现超快脉冲输出的一种有效途径,而被动锁模的关键技术是光纤激光器谐振腔中需要具备可饱和吸收效应。目前,研究人员已经利用多种可饱和吸收效应在光纤激光器中获得被动锁模超快脉冲输出。一般来说,为了克服光纤激光锁模环境不稳定的缺点,研究人员通常采用半导体可饱和吸收镜(SESAM)来实现光纤激光器锁模超快脉冲输出。
然而,由于商用SESAM价格昂贵、制作工艺复杂、可饱和吸收带宽窄、一般仅支持皮秒级别的脉冲输出,并且损伤阈值也较低,所以也不适用于全方位研究超快光纤激光器的动力学特性。一般来说,商用SESAM具体特定的可饱和吸收特性,其调制深度,可饱和吸收带宽,饱和光强具有固定的工作值,无法通过外部变量对这些参数进行调节,这也限制了SESAM在不同工作波长的应用。
因此,研制出成本低廉、工艺简单、高性能,可饱和吸收特性可调谐的可饱和吸收体一直是超快激光物理领域追求的目标,而现有技术中尚无此相关技术的报道。
技术问题
本发明所要解决的技术问题在于提供一种二维材料异质结可饱和吸收镜及其制备方法、脉冲光纤激光器,旨在解决现有技术中所采用的商用SESAM价格昂贵、制作工艺复杂、可靠性低的缺陷。
技术解决方案
本发明是这样实现的,一种二维材料异质结可饱和吸收镜,包括刻蚀有电极的基底、覆盖在所述基底上的金膜层及覆盖在所述金膜层上的原子层级二维材料p-n结薄膜;
所述二维材料异质结可饱和吸收镜还包括可调直流电源,所述可调直流电源与所述电极连接。
进一步地,所述金膜层的厚度为30-300 nm。
进一步地,所述原子层级二维材料p-n结薄膜由不同能带带隙的原子层级二维p型和n型半导体材料叠加而成。
进一步地,所述p型半导体材料和n型半导体材料包括硒化铟,二硫化钨、二硒化钨、二硫化钼、二硒化钼、二碲化钨、二碲化钼、二硫化铪、二硒化铪、二硒化锆、二硫化锆、二硒化铼、二硫化铼、二硫化锡和二硒化锡。
进一步地,所述二维材料异质结可饱和吸收镜还包括封装保护层,所述封装保护层覆盖在所述原子层级二维材料p-n结薄膜上。
本发明还提供了一种二维材料异质结可饱和吸收镜的制备方法,包括以下步骤:
在基底上刻蚀两个对称的电极,然后将所述基底及金靶材置于真空室中;
将所述金靶材表面电离化,产生金的等离子体,利用磁控溅射沉积法将所述金的等离子体沉积在所述基底上形成金膜层,通过控制沉积时间使所述金膜层达到所需厚度;
将所述基底的所述电极的位置上的金膜溶解,制备得到刻有电极的金膜层;
将不同能带带隙的原子层级二维p型和n型半导体材料转移到所述刻有电极的金膜层上形成原子层级二维材料p-n结薄膜,获得二维材料异质结可饱和吸收镜。
进一步地,所述制备方法还包括:
使用六角氮化硼对所述二维材料异质结可饱和吸收镜进行封装,获得封装保护层。
本发明还提供了一种脉冲光纤激光器,所述脉冲光纤激光器包括顺次连接的半导体泵浦激光器、光学波分复用器、增益光纤、光学耦合器、光隔离器、光学环形器及上述所述的二维材料异质结可饱和吸收镜,且所述光学环形器与所述光学波分复用器连接,形成环形腔结构;其中,所述光隔离器用于隔离锁模后的激光,仅允许锁模后的激光在所述脉冲光纤激光器内单向输出;
所述半导体泵浦激光器产生的泵浦光经所述光学波分复用器耦合后进入所述增益光纤产生锁模所需要的激光脉冲并对所述激光脉冲进行放大;
所述光学耦合器将放大后的所述激光脉冲的一部分输出到腔外而将另一部分输出至所述光学环形器,进入所述光学环形器的激光脉冲被耦合后进入所述异质结可饱和吸收镜进行锁模,锁模后的激光脉冲再经所述光学环形器返回至所述光学波分复用器,然后经所述增益光纤锁模放大后再通过所述光学耦合器输出脉冲激光。
进一步地,所述脉冲光纤激光器还包括偏振控制器,其位于所述光隔离器与所述光学环形器之间,偏振控制器用于控制所述脉冲光纤激光器内的激光的偏振状态。
有益效果
本发明与现有技术相比,有益效果在于:本发明实施例提供的二维材料异质结可饱和吸收镜,其中的原子层级二维材料p-n结薄膜由p型二维原子层的材料和n型二维原子层的材料叠加而成。形成的二维材料异质结可饱和吸收镜(可饱和吸收体)可作为脉冲光纤激光器的一个高反射镜,当脉冲光纤激光器腔内的激光被该二维材料异质结可饱和吸收镜反射时,激光可被其调制。原子层级二维p-n型半导体薄膜材料主要用于实现脉冲光纤激光器自启动、脉冲压缩和抑制腔内的噪声,从而提高脉冲光纤激光器腔内的脉冲稳定性。通过可调直流电源将不同幅值的外部直流偏置电压施加于这种二维材料异质结可饱和吸收镜的对称电极,改变外置直流偏置电压幅值的大小,从而主动优化所述二维材料异质结可饱和吸收镜的非线性光学特性,进一步优化所述脉冲光纤激光器的激光特性。
本发明实施例提供的二维材料异质结可饱和吸收镜的制备方法,只需根据所述二维材料异质结可饱和吸收镜的结构特点进行分步操作即可,制备过程简单。所用到的p型二维原子层的材料和n型二维原子层的材料成本低廉,且由此获得的二维材料异质结可饱和吸收镜,性能优异。
附图说明
图1是本发明第一实施例提供的二维材料异质结可饱和吸收镜的结构示意图;其中图1a是俯视图,图1b是立体图;
图2是本发明第三实施例提供的脉冲光纤激光器的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明第一实施例提供了一种二维材料异质结可饱和吸收镜100,包括刻蚀电极102的基底101、覆盖在基底101上的金膜层103及覆盖在金膜层103上的原子层级二维材料p-n结薄膜104;
二维材料异质结可饱和吸收镜100还包括可调直流电源106,可调直流电源106与电极102连接。
本发明第一实施例提供的二维材料异质结可饱和吸收镜包括原子层级二维材料p-n结薄膜,所述二维材料异质结可饱和吸收镜可作为脉冲光纤激光器的一个高反射镜,当脉冲光纤激光器腔内的激光被该二维材料异质结可饱和吸收镜反射时,激光可被其调制。基于二维材料异质结可饱和吸收镜具有非线性可饱和吸收特性和超快的载流子弛豫能力,在激光器腔内加入二维材料异质结可饱和吸收镜,通过增大泵浦功率到达脉冲激光启动阈值,可以实现超短脉冲的产生。另外,得益于上述吸收镜对输入脉冲的反射率随着脉冲能量的增大而增大的特性(即可饱和吸收特性),上述吸收镜可以对激光腔内传输脉冲的脉冲宽度进行压缩并同时抑制腔内噪声的产生,从而提高脉冲光纤激光器腔内的脉冲稳定性。通过可调直流电源将不同幅值的外部直流偏置电压施加于这种二维材料异质结可饱和吸收镜的对称电极,改变外置直流偏置电压幅值的大小,从而主动优化所述二维材料异质结可饱和吸收镜的非线性光学特性,进一步优化所述脉冲光纤激光器的激光特性。
本发明第一实施例提供的二维材料异质结可饱和吸收镜,可靠性高,可饱和吸收体光学带隙可调谐,环境兼容性高,应用范围广,所用的各材料成本低廉,既适于成果转化,又具有广泛的应用前景。
具体地,所述基底为硅或碳化硅。所述金膜层的厚度为30-300 nm。
具体地,所述原子层级二维材料p-n结薄膜由不同能带带隙的原子层级二维p型和n型半导体材料叠加形成。所述原子层级二维材料薄膜是指厚度为单个原子层的二维材料薄膜,所述原子层级二维p型和n型二维半导体薄膜材料具有不同的带内弛豫时间、载流子浓度和迁移率,p型二维半导体薄膜提供空穴,n型二维半导体薄膜提供电子。在所述电极外加不同幅值的偏置电压,可实现对二维材料p-n结区可饱和吸收材料光学能带带隙的主动调控及对所述结区载流子浓度的调制,进而调控二维材料异质结可饱和吸收镜的非线性光学特定,包括调制深度,可饱和吸收带宽和饱和光强等。
具体地,所述原子层级二维材料p-n结薄膜的成分包括六角氮化硼、过渡金属硫化物和硒化铟。所述过渡金属硫化物包括二硫化钨、二硒化钨、二硫化钼、二硒化钼、二碲化钨、二碲化钼、二硫化铪、二硒化铪、二硒化锆、二硫化锆、二硒化铼、二硫化铼、二硫化锡和二硒化锡中的至少一种。
具体地,根据实际的需求,可以用于制备原子层二维材料p-n结薄膜的p型半导体材料和n型半导体材料包括硒化铟,二硫化钨、二硒化钨、二硫化钼、二硒化钼、二碲化钨、二碲化钼、二硫化铪、二硒化铪、二硒化锆、二硫化锆、二硒化铼、二硫化铼、二硫化锡和二硒化锡。
具体地,所述二维材料异质结可饱和吸收镜还包括封装保护层,所述封装保护层覆盖在所述原子层级二维材料p-n结薄膜上。
本发明第二实施例提供了上述所述的二维材料异质结可饱和吸收镜的制备方法,包括以下步骤:
使用飞秒激光在基底上刻蚀两个对称的电极,然后将所述基底及金靶材置于真空室中;
将所述金靶材表面电离化,产生金的等离子体,利用化学气相沉积法或磁控溅射沉积法将所述金的等离子体沉积在所述基底上形成金膜层,通过控制沉积时间使所述金膜层达到所需厚度;
将所述基底的所述电极的位置上的金膜溶解,制备得到刻有电极的金膜层;
将不同能带带隙的原子层级二维p型和n型半导体材料转移到所述刻有电极的金膜层上形成原子层级二维材料p-n结薄膜,获得二维材料异质结可饱和吸收镜。
具体地,所述制备方法还包括
使用六角氮化硼对所述二维材料异质结可饱和吸收镜进行封装,获得封装封装保护层。
具体地,将不同能带带隙的原子层级二维p型和n型半导体材料转移到所述金镜上,主要是使用有机高分子聚合物(如聚甲基丙烯酸甲酯,PMMA)进行。所述转移的过程如下:1)在蓝宝石/硅基底上使用化学气相沉积法制备所需原子层级的二维材料(包括p型材料和n型材料);2)在生长有材料的蓝宝石/硅等基底表面覆盖一层合适厚度的PMMA并置入烘干箱内使PMMA固化成膜;3)将表面覆有PMMA薄膜的基底置于合适浓度的NaOH溶液中,使PMMA薄膜与基底脱离(此时原子级的二维材料转移到了PMMA表面);4)将表面覆有材料的PMMA薄膜置于丙酮溶液中溶解PMMA;5)将原子层的二维材料(包括p型材料和n型材料)转移到目标基底。
参见图2,本发明实施例第三提供了一种脉冲光纤激光器,脉冲光纤激光器200包括顺次连接的半导体泵浦激光器1、光学波分复用器2、增益光纤3、光学耦合器4、光隔离器5、光学环形器7及上述所述的异质结可饱和吸收镜8,且光学环形器7与光学波分复用器2连接,形成环形腔结构;其中,光隔离器5用于隔离锁模后的激光,仅允许锁模后的激光在脉冲光纤激光器200内单向输出;
半导体泵浦激光器1产生的泵浦光经光学波分复用器2耦合后进入增益光纤3产生锁模所需要的激光脉冲并对所述激光脉冲进行放大;
光学耦合器4将放大后的所述激光脉冲的一部分输出到腔外而将另一部分输出至光学环形器7,进入光学环形器7的激光脉冲被耦合后进入异质结可饱和吸收镜8进行锁模,锁模后的激光脉冲再经光学环形器7返回至光学波分复用器2,然后经增益光纤3锁模放大后再通过光学耦合器4输出脉冲激光。
在本发明第三实施例提供的脉冲光纤激光器200中,光学波分复用器2将半导体泵浦激光器1产生的泵浦光耦合进增益光纤3;增益光纤3产生锁模所需要的激光并对锁模脉冲进行放大;光学耦合器4将部分激光输出到腔外;光隔离器5将隔离反向传输的激光,仅允许锁模激光在激光器腔内单向传输;光学环形器7将增益光纤3产生的激光耦合进入二维材料异质结可饱和吸收镜8进行锁模;二维材料异质结可饱和吸收镜8中的可调直流电压源用于对二维材料异质结可饱和吸收镜8中的电极施加不同幅值的外置偏置电压,通过改变外置偏压幅值的大小,实现主动调制可饱和吸收镜的非线性光学特性,进一步优化锁模光纤激光器的激光特性。经过所述可饱和吸收镜的反射,锁模后的激光再经光学环形器7返回至所光学波分复用器2,然后经增益光纤3进行放大后通过光学耦合器4输出脉冲激光。这种二维材料异质结可饱和吸收镜具有可靠性高,调制能力强,环境兼容性高,应用范围广,成本低廉,可对光进行宽带调制等优点,同时作为光的反射镜,可用于激光系统中脉冲激光产生的关键器件。
具体地,所述脉冲光纤激光器200还包括偏振控制器6,偏振控制器6连接于光隔离器5与光学环形器7之间;偏振控制器6用于控制所述激光器环形腔内的激光的偏振状态。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种二维材料异质结可饱和吸收镜,其特征在于,包括刻蚀有电极的基底、覆盖在所述基底上的金膜层及覆盖在所述金膜层上的原子层级二维材料p-n结薄膜;
    所述二维材料异质结可饱和吸收镜还包括可调直流电源,所述可调直流电源与所述电极连接。
  2. 如权利要求1所述的二维材料异质结可饱和吸收镜,其特征在于,所述金膜层的厚度为30-300 nm。
  3. 如权利要求1所述的二维材料异质结可饱和吸收镜,其特征在于,所述原子层级二维材料p-n结薄膜由不同能带带隙的原子层级二维p型和n型半导体材料叠加而成。
  4. 如权利要求3所述的二维材料异质结可饱和吸收镜,其特征在于,所述p型半导体材料和n型半导体材料包括硒化铟,二硫化钨、二硒化钨、二硫化钼、二硒化钼、二碲化钨、二碲化钼、二硫化铪、二硒化铪、二硒化锆、二硫化锆、二硒化铼、二硫化铼、二硫化锡和二硒化锡。
  5. 如权利要求1至4任意一项所述的二维材料异质结可饱和吸收镜,其特征在于,所述二维材料异质结可饱和吸收镜还包括封装保护层,所述封装保护层覆盖在所述原子层级二维材料p-n结薄膜上。
  6. 一种二维材料异质结可饱和吸收镜的制备方法,其特征在于,包括以下步骤:
    在基底上刻蚀两个对称的电极,然后将所述基底及金靶材置于真空室中;
    将所述金靶材表面电离化,产生金的等离子体,利用磁控溅射沉积法将所述金的等离子体沉积在所述基底上形成金膜层,通过控制沉积时间使所述金膜层达到所需厚度;
    将所述基底的所述电极的位置上的金膜溶解,制备得到刻有电极的金膜层;
    将不同能带带隙的原子层级二维p型和n型半导体材料转移到所述刻有电极的金膜层上形成原子层级二维材料p-n结薄膜,获得二维材料异质结可饱和吸收镜。
  7. 如权利要求6所述的二维材料异质结可饱和吸收镜的制备方法,其特征在于,所述制备方法还包括:
    使用六角氮化硼对所述二维材料异质结可饱和吸收镜进行封装,获得封装保护层。
  8. 一种脉冲光纤激光器,其特征在于,所述脉冲光纤激光器包括顺次连接的半导体泵浦激光器、光学波分复用器、增益光纤、光学耦合器、光隔离器、光学环形器及权利要求1至5任意一项所述的二维材料异质结可饱和吸收镜,且所述光学环形器与所述光学波分复用器连接,形成环形腔结构;其中,所述光隔离器用于隔离锁模后的激光,仅允许锁模后的激光在所述脉冲光纤激光器内单向输出;
    所述半导体泵浦激光器产生的泵浦光经所述光学波分复用器耦合后进入所述增益光纤产生锁模所需要的激光脉冲并对所述激光脉冲进行放大;
    所述光学耦合器将放大后的所述激光脉冲的一部分输出到腔外而将另一部分输出至所述光学环形器,进入所述光学环形器的激光脉冲被耦合后进入所述异质结可饱和吸收镜进行锁模,锁模后的激光脉冲再经所述光学环形器返回至所述光学波分复用器,然后经所述增益光纤锁模放大后再通过所述光学耦合器输出脉冲激光。
  9. 如权利要求8所述的脉冲光纤激光器,其特征在于,所述脉冲光纤激光器还包括偏振控制器,其位于所述光隔离器与所述光学环形器之间,偏振控制器用于控制所述脉冲光纤激光器内的激光的偏振状态。
PCT/CN2017/083437 2017-05-08 2017-05-08 一种二维材料异质结可饱和吸收镜及其制备方法 WO2018205086A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083437 WO2018205086A1 (zh) 2017-05-08 2017-05-08 一种二维材料异质结可饱和吸收镜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083437 WO2018205086A1 (zh) 2017-05-08 2017-05-08 一种二维材料异质结可饱和吸收镜及其制备方法

Publications (1)

Publication Number Publication Date
WO2018205086A1 true WO2018205086A1 (zh) 2018-11-15

Family

ID=64104368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083437 WO2018205086A1 (zh) 2017-05-08 2017-05-08 一种二维材料异质结可饱和吸收镜及其制备方法

Country Status (1)

Country Link
WO (1) WO2018205086A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616861A (zh) * 2019-02-18 2019-04-12 哈尔滨工程大学 一种多波长光纤激光器及金纳米粒子锁模器件的制备方法
CN110783809A (zh) * 2019-11-26 2020-02-11 济南大学 一种减缓高功率脉冲光学参量振荡器走离热效应的装置
CN110808309A (zh) * 2019-11-18 2020-02-18 中国科学院上海技术物理研究所 一种铁电增强的范德华异质结偏振探测器及其制备方法
CN114646669A (zh) * 2022-03-16 2022-06-21 哈尔滨工业大学 一种二硫化锡/二硒化锡横向异质结构气敏材料的制备方法及其应用
CN116454721A (zh) * 2023-06-16 2023-07-18 山东科技大学 基于超表面的3μm波段功能可调的可饱和吸收体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904544A (zh) * 2013-11-15 2014-07-02 南通蓝诺光电科技有限公司 二维层状材料可饱和吸收体器件及其制备方法
CN104218443A (zh) * 2014-08-20 2014-12-17 鲍小志 基于二维层状材料的实用化可饱和吸收器件及其制备方法
US20140376585A1 (en) * 2011-11-14 2014-12-25 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Infrared Laser
CN105896257A (zh) * 2016-06-02 2016-08-24 深圳大学 一种异质结可饱和吸收镜及其制备方法、锁膜光纤激光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140376585A1 (en) * 2011-11-14 2014-12-25 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Infrared Laser
CN103904544A (zh) * 2013-11-15 2014-07-02 南通蓝诺光电科技有限公司 二维层状材料可饱和吸收体器件及其制备方法
CN104218443A (zh) * 2014-08-20 2014-12-17 鲍小志 基于二维层状材料的实用化可饱和吸收器件及其制备方法
CN105896257A (zh) * 2016-06-02 2016-08-24 深圳大学 一种异质结可饱和吸收镜及其制备方法、锁膜光纤激光器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616861A (zh) * 2019-02-18 2019-04-12 哈尔滨工程大学 一种多波长光纤激光器及金纳米粒子锁模器件的制备方法
CN110808309A (zh) * 2019-11-18 2020-02-18 中国科学院上海技术物理研究所 一种铁电增强的范德华异质结偏振探测器及其制备方法
CN110783809A (zh) * 2019-11-26 2020-02-11 济南大学 一种减缓高功率脉冲光学参量振荡器走离热效应的装置
CN114646669A (zh) * 2022-03-16 2022-06-21 哈尔滨工业大学 一种二硫化锡/二硒化锡横向异质结构气敏材料的制备方法及其应用
CN114646669B (zh) * 2022-03-16 2024-05-28 哈尔滨工业大学 一种二硫化锡/二硒化锡横向异质结构气敏材料的制备方法及其应用
CN116454721A (zh) * 2023-06-16 2023-07-18 山东科技大学 基于超表面的3μm波段功能可调的可饱和吸收体
CN116454721B (zh) * 2023-06-16 2023-11-03 山东科技大学 基于超表面的3μm波段功能可调的可饱和吸收体

Similar Documents

Publication Publication Date Title
WO2018205086A1 (zh) 一种二维材料异质结可饱和吸收镜及其制备方法
CN106911070A (zh) 一种二维材料异质结可饱和吸收镜及其制备方法
CN106898940A (zh) 一种异质结可饱和吸收镜及其制备方法、脉冲光纤激光器
Xie et al. Giant Two‐Photon Absorption in Mixed Halide Perovskite CH3NH3Pb0. 75Sn0. 25I3 Thin Films and Application to Photodetection at Optical Communication Wavelengths
WO2017063293A1 (zh) 一种过渡金属硫化物可饱和吸收镜及锁模光纤激光器
WO2017214925A1 (zh) 二维半导体可饱和吸收镜及其制备方法、脉冲光纤激光器
WO2016095858A1 (zh) 拓扑绝缘体可饱和吸收镜及其制备方法
CN113097334B (zh) 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用
Fang et al. Laser‐like emission from a sandwiched MoTe2 heterostructure on a silicon single‐mode resonator
WO2018086618A1 (zh) 窄线宽激光器
CN108666860A (zh) 一种带应变补偿的半导体可饱和吸收镜结构
WO2018205087A1 (zh) 一种异质结可饱和吸收镜及其制备方法、脉冲光纤激光器
Bi et al. Improved high-temperature performance of 1.3-1.5-/spl mu/m InNAsP-InGaAsP quantum-well microdisk lasers
CN116544302A (zh) 一种基于准一维范德华材料ZrS3纳米带的可调偏振光电探测器的制备方法
CN115621343A (zh) 一种基于全光学操控的双极性光电传感器及其制备方法
US11239627B2 (en) Waveguide integrated optical modulator, pulsed optical frequency comb and mode-locked fiber laser
Sha et al. High-efficiency SiGe/Si heterojunction phototransistor with photon-trapping nanoholes operating at 600–1000-nm wavelength
CN109149333B (zh) 一种波导集成式光调制器及其制备方法
Yu et al. Design and fabrication of room temperature electrically pumped ZnO nanowire hybrid plasmonic lasers
Xu et al. Bi 2 O 2 Se-Perovskite Heterostructure Based Bipolar Photosensors as Reconfigurable Logic-In-Sensor Devices
Meng et al. High-speed and high-responsivity InP-based uni-traveling-carrier photodiodes
CN1174469C (zh) 偏振不灵敏半导体光学放大器的制备方法
JPS59232477A (ja) 誘電体多層膜形成方法
CN109449068B (zh) 一种负电子亲和势变带隙AlGaAs/GaAs电注入阴极及其制备方法
Li et al. Optomechanical transistor with phonons and photons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909251

Country of ref document: EP

Kind code of ref document: A1