이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다. CDMA는 UTRA (Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communication), GPRS(General Packet Radio Service), EDGE(Enhanced Data Rates for GSM Evolution) (i.e., GERAN) 등과 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11(WiFi), IEEE 802.16(WiMAX), IEEE802-20, E-UTRA(evolved-UTRA) 등과 같은 무선 기술에서 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunication System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 이용하는 E-UMTS의 일부이다. 3GPP LTE는 하향링크(downlink, DL)에서는 OFDMA를 채택하고, 상향링크(uplink, UL)에서는 SC-FDMA를 채택하고 있다. LTE-A(LTE-advanced)는 3GPP LTE의 진화된 형태이다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP 기반 통신 시스템, 예를 들어, LTE/LTE-A, NR에 적용되는 경우를 가정하여 설명한다. 그러나 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE/LTE-A/NR 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A/NR에 특유한 사항을 제외하고는 다른 임의의(any) 이동 통신 시스템에도 적용 가능하다.
예를 들어, 본 발명은 3GPP LTE/LTE-A 시스템과 같이 eNB가 UE에게 하향링크/상향링크 시간/주파수 자원을 할당하고 UE가 eNB의 할당에 따라 하향링크 신호를 수신하고 상향링크 신호를 전송하는 비-경쟁 기반(non-contention based) 통신뿐만 아니라, WiFi와 같은 경쟁 기반(contention based) 통신에도 적용될 수 있다. 비-경쟁 기반 통신 기법은 접속 포인트(access point, AP) 혹은 상기 접속 포인트를 제어하는 제어 노드(node)가 UE와 상기 AP 사이의 통신을 위한 자원을 할당함에 반해 경쟁 기반 통신 기법은 AP에 접속하고자 하는 다수의 UE들 사이의 경쟁을 통해 통신 자원이 점유된다. 경쟁 기반 통신 기법에 대해 간략히 설명하면, 경쟁 기반 통신 기법의 일종으로 반송파 감지 다중 접속(carrier sense multiple access, CSMA)이 있는데, CSMA는 노드 혹은 통신 기기가 주파수 대역(band)와 같은, 공유 전송 매체(shared transmission medium)(공유 채널이라고도 함) 상에서 트래픽(traffic)을 전송하기 전에 동일한 공유 전송 매체 상에 다른 트래픽이 없음을 확인하는 확률적(probabilistic) 매체 접속 제어(media access control, MAC) 프로토콜(protocol)을 말한다. CSMA에서 전송 장치는 수신 장치에 트래픽을 보내는 것을 시도하기 전에 다른 전송이 진행 중인지를 결정한다. 다시 말해, 전송 장치는 전송을 시도하기 전에 다른 전송 장치로부터의 반송파(carrier)의 존재를 검출(detect)하는 것을 시도한다. 반송파가 감지되면 전송 장치는 자신의 전송을 개시하기 전에 진행 중인 다른 전송 장치에 의해 전송이 완료(finish)되기를 기다린다. 결국, CSMA는 "sense before transmit" 혹은 "listen before talk" 원리를 기반으로 한 통신 기법이라 할 수 있다. CSMA를 이용하는 경쟁 기반 통신 시스템에서 전송 장치들 사이의 충돌을 회피하기 위한 기법으로 CSMA/CD(Carrier Sense Multiple Access with Collision Detection) 및/또는 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)가 사용된다. CSMA/CD는 유선 랜 환경에서 충돌 검출 기법으로서 이더넷(ethernet) 환경에서 통신을 하고자 하는 PC(Personal Computer)나 서버(server)가 먼저 네트워크 상에서 통신이 일어나고 있는지 확인한 후, 다른 장치(device)가 데이터를 상기 네트워크 상에서 실어 보내고 있으면 기다렸다가 데이터를 보낸다. 즉 2명 이상의 사용자(예, PC, UE 등)가 동시에 데이터를 실어 보내는 경우, 상기 동시 전송들 사이에 충돌이 발생하는데, CSMA/CD는 상기 충돌을 감시하여 유연성 있는 데이터 전송이 이루어질 수 있도록 하는 기법이다. CSMA/CD를 사용하는 전송 장치는 특정 규칙을 이용하여 다른 전송 장치에 의한 데이터 전송을 감지하여 자신의 데이터 전송을 조절한다. CSMA/CA는 IEEE 802.11 표준에 명시되어 있는 매체 접근 제어 프로토콜이다. IEEE 802.11 표준에 따른 WLAN 시스템은 IEEE 802.3 표준에서 사용되던 CSMA/CD를 사용하지 않고 CA, 즉, 충돌을 회피하는 방식을 사용하고 있다. 전송 장치들은 항상 네트워크의 반송파를 감지하고 있다가, 네트워크가 비어있을 때 목록에 등재된 자신의 위치에 따라 정해진 만큼의 시간을 기다렸다가 데이터를 보낸다. 목록 내에서 전송 장치들 간의 우선순위를 정하고, 이를 재설정(reconfiguration)하는 데에는 여러 가지 방법들이 사용된다. IEEE 802.11 표준의 일부 버전에 따른 시스템에서는, 충돌이 일어날 수 있으며, 이때에는 충돌 감지 절차가 수행된다. CSMA/CA를 사용하는 전송 장치는 특정 규칙을 이용하여 다른 전송 장치에 의한 데이터 전송과 자신의 데이터 전송 사이의 충돌을 회피한다.
후술하는 본 발명의 실시예들에서 "가정한다"는 표현은 채널을 전송하는 주체가 해당 "가정"에 부합하도록 상기 채널을 전송함을 의미할 수 있다. 상기 채널을 수신하는 주체는 상기 채널이 해당 "가정"에 부합하도록 전송되었다는 전제 하에, 해당 "가정"에 부합하는 형태로 상기 채널을 수신 혹은 복호하는 것임을 의미할 수 있다.
본 발명에서 특정 자원에서 채널이 펑처링된다고 함은 상기 채널의 자원 매핑 과정에서 상기 채널의 신호가 상기 특정 자원에 매핑은 되지만 상기 채널이 전송될 때 상기 펑처링되는 자원에 매핑된 신호 부분은 제외된 채 전송되는 것을 의미한다. 다시 말해, 펑처링되는 특정 자원은 해당 채널의 자원 매핑 과정에서 상기 해당 채널의 자원으로 카운트되기는 하지만, 상기 해당 채널의 신호들 중 상기 특정 자원에 매핑된 신호는 실제로는 전송되지 않는다. 상기 해당 채널의 수신 장치는 펑처링된 특정 자원에 매핑된 신호 부분은 전송되지 않았다고 가정하고 상기 해당 채널을 수신 혹은 복조 혹은 복호한다. 이에 반해 특정 자원에서 채널이 레이트-매칭된다고 함은 상기 채널의 자원 매핑 과정에서 상기 채널이 상기 특정 자원에 아예 매핑되지 않음으로써 상기 채널의 전송에 사용되지 않는 것을 의미한다. 다시 말해 레이트-매칭되는 특정 자원은 해당 채널의 자원 매핑 과정에서 아예 상기 해당 채널의 자원으로 카운트되지 않는다. 상기 해당 채널의 수신 장치는 레이트-매칭된 특정 자원이 아예 상기 해당 채널의 매핑 및 전송에 사용되지 않는다고 가정하고 상기 해당 채널을 수신 혹은 복조 혹은 복호한다.
본 발명에 있어서, UE는 고정되거나 이동성을 가질 수 있으며, 기지국(base station, BS)과 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 (Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, BS는 일반적으로 UE 및/또는 다른 BS와 통신하는 고정국(fixed station)을 말하며, UE 및 타 BS와 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 접속 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다. 특히, UTRAN의 기지국은 Node-B로, E-UTRAN의 기지국은 eNB로, 새로운 무선 접속 기술 네트워크(new radio access technology network)의 기지국은 gNB로 불린다. 이하에서는 설명의 편의를 위해, BS를 gNB로 통칭한다.
본 발명에서 노드(node)라 함은 UE와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 다양한 형태의 gNB들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), gNB, 릴레이(relay), 리피터(repeater) 등이 노드가 될 수 있다. 또한, 노드는 gNB가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 gNB의 전력 레벨(power level) 더욱 낮은 전력 레벨을 갖는다. RRH 혹은 RRU 이하, RRH/RRU)는 일반적으로 광 케이블 등의 전용 회선(dedicated line)으로 gNB에 연결되어 있기 때문에, 일반적으로 무선 회선으로 연결된 gNB들에 의한 협력 통신에 비해, RRH/RRU 와 gNB에 의한 협력 통신이 원활하게 수행될 수 있다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다.
본 발명에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역을 말한다. 따라서, 본 발명에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 gNB 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 gNB 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 gNB 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다. 3GPP 기반 통신 시스템에서, UE는 특정 노드로부터의 하향링크 채널 상태를 상기 특정 노드의 안테나 포트(들)이 상기 특정 노드에 할당된 CRS (Cell-specific Reference Signal) 자원 상에서 전송되는 CRS(들) 및/또는 CSI-RS(Channel State Information Reference Signal) 자원 상에서 전송하는 CSI-RS(들)을 이용하여 측정할 수 있다.
한편, 3GPP 기반 통신 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용하고 있는데, 무선 자원과 연관된 셀(cell)은 지리적 영역의 셀(cell)과 구분된다.
지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(configure)되는 주파수 범위인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 나르는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다.
한편, 3GPP 통신 표준은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 무선 자원과 연관된 "셀"이라 함은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL 컴포넌트 반송파(component carrier, CC) 와 UL CC의 조합으로 정의된다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(configured) 수 있다. 반송파 집성이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 예를 들어, 시스템 정보 블록 타입 2(System Information Block Type2, SIB2) 링키지(linkage)에 의해서 DL 자원과 UL 자원의 조합이 지시될 수 있다. 여기서, 반송파 주파수라 함은 각 셀 혹은 CC의 중심 주파수(center frequency)를 의미한다. 이하에서는 1차 주파수(primary frequency) 상에서 동작하는 셀을 1차 셀(primary cell, Pcell) 혹은 PCC로 지칭하고, 2차 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 2차 셀(secondary cell, Scell) 혹은 SCC로 칭한다. 하향링크에서 Pcell에 대응하는 반송파는 하향링크 1차 CC(DL PCC)라고 하며, 상향링크에서 Pcell에 대응하는 반송파는 UL 1차 CC(DL PCC)라고 한다. Scell이라 함은 RRC(Radio Resource Control) 연결 개설(connection establishment)이 이루어진 이후에 설정 가능하고 추가적인 무선 자원을 제공을 위해 사용될 수 있는 셀을 의미한다. UE의 성능(capabilities)에 따라, Scell이 Pcell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)을 형성할 수 있다. 하향링크에서 Scell에 대응하는 반송파는 DL 2차 CC(DL SCC)라 하며, 상향링크에서 상기 Scell에 대응하는 반송파는 UL 2차 CC(UL SCC)라 한다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, Pcell로만 설정된 서빙 셀이 단 하나 존재한다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정된(configured) 안테나 포트, UE-RS를 전송하도록 설정된 안테나 포트, CSI-RS를 전송하도록 설정된 안테나 포트, TRS를 전송하도록 설정된 안테나 포트를 의미한다. CRS들을 전송하도록 설정된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
본 발명에서 사용되는 용어 및 기술 중 구체적으로 설명되지 않은 용어 및 기술에 대해서는 3GPP LTE/LTE-A 표준 문서, 예를 들어, 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331 등과, 3GPP NR 표준 문서, 예를 들어, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP 38.213, 3GPP 38.214, 3GPP 38.215, 3GPP TS 38.321 및 3GPP TS 36.331 등을 참조할 수 있다.
LTE/LTE-A 시스템에서 UE는 전원이 켜지거나 새로이 셀에 접속하고자 하는 경우 상기 셀과의 시간 및 주파수 동기를 획득하고 상기 셀의 물리 계층 셀 식별자(physical layer 셀 IDentity) N
cell
ID를 검출(detect)하는 등의 셀 탐색(initial cell search) 과정(procedure)을 수행한다. 이를 위해, UE 는 eNB로부터 동기신호, 예를 들어, 1차 동기신호(Primary Synchronization Signal, PSS) 및 2차 동기신호(Secondary Synchronization Signal, SSS)를 수신하여 eNB와 동기를 맞추고, 셀 식별자(identity, ID) 등의 정보를 획득할 수 있다. 초기 셀 탐색을 마친 UE는 eNB로의 접속을 완료하기 위해 임의 접속 과정(random access procedure)을 수행할 수 있다. 이를 위해 UE는 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 프리앰블(preamble)을 전송하고, PDCCH 및 PDSCH을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다. 상술한 바와 같은 절차를 수행한 UE는 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신 및 PUSCH/PUCCH 전송을 수행할 수 있다. 상기 임의 접속 과정은 임의 접속 채널(random access channel, RACH) 과정으로도 지칭된다. 임의 접속 과정은 초기 접속, 임의 접속 과정은 초기 접속, 상향링크 동기 조정, 자원 할당, 핸드오버 등의 용도로 다양하게 사용된다.
RACH 프리앰블을 전송한 뒤, UE는 미리-설정된 시간 윈도우 내에서 임의 접속 응답(random access response, RAR) 수신을 시도한다. 구체적으로, LTE/LTE-A 시스템에서 UE는 시간 윈도우 내에서 RA-RNTI(Random Access RNTI)를 갖는 PDCCH(이하, RA-RNTI PDCCH)(예, PDCCH에서 CRC가 RA-RNTI로 마스킹됨)의 검출을 시도한다. RA-RNTI PDCCH 검출 시, UE는 RA-RNTI PDCCH에 대응하는 PDSCH 내에 자신을 위한 RAR이 존재하는지 확인한다. RAR은 UL 동기화를 위한 타이밍 오프셋 정보를 나타내는 타이밍 어드밴스(timing advance, TA) 정보, UL 자원 할당 정보(UL 그랜트 정보), 임시 단말 식별자(예, temporary cell-RNTI, TC-RNTI) 등을 포함한다. UE는 RAR 내의 자원 할당 정보 및 TA 값에 따라 UL 전송(예, Msg3)을 수행할 수 있다. RAR에 대응하는 UL 전송에는 HARQ가 적용된다. 따라서, UE는 Msg3 전송한 후, Msg3에 대응하는 수신 응답 정보(예, PHICH)를 수신할 수 있다.
도 1은 기존 LTE/LTE-A 시스템에서 임의 접속 프리앰블 포맷을 예시한 것이다.
기존 LTE/LTE-A 시스템에서 임의 접속 프리앰블, 즉, RACH 프리앰블은 물리 계층에서 길이 T
CP의 순환 전치(cyclic prefix) 및 길이 T
SEQ의 시퀀스 부분으로 구성된다. 파라미터 값들 T
CP의 T
SEQ는 다음 표에 리스트되어 있으며, 프레임 구조와 임의 접속 설정(configuration)에 의존한다. 프리앰블 포맷은 상위 계층에 의해 제어된다. 3GPP LTE/LTE-A 시스템에서 셀의 시스템 정보 및 이동성 제어 정보를 통해 PRACH 설정 정보를 시그널링된다. 상기 PRACH 설정 정보는 해당 셀 내 RACH 과정에 사용될, 루트 시퀀스 인덱스, Zadoff-Chu 시퀀스의 순환 천이 유닛(N
CS), 루트 시퀀스의 길이, 프리앰블 포맷 등을 나타낸다. 3GPP LTE/LTE-A 시스템에서 프리앰블 포맷, 그리고 RACH 프리앰블이 전송될 수 있는 때인 PRACH 기회(opportunity)는 상기 RACH 설정 정보의 일부인 PRACH 설정 인덱스에 의해 지시된다(3GPP TS 36.211의 섹션 5.7 및 3GPP TS 36.331의 "PRACH
-
Config" 참조). RACH 프리앰블에 사용되는 ZC 시퀀스의 길이는 프리앰블 포맷에 따라 정해져 있다(표 4 참조).
Preamble format |
T
CP
|
T
SEQ
|
0 |
3168·T
s
|
24576·T
s
|
1 |
21024·T
s
|
24576·T
s
|
2 |
6240·T
s |
2·24576·T
s
|
3 |
21024·T
s |
2·24576·T
s
|
4 |
448·T
s |
4096·T
s |
LTE/LTE-A 시스템에서 RACH 프리앰블은 UL 서브프레임에서 전송된다. 임의 접속 프리앰블의 전송은 특정 시간 및 주파수 자원들에 제한(restrict)된다. 이러한 자원들을 PRACH 자원들이라고 하며, PRACH 자원들은, 인덱스 0가 무선 프레임에서 낮은 번호의 PRB 및 서브프레임에 대응하도록, 상기 무선 프레임 내 서브프레임 번호와, 주파수 도메인에서 PRB들의 증가 순으로 번호가 매겨진다. 임의 접속 자원들이 PRACH 설정 인덱스에 따라 정의된다(3GPP TS 36.211 표준 문서 참조). PRACH 설정 인덱스는 (eNB에 의해 전송되는) 상위 계층 신호에 의해 주어진다.
RACH 프리앰블 중 시퀀스 부분(이하 프리앰블 시퀀스)는 Zadoff-Chu 시퀀스를 이용한다. RACH를 위한 프리앰블 시퀀스들은 하나 또는 몇 개의 루트 Zadoff-Chu 시퀀스들로부터 생성된, 제로 상관 존을 갖는 Zadoff-Chu 시퀀스들로부터 생성된다. 네트워크는 UE가 사용하는 것이 허용(allow)되는 프리앰블 시퀀스들의 세트를 설정(configure)한다. 기존 LTE/LTE-A 시스템에서, 각 셀 내에서 이용 가능한 64개 프리앰블 시퀀스들이 있다. 셀 내 64개 프리앰블 시퀀스들의 세트는 먼저, 증가하는(increasing) 순환 천이(cyclic shift)의 순서(order)로, 논리(logical) 인덱스 RACH_ROOT_SEQUENCE를 갖는 루트 Zadoff-Chu 시퀀스의 모든 이용 가능한 순환 천이들을 포함시키는 것에 의해 찾아진다(found). 여기서 RACH_ROOT_SEQUENCE는 (해당 셀의) 시스템 정보의 일부로서 브로드캐스트된다. 64 프리앰블 시퀀스들이 단일 루트 Zadoff-Chu 시퀀스로부터 생성될 수 없는 경우에, 상기 64개 프리앰블 시퀀스들이 모두 찾아질 때까지 추가(additional) 프리앰블 시퀀스들이 연속적(consecutive) 논리 인덱스들을 갖는 루트 시퀀스들로부터 얻어진다(obtain). 상기 논리 루트 시퀀스 순서(order)는 순환적(cyclic)하며, 논리 인덱스 0가 논리 인덱스 837에 연속적이다. 논리 루트 시퀀스 인덱스와 물리 루트 시퀀스 인덱스 u 사이의 관계는 프리앰블 포맷들 0-3에 대해서는 표 2에 의해 주어지고, 프리앰블 포맷 4에 대해서는 표 3에 의해 주어진다.
Logical root sequence number |
Physical root sequence number u (in increasing order of the corresponding logical sequence number) |
0~23 |
129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779, 2, 837, 1, 838 |
24~29 |
56, 783, 112, 727, 148, 691 |
30~35 |
80, 759, 42, 797, 40, 799 |
36~41 |
35, 804, 73, 766, 146, 693 |
42~51 |
31, 808, 28, 811, 30, 809, 27, 812, 29, 810 |
52~63 |
24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703 |
64~75 |
86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818 |
76~89 |
95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688 |
90-115 |
217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61, 778, 55, 784, 15, 824, 14, 825 |
116~135 |
12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616 |
136~167 |
228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106, 733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830 |
168~203 |
7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184, 655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621 |
204~263 |
152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164, 675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100, 739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833 |
264~327 |
5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187, 652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647, 182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213, 626, 215, 624, 150, 689 |
328~383 |
225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206, 633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62, 777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835 |
384~455 |
3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72, 767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117, 722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684, 214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613 |
456~513 |
230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395, 444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478, 387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324, 515 |
514~561 |
323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399, 440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592, 277, 562, 271, 568, 272, 567, 264, 575, 259, 580 |
562~629 |
237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248, 591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541, 312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319, 520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517 |
630~659 |
330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408, 431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605 |
660~707 |
257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403, 436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495, 345, 494, 318, 521, 331, 508, 325, 514, 321, 518 |
708~729 |
346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270, 569, 241, 598 |
730~751 |
231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358, 481, 316, 523 |
752~765 |
293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576 |
766-777 |
242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510 |
778~789 |
317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578 |
790~795 |
236, 603, 303, 536, 356, 483 |
796~803 |
355, 484, 405, 434, 404, 435, 406, 433 |
804~809 |
235, 604, 267, 572, 302, 537 |
810~815 |
309, 530, 265, 574, 233, 606 |
816~819 |
367, 472, 296, 543 |
820~837 |
336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610 |
u-번째 루트 Zadoff-Chu 시퀀스는 다음 수학식에 의해 정의된다.
Preamble format |
N
ZC
|
0 ~ 3 |
839 |
4 |
139 |
상기 u-번째 루트 Zadoff-Chu 시퀀스로부터, 길이 N
ZC-1의 제로 상관 존들을 갖는 임의 접속 프리앰블들이 x
u,v(n) = x
u((n+C
v) mod N
ZC)에 따른 순환 천이들에 의해 정의된다. 여기서 상기 순환 천이는 다음 수학식에 의해 주어진다.
N CS는 프리앰블 포맷들 0~3에 대해 표 5에 의해 주어지고, 프리앰블 포맷 4에 대해 표 6에 의해 주어진다.
zeroCorrelationZoneConfig
|
N CS value |
Unrestricted set |
Restricted set |
0 |
0 |
15 |
1 |
13 |
18 |
2 |
15 |
22 |
3 |
18 |
26 |
4 |
22 |
32 |
5 |
26 |
38 |
6 |
32 |
46 |
7 |
38 |
55 |
8 |
46 |
68 |
9 |
59 |
82 |
10 |
76 |
100 |
11 |
93 |
128 |
12 |
119 |
158 |
13 |
167 |
202 |
14 |
279 |
237 |
15 |
419 |
- |
zeroCorrelationZoneConfig
|
N CS value |
0 |
2 |
1 |
4 |
2 |
6 |
3 |
8 |
4 |
10 |
5 |
12 |
6 |
15 |
7 |
N/A |
8 |
N/A |
9 |
N/A |
10 |
N/A |
11 |
N/A |
12 |
N/A |
13 |
N/A |
14 |
N/A |
15 |
N/A |
파라미터 zeroCorrelationZoneConfig 상위 계층에 의해 제공된다. 상위 계층에 의해 제공되는 파라미터 High-speed-flag는 제한되지 않은(unrestricted) 세트 또는 제한된(restricted) 세트가 사용되어야 하는지를 결정한다.
변수(variable) d
u는 크기 1/T
SEQ의 도플러 천이에 해당하는 순환 천이이고, 다음 수학식에 의해 주어진다.
p는 (pu) mod N
ZC = 1를 충족하는(fulfil) 가장 작은(smallest) 음이 아닌 정수이다. 순환 천이들의 제한된 세트들에 대한 파라미터들은 d
u에 의존한다. N
ZC
≤
d
u<N
ZC/3에 대해, 파라미터들이 다음과 같이 주어진다.
N ZC/3≤ d u<(N ZC-N CS)/2에 대해, 파라미터들이 다음과 같이 주어진다.
d u의 모든 다른 값들에 대해, 제한된 세트 내에 아무런 순환 천이들이 없다.
RACH의 기저대역(baseband) 신호인 시간-연속(time-continuous) 임의 접속 신호 s(t)는 다음 수학식에 의해 정의된다.
여기서 0≤t<T
SEQ-T
CP, βPRACH는 3GPP TS 36.213에 특정된 전송 전력 PPRACH에 맞추기(conform) 위한 진폭(amplitude) 스케일링 인자(factor)이며, k
0 = n
RA
PRB
N
RB
sc - N
UL
RB
N
RB
sc/2이다. N
RB
sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
N
UL
RB은 UL 슬롯에서의 RB 의 개수를 나타내며, UL 전송 대역폭에 의존한다. 주파수 도메인 내 위치 위치(location)는, 3GPP TS 36.211의 섹션 5.7.1로부터 도출(derive)되는, 파라미터 n
RA
PRB에 의해 제어된다. 인자(factor) K = △f/△f
RA는 임의 접속 프리앰블과 상향링크 데이터 전송 사이의 부반송파 간격의 차이를 설명한다(account for). 임의 접속 프리앰블을 위한 부반송파 간격인 변수 △f
RA와 물리 자원 블록들 내 상기 임의 접속 프리앰블의 주파수=도메인 위치를 결정하는 고정된(fixed) 오프셋인 변수 φ는 다음 표에 의해 주어진다.
Preamble format |
△f
RA
|
φ
|
0 ~ 3 |
1250Hz |
7 |
4 |
7500Hz |
2 |
LTE/LTE-A 시스템에서 부반송파 간격 △f는 15kHz 혹은 7.5kHz이지만, 표 7에 주어진 바와 같이 임의 접속 프리앰블을 위한 부반송파 간격 △f
RA는 1.25kHz 혹은 0.75kHz이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 아울러 신뢰성(reliability) 및 지연(latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 진보된 모바일 브로드밴드 통신, 매시브 MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다. 현재 3GPP에서는 EPC 이후의 차세대 이동 통신 시스템에 대한 스터디를 진행 중에 있다. 본 발명에서는 편의상 해당 기술을 새 RAT (new RAT, NR) 혹은 5G RAT라고 칭한다.
NR 통신 시스템은, 데이터 레이트, 용량(capacity), 지연(latency), 에너지 소비 및 비용 면에서, 기존 4세대(4G) 시스템보다 상당히 나은 성능을 지원할 것이 요구된다. 따라서, NR 시스템은 대역폭, 스펙트럴, 에너지, 시그널링 효율, 및 비트당 비용(cost)의 영역에서 상당한 진보를 이룰 필요가 있다.
<OFDM 뉴머롤로지>
새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤리지로 동작하는 하는 UE들이 하나의 셀 안에서 공존할 수 있다.
<서브프레임 구조>
3GPP LTE/LTE-A 시스템에서 사용되는 무선프레임은 10ms(307200T
s)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, T
s는 샘플링 시간을 나타내고, T
s=1/(2048*15kHz)로 표시된다. LTE용 기본(basic) 시간 유닛은 T
s이다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송 시간 간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선 프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다. TTI라 함은 데이터가 스케줄링될 수 있는 간격을 의미한다. 예를 들어, 현재 LTE/LTE-A 시스템에서 UL 그랜트 혹은 DL 그랜트의 전송 기회(opportunity)는 1ms마다 존재하고, 1ms보다 짧은 시간 내에 UL/DL 그랜트 기회(opportunity)가 여러 번 존재하지는 않는다. 따라서, 기존 LTE/LTE-A 시스템에서 TTI는 1ms이다.
도 2는 새로운 무선 접속 기술(new radio access technology, NR)에서 이용 가능한 슬롯 구조를 예시한 것이다.
데이터 전송 지연을 최소화하기 위하여 5세대 새로운 RAT에서는 제어 채널과 데이터 채널이 시간 분할 다중화(time division multiplexing, TDM)되는 슬롯 구조가 고려되고 있다.
도 2에서 빗금 친 영역은 DCI를 나르는 DL 제어 채널(예, PDCCH)의 전송 영역을 나타내고, 검정색 부분은 UCI를 나르는 UL 제어 채널(예, PUCCH)의 전송 영역을 나타낸다. 여기서 DCI는 gNB가 UE에게 전달하는 제어 정보이며, 상기 DCI는 상기 UE가 알아야 하는 셀 설정(configuration)에 관한 정보, DL 스케줄링 등의 DL 특정적(specific) 정보, 그리고 UL 그랜트 등과 같은 UL 특정적 정보 등을 포함할 수 있다. 또한 UCI는 UE가 gNB에게 전달하는 제어 정보이며, 상기 UCI는 DL 데이터에 대한 HARQ ACK/NACK 보고, DL 채널 상태에 대한 CSI 보고, 그리고 스케줄링 요청 (scheduling request, SR) 등을 포함할 수 있다.
도 2에서 심볼 인덱스 1부터 심볼 인덱스 12까지의 심볼들 영역에서는 하향링크 데이터를 나르는 물리 채널(예, PDSCH)의 전송에 사용될 수도 있고, 상향링크 데이터를 나르는 물리 채널(예, PUSCH)의 전송에 사용될 수도 있다. 도 2의 슬롯 구조에 의하면, 1개의 슬롯 내에서 DL 전송과 UL 전송의 순차적으로 진행되어, DL 데이터의 전송/수신과 상기 DL 데이터에 대한 UL ACK/NACK의 수신/전송이 상기 1개의 슬롯 내에서 이루어질 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연이 최소화될 수 있다.
이러한 슬롯 구조에서는, gNB와 UE가 전송 모드에서 수신 모드로의 전환 과정 또는 수신 모드에서 전송 모드로의 전환 과정을 위한 시간 갭(time gap)이 필요하다. 이러한 전송 모드와 수신 모드 간 전환 과정을 위하여 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 가드 기간(guard period, GP)로 설정되게 된다.
기존 LTE/LTE-A 시스템에서 DL 제어 채널은 데이터 채널과 TDM되며, 제어 채널인 PDCCH는 시스템 전 대역으로 퍼져서 전송된다. 그러나 새로운 RAT에서는 한 시스템의 대역폭이 대략 최소 100MHz에 달할 것으로 예상되는 바, 제어 채널을 전 대역으로 확산시켜 전송시키기에는 무리가 있다. UE가 데이터 전송/수신을 위해서 하향링크 제어 채널 수신을 위해서 전 대역을 모니터링하는 것은 UE의 배터리 소모 증대 및 효율성을 저해할 수 있다. 따라서, 본 발명에서는 DL 제어 채널이 시스템 대역, 즉, 채널 대역 내 일부 주파수 대역에서 로컬라이즈(localize)되어 전송되거나 분산(distribute)되어 전송될 수 있다.
NR 시스템에서 기본 전송 유닛(basic transmission unit)는 슬롯이다. 슬롯 구간(duration)은 정규(normal) 순환 프리픽스(cyclic prefix, CP)를 갖는 14개 심볼들로 이루어지거나, 확장 CP를 갖는 12개의 심볼들로 이루어질 수 있다. 또한, 슬롯은 사용된 부반송파 간격의 함수로서 시간으로 스케일링된다. 즉, 부반송파 간격이 커지면 슬롯의 길이는 짧아진다. 예를 들어, 슬롯 당 심볼의 개수가 14인 경우, 10ms의 프레임 내 슬롯의 개수가 15kHz 부반송파 간격에 대해서는 10개라면, 30kHz 부반송파 간격에 대해서는 20개, 60kHz 부반송파 간격에 대해서는 40개가 된다. 부반송파 간격이 커지면 OFDM 심볼의 길이도 짧아진다. 슬롯 내 OFDM 심볼의 개수는 정규 CP인지 아니면 확장 CP인지에 따라 달라지며, 부반송파 간격에 따라 달라지지 않는다. LTE용 기본 시간 유닛인 T
s는 LTE의 기본 부반송파 간격 15kHz와 최대 FFT 크기 2048을 고려하여 T
s = 1/(15000*2048)초로 정의되며, 이는 15kHz 부반송파 간격에 대한 샘플링 시간이기도 하다. NR 시스템에서는 15kHz의 부반송파 간격 외에 다양한 부반송파 간격이 사용될 수 있고, 부반송파 간격과 해당 시간 길이는 반비례하므로, 15kHz보다 큰 부반송파 간격들에 대응하는 실제 샘플링 시간은 T
s = 1/(15000*2048)초보다 짧아진다. 예를 들어, 부반송파 간격 30kHz, 60kHz, 120kHz에 대한 실제 샘플링 시간은 각각 1/(2*15000*2048)초, 1/(4*15000*2048)초, 1/(8*15000*2048)초가 될 것이다.
<아날로그 빔포밍(analog beamforming)>
최근 논의되고 있는 5세대 이동 통신 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다. 하지만 밀리미터 주파수 대역은 너무 높은 주파수 대역을 이용하는 것으로 인해 거리에 따른 신호 감쇄가 매우 급격하게 나타나는 주파수 특성을 갖는다. 따라서, 적어도 6GHz 이상의 대역을 사용하는 NR 시스템은 급격한 전파 감쇄 특성을 보상하기 위해 신호 전송을 전방향이 아닌 특정 방향으로 에너지를 모아서 전송함으로써 급격한 전파 감쇄로 인한 커버리지의 감소 문제를 해결하는 좁은 빔(narrow beam) 전송 기법을 사용한다. 그러나 하나의 좁은 빔만을 이용하여 서비스하는 경우, 하나의 기지국이 서비스를 할 범위가 좁아지므로 기지국은 다수의 좁은 빔을 모아서 광대역으로 서비스를 하게 된다.
밀리미터 주파수 대역, 즉, 밀리미터 파장(millimeter wave, mmW) 대역에서는 파장이 짧아져서 동일 면적에 다수 개의 안테나 요소(element)의 설치가 가능해진다. 예를 들어, 1cm의 정도의 파장을 갖는 30GHz 대역에서 5 by 5cm의 패널(panel)에 0.5 람다(lamda) (파장) 간격으로 2-차원(dimension) 배열 형태로 총 100개의 안테나 요소 설치가 가능하다. 그러므로 mmW에서는 다수 개의 안테나 요소를 사용하여 빔포밍 이득을 높여 커버리지를 증가시키거나, 처리량(throughput)을 높이는 것이 고려된다.
밀리미터 주파수 대역에서 좁은 빔을 형성하기 위한 방법으로, 기지국이나 UE에서 많은 수의 안테나에 적절한 위상차를 이용하여 동일한 신호를 전송함으로써 특정한 방향에서만 에너지가 높아지게 하는 빔포밍 방식이 주로 고려하고 있다. 이와 같은 빔포밍 방식에는 디지털 기저대역(baseband) 신호에 위상차를 만드는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등이 있다. 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(transceiver unit, TXRU)을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 TXRU를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 즉, 밀리미터 주파수 대역은 급격한 전파 감쇄 특성을 보상하기 위해 많은 수의 안테나가 사용해야 하고, 디지털 빔포밍은 안테나 수에 해당하는 만큼 RF 컴포넌트(예, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 하므로, 밀리미터 주파수 대역에서 디지털 빔포밍을 구현하려면 통신 기기의 가격이 증가하는 문제점이 있다. 그러므로 밀리미터 주파수 대역과 같이 안테나의 수가 많이 필요한 경우에는 아날로그 빔포밍 혹은 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은 하나의 TXRU에 다수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다. 하이브리드 BF는 디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 방식이다. 하이브리드 BF의 경우, B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
앞서 언급한 바와 같이 디지털 빔포밍은 전송할 혹은 수신된 디지털 기저대역 신호에 대해 신호 처리를 하므로 다중의 빔을 이용하여 동시에 여러 방향으로 신호를 전송 혹은 수신할 수 있는 반면에, 아날로그 빔포밍은 전송할 혹은 수신된 아날로그 신호를 변조된 상태에서 빔포밍을 수행하므로 하나의 빔이 커버하는 범위를 넘어가는 다수의 방향으로 신호를 동시에 전송 혹은 수신할 수 없다. 통상 기지국은 광대역 전송 혹은 다중 안테나 특성을 이용하여 동시에 다수의 사용자와 통신을 수행하게 되는데, 기지국이 아날로그 혹은 하이브리드 빔포밍을 사용하고 하나의 빔 방향으로 아날로그 빔을 형성하는 경우에는 아날로그 빔포밍의 특성상 동일한 아날로그 빔 방향 안에 포함되는 사용자들과만 통신할 수 밖에 없다. 후술될 본 발명에 따른 RACH 자원 할당 및 기지국의 자원 활용 방안은 아날로그 빔포밍 혹은 하이브리드 빔포밍 특성으로 인해서 생기는 제약 사향을 반영하여 제안된다.
<하이브리드 아날로그 빔포밍(hybrid analog beamforming)>
도 3은 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.
다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법이 대두되고 있다. 이때, 아날로그 빔포밍 (또는 RF 빔포밍)은 RF 유닛(트랜시버라고도 함)이 프리코딩 (또는 컴바이닝)을 수행하는 동작을 의미한다. 하드브리드 빔포밍에서 기저대역(baseband) 유닛과 RF 유닛은 각각 프리코딩 (또는 컴바이닝)을 수행하며, 이로 인해 RF 체인(chain) 수와 D/A (또는 A/D) 컨버터의 개수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다. 편의상 하이브리드 빔포밍 구조는 N개 TXRU와 M개의 물리적 안테나로 표현될 수 있다. 전송 단에서 전송할 L개 데이터 레이어에 대한 디지털 빔포밍은 N-by-L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환된 다음 M-by-N 행렬로 표현되는 아날로그 빔포밍이 적용된다. 도 3에서 디지털 빔의 개수는 L이며, 아날로그 빔의 개수는 N이다. 더 나아가 NR 시스템에서는 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 기지국을 설계하여, 특정한 지역에 위치한 UE에게 보다 효율적인 빔포밍을 지원하는 방향이 고려되고 있다. 더 나아가서 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로서 정의될 때, NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다. 이와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, UE별로 신호 수신에 유리한 아날로그 빔이 다를 수 있으므로, 적어도 동기 신호, 시스템 정보, 페이징 등에 대해서는 특정 슬롯 혹은 서브프레임(subframe, SF)에서 기지국이 적용할 복수 아날로그 빔들을 심볼별로 바꾸어 모든 UE들이 수신 기회(opportunity)를 가질 수 있도록 하는 빔 스위핑 동작이 고려되고 있다.
최근 3GPP 표준화 단체에서는 5G 무선 통신 시스템인 새로운 RAT 시스템, 즉, NR 시스템에서 단일 물리 네트워크 상에 복수의 논리 네트워크를 구현하는 네트워크 슬라이싱이 고려되고 있다. 상기 논리 네트워크는 다양한 요구 조건을 갖는 다양한 서비스들(예, eMBB, mMTC, URLLC 등)를 지원할 수 있어야 하며, NR 시스템의 물리 계층 시스템에서는 상기 다양한 서비스들에 따를 가변적인(variable) 뉴머롤로지를 가질 수 있는 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM) 방식을 지원하는 방안이 고려되고 있다. 다시 말해 상기 NR 시스템에서는 시간 및 주파수 자원 영역(region)마다 서로 독립적인 뉴머롤러지를 갖는 OFDM 방식 (또는 다중 접속(multiple access) 방식)이 고려될 수 있다.
또한, 최근 스마트 기기들의 등장으로 데이터 트래픽이 급격하게 증가함에 따라 NR 시스템에서는 더욱 높은 통신 용량(예, 데이터 수율 등)을 지원하도록 요구되고 있다. 상기 통신 용량을 높이는 한 가지 방안으로 다수의 전송 (또는 수신) 안테나를 활용하여 데이터 전송을 수행하는 방안을 고려될 수 있다. 상기 다수의 안테나에 대해 디지털 빔포밍을 적용하고자 하는 경우, 각 안테나마다 RF 체인(예, 전력 증폭기(power amplifier), 하향 컨버터(down converter) 등 RF 소자들로 이루어진 체인)과 디지털-to-아날로그(digital-to-analog, D/A) 또는 아날로그-to-디지털(analog-to-digital, A/D) 컨버터가 필요하며 이와 같은 구조는 높은 하드웨어 복잡도와 높은 전력 소모를 유발하여 실용적이지 않을 수 있다. 따라서 NR 시스템에서는 다수의 안테나가 사용되는 경우, 앞서 언급된, 디지털 빔포밍과 아날로그 빔포밍을 혼용하는 하이브리드 빔포밍 기법이 대두되고 있다.
도 4는 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.
도 4를 참조하면, NR 시스템에서는 기존 LTE 등의 무선 통신 시스템에 하나의 기지국이 하나의 셀을 형성하던 것과는 달리 복수의 TRP가 하나의 셀을 구성하는 방안이 논의되고 있다 복수의 TRP가 하나의 셀을 구성하면, UE를 서비스하는 TRP가 변경되더라고 끊김 없는 통신이 가능하여 UE의 이동성 관리가 용이하다는 장점이 있다.
LTE/LTE-A 시스템에서 PSS/SSS는 전-방위적(omni-direction)으로 전송되는 것에 반해서, mmWave를 적용하는 gNB가 빔 방향을 전-방위적으로 돌려가면서 PSS/SSS/PBCH 등의 신호를 빔포밍하여 전송하는 방법이 고려되고 있다. 이와 같이 빔 방향을 돌려가면서 신호를 전송/수신하는 것을 빔 스위핑(beam sweeping) 혹은 빔 스캐닝이라 한다. 본 발명에서 "빔 스위핑'은 전송기 측 행동이고, "빔 스캐닝"은 수신기 측 행동을 나타낸다. 예를 들어 gNB가 최대 N개의 빔 방향을 가질 수 있다고 가정하면, N개의 빔 방향에 대해서 각각 PSS/SSS/PBCH 등의 신호를 전송한다. 즉 gNB는 자신이 가질 수 있는 혹은 지원하고자 하는 방향들을 스위핑하면서 각각의 방향에 대해서 PSS/SSS/PBCH 등의 동기 신호들을 전송한다. 혹은 gNB가 N개의 빔을 형성할 수 있는 경우, 몇 개씩의 빔들이 묶여 하나의 빔 그룹으로 구성할 수 있으며, 빔 그룹별로 PSS/SSS/PBCH를 전송/수신될 수 있다. 이 때, 하나의 빔 그룹은 하나 이상의 빔을 포함한다. 동일 방향으로 전송되는 PSS/SSS/PBCH 등의 신호가 하나의 SS 블록으로 정의될 수 있으며, 한 셀 내에 복수의 SS 블록들이 존재할 수 있다. 복수의 SS 블록들이 존재하는 경우, 각 SS 블록의 구분을 위해서 SS 블록 인덱스가 사용될 수 있다. 예를 들여, 한 시스템에서 10개의 빔 방향으로 PSS/SSS/PBCH가 전송되는 경우, 동일 방향으로의 PSS/SSS/PBCH이 하나의 SS 블록을 구성할 수 있으며, 해당 시스템에서는 10개의 SS 블록들이 존재하는 것으로 이해될 수 있다. 본 발명에서 빔 인덱스는 SS 블록 인덱스로 해석될 수 있다.
도 5는 SS 블록 전송 및 SS 블록에 링크된 RACH 자원을 예시한 것이다.
gNB가 하나의 UE와 통신하기 위해서는 상기 gNB와 상기 UE 간 최적의 빔 방향이 무엇인지를 알아내야 하고, 상기 UE가 움직임에 따라 최적의 빔 방향도 변할 것이므로 최적의 빔 방향을 지속적으로 추적해야 한다. gNB와 UE 간 최적의 빔 방향을 알아내는 과정을 빔 획득(beam acquisition) 과정이라 하고, 최적의 빔 방향을 지속적으로 추적하는 과정을 빔 추적(beam tracking) 과정이라 한다. 빔 획득 과정은 1) UE가 gNB에 최초로 접속을 시도하는 초기 접속, 2) UE가 하나의 gNB로부터 다른 gNB로 넘어가는 핸드오버, 3) UE와 gNB 간 최적 빔을 찾는 빔 트랙킹 수행 중에 최적 빔을 잃어버리고 상기 gNB과 통신이 최적의 통신 상태를 지속할 수 없거나 통신이 불가능한 상태로 들어간 상태, 즉, 빔 실패(beam failure)를 복구하기 위한 빔 회복(beam recovery) 등에 필요하다.
현재 개발중인 NR 시스템의 경우, 다중 빔을 사용하는 환경에서 빔 획득을 위해 다단계의 빔 획득 과정이 논의되고 있다. 다단계 빔 획득 과정에서, gNB와 UE가 초기 접속 단계(stage)에서는 넓은(wide) 빔을 이용하여 연결 셋업을 진행하고, 연결 셋업이 완료된 후 상기 gNB와 상기 UE는 좁은(narrow) 빔을 이용하여 최적의 품질로 통신을 수행한다. 본 발명에서 주로 논의할 NR 시스템의 빔 획득을 위해 여러 가지 방식이 논의되고 있으나, 현재 가장 활발하게 논의되는 방식은 다음과 같다.
1) gNB는 UE가 초기 접속 단계에서 gNB을 찾고, 즉, 셀 탐색(cell search) 혹은 셀 획득(cell acquisition)을 수행하고 넓은 빔의 빔별 채널 품질을 측정하여 빔 획득의 일차 단계에서 사용할 최적의 넓은 빔을 찾을 수 있도록 하기 위해서 넓은 빔별로 동기 블록(synchronization block)을 전송한다. 2) UE는 빔별 동기 블록에 대해 셀 탐색을 수행하고, 빔별 셈 검출(detection) 결과를 이용하여 하향링크 빔 획득을 수행한다. 3) UE는 자신이 찾아낸 gNB에 자신이 접속하려는 것을 알려주기 위해 RACH 과정을 수행하게 된다. 4) UE가 RACH 과정과 동시에 넓은 빔 레벨로 하향링크 빔 획득 결과(예, 빔 인덱스)를 gNB에게 알려줄 수 있도록 하기 위해서, 상기 gNB는 빔별로 전송된 동기 블록과 RACH 전송을 위해 사용될 RACH 자원을 연결 혹은 연관시켜 놓는다. UE는 자신이 찾은 최적의 빔 방향과 연결된 RACH 자원을 이용하여 RACH 과정을 수행하면, gNB는 RACH 프리앰블을 수신하는 과정에서 상기 UE에게 적합한 하향링크 빔에 대한 정보를 얻게 된다.
<빔 대응성(beam correspondence, BC)>
다중-빔 환경에서는 UE와 전송 및 수신 포인트(transmission and reception point, TRP) 사이의 Tx 빔 및/또는 수신(reception, Rx) 빔 방향을 UE 및/또는 TRP가 정확히 결정할 수 있느냐가 문제된다. 다중-빔 환경에서 TRP(예, eNB) 혹은 UE의 TX/RX 상호(reciprocal) 능력(capability)에 따라서 신호 전송을 반복 혹은 신호 수신을 위한 빔 스위핑이 고려될 수 있다. TX/RX 상호 능력은 TRP 및 UE에서의 TX/RX 빔 대응성(correspondence)라고도 한다. 다중-빔 환경에서 TRP 및 UE에서 TX/RX 상호 능력이 유효하지(hold) 않으면 UE는 자신이 하향링크 신호를 수신한 빔 방향으로 상향링크 신호를 쏘지 못할 수 있다. UL의 최적 경로와 DL의 최적 경로가 다를 수 있기 때문이다. TRP에서의 TX/RX 빔 대응성은, TRP가 TRP의 하나 이상의 TX 빔들에 관한 UE의 하향링크 측정을 기초로 해당 상향링크 수신을 위한 TRP RX 빔을 결정할 수 있으면 및/또는 TRP가 TRP의 하나 이상의 RX 빔들에 관한 TRP'의 상향링크 측정을 기초로 해당 하향링크 전송에 대한 TRP TX 빔을 결정할 수 있으면, 유효하다(hold). UE에서의 TX/RX 빔 대응성은, UE가 UE의 하나 이상의 RX 빔들에 관한 UE의 하향링크 측정을 기초로 해당 상향링크 전송을 위한 UE RX 빔을 결정할 수 있으면 및/또는 UE가 UE의 하나 이상의 TX 빔들에 관한 상향링크 측정을 기반으로 한 TRP의 지시(indication)를 기초로 해당 하향링크 수신에 대한 UE TX 빔을 결정할 수 있으면, 유효하다(hold).
LTE 시스템 및 NR 시스템에서 gNB로의 초기 접속, 즉, 상기 gNB가 사용하는 셀을 통한 상기 gNB로의 초기 접속을 위해 사용하는 RACH 신호는 다음 요소들을 이용하여 구성될 수 있다.
* 순환 프리픽스(cyclic prefix, CP): 이전/앞 (OFDM) 심볼로부터 들어오는 간섭을 막아주고, 다양한 시간 지연을 갖고 gNB에 도착하는 RACH 프리앰블 신호들을 하나의 동일한 시간대에 묶어주는 역할을 한다. 즉, 셀 최대 반경에 부합하도록 CP를 설정하면 상기 셀 내의 UE들이 동일한 자원에서 전송한 RACH 프리앰블들이 RACH 수신을 위해 gNB가 설정한 RACH 프리앰블 길이에 해당하는 RACH 수신 윈도우 내에 들어오게 된다. CP의 길이는 일반적으로 최대 라운드 트립 딜레이(maximum round trip delay)보다 같거나 크게 설정된다.
* 프리앰블: 신호가 전송되었음을 gNB가 검출하기 위한 시퀀스가 정의되며, 프리앰블은 이 시퀀스를 나르는 역할을 한다.
* 가드 시간(guard time, GT): RACH 커버리지 상 gNB와 가장 먼 곳으로부터 전송되어 지연되어 상기 gNB에 들어오는 RACH 신호가 RACH 심볼 구간(duration) 이후에 들어오는 신호에 간섭을 주지 않도록 하기 위해 정의된 구간으로서, 이 구간 동안 UE는 신호를 전송하지 않기 때문에 GT는 RACH 신호로서 정의되지 않을 수도 있다.
도 6은 RACH 프리앰블의 구성/포맷과 수신기 기능(function)을 예시한 것이다.
UE는 동기 신호를 통해 얻은 gNB의 시스템 타이밍에 맞춰서 지정된 RACH 자원을 통해 RACH 신호를 전송한다. gNB는 여러 UE로부터의 신호들을 수신하게 된다. gNB는 일반적으로 RACH 수신을 위해 도 5에 예시된 과정을 수행한다. RACH 신호에 대해서 CP는 최대 라운드 트립 딜레이 이상으로 설정되기 때문에, gNB는 최대 라운드 트립 딜레이와 CP 길이 사이의 임의의 지점이 신호 수신을 위한 경계(boundary)로 설정할 수 있다. 상기 경계 지점을 신호 수신을 위한 시작점으로 정하고, 이 시작점으로부터 시퀀스 길이에 해당하는 길이만큼의 신호에 대해서 상관(correlation)을 적용하면, gNB는 RACH 신호의 존재 여부와 순환 천이 정보를 얻을 수 있다.
gNB가 운용하는 통신 환경이 밀리미터 대역과 같이 다중 빔을 사용하는 환경의 경우, RACH 신호가 여러 방향으로부터 상기 gNB에 들어오게 되며, 상기 gNB는 여러 방향으로부터 들어오는 RACH 수신을 위해 빔 방향을 바꿔가면서 RACH 프리앰블(즉, PRACH)에 대한 검출을 수행해야 한다. 앞서 언급한 바와 같이 아날로그 빔을 사용하는 경우, gNB는 하나의 시점에는 한 방향에 대해서만 RACH 수신을 수행할 수 밖에 없다. 이러한 이유로 인해 gNB가 RACH 프리앰블 검출을 적절하게 수행할 수 있도록 하기 위한 RACH 프리앰블 및 RACH 과정이 설계될 필요가 있다. 본 발명은 gNB에서 빔 대응성(beam correspondence, BC)가 유효한 경우와 BC가 유효하지 않은 경우를 고려하여 NR 시스템, 특히, 빔포밍이 적용될 수 있는 고주파 대역을 위한 RACH 프리앰블 및/또는 RACH 과정을 제안한다.
도 7은 RACH 프리앰블을 수신하기 위해 gNB에 형성되는 수신(receiving, Rx) 빔을 예시한 것이다.
BC가 유효하지 않은 경우, SS 블록에 대해서 RACH 자원이 링크되어 있더라도 gNB는 SS 블록의 전송 빔 방향으로 수신 빔을 형성한다 하더라도 빔 방향이 어긋날 수 있으므로, 다수개의 방향에 대해서 즉 수신 빔을 바꿔가면서 RACH 프리앰블 검출을 수행/시도하는 빔 스캐닝을 수행할 수 있도록, 도 7(a)에 예시된 포맷으로 RACH 프리앰블이 설정될 수 있다. 반면에, BC가 유효한 경우, 동기 신호 블록(SS 블록)에 대해서 RACH 자원이 링크되어 있기 때문에 gNB는 하나의 RACH 자원에 대해 SS 블록을 전송하기 위해 사용한 빔 방향으로 수신 빔을 형성하여 그 방향에 대해서만 RACH 프리앰블 검출을 수행하면 된다. 따라서, 도 7(b)에 예시된 포맷으로 RACH 프리앰블이 설정될 수 있다.
앞서 언급한 바와 같이, UE의 하향링크 빔 획득 보고 및 하향링크 선호(preferred) 빔 보고와 gNB의 BC에 따른 빔 스캐닝이라는 RACH 과정의 두 가지 목적을 반영하여, RACH 신호 및 RACH 자원이 구성되어야 한다.
도 8은 RACH 신호 및 RACH 자원과 관련하여 본 발명의 설명에 사용되는 용어들을 설명하기 위해 도시된 것이다. 이하 본 발명에서는 RACH 신호가 다음과 같은 형태로 설정될 수 있다.
* RACH 자원 요소(RACH resource element): RACH 자원 요소는 UE가 RACH 신호를 전송하는 기본 유닛이다. 다른 RACH 자원 요소들은 각각 다른 UE들에 의해 RACH 신호 전송을 위해 사용될 수 있으므로, 각 RACH 자원 요소 내 RACH 신호에 CP가 삽입된다. UE들 간 신호들에 대한 보호는 이미 CP에 의해 유지되므로, GT는 RACH 자원 요소들 간에는 불필요하다.
* RACH 자원(RACH resource): RACH 자원은 하나의 SS 블록과 연결되어 있는 연접한 RACH 자원 요소들의 집합으로 정의된다. RACH 자원이 연속적으로 인접하여 할당되는 경우, RACH 자원 요소들과 마찬가지로 연속한 두 RACH 자원들이 각각 다른 UE에 의한 신호 전송을 위해 사용될 수 있으므로 각 RACH 자원 내 RACH 신호에 CP가 삽입될 수 있다. CP에 의해 시간 지연에 의한 신호 검출 왜곡이 방지되므로 RACH 자원과 RACH 자원 사이에 GT는 불필요하다. 단 RACH 자원 하나만으로 구성되는 경우, 즉, RACH 자원이 연속적으로 구성되지 않은 경우, RACH 자원 뒤에 PUSCH/PUCCH가 할당될 수 있으므로 PUSCH/PUCCH 앞에 GT가 삽입될 수 있다.
* RACH 자원 세트(RACH resource set): RACH 자원 세트는 연속한 RACH 자원들의 집합이다. 셀에 다수의 SS 블록이 존재하고 상기 다수의 SS 블록들에 각각(respectively) 연결된 RACH 자원들이 연접할 경우, 상기 연속한 RACH 자원들이 하나의 RACH 자원 세트로 정의될 수 있다. RACH 자원들로 이루어진 RACH 자원 세트가 PUSCH/PUCCH와 같은 다른 신호와 만날 수 있는 부분인 RACH 자원 세트의 마지막에 GT가 삽입된다. GT는 앞서 언급한 바와 같이 신호를 전송하지 않는 구간이므로 신호로서 정의되지 않을 수 있다. GT는 도 8에 따로 도시되지는 않는다.
* RACH 프리앰블 반복(RACH preamble repetition): gNB의 수신 빔 스캐닝을 위한 RACH 프리앰블을 구성하는 경우, 즉, gNB가 자신이 수신 빔 스캐닝을 수행할 수 있도록 RACH 프리앰블 포맷을 설정하는 경우, RACH 프리앰블 내에서 동일한 신호(즉, 동일 시퀀스)가 반복되면 반복되는 신호 자체가 CP 역할을 하므로 반복되는 신호들 사이에 CP가 필요하지 않지만, 다른 신호들 이용하여 프리앰블이 RACH 프리앰블 내에서 반복하는 경우에는 프리앰블과 프리앰블 사이에 CP가 필요하다. RACH 프리앰블과 RACH 프리앰블 사이에는 GT가 필요하지 않다. 이하에서는 동일 신호의 반복을 가정하여 본 발명을 설명된다. 예를 들어, RACH 프리앰블이 'CP + 프리앰블 + 프리앰블'의 형태로 구성되는 경우, 상기 RACH 프리앰블 내 프리앰블들은 동일한 시퀀스로 이루어진다고 가정하여, 본 발명이 설명된다.
도 8은 gNB의 관점에서 복수의 SS 블록들에 대한 RACH 자원들과 각 RACH 자원 내 RACH 프리앰블이 도시한 것이며, gNB는 상기 RACH 자원들이 설정된 시간 영역에서 해당 셀 상의 각 RACH 자원 내 RACH 프리앰블의 수신을 시도한다. UE는 셀의 모든 SS 블록들에 대한 RACH 자원들 각각에서 RACH 프리앰블을 전송하는 것이 아니라, 특정 SS 블록(들)(예, 수신 품질이 좋은 SS 블록(들))과 링크된 RACH 자원(들)을 통해 자신의 RACH 프리앰블을 전송한다. 앞서 언급된 바와 같이 서로 다른 RACH 자원 요소들 혹은 서로 다른 RACH 자원들은 서로 다른 UE에 의한 RACH 프리앰블 전송에 사용될 수 있다.
도 9는 RACH 자원 세트를 예시한 것이다. 도 9(a)는 BC가 유효한 gNB의 셀 상에 RACH 자원 당 2개 RACH 자원 요소들이 설정된 경우를 예시한 것이고, 도 9(b)는 BC가 유효한 gNB의 셀 상에 RACH 자원 당 1개 RACH 자원 요소들이 설정된 경우를 예시한 것이다. 도 9(a)에 의하면 SS 블록에 링크된 RACH 자원 내에서 2개의 RACH 프리앰블이 전송될 수 있다. 도 9(b)에 의하면 SS 블록에 링크된 RACH 자원 내에서 1개의 RACH 프리앰블이 전송될 수 있다.
도 8에서 설명된 RACH 신호 구성 특성을 이용하고 RACH 자원의 효율성을 최대화하도록 RACH 자원 세트가 도 9와 같이 구성될 수 있다. 도 9에 예시된 바와 같이 RACH 자원의 사용/할당 효율성을 높이기 위해서는 RACH 자원 세트 내 RACH 자원들 간에 빈 구간을 할당하지 않고 RACH 자원들 혹은 RACH 자원 요소들이 완전히 연속해서 사용될 수 있도록 설정될 수 있다.
하지만 도 9와 같이 RACH 자원을 설정하는 경우 다음과 같은 문제가 발생할 수 있다. 1) BC가 유효하고 SS 블록 #N에 해당하는 RACH 자원의 수신을 위해 gNB가 SS 블록 #N의 방향으로 빔을 형성하여 수신하는 경우, 데이터 혹은 제어 채널을 위해 정의된 OFDM 심볼(OFDM symbol, OS)의 중간에서 수신 빔이 변경되기 때문에 RACH 자원으로 할당된 주파수 자원 이외의 자원을 부분적으로만 사용할 수 밖에 없는 문제점이 발생한다. 즉, 도 9(a)의 예에서 볼 수 있듯이 SS 블록 #1을 수신하기 위해 gNB가 수신 빔을 형성하면, OS #4는 데이터 채널 혹은 제어 채널 용으로 사용할 수 없는 문제점이 발생하게 된다. 2) BC가 유효하지 않아 gNB가 RACH 자원 요소 내에서 Rx 빔 스캐닝을 수행할 때, SS 블록 #1에 대응하는 RACH 자원에 대해서는 OS#1/OS#2/OS#3의 경계에 맞추어서 OS 각각에서 Rx 빔을 형성하여 데이터/제어 신호를 수신하면서 RACH 프리앰블 검출을 수행할 수 있으나, SS 블록 #2에 해당하는 RACH 자원에 대한 빔 스캐닝을 수행할 때 OS#4에 해당하는 구간에서 데이터/제어 신호의 수신을 위한 빔 방향과 RACH 프리앰블 수신을 위한 빔 방향이 맞지 않아 RACH 프리앰블을 검출하는 데 문제가 발생할 수 있다.
정리하면, RACH 신호 수신을 위해 gNB이 수신 빔의 방향을 변경하면서 빔 스캐닝을 수행하고 수신 빔을 변경하는 시점이 데이터 혹은 제어 채널을 위해 정의되는 OFDM 심볼 경계와 어긋나는 경우, RACH 자원으로서 할당된 주파수 자원이 아닌 주파수 영역에서 서비스되는 데이터 혹은 제어 채널의 자원 사용/할당 효율성이 떨어지는 문제가 발생할 수 있다. 이러한 문제점을 해결하기 위해 본 발명은, 다중 빔 시나리오에서 gNB가 빔 방향을 변경하면서 RACH 프리앰블 검출을 수행할 수 있도록 함과 동시에 상기 gNB가 RACH 자원 이외의 모든 무선 자원을 데이터 및 제어 채널을 위해 사용할 수 있도록 하기 위해, OFDM 심볼 경계와 정렬(align)되는 구조로 RACH 자원을 할당할 것을 제안한다. BC가 유효한 경우를 예로 들면, RACH 자원 혹은 상기 RACH 자원을 통해 전송되는 RACH 프리앰블은, 도 10에 예시된 바와 같이, 2가지 방법으로 OFDM 심볼 경계와 정렬될 수 있다.
도 10은 RACH 자원의 경계 정렬에 관한 본 발명을 설명하기 위해 도시된 것이다. 도 10은 BC가 유효하면서 하나의 RACH 자원에 2개의 RACH 자원 요소가 전송될 수 있는 경우를 예로 한 것이다. BC가 유효하지 않은 경우, 도 7(a) 또는 도 8(a)에서 예시된 바와 같이, 하나의 RACH 프리앰블이 하나의 CP와 복수의 연속한 프리앰블들로 구성될 수 있으며, 이 경우에도 이하의 본 발명이 적용될 수 있다. 하나의 RACH 자원에 하나의 RACH 자원 요소만 전송될 수도 있으며, 이 경우에도 이하의 본 발명이 적용될 수 있다.
1) OFDM 심볼 경계와 RACH 자원 경계를 일치시키는 방법들 중 하나(이하 방법 1)는, 도 10(a)에 예시된 바와 같이, gNB에 의한 RACH 프리앰블 검출 능력, 상기 gNB의 커버리지, RACH 프리앰블의 부반송파 간격을 반영하여, RACH 프리앰블의 CP 길이와 프리앰블 길이를 정한 후, 이를 이용하여 RACH 자원 요소를 설정한다. gNB는 RACH 자원 용량(capacity)를 반영하여 RACH 자원당 RACH 자원 요소 수를 정하여 RACH 자원을 설정할 수 있다. gNB는 연속하여 사용할 RACH 자원들 각각의 경계를 데이터 및 제어 채널을 위해 사용할 OFDM 심볼(들) 경계와 일치하도록 RACH 자원(들)을 설정한다. 이 경우, RACH 자원들 간에는 빈 구간이 발생할 수 있다. 이 빈 구간은 아무 신호도 전송하지 않는 구간으로 설정될 수 있다. 혹은 RACH 자원 내 마지막 RACH 자원 요소에 한해서만 포스트픽스(post-fix)로 신호가 추가로 전송될 수 있다. 즉, RACH 자원 내 RACH 자원 요소들 중 시간 도메인에서 가장 마지막 RACH 자원 요소를 사용하여 RACH 프리앰블을 전송하는 UE는 자신의 RACH 프리앰블에 포스트픽스(post-fix) 신호를 추가하여 전송하고, 상기 마지막 RACH 자원 요소가 아닌 RACH 자원 요소를 사용하여 RACH 프리앰블을 전송하는 UE는 포스트픽스 신호를 추가하지 않은 채 전송할 수 있다.
2) OFDM 심볼 경계와 RACH 자원 경계를 일치시키는 방법들 중 다른 하나(이하 방법 2)는, 도 10(b)에 예시된 바와 같이, RACH 자원 경계를 OFDM 심볼 경계와 정렬시키기 위해 CP의 길이 및 프리앰블의 길이를 설정한다. 하지만 RACH 자원당 RACH 자원 요소의 수가 변화할 수 있기 때문에 RACH 프리앰블의 길이를 OFDM 심볼 경계에 맞추어 변경하는 경우 상기 RACH 프리앰블 내 프리앰블 시퀀스의 특성이 바뀔 위험이 있다. 즉, 프리앰블의 생성에 사용되는 ZC 시퀀스의 길이는 표 4에 나타난 바와 같이 프리앰블 포맷에 따라 839 또는 139로 정해져 있는데, RACH 프리앰블의 길이를 OFDM 심볼 경계에 맞추기 위해 프리앰블의 길이를 조절할 경우, 프리앰블 시퀀스인 ZC 시퀀스의 특성이 바뀔 위험이 있다. 따라서 RACH 프리앰블 포맷이 정해지고 RACH 자원당 RACH 자원요소가 정해지면, RACH 프리앰블의 길이는 고정하되 RACH 자원이 OFDM 심볼 경계와 정렬되도록 CP의 길이를 RACH 프리앰블 포맷의 설정에서 정해진 길이보다 키우는 것이 가능하다. 즉, 이 방법은 프리앰블 시퀀스의 특성을 유지되도록 RACH 프리앰블 내 각 프리앰블의 길이는 고정하고, CP의 길이를 OFDM 심볼 경계에 맞춰 늘림으로써 RACH 자원의 경계, 즉, 상기 RACH 자원을 통해 전송/수신되는 RACH 프리앰블의 경계를 데이터/제어 채널의 전송용 OFDM 심볼(즉, 일반 OFDM 심볼) 경계와 맞추는 것이다. 이 경우, gNB는 일부 RACH 자원 요소의 CP 길이만 키우도록 설정(즉, 일부 RACH 프리앰블의 CP의 길이만 키우도록 설정)하거나, 혹은 모든 RACH 자원 요소의 CP 길이를 적절하게 키우도록 설정(즉, 각 RACH 프리앰블의 CP 길이를 적절하게 키우도록 설정)할 수 있다. 따라서, 예를 들어, gNB가 OFDM 심볼들로 구성된 시간 영역에 RACH 자원을 설정하는 경우, 상기 gNB는 CP 길이와 시퀀스 부분 길이를 나타내는 프리앰블 포맷을 설정하는데, 시퀀스 부분 길이는 해당 RACH 프리앰블에 포함될 프리앰블의 개수에 따라 특정 길이(예, RACH를 위한 ZC 시퀀스의 길이)로부터 얻어진 프리앰블 길이의 양의 정수 배이고, CP 길이는 상기 일반 OFDM 심볼들의 총 길이에서 상기 프리앰블 부분 길이를 뺀 값과 같도록 프리앰블 포맷을 설정하여 시그널링할 수 있다. OFDM 심볼들의 길이가 모두 같은 경우, 본 발명에 따른 RACH 프리앰블 포맷은 프리앰블의 기정의된 길이(예, 기정의된 길이의 ZC 시퀀스로부터 얻어진 프리앰블 길이)의 양의 정수 배와 CP 길이의 합이 OFDM 심볼 길이의 복수 배와 같도록 정의될 것이다. UE는 셀의 SS 블록을 검출하고 상기 SS 블록과 연결된 RACH 자원에서 전송할 RACH 프리앰블을 생성할 때 gNB가 설정한 프리앰블 포맷에 따라 특정 길이의 시퀀스(예, ZC 시퀀스)를 이용하여 RACH 프리앰블에 포함될 각 프리앰블을 생성하고 CP를 상기 프리앰블 혹은 상기 프리앰블의 반복(들) 앞에 부가하여 상기 RACH 프리앰블을 생성한다.
방법 1과 방법 2는 BC가 유효하지 않아 gNB가 Rx 빔 스캐닝을 수행하는 경우에도 동일하게 적용될 수 있다. 방법 1과 방법 2에 대해 BC가 유효한 경우에는 RACH 프리앰블이 하나의 프리앰블을 포함하는 포맷으로 구성될 가능성이 높은 반면, BC가 유효하지 않은 경우에는 RACH 프리앰블이 프리앰블의 반복을 포함하도록 구성될 가능성이 높다는 점을 제외하면, 도 10을 참고하여 설명된 방법 1과 방법 2는 BC가 유효하지 않아 gNB가 Rx 빔 스캐닝을 수행하고자 하는 경우에도 마찬가지로 적용될 수 있다. 예를 들어, BC가 유효하지 않아 gNB가 Rx 빔 스캐닝을 수행하고자 하는 경우에는 상기 gNB는 RACH 프리앰블이 프리앰블의 반복을 포함하는 형태로 프리앰블 포맷(예, 도 7(a) 혹은 도 8(a) 참조)을 설정하여 시그널링하되, 방법 1의 형태로 RACH 자원을 설정하여 일 RACH 자원의 끝부터 다음 RACH 자원의 시작 직전까지를 빈 구간 혹은 포스트픽스 구간으로 보아 RACH 프리앰블(들)을 모니터링하거나, 혹은 방법 2의 형태로 RACH 자원을 구성하여 RACH 프리앰블의 경계가 OFDM 심볼 경계와 일치한다고 가정하여 상기 gNB가 설정한 각 RACH 자원 내에서 RACH 프리앰블(들)을 모니터링할 수 있다.
본 발명에서 제안된 상기 RACH 자원 할당 방안은 RACH 자원을 위해 사용되는 하나의 슬롯 혹은 다수의 슬롯에서 RACH 자원이 점유하는 주파수 자원 이외의 주파수 자원을 데이터 자원 혹은 제어 채널 자원으로 효율적으로 사용하기 위한 것이다. 그러므로 RACH 자원을 고려한 데이터/제어 채널 자원의 효율적 사용을 위해서, gNB는 RACH 자원으로 할당한 슬롯에 대해서 빔을 어떤 단위로 형성하는지에 관한 정보를 이용하여 데이터 혹은 제어 채널을 스케줄링해야 한다. 또한 UE는 gNB가 어떤 단위의 OFDM 심볼 단위로 스케줄링을 수행하는지에 관한 정보를 수신함으로써 상기 정보를 기반으로 데이터 혹은 데이터 채널을 전송할 수 있다. 이를 위해 gNB가 데이터 혹은 제어 채널을 RACH 자원이 할당된 시간 영역에 스케줄링하도록 하기 위해 두 가지 방법이 고려될 수 있다.
* 미니 슬롯 할당
RACH 자원이 할당된 시간 영역에 스케줄링되는 경우, 스케줄링되는 채널은 하나의 빔 영역에 포함되어야 하므로 그 채널이 할당된 자원의 시간 길이는 RACH 자원의 시간 길이보다 짧아야 하고, 하나의 RACH 자원에 대해서 다수개의 짧은 길이의 슬롯이 포함될 수 있다.
gNB가 RACH 자원별로 빔의 방향을 설정하여 동작하고 RACH 자원이 할당된 시간 영역과 RACH 자원이 할당되지 않은 시간 영역에서 gNB가 UE에게 자원을 할당하는 시간 단위가 일치하지 않는 경우, gNB는 RACH 자원이 차지하는 시간 영역에서 스케줄링을 위한 슬롯을 정의하고, 이와 관련된 정보를 UE에게 알려주어야 한다. 이하에서는, RACH 자원이 차지하는 시간 영역에서 스케줄링에 사용되는 슬롯을 미니 슬롯이라고 칭한다. 이와 같은 구조에서 미니 슬롯을 통해서 데이터 혹은 제어 채널이 전송되기 위해서는 몇 가지 고려해야 할 사항들이 있다. 예를 들어 다음과 같은 사항들이 고려되어야 한다.
1) RACH 자원이 할당된 슬롯에 대해 하나의 미니 슬롯을 정의하는 경우:
도 11은 BC가 유효한 경우에 대한 RACH용 슬롯(SLOTRACH) 내에 미니 슬롯을 설정하는 방법을 예시한 것이다.
UE는 시스템 정보를 통해서 gNB가 사용하는 RACH 자원들에 대한 정보를 모두 알고 있다. 그러므로 SS 블록당 할당된 RACH 자원을 모두 포함하는 최소의 OFDM 심볼들의 집합이 하나의 미니 슬롯으로 정의될 수 있다. 그리고 gNB가 RACH 자원이 할당된 시간에 스케줄링을 수행하는 경우, UE는 미니 슬롯을 TTI의 길이로 해석해서 데이터 혹은 제어 채널을 전송한다. 하나의 정규(normal) 슬롯 내에 다수개의 미니 슬롯이 포함되는 경우, UE는 어느 미니 슬롯을 통해서 데이터/제어 채널을 전송해야 할지 결정해야 한다. UE가 데이터/제어 채널의 전송에 사용할 미니 슬롯을 결정하는 방법에는 크게 다음 두 가지가 있을 수 있다.
> A. gNB가 상향링크 데이터/제어 채널의 전송을 스케줄링하는 경우, DCI를 통해서 슬롯 내에서 어느 미니 슬롯을 통해 전송해야 하는지를 UE에게 지정해줄 수 있다.
> B. UE는 다중 빔 시나리오에서 지속적으로 빔 추적을 수행한다. 이 때, UE가 자신이 현재 서비스받고 있는 서빙 빔이 어느 SS 블록과 연결되어 있는지에 관한 정보를 gNB으로부터 사전에 전달받았다면, 상기 UE는 서빙 빔과 연관된 SS 블록과 연결된 RACH 자원과 동일한 시간 영역을 자신이 전송해야 할 시간으로 해석한다. UE가 스케줄링 받은 슬롯 내에 상기 UE의 서빙 빔과 관계되는 SS 블록과 연결된 RACH 자원이 존재하지 않는 경우, 상기 UE는 빔 불일치(mismatch)가 발생한 것으로 판단할 수 있다.
2) RACH 자원이 할당된 슬롯에 대해 다수 개의 미니 슬롯을 정의하는 경우:
도 12는 BC가 유효한 경우에 대한 RACH용 슬롯(SLOTRACH) 내에 미니 슬롯을 설정하는 다른 방법을 예시한 것이다.
RACH 자원이 할당된 슬롯에 대해 다수 개의 미니 슬롯을 정의하는 것은 하나의 RACH 자원이 할당된 슬롯 내에 다수 개의 미니 슬롯들이 존재한다는 점을 제외하고는 기본적으로 RACH 자원이 할당된 슬롯에 대해 다수 개의 미니 슬롯을 정의하는 것과 유사하다. 도 11에서 제시된 방법과 동일하게 동작하되, 도 12에 예시된 바와 같이, RACH 자원을 모두 포함하는 최소한의 OFDM 심볼들의 집합이 몇 개로 나뉘고 각각이 미니 슬롯으로 정의된다. 이 경우, gNB는 일차적으로 RACH 자원을 포함하는 최소한의 OFDM 심볼들의 집합을 어떻게 나누어서 사용할 것인지를 UE에게 알려주어야 한다. 예를 들어, gNB는 비트맵의 형태로 RACH 자원을 포함하는 최소한의 OFDM 심볼들이 어떻게 나누어지는지를 UE에게 지시할 수 있다. 혹은, RACH 자원을 포함하는 최소한의 OFDM 심볼들 다수개의 동일한 등분으로 나눌 수 있는 경우 할당하는 미니 슬롯의 개수를 알려줄 수도 있다. 또한 스케줄링 받은 UE가 다수 개의 미니 슬롯들 중에서 어느 미니 슬롯을 통해 데이터/제어 채널의 전송을 수행해야 하는지를 gNB가 지시해주어야 한다. gNB는 어느 미니 슬롯을 통해 데이터/제어 채널의 전송을 수행해야 하는지를 DCI를 통해서 직접적으로 지시하거나, RACH 자원이 할당된 시간 영역에서 UE가 스케줄링될 경우 어느 미니 슬롯을 사용할지를 사전에(예, 연결 셋업 시에) 상기 UE에게 알려줄 수 있다. 혹은, UE ID와 같은 상기 UE와 상기 gNB가 공유하고 있는 정보를 이용하여 사전에 정해진 규칙에 의해 사용할 미니 슬롯이 결정되는 것도 가능하다.
3) BC가 유효하지 않아서 프리앰블 반복 동안 빔 스캐닝이 수행되는 경우:
도 13은 BC가 유효하지 경우에 대한 RACH용 슬롯(SLOTRACH) 내에 미니 슬롯을 설정하는 방법을 예시한 것이다.
BC가 유효하지 않은 경우에는 앞서 언급한 바와 같이 gNB는 하나의 RACH 자원이 할당된 슬롯 내에서 수신기의 빔 방향을 바꿔가면서 빔 스캐닝을 수행하게 된다. 그러므로 BC가 유효하고 RACH 자원이 할당된 슬롯 내에 다수 개의 미니 슬롯이 존재하는 경우와 유사한 방식으로 운용될 수 있다. 이를 위해서 도 12에서 설명된 방법과 유사하게 RACH 자원을 포함하는 최소한의 OFDM 심볼들의 집합에 대해서 빔 스캐닝을 어떻게 수행할 것인지에 대한 정보와 각각의 빔이 어떤 SS 블록과 연결되어 있는지에 대한 정보를 전달하고, 이 정보를 상기 UE는 자신이 어떤 미니 슬롯에 스케줄링을 받을 수 있는지에 대한 정보로서 이용할 수 있다. 이 경우, UE는 자신이 스케줄링 받을 수 있는 다수 개의 미니 슬롯들 중 데이터/제어 채널이 어느 미니 슬롯에 스케줄링 된 것인지는 도 12에서 언급된 방법과 유사하게 DCI를 통해서 전달받거나 RRC 신호를 통해서 사전에 미리 약속되거나 혹은 gNB와 UE가 공유하는 정보를 이용하여 사전에 정의된 규칙에 의해 정의될 수 있다.
4) 그랜트-프리(grant-free) 스케줄링의 경우:
> A. UE가 그랜트-프리 자원에서 전송하는 데이터/제어 채널의 시간 자원이 RACH 자원과 겹치는 경우, 상기 데이터/제어 채널이 상기 RACH 자원의 시간 영역에 대해 정의된 미니 슬롯으로 전송할 수 있다. 그런데 그랜트-프리 스케줄링이고 UE가 상기 그랜트-프리 스케줄링을 통해, 즉, 그랜트-프리 자원을 통해 전송할 데이터/제어 채널의 신호 포맷이 정규 슬롯이거나 정규 슬롯보다 짧은 슬롯이지만 RACH 자원 영역에 대해 정의된 미니 슬롯보다는 길이가 긴 경우, 그리고 상기 미니 슬롯의 길이가 정규 슬롯의 길이에 비해 너무나 짧아서 상기 미니 슬롯을 통한 데이터/제어 채널의 전송이 지정한 코딩율에 비해서 너무 높아지는 경우, 상기 UE는 i) 전송을 드랍하거나 ii) 수송 블록 크기(transport block size)를 변경하거나 iii) 다수 개의 미니 슬롯이 이용 가능한 경우에는 다수개의 미니 슬롯들을 이용하여 해당 데이터/제어 채널을 전송할 수 있다. 반면에 미니 슬롯의 길이로 전송하더라도 지정한 코딩율에 비해서 낮은 경우에는 지정되어 있는 수송 블록의 크기로 전송할 수도 있다.
> B. 그랜트-프리 스케줄링이고 UE가 상기 그랜트-프리 스케줄링을 통해, 즉, 그랜트-프리 자원을 통해 전송할 데이터/제어 채널의 신호 포맷이 미니 슬롯보다 짧은 길이인 경우에는 앞서 언급한 방식을 통해 정해진 미니 슬롯 위치를 통해서 정상적으로 전송할 수 있다. 즉, 그랜트-프리 스케줄링을 통한 데이터/제어 채널이 시간 도메인에서 미니 슬롯보다 짧은 길이의 자원을 필요로하는 경우, UE는 RACH 자원(즉, RACH 프리앰블)의 길이에 맞춰서 설정된 미니-슬롯들 중 상기 데이터/제어 채널과 동일한 gNB Rx 빔에 해당하는 미니-슬롯을 통해 상기 데이터/제어 채널을 전송한다. 이 때, 수송 블록 크기를 기존에 설정된 신호 포맷 대비 미니 슬롯 길이에 비례해서 사전에 정한 규칙에 따라 키울 수 있다. 예를 들어, 그랜트-프리 스케줄링으로 전송할 신호 포맷이 2개 OFDM 심볼을 사용하는 것으로 정의되고, RACH 슬롯 내 미니 슬롯의 길이가 3개 OFDM 심볼일 경우, 그랜트-프리 스케줄링의 데이터/제어 채널이 나를 수 있는 수송 블록 크기가 1.5배로 증가될 수 있다.
5) 가드 시간 혹은 빈 구간(blank duration)에 미니 슬롯 할당:
도 14는 가드 시간을 이용하여 미니 슬롯을 설정하는 방법을 예시한 것이다.
gNB는 가드 시간으로 설정된 구간의 일부 혹은 가드 시간의 용도가 아니더라도 하나의 슬롯 내에 RACH 자원을 구성하고 남은 슬롯 내 빈 구간에 대해서는 자유롭게 수신 빔을 설정할 수 있다. 그러므로 gNB는 RACH 자원과 관련된 정보와 함께 슬롯 내에서 RACH 자원 수신을 위한 빔과 독립적으로 사용할 수 있는 미니 슬롯에 관한 정보를 UE에게 알려주고, 상기 UE는 가드 시간에 설정된 미니 슬롯에 대해 동적 스케줄링이 있을 것이라고 기대할 수 있다. 할당된 미니 슬롯(들)의 위치는 앞서 언급된 방법들(예, RACH 슬롯 내에 설정되는 미니 슬롯의 길이, 위치, 빔 방향 등을 알려주는 방법들)이 사용될 수 있다.
6) 짧은 PUCCH 자원 할당:
TDD 시스템의 경우, 제어 채널을 짧은 길이로 구성하여 하나의 슬롯 내 일부 구간에 전송하는 방식이 가능하다. NR 시스템의 경우, 하나의 슬롯에 대해서 슬롯의 앞 부분에는 하향링크 제어 채널을, 슬롯의 마지막 부분에는 상향링크 제어 채널을 전송하는 방식들이 논의되고 있으며, 특히, 이와 같이 전송되는 상향링크 제어 채널을 짧은 PUCCH라고 부른다. 짧은 PUCCH는, 슬롯의 마지막 1~2개의 심볼에 전송되도록 채널이 구성되기 때문에, 앞서 언급한 미니 슬롯으로 전송될 수 있다. 하지만 앞서 언급된 바와 같이 하나의 슬롯 내에서 빔 방향이 변할 수 있기 때문에 짧은 PUCCH를 슬롯의 마지막 부분에 무조건 위치시킬 수 없는 경우가 발생할 수 있다. 그러므로 짧은 PUCCH가 RACH 자원이 할당된 슬롯 영역에 스케줄링되는 경우, UE는 자신이 서비스 받고 있는 빔과 동일한 방향의 빔(즉, gNB Rx 빔, 혹은 상기 gNB Rx 빔에 상응하는 UE Tx 빔) 혹은 gNB가 사전에 짧은 PUCCH에 대해서 링크를 형성해준 빔(즉, gNB Rx 빔, 혹은 상기 gNB Rx 빔에 상응하는 UE Tx 빔)이 존재하는 미니 슬롯에서 짧은 PUCCH 전송을 수행한다. 이 때, PUCCH는 미니 슬롯 내 마지막 심볼 위치, 혹은 gNB가 시그널링을 통해서 지정하는 심볼 위치 혹은 규칙에 의해 결정되는 심볼 위치에서 전송될 수 있다. 하지만 UE는 자신이 서비스 받고 있는 빔과 동일한 방향의 빔 혹은 gNB가 사전에 짧은 PUCCH에 대해서 링크를 형성해준 빔이 존재하지 않는 경우에는 상기 짧은 PUCCH 전송을 드랍할 수 있다.
* 미니 슬롯 연접(concatenation)
RACH 자원 세트에 대한 수신 빔을 형성하는 단계에서 RACH 자원별 수신 빔의 방향이 크게 다르지 않은 경우, RACH 자원 세트 구간을 걸쳐서 전송하는 긴 슬롯을 통해 데이터 혹은 제어 채널이 전송되는 것도 가능하다. 이를 앞서 언급된 미니 슬롯들을 연접해서 사용하는 미니 슬롯 연접이라 칭할 수 있다.
도 15는 BC가 유효하고 정규 슬롯과 동일한 길이로 미니 슬롯 연접을 수행하여 데이터를 전송하는 예를 도시한 것이다. 특히, 도 15는 BC가 유효한 경우, RACH 자원 구간에서 연접된 미니 슬롯의 전송 및 참조 신호의 삽입을 예시한 것이다. 예를 들어, 정규 슬롯과 동일한 길이가 되도록 미니 슬롯들이 연접하여 얻어진 긴 슬롯(long slot)에 걸쳐 하나의 데이터 패킷이 전송될 수 있다. 이 경우, 하나의 데이터 패킷이 긴 슬롯 내 미니 슬롯들에 나뉘어 전송된다.
이와 같이 연접된 미니 슬롯들을 이용한 데이터 전송의 경우, gNB가 SS 블록 전송 방향 정보를 이용하여 RACH 자원별 수신 빔을 형성하기 때문에 UE는 각각 SS 블록을 가장 좋은 품질로 수신할 수 있는 방향으로 신호를 전송하는 것이 바람직하다. 그러므로 gNB는 RACH 자원 시간 영역에서 (BC가 유효하지 않은 경우) OFDM 심볼별로 혹은 (BC가 유효한 경우) RACH 자원별로 수신 빔 형성과 관련된 정보(예, SS 블록과의 연관 정보)를 UE에게 알려준다. 이 때, 연결된 미니 슬롯들을 전송하고 정규 슬롯에 대해서 정의된 포맷으로 참조 신호(reference signal)을 전송하는 경우에 UE에 의한 신호 전송 중에 gNB의 수신 빔의 방향이 변하므로 데이터 채널의 수신이 원활하게 이루어지지 못할 수 있다. 그러므로 gNB의 수신 빔 방향의 변화를 반영하여 gNB의 수신 빔 방향 변화의 단위로 참조 신호가 삽입되는 것이 필요하다. 이를 위해서는 RACH 자원 구간에 할당되는 연접된 미니 슬롯들을 위한 참조 신호 구조가 정의되는 것이 좋다. RACH 자원 구간에 연접된 미니 슬롯 포맷의 데이터 혹은 제어 채널을 할당 받은 UE는 연접된 미니 슬롯 포맷의 참조 신호를 전송해야 한다.
PUSCH 혹은 PUCCH 전송 시, PUSCH 혹은 PUCCH의 UE Tx 빔 방향에 대해 안정적인 하나의 gNB Rx 빔이 존재하지 않거나, 다수의 빔이 유사한 품질을 갖는 경우, 빔 다이버시티 특성을 이용할 수 있도록 연접된 미니 슬롯을 통해 PUSCH 혹은 PUCCH을 전송함으로써 PUSCH 혹은 긴 PUCCH의 안정적인 수신이 가능하다. 이러한 경우, gNB는 RACH 자원 영역에서 PUSCH 혹은 PUCCH를 전송함으로써 RACH 자원이 할당된 시간 자원을 효율적으로 이용할 수 있다.
추가적으로 gNB는 다중 빔 환경에서 서비스를 안정적으로 유지하기 위해서 가장 좋은 품질을 갖는 빔을 서빙 빔으로 유지하도록 전송 빔 혹은 수신 빔에 대한 빔 트랙킹을 수행하게 된다. 그러므로 gNB는 RACH 자원이 할당된 슬롯 구간 내에서 상기 gNB가 수신 빔을 바꾸는 특성을 이용하여 UE가 PUSCH, 긴 PUCCH, 혹은 짧은 PUCCH의 RACH 자원 영역별 반복 전송 혹은 빔 트랙킹을 위해 정의되는 RS를 다수의 미니 슬롯들에 걸쳐서 전송하도록 지시함으로써 상기 gNB는 gNB 수신 빔 혹은 UE 전송 빔에 대한 품질을 측정하고 빔 트랙킹을 수행할 수도 있다. 즉, 빔 트랙킹에 대한 자원의 효율적 이용을 위해 RACH 자원이 할당된 시간 영역에 대해 특성에 맞는 물리 채널 전송을 지시하고, 이를 빔 트랙킹을 위한 자원으로 이용할 수 있다. 다시 말해, 빔 트랙킹에 대한 자원의 효율적 이용을 위해 gNB는 RACH 자원이 할당된 시간 영역에 설정된 미니 슬롯(들) 각각에 부합하는 UE Tx 빔으로 물리 채널을 전송하도록 UE에게 지시하고, 각 미니 슬롯 내 물리 채널을 빔 트랙킹을 위해 사용할 수 있다. 빔 트랙킹을 위한 신호를 UE가 효율적으로 전송하도록 위해서는 위에서 언급한 것처럼 gNB가 빔 방향의 변경 정보를 UE에게 알려주며, 상기 UE는 이 정보와 사전에 정의된 규칙에 따라서 참조 신호를 gNB의 수신 빔별로 삽입하여 전송한다. gNB는 이와 같이 전송된 참조 신호를 이용하여 수신 빔 구간에 대한 채널 추정용 신호 혹은 빔 트랙킹을 위한 신호 품질 측정용 신호로 상기 참조 신호를 사용할 수 있다.
빔 다이버시티를 통한 gNB에서의 수신을 위해 전송된 PUSCH 혹은 긴 PUCCH 전송 시, 상기 gNB는 수신 빔 구간별로 신호의 수신을 시도하게 되므로, 안테나 이득이 다른 특성을 보일 수 있다. 그러므로 상기 UE는 수신 빔 방향별(예, RACH 자원 영역별)로 PUSCH/PUCCH의 전송 전력을 다르게 설정할 수 있다. 이를 위해서 상기 gNB는 상기 UE에게 각각의 RACH 자원 영역별로 개루프(open loop) 전력 제어용 경로손실(pathloss) 계산을 위한 참조 채널/신호 정보 및 전력 제어 파라미터를 별도로 설정하도록 알려줄 수 있다. UE는 이 정보를 이용하여 RACH 자원 시간 영역별로 상이한 전송 전력을 설정하여 전송한다.
이와 달리 빔 트랙킹(혹은 빔 관리)을 위한 용도로 신호를 다수 개의 RACH 자원 영역별로 전송 시에는 gNB에 의한 수신 신호의 품질을 측정하기 위해서 RACH 자원 영역별로 동일한 전송 전력이 유지되어야 한다. 그러므로 이 경우에는 하나의 전력 제어를 위한 참조 채널/신호가 하나만 필요하고, 상기 참조 채널/신호에 대한 정보를 gNB가 알려주거나 규칙에 의해 사전에 정의되면, UE는 상기 참조 채널/신호를 이용하여 전송 전력의 크기를 결정하고 상기 전송 전력을 모든 영역에 동일하게 적용하여 PUSCH/PUCCH를 전송할 수 있다.
각 UL 채널별로, gNB는 RACH 자원 전송 시간 영역, 즉, 해당 셀에 RACH 자원이 설정된 시간 영역을 통한 UL 데이터 혹은 제어 채널이 빔 다이버시티를 위한 용도인지 빔 트랙킹을 위한 용도인지를 UE에게 알려주고 상기 용도에 맞추어서 상기 UE가 전력 제어 동작을 수행하도록 할 수 있다.
<
PRACH
설정>
PRACH 설정은 RACH 자원의 시간/주파수 정보를 포함하며, 나머지 최소 시스템 정보(Remaining Minimum System Information, RMSI)에 포함될 수 있다. RMSI 는 SIB1(System Information Block 1)로 해석될 수 있으며, PBCH(Physical Broadcast Channel)를 통해서 MIB(Master System Information Block) 수신 이후 UE가 획득해야 하는 시스템 정보이다. PRACH 설정 정보를 수신하면, UE는 PRACH 설정에 포함된 프리앰블 세트 중 하나의 프리앰블을 사용하여, 지정된 시간 및 주파수 자원 상에서 PRACH 메시지 1(Msg1)을 전송할 수 있다. PRACH 설정 정보 내 프리앰블 포맷은 또한 CP 길이, 반복 횟수, 부반송파 간격 및 시퀀스 길이 등을 제공할 수 있다. 이하, PRACH 설정에 관한 세부 사항에 대해 살펴보도록 한다.
1. 시간 도메인에서의
RACH
자원 설정
도 16 및 도 17은 시간 도메인에서의 RACH 자원 설정을 예시한 것이다.
도 16 내지 도 17을 참조하여, 시간 도메인에서의 RACH 자원 설정에 대해서 살펴보도록 한다. 여기서, RACH 자원은 PRACH Msg1이 전송될 수 있는 시간/주파수 자원을 의미할 수 있다. 특히 RACH 자원은 선호되는 하향링크 전송 빔 방향을 식별할 수 있도록 하기 위하여 SS 블록과 연관되며, 시간 도메인에서의 각 RACH 자원은 SS 블록 인덱스와 연관된다.
또한, 시간 도메인에서의 RACH 자원 세트는 셀 내에서 SS 블록의 디폴트 주기(default periodicity)의 관점에서 정의될 수 있다. 하나의 SS 블록과 연관된 다수 개 기회(occasion)의 RACH 자원들이 시간 도메인에서 상기 RACH 자원 세트 내에 있을 수 있다. 도 16을 참조하면, SS 블록 주기 및 RACH 자원 세트 주기가 도 16에 예시된 바와 같이 설정될 수 있다. RACH 자원 세트의 주기는 SS 블록 주기에 기초하여 결정될 수 있고, RACH 자원 세트의 주기 내에서 다수의 RACH 자원들이 설정될 수 있다. 한편, 상기 RACH 자원 세트의 주기는, 상술한 것과 같이 PRACH 설정 정보에 의해 설정될 수 있으며, 이러한 경우, RACH 자원 세트의 주기는 PRACH 설정 주기와 동일할 수 있다. 본 발명에서 PRACH 설정 주기, 즉, RACH 설정 주기는 해당 RACH 설정에 따른 RACH 자원(들)의 세트가 나타나는 시간 주기를 의미할 수 있다.
도 16에서 RACH 자원이 할당되는 각각의 시간 인스턴스(time instance)는 RACH 기회(occasion)이라 명명된다. 즉, 시퀀스 도메인을 고려하지 않고 시간 도메인 및 주파수 도메인만을 고려하면, 하나의 RACH 자원은 하나의 RACH 기회(occasion)로 칭해질 수 있다. RACH 자원 세트의 주기가 SS 블록 주기를 기반으로 결정된다면, 정확한 타이밍 인스턴스(timing instance)는 해당 RACH 자원과 연관된 SS 블록의 전송 타이밍으로부터의 오프셋으로서 지시될 수 있다. RACH 자원 세트 내의 RACH 기회(occasion)들의 정확한 위치도 UE에게 제공된다.
도 17은 SS 블록과 RACH 자원 간 연관을 지시하는 방법을 예시한 것이다. 각 RACH 자원 세트는 SS 블록 주기를 이용하여 설정된다. 시간 도메인에서의 정확한 시작 위치는 SS 블록에 대응하는 RACH 자원 세트마다 상이할 수 있으므로, 각각의 SS 블록으로부터 대응 RACH 자원 세트까지의 타이밍 오프셋이 시그널링될 수 있다.
RACH 자원의 지속기간(duration)은 PRACH 프리앰블 포맷에 의해 결정된다. 가드 시간을 포함하는 RACH 프리앰블의 길이(예, 프리앰블 포맷)는 셀 커버리지에 따라 설정된다. 또한, 프리앰블 반복의 횟수는 RACH 자원의 지속기간(duration)을 결정한다. 그러므로, RACH 자원의 설정은 CP 길이에 대한 RACH 프리앰블 포맷과 더불어, 프리앰블 길이의 지시를 위한 RACH 시퀀스 반복 횟수를 포함한다.
한편, 상술한 바와 같이, 다중 빔을 사용하는 NR 시스템에서 초기 하향링크 빔 획득 과정은, 가장 좋은 수신 품질을 갖는 SS 블록에 대한 검출을 통해 우선적으로 이루어진다. 이를 통해, UE가 선호하는 downlink beam에 관한 정보를, 초기 RACH 과정을 통해서 기지국에 알려준다. 따라서, NR 시스템에서는 UE가 검출한 SS 블록에 해당하는 빔 인덱스에 관한 정보를, RACH 프리앰블 전송을 위한 자원의 위치를 통해서 간접적으로 알려줄 수 있다. 예를 들어, 도 5를 통해 상술한 것과 같이, RACH 자원은 각각의 SS 블록에 링크되어 있으며, UE는 기지국에게 각각의 SS 블록에 연결된 RACH 자원의 형태로 빔 인덱스에 관한 정보를 알려준다. 즉, 자신이 검출한 SS 블록과 연관된 RACH 자원을 이용하여 PRACH 전송함으로써 UE는 기지국에게 자신이 선호하는 하향링크 빔, 즉, SS 블록을 알려줄 수 있다.
이와 같이 기본적으로 RACH 자원의 시간/주파수 자원은 SS 블록과 연결되어 있기 때문에, 초기 접속 단계에서 사용하는 SS 블록의 기본 전송 주기를 기반으로 RACH 자원이 할당되는 것이 좋다. 다만, 기지국의 셀에 위치한 UE의 수가 적은 경우에는, RACH 자원도 기본 전송 주기에 비해 간헐적으로 할당될 수도 있다. 그러므로, 본 발명에서는 RACH 자원이 할당된 슬롯을 RACH 슬롯으로 정의하고, RACH 슬롯의 주기를 SS 블록의 기본 전송 주기의 배수로 할당할 것을 제안한다. 상술한 설명에서는 다중 빔 환경을 기준으로 설명했지만, 단일 빔 환경에서도 동일한 구조를 유지하기 위해 동일한 방식으로 RACH 자원을 할당하는 것이 효율적일 수 있다. 또한 상기 RACH 슬롯의 주기는 상술한 PRACH 설정 정보에 의해 설정되는 RACH 설정 주기에 연관될 수 있으며, 하나의 RACH 설정 주기 내에서 동일한 위치에 있는 혹은 동일한 인덱스를 가지는 RACH 슬롯 간의 주기는 상기 RACH 설정 주기와 동일할 수 있다. 네트워크/gNB가 UE에게 전송하는 RACH 자원 할당 정보 중 RACH 시간 자원에 대한 정보는 다음을 포함할 수 있다.
1) 연관된 SS 블록 인덱스
2) SS 블록으로부터 RACH 슬롯의 위치
3) SS 블록 주기의 배수 혹은 SS 블록 주기의 함수로 표현되는 RACH 슬롯의 주기
4) SS 블록의 주기에 대한 RACH 슬롯의 주기가 1보다 클 때, 모호성 없이 정확한 위치를 알려주기 위한 오프셋 값. 이 때, 상기 오프셋 값은 서브프레임 번호 0을 기준으로 설정된다.
이와 같이 RACH 자원이 할당되는 시간/주파수 자원이 SS 블록과 연결되는 경우, UE가 RACH 전송을 할 수 있는 시점인 RACH 자원의 수는 기본적으로 SS 블록의 수와 동일할 수 있다. 일반적으로, RACH 자원은, RACH 프리앰블을 전송할 수 있는 시간, 주파수, 코드 도메인 자원을 모두 포함하지만, 본 발명에서는 설명의 편의를 위하여 일반적으로 RACH 자원이 RACH 프리앰블을 전송할 수 있는 시간/주파수 자원 블록의 의미로 사용된다. 다만, 프리앰블 시퀀스와 함께 언급되는 RACH 자원은 시퀀스 도메인, 즉, 코드 도메인을 포함하는 개념으로 사용되기도 한다. 예를 들어, RACH 자원들이 동일 시간/주파수 자원을 공유한다고 표현되는 경우, 상기 RACH 자원들은 시간/주파수 자원의 관점에서는 하나의 RACH 자원이지만, 시퀀스 도메인까지 고려하면 복수 개의 RACH 자원에 해당할 수 있다.
하지만, 기지국 내에 존재하는 UE의 수가 크지 않은 환경에서는 SS 블록마다 다른 RACH 자원이 할당되는 것은 비효율적일 수 있다. 따라서, 기지국이 동일한 수신 빔으로 RACH 프리앰블들을 수신할 수 있거나, 동시에 다수 개의 빔을 통해서 RACH 프리앰블들을 수신할 수 있다면, 다수 개의 SS 블록과 연결된 RACH 자원에 대해서 동일한 시간/주파수 자원을 할당될 수도 있다. 즉 다수 개의 SS 블록이 하나의 RACH 시간-주파수 자원과 연관될 수도 있다. 이 경우, RACH 자원에 대한 SS 블록들은 상기 RACH 자원에서 사용되는 프리앰블 인덱스들 또는 프리앰블 인덱스 세트들에 의해 구분될 수 있다. 즉, RACH 자원의 수는 SS 블록의 수와 같거나 작게 할당될 수 있다.
기지국은 RACH 자원을 어느 시간/주파수 영역에 할당할지를 결정하고, 이에 관련된 정보를 시스템 정보를 통해 UE에게 알려준다. LTE 시스템의 경우, 프리앰블 포맷에 따라, 하나 또는 2개의 서브프레임이 RACH 슬롯을 구성했기 때문에, 기지국이 PRACH 설정 정보를 통해 특정 서브프레임 위치를 지정해주면, UE는 시간 도메인에서 RACH 자원의 위치를 알 수 있었다. 반면, NR 시스템은 기지국의 설정 및 환경에 따라서 이와 다른 형태의 정보를 필요로 한다. 특히 NR 시스템에서 RACH 프리앰블은 높은(high) 도플러 주파수에 대한 강건성(robustness), 수신 빔 스캐닝(Rx beam scanning), TDD/FDD에 일치된 설계 등의 이유로 짧은 길이의 기본 시퀀스를 정의하고, 이를 빔 스캐닝 및 커버리지 확보를 위해 기본 시퀀스를 반복하는 형태로 설정하므로, 기지국 혹은 환경에 따라서 RACH 시간 자원 위치가 매우 가변적일 가능성이 있다. 더불어, NR 시스템에서는 매우 작은 크기의 다수의 스몰 셀들로 시스템이 구성될 수도 있다. 이러한 경우, RACH 프리앰블의 길이가 매우 짧아질 수 있으며, 시간 도메인에서 다수 개의 RACH 프리앰블이 전송될 수 있는 RACH 슬롯이 설정되는 것이 가능하다. 예를 들어, 도 18에 예시된 바와 같이 RACH 시간 자원 정보가 UE에게 제공될 수 있다.
도 18은 RACH 시간 자원 정보를 예시한 것이다. RACH 자원의 시간 자원 관련 정보, 즉, PRACH 시간 자원 정보는 다음과 같은 정보를 포함할 수 있다:
1) RACH 자원의 SS 블록 위치에 대한 RACH 자원/슬롯의 상대적 위치 혹은, SS 주기에 대한 RACH 슬롯의 위치;
2) RACH 슬롯 내에서 RACH 자원의 시작하는 OFDM 심볼의 위치;
3) RACH 자원에 대한 프리앰블 포맷(즉, CP 길이, 시퀀스 길이) 및 시퀀스 반복 횟수; 및/또는
4) 상술한 것과 같이 정의된 RACH 자원을 시간 축으로 몇 개 할당할지에 대한 정보. 다수 개의 RACH 자원들이 할당되고 상기 다수 개의 RACH 자원들이 시간 축 상에서 연속(consecutive)하지 않는 경우, 각각의 위치에 대응하는 정보, 예를 들어, 각각의 RACH 자원에 대한 상대적 위치 혹은 절대적 위치.
한편, 다수 개의 SS 블록과 연결된 RACH 자원이 동일한 시간/주파수 자원을 공유하더라도, UE는 빔 획득 정보를 기지국에 전달하기 위해서 동일한 시간/주파수 자원에 대해서 어느 SS 블록과 연결된 RACH 자원에 대한 것인지를 구분하여 RACH 프리앰블을 전송해야 한다. 이를 위해서 하나의 RACH 자원 내에서 이용 가능한 프리앰블 시퀀스들이 SS 블록 별로 나누어서 할당될 필요가 있다. LTE 및 NR 시스템에서의 프리앰블 시퀀스들은 기본 시퀀스를 결정하는 루트 시퀀스, 그리고 각 루트 시퀀스 내에서 제로 상관 특성을 갖는 순환 천이된 버전의 시퀀스들 및 직교 커버 시퀀스의 조합으로 구성된다. 이 때, 자원의 효율성을 높이기 위해, RACH 자원 내에서 프리앰블 시퀀스의 개수를 많이 확보하기 위해서 다수 개의 루트 시퀀스가 할당될 수도 있다. 일반적으로 루트 시퀀스들 간의 교차 상환(cross correlation)이 순환 천이된 버전이 다른 혹은 직교 커버 시퀀스가 다른 시퀀스들 간의 교차 상관보다 크다. 또한, UE에 적합한 빔과는 상이한 빔에서 들어오는 신호는 빔 특성에 의해 수신 신호가 약하므로, UE에 대한 빔 방향과 상이한 빔 방향에 대해서는 해당 시퀀스들 간에 교차 상관이 조금 크더라도 RACH 수신 성능에 큰 영향을 주지 않는다. 그러므로, 동일한 시간/주파수 자원을 다수 개의 RACH 자원들이 공유하는 경우, 각각의 RACH 자원은 가능하면 작은 교차 상관을 가지는 프리앰블 시퀀스들로 구성되는 것이 좋다. 만약, 상술한 실시 예와 같이, RACH 프리앰블 시퀀스들이 루트 시퀀스와 상기 루트 시퀀스 내 순환 천이 버전 혹은 직교 커버 시퀀스가 다른 시퀀스들의 조합으로 구성되는 경우, 우선적으로 동일 루트 시퀀스 내 순환 천이 버전이 다른 프리앰블 시퀀스 혹은 동일 루트 시퀀스 내 직교 커버 시퀀스가 다른 프리앰블 시퀀스들이 동일 빔, 즉, 하나의 SS 블록과 연결된 RACH 자원들에 대해 할당되고, 그 다음으로 서로 상이한 루트 시퀀스 인덱스들이 할당될 수 있다. 예를 들어, 도 19에 예시된 바와 같이 프리앰블 시퀀스들이 RACH 시간/주파수 자원에 할당될 수 있다.
도 19는 RACH 프리앰블 시퀀스의 할당 예를 나타낸 것이다.
도 19를 참조하면, 하나의 시간/주파수 자원에 대해서, 루트 시퀀스로 {15, 27, 127, 138}가 할당되고, 각각의 루트 시퀀스에 대해서 직교 커버 {0, 1} 및 순환 천이 버전 {0, 1, 2, 3}가 할당된다. 이 때, 상기 시간/주파수 자원에 대해서 두 개의 RACH 자원이 할당되는 경우, N-th SS 블록과 연결된 RACH 자원에 대해 OCC 인덱스와 순환 천이 버전으로 구성된 ZC 인덱스가 우선 할당되고, 두 개의 루트 시퀀스 {15, 27}로 구성되는 RACH 프리앰블 시퀀스 세트가 할당된다. (N+1)-th SS 블록과 연결된 RACH 자원에 대해서도 동일한 순서로 RACH 프리앰블 시퀀스 세트가 할당된다. 기지국은 RACH 자원을 UE에게 알려주기 위해서, RACH 자원별 RACH 프리앰블 시퀀스 세트를 구성하기 위한 정보를 알려주고, 사전에 정의된 규칙에 의해 RACH 프리앰블 시퀀스 세트 내의 RACH 프리앰블 시퀀스들의 순서를 결정한다. 이 때, 상기 사전에 정의된 규칙은 {OCC 인덱스, 순환 천이 버전}에 대해서 우선적으로 RACH 프리앰블 시퀀스 인덱스를 증가시키고, 다음으로 루트 시퀀스 인덱스를 기준으로 다음 RACH 프리앰블 시퀀스 인덱스를 증가시킨다. 즉, 시퀀스 간 교차 상관이 특성이 낮은 순서에 따라 우선적으로 RACH 프리앰블 시퀀스 인덱스가 증가된다.
2. 주파수 도메인에서의
RACH
자원 설정
PRACH 설정은 주파수 도메인에서 RACH 자원을 제공할 수 있다. UE가 아직 셀에 접속되어 있지 않은 상황에서, UE가 PRACH 전송을 시도할 때, 전체 시스템 대역폭 또는 자원 블록 인덱싱을 인식하지 못할 수 있다.
LTE 시스템에서는 동기화 신호가 시스템 대역폭의 중심에서 전송되고 PBCH는 시스템 대역폭을 제공하므로 UE는 RACH 자원의 정확한 위치를 쉽게 획득할 수 있었다. 그러나, NR의 경우에는 동기화 신호가 시스템 대역폭의 중심에서 전송되는 것이 보장되지 않는다. 따라서, NR의 경우, UE가 PRACH를 전송하기 위한 자원 블록 인덱싱을 얻는 것이 쉽지 않을 수 있다. 그러므로, 주파수 도메인에서 RACH 자원 위치를 제공하는 방법이 요구된다.
IDLE 모드의 UE들은 SS 블록에 기초하여 주파수 동기를 획득하므로, RACH 자원의 주파수 위치에 관한 정보는 SS 블록 대역폭의 관점에서 제공되는 것이 좋다. 즉, 주파수 도메인에서의 RACH 자원은 UE가 SS 블록을 검출하는 SS 블록 대역폭 내에 위치되어야 한다. RACH 프리앰블의 전송 대역폭은 PSS/SSS/PBCH의 15kHz 디폴트 부반송파 간격에서 고정된 값을 가진다. 예를 들면, RACH 프리앰블의 전송 대역폭은 15kHz의 디폴트 부반송파 간격에서 1.08MHz로 고정될 수 있다. 그리고, RACH 프리앰블의 전송 대역폭이 1.08MHz인 경우, 15kHz 부반송파 간격을 가정한 SS 블록의 전송 대역폭은 RACH 전송 대역폭의 4배이다. 네트워크는 SS 블록 내의 주파수 도메인에서 RACH 자원의 정확한 위치를 제공할 필요가 있다.
만약, 네트워크가 PSS/SSS/PBCH가 전송되는 SS 블록의 밖에 RACH 자원을 설정하는 경우, 상기 RACH 자원에 대한 정보는 SS 블록의 대역폭 및 RACH의 대역폭을 기반으로 시그널링되어야 한다. 이 때, 전체 시스템 대역폭은 SS 블록 대역폭의 단위로 인덱싱된다.
3. 시간 도메인에서의 자원들의 수
NR PRACH 프리앰블을 위해 짧은 ZC 시퀀스로 사용되는 경우, 상기 짧은 ZC 시퀀스는 (CP 및 RACH 프리앰블로 정의된) 시간 자원에서 시퀀스 부족을 야기할 수 있다. 이러한 문제를 해결하기 위하여, RACH 슬롯 내 다수의 시간 및 주파수 자원들이 RACH 자원을 위해 할당될 수 있고, gNB는 주파수 자원 정보 외에 RACH 슬롯에서 얼마나 많은 시간 자원들이 사용되는지를 UE에게 알릴 필요가 있다.
4.
시퀀스
정보
LTE 시스템에서는, 64개의 시퀀스가 RACH 자원에 할당되며, 루트 코드(즉, 루트 시퀀스)가 할당되면, 제로 교차 상관 특성으로 인해 다른 루트 코드를 사용하기 전에 상기 루트 코드의 순환 시프트 버전이 프리앰블 인덱스에 먼저 매핑된다.
NR-PRACH에서도 동일한 특성이 재사용될 수 있다. 제로 교차 상관 특성을 가지는 시퀀스들이 RCH 프리앰블을 위해 먼저 할당될 수 있으며, 여기서 제로 교차 상관은 순환 천이 버전 및 (정의되면) 기정의된 직교 커버에 의해 제공된다. 루트 코드가 할당되면, 직교 커버는 사전 정의된 규칙 또는 설정에 의해 할당되고, 상기 루트 코드 및 상기 직교 커버를 갖는 순환 시프트 버전이 프리앰블 인덱스에 매핑된다.
요약하면, gNB에 의해 UE에 시그널링되는 PRACH 설정은 다음 파라미터들을 포함할 수 있다:
- 시간/주파수 도메인에서의 RACH 자원 할당: 프리앰블 포맷 (CP 지속 시간 및 ZC 시퀀스의 반복 횟수)
- 시퀀스 정보: 루트 코드 인덱스, (정의되면) 직교 커버 인덱스, 순환 천이 길이
5.
RACH
자원과 SS 블록 인덱스 사이의 연계
이하에서는 초기 접속 상태에서 기지국의 전송 빔 방향과 RACH 자원에 대한 연결 정보를 UE에게 시그널링하는 방법이 구체적으로 설명된다. 기지국의 전송 빔 방향이라 함은, 상술한 바와 같이 SS 블록의 빔 방향을 지칭하며, 추가적으로 UE가 초기 접속 상태에서 SS 블록 이외에 특정 RS를 관측/측정할 수 있는 경우, 해당 RS를 지칭할 수 있다. 예를 들면, 상기 특정 RS는 CSI-RS일 수 있다.
NR에서는 기지국의 빔 개수에 따라 다수 개의 SS 블록이 형성되어 전송될 수 있다. 그리고 각각의 SS 블록마다 고유의 인덱스를 가질 수 있고, UE는 PSS/SSS를 검출하고 PBCH를 디코딩함으로써, 해당 PSS/SSS/PBCH가 속하는 SS 블록의 인덱스를 유추할 수 있다. 이후, 기지국이 전송하는 시스템 정보에는 RACH 설정 정보가 포함되는데, 상기 RACH 설정 정보는 다수의 RACH 자원에 대한 리스트, 상기 다수의 RACH 자원을 식별하기 위한 정보 및 각 RACH 자원과 SS 블록에 대한 연결 정보를 포함할 수 있다.
상술한 설명에서 RACH 자원을 UE가 PRACH 프리앰블을 전송할 수 있는 시간/주파수 자원으로 한정한 것과 마찬가지로 후술하는 설명에서도 RACH 자원은 시간/주파수 자원으로 한정된다. 이하에서는 시간 축에서의 RACH 위치뿐 아니라 주파수 축에서의 RACH 위치를 지시하기 위한 방법도 기술된다. 상기에서 하나의 RACH 자원은 하나 이상의 SS 블록과 연결되고, 시간 축으로 연속해 있는 RACH 자원들을 RACH 자원 세트로 정의한 바 있다. 시간 축뿐만 아니라 주파수 축으로 연속해 있는 복수 개의 RACH 자원 세트를 하나의 RACH 자원 블록으로 정의한다.
도 20은 RACH 자원 블록을 예시한 것이다.
도 20에 예시된 바와 같이, RACH 자원 블록은 RACH 자원들이 모여 있는 하나의 시간/주파수 청크로 정의될 수 있으며, RACH 자원 블록 내의 각각의 RACH 자원은 시간/주파수 위치에 의해서 결정되는 고유의 인덱스를 갖는다.
RACH 자원 블록 내의 RACH 자원 인덱스는 특정 규칙에 의해서 맵핑된다. 예를 들어, 주파수-시간 순서 혹은 시간-주파수 순서의 방식으로 RACH 자원 인덱스가 부여될 수 있다. 예를 들어, 도 20을 참조하면, 주파수-시간 순서 방식의 경우, RACH 자원 블록 내 RACH 자원들이 다음과 같이 인덱싱될 수 있다.
- RACH 자원 #0 (시간, 주파수): (0,0),
- RACH 자원 #1: (1, 0)
- RACH 자원 #2: (2, 0)
- 쪋쪋쪋.
여기서 RACH 자원 블록에서 시간 축 길이의 단위는 RACH 프리앰블 포맷에 의해 결정될 수 있으며, 주파수 축 길이의 단위는 RACH 자원 대역폭(예를 들면, 1.08MHz) 또는 자원 블록 그룹(Resource Block Group, RBG) 단위에 의해서 결정될 수 있다.
한편, UE가 특정 RACH 프리앰블을 전송함으로써 시스템 정보 전송을 요청하는 경우, 한 시스템/셀 내에는 SS 블록 개수 또는 시스템 정보 전송의 목적을 위하여 다수의 RACH 자원 블록이 지정될 수 있다. 특히, SS 블록의 개수가 많은 경우, 상기 언급한 바와 같이 각각의 SS 블록에 해당하는 RACH 자원을 모두 연속되게 설정할 경우, 상향링크/하향링크 데이터 서비스에 큰 제약이 가해질 수 있으므로, 네트워크는 시간/주파수 축으로 연속적인 RACH 자원을 RACH 자원 블록으로 설정하고, 상기 설정된 RACH 자원 블록 각각을 불연속적으로 배치할 수 있다. 따라서, 복수 개의 RACH 자원 블록이 설정될 수 있으며, 각각의 RACH 자원 블록 역시 고유의 인덱스를 가질 수 있다.
다시 말해, RACH 자원 블록(들)이 설정된 구간(이하, RACH 설정 구간)이 하나의 시스템/셀 내에서 지정될 수 있으며, 상기 RACH 설정 구간 내에서 하나 이상의 RACH 블록이 존재할 수 있다. 도 21은 본 발명에 따른 RACH 설정 구간을 예시한 것이다. 네트워크/gNB가 UE에게 알려줘야 하는 정보에는 RACH 설정 구간의 길이, RACH 자원 블록(즉, RACH 블록)의 개수, 각 RACH 블록의 위치 등이 있을 수 있다. 도 21에 예시된 바와 같이, RACH 설정 구간 내 각 RACH 블록 간 간격이 UE에게 통지될 수 있다. 예를 들어, 네트워크/gNB는 RACH 블록 #0으로부터의 슬롯 개수 또는 절대 시간 단위의 오프셋 정보와 같은 상대적 위치를 RACH 블록 위치 정보로서 알려주거나, RACH 설정 구간 내에서 RACH 블록의 시작 슬롯 인덱스를 각 RACH 블록별로 직접적으로 알려줄 수도 있다.
RACH 자원 블록 내의 RACH 자원마다 고유의 설정을 가질 수도 있다. 이 경우, 각 RACH 자원마다 RACH 자원의 발생 빈도 및 주기가 다를 수 있으며, 각 RACH 자원마다 특정 SS 블록, CSI-RS 또는 하향링크 빔 방향과 연결될 수 있다. 이러한 연결 관계가 있는 경우, 상기 연결 관계에 대한 정보도 UE에게 제공된다. 도 22는 RACH 자원 블록 내 RACH 자원별 설정을 예시한 것이다. 특정 RACH 자원 주기 내에서 RACH 자원으로 예약될 수 있는 슬롯 인덱스들이 표준 문서에 정의될 수 있으며, 도 22에 예시된 바와 같이 RACH 자원의 발생 빈도에 따라서 서로 다른 설정 번호가 할당될 수 있다. 네트워크/gNB는 시스템 정보를 통해 특정 설정 번호를 알림으로써, 특정 RACH 자원이 어떠한 발생 빈도/주기를 갖는지를 UE에게 알려줄 수 있다.
네트워크는 UE에게 RACH 자원 블록(즉, RACH 블록)의 개수 및 RACH 자원 블록별 시작 시점(예, 슬롯 인덱스)를 알려줄 수 있다. 더불어, 네트워크는 각 RACH 자원 블록에 대한 정보를 UE에게 알려줄 때, 시간 축에서의 RACH 자원 개수(Nt), 주파수 축에서의 RACH 자원의 수(Nf)를 알려준다. Nt 및 Nf는 RACH 자원 블록 별로 상이할 수 있다. 네트워크/gNB는 RACH 자원 블록 내에서 RACH 자원 인덱스들을 RACH 자원들의 시간/주파수 위치에 따라서 맵핑하고, 각 RACH 자원별로 주기/발생 빈도를 알려주는 정보(예, 설정 번호), 연결되는 SS 블록 또는 CSI-RS 인덱스 등의 정보를 UE에게 알려준다. 이 때, 상기 각 RACH 자원별 주기/발생 빈도는 상술한 바와 같이, RACH 자원의 발생 빈도에 따라 설정된 특정 설정 번호를 지시함으로써 알려줄 수 있다.
또한, RACH 프리앰블 포맷은 RACH 자원별로 설정될 수 있다. 물론, 시스템에서 모든 RACH 프리앰블 포맷을 동일하게 구성할 수도 있으나, 현실적으로는 RACH 자원 블록 내에서는 부반송파 간격, 반복 횟수 등을 동일하게 유지하되, RACH 자원 블록 간에는 상술한 RACH 프리앰블 포맷을 상이하게 설정될 수 있다. 다만, 동일 RACH 자원 블록 내에서 RACH 프리앰블의 반복 횟수는 동일하게 설정되지만, 해당 RACH 자원 블록에 포함된 각각의 RACH 자원들은 서로 다른 프리앰블 시퀀스를 사용하도록 설정될 수도 있다. 예를 들어, RACH 자원 블록 내 각각의 RACH 자원들은 루트 인덱스 또는 순환 천이(cyclic shift, CS) 버전 등이 서로 다르게 설정될 수 있다.
RACH 설정에 대한 시그널링 관점에서 다시 정리하면, 네트워크는 RACH 프리앰블 전송을 위한 시간/주파수 자원, 즉, RACH 자원을 식별하는 과정을 수행한다. 이를 위해, 본 발명에서, RACH 자원 인덱스는 RACH 자원 블록 인덱스와 RACH 자원 블록 내의 RACH 자원 인덱스에 의해서 결정되며, 각 RACH 자원 인덱스 별의 RACH 자원 발생 빈도/주기는 복수의 RACH 설정 넘버들 각각에 대응할 수 있다. 추가적으로, 네트워크는 각 RACH 자원별로 사용할 수 있는 RACH 프리앰블 정보를 UE에게 전송하고, 연결되어 있는 SS 블록 인덱스 또는 CSI-RS 인덱스 정보를 전송한다. 이를 통해, UE는 특정 하향링크 빔 방향에 대해서 RACH를 수행하고자 할 때, 사용할 RACH 시간/주파수 자원 및 프리앰블 자원에 대한 정보를 획득할 수 있고, 해당 자원을 이용하여 RACH를 수행할 수 있다.
<슬롯/
심볼
경계 정렬을 위한
RACH
프리앰블
포맷들>
이하에서는 도 10를 참조하여 설명된 RACH 프리앰블 포맷에 대해 자세히 설명한다. 도 10에서 설명한 NR에서의 RACH 프리앰블 포맷의 특징 및 요건을 고려하여, 본 발명에 따른 RACH 자원과 본 발명에 다른 RACH 프리앰블 포맷과의 관계, 그리고 본 발명의 RACH 프리앰블 포맷들이 NR 시스템의 UL 슬롯, 슬롯 경계(boundary)와 어떻게 정렬(align)되는지가 설명된다.
일반적으로 LTE에서의 RACH 프리앰블의 시퀀스 부분은 1.25kHz의 부반송파 간격(subcarrier spacing, SCS)을 갖는 길이 839의 Zadoff Chu 시퀀스를 사용하며, LTE의 RACH 프리앰블은 보통 1ms의 서브프레임을 차지한다. LTE 시스템에서의 RACH 프리앰블 포맷들은 표 1에 나열되어 있다. 동일한 시퀀스 길이를 갖더라도 RACH 프리앰블들이 지원하고자 하는 커버리지가 다른 경우 상기 RACH 프리앰블들은 서로 다른 CP 길이를 가질 수 있다. CP 길이가 길수록 해당 셀이 지원할 수 있는 커버리지가 크고, CP 길이가 짧을수록 해당 셀이 지원할 수 있는 커버리지가 작다. 프리앰블을 구성하는 시퀀스의 길이가 길수록, 수신단에서 더 많은 에너지를 모아서 수신할 수 있으므로 컴바이닝 이득을 얻을 수 있고, 따라서 RACH의 검출 성능이 개선될 수 있다.
NR 시스템에서는 두 가지 종류의 RACH 시퀀스가 정의될 수 있는데, LTE와 유사하게 넓은 커버리지를 지원하기 위한 목적의 긴 시퀀스와 UE의 RACH 반복 및 기지국의 Rx 빔 스위핑을 위한 짧은 시퀀스가 정의될 수 있다. 짧은 시퀀스는 UE에 의한 RACH 반복 및 기지국에 의한 Rx 빔 스위핑의 목적 이외에 고속(high speed) 지원, 그리고 자원을 지나치게 길게 UL 자원으로 예약(reserve)하지 않음으로써 통신 시스템이 지연이 치명적(critical)인 서비스에 대해서 즉시 서비스할 수 있도록 하기 위한 목적도 있다.
넓은 커버리지 지원을 위한 긴 RACH 시퀀스는 LTE의 그것을 그대로 차용하거나 일부 변형하여 유사한 형태로 NR 시스템에 도입될 수 있다. 다만, 짧은 RACH 시퀀스는 그 목적에 맞게 프리앰블 포맷이 설계되고 해당 RACH 프리앰블이 전송되는 RACH 자원이 UL PUSCH 전송과 잘 어울릴 수 있어야 한다.
도 23은 슬롯 구조를 예시한 것이다. 특히 도 23(a)는 14개 심볼을 갖는 슬롯 내 슬롯 구조를 예시한 것이고, 도 23(b)는 7개 심볼을 갖는 슬롯 내 슬롯 구조를 예시한 것이다. NR에서는 1개 슬롯을 7개 심볼들 혹은 14개 심볼들로 구성하는 것을 고려하고 있다. 도 23에서 "DD/UD"는 해당 심볼에 하향링크 데이터 혹은 상향링크 데이터가 스케줄링될 수 있음을 의미한다. 마찬가지로, 도 23에서 "Gap/DC/DD"은 첫 번째 심볼인 하향링크 제어(DL control, DC) 심볼 후에 갭, 혹은 하향링크 제어, 혹은 하향링크 데이터가 전송될 수 있음을 의미한다.
본 발명에서는 네트워크가 RACH 자원과 상향링크 데이터(예, PUSCH) 자원을 효율적으로 운용할 수 있는 방법을 제안한다. 본 발명에서는 짧은 RACH 시퀀스의 SCS은 해당 셀의 디폴트 PUSCH SCS와 동일한 값을 사용함으로써, PRACH와 PUSCH의 샘블링 레이트를 맞출 수 있게 한다.
도 24는 OFDM 심볼 내 RACH 프리앰블 포맷을 예시한 것이다. 도 24와 같이 짧은 RACH 시퀀스를 이용하여 1개 심볼 RACH 프리앰블을 전송하는 것은 CP 길이가 너무 짧아서 해당 RACH 프리앰블이 지원할 수 있는 커버리지가 너무 작아지므로, 1개 심볼 RACH 프리앰블은 사실상 RACH 프리앰블로서의 기능을 하지 못할 수 있다. 따라서, 본 발명은 짧은 RACH 시퀀스를 전송 시 2개 심볼을 가장 작은 RACH 심볼의 단위로 하고, 필요에 따라서 CP의 길이를 증가시키거나, RACH 심볼들의 개수를 확장하여 반복 횟수를 조절한다. RACH 심볼들의 개수는 기본 단위의 배수로 확장될 수 있다.
도 25 및 도 26은 슬롯 내 RACH 프리앰블의 정렬을 예시한 것이다. 특히, 도 25 및 도 26은 RACH 프리앰블이 2, 4, 6, 12개 심볼 길이를 갖는 경우, 14개의 심볼을 갖는 슬롯 내에 RACH 프리앰블들이 전송될 수 있는 심볼 위치들, 즉 슬롯 내의 RACH 자원들을 예시한 것이다. 도 25 및 도 26에서 "RACH(x)"는 x는 프리앰블의 반복 횟수(즉, RACH 시퀀스의 반복 횟수)를 나타내며, 이하 "RACH(x)"는 x개 심볼 RACH, x개 심볼 RACH 자원, 혹은 x개 심볼 RACH 프리앰블로 칭해진다.
도 25(a)를 참조하면, 14개 심볼 RACH의 경우, 즉, 1개 심볼 길이의 RACH 프리앰블이 14회 반복되는 RACH의 경우, 해당 RACH 프리앰블은 1ms 길이의 슬롯을 모두 차지하게 된다. 해당 RACH 프리앰블이 전송되는 슬롯 이후 바로 인접하는 슬롯에서 RACH 프리앰블 이외의 다른 신호가 전송되는 경우, 즉, DL 제어/데이터 혹은 UL 제어/데이터가 전송되는 경우, 14회 반복하는 RACH 프리앰블의 맨 마지막 끝에 가드 시간(guard time, GT)를 삽입하여 일정 시간 동안 신호를 전송하지 않음으로써 상기 인접하는 데이터/제어 신호를 보호해야 한다. 마찬가지로, 한 프리앰블을 12회 반복하는 RACH의 경우, 예를 들어, 도 25(b)의 12개 심볼 RACH의 경우, 상기 RACH 바로 직후 심볼에 RACH 프리앰블이 아닌 다른 데이터/제어 신호가 전송되면, 해당 RACH 프리앰블의 뒷 부분에 GT를 삽입한다. 도 25(a)은 해당 슬롯이 UL 단독(only) 슬롯인 경우에 사용될 수 있는 프리앰블 포맷을 예시한 것이다. DL 제어로서 해당 슬롯의 첫 번째 OFDM 심볼이 사용되고, UL 제어 전송을 위해서 마지막 14번째 심볼이 예약(reserve)된 경우, 가장 긴 길이의 RACH 프리앰블 포맷은 도 25(b)이다.
DL 제어를 위해 1개 심볼 및 UL 제어를 위해 1개 심볼이 사용된다고 가정하면, 2개 심볼 RACH, 4개 심볼 RACH, 6개 심볼 RACH에 대해, 한 슬롯 내에서 RACH 프리앰블이 전송될 수 있는 위치들이 도 25 및 도 26에 예시된다. 도 25는, 14 심볼 길이의 RACH 프리앰블 포맷인 도 25(a)를 제외하고는, 슬롯의 첫 번째 심볼이 DL 제어로 사용하고 마지막 심볼의 UL 제어 영역을 보호하도록, 첫 번째와 마지막 심볼을 제외한 위치에 RACH 자원을 설정한 경우들을 도시한 것이다. 도 26은 첫 번째 심볼의 DL 제어 신호를 피하고, 기지국의 DL to UL 스위칭 타임을 고려하여 두 번째 심볼을 비우고, 세 번째 심볼부터 RACH 프리앰블을 전송을 하는 경우들을 도시한 것이다. RACH 프리앰블이 슬롯의 마지막 심볼인 UL 제어 영역까지 차지하도록 설정된 경우, 해당 심볼 구간에서 UL 제어보다 RACH 신호가 우선하게 된다. 즉, UE가 UL 제어를 전송해야 하는 시간/주파수 영역 내 특정 시간/주파수 자원이 RACH 자원으로 설정된 경우, 상기 UE는 해당 시간/주파수 자원에서의 UL 제어 전송을 드랍한다.
도 25 및 도 26의 (b) 내지 (e)에 도시된 바와 같이, RACH를 위해 설정된 한 슬롯 내에서 복수 개의 RACH 자원들이 설정될 수 있으며, 해당 RACH 자원들은 서로 연속(consecutive)할 수 있다. 네트워크가 복수 개의 RACH 자원을 설정함에 있어서 이들이 시간 축에서 연접하는 경우, 연접하는 RACH 자원들에서 전송되는 RACH 프리앰블들의 CP 길이가 충분하다는 전제 하에서 연접하는 RACH 자원들 간에는 GT가 삽입할 필요가 없다. 즉, 시간 축으로 연접하는 RACH 자원들의 세트를 RACH 블록(혹은 RACH 버스트)라 하면, RACH 블록 내의 RACH 자원에서 전송되는 RACH 프리앰블에는 GT가 삽입될 필요는 없다. 여기서 GT를 삽입한다는 것은 해당 시간 구간 동안 신호 전송을 하지 않는 것, 즉, 해당 시간 구간을 널링하는 것을 의미한다. RACH 블록 내에서 시간 축으로 가장 뒤쪽에 위치하는 RACH 자원에서 전송되는 RACH 프리앰블에는 GT를 삽입함으로써, 즉, 일정 시간 구간 동안 신호 전송을 하지 않는 갭 시간을 설정해 둠으로써, 상기 RACH 프리앰블 이후 전송되는 다른 신호를 보호한다. 프리앰블의 반복을 포함하는 RACH 프리앰블 포맷의 경우, 프리앰블이 반복되더라도 RACH 자원 내에서는 연속적인 신호가 전송되는 것이다.
RACH 프리앰블을 반복하여 전송하는 경우, 반복 횟수가 증가할수록, 즉, RACH 전송에 사용하는 심볼 개수가 증가할수록 CP 길이를 증가시킬 수 있다. 2개 심볼을 예로 들면, 2개 심볼 내 데이터 전송 포맷은 CP-데이터-CP-데이터의 형태로 구성되지만, 즉, 상기 2개 심볼들 중 1개 심볼 내에서 CP+데이터, 다른 1개 심볼 내에서 CP+데이터가 전송되지만, RACH 프리앰블의 경우에는 커버리지 확장을 위해서 CP-CP-시퀀스-시퀀스-(GT)의 형태로 RACH 프리앰블이 전송될 수 있다. 도 27은 CP 길이를 늘려 RACH 프리앰블과 심볼 경계를 정렬시키는 본 발명에 따른 RACH 프리앰블 포맷들을 예시한 것이다. 구체적으로 도 27은 RACH 프리앰블의 반복 횟수에 따라서 CP 길이를 늘린다. 이에 따라 RACH 프리앰블을 반복, 즉, RACH 시퀀스를 반복함으로써, 해당 RACH 프리앰블 포맷이 지원하는 셀 커버리지를 확장시킬 수 있다. 도 27의 RACH 프리앰블 포맷에서는, 시간 도메인에서, RACH 블록 내 맨 마지막에 위치하는 RACH 자원 내에 GT가 위치한다.
도 28은 7개 심볼로 구성된 슬롯에 대한 RACH 자원과 프리앰블 반복 횟수에 따른 RACH 프리앰블 매핑을 예시한 것이다. 전술한 바와 같이, RACH 자원 이후에 다른 데이터/제어 신호가 전송되는 경우, 상기 데이터/제어 신호의 바로 직전 RACH 자원에는 GT가 삽입된다. 즉, GT 동안에는 신호를 전송하지 않고 비운다.
도 29는 RACH 심볼 이후에 위치하는 널 OFDM 심볼을 예시한 것이다.
연접하는 RACH 자원들이 끝나는 지점, 즉, RACH 블록의 맨 마지막 위치에 GT가 삽입됨으로써 이후 신호가 보호된다. RACH 이후의 신호를 보호하는 다른 방법은 RACH 자원 이후, 즉, RACH 블록 직후의 심볼을 비우는 것이다. 즉, RACH 블록 직후의 심볼에 아무런 신호도 전송되지 않는 것이다. RACH 블록 이후의 심볼이 비워지는 경우, RACH 블록의 맨 마지막 심볼에 GT가 삽입될 필요가 없다. 즉, RACH 블록 직후 심볼을 비움으로써 해당 널 OFDM 심볼을 GT로서 사용하고, 해당 널 OFDM 심볼 이후에 전송되는 신호를 보호할 수 있다. 특정 OFDM 심볼이 널링되는 것에 대해서는 기지국이 UE에게 사전에 시그널링하거나 표준에서 규정될 수 있다. 예를 들어, 기지국이 UE에게 PRACH 설정을 전달하면서, 특정 심볼이 널링된다고 시그널링할 수 있다. 혹은, 기지국이 RACH 자원들을 시간 상에서 연접하여 설정하는 경우, UE는 이러한 정보를 모두 수신하게 되는데, 연속하는 RACH 자원들이 종료되는 시점, 즉 RACH 블록 직후의 심볼은 널링하는 것으로 UE와 기지국 사이에 약속될 수 있다. 혹은, RACH 블록 직후의 심볼이 널링되는지 여부가 시그널링될 수 있으며, RACH 블록 직후의 심볼을 널링하라고 기지국이 명령한 경우, UE는 RACH 블록 직후의 심볼을 널링하되, RACH 블록 내의 RACH 프리앰블에는 GT를 포함시키지 않는다. RACH 블록 직후의 심볼을 널링하지 않는다는 명령을 수신한 UE가 RACH 블록 내에서 시간 축으로 가장 후행하는 RACH 자원 내에서 프리앰블을 전송할 경우, 상기 UE는 상기 프리앰블을 전송한 이후에 신호를 전송하지 않는 GT를 해당 RACH 자원 내에 설정한다.
RACH 자원을 시간 축으로 연접하는 본 방법의 장점은 매 RACH 프리앰블마다 GT를 삽입하지 않아도 된다는 것이다. 일 RACH 프리앰블에 이어 바로 후행하는 RACH 자원에서 전송되는 RACH 프리앰블의 CP 길이가 충분히 길므로, 해당 CP를 이전 RACH자원에서 전송된 RACH 프리앰블의 GP로서 사용할 수 있기 때문이다. 따라서, 본 발명에서는 RACH 자원들을 시간 축으로 먼저 인덱싱하고, 이후 주파수 축으로 인덱싱할 것을 제안한다. 즉, 도 20을 참조하면, RACH 자원들은 먼저 시간 축에 따라 설정된다. 그리고 나서 RACH 자원이 부족한 경우, 주파수 축으로 확장하여 RACH 자원이 설정될 수 있다. 따라서 RACH 블록 내의 RACH 자원들의 인덱싱은 시간 축에서 먼저 수행되는 것이 좋다.
이하에서는 서로 다른 반복 길이를 갖는 RACH 프리앰블 포맷을 위한 RACH 자원들을 동일 슬롯 내에 다중화 방법을 도 30을 참조하여 설명한다. 도 30은 슬롯 내에 RACH 자원들을 다중화하는 방법을 예시한 것이다. 도 30에서 "RACH(x)"는 x는 해당 RACH 자원에서의 프리앰블의 반복 횟수(즉, RACH 시퀀스의 반복 횟수)를 나타내며, 이하 "RACH(x)"는 x개 심볼 RACH, x개 심볼 RACH 자원, 혹은 x개 심볼 RACH 프리앰블로 칭해진다.
다중 빔을 고려했을 때, 동일 시간에서의 서로 다른 주파수에 위치하는 RACH 자원들 간의 타겟 DL 수신 방향은 동일해야 한다. 즉, 기지국의 수신 방향이 동일해야 하는 것이다. 예를 들어, 도 30(a)를 참조하면, 심볼 인덱스 3인 심볼에서 시작하는 6개 심볼 RACH 자원(도 30에서 "RACH(6)")에 대한 기지국의 수신 방향과 해당 시점에서 해당 RACH 자원에 의해 네트스(nest)되는, 즉, RACH(6)의 심볼 경계 내에 위치하는, RACH(4)와 RACH(2)의 기지국 수신 방향은 동일해야 한다. 이는 RACH 자원들과 연관되어 있는 기지국의 DL 채널/신호가 동일해야 함을 뜻하며, 대표적으로 해당 RACH 자원들과 연관된 SS 블록의 인덱스가 동일함을 의미할 수 있다. 예를 들어, 도 30(a)를 참조하면, RACH(6)는 6회 반복된 RACH 시퀀스를 갖는 RACH 프리앰블 포맷을 위해 사용될 수 있고, 상기 RACH(6)의 시간 구간 내 상기 RACH(6)와 다른 주파수 상에서는 RACH(4) 및 RACH(2)는 4회 반복된 RACH 시퀀스를 갖는 RACH 프리앰블 포맷을 위한 1개 RACH(4) 및 2회 반복된 RACH 시퀀스를 갖는 RACH 프리앰블 포맷을 위한 1개 RACH(2)가 시간 축에서 연속하여 설정될 수 있으며, 상기 RACH(6)의 시간 구간 내 또 다른 주파수 상에서는 3개 RACH(2)가 시간 축에서 연속하여 설정될 수 있다. 이와 같이 동일 SS 블록과 연관되어 있음에도 RACH 시퀀스의 길이를 달리하여, 결과적으로, RACH 프리앰블 포맷을 달리하여, 서로 다른 RACH 자원들을 설정하는 이 방법은 경쟁 기반 RACH 자원과 경쟁-자유(contention-free) RACH 자원을 구분하는 데 사용되거나, RACH 전송이 시스템 정보 요청에 사용되는 경우에 시스템 정보 요청용으로 별도의 RACH 자원을 설정하는 데 활용될 수 있다. 일반적으로 경쟁 기반의 초기 접속을 위한 RACH 자원은 긴 길이(즉, 많은 개수)의 심볼을 차지하고, UE가 타겟 셀의 커버리지를 어느 정도 파악하고 있을 가능성이 높은 핸드 오버나 시스템 정보 요청 등의 목적을 위한 RACH 자원은 상대적으로 짧은 길이(즉, 적은 개수)의 심볼을 차지하여 전송될 수 있다.
이하에서는 전술한 본 발명을 바탕으로 NR 시스템에서의 RACH 프리앰블 포맷을 구체적으로 제안한다. NR 시스템을 위한 RACH 프리앰블 포맷과 관련하여 본 발명은 한 OFDM 심볼 내의 데이터 심볼(즉, 유효 심볼 구간으로서, 순수 데이터/정보 신호에 해당)의 길이는 2048*T
s, CP 길이는 144*T
s를 가정하였다. 따라서 데이터 전송에 이용 가능한 한 개 OFDM 심볼 길이는 (2048+144)*T
s이다. 여기서 T
s는 샘플링 시간이다. 이하에서는 설명의 편의를 위해서 심볼 길이를 언급할 때 T
s는 생략한다. 표 8은 부반송파 간격 15kHz이고 RACH 시퀀스 길이 139인 프리앰블의 한 OFDM 심볼 길이 기준의 뉴머롤러지를 나타낸 것이다. 표 8에서 유효 심볼 길이 2048은 OFDM 심볼 구간 중 CP가 아닌 부분의 길이이다. 특히, 표 8은 15kHZ SCS 및 2048 FFT를 기준으로 샘플링 주파수가 30.72MHz인 경우에 시간 샘플링 단위를 T
s=1/(15000*2048)라고 할 때 슬롯을 구성하는 OFDM 심볼의 뉴머롤러지를 나타낸다. 이때 길이 144인 CP가 지원하는 다중경로(multipath) 프로파일은 최대 4.68usec이다.
Effective symbol length (T
s) |
2048 |
CP length (T
s) |
144 |
Sequence length |
139 |
Subcarrier spacing (kHz) |
15 |
Multipath profile (usec) |
4.69 |
Sampling frequency (MHz) |
30.72 |
SCS가 30kHz, 60kHz, 120kHz에 대한 뉴머롤러지에서 T
s는 해당 SCS가 15kHz의 몇 배인지에 따라 15kHz에 대한 T
s 값에 반비례하도록 스케일링된다. 다만, OFDM 심볼의 유효 심볼 길이 및 CP 길이는 기본 원칙은 2048과 144로 유지된다.
다음 표들은 본 발명에 따른 프리앰블 포맷들을 나타낸 것이다. 특히, 표 9는 15kHz SCS인 프리앰블 시퀀스(preamble sequence with 15kHz SCS)의 경우 프리앰블 포맷들을 예시한 것이고, 표 10은 30kHz SCS인 프리앰블 시퀀스(preamble sequence with 30kHz SCS)의 경우 프리앰블 포맷들을 예시한 것이며, 표 11은 60kHz SCS인 프리앰블 시퀀스(preamble sequence with 60kHz SCS)의 경우 프리앰블 포맷들을 예시한 것이고, 표 12는 120kHz SCS인 프리앰블 시퀀스(preamble sequence with 120kHz SCS)의 경우 프리앰블 포맷들을 예시한 것이다. 표 9 내지 표 11에서 가드 기간(guard period)는 프리앰블 포맷 A1 또는 A2를 위한 RACH 버스트의 끝(end) 후의 OFDM 심볼에 설정된다.
표 9 내지 표 12에서 유효 심볼 길이(effective symbol length)는 RACH 프리앰블에서 CP가 아닌 정보 부분의 길이, 즉, 시퀀스 부분의 길이 T
SEQ이다.
표 9의 프리앰블 포맷 1을 기준으로 본 발명에서 제안하는 NR용 프리앰블 포맷을 상세히 설명고자 한다. 프리앰블 포맷 1은 RACH 프리앰블이 2개 심볼 길이이며, 동일한 프리앰블이 2개 심볼에 걸쳐서 2회 반복된다. 도 31은 2개 심볼과 정렬되는 2개 심볼 길이의 RACH 프리앰블(이하, 2개 심볼 RACH 프리앰블)의 전송 포맷을 예시한 것이다. RACH 프리앰블을 전송하는 UE에게 2개 심볼 길이의 RACH 자원이 설정되고, 해당 RACH 자원에 부합하는 RACH 프리앰블 포맷이 지시되는 경우, 상기 UE는 도 31에 예시된 바와 같이 288개 샘플 길이만큼의 CP 이후 2048개 샘플 길이의 프리앰블을 2회 반복하여 전송한다. 다만, 기지국이 도 31에 예시된 것과 같은 RACH 프리앰블을 수신할 때 어떤 방식으로 수신하는 지에 따라서 상기 RACH 프리앰블이 지원할 수 있는 셀 커버리지가 달라진다.
도 32는 표 9의 프리앰블 포맷 1에 해당하는 프리앰블 포맷들을 예시한 것이다. 특히 도 32(a)는 표 9의 프리앰블 포맷 1의 A2(이하, 프리앰블 포맷 1-A2)를 도시한 것이고, 도 32(b)는 표 9의 프리앰블 포맷 1의 A1(이하, 프리앰블 포맷 1-A1)를 도시한 것이고, 도 32(c)는 표 9의 프리앰블 포맷 1의 B(이하, 프리앰블 포맷 1-B)를 도시한 것이다.
도 32(a)를 참조하면, 예를 들어, 표 9의 프리앰블 포맷 1-A2는 기지국이 프리앰블이 1회 반복된 신호라고 가정하고 RACH 프리앰블을 수신한다. 이 경우, 상기 기지국은 2048 길이의 시퀀스 이외의 부분은 CP와 GP(가드 기간, GT와 동일)로 가정한다. 단, 기지국은 상기 프리앰블 포맷 1-A2에 따른 RACH 프리앰블의 시퀀스 이후의 최대 2048 샘플을 GP로 가정하고 상기 RACH 프리앰블을 수신한다. RACH 자원들이 서로 연접하는 경우, 상기 연접하는 RACH 자원들의 CP 길이가 충분하기 때문에, 후행하는 RACH 프리앰블의 CP 구간만큼을 GP로 가정하고 RACH 프리앰블을 수신하더라도, 인접 RACH 자원에서 다른 RACH 프리앰블을 수신하는 데 문제가 없게 된다. 따라서, 표 9의 프리앰블 포맷 1-A2의 경우, 기지국 수신 관점에서 CP 길이는 2336, GP 길이는 2048로 간주될 수 있으며, RACH 프리앰블의 반복 횟수는 1이 된다. 넉넉한 GP 길이로 인해서, 해당 포맷은 최대 셀 반경 9297m까지 지원할 수 있다.
이와 달리, 셀 반경이 작은 셀의 경우, 도 31과 같은 형태로 UE가 전송한 RACH 프리앰블에 대해서 기지국은 프리앰블 시퀀스 신호가 2회 반복된 신호로 간주하고 수신할 수 있다. 즉, 도 32(b)를 참조하면, CP 길이를 288, 시퀀스 부분의 길이를 4096이라 가정할 수 있으며, 해당 RACH 프리앰블의 시퀀스 부분은 길이 2048인 시퀀스가 2회 반복된 신호로 이해할 수 있다. 이는 프리앰블 포맷 1-A1에 해당한다. 물론, GP는 해당 RACH 자원의 뒤에 오는, 즉, 해당 RACH 자원에 후행하는 심볼을 널링함으로써 확보될 수 있다. 혹은, 상기 후행하는 심볼의 CP 길이 내로 들어오는 경우는 사실상의 GP 길이는 후행하는 CP 길이에 의해서 한정된다. 즉, RACH 프리앰블의 GP의 경우, 상기 RACH 프리앰블 이후 심볼을 널링하거나 상기 이후 심볼에서 전송되는 신호의 CP를 GP로서 사용할 수 있으나, 후자의 경우는 이후 신호의 CP를 GP로 사용하는 것이므로 상기 GP의 길이가 상기 CP의 길이보다 클 수 없다. 다시 말해, RACH 자원들이 시간 도메인에서 연속하는 경우, 연속하는 RACH 자원들 중 마지막 RACH 자원이 아닌 임의의 일 RACH 자원 다음에 오는 신호가 RACH 프리앰블이고 상기 RACH 자원에 인접한 상기 RACH 프리앰블이 프리앰블 포맷 1-A1인 경우 상기 RACH 프리앰블의 CP 길이는 288이 된다. 결국, 프리앰블 포맷 1-A1의 경우, CP 및 GP 길이에 의해서 해당 프리앰블 포맷이 지원할 수 있는 최대 반경이 제한되게 되는 것이다. 표 9에 나타난 바와 같이 RACH 프리앰블이 15kHz를 가정했을 때, 프리앰블 포맷 1-A1 포맷이 지원하는 최대 셀 반경은 703m가 된다.
이와 달리 프리앰블 포맷 1-B의 경우, CP-시퀀스-GP가 모두 하나의 RACH 자원 내에 포함되도록 설계될 수 있다. 즉, UE는 도 31에 도시된 바와 같이 시퀀스를 2회 반복해서 전송하지만, 기지국은 해당 RACH 프리앰블 전송 구간 내에서 CP와 GP 를 모두 확보하여 시퀀스를 검출한다. 이 경우, 도 32(c)를 참조하면, 기지국은 일 RACH 프리앰블이 2개 심볼을 차지하는 경우에는 시퀀스의 최대 반복 횟수를 1회로 간주할 수 있다. 만약 일 RACH 프리앰블이 N개 심볼을 차지하는 경우에는 기지국은 시퀀스의 반복 횟수를 N-1회로 간주할 수 있다.
본 발명을 좀 더 일반화하기 위하여 RACH 프리앰블 전송을 위해 6개 심볼을 사용하는 경우를 예로 하여 설명한다. RACH 프리앰블의 SCS=15kHz인 표 9를 들어 설명한다. RACH 프리앰블의 전송에 6개 심볼을 사용하는 RACH 프리앰블 포맷을 프리앰블 포맷 3라 하면, 프리앰블 포맷 3-B은 프리앰블 포맷 1-B에 대해 앞서 설명한 바와 마찬가지로, 해당 RACH 자원 구간, 즉, 6개 OFDM 심볼 구간 동안 UE는 데이터 CP의 6배 길이의 CP를 전송하고 이어서 동일 프리앰블을 6회 반복하여 전송한다. 그러나 기지국이 이를 수신할 때에는 해당 RACH 자원 내에서 GP를 확보하기 위해서 프리앰블이 5회 반복되었다고 가정하며, 해당 RACH 프리앰블에 대한 반복 이득(gain)은 6이 아닌 5가 얻어지게 된다. UE가 동일 프리앰블을 6회 반복하여 전송하므로, 기지국이 6회 반복 이득을 획득하고자 하는 경우(프리앰블 포맷 3-A1)에는 해당 프리앰블 시퀀스가 지원하는 최대 셀 반경은 3516m가 되고, 5회 반복 이득을 획득하고자 하는 경우(프리앰블 포맷 3-A2)에는 해당 프리앰블 시퀀스가 지원할 수 있는 최대 셀 반경은 9297m가 되는 것이다. 다시 말해 6회 반복된 프리앰블을 갖는 프리앰블 포맷으로 RACH 프리앰블을 전송하도록 UE에게 명령했을 때, 기지국의 셀 반경이 3516m보다 작은 경우에는 상기 기지국은 상기 RACH 프리앰블로부터 6회 반복 이득을 획득할 수 있으나, 이보다 큰 셀 반경을 지원한다면 상기 기지국이 얻을 수 있는 반복 이득은 5회 밖에 되지 않는다.
다시 말해, 표 9 내지 표 12에서 프리앰블 포맷 1, 2, 3, 4, 5의 숫자는 UE가 RACH 프리앰블을 몇 개의 심볼 구간 동안 프리앰블을 몇 회 반복하여 전송할 것인지에 관한 것을 지시하는 값이다. 프리앰블 포맷 1은 2회 반복(혹은 2개 심볼), 프리앰블 포맷 2는 4회 반복(혹은 4개 심볼), 프리앰블 포맷 3은 6회 반복(혹은 6개 심볼), 프리앰블 포맷 4는 12개 반복(혹은 12개 심볼), 프리앰블 포맷 5는 14회 반복(혹은 14개 심볼)을 의미한다. 표 9 내지 표 12에서 A1, A2, B는 기지국의 셀 반경에 따라서 상기 기지국이 해당 신호를 어떤 식으로 검출할 것인지에 관한 것이다. 기지국이 RACH 프리앰블을 어떤 식으로 검출할 것인지에 관한 것은 구현 이슈(implementation issue)일 수도 있으나, 상기 기지국이 어떤 식으로 검출을 수행하는 지에 따라서 UE가 사용할 수 있는 혹은 상기 기지국이 할당할 수 있는 RACH 시퀀스의 순환 천이 값(즉, N
CS)이 달라질 수 있다. 즉, 셀 반경이 큰 경우, 동일 루트 인덱스를 갖는 Zadoff Chu 시퀀스에 대해 상호 인접한 CS들을 사용하는 것은 RACH의 성능을 저해할 수 있다. 따라서 이러한 경우는 서로 차이가 큰 CS들을 사용/할당하도록 하는 것이 좋다.
표 9 내지 표 12에서 프리앰블 포맷 4, 5는 각각 프리앰블을 12회, 14회 반복하는 포맷인데, 프리앰블 포맷 1,2,3와 달리, 포맷 A1 혹은 A2가 포맷 B에 비해 갖는 이득이 거의 없다고 볼 수 있다. 프리앰블 포맷 1,2,3에서 포맷 A1 혹은 A2가 포맷 B에 비해 갖는 이득은 넓은 셀 반경을 지원함에 반해, 프리앰블 포맷 4,5에서는 슬롯 내에서 해당 길이를 갖는 복수 개의 RACH 자원들이 연속적으로 존재한다고 보기 어렵다. 특히 프리앰블 포맷 5의 경우 14개 심볼을 모두 RACH 자원으로 사용하게 되므로 셀 반경 확장을 위해서는 14개 심볼 이후의 한 심볼을 GP로 설정하여 널링해야 하는데, 이후 슬롯의 DL 제어 채널 전송이 일어날 심볼을 널링하는 것이 부담스러우므로, 프리앰블 포맷 5는 어쩔 수 없이 RACH 자원 내에서 확보할 수 있는 GP만을 활용할 수 밖에 없다. 따라서 프리앰블 포맷 5의 경우, 추가적으로 확보할 수 있는 GP보다는, 14개 심볼 내에서 확보될 수 있는 GP에 의해서 최대 셀 반경이 결정된다. 프리앰블 포맷 4도 프리앰블 포맷 5와 마찬가지로 RACH 자원 내에서 확보될 수 있는 GP에 의해서 최대 셀 반경이 결정된다. 따라서, 프리앰블 포맷 4, 5우는 포맷 A1 및/또는 A2보다는 포맷 B만을 지원하는 것이 바람직할 수 있다.
반면, 프리앰블 포맷 1,2,3의 경우, 포맷 A2와 포맷 B는 동일한 반복 이득을 얻을 수 있는데 반해서 포맷 B가 포맷 A2에 비해서 지원할 수 있는 셀 반경이 더 작다. 따라서, 프리앰블 포맷 1,2,3의 경우는 포맷 A1 및/또는 A2만을 지원하고, 포맷 B을 지원하지 않는 것이 바람직할 수 있다.
NR 표준 문서 상에서, 포맷 A1과 A2 혹은 포맷 B의 구분은 사실상 무의미 할 수 있겠으나, RACH 프리앰블 포맷을 규정할 때 해당 RACH 프리앰블 포맷에 의해 지원하고자 하는 셀 반경을 명확하게 해야 하므로, 이러한 목적을 위해서 해당 포맷들이 서로 구분되어 정의될 수 있다. 특히 포맷 A1과 A2의 경우, 각 포맷이 지원할 수 있는 셀 반경의 차이로 인해서, PRACH 프리앰블의 CS가 달라지고, 이에 따라서 UE가 선택할 수 있는 CS 값의 세트가 달라진다. 물론, 네트워크가 동일한 RACH 프리앰블 포맷을 지시함으로써, 예를 들면, 표 9 내지 12에서 프리앰블 포맷 1/2/3/4/5의 숫자로만 프리앰블 포맷을 지정하고, 기지국이 지원하는 커버리지에 따라서 각 포맷별 CS 값을 달리 지정해서 시그널링할 수도 있다.
상기에서 본 발명의 RACH 프리앰블 포맷들에 대한 설명은 표 9의 15kHz SCS를 대표로 하여 이루어졌으나, 다른 SCS을 갖는 표 10 내지 표 12의 프리앰블 포맷들에도 전술한 본 발명의 설명이 마찬가지로 적용된다. 물론, 지원하는 셀 반경은 SCS의 길이에 의해서 스케일링 다운(down)된다.
본 발명에서 제안하는 프리앰블 포맷은 다음과 같은 몇 가지 방안으로 변형되어 기술될 수 있다.
* 방안 1) 짧은 시퀀스 기반의 RACH 프리앰블은 데이터 전송에 사용되는 OFDM 심볼의 길이의 N배(N은 1보다 큰 자연수)에 맞춰지도록 구성된다. 여기서, 시퀀스를 최대 M번 반복하는 경우에 RACH 프리앰블은 OFDM 심볼 길이의 M배에 해당하는 길이와 같거나 이보다 짧게 구성될 수 있다. 반면, 시퀀스를 최대 K번(K는 M보다 큰 자연수) 반복하는 경우에 RACH 프리앰블은 OFDM 심볼 길이의 K배에 해당하는 길이 보다 짧게 구성된다. 예를 들어, 14개 OFDM 심볼로 구성되는 슬롯에서 RACH 프리앰블을 전송하는 경우, 짧은 시퀀스 기반의 RACH 프리앰블은 시퀀스가 M번 반복(예, M=2,4,6,12,14)되고 각각 CP도 붙여진다. 이 때, RACH 프리앰블의 길이에 따라서는 RACH 프리앰블이 슬롯 내에서 시간적으로 다수개의 자원으로 구분될 수 있다. 예를 들어, 14개 OFDM 심볼로 구성되는 슬롯에서 시퀀스가 6번 반복되는 RACH 프리앰블을 위해서는 상기 슬롯 내에서 시간으로 구분되는 2개의 RACH 자원들이 있을 수 있다. 반면, 시퀀스가 12번 반복되는 RACH 프리앰블을 위해서는 슬롯 내에서 시간으로 구분되는 RACH 자원 1개가 있을 수 있다. M=12,14인 경우 OFDM 심볼 길이의 M배보다 짧은 길이의 RACH 프리앰블을 정의된다. 반면, M=2,4,6인 경우에는 OFDM 심볼 길이의 M배보다 짧은 길이의 RACH 프리앰블뿐만 아니라, 같은 길이의 RACH 프리앰블이 정의될 수 있다.
* 방안 2) 짧은 시퀀스 기반의 RACH 프리앰블을 위한 시간 및 주파수 구간의 자원이 정의될 수 있다. 이 때, M개의 RACH 자원을 시간/주파수 자원을 사용하여 구성하는 경우, 시간을 먼저 사용하여 RACH 자원을 구성한다.
NR의 다중 빔 환경에서 RACH 프리앰블을 전송하기 위한 물리적인 시간/주파수 자원은 복수 개가 필요하다. 특정 슬롯에서 RACH 자원으로 설정될 수 있는 위치는 RACH 프리앰블의 프리앰블 반복 횟수와 연관되어 있다. 물론, RACH 자원으로 설정되는 슬롯에서의 슬롯 포맷에 의해서 정확한 RACH 자원의 위치, 예를 들어, 심볼 번호가 결정된다. RACH 자원이 설정되는 슬롯을 RACH 슬롯이라 하면, RACH 슬롯의 슬롯 타입에 따라서, RACH 프리앰블 포맷별로 RACH 프리앰블을 전송할 수 있는 정확한 자원 위치가 결정된다. RACH 슬롯 타입은 RACH 설정(configuration)을 통해 UE에게 지시되어 준-정적(semi-static)으로 고정될 수 있다. 여기서, RACH 슬롯 타입을 지시한다는 것은 해당 슬롯에서의 DL 제어 채널 및 UL 제어 채널이 전송될 수 있는 심볼의 개수 및 위치를 지시하는 것으로서, 슬롯 포맷 지시로 이해될 수 있다. 슬롯 내의 RACH 자원의 위치 및 개수는 RACH 설정에 의해서 결정된다.
도 33 내지 도 35는 RACH 슬롯 타입에 따른 슬롯 내 RACH 자원의 위치를 예시한 것이다. 도 33 내지 도 35에 제안된 RACH 슬롯 타입들은 예시에 불과하며, 도 33 내지 도 35에 예시된 시작 위치들 외에도, RACH 자원은 해당 슬롯의 어느 시점에서든 시스템에서 지정하는 시점에서 시작될 수 있다.
도 33 내지 도 35를 참조하면, 기지국은 RACH 자원을 UE에게 시그널링할 때, 각 RACH 자원이 속하는 슬롯의 슬롯 타입 및 해당 슬롯에서 각 RACH 자원이 몇 번째 자원인지, 몇 개의 OFDM 심볼로 구성되는 지 등의 정보가 함께 제공한다. 네트워크는 하나 이상의 RACH 자원(즉, RACH 시간/주파수 자원)을 설정하고, 이를 UE에게 알려야 한다. 여기서 RACH 자원이라 함은 하나의 RACH 프리앰블 포맷이 전송될 수 있는 시간/주파수 자원을 지칭한다. 각 RACH 자원마다 사용되는 RACH 프리앰블 포맷이 지정되어 시그널링되어야 한다. 표 9 내지 표 12로부터 알 수 있듯이, RACH 프리앰블 포맷에 의해서 RACH 자원의 OFDM 심볼 길이가 결정되며, RACH 자원별로 지정되는 RACH 프리앰블 포맷 정보를 이용하여 UE는 RACH 자원의 심볼 길이(즉, OFDM 심볼 개수)를 알 수 있다. 본 발명에 따른 프리앰블 포맷들을 예시한 표 9 내지 표 12에서 각 프리앰블 포맷별 심볼 지속기간(symbol duration)는 프리앰블의 길이, 정확히는 프리앰블의 반복에 의해 해당 프리앰블 포맷이 차지하는 OFDM 심볼들의 개수를 의미한다. 다만, 초기 접속 등을 위한 휴지(IDLE) 상태에서 사용되는 RACH 프리앰블의 지속기간(duration)의 경우, 네트워크가 복수 개의 RACH 자원을 설정한다고 하더라도 RACH 자원별로 프리앰블 지속기간을 다르게 설정할 이유가 거의 없다. 왜냐하면, 해당 셀이 지원하는 최대 셀 커버리지를 지원해야 하기 때문에, 어떤 RACH 자원에서의 프리앰블 지속기간은 길게 설정하고 다른 RACH 자원에서의 프리앰블 지속기간은 짧게 설정해야 할 이유가 없기 때문이다. 따라서, RACH 자원별로 프리앰블 지속기간을 동일하게 설정한다면, 기지국은 RACH 자원별로 프리앰블 포맷을 지정해 주지 않고, RACH 자원들에 공통적(common)으로 프리앰블 포맷을 지정해 줄 수 있다. 혹은 RACH 자원들을 RACH 자원 그룹(예, 긴 RACH 프리앰블 그룹, 짧은 RACH 프리앰블 그룹 등)으로 구분하고, RACH 자원 그룹별로 프리앰블 포맷을 지정해 줄 수 있다. RACH 자원들에 공통적으로 혹은 RACH 자원 그룹별로 프리앰블 포맷을 지정해 주는 경우, 앞서 표 9 내지 표 12를 참조하여 설명된 바와 같이, 네트워크는 프리앰블 포맷 1, 2, 3, 4, 5 중에서 하나를 시그널링할 수 있다. 예를 들어, 네트워크가 시그널링한 프리앰블 포맷이 프리앰블 포맷 2라면, 하나의 RACH 자원은 4개의 심볼로 구성된다. 4개 OFDM 심볼 길이의 RACH 자원 3개가 예약(reserve)되는 경우, 연속적으로 시간 분활 다중화(time division multiplexing, TDM)되는 3개의 RACH 자원들에 대해서 선행하는 첫 번째, 두 번째 RACH 자원들에서는 포맷 A(즉, 포맷 A1 또는 포맷 A2)를 프리앰블 포맷으로 적용하고, RACH 블록의 마지막 RACH 자원에는 포맷 B를 프리앰블 포맷으로 적용하도록 강제될 수 있다. 즉, RACH 블록의 마지막 RACH 자원에서 RACH 프리앰블을 전송할 때 UE로 하여금 갭 구간을 반드시 삽입하도록 하는 것이다.
혹은 RACH 자원들이 연속적으로 존재하는 경우, 네트워크는 연속적으로 설정된 각 RACH 자원에 대해서 RACH 프리앰블 포맷의 세트를 시그널링할 수 있다. 예를 들어, 프리앰블 포맷 1이 사용되고, 3개의 연속한 RACH 자원들이 설정되는 경우, RACH 프리앰블 포맷의 세트, 예를 들어, {A1, B}, {A1, A1}, {A2, A2}, 혹은 {A2, B}, 쪋 등의 형태로 RACH 자원 블록에 적용할 수 있는 RACH 프리앰블 포맷을 RACH 자원 블록별로, 혹은 모든 RACH 자원 블록에 동일하게 적용되도록 시그널링할 수 있다. 네트워크가 {A1, B} 조합을 시그널링한 경우, UE는 연속하는 RACH 자원들 중에서 마지막 RACH 자원에서는 프리앰블 포맷 1-B를 사용하고, 상기 마지막 RACH 자원을 제외한 나머지 RACH 자원(들)에서는 모두 프리앰블 포맷 1-A1을 사용한다. 즉, 네트워크가 포맷들의 조합을 시그널링한 경우, 예를 들어, {A1, B} 조합을 시그널링한 경우, UE는 검출한 SS 블록과 연관된 RACH 자원이 시간 도메인에서 RACH 슬롯의 RACH 자원들 중 마지막 RACH 자원이 아니면 상기 연관된 RACH 자원에서 프리앰블 포맷 A1의 RACH 프리앰블을 전송하고, 상기 연관된 RACH 자원이 상기 RACH 슬롯의 마지막 RACH 자원이면 프리앰블 포맷 B의 RACH 프리앰블을 전송한다.
네트워크가 설정하는 하나 이상의 RACH 자원이 있을 때, 각 RACH 자원에 대한 식별을 위해서, RACH 자원마다 고유의 인덱스가 부여될 수 있다. RACH 자원 인덱스마다 특정되어야 하는 정보는 다음과 같다.
> 연관된 SS 블록 인덱스(혹은 인덱스들): 연관된 SS 블록 인덱스가 복수 개인 경우, SS 블록별로 프리앰블 시퀀스 자원을 구분해서 시그널링한다.
> RACH 프리앰블을 위한 시퀀스 자원들(예, 루트 인덱스, CS들 등): 해당 RACH 자원에서 사용될 수 있는 RACH 프리앰블의 루트 인덱스 정보, 순환 천이 정보 등이 시그널링된다.
> RACH 프리앰블 포맷: 해당 RACH 자원에서 사용되는 프리앰블 포맷, RACH 자원의 길이(예, 심볼 개수)가 지시된다.
> 시간 도메인 정보: 해당 RACH 자원의 시간 정보. 시간 도메인 정보는 다음을 포함할 수 있다:
i. 해당 RACH 자원이 속하는 슬롯 인덱스, 프레임 번호;
ii. 해당 RACH 자원이 속하는 슬롯의 타입 정보, 즉, RACH 슬롯 타입 정보; 및/또는
iii. 해당 RACH 자원이 속하는 슬롯 내의 심볼 위치. RACH 자원이 속하는 슬롯 내의 심볼 위치를 나타내는 정보는 해당 RACH 자원이 시작되는 심볼 번호와 해당 RACH 자원의 지속기간(예, 심볼 개수)에 관한 정보일 수 있다. 혹은, RACH 자원이 속하는 슬롯 내의 심볼 위치를 나타내는 정보는 해당 RACH 자원이 RACH 슬롯 내의 몇 번째에 위치하는 RACH 자원인지를 지시하는 정보일 수 있다. RACH 슬롯 내에서 RACH 자원의 개수 및 심볼 개수는 RACH 프리앰블 포맷에 의해서 UE가 유추할 수 있으며, 상기 기술한 RACH 슬롯 타입 정보를 통해서 RACH 자원이 슬롯 내에서 몇 번째 심볼부터 시작하는 지를 알아낼 수 있다. 이러한 정보는, 예를 들어, 도 33 내지 도 35를 참조하면, 슬롯 내의 RACH 자원 유닛 번호(즉, RACH 슬룻 내 RACH 자원)은 RACH 프리앰블 포맷의 길이(즉, 지속기간)에 따라서 다음과 같이 시그널링될 수 있다:
(a) 12개 심볼인 프리앰블 포맷의 경우 생략가능
(b) 6개 심볼인 프리앰블 포맷의 경우 1 비트 (0 or 1)
(c) 4개 심볼인 프리앰블 포맷의 경우 2 비트
(d) 3개 심볼인 프리앰블 포맷의 경우 2 비트
(e) 2개 심볼인 프리앰블 포맷의 경우 3 비트
(f) 1 개 심볼인 프리앰블 포맷의 경우 4 비트
> 주파수 도메인 정보: 해당 RACH 자원의 주파수 위치 정보. RACH 자원의 주파수 위치에 대한 기준점을 알리기 위한 목적으로, RACH 자원이 위치할 수 있는 가장 낮은(혹은 가장 높은) 주파수 위치에 대한 정보가 시그널링될 수 있다. 예를 들어, 앞서 설명된 RACH 자원 블록이 시작되는 주파수 위치가 시그널링된다. RACH 자원의 주파수 위치 정보는 RACH 설정 내에서 RACH 자원 공통(common) 정보로서 시그널링될 수 있다. RACH 자원의 대역폭, 즉, RACH 대역폭이 시그널링된다. 혹은, RACH 자원의 서브밴드 크기, 즉, RACH 대역폭은 RACH 프리앰블 포맷에 의존적으로 결정될 수 있으며, 긴 시퀀스 기반의 프리앰블이 사용될 때의 RACH 대역폭과 짧은 시퀀스 기반의 프리앰블이 사용될 때의 RACH 대역폭이 서로 다르게 결정될 수 있다. 즉, 프리앰블 포맷이 각 RACH 자원별 혹은 RACH 자원 그룹별로 시그널링되면, UE는 부반송파 간격을 고려하여, 긴 시퀀스 기반의 프리앰블의 RACH 대역폭과 짧은 시퀀스 기반의 프리앰블의 RACH 대역폭을 쉽게 알아낼 수 있다..
도 36은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22) 등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13, 23)을 제어하도록 구성된(configured) 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K 개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 수송 블록과 등가이다. 일 수송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 N
t 개(N
t 는 1 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 N
r 개의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될(configured) 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더는 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다. 본 발명에서 RF 유닛은 트랜시버로 칭해지기도 한다.
본 발명에서 RF 유닛(13, 23)은 수신 빔포밍과 전송 빔포밍을 지원할 수 있다. 예를 들어, 본 발명에서 RF 유닛(13,23)은 도 3에 예시된 기능을 수행하도록 구성될 수 있다.
본 발명의 실시예들에 있어서, UE는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, gNB는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다. 이하, UE에 구비된 프로세서, 트랜시버 및 메모리를 UE 프로세서, UE 트랜시버 및 UE 메모리라 각각 칭하고, gNB에 구비된 프로세서, 트랜시버 및 메모리를 gNB 프로세서, gNB 트랜시버 및 gNB 메모리라 각각 칭한다.
본 발명의 gNB 프로세서는 본 발명에 따른 RACH 설정 정보를 전송하도록 gNB 트랜시버를 제어한다. 상기 RACH 설정 정보는 프리앰블 포맷을 나타낼 수 있으며, 상기 프리앰블 포맷은 본 발명에 따른 프리앰블 포맷들 중에 하나이다. 상기 RACH 설정 정보는 RACH 프리앰블이 전송될 수 있는 슬롯, 즉, RACH 자원이 설정된 슬롯(이하, RACH 슬롯)을 나타내는 정보를 포함할 수 있다. 상기 RACH 슬롯 정보는 RACH 슬롯 내 RACH 시간 자원들의 개수를 나타내는 정보를 포함할 수 있다. 상기 RACH 설정 정보는 RACH 자원에서 사용될 수 있는 프리앰블 시퀀스 정보를 포함할 수 있다. 상기 gNB 프로세서는 RACH 슬롯 내 RACH 자원에서 신호를 수신하도록 상기 gNB 트랜시버를 제어할 수 있다. 상기 gNB 프로세서는 상기 RACH 자원에 해당하는 프리앰블 포맷에 따라 RACH 프리앰블의 검출을 시도할 수 있다. 예를 들어, 상기 RACH 설정 정보가 프리앰블 포맷 1-A1(표 9 내지 표 12 참조)을 나타내면, 상기 gNB 프로세서는 프리앰블 포맷 1-A1에 부합하는 RACH 프리앰블을 검출하도록 시도할 수 있다. 다른 예로, 상기 RACH 설정 정보가 본 발명에서 제안된 프리앰블 포맷 A1과 B의 조합인 프리앰블 포맷을 나타내면, 상기 gNB 프로세서는 RACH 슬롯 내 연속한 RACH 자원들 중 시간 도메인에서 마지막 RACH 자원이 아닌 RACH 자원에서는 프리앰블 포맷 A1에 따라 RACH 프리앰블을 검출을 시도하고, 마지막 RACH 자원에서는 프리앰블 B에 따라 RACH 프리앰블 검출을 시도할 수 있다.
본 발명의 UE 트랜시버는 상기 RACH 설정 정보를 수신하고, UE 프로세서는 상기 RACH 설정 정보를 바탕으로 RACH 프리앰블을 전송하도록 상기 UE 트랜시버를 제어한다. 예를 들어, UE 트랜시버가 본 발명에서 제안된 프리앰블 포맷 A1을 지시하는 프리앰블 포맷 정보를 포함하는 RACH 설정 정보를 수신한 경우, 상기 UE 프로세서는 상기 프리앰블 포맷 A1의 RACH 프리앰블을 전송하도록 상기 UE 트랜시버를 제어한다. RACH 프리앰블은 시간 도메인에서 CP 부분과 시퀀스 부분을 포함하는데, UE 프로세서는 상기 RACH 설정 정보 내 프리앰블 포맷 정보에 따른 프리앰블 포맷에 부합하도록 RACH 프리앰블을 생성하고, 상기 UE 트랜시버를 제어하여 상기 RACH 프리앰블을 전송한다. 예를 들어, 상기 RACH 설정 정보가 지시하는 프리앰블 포맷이 상기 프리앰블 포맷 A1인 경우, 상기 UE 프로세서는 RACH 프리앰블의 CP 길이가 상기 RACH 프리앰블용 SCS와 같은 SCS를 사용하는 데이터용 OFDM 심볼의 CP 길이 NCP의 N배가 되도록 상기 RACH 프리앰블을 생성할 수 있다. 여기서, N은 RACH 프리앰블의 전송에 사용되는 OFDM 심볼들의 개수이고 1보다 큰 값일 수 있다. 예를 들어, 표 9 내지 표 12를 참조하면, 프리앰블 포맷 1-A1을 나타내는 RACH 설정 정보를 수신한 경우에는 N=2, 프리앰블 포맷 2-A1을 나타내는 RACH 설정 정보를 수신한 경우에는 N=4, 프리앰블 포맷 3-A1을 나타내는 RACH 설정 정보를 수신한 경우에는 N=6가 되도록 RACH 프리앰블을 생성할 수 있다. RACH 프리앰블의 시퀀스 부분의 길이도 N에 비례하여 증가한다. 상기 UE 프로세서는 길이 139인 Zadoff Chu 시퀀스를 N번 포함하도록 상기 시퀀스 부분을 생성할 수 있다. 상기 UE 프로세서는 본 발명에서 프리앰블 포맷 A1 혹은 A2의 경우, RACH 프리앰블용 SCS와 동일 SCS를 갖는 데이터용 OFDM 심볼의 N배와 같도록 상기 RACH 프리앰블을 생성할 수 있다. 상기 UE 프로세서는 상기 RACH 프리앰블을 데이터용 OFDM 심볼 N개의 경계와 일치하게 전송하도록 상기 UE 트랜시버를 제어할 수 있다. 예를 들어, 상기 UE 프로세서는 프리앰블 포맷 A1의 RACH 프리앰블을 상기 RACH 프리앰블의 전송에 사용되는 N개 OFDM 심볼들의 총 길이와 같도록 생성하고, 상기 N개 OFDM 심볼들의 시작에 맞춰 상기 RACH 프리앰블을 전송하도록 상기 UE 트랜시버를 제어할 수 있다.
상기 RACH 설정 정보 내 상기 프리앰블 포맷 정보가 프리앰블 포맷 A1 혹은 A2와 프리앰블 포맷 B의 조합을 지시할 수도 있다. 예를 들어, 프리앰블 포맷 1-A1 및 프리앰블 포맷 1-B의 조합이 지시된 경우, 상기 사용자기기가 RACH 전송에 사용할 RACH 자원이 RACH 슬롯의 시간 도메인에서 마지막 RACH 자원이 아니면 프리앰블 포맷 1-A1에 따라 RACH 프리앰블을 생성하고, 상기 UE 트랜시버를 제어하여 상기 RACH 프리앰블을 상기 RACH 자원에서 전송한다. 이에 반해 상기 사용자기기가 RACH 전송에 사용할 RACH 자원이 RACH 슬롯의 시간 도메인에서 마지막 RACH 자원이면 프리앰블 포맷 1-B에 따라 RACH 프리앰블을 생성하고, 상기 UE 트랜시버를 제어하여 상기 RACH 프리앰블을 상기 RACH 자원에서 전송한다. 상기 UE 프로세서는 셀 상에서 검출된 SS 블록과 연결된 RACH 자원에서 상기 RACH 프리앰블을 전송하도록 상기 UE 트랜시버를 제어한다. 셀 상에서 복수의 SS 블록들이 전송되고, 상기 UE 프로세서가 검출된 SS 블록(들) 중 특정 기준에 따라 SS 블록을 선택하고, 상기 선택된 SS 블록과 연관된 RACH 자원을 상기 RACH 프리앰블 전송에 사용할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.