WO2016121327A1 - Lead storage cell - Google Patents

Lead storage cell Download PDF

Info

Publication number
WO2016121327A1
WO2016121327A1 PCT/JP2016/000223 JP2016000223W WO2016121327A1 WO 2016121327 A1 WO2016121327 A1 WO 2016121327A1 JP 2016000223 W JP2016000223 W JP 2016000223W WO 2016121327 A1 WO2016121327 A1 WO 2016121327A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
negative electrode
positive electrode
mmol
titanium
Prior art date
Application number
PCT/JP2016/000223
Other languages
French (fr)
Japanese (ja)
Inventor
武澤 秀治
森川 有紀
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016571842A priority Critical patent/JP6729397B2/en
Publication of WO2016121327A1 publication Critical patent/WO2016121327A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lead-acid batteries, and particularly to improvements in electrolytes.
  • Lead-acid batteries are inexpensive, have a relatively high battery voltage, and provide high power, so they are used in various applications in addition to cell starters for automobiles.
  • the lead acid battery includes a positive electrode containing lead dioxide, a negative electrode containing lead, a separator interposed between the positive electrode and the negative electrode, and an electrolyte containing sulfuric acid.
  • lead-acid batteries are often used in mid-charging states where the state of charge (SOC) is about 90% to 70%, such as being exposed to an idle stop state. If the battery continues to be used in such a half-charged state, the charge acceptability decreases due to the deactivation of the negative electrode active material called sulfation, and the deterioration of the battery accelerates. This is because lead sulfate gradually crystallizes and loses electrochemical activity in a chronic undercharged state. Since crystalline lead sulfate is difficult to dissolve in the electrolyte, the polarization of the negative electrode charging reaction increases. When the charge acceptability of the negative electrode is reduced, the charge capacity (charge efficiency) in a limited charge time is reduced, and the SOC is difficult to recover. Therefore, the halfway charge state continues, the SOC decreases further, and the battery deteriorates.
  • SOC state of charge
  • Patent Document 1 discloses that charging efficiency is improved by adding a predetermined concentration of aluminum ion, selenium ion, titanium ion or the like to the electrolyte, and deterioration of the active material is suppressed.
  • the concentration of aluminum ions in the electrolyte is 10 mmol / L to 300 mmol / L
  • the concentration of titanium ions is 1 mmol / L to 100 mmol / L.
  • An object of the present invention is to provide a lead-acid battery that has high charge acceptability and suppresses a decrease in the utilization factor of the negative electrode.
  • One aspect of the present invention is a lead acid battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte containing sulfuric acid,
  • the electrolyte further includes titanium ions and aluminum ions,
  • the concentration of the titanium ions in the electrolyte is less than 1.00 mmol / L;
  • the concentration of the aluminum ions in the electrolyte relates to a lead-acid battery that is less than 10.0 mmol / L.
  • the present invention in the lead storage battery, it is possible to suppress a decrease in the utilization factor of the negative electrode while ensuring high charge acceptability.
  • FIG. 1 It is the schematic perspective view which notched some lead acid batteries concerning one embodiment of the present invention. It is a front view of the positive electrode plate in the lead acid battery of FIG. It is a front view of the negative electrode plate in the lead acid battery of FIG.
  • the lead storage battery according to the embodiment of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte containing sulfuric acid.
  • the electrolyte further contains titanium ions and aluminum ions, the concentration of titanium ions in the electrolyte is less than 1.00 mmol / L, and the concentration of aluminum ions in the electrolyte is less than 10.0 mmol / L. .
  • the concentration of titanium ions and aluminum ions in the electrolyte is within the above ranges, so that the crystal growth (that is, sulfation) of lead sulfate is suppressed and the solubility of lead ions in the electrolyte is suppressed. Therefore, a decrease in the utilization factor of the negative electrode can be suppressed.
  • the deactivation of the negative electrode active material due to sulfation can be suppressed, high charge acceptability of the negative electrode can be ensured.
  • the concentration of titanium ions in the electrolyte may be less than 1.00 mmol / L, preferably 0.97 mmol / L or less, and more preferably 0.95 mmol / L or less.
  • the concentration of titanium ions in the electrolyte is preferably 0.08 mmol / L or more or 0.10 mmol / L or more, and may be 0.50 mmol / L or more from the viewpoint of further improving charge acceptance. These lower limit values and upper limit values can be arbitrarily combined.
  • the concentration of titanium ions in the electrolyte may be, for example, 0.08 mmol / L to 0.97 mmol / L, or 0.10 mmol / L to 0.95 mmol / L.
  • the concentration of aluminum ions in the electrolyte may be less than 10.0 mmol / L, preferably 9.7 mmol / L or less, and more preferably 9.5 mmol / L or less.
  • the concentration of aluminum ions in the electrolyte is preferably 0.8 mmol / L or more or 1.0 mmol / L or more. These lower limit values and upper limit values can be arbitrarily combined.
  • the concentration of aluminum ions in the electrolyte may be, for example, 0.8 mmol / L to 9.7 mmol / L, or 1.0 mmol / L to 9.5 mmol / L.
  • concentration of aluminum ion can be made into the value in 20 degreeC, for example.
  • the respective concentrations of titanium ions and aluminum ions are preferably concentrations in the electrolyte of the lead-acid battery in the initial state (for example, a lead-acid battery at the time of shipment or sale after break-in / discharge).
  • a positive electrode of a lead storage battery generally includes a positive electrode lattice (such as an expanded lattice or a cast lattice) and a positive electrode active material (or positive electrode mixture) held on the positive electrode lattice. Since the positive electrode is generally plate-shaped, it is also called a positive electrode plate.
  • the lead grid material is exemplified by lead or a lead alloy.
  • the lead alloy may include, for example, Ba, Ag, Ca, Al, Bi, Sb, and / or Sn. From the viewpoint of easily obtaining high corrosion resistance and mechanical strength, it is preferable to use a lead alloy containing Ca and / or Sn.
  • the Ca content may be 0.01% by mass to 0.10% by mass
  • the Sn content may be 0.05% by mass to 3.00% by mass.
  • Lead oxide (PbO 2 ) is used as the positive electrode active material.
  • the positive electrode mixture may contain a conductive agent (such as a conductive carbonaceous material such as carbon black) and / or a binder (such as a polymer) in addition to the positive electrode active material.
  • the positive electrode may contain a known additive as required.
  • the positive electrode can be formed by filling or applying a positive electrode paste (a paste containing a positive electrode active material or a positive electrode mixture paste) to a positive electrode grid, and drying to produce an unformed positive electrode, followed by chemical conversion treatment.
  • the positive electrode paste contains sulfuric acid and / or water as a dispersion medium in addition to the components of the positive electrode active material or the positive electrode mixture.
  • the drying step may be an aging drying step that dries at a temperature and humidity higher than room temperature.
  • the chemical conversion treatment can be performed by charging in a state where the positive electrode and the negative electrode before conversion are immersed in an electrolyte containing sulfuric acid in the battery case of the lead storage battery.
  • a negative electrode of a lead storage battery generally includes a negative electrode lattice (such as an expanded lattice or a cast lattice) and a negative electrode active material (or a negative electrode mixture) held by the negative electrode lattice. Since the negative electrode is generally plate-shaped, it is also called a negative electrode plate.
  • the material of the negative electrode grid lead or a lead alloy exemplified for the positive electrode grid can be exemplified.
  • a lead alloy containing Ca and / or Sn is preferable, and a lead alloy containing at least Ca is also preferable from the viewpoint of mechanical strength.
  • the Ca content may be 0.01% by mass to 0.10% by mass
  • the Sn content may be 0.20% by mass to 0.60% by mass.
  • Lead is used as the negative electrode active material.
  • lead powder can be used, and the lead powder may contain lead oxide.
  • the negative electrode mixture may contain a shrinkage-preventing agent (such as lignin and / or barium sulfate), a conductive agent (such as a conductive carbonaceous material such as carbon black), and / or a binder (such as a polymer).
  • lignin include synthetic lignin such as natural lignin and bisphenol sulfonic acid condensate.
  • the negative electrode may contain other known additives as necessary.
  • the negative electrode can be formed according to the case of the positive electrode.
  • the separator examples include a microporous membrane or a fiber sheet (or mat).
  • a polymer material which comprises a microporous film or a fiber sheet what has acid resistance is preferable, and polyolefin, such as polyethylene and a polypropylene, can be illustrated.
  • the fiber sheet may be formed of polymer fibers (fibers formed of the polymer material) and / or inorganic fibers such as glass fibers.
  • the separator may contain an additive such as a filler and / or carbon, if necessary.
  • the electrolyte is based on a sulfuric acid aqueous solution, and further contains titanium ions and aluminum ions.
  • the electrolyte can be prepared by adding a titanium ion source (such as a titanium compound) and an aluminum ion source (such as an aluminum compound or aluminum) to an aqueous sulfuric acid solution and dissolving the titanium ions and aluminum ions.
  • a titanium ion source such as a titanium compound
  • an aluminum ion source such as an aluminum compound or aluminum
  • titanium compound as a titanium ion source examples include inorganic salts of titanium (sulfates such as dititanium sulfate, sulfites, carbonates, bicarbonates, phosphates, borates, etc.) and titanium. Oxides, titanic acid hydrates (TiO 2 .xH 2 O (0 ⁇ x ⁇ 1)), titanic acids (such as metatitanic acid (H 2 TiO 3 )), and titanates (such as metatitanates) Can be mentioned.
  • sulfates such as dititanium sulfate, sulfites, carbonates, bicarbonates, phosphates, borates, etc.
  • titanium Oxides, titanic acid hydrates (TiO 2 .xH 2 O (0 ⁇ x ⁇ 1)), titanic acids (such as metatitanic acid (H 2 TiO 3 )), and titanates (such as metatitanates) Can be mentioned.
  • the metatitanic acid salt typically a metal salt (Li 2 TiO 3, K 2 alkali metal salts such as TiO 3; such as PbTiO 3, ZnTiO 3; MgTiO 3 , CaTiO 3, SrTiO alkaline earth metal salts such as 3); FeTiO 3 , transition metal salts such as CoTiO 3 and MnTiO 3 can be exemplified.
  • metal salt Li 2 TiO 3, K 2 alkali metal salts such as TiO 3; such as PbTiO 3, ZnTiO 3; MgTiO 3 , CaTiO 3, SrTiO alkaline earth metal salts such as 3
  • FeTiO 3 transition metal salts such as CoTiO 3 and MnTiO 3
  • These titanium compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the inorganic acid salt of titanium (first titanium compound) is highly soluble in sulfuric acid aqueous solution (or dissociation of titanium ions) and can easily adjust the titanium ion concentration. For this reason, it is preferable to use at least a first titanium compound (particularly, sulfate or the like) as the titanium compound. Further, a titanium compound other than the first titanium compound (oxide containing titanium, titanic acid hydrate, titanic acid, and titanate; hereinafter also referred to as a second titanium compound) may be used.
  • the lead acid battery may include a solid titanium compound that is placed in contact with the electrolyte.
  • the 2nd titanium compound has low solubility with respect to sulfuric acid aqueous solution compared with a 1st titanium compound.
  • a part of the solid second titanium compound becomes titanium ions and dissolves in the electrolyte. Therefore, when charging and discharging are repeated, titanium ions are continuously replenished into the electrolyte from the solid second titanium compound, and the decrease in titanium ions in the electrolyte can be suppressed. The decrease can also be suppressed.
  • the second titanium compound metatitanic acid, titanic acid hydrate and / or titanate are preferable, and among these, metatitanic acid is preferable.
  • the solid titanium compound (such as the second titanium compound) may be contained in, for example, the positive electrode, the negative electrode, and / or the separator, but is contained in the electrolyte (specifically, immersed in the electrolyte). Preferably).
  • a solid titanium compound may be dispersed in the electrolyte.
  • the form of the solid titanium compound is not particularly limited, but may be powder, granule, pellet, or the like.
  • a first titanium compound and an aluminum ion source (such as an aluminum compound) may be added in advance to a sulfuric acid aqueous solution and dissolved, and then a solid second titanium compound having low solubility may be added.
  • the amount of the second titanium compound can be adjusted as appropriate so that the concentration of titanium ions in the electrolyte during charging and discharging falls within the above range.
  • the amount of the second titanium compound per liter of the electrolyte is, for example, 0.1 mmol to 50 mmol, and preferably 1 mmol to 40 mmol.
  • Examples of the aluminum compound that is an aluminum ion source include inorganic acid salts and hydroxides exemplified for the titanium compound. Further, aluminum may be used as the aluminum ion source. An aluminum ion source may be used alone or in combination of two or more. From the viewpoint of easily adjusting the aluminum ion concentration, it is preferable to use an inorganic acid salt, particularly a sulfate, among the aluminum ion sources.
  • the concentration of titanium ions in the electrolyte depends on the amount of titanium compound added, the type of titanium compound, the physical properties of the titanium compound (surface area, particle size, etc.), the form of the titanium compound, and / or the density of the electrolyte (or aqueous sulfuric acid used in the electrolyte) The density can be adjusted.
  • the concentration of aluminum ions in the electrolyte can be adjusted by the addition amount, type, physical properties, form, and / or density of the electrolyte (or sulfuric acid aqueous solution). it can.
  • the density of the electrolyte is, for example, 1.10 g / cm 3 to 1.35 g / cm 3 , and preferably 1.25 g / cm 3 to 1.30 g / cm 3 .
  • the density of the electrolyte is a density at 20 ° C.
  • the density of the electrolyte in the fully charged battery is preferably in the above range.
  • a lead-acid battery can be produced by housing an electrode plate group and an electrolyte in a battery case (battery case).
  • the electrode plate group can be produced by superimposing a plurality of positive electrodes and a plurality of negative electrodes so that the positive electrodes and the negative electrodes are alternately arranged with a separator interposed therebetween.
  • the separator may be disposed so as to be interposed between the positive electrode and the negative electrode, and a bag-shaped separator is used, or a sheet-shaped separator is folded in half (U-shaped), and one electrode is sandwiched between the other. You may overlap with an electrode.
  • a plurality of electrode plate groups may be accommodated in the battery case.
  • FIG. 1 is a partially cutaway perspective view schematically showing a lead storage battery according to an embodiment of the present invention.
  • 2 is a front view of the positive electrode plate of FIG. 1
  • FIG. 3 is a front view of the negative electrode plate of FIG.
  • the lead storage battery 1 includes an electrode plate group 11 and an electrolyte (not shown), which are accommodated in a battery case 12. More specifically, the battery case 12 is partitioned into a plurality of cell chambers 14 by partition walls 13, and each cell chamber 14 stores one electrode plate group 11 and also stores an electrolyte.
  • the electrode plate group 11 is configured by laminating a plurality of positive electrode plates 2 and negative electrode plates 3 with a separator 4 interposed therebetween.
  • Ears 22 are provided on the positive electrode grid of the positive electrode plate 2, and the positive electrode plate 2 is connected to the positive electrode connecting member 10 via the ears 22.
  • the positive electrode connection member 10 includes a positive electrode shelf 6 connected to the ears 22 of the positive electrode lattice, and a positive electrode connector 8 or a positive electrode column provided on the positive electrode shelf 6.
  • the negative electrode lattice of the negative electrode plate 3 is provided with ears 32, and the negative electrode plate 3 is connected to the negative electrode connection member 9 via the ears 32.
  • the negative electrode connection member 9 includes a negative electrode shelf 5 connected to the ear 32 of the negative electrode lattice, and a negative electrode column 7 or a negative electrode connector provided on the negative electrode shelf 5.
  • a positive electrode connector 8 is connected to the positive electrode shelf 6 at one end of the battery case 12, and a negative electrode column 7 is connected to the negative electrode shelf 5.
  • a positive pole is connected to the positive electrode shelf 6, and a negative electrode connector is connected to the negative electrode shelf 5.
  • a lid 15 provided with a positive electrode terminal 16 and a negative electrode terminal 17 is attached to the opening of the battery case 12.
  • the positive electrode connection body 8 is connected to a negative electrode connection body connected to the negative electrode shelf of the electrode plate group 11 in the adjacent cell chamber 14 through a through hole provided in the partition wall 13.
  • the electrode plate group 11 is connected in series with the electrode plate group 11 in the adjacent cell chamber 14.
  • the negative pole 7 is connected to the negative terminal 17, and at the other end, the positive pole is connected to the positive terminal 16.
  • An exhaust plug 18 having an exhaust port for discharging gas generated inside the battery to the outside of the battery is attached to the liquid injection port provided in the lid 15.
  • the positive electrode plate 2 includes a positive electrode lattice 21 having ears 22 and a positive electrode active material layer (or positive electrode mixture layer) 24 held by the positive electrode lattice 21.
  • the positive grid 21 is an expanded grid composed of an expanded mesh 25 that holds the positive active material layer 24, a frame bone 23 provided at the upper end of the expanded mesh 25, and ears 22 connected to the frame bone 23.
  • the negative electrode plate 3 includes a negative electrode lattice 31 having ears 32 and a negative electrode active material layer (or negative electrode mixture layer) 34 held by the negative electrode lattice 31.
  • the negative electrode lattice 31 is an expanded lattice composed of an expanded mesh 35 that holds the negative electrode active material layer 34, a frame bone 33 provided at the upper end of the expanded mesh 35, and an ear 32 connected to the frame bone 33.
  • Example 1 Production of positive electrode plate A positive electrode plate 2 shown in FIG. 2 was produced by the following procedure. A raw material powder (mixture of lead and lead oxide), water and dilute sulfuric acid (density 1.40 g / cm 3 ) were mixed at a mass ratio of 100: 15: 5 to obtain a positive electrode paste.
  • a base material sheet made of a Pb-0.06 mass% Ca-1.6 mass% Sn alloy obtained by a casting method and a lead alloy foil containing Sb were rolled and rolled.
  • the lead alloy foil was pressure-bonded on the base material sheet, and a composite sheet having a lead alloy layer containing Sb having a thickness of 20 ⁇ m on one surface of the base material layer having a thickness of 1.1 mm was obtained.
  • the lead alloy foil is crimped to the base material sheet only at the part where the expanded mesh is formed in the later-described expanding process, and the center part of the base material sheet where the ears 22 and the frame bone 23 are formed is lead.
  • the alloy foil was not crimped.
  • this slit was developed to form an expanded mesh 25 to obtain an expanded lattice.
  • the expanding process was not performed on the portions forming the ears 22 and the frame bones 23 of the positive electrode lattice described later.
  • the expanded mesh 25 was filled with a positive electrode paste, and cut into an electrode plate shape having positive electrode grid ears 22. This was aged and dried to obtain an unformed positive electrode plate (vertical: 115.0 mm, horizontal: 137.5 mm). And the positive electrode plate 2 by which the positive electrode active material layer 24 was hold
  • a negative electrode plate 3 shown in FIG. 3 was produced by the following procedure.
  • a negative electrode paste was obtained by mixing at a ratio of 0: 0.1.
  • a base material sheet made of a Pb-0.07 mass% Ca-0.25 mass% Sn alloy obtained by a casting method is rolled to a thickness of 0.7 mm, and the base material sheet is expanded by the same method as described above. did.
  • the expanded mesh was filled with a negative electrode paste, and an unformed negative electrode plate (vertical: 115.0 mm, horizontal 137.5 mm) was obtained by the same method as described above.
  • maintained at the negative electrode lattice 31 was obtained by forming in the battery case mentioned later.
  • a lead acid battery 1 as shown in FIG. 1 was produced according to the following procedure. By laminating the single negative electrode plate 3 obtained above with the separator 4 (1.0 mm thick glass fiber mat) sandwiched between the two positive electrode plates 2, the electrode plate group 11 is formed. Obtained. At this time, the separator 4 was folded in two and disposed so as to sandwich the negative electrode plate therebetween.
  • the electrode plate group 11 was housed one by one in each of the six cell chambers 14 partitioned by the partition wall 13 of the battery case 12.
  • the positive electrode connector 8 connected to the positive electrode shelf 6 to the negative electrode connector connected to the negative electrode shelf of the adjacent electrode plate group, the adjacent electrode plate groups were connected in series.
  • the connection between the electrode plate groups was made through a through hole (not shown) provided in the partition wall 13.
  • a Pb-2.5 mass% Sn alloy was used for the positive electrode connector and the negative electrode connector.
  • a positive electrode column was provided on one positive electrode shelf of the electrode plate group housed in the cell chambers 14 at both ends, and a negative electrode column 7 was provided on the other negative electrode shelf 5.
  • the lid 15 was attached to the opening of the battery case 12, and the positive electrode terminal 16 and the negative electrode terminal 17 provided on the lid 15 were welded to the positive electrode column and the negative electrode column 7. Thereafter, a predetermined amount of electrolyte was injected from the injection port provided in the lid 15 and chemical conversion was performed in the battery case. After the formation, an exhaust plug 18 having an exhaust port for discharging the gas generated inside the battery to the outside of the battery was attached to the injection port, and a 55D23 type (12V-48Ah) lead storage battery defined in JIS D5301 was produced. . In addition, after the chemical conversion, the entire electrode plate group 11, the positive electrode shelf 6, and the negative electrode shelf 5 were immersed in the electrolyte.
  • titanium sulfate and aluminum sulfate were dissolved in sulfuric acid (aqueous sulfuric acid solution, density 1.28 g / cm 3 ) was used.
  • aqueous sulfuric acid solution aqueous sulfuric acid solution, density 1.28 g / cm 3
  • titanium sulfate and aluminum sulfate were used in such amounts that the concentration of titanium ions in the electrolyte was 0.95 mmol / L and the concentration of aluminum ions was 9.5 mmol / L, respectively.
  • test cell was prepared by the following procedure (a). The following (b) and (c) were evaluated using the produced test cell. Note that 1.0 C of the test cell was calculated from the theoretical capacity of each test cell.
  • the positive electrode plate and the negative electrode plate produced in the above (1) and (2) were cut into a size of 60 mm in length and 40 mm in width, respectively, and one negative electrode plate and two positive electrode plates were obtained. Got ready.
  • the negative electrode plate group was formed by laminating the negative electrode plate through a separator (polyethylene microporous film, thickness 0.2 mm, width 44 mm) sandwiched between two positive electrode plates. At this time, the separator 4 was disposed so as to sandwich the negative electrode plate while being folded in half.
  • the obtained electrode plate group was sandwiched between acrylic plates from both sides and fixed.
  • a lead bar was welded to each of the negative electrode plate and the two positive electrode plates to form a negative electrode terminal and a positive electrode terminal, respectively. It was placed in a polypropylene container, and a predetermined amount of sulfuric acid having a density of 1.20 g / cm 3 was injected to perform chemical conversion. The sulfuric acid in the cell used for chemical conversion was removed, and sulfuric acid having a predetermined composition described below was newly injected. In this way, a test cell (1.25 Ah, 2 V) was produced. As the electrolyte, the same one as used in (3) was used.
  • (C) Utilization rate of negative electrode active material About the test cell after chemical conversion, constant current discharge was carried out at 0.2 C to the final voltage 1.7V, and the cell capacity at this time was measured. Based on this cell capacity, the negative electrode active material capacity (mAh / g) was determined. The negative electrode active material utilization rate was expressed as a ratio (%) of the negative electrode active material capacity (mAh / g) to the cell theoretical capacity, with 50% of the negative electrode active material of each cell being the theoretical capacity of the cell.
  • Example 2 to 7 and Comparative Examples 1 to 14 A test cell was prepared and evaluated in the same manner as in Example 1 except that the amount of titanium sulfate and / or aluminum sulfate was changed so that the concentration of titanium ions in the electrolyte was the value shown in Table 1. .
  • Table 1 shows the results of Examples 1 to 7 and Comparative Examples 1 to 14.
  • charge acceptance it represented with the ratio (charge acceptance ratio) when the initial stage electric current value of the comparative example 1 was set to 100%.
  • negative electrode active material utilization factor it represented with the ratio (negative electrode utilization factor ratio) when the negative electrode active material capacity
  • Examples 1 to 7 were designated as A1 to A7, and Comparative Examples 1 to 14 were designated as B1 to B14.
  • Example 8 An electrolyte was prepared by dissolving aluminum sulfate in sulfuric acid (aqueous sulfuric acid solution, density 1.28 g / cm 3 ), adding metatitanic acid powder (manufactured by Kishida Chemical Co., Ltd.), and stirring. Aluminum sulfate was used in such an amount that the concentration of aluminum ions in the electrolyte was 9.5 mmol / L, and the amount of metatitanic acid per liter of the electrolyte was 40 mmol. The electrolyte was in a state containing solid metatitanic acid. A test cell was prepared and evaluated in the same manner as in Example 1 except that the electrolyte thus obtained was used.
  • sulfuric acid aqueous sulfuric acid solution, density 1.28 g / cm 3
  • metatitanic acid powder manufactured by Kishida Chemical Co., Ltd.
  • Example 8 was further evaluated as follows.
  • Tianium ion concentration in the electrolyte The concentration of titanium ions in the electrolyte was quantified by the following procedure. First, the test cell was charged and discharged at 20 ° C. with a constant current of 0.2 C for 7.5 hours and then discharged to 1.7 V with a constant current of 0.2 C. Further, after charging for 7.5 hours at a constant current of 0.2 C, a predetermined amount of electrolyte was collected from the test cell, the solid titanium compound was removed by centrifugation, and the supernatant was filtered through a filter (pore size: 0.1 ⁇ m). . The filtrate was collected and diluted, and the amount of titanium was quantified by ICP emission spectroscopy to determine the titanium ion concentration of the electrolyte.
  • Example 9 An electrolyte was prepared in the same manner as in Example 8 except that the amount of aluminum sulfate used was changed so that the concentration of aluminum ions in the electrolyte was 5.0 mmol / L. The electrolyte was in a state containing solid metatitanic acid. A test cell was prepared and evaluated in the same manner as in Example 1 except that the obtained electrolyte was used. The same evaluation as in Example 8 was also performed.
  • Example 8 to 9 are shown in Table 2.
  • the charge acceptability was expressed as a ratio (charge acceptability ratio) when the initial current value of Comparative Example 1 was 100%.
  • the negative electrode active material utilization factor it represented with the ratio (negative electrode utilization factor ratio) when the negative electrode active material capacity
  • Examples 8 to 9 are represented by A8 to A9.
  • Table 2 also shows the results of the same evaluation as in Example 8 for Examples 4 and 5.
  • the lead storage battery according to one embodiment of the present invention has high charge acceptability, and a decrease in the utilization factor of the negative electrode is suppressed. Therefore, it is easy to obtain an effect even in a use mode in which charging / discharging is repeated in the mid-charging state, and is particularly suitable for use in a vehicle equipped with an idle stop system or a regenerative braking system.
  • 1 lead storage battery 2 positive electrode plate, 3 negative electrode plate, 4 separator, 5 negative electrode shelf, 6 positive electrode shelf, 7 negative electrode column, 8 positive electrode connection body, 9 negative electrode connection member, 10 positive electrode connection member, 11 electrode plate group, 12 battery case , 13 partition, 14 cell chamber, 15 lid, 16 positive terminal, 17 negative terminal, 18 exhaust plug, 21 positive grid, 22, 32 ears, 23, 33 frame, 24 positive active material layer, 25, 35 expanded mesh, 31 negative grid, 34 negative active material layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a lead storage cell having high charge acceptance and in which the decrease in the negative electrode utilization rate is minimized. The lead storage cell includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte containing sulfuric acid. The electrolyte further contains titanium ions and aluminum ions. The titanium ion concentration in the electrolyte is less than 1.00 mmol/L and the aluminum ion concentration in the electrolyte is less than 10.0 mmol/L. The lead storage cell may also contain a solid titanium compound disposed so as to be in contact with the electrolyte.

Description

鉛蓄電池Lead acid battery
 本発明は、鉛蓄電池、特に電解質の改良に関する。 The present invention relates to lead-acid batteries, and particularly to improvements in electrolytes.
 鉛蓄電池は、安価で、電池電圧が比較的高く、大電力が得られるため、自動車用のセルスターターの他、様々な用途で使用されている。鉛蓄電池は、二酸化鉛を含む正極と、鉛を含む負極と、正極および負極の間に介在するセパレータと、硫酸を含む電解質とを含む。 Lead-acid batteries are inexpensive, have a relatively high battery voltage, and provide high power, so they are used in various applications in addition to cell starters for automobiles. The lead acid battery includes a positive electrode containing lead dioxide, a negative electrode containing lead, a separator interposed between the positive electrode and the negative electrode, and an electrolyte containing sulfuric acid.
 近年の自動車用途では、鉛蓄電池は、アイドルストップ状態に晒されるなど、充電状態(SOC:state of charge)が90%~70%程度となる中途充電状態で使用されることも多い。このような中途充電状態で電池が使用され続けると、サルフェーションと呼ばれる負極活物質の失活により充電受入性が低下し、電池の劣化が加速する。慢性的な充電不足の状態では、徐々に硫酸鉛が結晶化し、電気化学的な活性を失うためである。結晶質の硫酸鉛は電解質に溶解しにくいため、負極の充電反応の分極が増加する。負極の充電受入性が低下することによって、限られた充電時間での充電容量(充電効率)が小さくなり、SOCが回復しにくくなる。よって、中途充電状態が続き、SOCの低下がさらに進み、電池が劣化する。 In recent automobile applications, lead-acid batteries are often used in mid-charging states where the state of charge (SOC) is about 90% to 70%, such as being exposed to an idle stop state. If the battery continues to be used in such a half-charged state, the charge acceptability decreases due to the deactivation of the negative electrode active material called sulfation, and the deterioration of the battery accelerates. This is because lead sulfate gradually crystallizes and loses electrochemical activity in a chronic undercharged state. Since crystalline lead sulfate is difficult to dissolve in the electrolyte, the polarization of the negative electrode charging reaction increases. When the charge acceptability of the negative electrode is reduced, the charge capacity (charge efficiency) in a limited charge time is reduced, and the SOC is difficult to recover. Therefore, the halfway charge state continues, the SOC decreases further, and the battery deteriorates.
 そこで、負極の充電受入性を向上させたり、充電効率を高めたりすることで、負極活物質の失活を抑制する様々な改良が試みられている。
 特許文献1には、所定濃度のアルミニウムイオン、セレンイオン、チタンイオンなどを電解質に添加することで充電効率が向上し、活物質の劣化が抑制されることが開示されている。特許文献1には、電解質中のアルミニウムイオンの濃度は、10mmol/L~300mmol/Lであり、チタンイオンの濃度は、1mmol/L~100mmol/Lである。
Therefore, various improvements have been attempted to suppress the deactivation of the negative electrode active material by improving the charge acceptance of the negative electrode or increasing the charging efficiency.
Patent Document 1 discloses that charging efficiency is improved by adding a predetermined concentration of aluminum ion, selenium ion, titanium ion or the like to the electrolyte, and deterioration of the active material is suppressed. In Patent Document 1, the concentration of aluminum ions in the electrolyte is 10 mmol / L to 300 mmol / L, and the concentration of titanium ions is 1 mmol / L to 100 mmol / L.
国際公開第2007/036979号パンフレットInternational Publication No. 2007/036979 Pamphlet
 特許文献1のように電解質にアルミニウムイオンやチタンイオンなどを添加すると、負極に作用して、高い充電受入性が得られると考えられる。しかし、特許文献1のような濃度でアルミニウムイオンを含む電解質を用いると、負極の利用率が低下することが判明しつつある。また、特許文献1に記載の濃度となるようにチタンイオンを電解質に添加しても、その添加量に見合った充電受入性の向上効果は得られず、負極の利用率も低下する。 It is considered that when aluminum ions, titanium ions or the like are added to the electrolyte as in Patent Document 1, it acts on the negative electrode and high charge acceptability can be obtained. However, when an electrolyte containing aluminum ions at a concentration as in Patent Document 1 is used, it is becoming clear that the utilization factor of the negative electrode is lowered. Further, even if titanium ions are added to the electrolyte so as to have the concentration described in Patent Document 1, the effect of improving charge acceptability commensurate with the amount added cannot be obtained, and the utilization factor of the negative electrode also decreases.
 本発明の目的は、高い充電受入性を有し、負極の利用率の低下が抑制された鉛蓄電池を提供することである。 An object of the present invention is to provide a lead-acid battery that has high charge acceptability and suppresses a decrease in the utilization factor of the negative electrode.
 本発明の一局面は、正極と、負極と、前記正極および前記負極の間に介在するセパレータと、硫酸を含む電解質と、を含む鉛蓄電池であって、
 前記電解質は、さらにチタンイオンおよびアルミニウムイオンを含み、
 前記電解質中の前記チタンイオンの濃度は、1.00mmol/L未満であり、
 前記電解質中の前記アルミニウムイオンの濃度は、10.0mmol/L未満である、鉛蓄電池に関する。
One aspect of the present invention is a lead acid battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte containing sulfuric acid,
The electrolyte further includes titanium ions and aluminum ions,
The concentration of the titanium ions in the electrolyte is less than 1.00 mmol / L;
The concentration of the aluminum ions in the electrolyte relates to a lead-acid battery that is less than 10.0 mmol / L.
 本発明によれば、鉛蓄電池において、高い充電受入性を確保しながら、負極の利用率の低下を抑制することができる。 According to the present invention, in the lead storage battery, it is possible to suppress a decrease in the utilization factor of the negative electrode while ensuring high charge acceptability.
本発明の一実施形態に係る鉛蓄電池の一部を切り欠いた概略斜視図である。It is the schematic perspective view which notched some lead acid batteries concerning one embodiment of the present invention. 図1の鉛蓄電池における正極板の正面図である。It is a front view of the positive electrode plate in the lead acid battery of FIG. 図1の鉛蓄電池における負極板の正面図である。It is a front view of the negative electrode plate in the lead acid battery of FIG.
 本発明の実施形態に係る鉛蓄電池は、正極と、負極と、正極および負極の間に介在するセパレータと、硫酸を含む電解質とを含む。ここで、電解質は、さらにチタンイオンおよびアルミニウムイオンを含み、電解質中のチタンイオンの濃度は、1.00mmol/L未満であり、電解質中のアルミニウムイオンの濃度は、10.0mmol/L未満である。 The lead storage battery according to the embodiment of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte containing sulfuric acid. Here, the electrolyte further contains titanium ions and aluminum ions, the concentration of titanium ions in the electrolyte is less than 1.00 mmol / L, and the concentration of aluminum ions in the electrolyte is less than 10.0 mmol / L. .
 電解質中のチタンイオン濃度および/またはアルミニウムイオン濃度が上記の範囲より高くなると、濃度に見合った充電受入性の向上効果は得られず、また、負極の利用率が低下する。それに対し、本実施形態では、電解質中のチタンイオンおよびアルミニウムイオンの濃度をそれぞれ上記の範囲とすることで、硫酸鉛の結晶成長(つまり、サルフェーション)が抑制され、電解質への鉛イオンの溶解性を高めることができるため、負極の利用率の低下を抑制できる。また、サルフェーションによる負極活物質の失活を抑制することができるため、負極の高い充電受入性を確保することができる。 When the titanium ion concentration and / or the aluminum ion concentration in the electrolyte is higher than the above range, the effect of improving the charge acceptability corresponding to the concentration cannot be obtained, and the utilization factor of the negative electrode decreases. On the other hand, in the present embodiment, the concentration of titanium ions and aluminum ions in the electrolyte is within the above ranges, so that the crystal growth (that is, sulfation) of lead sulfate is suppressed and the solubility of lead ions in the electrolyte is suppressed. Therefore, a decrease in the utilization factor of the negative electrode can be suppressed. In addition, since the deactivation of the negative electrode active material due to sulfation can be suppressed, high charge acceptability of the negative electrode can be ensured.
 電解質中のチタンイオンの濃度は、1.00mmol/L未満であればよく、0.97mmol/L以下であることが好ましく、0.95mmol/L以下であることがさらに好ましい。電解質中のチタンイオンの濃度は、0.08mmol/L以上または0.10mmol/L以上であることが好ましく、充電受入性をさらに高める観点からは0.50mmol/L以上としてもよい。これらの下限値と上限値とは任意に組み合わせることができる。電解質中のチタンイオンの濃度は、例えば、0.08mmol/L~0.97mmol/L、または0.10mmol/L~0.95mmol/Lであってもよい。 The concentration of titanium ions in the electrolyte may be less than 1.00 mmol / L, preferably 0.97 mmol / L or less, and more preferably 0.95 mmol / L or less. The concentration of titanium ions in the electrolyte is preferably 0.08 mmol / L or more or 0.10 mmol / L or more, and may be 0.50 mmol / L or more from the viewpoint of further improving charge acceptance. These lower limit values and upper limit values can be arbitrarily combined. The concentration of titanium ions in the electrolyte may be, for example, 0.08 mmol / L to 0.97 mmol / L, or 0.10 mmol / L to 0.95 mmol / L.
 電解質中のアルミニウムイオンの濃度は、10.0mmol/L未満であればよく、9.7mmol/L以下であることが好ましく、9.5mmol/L以下であることがさらに好ましい。電解質中のアルミニウムイオンの濃度は、0.8mmol/L以上または1.0mmol/L以上であることが好ましい。これらの下限値と上限値とは任意に組み合わせることができる。電解質中のアルミニウムイオンの濃度は、例えば、0.8mmol/L~9.7mmol/L、または1.0mmol/L~9.5mmol/Lであってもよい。 The concentration of aluminum ions in the electrolyte may be less than 10.0 mmol / L, preferably 9.7 mmol / L or less, and more preferably 9.5 mmol / L or less. The concentration of aluminum ions in the electrolyte is preferably 0.8 mmol / L or more or 1.0 mmol / L or more. These lower limit values and upper limit values can be arbitrarily combined. The concentration of aluminum ions in the electrolyte may be, for example, 0.8 mmol / L to 9.7 mmol / L, or 1.0 mmol / L to 9.5 mmol / L.
 なお、電解質中のチタンイオンの濃度およびアルミニウムイオンの濃度は、例えば、20℃における値とすることができる。チタンイオンおよびアルミニウムイオンのそれぞれの濃度は、初期状態の鉛蓄電池(例えば、慣らし充放電後、出荷時または販売時の鉛蓄電池)における電解質中の濃度であることが好ましい。 In addition, the density | concentration of the titanium ion in an electrolyte and the density | concentration of aluminum ion can be made into the value in 20 degreeC, for example. The respective concentrations of titanium ions and aluminum ions are preferably concentrations in the electrolyte of the lead-acid battery in the initial state (for example, a lead-acid battery at the time of shipment or sale after break-in / discharge).
 以下に、適宜図面を参照しながら、本発明の実施形態に係る鉛蓄電池についてより詳細に説明する。 (正極)
 鉛蓄電池の正極は、一般に、正極格子(エキスパンド格子または鋳造格子など)と、正極格子に保持された正極活物質(または正極合剤)とを含む。正極は、一般に板状であるため、正極板とも呼ばれる。
Hereinafter, the lead storage battery according to the embodiment of the present invention will be described in more detail with reference to the drawings as appropriate. (Positive electrode)
A positive electrode of a lead storage battery generally includes a positive electrode lattice (such as an expanded lattice or a cast lattice) and a positive electrode active material (or positive electrode mixture) held on the positive electrode lattice. Since the positive electrode is generally plate-shaped, it is also called a positive electrode plate.
 正極格子の材料としては、鉛または鉛合金が例示される。鉛合金は、例えば、Ba、Ag、Ca、Al、Bi、Sb、および/またはSnを含むものであってもよい。高い耐食性および機械的強度が得られ易い観点からは、Caおよび/またはSnを含む鉛合金を用いることが好ましい。鉛合金において、Caの含有量は0.01質量%~0.10質量%であってもよく、Snの含有量は0.05質量%~3.00質量%であってもよい。 The lead grid material is exemplified by lead or a lead alloy. The lead alloy may include, for example, Ba, Ag, Ca, Al, Bi, Sb, and / or Sn. From the viewpoint of easily obtaining high corrosion resistance and mechanical strength, it is preferable to use a lead alloy containing Ca and / or Sn. In the lead alloy, the Ca content may be 0.01% by mass to 0.10% by mass, and the Sn content may be 0.05% by mass to 3.00% by mass.
 正極活物質としては、酸化鉛(PbO2)が使用される。正極を作製する際には、正極
活物質としての酸化鉛を含む鉛粉末を用いてもよい。
 正極合剤は、正極活物質に加え、導電剤(カーボンブラックなどの導電性の炭素質材料など)および/または結着剤(ポリマーなど)を含んでもよい。正極は、必要に応じて公知の添加剤を含んでもよい。
Lead oxide (PbO 2 ) is used as the positive electrode active material. When producing a positive electrode, you may use the lead powder containing lead oxide as a positive electrode active material.
The positive electrode mixture may contain a conductive agent (such as a conductive carbonaceous material such as carbon black) and / or a binder (such as a polymer) in addition to the positive electrode active material. The positive electrode may contain a known additive as required.
 正極は、正極格子に、正極ペースト(正極活物質を含むペーストまたは正極合剤ペースト)を充填または塗布し、乾燥することにより未化成の正極を作製し、さらに化成処理することにより形成できる。正極ペーストは、正極活物質または正極合剤の構成成分に加え、分散媒としての硫酸および/または水などを含む。乾燥工程は、室温よりも高い温度および湿度で乾燥する熟成乾燥工程であってもよい。化成処理は、鉛蓄電池の電槽内で、硫酸を含む電解質中に、いずれも化成前の正極および負極を浸漬させた状態で充電することにより行うことができる。 The positive electrode can be formed by filling or applying a positive electrode paste (a paste containing a positive electrode active material or a positive electrode mixture paste) to a positive electrode grid, and drying to produce an unformed positive electrode, followed by chemical conversion treatment. The positive electrode paste contains sulfuric acid and / or water as a dispersion medium in addition to the components of the positive electrode active material or the positive electrode mixture. The drying step may be an aging drying step that dries at a temperature and humidity higher than room temperature. The chemical conversion treatment can be performed by charging in a state where the positive electrode and the negative electrode before conversion are immersed in an electrolyte containing sulfuric acid in the battery case of the lead storage battery.
 (負極)
 鉛蓄電池の負極は、一般に、負極格子(エキスパンド格子または鋳造格子など)と、負極格子に保持された負極活物質(または負極合剤)とを含む。負極は、一般に板状であるため、負極板とも呼ばれる。
(Negative electrode)
A negative electrode of a lead storage battery generally includes a negative electrode lattice (such as an expanded lattice or a cast lattice) and a negative electrode active material (or a negative electrode mixture) held by the negative electrode lattice. Since the negative electrode is generally plate-shaped, it is also called a negative electrode plate.
 負極格子の材料としては、正極格子について例示した鉛または鉛合金が例示できる。中でも、Caおよび/またはSnを含む鉛合金が好ましく、機械的強度などの観点から、少なくともCaを含む鉛合金を用いることも好ましい。鉛合金において、Caの含有量は、0.01質量%~0.10質量%であってもよく、Snの含有量は、0.20質量%~0.60質量%であってもよい。 As the material of the negative electrode grid, lead or a lead alloy exemplified for the positive electrode grid can be exemplified. Among these, a lead alloy containing Ca and / or Sn is preferable, and a lead alloy containing at least Ca is also preferable from the viewpoint of mechanical strength. In the lead alloy, the Ca content may be 0.01% by mass to 0.10% by mass, and the Sn content may be 0.20% by mass to 0.60% by mass.
 負極活物質としては、鉛が使用される。負極を作製する際には、鉛粉末を用いることができ、鉛粉末は酸化鉛を含むものであってもよい。負極合剤は、防縮剤(リグニンおよび/または硫酸バリウムなど)、導電剤(カーボンブラックなどの導電性の炭素質材料など)、および/または結着剤(ポリマーなど)を含んでもよい。なお、リグニンとしては、例えば、天然リグニン、ビスフェノールスルホン酸系縮合物などの合成リグニンが挙げられる。
 負極は、必要に応じて、他の公知の添加剤を含んでもよい。
 負極は、正極の場合に準じて形成できる。
Lead is used as the negative electrode active material. In producing the negative electrode, lead powder can be used, and the lead powder may contain lead oxide. The negative electrode mixture may contain a shrinkage-preventing agent (such as lignin and / or barium sulfate), a conductive agent (such as a conductive carbonaceous material such as carbon black), and / or a binder (such as a polymer). Examples of lignin include synthetic lignin such as natural lignin and bisphenol sulfonic acid condensate.
The negative electrode may contain other known additives as necessary.
The negative electrode can be formed according to the case of the positive electrode.
 (セパレータ)
 セパレータとしては、微多孔膜または繊維シート(またはマット)などが例示できる。微多孔膜または繊維シートを構成するポリマー材料としては、耐酸性を有するものが好ましく、ポリエチレン、ポリプロピレンなどのポリオレフィンなどが例示できる。繊維シートは、ポリマー繊維(上記ポリマー材料で形成された繊維)、および/またはガラス繊維などの無機繊維で形成してもよい。
 セパレータは、必要に応じて、フィラー、および/またはカーボンなどの添加剤を含んでもよい。
(Separator)
Examples of the separator include a microporous membrane or a fiber sheet (or mat). As a polymer material which comprises a microporous film or a fiber sheet, what has acid resistance is preferable, and polyolefin, such as polyethylene and a polypropylene, can be illustrated. The fiber sheet may be formed of polymer fibers (fibers formed of the polymer material) and / or inorganic fibers such as glass fibers.
The separator may contain an additive such as a filler and / or carbon, if necessary.
 (電解質)
 電解質は、硫酸水溶液をベースとするものであり、さらにチタンイオンおよびアルミニウムイオンを含む。
 電解質は、硫酸水溶液に、チタンイオン源(チタン化合物など)およびアルミニウムイオン源(アルミニウム化合物、アルミニウムなど)を添加し、チタンイオンおよびアルミニウムイオンを溶解させることにより調製することができる。チタンイオン源およびアルミニウムイオン源としては、それぞれ、硫酸水溶液に少なくとも一部が溶解してチタンイオンおよびアルミニウムイオンを生成するものが使用できる。
(Electrolytes)
The electrolyte is based on a sulfuric acid aqueous solution, and further contains titanium ions and aluminum ions.
The electrolyte can be prepared by adding a titanium ion source (such as a titanium compound) and an aluminum ion source (such as an aluminum compound or aluminum) to an aqueous sulfuric acid solution and dissolving the titanium ions and aluminum ions. As the titanium ion source and the aluminum ion source, those that at least partially dissolve in an aqueous sulfuric acid solution to generate titanium ions and aluminum ions can be used.
 チタンイオン源であるチタン化合物としては、例えば、チタンの無機酸塩(硫酸第二チタンなどの硫酸塩、亜硫酸塩、炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩など)、チタンを含む酸化物、チタン酸水和物(TiO2・xH2O(0<x<1))、チタン酸(メタチタン酸(H2TiO3)など)、およびチタン酸塩(メタチタン酸塩など)などが挙げられる。メタチタン酸塩としては、典型金属塩(Li2TiO3、K2TiO3などのアルカリ金属塩;MgTiO3、CaTiO3、SrTiO3などのアルカリ土類金属塩;PbTiO3、ZnTiO3など);FeTiO3、CoTiO3、MnTiO3などの遷移金属塩などが例示できる。これらのチタン化合物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the titanium compound as a titanium ion source include inorganic salts of titanium (sulfates such as dititanium sulfate, sulfites, carbonates, bicarbonates, phosphates, borates, etc.) and titanium. Oxides, titanic acid hydrates (TiO 2 .xH 2 O (0 <x <1)), titanic acids (such as metatitanic acid (H 2 TiO 3 )), and titanates (such as metatitanates) Can be mentioned. The metatitanic acid salt, typically a metal salt (Li 2 TiO 3, K 2 alkali metal salts such as TiO 3; such as PbTiO 3, ZnTiO 3; MgTiO 3 , CaTiO 3, SrTiO alkaline earth metal salts such as 3); FeTiO 3 , transition metal salts such as CoTiO 3 and MnTiO 3 can be exemplified. These titanium compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 チタン化合物のうち、チタンの無機酸塩(第1チタン化合物)は、硫酸水溶液に対する溶解性(またはチタンイオンの解離性)が高く、チタンイオン濃度を調節し易い。そのため、チタン化合物として、少なくとも第1チタン化合物(特に、硫酸塩など)などを用いることが好ましい。また、第1チタン化合物以外のチタン化合物(チタンを含む酸化物、チタン酸水和物、チタン酸、およびチタン酸塩。以下、第2チタン化合物とも言う)を用いてもよい。 Of the titanium compounds, the inorganic acid salt of titanium (first titanium compound) is highly soluble in sulfuric acid aqueous solution (or dissociation of titanium ions) and can easily adjust the titanium ion concentration. For this reason, it is preferable to use at least a first titanium compound (particularly, sulfate or the like) as the titanium compound. Further, a titanium compound other than the first titanium compound (oxide containing titanium, titanic acid hydrate, titanic acid, and titanate; hereinafter also referred to as a second titanium compound) may be used.
 鉛蓄電池は、電解質と接触するように配置された固体のチタン化合物を含んでもよい。中でも、第2チタン化合物は、第1チタン化合物に比べると硫酸水溶液に対する溶解性が低い。このような第2チタン化合物を、固体の状態で電解質と接触するように鉛蓄電池内に配置すると、固体の第2チタン化合物の一部が、チタンイオンとなって電解質中に溶解する。そのため、充放電を繰り返した場合に、固体の第2チタン化合物からチタンイオンが電解質中に継続的に補充され、電解質中のチタンイオンの減少を抑制でき、充放電に伴う負極の充電受入性の低下を抑制することもできる。第2チタン化合物としては、メタチタン酸、チタン酸水和物および/またはチタン酸塩が好ましく、中でも、メタチタン酸が好ましい。 The lead acid battery may include a solid titanium compound that is placed in contact with the electrolyte. Especially, the 2nd titanium compound has low solubility with respect to sulfuric acid aqueous solution compared with a 1st titanium compound. When such a second titanium compound is disposed in the lead acid battery so as to be in contact with the electrolyte in a solid state, a part of the solid second titanium compound becomes titanium ions and dissolves in the electrolyte. Therefore, when charging and discharging are repeated, titanium ions are continuously replenished into the electrolyte from the solid second titanium compound, and the decrease in titanium ions in the electrolyte can be suppressed. The decrease can also be suppressed. As the second titanium compound, metatitanic acid, titanic acid hydrate and / or titanate are preferable, and among these, metatitanic acid is preferable.
 固体のチタン化合物(第2チタン化合物など)は、例えば、正極、負極、および/またはセパレータなどに含まれていてもよいが、電解質中に含まれている(具体的には、電解質中に浸漬されている)ことが好ましい。電解質中に固体のチタン化合物が分散されていてもよい。固体のチタン化合物の形態は、特に限定されないが、粉末状、顆粒状、ペレット状などであってもよい。あらかじめ第1チタン化合物およびアルミニウムイオン源(アルミニウム化合物など)を硫酸水溶液に加えて溶解させた後、溶解度の低い固体の第2チタン化合物を加えてもよい。 The solid titanium compound (such as the second titanium compound) may be contained in, for example, the positive electrode, the negative electrode, and / or the separator, but is contained in the electrolyte (specifically, immersed in the electrolyte). Preferably). A solid titanium compound may be dispersed in the electrolyte. The form of the solid titanium compound is not particularly limited, but may be powder, granule, pellet, or the like. A first titanium compound and an aluminum ion source (such as an aluminum compound) may be added in advance to a sulfuric acid aqueous solution and dissolved, and then a solid second titanium compound having low solubility may be added.
 第2チタン化合物の量は、充放電時の電解質中のチタンイオンの濃度が上述のような範囲となるように、適宜調節することができる。第2チタン化合物を電解質に浸漬させる場合、電解質1Lあたりの第2チタン化合物の量は、例えば、0.1mmol~50mmolであり、1mmol~40mmolであることが好ましい。 The amount of the second titanium compound can be adjusted as appropriate so that the concentration of titanium ions in the electrolyte during charging and discharging falls within the above range. When the second titanium compound is immersed in the electrolyte, the amount of the second titanium compound per liter of the electrolyte is, for example, 0.1 mmol to 50 mmol, and preferably 1 mmol to 40 mmol.
 アルミニウムイオン源であるアルミニウム化合物としては、チタン化合物について例示した無機酸塩、水酸化物などが挙げられる。また、アルミニウムイオン源としては、アルミニウムを用いてもよい。アルミニウムイオン源は、一種を単独でまたは二種以上を組み合わせて用いてもよい。アルミニウムイオン濃度を調節し易い観点からは、アルミニウムイオン源のうち、無機酸塩、特に硫酸塩を用いることが好ましい。 Examples of the aluminum compound that is an aluminum ion source include inorganic acid salts and hydroxides exemplified for the titanium compound. Further, aluminum may be used as the aluminum ion source. An aluminum ion source may be used alone or in combination of two or more. From the viewpoint of easily adjusting the aluminum ion concentration, it is preferable to use an inorganic acid salt, particularly a sulfate, among the aluminum ion sources.
 電解質中のチタンイオンの濃度は、チタン化合物の添加量、チタン化合物の種類、チタン化合物の物性(表面積、粒度など)、チタン化合物の形態、および/または電解質の密度(もしくは電解質に使用する硫酸水溶液の密度)などにより調節できる。電解質中のアルミニウムイオンの濃度も、チタンイオンの場合と同様に、アルミニウム化合物(またはアルミニウム)の添加量、種類、物性、形態、および/または電解質(もしくは硫酸水溶液)の密度などにより調節することができる。 The concentration of titanium ions in the electrolyte depends on the amount of titanium compound added, the type of titanium compound, the physical properties of the titanium compound (surface area, particle size, etc.), the form of the titanium compound, and / or the density of the electrolyte (or aqueous sulfuric acid used in the electrolyte) The density can be adjusted. Similarly to the case of titanium ions, the concentration of aluminum ions in the electrolyte can be adjusted by the addition amount, type, physical properties, form, and / or density of the electrolyte (or sulfuric acid aqueous solution). it can.
 電解質の密度は、例えば、1.10g/cm3~1.35g/cm3であり、1.25g/cm3~1.30g/cm3であることが好ましい。電解質の密度がこのような範囲である場合、電解質中のチタンイオンおよびアルミニウムイオンの濃度を適度な範囲に保持し易い。本明細書中、電解質の密度とは、20℃における密度である。満充電状態の電池における電解質の密度が上記の範囲であることが望ましい。また、硫酸水溶液の密度(20℃における密度)を、電解質の密度として記載した上記の範囲内に設定してもよい。 The density of the electrolyte is, for example, 1.10 g / cm 3 to 1.35 g / cm 3 , and preferably 1.25 g / cm 3 to 1.30 g / cm 3 . When the density of the electrolyte is in such a range, the concentration of titanium ions and aluminum ions in the electrolyte is easily maintained in an appropriate range. In this specification, the density of the electrolyte is a density at 20 ° C. The density of the electrolyte in the fully charged battery is preferably in the above range. Moreover, you may set the density (density in 20 degreeC) of sulfuric acid aqueous solution in the said range described as the density of electrolyte.
 鉛蓄電池は、電池ケース(電槽)内に、極板群および電解質を収容することにより作製できる。極板群は、複数の正極と複数の負極とを、これらの間にセパレータを介在させた状態で、正極と負極とが交互になるように重ね合わせることにより作製できる。セパレータは、正極と負極との間に介在するように配置すればよく、袋状のセパレータを用いたり、シート状のセパレータを2つ折り(U字状)にして、一方の電極を挟み、他方の電極と重ね合わせたりしてもよい。電槽内には、複数の極板群を収容してもよい。 A lead-acid battery can be produced by housing an electrode plate group and an electrolyte in a battery case (battery case). The electrode plate group can be produced by superimposing a plurality of positive electrodes and a plurality of negative electrodes so that the positive electrodes and the negative electrodes are alternately arranged with a separator interposed therebetween. The separator may be disposed so as to be interposed between the positive electrode and the negative electrode, and a bag-shaped separator is used, or a sheet-shaped separator is folded in half (U-shaped), and one electrode is sandwiched between the other. You may overlap with an electrode. A plurality of electrode plate groups may be accommodated in the battery case.
 図1は、本発明の一実施形態に係る鉛蓄電池を概略的に示す一部切り欠き斜視図である。図2は図1の正極板の正面図であり、図3は図1の負極板の正面図である。
 鉛蓄電池1は、極板群11と、図示しない電解質とを含み、これらは電槽12に収容されている。より具体的には、電槽12は、隔壁13により複数のセル室14に仕切られており、各セル室14には極板群11が1つずつ収納され、電解質も収容されている。極板群11は、複数枚の正極板2および負極板3を、セパレータ4を介して積層することにより構成されている。
FIG. 1 is a partially cutaway perspective view schematically showing a lead storage battery according to an embodiment of the present invention. 2 is a front view of the positive electrode plate of FIG. 1, and FIG. 3 is a front view of the negative electrode plate of FIG.
The lead storage battery 1 includes an electrode plate group 11 and an electrolyte (not shown), which are accommodated in a battery case 12. More specifically, the battery case 12 is partitioned into a plurality of cell chambers 14 by partition walls 13, and each cell chamber 14 stores one electrode plate group 11 and also stores an electrolyte. The electrode plate group 11 is configured by laminating a plurality of positive electrode plates 2 and negative electrode plates 3 with a separator 4 interposed therebetween.
 正極板2の正極格子には耳22が設けられており、耳22を介して、正極板2は正極接続部材10に接続されている。正極接続部材10は、正極格子の耳22に接続された正極棚6、および正極棚6に設けられた正極接続体8または正極柱を含む。同様に、負極板3の負極格子には耳32が設けられており、耳32を介して、負極板3は負極接続部材9に接続されている。負極接続部材9は、負極格子の耳32に接続された負極棚5と、負極棚5に設けられた負極柱7または負極接続体とを含む。図示例では、電槽12の一方の端部には、正極棚6に正極接続体8が接続されており、負極棚5には負極柱7が接続するように配されている。電槽12の他方の端部では、正極棚6には正極柱が接続するように配され、負極棚5には負極接続体が接続される。 Ears 22 are provided on the positive electrode grid of the positive electrode plate 2, and the positive electrode plate 2 is connected to the positive electrode connecting member 10 via the ears 22. The positive electrode connection member 10 includes a positive electrode shelf 6 connected to the ears 22 of the positive electrode lattice, and a positive electrode connector 8 or a positive electrode column provided on the positive electrode shelf 6. Similarly, the negative electrode lattice of the negative electrode plate 3 is provided with ears 32, and the negative electrode plate 3 is connected to the negative electrode connection member 9 via the ears 32. The negative electrode connection member 9 includes a negative electrode shelf 5 connected to the ear 32 of the negative electrode lattice, and a negative electrode column 7 or a negative electrode connector provided on the negative electrode shelf 5. In the illustrated example, a positive electrode connector 8 is connected to the positive electrode shelf 6 at one end of the battery case 12, and a negative electrode column 7 is connected to the negative electrode shelf 5. At the other end of the battery case 12, a positive pole is connected to the positive electrode shelf 6, and a negative electrode connector is connected to the negative electrode shelf 5.
 各セル内において、正極棚、負極棚、および極板群の全体は、電解質に浸漬されている。 電槽12の開口部には、正極端子16および負極端子17が設けられた蓋15が装着されている。正極接続体8は、隔壁13に設けられた透孔を介して隣接するセル室14内の極板群11の負極棚に連設された負極接続体と接続されている。これにより、極板群11は隣接するセル室14内の極板群11と直列に接続されている。電槽12の一方の端部において、負極柱7は負極端子17に接続されており、他方の端部において、正極柱は正極端子16に接続されている。蓋15に設けられた注液口には、電池内部で発生したガスを電池外に排出するための排気口を有する排気栓18が装着されている。 In each cell, the entire positive electrode shelf, negative electrode shelf, and electrode plate group are immersed in an electrolyte. A lid 15 provided with a positive electrode terminal 16 and a negative electrode terminal 17 is attached to the opening of the battery case 12. The positive electrode connection body 8 is connected to a negative electrode connection body connected to the negative electrode shelf of the electrode plate group 11 in the adjacent cell chamber 14 through a through hole provided in the partition wall 13. Thereby, the electrode plate group 11 is connected in series with the electrode plate group 11 in the adjacent cell chamber 14. At one end of the battery case 12, the negative pole 7 is connected to the negative terminal 17, and at the other end, the positive pole is connected to the positive terminal 16. An exhaust plug 18 having an exhaust port for discharging gas generated inside the battery to the outside of the battery is attached to the liquid injection port provided in the lid 15.
 正極板2は、耳22を有する正極格子21と、正極格子21に保持された正極活物質層(または正極合剤層)24とを含む。正極格子21は、正極活物質層24を保持するエキスパンド網目25、エキスパンド網目25の上端部に設けられた枠骨23、および枠骨23に連接された耳22からなるエキスパンド格子である。 The positive electrode plate 2 includes a positive electrode lattice 21 having ears 22 and a positive electrode active material layer (or positive electrode mixture layer) 24 held by the positive electrode lattice 21. The positive grid 21 is an expanded grid composed of an expanded mesh 25 that holds the positive active material layer 24, a frame bone 23 provided at the upper end of the expanded mesh 25, and ears 22 connected to the frame bone 23.
 同様に、負極板3は、耳32を有する負極格子31と、負極格子31に保持された負極活物質層(または負極合剤層)34とを含む。負極格子31は、負極活物質層34を保持するエキスパンド網目35、エキスパンド網目35の上端部に設けられた枠骨33、および枠骨33に連接された耳32からなるエキスパンド格子である。 Similarly, the negative electrode plate 3 includes a negative electrode lattice 31 having ears 32 and a negative electrode active material layer (or negative electrode mixture layer) 34 held by the negative electrode lattice 31. The negative electrode lattice 31 is an expanded lattice composed of an expanded mesh 35 that holds the negative electrode active material layer 34, a frame bone 33 provided at the upper end of the expanded mesh 35, and an ear 32 connected to the frame bone 33.
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例1
(1)正極板の作製
 図2に示す正極板2を以下の手順で作製した。
 原料粉(鉛と鉛酸化物との混合物)と水と希硫酸(密度1.40g/cm3)とを質量
比100:15:5で混合することにより、正極ペーストを得た。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to a following example.
Example 1
(1) Production of positive electrode plate A positive electrode plate 2 shown in FIG. 2 was produced by the following procedure.
A raw material powder (mixture of lead and lead oxide), water and dilute sulfuric acid (density 1.40 g / cm 3 ) were mixed at a mass ratio of 100: 15: 5 to obtain a positive electrode paste.
 鋳造法により得られたPb-0.06質量%Ca-1.6質量%Sn合金からなる母材シートと、Sbを含む鉛合金箔とを重ねて圧延した。これにより、母材シート上に鉛合金箔が圧着され、厚さ1.1mmの母材層の片面に厚さ20μmのSbを含む鉛合金層を有する複合シートを得た。なお、母材シートに鉛合金箔を圧着させる部位は、後述するエキスパンド加工におけるエキスパンド網目を形成する部分のみとし、母材シートにおける正極格子の耳22や枠骨23を形成する中央部分には鉛合金箔を圧着させなかった。 A base material sheet made of a Pb-0.06 mass% Ca-1.6 mass% Sn alloy obtained by a casting method and a lead alloy foil containing Sb were rolled and rolled. Thereby, the lead alloy foil was pressure-bonded on the base material sheet, and a composite sheet having a lead alloy layer containing Sb having a thickness of 20 μm on one surface of the base material layer having a thickness of 1.1 mm was obtained. The lead alloy foil is crimped to the base material sheet only at the part where the expanded mesh is formed in the later-described expanding process, and the center part of the base material sheet where the ears 22 and the frame bone 23 are formed is lead. The alloy foil was not crimped.
 複合シートに所定のスリットを形成した後、このスリットを展開してエキスパンド網目25を形成し、エキスパンド格子を得た。なお、後述する正極格子の耳22や枠骨23を形成する部分にはエキスパンド加工しなかった。 After forming a predetermined slit in the composite sheet, this slit was developed to form an expanded mesh 25 to obtain an expanded lattice. In addition, the expanding process was not performed on the portions forming the ears 22 and the frame bones 23 of the positive electrode lattice described later.
 エキスパンド網目25に正極ペーストを充填し、正極格子の耳22を有する極板形状に切断加工した。これを熟成乾燥し、未化成の正極板(縦:115.0mm、横:137.5mm)を得た。そして、後述する電槽内で化成することにより、正極格子21に正極活物質層24が保持された正極板2を得た。 The expanded mesh 25 was filled with a positive electrode paste, and cut into an electrode plate shape having positive electrode grid ears 22. This was aged and dried to obtain an unformed positive electrode plate (vertical: 115.0 mm, horizontal: 137.5 mm). And the positive electrode plate 2 by which the positive electrode active material layer 24 was hold | maintained at the positive electrode grid 21 was obtained by forming in a battery case mentioned later.
(2)負極板の作製
 図3に示す負極板3を以下の手順で作製した。
 原料鉛粉、水、希硫酸(密度1.40g/cm3)、および防縮剤としてリグニンおよび硫酸バリウムを、導電材としてカーボンブラックを質量比100.0:12.0:7.0:1.0:0.1の割合で混合することにより、負極ペーストを得た。
(2) Production of Negative Electrode Plate A negative electrode plate 3 shown in FIG. 3 was produced by the following procedure.
Raw material lead powder, water, dilute sulfuric acid (density 1.40 g / cm 3 ), lignin and barium sulfate as a shrinkage preventive agent, and carbon black as a conductive material in a mass ratio of 100.0: 12.0: 7.0: 1. A negative electrode paste was obtained by mixing at a ratio of 0: 0.1.
 鋳造法により得られたPb-0.07質量%Ca-0.25質量%Sn合金からなる母材シートを厚さ0.7mmまで圧延し、この母材シートを上記と同様の方法によりエキスパンド加工した。エキスパンド網目に負極ペーストを充填し、上記と同様の方法により未化成の負極板(縦:115.0mm、横137.5mm)を得た。そして、後述する電槽内で化成することにより、負極格子31に負極活物質層34が保持された負極板3を得た。 A base material sheet made of a Pb-0.07 mass% Ca-0.25 mass% Sn alloy obtained by a casting method is rolled to a thickness of 0.7 mm, and the base material sheet is expanded by the same method as described above. did. The expanded mesh was filled with a negative electrode paste, and an unformed negative electrode plate (vertical: 115.0 mm, horizontal 137.5 mm) was obtained by the same method as described above. And the negative electrode plate 3 by which the negative electrode active material layer 34 was hold | maintained at the negative electrode lattice 31 was obtained by forming in the battery case mentioned later.
(3)鉛蓄電池の作製
 図1に示すような鉛蓄電池1を下記の手順で作製した。
 上記で得られた1枚の負極板3を、セパレータ4(厚さ1.0mmのガラス繊維マット)を介して、2枚の正極板2で挟んだ状態で積層することにより極板群11を得た。このとき、セパレータ4は、2つ折りにして、間に負極板を挟み込むようにして配置した。
(3) Production of lead acid battery A lead acid battery 1 as shown in FIG. 1 was produced according to the following procedure.
By laminating the single negative electrode plate 3 obtained above with the separator 4 (1.0 mm thick glass fiber mat) sandwiched between the two positive electrode plates 2, the electrode plate group 11 is formed. Obtained. At this time, the separator 4 was folded in two and disposed so as to sandwich the negative electrode plate therebetween.
 次いで、耳22および32をそれぞれ集合溶接して、正極棚6および負極棚5を形成した。極板群11を、電槽12の隔壁13によって区画された6つのセル室14にそれぞれ1つずつ収納した。正極棚6に連設された正極接続体8を、隣接する極板群の負極棚に連設された負極接続体と接続することにより、隣接する極板群を直列に接続した。なお、本実施例では、極板群間の接続は、隔壁13に設けられた透孔(図示せず)を介して行った。 正極接続体および負極接続体には、Pb-2.5質量%Sn合金を用いた。 Next, the ears 22 and 32 were collectively welded to form the positive electrode shelf 6 and the negative electrode shelf 5. The electrode plate group 11 was housed one by one in each of the six cell chambers 14 partitioned by the partition wall 13 of the battery case 12. By connecting the positive electrode connector 8 connected to the positive electrode shelf 6 to the negative electrode connector connected to the negative electrode shelf of the adjacent electrode plate group, the adjacent electrode plate groups were connected in series. In this example, the connection between the electrode plate groups was made through a through hole (not shown) provided in the partition wall 13. A Pb-2.5 mass% Sn alloy was used for the positive electrode connector and the negative electrode connector.
 両端のセル室14に収納された極板群の一方の正極棚に正極柱を設け、他方の負極棚5に負極柱7を設けた。そして、電槽12の開口部に蓋15を装着するとともに、蓋15に設けられた正極端子16および負極端子17と、正極柱および負極柱7とを溶接した。その後、蓋15に設けられた注液口より、電解質を所定量注液し、電槽内で化成を行った。化成後、電池内部で発生したガスを電池外に排出するための排気口を有する排気栓18を注液口に装着し、JIS D5301に規定する55D23形(12V-48Ah)の鉛蓄電池を作製した。なお、化成後は、極板群11、正極棚6、および負極棚5の全体が電解質に浸漬された状態であった。 A positive electrode column was provided on one positive electrode shelf of the electrode plate group housed in the cell chambers 14 at both ends, and a negative electrode column 7 was provided on the other negative electrode shelf 5. The lid 15 was attached to the opening of the battery case 12, and the positive electrode terminal 16 and the negative electrode terminal 17 provided on the lid 15 were welded to the positive electrode column and the negative electrode column 7. Thereafter, a predetermined amount of electrolyte was injected from the injection port provided in the lid 15 and chemical conversion was performed in the battery case. After the formation, an exhaust plug 18 having an exhaust port for discharging the gas generated inside the battery to the outside of the battery was attached to the injection port, and a 55D23 type (12V-48Ah) lead storage battery defined in JIS D5301 was produced. . In addition, after the chemical conversion, the entire electrode plate group 11, the positive electrode shelf 6, and the negative electrode shelf 5 were immersed in the electrolyte.
 電解質としては、硫酸(硫酸水溶液、密度1.28g/cm3)に、硫酸チタンおよび硫酸アルミニウムを溶解させた溶液を用いた。硫酸チタンおよび硫酸アルミニウムは、それぞれ、電解質中のチタンイオンの濃度が0.95mmol/Lおよびアルミニウムイオンの濃度が9.5mmol/Lとなるような量を用いた。 As the electrolyte, a solution in which titanium sulfate and aluminum sulfate were dissolved in sulfuric acid (aqueous sulfuric acid solution, density 1.28 g / cm 3 ) was used. Titanium sulfate and aluminum sulfate were used in such amounts that the concentration of titanium ions in the electrolyte was 0.95 mmol / L and the concentration of aluminum ions was 9.5 mmol / L, respectively.
(4)評価
 下記の(a)の手順でテストセルを作製した。作製したテストセルを用いて下記の(b)および(c)の評価を行った。なお、テストセルの1.0Cは、各テストセルの理論容量から算出した。
(4) Evaluation A test cell was prepared by the following procedure (a). The following (b) and (c) were evaluated using the produced test cell. Note that 1.0 C of the test cell was calculated from the theoretical capacity of each test cell.
(a)テストセルの作製
 上記(1)および(2)で作製した正極板および負極板を、それぞれ、縦60mm×横40mmのサイズにカットし、1枚の負極板および2枚の正極板を準備した。負極板を、セパレータ(ポリエチレン製の微多孔膜、厚さ0.2mm、幅44mm)を介して、2枚の正極板で挟んだ状態で積層させることにより、極板群を形成した。このとき、セパレータ4は、2つ折りにした間に負極板を挟み込むようにして配置した。
(A) Production of test cell The positive electrode plate and the negative electrode plate produced in the above (1) and (2) were cut into a size of 60 mm in length and 40 mm in width, respectively, and one negative electrode plate and two positive electrode plates were obtained. Got ready. The negative electrode plate group was formed by laminating the negative electrode plate through a separator (polyethylene microporous film, thickness 0.2 mm, width 44 mm) sandwiched between two positive electrode plates. At this time, the separator 4 was disposed so as to sandwich the negative electrode plate while being folded in half.
 得られた極板群を両面からアクリル製の板で挟み、固定した。次いで、負極板、2枚の正極板それぞれに、鉛棒を溶接し、それぞれ負極端子、正極端子とした。それをポリプロピレン製の容器に入れ、密度1.20g/cm3の硫酸を所定量注入し、化成を行った。化成に使用したセル内の硫酸を除去し、新たに以下に記述する所定組成の硫酸を注入した。このようにして、テストセル(1.25Ah、2V)を作製した。 電解質としては、(3)で用いたものと同じものを用いた。 The obtained electrode plate group was sandwiched between acrylic plates from both sides and fixed. Next, a lead bar was welded to each of the negative electrode plate and the two positive electrode plates to form a negative electrode terminal and a positive electrode terminal, respectively. It was placed in a polypropylene container, and a predetermined amount of sulfuric acid having a density of 1.20 g / cm 3 was injected to perform chemical conversion. The sulfuric acid in the cell used for chemical conversion was removed, and sulfuric acid having a predetermined composition described below was newly injected. In this way, a test cell (1.25 Ah, 2 V) was produced. As the electrolyte, the same one as used in (3) was used.
(b)充電受入性
 (初期の充電受入性)
 以下の条件で、化成後のテストセルのSOCを調整し、充電を行った。充電受入性は充電開始後の10秒間の電気量で比較した。
 放電(SOC調整):定電流、0.2C、30分
 休止:12時間
 充電(充電受入性):定電流(3C)-定電圧(2.4V、最大電流3C)、60秒
 温度:25℃
(B) Charge acceptance (initial charge acceptance)
Under the following conditions, the SOC of the test cell after conversion was adjusted and charged. The charge acceptability was compared by the amount of electricity for 10 seconds after the start of charging.
Discharge (SOC adjustment): Constant current, 0.2C, 30 minutes Rest: 12 hours Charge (Charge acceptance): Constant current (3C)-Constant voltage (2.4V, maximum current 3C), 60 seconds Temperature: 25 ° C
 (c)負極活物質利用率
 化成後のテストセルについて、0.2Cで終止電圧1.7Vまで定電流放電し、このときのセル容量を測定した。このセル容量を基に、負極活物質容量(mAh/g)を求めた。負極活物質利用率は、各セルの負極活物質の50%をセルの理論容量として、セル理論容量に対する上記負極活物質容量(mAh/g)の割合(%)で表した。
(C) Utilization rate of negative electrode active material About the test cell after chemical conversion, constant current discharge was carried out at 0.2 C to the final voltage 1.7V, and the cell capacity at this time was measured. Based on this cell capacity, the negative electrode active material capacity (mAh / g) was determined. The negative electrode active material utilization rate was expressed as a ratio (%) of the negative electrode active material capacity (mAh / g) to the cell theoretical capacity, with 50% of the negative electrode active material of each cell being the theoretical capacity of the cell.
 実施例2~7および比較例1~14
 電解質中のチタンイオンの濃度が表1に示す値となるように、硫酸チタンおよび/または硫酸アルミニウムの量を変更した以外は、実施例1と同様にしてテストセルを作製し、評価を行った。
Examples 2 to 7 and Comparative Examples 1 to 14
A test cell was prepared and evaluated in the same manner as in Example 1 except that the amount of titanium sulfate and / or aluminum sulfate was changed so that the concentration of titanium ions in the electrolyte was the value shown in Table 1. .
 実施例1~7および比較例1~14の結果を表1に示す。なお、充電受入性については、比較例1の初期の電流値を100%としたときの比率(充電受入性比)で表した。負極活物質利用率については、比較例1の負極活物質容量を100%としたときの比率(負極利用率比)で表した。実施例1~7をA1~A7とし、比較例1~14をB1~B14で表した。 Table 1 shows the results of Examples 1 to 7 and Comparative Examples 1 to 14. In addition, about charge acceptance, it represented with the ratio (charge acceptance ratio) when the initial stage electric current value of the comparative example 1 was set to 100%. About the negative electrode active material utilization factor, it represented with the ratio (negative electrode utilization factor ratio) when the negative electrode active material capacity | capacitance of the comparative example 1 was set to 100%. Examples 1 to 7 were designated as A1 to A7, and Comparative Examples 1 to 14 were designated as B1 to B14.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、電解質中のチタンイオンの濃度が1mmol/L未満であり、アルミニウムイオンの濃度が10mmol/L未満である実施例では、高い負極の利用率を確保しながらも、充電受入性の低下が抑制されている。これらの実施例では、チタンイオンおよび/またはアルミニウムイオンを含まない比較例のB1~B5、B8およびB9よりも充電受入性が向上している。 As shown in Table 1, in an example in which the concentration of titanium ions in the electrolyte is less than 1 mmol / L and the concentration of aluminum ions is less than 10 mmol / L, charging is performed while ensuring a high negative electrode utilization rate. The decline in acceptability is suppressed. In these examples, the charge acceptance is improved as compared with B1 to B5, B8 and B9 of comparative examples not containing titanium ions and / or aluminum ions.
 チタンイオンの濃度またはアルミニウムイオンの濃度が実施例よりも高い比較例のB6、B7、およびB10~B14では、充電受入性は実施例と同程度かまたは実施例よりも向上している。しかし、充電受入性が向上する場合であっても、充電受入性の向上の程度は濃度の増加に見合っていない。また、これらの比較例では、負極利用率が実施例に比べて低下している。 In comparative examples B6, B7, and B10 to B14 in which the concentration of titanium ions or the concentration of aluminum ions is higher than that of the example, the charge acceptance is the same as or better than that of the example. However, even if the charge acceptance is improved, the degree of improvement in charge acceptance is not commensurate with the increase in concentration. Moreover, in these comparative examples, the negative electrode utilization factor is lower than that of the examples.
 実施例8
 硫酸(硫酸水溶液、密度1.28g/cm3)に、硫酸アルミニウムを溶解させ、メタチタン酸の粉末(キシダ化学製)を加えて攪拌することにより、電解質を調製した。硫酸アルミニウムは、電解質中のアルミニウムイオンの濃度が9.5mmol/Lとなるような量を用い、電解質1Lあたりのメタチタン酸の量は40mmolとした。電解質は、固体のメタチタン酸を含んだ状態であった。このようにして得られた電解質を用いる以外は実施例1と同様にテストセルを作製し、評価を行った。
Example 8
An electrolyte was prepared by dissolving aluminum sulfate in sulfuric acid (aqueous sulfuric acid solution, density 1.28 g / cm 3 ), adding metatitanic acid powder (manufactured by Kishida Chemical Co., Ltd.), and stirring. Aluminum sulfate was used in such an amount that the concentration of aluminum ions in the electrolyte was 9.5 mmol / L, and the amount of metatitanic acid per liter of the electrolyte was 40 mmol. The electrolyte was in a state containing solid metatitanic acid. A test cell was prepared and evaluated in the same manner as in Example 1 except that the electrolyte thus obtained was used.
 実施例8については、さらに下記の評価を行った。
 (電解質中のチタンイオン濃度)
 電解質中のチタンイオンの濃度を以下の手順で定量した。まず、テストセルを、20℃にて、0.2Cの定電流で7.5時間充電し、0.2Cの定電流で1.7Vになるまで放電することにより慣らし充放電した。さらに0.2Cの定電流で7.5時間充電した後、テストセルから電解質を所定量採取し、遠心分離により固体のチタン化合物を除去し、上澄み液をフィルター(孔径0.1μm)でろ過した。ろ液を採取して希釈し、ICP発光分光分析法によりチタン量を定量し、電解質のチタンイオン濃度を求めた。
Example 8 was further evaluated as follows.
(Titanium ion concentration in the electrolyte)
The concentration of titanium ions in the electrolyte was quantified by the following procedure. First, the test cell was charged and discharged at 20 ° C. with a constant current of 0.2 C for 7.5 hours and then discharged to 1.7 V with a constant current of 0.2 C. Further, after charging for 7.5 hours at a constant current of 0.2 C, a predetermined amount of electrolyte was collected from the test cell, the solid titanium compound was removed by centrifugation, and the supernatant was filtered through a filter (pore size: 0.1 μm). . The filtrate was collected and diluted, and the amount of titanium was quantified by ICP emission spectroscopy to determine the titanium ion concentration of the electrolyte.
 (360サイクル後の充電受入性)
 まず、以下の条件で、化成後のテストセルのSOCを調整した。
 充電(SOC調整):定電流、0.2C、7.5時間
 休止:30分
 放電(SOC調整):定電流、0.2C、30分
 休止:12時間
 温度:25℃
(Charge acceptance after 360 cycles)
First, the SOC of the formed test cell was adjusted under the following conditions.
Charging (SOC adjustment): constant current, 0.2C, 7.5 hours Pause: 30 minutes Discharge (SOC adjustment): constant current, 0.2C, 30 minutes Pause: 12 hours Temperature: 25 ° C
 次いで、アイドリングストップ(IS)寿命試験(SBA S0101)をベースにして、負極の劣化が加速し易い下記の条件での充放電を360サイクル繰り返した。
 充電(IS):定電流(2.25C)-定電圧(2.4V、最大電流2.25C)、0.1時間
 放電(IS):定電流、1.0C、0.1時間
 温度:25℃
 そして、下記の条件で360サイクル後の充電受け入れ性を評価した。
 充電(充電受入性):定電流(3C)-定電圧(2.4V、最大電流3C)、60秒
 温度:25℃
Next, based on the idling stop (IS) life test (SBA S0101), charge and discharge under the following conditions where the deterioration of the negative electrode is easy to accelerate were repeated 360 cycles.
Charge (IS): constant current (2.25C) -constant voltage (2.4V, maximum current 2.25C), 0.1 hour Discharge (IS): constant current, 1.0C, 0.1 hour Temperature: 25 ℃
And the charge acceptance property after 360 cycles was evaluated on condition of the following.
Charging (charge acceptance): constant current (3C)-constant voltage (2.4V, maximum current 3C), 60 seconds Temperature: 25 ° C
 実施例9
 電解質中のアルミニウムイオンの濃度が5.0mmol/Lとなるように、硫酸アルミニウムの使用量を変更した以外は、実施例8と同様にして、電解質を調製した。電解質は、固体のメタチタン酸を含んだ状態であった。得られた電解質を用いた以外は、実施例1と同様にテストセルを作製し、評価を行った。また、実施例8と同様の評価も行った。
Example 9
An electrolyte was prepared in the same manner as in Example 8 except that the amount of aluminum sulfate used was changed so that the concentration of aluminum ions in the electrolyte was 5.0 mmol / L. The electrolyte was in a state containing solid metatitanic acid. A test cell was prepared and evaluated in the same manner as in Example 1 except that the obtained electrolyte was used. The same evaluation as in Example 8 was also performed.
 実施例8~9の結果を表2に示す。充電受入性については、比較例1の初期の電流値を100%としたときの比率(充電受入性比)で表した。負極活物質利用率については、比較例1の負極活物質容量を100%としたときの比率(負極利用率比)で表した。実施例8~9をA8~A9で表す。表2には、実施例4および5について実施例8と同様の評価を行った結果も合わせて示す。 The results of Examples 8 to 9 are shown in Table 2. The charge acceptability was expressed as a ratio (charge acceptability ratio) when the initial current value of Comparative Example 1 was 100%. About the negative electrode active material utilization factor, it represented with the ratio (negative electrode utilization factor ratio) when the negative electrode active material capacity | capacitance of the comparative example 1 was set to 100%. Examples 8 to 9 are represented by A8 to A9. Table 2 also shows the results of the same evaluation as in Example 8 for Examples 4 and 5.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例のA8およびA9では、初期の充電受入性はA4およびA5と同じ高い値が得られたが、360サイクル後の充電受入性はA4およびA5に比べて高くなった。A8およびA9では負極の利用率も実施例A4およびA5と同様に高い結果が得られた。 As shown in Table 2, in Examples A8 and A9, the initial charge acceptance was as high as A4 and A5, but the charge acceptance after 360 cycles was higher than that of A4 and A5. It was. In A8 and A9, the utilization rate of the negative electrode was high as in Examples A4 and A5.
 本発明の一実施形態に係る鉛蓄電池は、高い充電受入性を有し、負極の利用率の低下が抑制されている。よって、中途充電状態で充放電を繰り返す使用モードでも効果が得られやすく、特に、アイドルストップシステムや回生ブレーキシステムを搭載した車両等に用いるのに適している。 The lead storage battery according to one embodiment of the present invention has high charge acceptability, and a decrease in the utilization factor of the negative electrode is suppressed. Therefore, it is easy to obtain an effect even in a use mode in which charging / discharging is repeated in the mid-charging state, and is particularly suitable for use in a vehicle equipped with an idle stop system or a regenerative braking system.
 1 鉛蓄電池、2 正極板、3 負極板、4 セパレータ、5 負極棚、6 正極棚、7 負極柱、8 正極接続体、9 負極接続部材、10 正極接続部材、11 極板群、12 電槽、 13 隔壁、14 セル室、15 蓋、16 正極端子、17 負極端子、18 排気栓、21 正極格子、22,32 耳、23,33 枠骨、24 正極活物質層、25,35 エキスパンド網目、31 負極格子、34 負極活物質層 1 lead storage battery, 2 positive electrode plate, 3 negative electrode plate, 4 separator, 5 negative electrode shelf, 6 positive electrode shelf, 7 negative electrode column, 8 positive electrode connection body, 9 negative electrode connection member, 10 positive electrode connection member, 11 electrode plate group, 12 battery case , 13 partition, 14 cell chamber, 15 lid, 16 positive terminal, 17 negative terminal, 18 exhaust plug, 21 positive grid, 22, 32 ears, 23, 33 frame, 24 positive active material layer, 25, 35 expanded mesh, 31 negative grid, 34 negative active material layer

Claims (6)

  1.  正極と、負極と、前記正極および前記負極の間に介在するセパレータと、硫酸を含む電解質と、を含む鉛蓄電池であって、
     前記電解質は、さらにチタンイオンおよびアルミニウムイオンを含み、
     前記電解質中の前記チタンイオンの濃度は、1.00mmol/L未満であり、
     前記電解質中の前記アルミニウムイオンの濃度は、10.0mmol/L未満である、鉛蓄電池。
    A lead-acid battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte containing sulfuric acid,
    The electrolyte further includes titanium ions and aluminum ions,
    The concentration of the titanium ions in the electrolyte is less than 1.00 mmol / L;
    The lead acid battery, wherein the concentration of the aluminum ions in the electrolyte is less than 10.0 mmol / L.
  2.  前記電解質中の前記チタンイオンの濃度は、0.08mmol/L~0.97mmol/Lであり、
     前記電解質中の前記アルミニウムイオンの濃度は、0.8mmol/L~9.7mmol/Lである、請求項1に記載の鉛蓄電池。
    The concentration of the titanium ions in the electrolyte is 0.08 mmol / L to 0.97 mmol / L,
    The lead acid battery according to claim 1, wherein the concentration of the aluminum ions in the electrolyte is 0.8 mmol / L to 9.7 mmol / L.
  3.  前記電解質中の前記チタンイオンの濃度は、0.10mmol/L~0.95mmol/Lであり、
     前記電解質中の前記アルミニウムイオンの濃度は、1.0mmol/L~9.5mmol/Lである、請求項1または2に記載の鉛蓄電池。
    The concentration of the titanium ions in the electrolyte is 0.10 mmol / L to 0.95 mmol / L,
    The lead acid battery according to claim 1 or 2, wherein the concentration of the aluminum ions in the electrolyte is 1.0 mmol / L to 9.5 mmol / L.
  4.  前記鉛蓄電池は、前記電解質と接触するように配置された固体のチタン化合物を含む、請求項1~3のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 3, wherein the lead acid battery includes a solid titanium compound disposed so as to be in contact with the electrolyte.
  5.  前記チタン化合物は、前記電解質中に浸漬されている、請求項4に記載の鉛蓄電池。 The lead storage battery according to claim 4, wherein the titanium compound is immersed in the electrolyte.
  6.  前記チタン化合物は、メタチタン酸、チタン酸水和物およびメタチタン酸塩からなる群より選択される少なくとも一種である、請求項4または5に記載の鉛蓄電池。 The lead acid battery according to claim 4 or 5, wherein the titanium compound is at least one selected from the group consisting of metatitanic acid, titanic acid hydrate, and metatitanate.
PCT/JP2016/000223 2015-01-30 2016-01-18 Lead storage cell WO2016121327A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571842A JP6729397B2 (en) 2015-01-30 2016-01-18 Lead acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-017304 2015-01-30
JP2015017304 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121327A1 true WO2016121327A1 (en) 2016-08-04

Family

ID=56542952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000223 WO2016121327A1 (en) 2015-01-30 2016-01-18 Lead storage cell

Country Status (2)

Country Link
JP (1) JP6729397B2 (en)
WO (1) WO2016121327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110585A1 (en) * 2015-12-25 2017-06-29 株式会社Gsユアサ Lead storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011042A1 (en) * 2003-07-28 2005-02-03 Suzuki, Toshihiro Additive for electrolyte solution of lead acid battery and lead acid battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
JP2012079431A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead storage battery and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071723A1 (en) * 2011-09-21 2013-03-21 Hollingsworth & Vose Company Battery components with leachable metal ions and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011042A1 (en) * 2003-07-28 2005-02-03 Suzuki, Toshihiro Additive for electrolyte solution of lead acid battery and lead acid battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2012079431A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead storage battery and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110585A1 (en) * 2015-12-25 2017-06-29 株式会社Gsユアサ Lead storage battery
JP2017117758A (en) * 2015-12-25 2017-06-29 株式会社Gsユアサ Lead storage battery

Also Published As

Publication number Publication date
JP6729397B2 (en) 2020-07-22
JPWO2016121327A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6243442B2 (en) Composite anode structure for water based electrolyte energy storage and apparatus including the same
US20130057220A1 (en) Profile Responsive Electrode Ensemble
JP2014011065A (en) Nonaqueous electrolyte secondary battery
US20180358620A1 (en) Anode electrode including doped electrode active material and energy storage device including same
JP6045329B2 (en) Lead acid battery
JP5983985B2 (en) Lead acid battery
JP6939565B2 (en) Lead-acid battery
JP6977770B2 (en) Liquid lead-acid battery
KR101941796B1 (en) Nonaqueous electrolyte secondary battery
CN111902992A (en) Lead-acid battery
WO2021132208A1 (en) Electricity storage element
JP6589633B2 (en) Lead acid battery
JP6495862B2 (en) Lead acid battery
WO2016121327A1 (en) Lead storage cell
WO2019088040A1 (en) Lead storage battery separator and lead storage battery
JP2016072105A (en) Lead storage battery
JP2005327489A (en) Positive electrode for power storage element
WO2019021690A1 (en) Lead acid storage battery
JP7147776B2 (en) lead acid battery
CN110603671B (en) Lead storage battery
WO2020066763A1 (en) Lead battery
JP2017069010A (en) Lead storage battery
JP5278332B2 (en) Electrolytic manganese dioxide for lithium primary battery, production method thereof and lithium primary battery using the same
JPWO2018199053A1 (en) Lead storage battery
JP2023046379A (en) Lead storage battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742932

Country of ref document: EP

Kind code of ref document: A1