WO2018203523A1 - Power storage device gas-generation inhibitor and power storage device using power storage device gas-generation inhibitor - Google Patents

Power storage device gas-generation inhibitor and power storage device using power storage device gas-generation inhibitor Download PDF

Info

Publication number
WO2018203523A1
WO2018203523A1 PCT/JP2018/017186 JP2018017186W WO2018203523A1 WO 2018203523 A1 WO2018203523 A1 WO 2018203523A1 JP 2018017186 W JP2018017186 W JP 2018017186W WO 2018203523 A1 WO2018203523 A1 WO 2018203523A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
electricity storage
gas
generation inhibitor
power storage
Prior art date
Application number
PCT/JP2018/017186
Other languages
French (fr)
Japanese (ja)
Inventor
良介 杉原
桂一 渡邉
覚 爪田
修一 石本
Original Assignee
テイカ株式会社
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テイカ株式会社, 日本ケミコン株式会社 filed Critical テイカ株式会社
Priority to JP2019515721A priority Critical patent/JP7121730B2/en
Publication of WO2018203523A1 publication Critical patent/WO2018203523A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • (HF) is further dissociated Protons (H + ) generated by And when such protons couple
  • BF 4 decomposed from the electrolyte - is carbon dioxide and the anions and the unreacted lithium carbonate, such as produced by reactions - or PF 6.
  • Patent Document 5 describes a carbon dioxide gas absorbent obtained by mixing lithium carbonate powder, lithium oxide powder, and titanium dioxide powder in a specific ratio (see claim 1 and [0028] of Patent Document 5),
  • Non-Patent Document 1 discloses that lithium composite oxide can be a carbon dioxide absorbing material (see “Features of New CO 2 Absorbing Material” on page 12 of Non-Patent Document 1).
  • the present invention has been made in view of the above-mentioned conventional problems, and aims to provide a gas generation inhibitor for an electricity storage device. It is another object of the present invention to provide an electricity storage device using the gas generation inhibitor for electricity storage devices.
  • the gas generation inhibitor for an electricity storage device comprises at least one titanic acid selected from sodium titanate, potassium titanate, and alkaline earth metal titanate. It contains a salt.
  • the gas generation inhibitor for an electricity storage device is characterized in that the alkaline earth metal is one or more selected from Mg, Ca, Sr, and Ba.
  • the electricity storage device according to the present invention is characterized by containing the gas generation inhibitor for an electricity storage device of the present invention.
  • the gas generation inhibitor for an electricity storage device of the present invention has a basic structure containing at least one titanate selected from sodium titanate, potassium titanate, and alkaline earth metal titanate. To do.
  • the gas generation inhibitor for an electricity storage device of the present invention contains a specific alkali metal titanate or / and a specific alkaline earth metal titanate.
  • the generation of various gases such as carbon dioxide, hydrogen gas, and fluorine gas during use or changes with time can be suppressed.
  • it is generated in the electricity storage device with the alkali metal ion or alkaline earth metal ion of the gas generation inhibitor for the electricity storage device of the present invention.
  • the alkali metal titanates used in the gas generation inhibitor for an electricity storage device of the present invention are sodium titanate and potassium titanate.
  • a specific alkali metal titanate as described above it is possible to develop an effect of suppressing gas generation, which is not found in lithium compounds such as lithium titanate that are mainly used in conventional power storage devices. It is.
  • These alkali metal titanates may be used alone or in combination.
  • alkaline earth metal titanates Specific examples of the alkaline earth metal titanates used in the gas generation inhibitor for power storage devices of the present invention include magnesium titanate, calcium titanate, strontium titanate, barium titanate, and radium titanate. Of these, magnesium titanate, calcium titanate, strontium titanate, and barium titanate are preferably used. Also, the alkaline earth metal titanate may be used alone or in combination with the alkali metal titanate described above.
  • the amount of titanate is not particularly limited, but is preferably 5 to 70 wt% with respect to the positive electrode active material, and more preferably 10 to 50 wt%.
  • the powder pH measured by the method mentioned later is 10.5 or more. Among them, it is more preferably 11.0 or more, and further preferably 11.5 or more. The reason is that the higher the powder pH, the easier it is for cations such as sodium ions, potassium ions, alkaline earth metal ions to dissociate from the gas generation inhibitor (titanate) for the electricity storage device of the present invention. Along with this, it is considered that the ion exchange reaction of the reaction formula shown in paragraph [0015] is promoted, and as a result, protons (H + ) can be easily incorporated. That is, it is considered that the effect of suppressing gas generation is further enhanced by facilitating the capture of protons (H + ) that are the source of gas generation.
  • the electrical storage device of this invention contains the gas generation inhibitor for electrical storage devices of this invention, it is preferable to contain in the material of a positive electrode or a separator among them.
  • the generation of various gases such as carbon dioxide gas, hydrogen gas, and fluorine gas during use or change with time, which has been a problem in conventional electricity storage devices, is suppressed. Can do.
  • the above effect can be further improved by using a titanate using a specific alkaline earth metal.
  • Example 1 An anatase-type titanium oxide (Taika AMT-100) 300 g and sodium hydroxide (Sigma Aldrich) 399 g were wet-mixed and then fired in the atmosphere at 750 ° C. for 2 hr, whereby the gas for the electricity storage device of Example 1 A generation inhibitor (sodium titanate (Na 2 TiO 3 )) was prepared.
  • Example 2 A gas generation inhibitor for an electricity storage device (sodium titanate (Na 4 Ti 5 O 12 )) of Example 2 was produced in the same manner as in Example 1 except that the amount of sodium hydroxide was 133 g.
  • Example 3 A gas generation inhibitor for an electricity storage device (sodium titanate (Na 2 Ti 3 O 7 )) of Example 3 was produced in the same manner as in Example 1 except that the amount of sodium hydroxide was changed to 111 g.
  • Example 4 The gas generation inhibitor for an electricity storage device of Example 4 (potassium titanate (K 2 Ti 2 O 5 )) was used in the same manner as in Example 1 except that 249 g of potassium hydroxide (Sigma Aldrich) was used. Produced.
  • potassium hydroxide Sigma Aldrich
  • Example 5 A gas generation inhibitor (potassium titanate (K 2 Ti 6 O 13 )) for an electricity storage device of Example 5 was produced in the same manner as in Example 4 except that the amount of potassium hydroxide was 108 g.
  • Example 6 A gas generation inhibitor for an electricity storage device (potassium titanate (K 2 Ti 4 O 9 )) of Example 6 was produced in the same manner as in Example 4 except that the amount of potassium hydroxide was 144 g.
  • Example 7 A gas generation inhibitor for an electricity storage device (magnesium titanate (MgTiO 3 )) of Example 7 was produced in the same manner as in Example 1 except that sodium hydroxide was changed to 438 g of magnesium hydroxide (manufactured by Sigma-Aldrich).
  • Example 8 A gas generation inhibitor (calcium titanate (CaTiO 3 )) for an electricity storage device of Example 8 was prepared in the same manner as in Example 1 except that sodium hydroxide was changed to 564 g of calcium hydroxide (manufactured by Sigma-Aldrich).
  • Example 9 Gas generation inhibitor for electricity storage device of Example 9 (strontium titanate (SrTiO 3 )) in the same manner as in Example 1 except that sodium hydroxide was changed to 997 g of strontium hydroxide octahydrate (manufactured by Sigma-Aldrich) Was made.
  • Example 10 Gas generation inhibitor for electricity storage device of Example 10 (barium titanate (BaTiO 3 )) in the same manner as in Example 1 except that sodium hydroxide was changed to 1194 g of barium hydroxide octahydrate (manufactured by Sigma-Aldrich) Was made.
  • barium hydroxide octahydrate manufactured by Sigma-Aldrich
  • the electrical storage device using the positive electrode was produced, and the suppression effect of gas generation, and the electrical storage device performance (cycle characteristics) Evaluation was performed.
  • each positive electrode paint produced above was applied to an aluminum foil and dried to produce each positive electrode for an electricity storage device.
  • the weight of the gas generation inhibitor for each power storage device of the example existing in the power storage device at this time is 16.5 mg
  • the weight ratio of the gas generation inhibitor for each power storage device of the example and activated carbon is 32: 68.
  • the amounts of the gas generation inhibitor for activated electricity storage device and the activated carbon in Example 4 were changed to 1.4 g and 5.8 g, 3.5 g and 3.7 g, 5.0 g and 2.2 g, respectively (that is, as described later).
  • the weight of the gas generation inhibitor for the electricity storage device present in the electricity storage device is 3.9 mg, 33.6 mg, and 77.9 mg).
  • the weight ratios of the gas generation inhibitor for an electricity storage device and activated carbon in Example 3 were 19:81, 49:51, and 69:31, respectively.
  • a negative electrode for an electricity storage device was prepared by applying the negative electrode paint prepared above to an aluminum foil and drying it.
  • AMT-100 manufactured by Teica anatase type titanium oxide
  • volume change rate (%) volume change (ml) ⁇ initial volume (ml) ⁇ 100
  • IR drop measurement Next, discharge of each produced electricity storage device was started at a constant voltage of 2.9 V (that is, 2900 mV) under the condition of 60 ° C., and held for 1000 hours. Thereafter, the voltage 0.5 seconds after the start of discharge was measured, and IR drop was calculated from the following formula.
  • the IR drop is a value representing the internal resistance of the electricity storage device, and the smaller the value, the more preferable.
  • IR drop (mV) 2900 (mV) -voltage 0.5 seconds after the start of discharge (mV)
  • the electricity storage devices of Examples 11 to 23 exhibited a higher capacity maintenance rate (cycle characteristics) than the electricity storage devices of the comparative examples.
  • the electricity storage devices of Examples 11 to 23 had a good IR drop value as compared with the electricity storage device of the comparative example.
  • the gas generation inhibitor for an electricity storage device one or more titanates selected from sodium titanate, potassium titanate, and alkaline earth metal titanate. It has been found that the generation of various gases such as carbon dioxide gas, hydrogen gas, and fluorine gas during use or change with time, which has been a problem in conventional power storage devices, can be suppressed by containing the above. It was also found that an electricity storage device capable of exhibiting a high capacity retention rate (cycle characteristics) while suppressing generation of various gases can be obtained. Furthermore, it was also found that by suppressing gas generation, an increase in internal resistance of the electricity storage device is effectively suppressed, and as a result, IR drop can be reduced. This effect is particularly remarkable when the powder pH of the gas generation inhibitor for an electricity storage device is 10.5 or more (more preferably 11.0 or more, more preferably 11.5 or more). I understood it.
  • the gas generation inhibitor for an electricity storage device of the present invention can be used for an electricity storage device such as a lithium ion battery or an electric double layer capacitor.

Abstract

[Problem] There is demand for a power storage device gas-generation inhibitor that can inhibit the generation of gases, such as carbon dioxide gas, hydrogen gas, and fluoride gas, that has been a problem in past power storage devices during use and with aging. [Solution] This power storage device gas-generation inhibitor is characterized by containing at least one type of titanate selected from among titanates of sodium, titanates of potassium, and titanates of alkali earth metals.

Description

蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイスGas generation inhibitor for electricity storage device and electricity storage device using the gas generation inhibitor for electricity storage device
 本発明はリチウムイオン電池や電気二重層キャパシタなどの蓄電デバイスに用いられるガス発生抑制剤に関するものである。 The present invention relates to a gas generation inhibitor used in power storage devices such as lithium ion batteries and electric double layer capacitors.
 リチウムイオン電池や電気二重層キャパシタなどの蓄電デバイスは、それぞれが持つ高エネルギー密度、高出力密度という特徴を活用し、近年急速に実用化が行われている。 Storage devices such as lithium ion batteries and electric double layer capacitors have been rapidly put into practical use in recent years, taking advantage of the characteristics of their high energy density and high output density.
 しかしながら、このような蓄電デバイスにおいては、蓄電デバイスの内に存在する不純物(例えば活物質内に残存している未反応の炭酸リチウムなど)や水分の混入、あるいは使用によって電解液や電極を構成する材料が酸化分解することなどが原因となって、蓄電デバイス内に炭酸ガス、水素ガス、フッ素ガスなどのガスが発生してしまうという課題がある。係るガスは蓄電デバイスの性能を低下させる原因となるものであり、またこのようなガスの発生が継続することになると蓄電デバイスからの液漏れや形状変化(膨張)を招き、最終的には炎上、爆発という重大事象を引き起こすことになるものとなる。
 ここで、このようなガスの中には、未反応の炭酸リチウムが経時劣化(分解)したり、充放電を繰り返すことによって電解液が酸化分解したりすることによって発生するガス(炭酸ガス)といったものもあるが、このようなガスとは別に、水素ガス、フッ素ガスの原因となるプロトン(H)も発生する。具体的には、蓄電デバイス内に浸入した水分自体が電気分解することによって発生するプロトン(H)や、電解液に電解質としてヘキサフルオロリン酸リチウム(LiPF)やホウフッ化リチウム(LiBF)などを用いている場合に、係る電解質から分解したBF やPF などの陰イオンと蓄電デバイス内に浸入した水分とが反応して形成されたフッ化水素(HF)がさらに解離することによって発生するプロトン(H)などがある。そして、係るプロトン同士が結合することで水素ガスが発生したり、フッ化水素(HF)から解離したフッ素イオン同士が結合することでフッ素ガスが発生したりするのである。
 また、電解質から分解したBF やPF などの陰イオンと未反応の炭酸リチウムとが反応することによって発生する炭酸ガスもある。
However, in such an electricity storage device, an electrolyte solution or an electrode is formed by mixing or using impurities existing in the electricity storage device (for example, unreacted lithium carbonate remaining in the active material) or moisture. There is a problem that gas such as carbon dioxide gas, hydrogen gas, and fluorine gas is generated in the electricity storage device due to oxidative decomposition of the material. Such gas causes deterioration of the performance of the electricity storage device, and if the generation of such gas continues, liquid leakage from the electricity storage device and shape change (expansion) will be caused, and eventually the flame will rise. This will cause a serious event of explosion.
Here, in such a gas, unreacted lithium carbonate is deteriorated with time (decomposed), or gas generated by oxidative decomposition of the electrolytic solution by repeated charge and discharge (carbon dioxide gas). There are some, but apart from these gases, protons (H + ) that cause hydrogen gas and fluorine gas are also generated. Specifically, protons (H + ) generated by electrolysis of moisture permeated into the electricity storage device, lithium hexafluorophosphate (LiPF 6 ) or lithium borofluoride (LiBF 4 ) as an electrolyte in the electrolytic solution If you are using a, BF decomposed from the electrolyte 4 according - or PF 6 - hydrogen fluoride and anions and moisture entering into the electric storage device is formed by reactions such as (HF) is further dissociated Protons (H + ) generated by And when such protons couple | bond together, hydrogen gas will generate | occur | produce, or fluorine gas which dissociated from hydrogen fluoride (HF) will couple | bond together, and fluorine gas will generate | occur | produce.
Further, BF 4 decomposed from the electrolyte - is carbon dioxide and the anions and the unreacted lithium carbonate, such as produced by reactions - or PF 6.
 そこで、従前から発生したガスを吸収するための様々なガス吸収材が開発されている(特許文献1~4)。具体的には、特許文献1には、炭酸ガスの吸収材として、リチウム複合酸化物やゼオライトを用いることが記載されている(特許文献1の請求項2、3および[0012]~[0014]参照)。特許文献2には、水酸化リチウムを炭酸ガスの吸収材として用いることが記載されている(特許文献2の請求項3および[0009]、[0010]参照)。特許文献3には、アルカリ金属の炭酸塩をフッ素ガスの吸収材として用いることが記載されている(特許文献3の請求項1、3、4および[0014]参照)。特許文献4には、ZnO、NaAlO、ケイ素をフッ素ガスの吸収材として用いることが記載されている(特許文献4の請求項15、16および[0063]参照)。 Therefore, various gas absorbing materials for absorbing gas generated in the past have been developed (Patent Documents 1 to 4). Specifically, Patent Document 1 describes the use of a lithium composite oxide or zeolite as a carbon dioxide gas absorber ( claims 2, 3 and [0012] to [0014] of Patent Document 1). reference). Patent Document 2 describes that lithium hydroxide is used as an absorbent for carbon dioxide gas (see Claim 3 and [0009] and [0010] of Patent Document 2). Patent Document 3 describes that an alkali metal carbonate is used as a fluorine gas absorber (see claims 1, 3, 4 and [0014] of Patent Document 3). Patent Document 4 describes that ZnO, NaAlO 2 , and silicon are used as a fluorine gas absorber (see claims 15, 16 and [0063] of Patent Document 4).
 さらに、特許文献5には、炭酸リチウム粉末と酸化リチウム粉末と二酸化チタン粉末を特定の比率で混合した炭酸ガス吸収材が記載されており(特許文献5の請求項1および[0028]参照)、非特許文献1には、リチウム複合酸化物が炭酸ガスの吸収材料となり得ることが開示されている(非特許文献1の12頁の「新しいCO吸収材料の特長」を参照)。 Further, Patent Document 5 describes a carbon dioxide gas absorbent obtained by mixing lithium carbonate powder, lithium oxide powder, and titanium dioxide powder in a specific ratio (see claim 1 and [0028] of Patent Document 5), Non-Patent Document 1 discloses that lithium composite oxide can be a carbon dioxide absorbing material (see “Features of New CO 2 Absorbing Material” on page 12 of Non-Patent Document 1).
特開2003-297699号公報JP 2003-297699 A 特開2003-197487号公報JP 2003-197487 A 特許第5485741号公報Japanese Patent No. 5485741 特表2013-541161号公報Special table 2013-541161 特許第5231016号公報Japanese Patent No. 5231016
 しかしながら、これらの文献はいずれも発生したガスを吸収することを目的とするものであり、ガスの発生自体を抑制すること、すなわちガス発生の源となるプロトン(H)自体を捕捉することを目的(技術的思想)とするものではない。
 従って、これらの文献に記載されている各種の吸収材は、液漏れ、形状変化(膨張)、炎上、爆発という事象については防止することができるかもしれないが、ガスが発生している(電解液や電極を構成する材料の酸化分解などが発生している)ことには変わりがないことから、蓄電デバイス性能の低下を防止することはできないものとなっている。
However, all of these documents are intended to absorb the generated gas, and suppress the generation of the gas itself, that is, capture the proton (H + ) itself that is the source of the gas generation. It is not intended (technical idea).
Therefore, various absorbent materials described in these documents may be able to prevent the phenomenon of liquid leakage, shape change (expansion), flame and explosion, but gas is generated (electrolysis) Since there is no change in the oxidative decomposition of the material constituting the liquid and the electrode), it is impossible to prevent the deterioration of the performance of the electricity storage device.
 また、従前のガス吸収材としては、蓄電デバイスにおいて使用実績の多い元素であることから、特許文献1、2に記載されているようなリチウム化合物を用いることが一般的となっている。 Also, as a conventional gas absorbing material, since it is an element that has been used a lot in power storage devices, it is common to use lithium compounds as described in Patent Documents 1 and 2.
 今般、本願発明者らは鋭意検討を行った結果、一般的に用いられているリチウム化合物ではなく、ナトリウムのチタン酸塩、カリウムのチタン酸塩、アルカリ土類金属のチタン酸塩から選ばれる1種以上のチタン酸塩がガスの発生自体を抑制する効果を有する、具体的にはガス発生の源となるプロトン(H)自体を捕捉するという知見を得るに至った。 As a result of intensive studies, the inventors of the present application have selected 1 from sodium titanate, potassium titanate, and alkaline earth metal titanate instead of a commonly used lithium compound. The inventors have found that titanates of more than one species have an effect of suppressing gas generation itself, specifically, that they capture protons (H + ) themselves that are the source of gas generation.
 本発明は、上記した従来の問題点に鑑みてなされたものであって、蓄電デバイス用ガス発生抑制剤の提供を目的とするものである。また、この蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイスの提供を目的とするものである。 The present invention has been made in view of the above-mentioned conventional problems, and aims to provide a gas generation inhibitor for an electricity storage device. It is another object of the present invention to provide an electricity storage device using the gas generation inhibitor for electricity storage devices.
 上記目的を達成するために、本発明に係る蓄電デバイス用ガス発生抑制剤は、ナトリウムのチタン酸塩、カリウムのチタン酸塩、アルカリ土類金属のチタン酸塩から選ばれる1種以上のチタン酸塩を含有することを特徴とする。 In order to achieve the above object, the gas generation inhibitor for an electricity storage device according to the present invention comprises at least one titanic acid selected from sodium titanate, potassium titanate, and alkaline earth metal titanate. It contains a salt.
 本発明に係る蓄電デバイス用ガス発生抑制剤は、アルカリ土類金属が、Mg、Ca、Sr、Baから選ばれる1種以上のものであることを特徴とする。 The gas generation inhibitor for an electricity storage device according to the present invention is characterized in that the alkaline earth metal is one or more selected from Mg, Ca, Sr, and Ba.
 本発明に係る蓄電デバイスは、本発明の蓄電デバイス用ガス発生抑制剤を含有することを特徴とする。 The electricity storage device according to the present invention is characterized by containing the gas generation inhibitor for an electricity storage device of the present invention.
(基本構造)
 本発明の蓄電デバイス用ガス発生抑制剤は、ナトリウムのチタン酸塩、カリウムのチタン酸塩、アルカリ土類金属のチタン酸塩から選ばれる1種以上のチタン酸塩を含有することを基本構造とする。このように、本発明の蓄電デバイス用ガス発生抑制剤は、特定のアルカリ金属のチタン酸塩または/および特定のアルカリ土類金属のチタン酸塩を含有することによって、従前の蓄電デバイスにおいて問題となっていた使用時や経時変化における炭酸ガス、水素ガス、フッ素ガスなどの各種のガスの発生を抑制することができるのである。
 具体的には、以下に例示(チタン酸ナトリウムを使用)する反応式に示すように、本発明の蓄電デバイス用ガス発生抑制剤のアルカリ金属イオンまたはアルカリ土類金属イオンと、蓄電デバイス内において発生するプロトンとがイオン交換反応をすることによって、ガス発生の源となるプロトン(H)自体を捕捉することができるのである。
 また、本発明の蓄電デバイス用ガス発生抑制剤のチタン酸イオンと炭酸イオンとがイオン交換反応をすることによって、炭酸ガスも捕捉することができるのである。
 NaTiO + 2H → HTiO + 2Na(プロトン捕捉=イオン交換反応)
 NaTiO + CO → NaCO + TiO(CO吸収)
(Basic structure)
The gas generation inhibitor for an electricity storage device of the present invention has a basic structure containing at least one titanate selected from sodium titanate, potassium titanate, and alkaline earth metal titanate. To do. As described above, the gas generation inhibitor for an electricity storage device of the present invention contains a specific alkali metal titanate or / and a specific alkaline earth metal titanate. The generation of various gases such as carbon dioxide, hydrogen gas, and fluorine gas during use or changes with time can be suppressed.
Specifically, as shown in the reaction formula exemplified below (using sodium titanate), it is generated in the electricity storage device with the alkali metal ion or alkaline earth metal ion of the gas generation inhibitor for the electricity storage device of the present invention. As a result of an ion exchange reaction with the protons to be generated, protons (H + ) themselves that are the source of gas generation can be captured.
In addition, the titanate ion and the carbonate ion of the gas generation inhibitor for an electricity storage device of the present invention undergo an ion exchange reaction, whereby the carbon dioxide gas can also be captured.
Na 2 TiO 3 + 2H + → H 2 TiO 3 + 2Na + (proton trapping = ion exchange reaction)
Na 2 TiO 3 + CO 2 → Na 2 CO 3 + TiO 2 (CO 2 absorption)
(ナトリウムのチタン酸塩、カリウムのチタン酸塩)
 本発明の蓄電デバイス用ガス発生抑制剤に用いられるアルカリ金属のチタン酸塩は、チタン酸ナトリウム、チタン酸カリウムである。このように特定のアルカリ金属のチタン酸塩を含有することによって、従前の蓄電デバイスにおいて主に使用されていたチタン酸リチウムなどのリチウム化合物にはない、ガス発生の抑制効果を発現させることができるのである。なお、これらアルカリ金属のチタン酸塩については、単独で用いても良いし、併用することもできる。
(Sodium titanate, potassium titanate)
The alkali metal titanates used in the gas generation inhibitor for an electricity storage device of the present invention are sodium titanate and potassium titanate. By containing a specific alkali metal titanate as described above, it is possible to develop an effect of suppressing gas generation, which is not found in lithium compounds such as lithium titanate that are mainly used in conventional power storage devices. It is. These alkali metal titanates may be used alone or in combination.
(アルカリ土類金属のチタン酸塩)
 本発明の蓄電デバイス用ガス発生抑制剤に用いられるアルカリ土類金属のチタン酸塩は、具体的にはチタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ラジウムが挙げられるが、その中でもチタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムを用いることが好ましい。また、アルカリ土類金属のチタン酸塩についても、上記したアルカリ金属のチタン酸塩と同様に単独で用いても良いし、併用することもできる。
(Alkaline earth metal titanates)
Specific examples of the alkaline earth metal titanates used in the gas generation inhibitor for power storage devices of the present invention include magnesium titanate, calcium titanate, strontium titanate, barium titanate, and radium titanate. Of these, magnesium titanate, calcium titanate, strontium titanate, and barium titanate are preferably used. Also, the alkaline earth metal titanate may be used alone or in combination with the alkali metal titanate described above.
 なお、これらチタン酸塩の配合量については特に限定されるものではないが、正極活物質に対して、5~70wt%とすることが好ましく、その中でも10~50wt%であることが好ましい。 The amount of titanate is not particularly limited, but is preferably 5 to 70 wt% with respect to the positive electrode active material, and more preferably 10 to 50 wt%.
 また、本発明の蓄電デバイス用ガス発生抑制剤は、ガス発生の抑制効果をより高めるために、後述する方法によって測定される粉体pHが10.5以上であることが好ましい。そしてその中でも11.0以上であることがより好ましく、11.5以上であることが更に好ましい。その理由としては、粉体pHが高いほど、本発明の蓄電デバイス用ガス発生抑制剤(チタン酸塩)から、ナトリウムイオン、カリウムイオン、アルカリ土類金属イオンなどのカチオンが解離しやすくなり、それに伴って段落[0015]に示す反応式のイオン交換反応が促進され、その結果、プロトン(H)を取り込みやすくなるためと考えられる。つまり、ガス発生の源となるプロトン(H)をより捕捉しやすくなることで、ガス発生の抑制効果もより高くなるものと考えられる。 Moreover, in order that the gas generation inhibitor for electrical storage devices of this invention may raise the suppression effect of gas generation more, it is preferable that the powder pH measured by the method mentioned later is 10.5 or more. Among them, it is more preferably 11.0 or more, and further preferably 11.5 or more. The reason is that the higher the powder pH, the easier it is for cations such as sodium ions, potassium ions, alkaline earth metal ions to dissociate from the gas generation inhibitor (titanate) for the electricity storage device of the present invention. Along with this, it is considered that the ion exchange reaction of the reaction formula shown in paragraph [0015] is promoted, and as a result, protons (H + ) can be easily incorporated. That is, it is considered that the effect of suppressing gas generation is further enhanced by facilitating the capture of protons (H + ) that are the source of gas generation.
(蓄電デバイス)
 本発明の蓄電デバイスは、本発明の蓄電デバイス用ガス発生抑制剤を含有するものであるが、その中でも正極またはセパレータの材料に含有することが好ましい。
(Electric storage device)
Although the electrical storage device of this invention contains the gas generation inhibitor for electrical storage devices of this invention, it is preferable to contain in the material of a positive electrode or a separator among them.
 本発明に係る蓄電デバイス用ガス発生抑制剤によれば、従前の蓄電デバイスにおいて問題となっていた使用時や経時変化における炭酸ガス、水素ガス、フッ素ガスなどの各種のガスの発生を抑制することができる。 According to the gas generation inhibitor for an electricity storage device according to the present invention, the generation of various gases such as carbon dioxide gas, hydrogen gas, and fluorine gas during use or change with time, which has been a problem in conventional electricity storage devices, is suppressed. Can do.
 本発明に係る蓄電デバイス用ガス発生抑制剤によれば、特定のアルカリ土類金属を用いたチタン酸塩とすることによって、上記の効果をより向上させることができる。 According to the gas generation inhibitor for an electricity storage device according to the present invention, the above effect can be further improved by using a titanate using a specific alkaline earth metal.
作製した蓄電デバイスの構造を示す模式図である。It is a schematic diagram which shows the structure of the produced electrical storage device. 蓄電デバイス用ガス発生抑制剤の粉体pHと蓄電デバイスの体積変化との関係を示すグラフである。It is a graph which shows the relationship between the powder pH of the gas generation inhibitor for electrical storage devices, and the volume change of an electrical storage device.
 次に、本発明に係る蓄電デバイス用ガス発生抑制剤を実施例および比較例に基づいて詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。 Next, the gas generation inhibitor for an electricity storage device according to the present invention will be described in detail based on Examples and Comparative Examples. In addition, this invention is not limited to a following example.
(実施例1)
 アナタース型酸化チタン(テイカ社製AMT-100)300gと水酸化ナトリウム(シグマアルドリッチ社製)399gを湿式混合したのち、大気中において750℃で2hr焼成することによって、実施例1の蓄電デバイス用ガス発生抑制剤(チタン酸ナトリウム(NaTiO))を作製した。
Example 1
An anatase-type titanium oxide (Taika AMT-100) 300 g and sodium hydroxide (Sigma Aldrich) 399 g were wet-mixed and then fired in the atmosphere at 750 ° C. for 2 hr, whereby the gas for the electricity storage device of Example 1 A generation inhibitor (sodium titanate (Na 2 TiO 3 )) was prepared.
(実施例2)
 水酸化ナトリウムの量を133gとした以外は実施例1と同様にして実施例2の蓄電デバイス用ガス発生抑制剤(チタン酸ナトリウム(NaTi12))を作製した。
(Example 2)
A gas generation inhibitor for an electricity storage device (sodium titanate (Na 4 Ti 5 O 12 )) of Example 2 was produced in the same manner as in Example 1 except that the amount of sodium hydroxide was 133 g.
(実施例3)
 水酸化ナトリウムの量を111gとした以外は実施例1と同様にして実施例3の蓄電デバイス用ガス発生抑制剤(チタン酸ナトリウム(NaTi))を作製した。
(Example 3)
A gas generation inhibitor for an electricity storage device (sodium titanate (Na 2 Ti 3 O 7 )) of Example 3 was produced in the same manner as in Example 1 except that the amount of sodium hydroxide was changed to 111 g.
(実施例4)
 水酸化ナトリウムを水酸化カリウム(シグマアルドリッチ社製)249gとした以外は実施例1と同様にして実施例4の蓄電デバイス用ガス発生抑制剤(チタン酸カリウム(KTi))を作製した。
Example 4
The gas generation inhibitor for an electricity storage device of Example 4 (potassium titanate (K 2 Ti 2 O 5 )) was used in the same manner as in Example 1 except that 249 g of potassium hydroxide (Sigma Aldrich) was used. Produced.
(実施例5)
 水酸化カリウムの量を108gとした以外は実施例4と同様にして実施例5の蓄電デバイス用ガス発生抑制剤(チタン酸カリウム(KTi13))を作製した。
(Example 5)
A gas generation inhibitor (potassium titanate (K 2 Ti 6 O 13 )) for an electricity storage device of Example 5 was produced in the same manner as in Example 4 except that the amount of potassium hydroxide was 108 g.
(実施例6)
 水酸化カリウムの量を144gとした以外は実施例4と同様にして実施例6の蓄電デバイス用ガス発生抑制剤(チタン酸カリウム(KTi))を作製した。
(Example 6)
A gas generation inhibitor for an electricity storage device (potassium titanate (K 2 Ti 4 O 9 )) of Example 6 was produced in the same manner as in Example 4 except that the amount of potassium hydroxide was 144 g.
(実施例7)
 水酸化ナトリウムを水酸化マグネシウム(シグマアルドリッチ社製)438gとした以外は実施例1と同様にして実施例7の蓄電デバイス用ガス発生抑制剤(チタン酸マグネシウム(MgTiO))を作製した。
(Example 7)
A gas generation inhibitor for an electricity storage device (magnesium titanate (MgTiO 3 )) of Example 7 was produced in the same manner as in Example 1 except that sodium hydroxide was changed to 438 g of magnesium hydroxide (manufactured by Sigma-Aldrich).
(実施例8)
 水酸化ナトリウムを水酸化カルシウム(シグマアルドリッチ社製)564gとした以外は実施例1と同様にして実施例8の蓄電デバイス用ガス発生抑制剤(チタン酸カルシウム(CaTiO))を作製した。
(Example 8)
A gas generation inhibitor (calcium titanate (CaTiO 3 )) for an electricity storage device of Example 8 was prepared in the same manner as in Example 1 except that sodium hydroxide was changed to 564 g of calcium hydroxide (manufactured by Sigma-Aldrich).
(実施例9)
 水酸化ナトリウムを水酸化ストロンチウム・8水和物(シグマアルドリッチ社製)997gとした以外は実施例1と同様にして実施例9の蓄電デバイス用ガス発生抑制剤(チタン酸ストロンチウム(SrTiO))を作製した。
Example 9
Gas generation inhibitor for electricity storage device of Example 9 (strontium titanate (SrTiO 3 )) in the same manner as in Example 1 except that sodium hydroxide was changed to 997 g of strontium hydroxide octahydrate (manufactured by Sigma-Aldrich) Was made.
(実施例10)
 水酸化ナトリウムを水酸化バリウム ・8水和物(シグマアルドリッチ社製)1194gとした以外は実施例1と同様にして実施例10の蓄電デバイス用ガス発生抑制剤(チタン酸バリウム(BaTiO))を作製した。
(Example 10)
Gas generation inhibitor for electricity storage device of Example 10 (barium titanate (BaTiO 3 )) in the same manner as in Example 1 except that sodium hydroxide was changed to 1194 g of barium hydroxide octahydrate (manufactured by Sigma-Aldrich) Was made.
(蓄電デバイス用ガス発生抑制剤の粉体pHの測定)
 作製した各蓄電デバイス用ガス発生抑制剤10gを純水100ml中に加え、攪拌しながら加熱し、沸騰した状態で5分間保持したのちに室温まで冷却した。その後、得られた懸濁液のpHを、pHメーター(堀場製作所製)を用いて測定し、その値を蓄電デバイス用ガス発生抑制剤の粉体pHとした。
(Measurement of powder pH of gas generation inhibitor for electricity storage devices)
10 g of each produced electricity generation device gas generation inhibitor was added to 100 ml of pure water, heated with stirring, held in a boiled state for 5 minutes, and then cooled to room temperature. Thereafter, the pH of the obtained suspension was measured using a pH meter (manufactured by Horiba, Ltd.), and the value was taken as the powder pH of the gas generation inhibitor for power storage devices.
 次に、作製した各蓄電デバイス用ガス発生抑制剤を用いて蓄電デバイス用正極を作製するとともに、係る正極を用いた蓄電デバイスを作製し、ガス発生の抑制効果、蓄電デバイス性能(サイクル特性)の評価を行った。 Next, while producing the positive electrode for electrical storage devices using each produced electrical storage device gas generation inhibitor, the electrical storage device using the positive electrode was produced, and the suppression effect of gas generation, and the electrical storage device performance (cycle characteristics) Evaluation was performed.
(蓄電デバイス用正極の作製)
 まず、実施例1~10の各蓄電デバイス用ガス発生抑制剤2.3gを活性炭(ATエレクトロード社製ベルファインAP20-0001)4.9gおよびアセチレンブラック(電気化学工業社製デンカブラック)0.9gと乾式混合した。次に、ポリフッ化ビニリデン(クレハ社製KFポリマー)0.9gを加え、プラネタリーミキサーを用いて混練した。次に、N-メチル-2-ピロリドン(キシダ化学社製)36gを加えて粘度調整をすることによって各正極用塗料を作製した。
(Preparation of positive electrode for electricity storage devices)
First, 2.3 g of the gas generation inhibitor for each electricity storage device of Examples 1 to 10 was added to 4.9 g of activated carbon (Bellefine AP20-0001 manufactured by AT Electrode Co.) and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.). 9 g dry mixed. Next, 0.9 g of polyvinylidene fluoride (Kureha KF polymer) was added and kneaded using a planetary mixer. Next, 36 g of N-methyl-2-pyrrolidone (manufactured by Kishida Chemical Co., Ltd.) was added to adjust the viscosity, thereby preparing each positive electrode paint.
 次に、上記にて作製した各正極用塗料をアルミ箔に塗付、乾燥することによって、各蓄電デバイス用正極を作製した。なお、このときの蓄電デバイス内に存在する実施例の各蓄電デバイス用ガス発生抑制剤の重量は16.5mgであり、実施例の各蓄電デバイス用ガス発生抑制剤と活性炭の重量比は32:68であった。 Next, each positive electrode paint produced above was applied to an aluminum foil and dried to produce each positive electrode for an electricity storage device. In addition, the weight of the gas generation inhibitor for each power storage device of the example existing in the power storage device at this time is 16.5 mg, and the weight ratio of the gas generation inhibitor for each power storage device of the example and activated carbon is 32: 68.
 また、実施例4の蓄電デバイス用ガス発生抑制剤と活性炭の量をそれぞれ1.4gと5.8g、3.5gと3.7g、5.0gと2.2gに変更したもの(すなわち、後記する蓄電デバイス内に存在する蓄電デバイス用ガス発生抑制剤の重量を3.9mg 、33.6mg、77.9mgとしたもの)も作製した。なお、このときの実施例3の蓄電デバイス用ガス発生抑制剤と活性炭の重量比はそれぞれ19:81、49:51、69:31であった。 In addition, the amounts of the gas generation inhibitor for activated electricity storage device and the activated carbon in Example 4 were changed to 1.4 g and 5.8 g, 3.5 g and 3.7 g, 5.0 g and 2.2 g, respectively (that is, as described later). The weight of the gas generation inhibitor for the electricity storage device present in the electricity storage device is 3.9 mg, 33.6 mg, and 77.9 mg). At this time, the weight ratios of the gas generation inhibitor for an electricity storage device and activated carbon in Example 3 were 19:81, 49:51, and 69:31, respectively.
(蓄電デバイス用負極の作製)
 まず、オルソチタン酸(テイカ社製)520gと水酸化リチウム・1水和物(FMC社製)218gを湿式混合したのち、大気中650℃で2hr焼成することによって、比表面積70m/gの微粒子LiTi12を得た。
 次に、上記の微粒子LiTi12、7.2gおよびアセチレンブラック(電気化学工業社製デンカブラック)0.9gを乾式混合した。次に、ポリフッ化ビニリデン(クレハ社製KFポリマー)0.9gを加え、プラネタリーミキサーを用いて混練した。次に、N-メチル-2-ピロリドン(キシダ化学社製)36gを加えて粘度調整をすることによって負極用塗料を作製した。
 次に、上記にて作製した負極用塗料をアルミ箔に塗付、乾燥することによって、蓄電デバイス用負極を作製した。
(Preparation of negative electrode for electricity storage device)
First, 520 g of orthotitanic acid (manufactured by Teika) and 218 g of lithium hydroxide monohydrate (manufactured by FMC) were wet-mixed and then fired at 650 ° C. for 2 hr in the atmosphere to obtain a specific surface area of 70 m 2 / g. Fine particles Li 4 Ti 5 O 12 were obtained.
Next, 7.2 g of the fine particles Li 4 Ti 5 O 12 and 0.9 g of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) were dry mixed. Next, 0.9 g of polyvinylidene fluoride (Kureha KF polymer) was added and kneaded using a planetary mixer. Next, 36 g of N-methyl-2-pyrrolidone (manufactured by Kishida Chemical Co., Ltd.) was added to adjust the viscosity, thereby preparing a negative electrode paint.
Next, a negative electrode for an electricity storage device was prepared by applying the negative electrode paint prepared above to an aluminum foil and drying it.
(蓄電デバイスの作製)
 次に、上記にて作製した各蓄電デバイス用正極、負極、セパレータ(日本高度紙工業社製)、タブリードを準備し、図1のように配置(積層)した後、ケースに納め、さらに電解液として1MのLiBF/PC(キシダ化学社製)を注液した後、封止することによって、表1に記載の実施例11~23の各蓄電デバイスを作製した。なお、このときの電気容量は600μAhであった。
 また、比較例として、活性炭7.2g、アセチレンブラック0.9g、ポリフッ化ビニリデン0.9g、N-メチル-2-ピロリドン36gのみで作製した正極用塗料を用いた比較例1の蓄電デバイスと、実施例の蓄電デバイス用ガス発生抑制剤2.3gの代わりにアナタース型酸化チタン(テイカ社製AMT-100)2.3gを用いた以外は上記と同様にして作製した正極用塗料を用いた比較例2の蓄電デバイスについても作製した。
(Production of electricity storage device)
Next, a positive electrode, a negative electrode, a separator (manufactured by Nippon Kogyo Paper Industries Co., Ltd.) and a tab lead prepared as described above were prepared, arranged (laminated) as shown in FIG. 1M LiBF 4 / PC (manufactured by Kishida Chemical Co., Ltd.) was injected and sealed, thereby producing each of the electricity storage devices of Examples 11 to 23 shown in Table 1. The electric capacity at this time was 600 μAh.
In addition, as a comparative example, an electricity storage device of Comparative Example 1 using a positive electrode paint made of only activated carbon 7.2 g, acetylene black 0.9 g, polyvinylidene fluoride 0.9 g, and N-methyl-2-pyrrolidone 36 g; Comparison using a positive electrode coating material prepared in the same manner as described above except that 2.3 g of anatase type titanium oxide (AMT-100 manufactured by Teica) was used instead of 2.3 g of the gas generation inhibitor for electricity storage device of the example. An electricity storage device of Example 2 was also produced.
(ガス発生量の測定)
 まず、作製した実施例11~23および比較例1、2の各蓄電デバイスの初期体積を、アルキメデスの原理に基づいて測定した。具体的には、25℃の水を張った水槽に蓄電デバイスを沈め、そのときの重量変化から各蓄電デバイスの初期体積を算出した。
 次に、各蓄電デバイスを60℃の条件下において、1.5~2.9Vの電圧範囲、1Cの充放電速度の条件の下で3サイクル充放電を行った。その後、上記測定方法と同様にして、充放電後の各蓄電デバイスの体積を算出し、初期体積との差から充放電前後の各蓄電デバイスの体積変化を求めることによって、各蓄電デバイスからのガス発生量を測定した。また、以下の計算式から、各蓄電デバイスの体積変化率も求めた。
 体積変化率(%)=体積変化(ml)÷初期体積(ml)×100
(Measurement of gas generation amount)
First, the initial volumes of the produced electricity storage devices of Examples 11 to 23 and Comparative Examples 1 and 2 were measured based on Archimedes' principle. Specifically, the electricity storage device was submerged in a water tank filled with water at 25 ° C., and the initial volume of each electricity storage device was calculated from the change in weight at that time.
Next, each power storage device was charged / discharged three cycles under the condition of a voltage range of 1.5 to 2.9 V and a charge / discharge rate of 1 C under the condition of 60 ° C. Thereafter, in the same manner as in the above measurement method, the volume of each power storage device after charge / discharge is calculated, and the volume change of each power storage device before and after charge / discharge is obtained from the difference from the initial volume, thereby obtaining the gas from each power storage device. The amount generated was measured. Moreover, the volume change rate of each power storage device was also obtained from the following calculation formula.
Volume change rate (%) = volume change (ml) ÷ initial volume (ml) × 100
(容量維持率(サイクル特性)の測定)
 次に、作製した各蓄電デバイスを60℃の条件下において1.5~2.8Vの電圧範囲で、300Cの充放電速度で1000サイクル充放電を行った後、以下の計算式にて容量維持率(サイクル特性)の算出を行った。
 1000サイクル目の放電容量÷2サイクル目の放電容量×100=容量維持率(%)
(Measurement of capacity retention rate (cycle characteristics))
Next, after charging and discharging 1000 cycles at a charge / discharge rate of 300 C in a voltage range of 1.5 to 2.8 V under the condition of 60 ° C. under the condition of 60 ° C., the capacity is maintained according to the following formula: The rate (cycle characteristics) was calculated.
Discharge capacity at 1000th cycle / discharge capacity at 2nd cycle × 100 = capacity maintenance rate (%)
(IRドロップの測定)
 次に、作製した各蓄電デバイスを60℃の条件下において2.9V(つまり、2900mV)の一定電圧で放電を開始し、1000時間保持した。その後、放電開始0.5秒後の電圧を測定し、以下の計算式からIRドロップを算出した。なお、IRドロップとは蓄電デバイスの内部抵抗を表す値であり、値が小さいほど好ましいものとなる。
 IRドロップ(mV)=2900(mV)-放電開始0.5秒後の電圧(mV)
(IR drop measurement)
Next, discharge of each produced electricity storage device was started at a constant voltage of 2.9 V (that is, 2900 mV) under the condition of 60 ° C., and held for 1000 hours. Thereafter, the voltage 0.5 seconds after the start of discharge was measured, and IR drop was calculated from the following formula. The IR drop is a value representing the internal resistance of the electricity storage device, and the smaller the value, the more preferable.
IR drop (mV) = 2900 (mV) -voltage 0.5 seconds after the start of discharge (mV)
 結果を表1および図2に示す。その結果、実施例11~23の蓄電デバイスについては正極にナトリウムのチタン酸塩、カリウムのチタン酸塩、アルカリ土類金属のチタン酸塩から選ばれる1種以上のチタン酸塩を含有した材料を用いていることから、比較例1、2の蓄電デバイスに比べてガスの発生量(絶対量)が少なく、体積変化率も小さい(より具体的には、体積変化率が10%以下)という結果となった。 The results are shown in Table 1 and FIG. As a result, for the electricity storage devices of Examples 11 to 23, a material containing at least one titanate selected from sodium titanate, potassium titanate and alkaline earth metal titanate was used for the positive electrode. As a result, the amount of gas generated (absolute amount) is small and the volume change rate is small (more specifically, the volume change rate is 10% or less) compared to the electricity storage devices of Comparative Examples 1 and 2. It became.
 また、容量維持率(サイクル特性)についても、実施例11~23の蓄電デバイスは、比較例の蓄電デバイスに比べて高い容量維持率(サイクル特性)を発現するという結果となった。 Also, regarding the capacity retention rate (cycle characteristics), the electricity storage devices of Examples 11 to 23 exhibited a higher capacity maintenance rate (cycle characteristics) than the electricity storage devices of the comparative examples.
 さらに、IRドロップについても、実施例11~23の蓄電デバイスは、比較例の蓄電デバイスに比べてIRドロップの値が小さく、良好な結果となった。 Furthermore, regarding the IR drop, the electricity storage devices of Examples 11 to 23 had a good IR drop value as compared with the electricity storage device of the comparative example.
 なお、蓄電デバイス用ガス発生抑制剤の粉体pHと蓄電デバイスの体積変化(各蓄電デバイスからのガス発生量)との関係をグラフ化すると、図2に示すように線形の関係が成り立ち、相関関係(決定係数R)も0.97という高いものとなった。そして、図2から、ガス発生の抑制効果をより高めるためには、粉体pHが10.5以上であることが好ましいという結果となった。そしてその中でも11.0以上であることがより好ましく、11.5以上であることが更に好ましいという結果となった。 In addition, when the relationship between the powder pH of the gas generation inhibitor for the electricity storage device and the volume change of the electricity storage device (gas generation amount from each electricity storage device) is graphed, a linear relationship is established as shown in FIG. The relationship (determination coefficient R 2 ) was also as high as 0.97. And from FIG. 2, in order to raise the suppression effect of gas generation more, it turned out that it is preferable that powder pH is 10.5 or more. Of these, 11.0 or more is more preferable, and 11.5 or more is even more preferable.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、本発明に係る蓄電デバイス用ガス発生抑制剤によれば、ナトリウムのチタン酸塩、カリウムのチタン酸塩、アルカリ土類金属のチタン酸塩から選ばれる1種以上のチタン酸塩を含有することによって、従前の蓄電デバイスにおいて問題となっていた使用時や経時変化における炭酸ガス、水素ガス、フッ素ガスなどの各種のガスの発生を抑制することができることがわかった。
 また、各種のガスの発生を抑制しつつ、高い容量維持率(サイクル特性)を発現させることができる蓄電デバイスを得ることができることがわかった。
 さらに、ガス発生が抑制されることにより、蓄電デバイスの内部抵抗の上昇が効果的に抑制され、結果としてIRドロップを低減できることもわかった。
 そして、この効果は、蓄電デバイス用ガス発生抑制剤の粉体pHが、10.5以上(より好ましくは11.0以上であり、さらに好ましくは11.5以上)である場合に特に顕著であることがわかった。
From the above results, according to the gas generation inhibitor for an electricity storage device according to the present invention, one or more titanates selected from sodium titanate, potassium titanate, and alkaline earth metal titanate. It has been found that the generation of various gases such as carbon dioxide gas, hydrogen gas, and fluorine gas during use or change with time, which has been a problem in conventional power storage devices, can be suppressed by containing the above.
It was also found that an electricity storage device capable of exhibiting a high capacity retention rate (cycle characteristics) while suppressing generation of various gases can be obtained.
Furthermore, it was also found that by suppressing gas generation, an increase in internal resistance of the electricity storage device is effectively suppressed, and as a result, IR drop can be reduced.
This effect is particularly remarkable when the powder pH of the gas generation inhibitor for an electricity storage device is 10.5 or more (more preferably 11.0 or more, more preferably 11.5 or more). I understood it.
 本発明の蓄電デバイス用ガス発生抑制剤は、リチウムイオン電池や電気二重層キャパシタなどの蓄電デバイスに用いることができる。 The gas generation inhibitor for an electricity storage device of the present invention can be used for an electricity storage device such as a lithium ion battery or an electric double layer capacitor.
1  蓄電デバイス
2  正極(蓄電デバイス用ガス発生抑制剤を含有)
3  セパレータ
4  負極
5  タブリード
6  ケース
1 Power Storage Device 2 Positive Electrode (Contains Gas Generation Inhibitor for Power Storage Device)
3 Separator 4 Negative electrode 5 Tab lead 6 Case

Claims (3)

  1. ナトリウムのチタン酸塩、カリウムのチタン酸塩、アルカリ土類金属のチタン酸塩から選ばれる1種以上のチタン酸塩を含有することを特徴とする蓄電デバイス用ガス発生抑制剤。
     
    A gas generation inhibitor for an electricity storage device, comprising at least one titanate selected from sodium titanate, potassium titanate, and alkaline earth metal titanate.
  2. 前記アルカリ土類金属が、
    Mg、Ca、Sr、Baから選ばれる1種以上のものであることを特徴とする請求項1に記載の蓄電デバイス用ガス発生抑制剤。
     
    The alkaline earth metal is
    2. The gas generation inhibitor for an electricity storage device according to claim 1, which is one or more selected from Mg, Ca, Sr, and Ba.
  3. 請求項1または請求項2に記載の蓄電デバイス用ガス発生抑制剤を用いることを特徴とする蓄電デバイス。
     
    An electricity storage device comprising the gas generation inhibitor for an electricity storage device according to claim 1.
PCT/JP2018/017186 2017-05-01 2018-04-27 Power storage device gas-generation inhibitor and power storage device using power storage device gas-generation inhibitor WO2018203523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019515721A JP7121730B2 (en) 2017-05-01 2018-04-27 Gas generation inhibitor for electricity storage device and electricity storage device using this gas generation inhibitor for electricity storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-091481 2017-05-01
JP2017091481 2017-05-01
JP2017-135140 2017-07-11
JP2017135140 2017-07-11

Publications (1)

Publication Number Publication Date
WO2018203523A1 true WO2018203523A1 (en) 2018-11-08

Family

ID=64016631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017186 WO2018203523A1 (en) 2017-05-01 2018-04-27 Power storage device gas-generation inhibitor and power storage device using power storage device gas-generation inhibitor

Country Status (2)

Country Link
JP (1) JP7121730B2 (en)
WO (1) WO2018203523A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297699A (en) * 2002-03-29 2003-10-17 Nec Tokin Corp Electric double-layer capacitor
JP2007229602A (en) * 2006-02-28 2007-09-13 Murata Mfg Co Ltd Carbon dioxide absorbing material and method for absorbing carbon dioxide by using the same
JP2009106812A (en) * 2007-10-26 2009-05-21 Toshiba Corp Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber
JP2016197647A (en) * 2015-04-03 2016-11-24 日本ケミコン株式会社 Separator for hybrid capacitor and hybrid capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297699A (en) * 2002-03-29 2003-10-17 Nec Tokin Corp Electric double-layer capacitor
JP2007229602A (en) * 2006-02-28 2007-09-13 Murata Mfg Co Ltd Carbon dioxide absorbing material and method for absorbing carbon dioxide by using the same
JP2009106812A (en) * 2007-10-26 2009-05-21 Toshiba Corp Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber
JP2016197647A (en) * 2015-04-03 2016-11-24 日本ケミコン株式会社 Separator for hybrid capacitor and hybrid capacitor

Also Published As

Publication number Publication date
JPWO2018203523A1 (en) 2020-04-09
JP7121730B2 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP4597727B2 (en) Electric double layer capacitor
US8945756B2 (en) Composite anode structure for aqueous electrolyte energy storage and device containing same
EP3405988B1 (en) Sodium ion battery materials
US20180358620A1 (en) Anode electrode including doped electrode active material and energy storage device including same
EP2565887B1 (en) Polarizable electrode material for electric double layer capacitor having improved withstand voltage, and electric double layer capacitor using same
JP7376738B2 (en) lithium ion capacitor
WO2018203523A1 (en) Power storage device gas-generation inhibitor and power storage device using power storage device gas-generation inhibitor
JP7187123B2 (en) Gas generation inhibitor for electricity storage device, positive electrode for electricity storage device and electricity storage device using this gas generation inhibitor for electricity storage device
JP7007375B2 (en) A composition for a power storage device, a separator for a power storage device and a power storage device using the composition for the power storage device.
JP2003297699A (en) Electric double-layer capacitor
JP6845782B2 (en) Predoping agent for lithium ion capacitor, positive electrode and lithium ion capacitor for lithium ion capacitor using the predoping agent for lithium ion capacitor, manufacturing method of lithium ion capacitor and predoping method of lithium ion capacitor
JP7096085B2 (en) Method for manufacturing positive electrode active material, positive electrode for lithium ion secondary battery, lithium ion secondary battery, and positive electrode active material
JP2017004805A (en) Negative electrode material for battery
WO2014157024A1 (en) Titanium oxide compound, and electrode and lithium ion secondary battery each manufactured using same
WO2016121327A1 (en) Lead storage cell
JP4055414B2 (en) Positive electrode active material for lithium ion secondary battery
JP7224850B2 (en) Positive electrode or separator for power storage device containing output improving agent for power storage device, and power storage device containing them
JP6257222B2 (en) Ramsdelite type lithium titanate, lithium ion secondary battery and lithium ion capacitor using this ramsdelite type lithium titanate
JP7139056B2 (en) Spinel-type lithium titanate and method for producing the same
US20230025311A1 (en) A cathode material
JP2019102666A (en) Capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18793746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18793746

Country of ref document: EP

Kind code of ref document: A1