WO2018203427A1 - 抗ウイルス剤 - Google Patents

抗ウイルス剤 Download PDF

Info

Publication number
WO2018203427A1
WO2018203427A1 PCT/JP2018/004151 JP2018004151W WO2018203427A1 WO 2018203427 A1 WO2018203427 A1 WO 2018203427A1 JP 2018004151 W JP2018004151 W JP 2018004151W WO 2018203427 A1 WO2018203427 A1 WO 2018203427A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
polypeptide
amino acid
acid sequence
antiviral agent
Prior art date
Application number
PCT/JP2018/004151
Other languages
English (en)
French (fr)
Inventor
博 堀田
Original Assignee
博 堀田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博 堀田 filed Critical 博 堀田
Priority to JP2019516360A priority Critical patent/JP6993720B2/ja
Publication of WO2018203427A1 publication Critical patent/WO2018203427A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/58Reptiles
    • A61K35/583Snakes; Lizards, e.g. chameleons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an antiviral agent.
  • Viruses are roughly classified into two types, viruses having an envelope containing lipid bilayers constituting various membranes of host cells, and viruses having no envelope, due to the difference in the peripheral structure.
  • the host cell membrane also comprises (1) the endoplasmic reticulum (ER) membrane and its associated nuclear membrane, lipid droplet membrane, ER-Golgi intermediate compartment (ERGIC) membrane and cis-Golgi membrane, and (2) cell membrane. (PM), and an endosome membrane, a multi-endoplasmic reticulum (MVB) membrane, and a trans-Golgi membrane derived from the (PM).
  • an enveloped virus is classified into an enveloped virus containing a lipid bilayer derived from the endoplasmic reticulum (ER) membrane of the host cell and a lipid bilayer derived from the cell membrane (PM) of the host cell, depending on the site where the envelope is acquired. It can be classified into viruses having an envelope containing a multilayer.
  • ER endoplasmic reticulum
  • PM cell membrane
  • viruses having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane of a host cell include viruses belonging to Flaviviridae, Coronaviridae, and the like.
  • viruses of the Flaviviridae family generally tend to become more serious with diseases caused by infection with these viruses, such as dengue virus, Japanese encephalitis virus, hepatitis C virus, yellow fever virus, and West Nile virus. Many are seen.
  • Coronaviridae viruses also cause severe infections such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) (viruses that cause Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome are Respectively called SARS coronavirus and MERS coronavirus).
  • SARS Severe Acute Respiratory Syndrome
  • MERS Middle East Respiratory Syndrome
  • hepadnaviridae viruses represented by hepatitis B virus have also been reported to have an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane of a host cell (Liou W, et al., J). Biomed. Sci., 15, 311-316, 2008 and Wei Y, et al., Pathol. Biol., 58, 267-272, 2010).
  • Non-Patent Document 1 an isoform (CM-III) of secreted phospholipase A 2 derived from Naja mossambica mossambaca, which is a kind of mufezicobra, contains human immunodeficiency virus (HIV) (including a lipid bilayer derived from a cell membrane). It has an antiviral activity against (having an envelope).
  • HAV human immunodeficiency virus
  • This isoform (CM-III) is known to directly damage the cell membrane of the host cell and exhibits strong cytotoxic and hemolytic activity.
  • Non-Patent Document 2 discloses that phospholipase A 2 derived from Crotalus durissus terificus, a kind of rattlesnake, has antiviral activity against dengue virus and yellow fever virus (having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane). It is described that it has.
  • Non-Patent Documents 1 and 2 have a high cytotoxicity to cells to be treated, a low selective toxicity of antiviral activity, and a range of target viruses expected to have an antiviral effect. There were various problems such as not being. Therefore, the antiviral agent has room for further improvement.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel treatment that can treat a disease caused by infection with a virus having an envelope containing a lipid bilayer derived from an endoplasmic reticulum membrane. It is to provide an antiviral agent.
  • a specific polypeptide has a specific anti-viral activity, in particular, a specific anti-virus against an enveloped virus containing a lipid bilayer derived from the endoplasmic reticulum membrane.
  • the present inventors have found that it has viral activity and has low toxicity to the cells to be treated, thereby completing the present invention. That is, one embodiment of the present invention includes the following inventions.
  • An antiviral agent comprising any polypeptide or gene selected from the group consisting of the following (a) to (g):
  • the antiviral agent wherein the virus to be treated with the antiviral agent has an envelope containing a lipid bilayer derived from an endoplasmic reticulum membrane:
  • A a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1
  • B a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 and having antiviral activity
  • C a polypeptide comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 1 and having antiviral activity
  • D a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1
  • E a gene consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO
  • An antiviral agent comprising a cobra venom-derived secretory phospholipase A 2 isoform CM-II polypeptide and / or a gene encoding the polypeptide
  • An antiviral agent wherein the virus to be treated with the antiviral agent has an envelope containing a lipid bilayer derived from an endoplasmic reticulum membrane.
  • the virus to be treated with the antiviral agent is at least one selected from the group consisting of dengue virus, Japanese encephalitis virus, hepatitis C virus and hepatitis B virus, [1] ]
  • the antiviral agent according to any one of [3] to [3].
  • the antiviral agent according to one embodiment of the present invention exhibits a strong antiviral activity against a specific virus and a low toxicity to the cells to be treated.
  • a novel antiviral agent comprising a specific polypeptide or gene.
  • One embodiment of the present invention is based on the first discovery that a specific polypeptide has antiviral activity, in particular, against an enveloped virus comprising a lipid bilayer derived from the endoplasmic reticulum membrane. is there. Therefore, the antiviral agent of the present invention containing the polypeptide or the gene encoding the polypeptide can prevent diseases caused by viral infections, particularly diseases caused by infection with viruses having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane. Can be treated effectively.
  • embodiments of the present invention [1. Polypeptide], [2. Gene] and [3. Details will be described in the order of [antiviral agent].
  • a to B representing a numerical range means “A or more (including A and greater than A) and B or less (including B and less than B)”.
  • polypeptide As used herein, the term “polypeptide” is used interchangeably with “protein” or “peptide”. As used herein, the amino acid notation uses the one-letter code or three-letter code defined by IUPAC and IUB as appropriate.
  • polypeptide refers to a condensation polymer in which amino acids are linked by peptide bonds, and is not particularly limited as long as it has antiviral activity.
  • the polypeptide in one embodiment of the present invention is isoform CM-II of cobra venom-derived secretory phospholipase A 2 (hereinafter sometimes referred to as “sPLA 2 ”).
  • the cobra is not particularly limited as long as it is a snake that belongs to the cobra family and has a poison.
  • Taiwan cobra (Naja atra), Thai cobra (Naja kaouthia), Mupheji cobra (Naja mossambica), Thai columbine cobra
  • examples include snakes belonging to the genus Food Cobra (Naja siamensis) and the like, and the genus Bungaras such as Bungarus bungaroides and Bungarus fasciatus.
  • the polypeptide is sPLA 2 isoform CM-II derived from cobra venom of Naja mossambica mossambica (hereinafter also referred to as “Nm.
  • the polypeptide in one embodiment of the present invention has an extremely high antiviral activity against a virus having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane, as shown in the Examples below.
  • the cytotoxic activity and hemolytic activity which are side effects when used as a therapeutic agent, have respective activities only when administered at an extremely high dose.
  • the polypeptide in one embodiment of the present invention exhibits the effect of not exhibiting cytotoxic activity and hemolytic activity at a dose having a sufficient antiviral activity. Such an effect makes it possible to provide a novel therapeutic agent that can effectively treat a viral infection while minimizing the negative influence on the treatment target.
  • any polypeptide selected from the group consisting of the following (a) to (c) is used: (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, (B) a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 and having antiviral activity; and (c) SEQ ID NO: 1 A polypeptide comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by the above and having antiviral activity.
  • the polypeptide (a) will be specifically described.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1 is a kind of mfedikobra N. m. It is a polypeptide derived from mossambica cobra venom.
  • a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1 is one of the isoforms (CM-I, CM-II and CM-III) of secretory phospholipase A 2 derived from the cobra venom (CM -II), a polypeptide composed of a total length of 118 amino acid residues.
  • the polypeptide of (b) above is a functionally equivalent variant, derivative, variant, allele, homolog, ortholog, partial peptide, or other protein / peptide of the protein having the amino acid sequence represented by SEQ ID NO: 1.
  • the specific sequence is not limited.
  • a virus to be treated with an antiviral agent containing the polypeptide has an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane. That is, the antiviral activity is an antiviral activity against a virus having an envelope including a lipid bilayer derived from an endoplasmic reticulum membrane.
  • mutation mainly means a mutation artificially introduced by a site-directed mutagenesis method, a gene fragment deletion mutant preparation method, etc. It may be a mutation.
  • amino acid residue to be substituted is preferably substituted with another amino acid that preserves the properties of the amino acid side chain.
  • amino acid side chain properties include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G).
  • an amino acid having an aliphatic side chain G, A, V, L, I, P
  • an amino acid having a hydroxyl group-containing side chain S, T, Y
  • Amino acids having chains C, M
  • amino acids having carboxylic acid and amide-containing side chains D, N, E, Q
  • amino acids having base-containing side chains R, K, H
  • aromatic-containing side chains H, F, Y, W
  • “functionally equivalent” intends that the target polypeptide has the same biological function or biochemical function as the target polypeptide (same and / or similar). .
  • Biological properties may include the specificity of the site to be expressed, the expression level, and the like. Whether or not a polypeptide into which a mutation has been introduced has a desired function can be determined by examining whether or not the mutant polypeptide has antiviral activity.
  • antiviral activity means an activity that reduces the infectivity, proliferation ability or immune evasion ability of a virus.
  • the virus infectivity means the property of the virus adsorbing or entering the host cell.
  • the antiviral activity at this time shows the activity which suppresses the adsorption
  • Viral growth ability means the ability to synthesize viral particle constituent proteins, the ability to replicate viral genes, or the ability to form viral particles in host cells.
  • the antiviral activity at this time is achieved by, for example, inhibiting the synthesis of a certain viral protein in the host cell, inhibiting the function of the synthesized viral protein, or inhibiting the replication of the viral gene, thereby The activity which suppresses formation of is meant.
  • As the viral protein whether to promote the synthesis of viral proteins, or to promote the formation of viral proteins or viral particles essential for synthesis, or to promote the replication of viral proteins or viral genes essential for formation Or viral proteins essential for replication.
  • the virus immune evasion ability means the ability to avoid the virus being eliminated by the host immune mechanism.
  • the antiviral activity at this time is, for example, the activity of binding to the surface protein of the virus particle to change the virus particle into a form recognizable as an antigen, or inactivating the virus protein that interferes with part of the host immune mechanism. Activity.
  • a polypeptide is a polypeptide having antiviral activity
  • an anti-antigen as exemplified above is used. What is necessary is just to test whether viral activity arises. That is, when a polypeptide is brought into contact with a virus (and / or a host cell), for example, if the infectivity of the virus, the proliferation ability, the immune evasion ability, etc. are reduced, the polypeptide Can be determined to be a polypeptide having antiviral activity.
  • the specific method for determining antiviral activity is not particularly limited, and a known method can be used as appropriate.
  • Specific methods for determining antiviral activity include, for example, the following methods (1) to (4) in consideration of the relationship between polypeptides, viruses, and host cells.
  • the polypeptide and the host cell are contacted and treated for a certain period of time, and then the polypeptide is removed. Subsequently, the host cell is infected with virus, and excess virus is removed 1 hour after infection. Thereafter, the host cell is cultured for a certain period of time in a culture solution not containing the polypeptide, and the virus infectivity titer is measured.
  • a factor that suppresses viral infection such as interferon
  • the polypeptide is brought into contact with the virus and allowed to react for a certain period of time. Thereafter, the host cell is infected with the virus, and an excess of the virus is removed 1 hour after the infection. Thereafter, the host cell is cultured for a certain period of time in a culture solution not containing the polypeptide, and the virus infectivity titer is measured.
  • the polypeptide directly inhibits the infectious ability of the infectious viral particle (that is, whether the polypeptide inhibits viral infection of the host cell).
  • plaque forming method (3) Infect a host cell with the virus, remove the virus one hour after the infection, and incubate the host cell with a culture solution containing the polypeptide for a certain period of time, and then measure the virus infectivity titer.
  • this method it is possible to determine whether or not the polypeptide can inhibit gene replication of a virus that has entered the host cell, synthesis of viral proteins, formation and / or release of viral particles, and the like.
  • the virus After contacting the polypeptide with the virus and reacting for a certain time, the virus is infected into the host cell, the host cell is cultured for a certain time in a culture solution containing the polypeptide, and the virus infectivity titer is determined. taking measurement. By this method, the effects (2) and (3) can be measured simultaneously.
  • the polypeptide of (c) is a functionally equivalent variant, derivative, variant, allele, homolog, ortholog of the protein having the amino acid sequence represented by SEQ ID NO: 1, as with the polypeptide of (b).
  • a virus to be treated with an antiviral agent containing the polypeptide has an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane. That is, the antiviral activity is an antiviral activity against a virus having an envelope including a lipid bilayer derived from an endoplasmic reticulum membrane.
  • Amino acid sequence homology is at least 80% or more, more preferably 90% or more, still more preferably 95% or more (for example, 95%, 96%, 97) of the entire amino acid sequence (or a region necessary for functional expression). %, 98%, 99% or more).
  • Amino acid sequence homology can be determined using BLASTN (nucleic acid level) and BLASTX (amino acid level) programs (Altschul et al. J. Mol. Biol., 215, 403-410, 1990). The program is based on the algorithm BLAST (Proc.ANatl. Acad. Sci. USA, 87, 2264-2268, 1990, Proc. Natl. Acad. Sci.
  • homology intends the ratio of the number of amino acid residues having similar properties (homology, positive, etc.), but more preferably the ratio of the number of identical amino acid residues, ie, identity. (Identity).
  • the properties of amino acids are as described above.
  • the polypeptide in one embodiment of the present invention is not limited to this as long as amino acids are peptide-bonded, and is a complex peptide containing a structure other than a polypeptide such as a sugar chain or an isoprenoid group. It may be.
  • the functional group of the amino acid may be modified.
  • the amino acid is preferably L-type, but is not limited thereto.
  • polypeptide in one embodiment of the present invention can be easily obtained or produced according to any technique known in the art.
  • a polypeptide in one embodiment of the invention can be a purified natural product, a product of chemical synthesis, and a prokaryotic or eukaryotic host (eg, bacterial cell, yeast cell, higher plant cell, insect cell, and It may be a product produced by recombinant technology using mammalian cells).
  • the polypeptide in one embodiment of the invention can be glycosylated or non-glycosylated.
  • the polypeptide in one embodiment of the invention may also include an initiating modified methionine residue in some cases as a result of a host-mediated process.
  • the method for producing a polypeptide in one embodiment of the present invention is performed using, for example, a vector containing a polynucleotide encoding the polypeptide.
  • a vector containing a polynucleotide encoding the polypeptide it is particularly preferable to use the vector in a recombinant expression system.
  • a polynucleotide encoding the polypeptide in one embodiment of the present invention is incorporated into a recombinant expression vector, and then introduced into a host capable of expression by a known method, and within the host (transformant).
  • a method of purifying a polypeptide obtained by translation can be employed.
  • the recombinant expression vector may or may not be a plasmid, as long as the target polynucleotide can be introduced into the host.
  • the expression vector when the foreign polynucleotide is introduced into the host, the expression vector preferably incorporates a promoter that functions in the host so as to express the foreign polynucleotide.
  • the method for purifying a polypeptide produced by a recombinant technique varies depending on the host used and the nature of the polypeptide, but the target polypeptide can be purified relatively easily by using a tag or the like.
  • the method for producing a polypeptide according to an embodiment of the present invention may further include a step of purifying the polypeptide from an extract of cells or tissues containing the polypeptide.
  • the step of purifying a polypeptide is to prepare a cell extract from cells or tissues by a well-known method (for example, a method in which a cell or tissue is disrupted and then centrifuged to collect a soluble fraction).
  • HPLC high performance liquid chromatography
  • the polypeptide can be purified from cells or tissues that naturally express the polypeptide.
  • An example of a naturally expressed polypeptide is cobra venom.
  • the method can include identifying a cell or tissue that naturally expresses the polypeptide in one embodiment of the invention using an antibody or oligonucleotide.
  • the method can further include a step of purifying the polypeptide.
  • another example of the method for producing a polypeptide in one embodiment of the present invention includes chemically synthesizing the polypeptide in one embodiment of the present invention.
  • the polypeptide of the present invention can be chemically synthesized by applying well-known chemical synthesis techniques based on the amino acid sequence of the polypeptide of the present invention described herein.
  • the chemical synthesis technique include a solid phase method and a liquid phase method. In the solid phase method, for example, various commercially available peptide synthesizers (Model MultiPep RS (Intavis AG) etc.) can be used.
  • the polypeptide obtained by the method for producing a polypeptide according to one embodiment of the present invention may be a naturally occurring mutant polypeptide or an artificially prepared mutant polypeptide. Also good.
  • the polypeptide in one embodiment of the present invention may be produced using a known and common technique based on at least the amino acid sequence of the polypeptide or the base sequence of the polynucleotide encoding the polypeptide. I can say that.
  • a gene encoding the polypeptide according to one embodiment of the present invention described in [1] above is provided.
  • the gene used in one embodiment of the present invention is preferably a gene encoding an isoform CM-II polypeptide of secreted phospholipase A 2 derived from cobra venom.
  • the gene in one embodiment of the present invention is also useful as an antiviral agent or the like.
  • the term “gene” is used interchangeably with “polynucleotide”, “nucleic acid” or “nucleic acid molecule”, and is intended to be a polymer of nucleotides.
  • the term “base sequence” is used interchangeably with “nucleic acid sequence” or “nucleotide sequence”, and is indicated as a sequence of deoxyribonucleotides (abbreviated as A, G, C, and T).
  • any gene selected from the group consisting of the following (d) to (g) is used: (D) a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1, (E) a gene consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 and encoding a polypeptide having antiviral activity; (F) a gene comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 1 and encoding a polypeptide having antiviral activity; and (g) the above (d) to (f A gene that hybridizes with a polynucleotide comprising a base sequence complementary to any of the genes under stringent conditions and encodes a polypeptide having antiviral activity.
  • the gene (d) is a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1 described above.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1 is as described above (hereinafter the same applies to item [2]).
  • Examples of the gene (d) include a gene having a base sequence represented by SEQ ID NO: 2.
  • SEQ ID NO: 2 is N.I. m. is a related species of Mossambica, based on the nucleotide sequence of the phospholipase A 2 a (GenBank Accession no.X73225) of Naja naja atra (Taiwan Cobra), N. m. This is a nucleotide sequence deduced to show the amino acid sequence of isoform CM-II of secreted phospholipase A 2 derived from mossambacia.
  • the gene of (e) above is a functionally equivalent variant, derivative, variant, allele, homolog, ortholog, partial peptide, or other protein / peptide of the protein having the amino acid sequence represented by SEQ ID NO: 1.
  • the gene is a fusion protein or the like and encodes a protein having antiviral activity, the specific sequence is not limited.
  • a virus to be treated with an antiviral agent containing the above gene has an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane. That is, the antiviral activity is preferably an antiviral activity against a virus having an envelope including a lipid bilayer derived from an endoplasmic reticulum membrane.
  • the gene of (f) is a functionally equivalent mutant, derivative, variant, allele, homolog, ortholog, part of the protein having the amino acid sequence represented by SEQ ID NO: 1 as in the gene of (e) above.
  • a specific sequence is not limited as long as it is a peptide, a fusion protein with other proteins / peptides, or the like and is a gene encoding a protein having antiviral activity.
  • a virus to be treated with an antiviral agent containing the above gene has an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane. That is, the antiviral activity is an antiviral activity against a virus having an envelope including a lipid bilayer derived from an endoplasmic reticulum membrane.
  • amino acid sequence homology and “homology” are the same as those described in [1] above.
  • the gene (g) is intended to be a gene that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to any of the genes (d) to (f) above, and has antiviral activity.
  • the specific sequence is not limited as long as it is a gene encoding the protein having A virus to be treated with an antiviral agent containing the above gene has an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane. That is, the antiviral activity is an antiviral activity against a virus having an envelope including a lipid bilayer derived from an endoplasmic reticulum membrane.
  • stringent conditions refer to conditions in which a so-called base sequence-specific double-stranded polynucleotide is formed and a non-specific double-stranded polynucleotide is not formed.
  • the temperature is 60 to 68 ° C., preferably 65 ° C., more preferably in a buffer solution consisting of 0.25 M Na 2 HPO 4 , pH 7.2, 7% SDS, 1 mM EDTA, 1 ⁇ Denhardt's solution. Is hybridized under conditions of 68 ° C. for 16 to 24 hours, and further in a buffer solution comprising 20 mM Na 2 HPO 4 , pH 7.2, 1% SDS, 1 mM EDTA at a temperature of 60 to 68 ° C., preferably 65 ° C. More preferably, there may be mentioned conditions in which washing is performed twice for 15 minutes under the condition of 68 ° C.
  • Other examples include 25% formamide, 50% formamide under more severe conditions, 4 ⁇ SSC (sodium chloride / sodium citrate), 50 mM Hepes pH 7.0, 10 ⁇ Denhardt's solution, 20 ⁇ g / mL denatured salmon sperm DNA After prehybridization is performed overnight in a hybridization solution at 42 ° C, a labeled probe is added, and hybridization is performed by incubating at 42 ° C overnight.
  • the cleaning solution and temperature conditions in the subsequent cleaning are about “1 ⁇ SSC, 0.1% SDS, 37 ° C.”, and more severe conditions are about “0.5 ⁇ SSC, 0.1% SDS, 42 ° C.”.
  • the gene in one embodiment of the present invention may exist in the form of RNA (for example, mRNA) or in the form of DNA (for example, cDNA or genomic DNA).
  • DNA can be double-stranded or single-stranded.
  • Single-stranded DNA or RNA can be the coding strand (also known as the sense strand) or it can be the non-coding strand (also known as the antisense strand).
  • the gene in one embodiment of the present invention may include a sequence such as a sequence of an untranslated region (UTR) or a vector sequence (including an expression vector sequence).
  • a sequence such as a sequence of an untranslated region (UTR) or a vector sequence (including an expression vector sequence).
  • a vector can be prepared by inserting the gene in one embodiment of the present invention into a predetermined vector by a well-known gene recombination technique.
  • the vector is not particularly limited, and may be a recombinant expression vector or a cloning vector. Selection of a vector can be suitably selected according to the purpose.
  • the gene according to one embodiment of the present invention is used as an antiviral agent, it is preferable that the gene is inserted into a predetermined expression vector.
  • the gene By inserting the gene in one embodiment of the present invention into a predetermined expression vector, for example, the gene can be delivered to the target site more efficiently, or the gene in the cell at the target site can be delivered. Uptake efficiency can be increased, or expression of a polypeptide having an antiviral action at the target site can be increased. As a result, it becomes possible to effectively treat a viral infection with an antiviral agent containing a gene in one embodiment of the present invention.
  • Such vectors have been developed in the field of drug delivery systems (Drug Delivery System (DDS)), and it is possible to appropriately select vectors having desired delivery and expression effects.
  • DDS Drug Delivery System
  • examples of such vectors include, but are not limited to, viral vectors (eg, retrovirus vectors, adenovirus vectors, adeno-associated virus vectors, etc.), DNA vectors (eg, pUMVC4a, etc.), and the like.
  • an antiviral agent comprising the polypeptide described in [1] above is provided. In another embodiment of the present invention, an antiviral agent comprising the gene described in [2] above is provided.
  • the virus targeted by the antiviral agent in one embodiment of the present invention is characterized by having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane.
  • the envelope is a lipid bilayer derived from the cell membrane, endoplasmic reticulum membrane, etc. of the host cell in a series of processes in which the virus grows in the infected host cell and is then released from the host cell to the outside of the cell. It is formed by inserting a virus-derived protein expressed in the host cell into the overlay. Therefore, the composition of the envelope is considered to reflect the budding route of the virus.
  • the virus targeted by the antiviral agent in one embodiment of the present invention has an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane. That is, it is considered that the virus targeted by the antiviral agent in one embodiment of the present invention emerges via the endoplasmic reticulum of the host cell.
  • viruses having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane include viruses belonging to Flaviviridae, Coronaviridae, and Hepadnaviridae.
  • viruses belonging to the Flaviviridae family include, but are not limited to, dengue virus, Japanese encephalitis virus, hepatitis C virus, yellow fever virus, West Nile virus, Zika virus and the like.
  • viruses belonging to the Coronaviridae family include, but are not limited to, SARS coronavirus and MERS coronavirus.
  • viruses belonging to the family Hepadnaviridae include, but are not limited to, hepatitis B virus, ground squirrel hepatitis B virus, goose hepatitis B virus, and the like.
  • the polypeptide described in the above [1] in one embodiment of the present invention has high antiviral activity against a virus having an envelope containing a lipid bilayer derived from an endoplasmic reticulum membrane, as shown in the Examples below.
  • the cytotoxic activity and the hemolytic activity have respective activities only when administered at an extremely high dose. That is, since a dose having a sufficient antiviral activity does not show cytotoxic activity and hemolytic activity, it is possible to effectively treat a viral infection while minimizing the influence on the treatment target. .
  • the polypeptide described in [1] above has a particularly high effect of directly inhibiting the infectivity of infectious virus particles (in other words, high neutralizing activity outside the host cell). Has been issued. Therefore, the polypeptide in one embodiment of the present invention is considered to have the same therapeutic effect as a neutralizing antibody having a similar mechanism of action. That is, the polypeptide in one embodiment of the present invention may be particularly useful as a therapeutic agent in the early stage of infection of a viral infection and a prophylactic agent for seriousness.
  • the administration target of the antiviral agent in one embodiment of the present invention is not particularly limited as long as it can be treated with the polypeptide described in [1] above or the gene described in [2] above.
  • the administration target of the antiviral agent in one embodiment of the present invention is, for example, a subject suffering from an infection with a virus having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane, such as a mammal, for example, a human. obtain.
  • the antiviral agent in one embodiment of the present invention can be administered to a treatment subject by direct injection.
  • the antiviral agent in one embodiment of the present invention may also be formulated for oral administration, mucosal administration, intramuscular administration, intravenous administration, subcutaneous administration, intraocular administration or transdermal administration, but exclusively within the patient's body. Intravenous administration is more preferable for viral infections in which infection is expanded by viremia.
  • the dosage of the antiviral agent in one embodiment of the present invention can be appropriately set based on a normal method in the art.
  • the antiviral agent comprises a pharmaceutically acceptable carrier, diluent or excipient (in addition to the polypeptide described in [1] above and the gene described in [2] above). Including combinations thereof).
  • the antiviral agent is preferably for human use and comprises any one or more of pharmaceutically acceptable carriers, diluents or excipients.
  • Pharmaceutically acceptable carriers or excipients for therapeutic use are well known in the pharmaceutical art and are described, for example, in Remington's Pharmaceuticals Sciences, Mack Publishing Co. (A.R. Gennaro, 1985). The choice of pharmaceutically acceptable carrier, diluent or excipient can be readily selected by one skilled in the art according to the intended route of administration and standard pharmaceutical practice.
  • the antiviral agent in one embodiment of the present invention may further include any appropriate binder, lubricant, suspending agent, coating agent, or solubilizer.
  • the antiviral agent in one embodiment of the present invention can be used to remove a virus from an object to be removed.
  • the antiviral agent in one embodiment of the present invention may be in the form of a spray, a coating agent, a dipping agent, etc., and used to spray, apply, and immerse the treatment object in the treatment object, respectively.
  • the antiviral agent may be a known antiviral agent, surfactant, stabilizer, pH adjuster, buffer, isotonic agent, chelating agent, preservative, viscosity, depending on the application. It may further contain a tonicity agent, a solvent and the like.
  • the antiviral agent contains any polypeptide or gene selected from the group consisting of the following (a) to (g), and is treated with the antiviral agent:
  • the virus may be an antiviral agent, characterized in that it belongs to the family Flaviviridae or Hepadnaviridae: (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, (B) a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 and having antiviral activity; (C) a polypeptide comprising an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 1 and having antiviral activity, (D) a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1, (E) a gene consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented
  • Antiviral activity was measured for the test substance in an in vitro infection system using four types of viruses and Huh7it-1 cells.
  • viruses include dengue virus (Triidad 1751 strain) (virus strain described in Hotta H et al., Infect Immun., 41, 462-469, 1983, etc.), hepatitis C virus (J6 / JFH-1 strain) (Virus strains described in Bungyoku Y et al., J Gen Virol., 90, 1681-1691, 2009, etc.), Sindbis virus (described in Matsumura T et al., J Gen Virol., 17, 343-347, 1972) And influenza A virus (A / Udor / 307/72 [H3N2]) (virus strain described in El-Bitar AM et al., Virol J., 12, 47, 2015).
  • CM-II secreted phospholipase A 2 isoform CM-II (P7778, manufactured by Sigma-Aldrich) derived from mossambica, secreted phospholipase A 2 (P8685digr, P8685dig), derived from Streptomyces violetaceruber (hereinafter also referred to as “S. violetaceruber”).
  • Huh7it-1 cells were seeded in 1,000 ⁇ l in each well of a 24-well plate. The next day (after 24 hours), 100 ⁇ l of virus and 100 ⁇ l of various concentrations (0.002 ng / ml, 0.02 ng / ml, 0.2 ng / ml, 2 ng / ml, 20 ng / ml, 200 ng / ml, 2,000 ng) / Ml and 20,000 ng / ml) were mixed and incubated at 37 ° C. for 1 hour. After removing the culture broth in each well, the cells were inoculated with 200 ⁇ l of a mixture of virus and test substance, and further incubated for 1 hour.
  • Primary antibodies include anti-dengue virus mouse monoclonal antibody (described in Hotta H et al., Proc Soc Exp Biol Med., 175, 320-327, 1984), serum from patients infected with hepatitis C virus (virus infection by UV irradiation).
  • Inactivated sex (described in El-Bitar AM et al., Virol J., 12, 47, 2015), influenza virus immunized rabbit serum (El-Bitar AM et al., Virol J., 12, 47 , 2015).
  • secondary antibodies FITC-labeled anti-mouse IgG, FITC-labeled anti-human IgG, and FITC-labeled anti-rabbit IgG were used for the primary antibody, respectively.
  • the virus infectivity titer was measured according to the method already reported (El-Bitar et al., Virol. J., 12, 47, 2015).
  • the concentration at which the test substance inhibits virus infection by 50% (IC 50 ; 50% -inhibition concentration) was calculated.
  • the infectivity titer was measured by a plaque formation method in which the cells were statically cultured in a culture solution supplemented with 1% methylcellulose for 72 to 96 hours to form plaques (plaque formation). The method is described in Song J et al., J Gen Virol., 80, 879-886, 1999).
  • cytotoxic activity and hemolytic activity were measured by the following methods.
  • cytotoxic activity was measured by WST-1 assay (described in El-Bitar et al., Virol. J., 12, 47, 2015).
  • culture solutions containing various concentrations of test substances diluted 2-fold were added to Huh7it-1 cells seeded in a 96-well plate and treated at 37 ° C. for 24 hours in the absence of virus.
  • 10 ⁇ l of WST-1 reagent (Roche) was added and cultured for 4 hours. Since WST-1 reagent is converted to formazan by mitochondrial dehydrogenase, the cell viability was determined by measuring the amount of formazan with a spectrophotometer (450 nm and 630 nm). As a control, cells that were not treated with the test substance were used. Based on these results, the concentration at which the test substance damaged 50% of the cultured cells (CC 50 ; 50% -cytotoxicity concentration) was calculated.
  • Cytotoxic activity was also measured using an LDH cytotoxicity measurement kit (MK401, manufactured by Takara Bio Inc.). Cells damaged in the cell membrane leak lactate dehydrogenase (LDH). In the LDH assay, cytotoxic activity is measured using the activity of LDH leaked into the culture medium as an index. First, culture solutions containing various concentrations of test substances diluted 2-fold were added to Huh7it-1 cells seeded in a 96-well plate and treated at 37 ° C. for 24 hours in the absence of virus.
  • LDH cytotoxicity measurement kit MK401, manufactured by Takara Bio Inc.
  • Hemolytic activity was measured using human red blood cells using previously reported (Moerman L et al., Eur J Biochem., 269, 4799-4810, 2002 and Diego-Garcia E et al., Cell Mol Life Sci., 65 , 187-200, 2008). Specifically, human red blood cells were washed three times with a buffer (0.81% NaCl, 20 mM HEPES, pH 7.4) and then suspended in a buffer having the same composition. This red blood cell suspension (containing 10 7 to 10 8 red blood cells per ml) was added to the buffer containing the test substance so that the final volume was 100 ⁇ l, and incubated at 37 ° C. for 60 minutes.
  • IC 50 antiviral activity
  • CC 50 cytotoxic activity
  • HC 50 hemolytic activity
  • N.I. m Measurement of the secreted phospholipase A 2 (isoform CM-II) derived from mossambica was taken as Example 1, and a kind of eubacteria, S. cerevisiae.
  • the measurement for secretory phospholipase A 2 derived from violaceorube is Comparative Example 1
  • the measurement for secretory phospholipase A 2 derived from bovine pancreas is Comparative Example 2
  • the measurement for secretory phospholipase A 2 derived from porcine pancreas is Comparative Example 3.
  • Example 1 using the secreted phospholipase A 2 (isoform CM-II) derived from mossambica, against Dengue virus and hepatitis C virus at concentrations as low as 0.31 ng / ml and 0.036 ng / ml, respectively. It showed antiviral activity. On the other hand, it did not show sufficient antiviral activity against Sindbis virus and influenza A virus even at a high concentration of 10,000 ng / ml.
  • CM-II isoform CM-II
  • Example 1 Even when used at an extremely high concentration of 10 ⁇ g / ml (10,000 ng / ml), only 30 to 40% of cells are damaged, and the cytotoxic activity and hemolytic activity are low. all right. From this, N.I. m. Mossambica-derived secretory phospholipase A 2 (isoform CM-II) has strong antiviral activity against dengue virus and hepatitis C virus, and low cytotoxicity and hemolytic activity against cells to be treated I understood.
  • CM-II isoform CM-II
  • test substance is S.P. secretory phospholipase A 2 derived Violaceoruber, secretory phospholipase A 2 derived from bovine pancreas, and in the case of porcine pancreatic secretory phospholipase A 2, even at high concentrations of 10,000 nanograms / ml, dengue virus and hepatitis C It did not show sufficient antiviral activity against the virus.
  • Sindbis virus and encephalomyocarditis virus for which antibodies for fluorescent antibody staining were not available the infectious titer was measured by plaque formation (Song J et al., J Gen Virol., 80, 879- 886, 1999).
  • the virus -Cells were inoculated with 200 ⁇ l of the test substance mixture.
  • the cells were washed with a culture solution to remove the virus and the test substance, and the cells were cultured for a certain period of time in a culture solution not containing the test substance.
  • the infected cells were measured by the fluorescent antibody method or plaque formation method.
  • anti-dengue virus mouse monoclonal antibodies (described in Hotta ⁇ ⁇ H et al., Proc Soc Exp Biol Med., 175, 320-327, 1984), hepatitis C virus-infected patient sera (Virus inactivated by ultraviolet irradiation) (described in El-Bitar AM et al., Virol J., 12, 47, ⁇ 2015) and anti-hepatitis B virus core protein mouse monoclonal antibody (B0586 , DAKO) or HBs envelope protein immune rabbit serum (ab39716, Abcam).
  • FITC-labeled anti-mouse IgG and FITC-labeled anti-human IgG were used for the primary antibody, respectively.
  • culture solution Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum (manufactured by Nissui Pharmaceutical Co., Ltd.) was used.
  • the number of infected cells when each virus was infected with cells not treated with the test substance was used as a control.
  • the ratio of the number of infected cells when treated with the test substance to the number of infected cells in the control was defined as the inhibition rate (%).
  • Example 2 Dengue virus (Triidad 1751 strain) (virus strain described in Hotta H et al., Infect Immun., 41, 462-469, 1983, etc.)
  • Example 3 Japanese encephalitis virus (Nakayama strain) (virus strain described in Song J et al., J Gen Virol., 80, 879-886, 1999)
  • Example 4 Hepatitis C virus (J6 / JFH-1 strain) (virus strain described in Bungyoku Y et al., J Gen Virol., 90, 1681-1691, 2009, etc.)
  • Example 5 Hepatitis B virus (Bj_JPN56 strain) (virus strain described in Hayashi M et al., Microbiol Immunol., 60, 17-25, 2016)
  • Comparative Example 4 Sindbis virus (virus strain described in Matsumura T et al., J Gen Virol., 17, 343-347, 1972)
  • Comparative Example 5 Influenza A virus (A / Udor / 307/72 [H
  • the primary antibody is an anti-dengue virus mouse monoclonal antibody (described in Hotta H et al., Proc Soc Exp Biol Med., 175, 320-327, 1984) , Japanese encephalitis virus immunized rabbit IgG (GTX131368 or GTX125868, GeneTex, Inc.), sera of hepatitis C virus infected patients (virus inactivated by ultraviolet irradiation) (El-Bitar AM et al., Virol J.
  • FITC-labeled anti-mouse IgG was used for the mouse monoclonal antibody
  • FITC-labeled anti-rabbit IgG was used for the immunized rabbit IgG
  • FITC-labeled anti-human IgG was used for the infected patient serum.
  • Sindbis virus and encephalomyocarditis virus for which antibodies for fluorescent antibody staining were not available the infectious titer was measured by the plaque formation method described above (Song J et al., J Gen Virol., 80, 879). -886, 1999)).
  • Dengue virus, Japanese encephalitis virus and hepatitis C virus (all belonging to the Flaviviridae family) having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane are described in N. m.
  • the IC 50 of mossambacia derived secretory phospholipase A 2 (isoform CM-II) was 0.31 ng / ml, 0.92 ng / ml and 0.036 ng / ml, respectively.
  • IC 50 of hepatitis B virus (belonging to the Hepadnaviridae family) considered to have an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane was 0.65 ng / ml. From this, N.I. m. It was found that mossambacia-derived secretory phospholipase A 2 (isoform CM-II) has strong antiviral activity against viruses having an envelope containing a lipid bilayer derived from the endoplasmic reticulum membrane.
  • Viral infection inhibition could be inhibited only to 5% or less.
  • virus infection inhibition could be inhibited only to 5% or less even when a high concentration of 10,000 ng / ml was administered.
  • the agent of the present invention containing the polypeptide or gene is It is useful as a therapeutic agent for the viral infection. Further, one embodiment of the present invention is useful in all technical fields in which removal of viruses from an object to be processed is required, particularly in the medical field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する新規の抗ウイルス剤を提供する。本発明の抗ウイルス剤は、コブラ毒由来の分泌型ホスホリパーゼA2のアイソフォームCM-IIまたは特定のアミノ酸配列からなるポリペプチドを含む。

Description

抗ウイルス剤
 本発明は、抗ウイルス剤に関する。
 ウイルスは、その外周構造の相違から、宿主細胞の様々な膜を構成する脂質二重層を含むエンベロープを有するウイルスと、エンベロープを有さないウイルスとの2種類に大別される。また、宿主細胞の膜は、(1)小胞体(ER)膜、並びにそれに関連する、核膜、脂肪滴膜、ER-ゴルジ体中間区画(ERGIC)膜およびシスゴルジ体膜と、(2)細胞膜(PM)、並びにそれに由来する、エンドソーム膜、多小胞体(MVB)膜およびトランスゴルジ体膜、の2種類に大別される。従って、エンベロープを有するウイルスは、エンベロープを獲得する部位に応じて、宿主細胞の小胞体(ER)膜由来の脂質二重層を含むエンベロープを有するウイルスと、宿主細胞の細胞膜(PM)由来の脂質二重層を含むエンベロープを有するウイルスとに分類することができる。
 このうち、宿主細胞の小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスには、フラビウイルス科、コロナウイルス科等に属するウイルスが含まれる。特に、フラビウイルス科のウイルスは、デングウイルス、日本脳炎ウイルス、C型肝炎ウイルス、黄熱ウイルス、ウエストナイルウイルス等に代表されるように、これらウイルスの感染により発症する疾患が一般に重症化する傾向が多く見られる。また、コロナウイルス科のウイルスも、重症急性呼吸器症候群(SARS)および中東呼吸器症候群(MERS)のような重症の感染症を引き起こす(重症急性呼吸器症候群および中東呼吸器症候群を引き起こすウイルスは、それぞれSARSコロナウイルスおよびMERSコロナウイルスと呼ばれる)。近年では、B型肝炎ウイルスに代表されるヘパドナウイルス科のウイルスも、宿主細胞の小胞体膜由来の脂質二重層を含むエンベロープを有することが報告されている(Liou W, et al., J. Biomed. Sci., 15, 311-316, 2008およびWei Y, et al., Pathol. Biol., 58, 267-272, 2010を参照)。
 ところで、最近になって、種々の毒ヘビ由来のホスホリパーゼAが、抗ウイルス活性を有することが明らかとなってきた。例えば、非特許文献1には、ムフェジコブラの一種であるNaja mossambica mossambica由来の分泌型ホスホリパーゼAのアイソフォーム(CM-III)が、ヒト免疫不全ウイルス(HIV)(細胞膜由来の脂質二重層を含むエンベロープを有する)に対して抗ウイルス活性を有することが記載されている。このアイソフォーム(CM-III)は宿主細胞の細胞膜を直接障害し、強い細胞障害活性および溶血活性を示すことが知られている。
 また、非特許文献2には、ガラガラヘビの一種であるCrotalus durissus terrificus由来のホスホリパーゼAが、デングウイルスおよび黄熱病ウイルス(小胞体膜由来の脂質二重層を含むエンベロープを有する)に対して抗ウイルス活性を有することが記載されている。
Fenard D, et al., J.Clin.Invest., 104, 611-618, 1999 Muller V D M, et al., Toxicon., 59, 507-515, 2012
 しかしながら、非特許文献1および2に記載のタンパク質は、処置対象の細胞等への細胞毒性が高いこと、抗ウイルス活性の選択毒性が低いこと、抗ウイルス効果が期待される対象ウイルスの範囲が明確でないこと等の種々の問題点があった。そのため、抗ウイルス剤にはさらなる改善の余地があった。
 本発明は、前記の問題点に鑑みてなされたものであり、本発明の目的は、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスの感染により発症する疾患を処置し得る、新規の抗ウイルス剤を提供することにある。
 本発明者らは、前記の課題を解決するべく鋭意検討を重ねた結果、特定のポリペプチドが、抗ウイルス活性、とりわけ小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する特異的な抗ウイルス活性を有し、かつ、処置対象の細胞への毒性が低いことを見出し、本発明を完成させるに至った。すなわち、本発明の一態様は、以下の発明を包含するものである。
 〔1〕以下の(a)~(g)からなる群より選択されるいずれかのポリペプチドまたは遺伝子を含むことを特徴とする、抗ウイルス剤であって、
 前記抗ウイルス剤の処置対象となるウイルスが、小胞体膜由来の脂質二重層を含むエンベロープを有することを特徴とする、抗ウイルス剤:
 (a)配列番号1で示されるアミノ酸配列からなるポリペプチド、
 (b)配列番号1で示されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチド、
 (c)配列番号1で示されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチド、
 (d)配列番号1で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子、
 (e)配列番号1で示されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子、
 (f)配列番号1で示されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子、および
 (g)前記(d)~(f)のいずれかの遺伝子と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子。
 〔2〕コブラ毒由来の分泌型ホスホリパーゼAのアイソフォームCM-IIポリペプチド、および/または当該ポリペプチドをコードする遺伝子を含む、抗ウイルス剤であって、
 前記抗ウイルス剤の処置対象となるウイルスが、小胞体膜由来の脂質二重層を含むエンベロープを有することを特徴とする、抗ウイルス剤。
 〔3〕前記抗ウイルス剤の処置対象となるウイルスが、フラビウイルス科またはヘパドナウイルス科に属することを特徴とする、〔1〕または〔2〕に記載の抗ウイルス剤。
 〔4〕前記抗ウイルス剤の処置対象となるウイルスが、デングウイルス、日本脳炎ウイルス、C型肝炎ウイルスおよびB型肝炎ウイルスからなる群より選択される少なくとも一つであることを特徴とする、〔1〕~〔3〕のいずれかに記載の抗ウイルス剤。
 本発明の一態様における抗ウイルス剤は、特定のウイルスに対して強力な抗ウイルス活性を示すと共に、処置対象の細胞への低い毒性を示す。
 本発明の一実施形態において、特定のポリペプチドまたは遺伝子を含むことを特徴とする、新規の抗ウイルス剤を提供する。本発明の一実施形態は、特定のポリペプチドが、抗ウイルス活性、とりわけ、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する抗ウイルス活性を有することを初めて見出したことに基づくものである。それ故、当該ポリペプチドまたは当該ポリペプチドをコードする遺伝子を含む本発明の抗ウイルス剤は、ウイルス感染による疾患、とりわけ、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスの感染による疾患を効果的に処置することができる。以下、本発明の実施形態について、〔1.ポリペプチド〕、〔2.遺伝子〕および〔3.抗ウイルス剤〕の順に詳述する。
 なお、本明細書に記載された文献の全てが、本明細書において参考として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。
 〔1.ポリペプチド〕
 本明細書において「ポリペプチド」なる用語は、「タンパク質」または「ペプチド」と交換可能に使用される。本明細書において使用される場合、アミノ酸の表記は、適宜IUPACおよびIUBの定める1文字表記または3文字表記を使用する。
 本発明の一実施形態において「ポリペプチド」は、アミノ酸がペプチド結合により結合した縮合重合体を意味し、抗ウイルス活性を有している限り別段限定されない。本発明の一実施形態におけるポリペプチドは、コブラ毒由来の分泌型ホスホリパーゼA(以下、「sPLA」と称することもある。)のアイソフォームCM-IIである。コブラとしては、コブラ科に属し、かつ毒を有しているヘビであれば特に限定されず、例えば、台湾コブラ(Naja atra)、タイコブラ(Naja kaouthia)、ムフェジコブラ(Naja mossambica)、タイドクハキコブラ(Naja siamensis)等のフードコブラ属(Naja);Bungarus bungaroides、Bungarus fasciatus等のアマガサヘビ属(Bungarus)に属するヘビが挙げられる。本発明の一実施形態におけるポリペプチドは、ムフェジコブラの一種であるNaja mossambica mossambica(以下、「N.m.mossambica」とも称する。)のコブラ毒由来のsPLAのアイソフォームCM-IIである。
 本発明の一実施形態におけるポリペプチドは、後述の実施例に示すように、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対して、極めて高い抗ウイルス活性を有している。一方、治療薬として使用する場合の副作用の指標となる細胞障害活性および溶血活性に関しては、極めて高用量で投与した場合に限り、それぞれの活性を有する。このように、本発明の一実施形態におけるポリペプチドが、十分に抗ウイルス活性を有する投与量では、細胞障害活性および溶血活性を示さないという効果を奏することは、驚くべき知見である。このような効果により、処置対象に与える負の影響を最小限にとどめつつ、効果的にウイルス感染症を処置できるという新規な治療薬を提供することが可能となる。
 また、本発明の一実施形態において使用されるポリペプチドとしては、以下の(a)~(c)からなる群より選択されるいずれかのポリペプチドが用いられる:
 (a)配列番号1で示されるアミノ酸配列からなるポリペプチド、
 (b)配列番号1で示されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチド、および
 (c)配列番号1で示されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチド。
 上記(a)のポリペプチドについて具体的に説明する。配列番号1で示されるアミノ酸配列からなるポリペプチドは、ムフェジコブラの一種であるN.m.mossambicaのコブラ毒に由来するポリペプチドである。また、配列番号1で示されるアミノ酸配列からなるポリペプチドは、上記コブラ毒に由来する分泌型ホスホリパーゼAのアイソフォーム(CM-I、CM-IIおよびCM-III)のうちの一つ(CM-II)であり、全長118アミノ酸残基から構成されるポリペプチドである。
 上記(b)のポリペプチドは、配列番号1で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等であって、抗ウイルス活性を有するタンパク質をコードする限り、その具体的な配列については限定されない。上記ポリペプチドを含む抗ウイルス剤の処置対象となるウイルスは、小胞体膜由来の脂質二重層を含むエンベロープを有する。すなわち、上記抗ウイルス活性は、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する抗ウイルス活性である。
 ここで欠失、置換または付加されてもよいアミノ酸の数は、前記抗ウイルス活性を失わせない限り、限定されないが、部位特異的突然変異誘発法、遺伝子断片欠失変異体作製法等の公知の導入法によって欠失、置換または付加できる程度の数である。また、明細書中において「変異」とは、部位特異的突然変異誘発法、遺伝子断片欠失変異体作製法等によって人為的に導入された変異を主に意味するが、天然に存在する同様の変異であってもよい。
 置換されるアミノ酸残基は、アミノ酸側鎖の性質が保存されている別のアミノ酸に置換されていることが好ましい。例えば、アミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸およびアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ酸(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)が挙げられる(括弧内はいずれもアミノ酸の一文字表記を表す)。あるアミノ酸配列に対する1または複数個のアミノ酸残基の欠失、付加および/または他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている。さらに、変異後のアミノ酸残基は、共通した性質をできるだけ多く有するアミノ酸残基に変異していることがより好ましい。
 本明細書において「機能的に同等」とは、対象となるポリペプチドが、目的とするポリペプチドと同等(同一および/または類似)の生物学的機能や生化学的機能を有することを意図する。生物学的な性質には発現する部位の特異性、発現量等も含まれ得る。変異を導入したポリペプチドが所望の機能を有するかどうかは、その変異ポリペプチドが抗ウイルス活性を有するかどうか調べることにより判断できる。
 本明細書において「抗ウイルス活性」は、ウイルスの感染性、増殖能または免疫回避能を低下させる活性を意味する。
 ウイルスの感染性は、ウイルスが宿主細胞に吸着または侵入する性質を意味する。このときの抗ウイルス活性は、例えば、ポリペプチドがウイルス粒子の表面タンパク質と接触することにより、宿主細胞に対するウイルスの吸着または侵入を抑制する活性を示す。すなわち、当該抗ウイルス活性は、ウイルスの中和活性と言い換えることができる。
 ウイルスの増殖能は、宿主細胞におけるウイルス粒子の構成タンパク質の合成能、ウイルス遺伝子の複製能またはウイルス粒子の形成能を意味する。このときの抗ウイルス活性は、例えば、宿主細胞において、あるウイルスタンパク質の合成を阻害したり、合成されたウイルスタンパク質の機能を阻害したり、ウイルス遺伝子の複製を阻害することにより、成熟したウイルス粒子の形成を抑制する活性を意味する。当該ウイルスタンパク質としては、ウイルスタンパク質の合成を促進するか、もしくは合成に必須なウイルスタンパク質、またはウイルス粒子の形成を促進するか、もしくは形成に必須なウイルスタンパク質、またはウイルス遺伝子の複製を促進するか、もしくは複製に必須なウイルスタンパク質等が挙げられる。
 ウイルスの免疫回避能は、宿主の免疫機構によってウイルスが排除されることを回避する能力を意味する。このときの抗ウイルス活性は、例えば、ウイルス粒子の表面タンパク質に結合して、ウイルス粒子を抗原として認識可能な形態に変化させる活性、または宿主の免疫機構の一部を妨害するウイルスタンパク質を失活させる活性である。
 ポリペプチドが、抗ウイルス活性を有するポリペプチドであるか否かを判定するためには、ポリペプチドと、ウイルス(および/または宿主細胞)とを接触させた際に、上記で例示したような抗ウイルス活性が生じるか否かを試験すればよい。すなわち、ポリペプチドと、ウイルス(および/または宿主細胞)とを接触させた際に、例えば、ウイルスの感染性の低下、増殖能の低下、免疫回避能の低下等が生じれば、当該ポリペプチドを、抗ウイルス活性を有するポリペプチドであると判定することができる。
 抗ウイルス活性の具体的な判定方法は特に限定されず、適宜、周知の方法を用いることができる。抗ウイルス活性の具体的な判定方法としては、ポリペプチド、ウイルスおよび宿主細胞の関係を考慮して、例えば、以下の(1)~(4)の方法が挙げられる。
 (1)ポリペプチドと宿主細胞とを接触させて、一定時間処理した後に、当該ポリペプチドを除去する。続いて、ウイルスを前記宿主細胞へ感染させて、感染から1時間後に余剰の当該ウイルスを除去する。その後に、当該ポリペプチドを含まない培養液で当該宿主細胞を一定時間培養し、ウイルス感染価を測定する。この方法により、ポリペプチドが、ウイルス感染を抑制する因子(インターフェロン等)の発現を宿主細胞に誘導するか否か(すなわち、ポリペプチドが、宿主細胞へのウイルス感染を阻害するか否か)を判定することができる。
 (2)ポリペプチドとウイルスとを接触させて、一定時間反応させる。その後に、当該ウイルスを宿主細胞へ感染させ、感染から1時間後に余剰の当該ウイルスを除去する。その後に、当該ポリペプチドを含まない培養液で当該宿主細胞を一定時間培養し、ウイルス感染価を測定する。この方法により、ポリペプチドが、感染性ウイルス粒子の感染能を直接阻害するか否か(すなわち、ポリペプチドが、宿主細胞へのウイルス感染を阻害するか否か)を判定することができる。
 また、ポリペプチドが、感染性ウイルス粒子の感染能を直接阻害するか否かを判定し得る(2)の変法として、以下の(2’)および/または(2’’)の方法が用いられる。
 (2’)ポリペプチドとウイルスとの混合液を宿主細胞に感染させ、感染から1時間後に余剰の当該ウイルスを含む混合液を除去する。その後に、当該ポリペプチドを含まない培養液で当該宿主細胞を培養し、一定時間経過後に、当該宿主細胞を固定して、抗ウイルス抗体を用いた蛍光抗体法により感染細胞を計測し、当該ポリペプチド・ウイルス混合液中のウイルス感染価を測定する。
 (2’’)ポリペプチドとウイルスとの混合液を宿主細胞に感染させ、感染から1時間後に余剰の当該ウイルスを含む混合液を除去する。その後に、1%メチルセルロース添加培養液で培養し、一定時間経過後に、1個の感染性ウイルス粒子に由来する死滅したウイルス感染細胞の集団が形成する細胞シートの穴(以下、「プラク」と称する)の数を計測して、当該ポリペプチド・ウイルス混合液中のウイルス感染価を測定する。(以下、この方法を「プラク形成法」と称する。)
 (3)ウイルスを宿主細胞に感染させて、感染から1時間後に当該ウイルスを除去し、ポリペプチドを含む培養液で当該宿主細胞を一定時間培養した後、ウイルス感染価を測定する。この方法により、ポリペプチドが、宿主細胞内に侵入したウイルスの遺伝子複製、ウイルスタンパク質の合成、ウイルス粒子の形成および/または放出等を阻害し得るか否かを判定することができる。
 (4)ポリペプチドとウイルスとを接触させて、一定時間反応させた後に、当該ウイルスを宿主細胞へ感染させ、当該ポリペプチドを含む培養液で当該宿主細胞を一定時間培養し、ウイルス感染価を測定する。この方法により、上記(2)および(3)の効果を同時に測定することができる。
 上記(c)のポリペプチドは、上記(b)のポリペプチドと同様に、配列番号1で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等を意図しており、抗ウイルス活性を有するタンパク質をコードする限り、その具体的な配列については限定されない。上記ポリペプチドを含む抗ウイルス剤の処置対象となるウイルスは、小胞体膜由来の脂質二重層を含むエンベロープを有する。すなわち、上記抗ウイルス活性は、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する抗ウイルス活性である。
 アミノ酸配列の相同性とは、アミノ酸配列全体(または機能発現に必要な領域)で、少なくとも80%以上、より好ましくは90%以上、さらに好ましくは95%以上(例えば、95%、96%、97%、98%、99%以上)の配列の同一性を有することを意味する。アミノ酸配列の相同性は、BLASTN(核酸レベル)やBLASTX(アミノ酸レベル)のプログラム(Altschul et al. J. Mol. Biol., 215, 403-410, 1990)を利用して決定することができる。当該プログラムは、KarlinおよびAltschulによるアルゴリズムBLAST(Proc. Natl. Acad. Sci. USA, 87, 2264-2268, 1990, Proc. Natl. Acad. Sci. USA, 90, 5873-5877, 1993)に基づいている。BLASTNによって塩基配列を解析する場合には、パラメーターは例えばscore=100、wordlength=12とする。また、BLASTXによってアミノ酸配列を解析する場合には、パラメーターは例えばscore=50、wordlength=3とする。また、Gapped BLASTプログラムを用いて、アミノ酸配列を解析する場合は、Altschulら(Nucleic Acids Res. 25, 3389-3402, 1997)に記載されているように行うことができる。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である。比較対象の塩基配列またはアミノ酸配列を最適な状態にアラインメントするために、付加または欠失(例えば、ギャップ等)を許容してもよい。
 本明細書において「相同性」とは、性質が類似のアミノ酸残基数の割合(homology、positive等)を意図しているが、より好ましくは、同一のアミノ酸残基数の割合、すなわち同一性(identity)である。なお、アミノ酸の性質については上述したとおりである。
 本発明の一実施形態におけるポリペプチドは、アミノ酸がペプチド結合しているものであればよいが、これに限定されるものではなく、糖鎖やイソプレノイド基などのポリペプチド以外の構造を含む複合ペプチドであってもよい。アミノ酸の官能基は修飾されていてもよい。アミノ酸はL型であることが好ましいが、これに限定されない。
 本発明の一実施形態におけるポリペプチドは、当該分野において公知の任意の手法に従って容易に入手もしくは産生され得る。例えば、本発明の一実施形態におけるポリペプチドは、精製された天然物、化学合成の産物、および原核生物宿主または真核生物宿主(例えば、細菌細胞、酵母細胞、高等植物細胞、昆虫細胞、および哺乳動物細胞を含む)を用いた組み換え技術によって産生された産物であってもよい。組み換え技術において用いられる宿主に依存して、本発明の一実施形態におけるポリペプチドは、グリコシル化され得るか、または非グリコシル化され得る。さらに、本発明の一実施形態におけるポリペプチドはまた、いくつかの場合、宿主媒介プロセスの結果として、開始の改変メチオニン残基を含み得る。
 本発明の一実施形態におけるポリペプチドの生産方法は、例えば、当該ポリペプチドをコードするポリヌクレオチドを含むベクターを用いて行われる。この場合、特に、上記ベクターを組み換え発現系において用いることが好ましい。組み換え発現系を用いる場合、本発明の一実施形態におけるポリペプチドをコードするポリヌクレオチドを組み換え発現ベクターに組み込んだ後、公知の方法により発現可能な宿主に導入し、宿主(形質転換体)内で翻訳されて得られるポリペプチドを精製するという方法などを採用することができる。組み換え発現ベクターは、プラスミドであってもなくてもよく、宿主に目的ポリヌクレオチドを導入することができればよい。
 このように宿主に外来ポリヌクレオチドを導入する場合、発現ベクターは、外来ポリヌクレオチドを発現するように宿主内で機能するプロモーターを組み込んであることが好ましい。組み換え技術によって産生されたポリペプチドを精製する方法は、用いた宿主、ポリペプチドの性質によって異なるが、タグの利用等によって比較的容易に目的のポリペプチドを精製することが可能である。
 本発明の一実施形態におけるポリペプチドの生産方法は、当該ポリペプチドを含む細胞または組織の抽出液から当該ポリペプチドを精製する工程をさらに包含し得る。ポリペプチドを精製する工程は、周知の方法(例えば、細胞または組織を破壊した後に遠心分離して可溶性画分を回収する方法)で細胞や組織から細胞抽出液を調製した後、この細胞抽出液から周知の方法(例えば、硫安沈殿またはエタノール沈殿、酸抽出、陰イオンまたは陽イオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティークロマトグラフィー、ヒドロキシアパタイトクロマトグラフィー、およびレクチンクロマトグラフィー)によって精製する工程が好ましいが、これらに限定されない。最も好ましくは、高速液体クロマトグラフィー(「HPLC」)が精製のために用いられる。
 本発明の一実施形態におけるポリペプチドの生産方法の別の例として、当該ポリペプチドを天然に発現する細胞または組織から当該ポリペプチドを精製することができる。当該ポリペプチドを天然に発現するものの例として、コブラ毒が挙げられる。本方法は、抗体またはオリゴヌクレオチドを用いて本発明の一実施形態におけるポリペプチドを天然に発現する細胞または組織を同定する工程を包含することができる。また、本方法は、当該ポリペプチドを精製する工程をさらに包含し得る。
 さらに、本発明の一実施形態におけるポリペプチドの生産方法の別の例として、本発明の一実施形態におけるポリペプチドを化学合成することが挙げられる。当業者は、本明細書に記載されている本発明のポリペプチドのアミノ酸配列に基づいて周知の化学合成技術を適用すれば、本発明のポリペプチドを化学合成できることを、容易に理解する。化学合成技術としては、固相法または液相法を挙げることができる。固相法において、例えば、市販の各種ペプチド合成装置(Model MultiPep RS(Intavis AG)等)を利用することができる。
 以上のように、本発明の一実施形態におけるポリペプチドを生産する方法によって取得されるポリペプチドは、天然に存在する変異ポリペプチドであっても、人為的に作製された変異ポリペプチドであってもよい。
 このように、本発明の一実施形態におけるポリペプチドは、少なくとも、当該ポリペプチドのアミノ酸配列、または当該ポリペプチドをコードするポリヌクレオチドの塩基配列に基づいて公知慣用技術を用いて生産すればよいといえる。
 〔2.遺伝子〕
 本発明の一実施形態において、上記〔1〕で記載した本発明の一実施形態におけるポリペプチドをコードする遺伝子を提供する。本発明の一実施形態において使用される遺伝子は、コブラ毒由来の分泌型ホスホリパーゼAのアイソフォームCM-IIポリペプチドをコードする遺伝子であることが好ましい。本発明の一実施形態におけるポリペプチドが抗ウイルス剤等として有用であるのと同様の理由で、本発明の一実施形態における遺伝子もまた、抗ウイルス剤等として有用である。
 本明細書において「遺伝子」なる用語は、「ポリヌクレオチド」、「核酸」または「核酸分子」と交換可能に使用され、ヌクレオチドの重合体が意図される。本明細書において「塩基配列」なる用語は、「核酸配列」または「ヌクレオチド配列」と交換可能に使用され、デオキシリボヌクレオチド(A、G、CおよびTと省略される)の配列として示される。
 本発明の一実施形態において使用される遺伝子としては、以下の(d)~(g)からなる群より選択されるいずれかの遺伝子が用いられる:
 (d)配列番号1で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子、
 (e)配列番号1で示されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子、
 (f)配列番号1で示されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子、および
 (g)前記(d)~(f)のいずれかの遺伝子と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子。
 上記(d)の遺伝子は、上述した配列番号1で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子である。なお、配列番号1で示されるアミノ酸配列からなるポリペプチドは、上述したとおりである(以下、項目〔2〕において同様。)。
 上記(d)の遺伝子としては、例えば配列番号2で示される塩基配列からなる遺伝子が挙げられる。配列番号2は、N.m.mossambicaの近縁種である、Naja naja atra(台湾コブラ)のホスホリパーゼAの塩基配列(GenBank Accession no.X73225)を基に、N.m.mossambicaに由来する分泌型ホスホリパーゼAのアイソフォームCM-IIのアミノ酸配列を示すように推定された塩基配列である。
 上記(e)の遺伝子は、配列番号1で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等であって、抗ウイルス活性を有するタンパク質をコードする遺伝子である限り、その具体的な配列については限定されない。上記遺伝子を含む抗ウイルス剤の処置対象となるウイルスは、小胞体膜由来の脂質二重層を含むエンベロープを有する。すなわち、上記抗ウイルス活性は、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する抗ウイルス活性であることが好ましい。
 なお、「欠失、置換または付加されてもよいアミノ酸の数」や「その導入方法」、「変異」の定義、「変異するアミノ酸残基」の記載、「機能的に同等」の定義、「抗ウイルス活性」の定義等は、上記〔1〕で記載したものと同様である。
 上記(f)の遺伝子は、上記(e)の遺伝子と同様に、配列番号1で示されるアミノ酸配列を有するタンパク質の、機能的に同等の変異体、誘導体、バリアント、アレル、ホモログ、オルソログ、部分ペプチド、または他のタンパク質・ペプチドとの融合タンパク質等を意図しており、抗ウイルス活性を有するタンパク質をコードする遺伝子である限り、その具体的な配列については限定されない。上記遺伝子を含む抗ウイルス剤の処置対象となるウイルスは、小胞体膜由来の脂質二重層を含むエンベロープを有する。すなわち、上記抗ウイルス活性は、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する抗ウイルス活性である。
 なお、「アミノ酸配列の相同性」や「相同性」の定義等は、上記〔1〕で記載したものと同様である。
 上記(g)の遺伝子は、上記(d)~(f)のいずれかの遺伝子と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズする遺伝子を意図しており、抗ウイルス活性を有するタンパク質をコードする遺伝子である限り、その具体的な配列については限定されない。上記遺伝子を含む抗ウイルス剤の処置対象となるウイルスは、小胞体膜由来の脂質二重層を含むエンベロープを有する。すなわち、上記抗ウイルス活性は、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する抗ウイルス活性である。
 ここで、ストリンジェントな条件とは、いわゆる塩基配列に特異的な2本鎖のポリヌクレオチドが形成され、非特異的な2本鎖のポリヌクレオチドが形成されない条件をいう。換言すれば、相同性が高い核酸同士、例えば完全にマッチしたハイブリッドの融解温度(Tm値)から15℃、好ましくは10℃、さらに好ましくは5℃低い温度までの範囲の温度でハイブリダイズする条件ともいえる。例えば、一例を示すと、0.25M NaHPO、pH7.2、7%SDS、1mM EDTA、1×デンハルト溶液からなる緩衝液中で温度が60~68℃、好ましくは65℃、さらに好ましくは68℃の条件下で16~24時間ハイブリダイズさせ、さらに20mM NaHPO、pH7.2、1% SDS、1mM EDTAからなる緩衝液中で温度が60~68℃、好ましくは65℃、さらに好ましくは68℃の条件下で15分間の洗浄を2回行う条件を挙げることができる。他の例としては、25%ホルムアミド、より厳しい条件では50%ホルムアミド、4×SSC(塩化ナトリウム/クエン酸ナトリウム)、50mM Hepes pH7.0、10×デンハルト溶液、20μg/mL変性サケ精子DNAを含むハイブリダイゼーション溶液中、42℃で一晩プレハイブリダイゼーションを行った後、標識したプローブを添加し、42℃で一晩保温することによりハイブリダイゼーションを行う。その後の洗浄における洗浄液および温度条件は、「1×SSC、0.1% SDS、37℃」程度で、より厳しい条件としては「0.5×SSC、0.1% SDS、42℃」程度で、さらに厳しい条件としては「0.2×SSC、0.1% SDS、65℃」程度で実施することができる。このようにハイブリダイゼーションの洗浄の条件が厳しくなるほど、特異性の高いハイブリダイズとなる。ただし、前記SSC、SDSおよび温度の条件の組み合わせは例示であり、当業者であれば、ハイブリダイゼーションのストリンジェンシーを決定する前記若しくは他の要素(例えば、プローブ濃度、プローブの長さ、ハイブリダイゼーション反応時間等)を適宜組み合わせることにより、前記と同様のストリンジェンシーを実現することが可能である。このことは、例えば、Sambrookら、Molecular Cloning, A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory(2001)等に記載されている。
 本発明の一実施形態における遺伝子は、RNA(例えば、mRNA)の形態、またはDNAの形態(例えば、cDNAまたはゲノムDNA)で存在し得る。DNAは、二本鎖または一本鎖であり得る。一本鎖DNAまたはRNAは、コード鎖(センス鎖としても知られる)であり得るか、または非コード鎖(アンチセンス鎖としても知られる)であり得る。
 本発明の一実施形態における遺伝子は、非翻訳領域(UTR)の配列またはベクター配列(発現ベクター配列を含む)などの配列を含むものであってもよい。
 本発明の一実施形態において、ベクターは、周知の遺伝子組み換え技術により、本発明の一実施形態における遺伝子を所定のベクターに挿入することにより作製することができる。上記ベクターとしては、別段限定されるものでなく、組み換え発現ベクターであってもよいし、クローニングベクターであってもよい。ベクターの選択は、目的に応じて、適宜選択可能である。
 本発明の一実施形態における遺伝子を抗ウイルス剤として用いる場合、遺伝子が所定の発現ベクターに挿入されていることが好ましい。本発明の一実施形態における遺伝子が所定の発現ベクターに挿入されていることにより、例えば、標的部位への遺伝子の送達をより効率的に行うことができたり、標的部位における細胞内への遺伝子の取り込み効率を上げたり、標的部位において抗ウイルス作用を有するポリペプチドの発現を高めたりすることができる。その結果として、本発明の一実施形態における遺伝子を含む抗ウイルス剤によりウイルス感染症を効果的に処置することが可能となる。
 このようなベクターは、薬剤送達系(Drug Delivery System(DDS))の分野において開発が進んでおり、所望の送達および発現効果を有するベクターを適宜選択することが可能である。そのようなベクターの一例として、ウイルスベクター(例えば、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター等)、DNAベクター(例えば、pUMVC4a等)等が挙げられるがこれらに限定されない。
 〔3.抗ウイルス剤〕
 本発明の一実施形態において、上記〔1〕で記載したポリペプチドを含む抗ウイルス剤を提供する。本発明の別の実施形態において、上記〔2〕で記載した遺伝子を含む抗ウイルス剤を提供する。
 本発明の一実施形態における抗ウイルス剤が標的とするウイルスは、小胞体膜由来の脂質二重層を含むエンベロープを有することを特徴とする。
 上記エンベロープは、ウイルスが、感染した宿主細胞内で増殖した後、宿主細胞内から細胞外へと放出されるという一連の過程の中で、宿主細胞の細胞膜、小胞体膜等に由来する脂質二重層に宿主細胞内で発現したウイルス由来のタンパク質が挿入されることによって形成される。そのため、エンベロープの組成は、ウイルスの出芽経路を反映していると考えられている。本発明の一実施形態における抗ウイルス剤が標的とするウイルスは、小胞体膜由来の脂質二重層を含むエンベロープを有する。つまり、本発明の一実施形態における抗ウイルス剤が標的とするウイルスは、宿主細胞の小胞体を経由して出芽すると考えられる。
 小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスとしては、フラビウイルス科、コロナウイルス科、ヘパドナウイルス科に属するウイルス等が挙げられる。フラビウイルス科に属するウイルスとしては、例えば、デングウイルス、日本脳炎ウイルス、C型肝炎ウイルス、黄熱ウイルス、ウエストナイルウイルス、ジカウイルス等が挙げられるがこれらに限定されない。コロナウイルス科に属するウイルスとしては、例えば、SARSコロナウイルス、MERSコロナウイルス等が挙げられるがこれらに限定されない。ヘパドナウイルス科に属するウイルスとしては、例えば、B型肝炎ウイルス、地リスB型肝炎ウイルス、ガチョウB型肝炎ウイルス等が挙げられるがこれらに限定されない。
 本発明の一実施形態における上記〔1〕で記載したポリペプチドは、後述の実施例に示すように、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対して、高い抗ウイルス活性を有している。一方、細胞障害活性および溶血活性に関しては、極めて高用量で投与した場合に限り、それぞれの活性を有する。すなわち、十分に抗ウイルス活性を有する投与量では、細胞障害活性および溶血活性を示さないため、処置対象に与える影響を最小限にとどめつつ、効果的にウイルス感染症を処置することが可能である。
 実施例では、上記〔1〕で記載したポリペプチドが、感染性ウイルス粒子の感染能を直接阻害する効果が特に高いこと(換言すれば、宿主細胞外での中和活性が高いこと)が見出されている。そのため、本発明の一実施形態におけるポリペプチドは、同様の作用機序を有する中和抗体と同じ治療効果を有すると考えられる。すなわち、本発明の一実施形態におけるポリペプチドは、ウイルス感染症の感染初期の治療薬および重症化の予防薬として、とりわけ有用であり得る。
 本発明の一実施形態における抗ウイルス剤の投与対象は、上記〔1〕で記載したポリペプチドまたは上記〔2〕で記載した遺伝子により処置され得る対象であれば別段限定されない。本発明の一実施形態における抗ウイルス剤の投与対象は、例えば、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスの感染症を患う対象であり、例えば、哺乳動物、例えば、ヒトであり得る。
 本発明の一実施形態における抗ウイルス剤は、処置対象に対して、直接注入により投与され得る。本発明の一実施形態における抗ウイルス剤はまた、経口投与、粘膜投与、筋肉内投与、静脈内投与、皮下投与、眼内投与または経皮的投与のために処方され得るが、患者体内において専らウイルス血症により感染が拡大するウイルス感染症に対して静脈内投与することがより好ましい。本発明の一実施形態における抗ウイルス剤の投与量は、当該技術分野における通常の方法に基づいて、適宜設定することができる。
 本発明の一実施形態において、抗ウイルス剤は、上記〔1〕で記載したポリペプチドおよび上記〔2〕で記載した遺伝子の他に、薬学的に許容可能なキャリア、希釈剤または賦形剤(それらの組み合わせを含む)を含み得る。
 本発明の一実施形態において、抗ウイルス剤は、好ましくは、ヒトについての使用のためのものであり、薬学的に許容可能なキャリア、希釈剤または賦形剤の任意の1つ以上を含む。治療的使用のための薬学的に許容可能なキャリアまたは賦形剤は、薬学分野で周知であり、例えば、Remington’s Pharmaceutical Sciences, Mack Publishing Co.(A.R.Gennaro編、1985)に記載されている。薬学的に許容可能なキャリア、希釈剤または賦形剤の選択は、意図された投与経路および標準的薬学的慣行に従って、当業者によって容易に選択され得る。また、本発明の一実施形態における抗ウイルス剤は、任意の適切な結合剤、滑沢剤、懸濁剤、被覆剤または可溶化剤をさらに含み得る。
 本明細書中の記載に基づけば、当業者は、本発明の一実施形態における抗ウイルス剤の別の形態(例えば、キット)および、本発明の一実施形態における抗ウイルス剤を用いて疾患を処置(予防および/または治療)する方法もまた本発明の範囲内であることを、容易に理解する。
 また、他の実施形態において、本発明の一実施形態における抗ウイルス剤は、ウイルスを除去すべき被処理物からウイルスを除去するために用いられ得る。例えば、本発明の一実施形態における抗ウイルス剤は、噴霧剤、塗布剤、浸漬剤等の形態であり得、それぞれ、被処理物に対して噴霧、塗布、被処理物を浸漬するために用いられ得る。本発明の一実施形態において、抗ウイルス剤は、用途に応じて、公知の抗ウイルス剤、界面活性剤、安定剤、pH調整剤、緩衝剤、等張化剤、キレート剤、保存料、粘張剤、溶媒等をさらに含んでいてもよい。
 さらに、本発明の他の実施形態において、抗ウイルス剤は、以下の(a)~(g)からなる群より選択されるいずれかのポリペプチドまたは遺伝子を含み、前記抗ウイルス剤の処置対象となるウイルスが、フラビウイルス科またはヘパドナウイルス科に属することを特徴とする、抗ウイルス剤であってもよい:
 (a)配列番号1で示されるアミノ酸配列からなるポリペプチド、
 (b)配列番号1で示されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチド、
 (c)配列番号1で示されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチド、
 (d)配列番号1で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子、
 (e)配列番号1で示されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子、
 (f)配列番号1で示されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子、および
 (g)前記(d)~(f)のいずれかの遺伝子と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子。
 その他、上記〔1〕~〔3〕の各項目で記載した内容は、他の項目においても適宜援用できることを付言する。また、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。以下、実施例により本発明を更に詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。
 〔1.抗ウイルス活性を有する分泌型ホスホリパーゼAの決定〕
 4種類のウイルスと、Huh7it-1細胞とを用いたin vitro感染系で、被験物質に関して、抗ウイルス活性を測定した。上記ウイルスとしては、デングウイルス(Trinidad 1751株)(Hotta H et al., Infect Immun., 41, 462-469, 1983等に記載のウイルス株)、C型肝炎ウイルス(J6/JFH-1株)(Bungyoku Y et al., J Gen Virol., 90, 1681-1691, 2009等に記載のウイルス株)、シンドビスウイルス(Matsumura T et al., J Gen Virol., 17, 343-347, 1972に記載のウイルス株)、およびA型インフルエンザウイルス(A/Udorn/307/72[H3N2])(El-Bitar AM et al., Virol J., 12, 47, 2015に記載のウイルス株)を用いた。また、Huh7it-1細胞は、Apriyanto DR et al., Jpn J Infect Dis., 69, 213-220, 2016等に記載の細胞株を用いた。被験物質としては、ムフェジコブラの一種であるN.m.mossambica由来の分泌型ホスホリパーゼAアイソフォームCM-II(P7778、Sigma-Aldrich社製)、Streptomyces violaceoruber(以下、「S.violaceoruber」とも称する)由来の分泌型ホスホリパーゼA(P8685、Sigma-Aldrich社製)、ウシ膵臓由来の分泌型ホスホリパーゼA(P8913、Sigma-Aldrich社製)、ブタ膵臓由来の分泌型ホスホリパーゼA(SANYO FINE社製)を用いた。「培養液」は、10%牛胎児血清加ダルベッコ改変イーグル培地(日水製薬株式会社製)を用いた。
 Huh7it-1細胞を24ウェルプレートの各ウェルに1,000μlずつ播種した。翌日(24時間後)、100μlのウイルスと100μlの種々の濃度(0.002ng/ml、0.02ng/ml、0.2ng/ml、2ng/ml、20ng/ml、200ng/ml、2,000ng/mlおよび20,000ng/ml)の被験物質とを混合し、37℃で1時間インキュベートした。各ウェルの培養液を除いた後、ウイルスと被験物質との混合物200μlを細胞に接種し、さらに1時間インキュベートした。培養液で細胞を洗浄して余剰のウイルスを除き、被験物質を含まない培養液でさらにインキュベートした。24時間後に蛍光抗体法を実施し、ウイルス感染細胞の数を測定した。被験物質で処理されていないウイルスの溶液をコントロールとして用いた。一次抗体としては、抗デングウイルスのマウスのモノクローナル抗体(Hotta H et al., Proc Soc Exp Biol Med., 175, 320-327, 1984に記載)、C型肝炎ウイルス感染患者血清(紫外線照射によりウイルス感染性を不活化したもの)(El-Bitar AM et al., Virol J., 12, 47, 2015に記載)、インフルエンザウイルス免疫ウサギ血清(El-Bitar AM et al., Virol J., 12, 47, 2015に記載)を用いた。二次抗体としては、上記一次抗体に対してそれぞれ、FITC標識抗マウスIgG、FITC標識抗ヒトIgG、FITC標識抗ウサギIgGを用いた。なお、蛍光抗体法の結果を基に、既報(El-Bitar et al., Virol. J., 12, 47, 2015)の方法に準じて、ウイルス感染価の測定を行った。上記の方法で得られたウイルス感染価を基にして、被験物質がウイルス感染を50%抑制する濃度(IC50;50%-inhibitory concentration)を算出した。蛍光抗体染色用の抗体が入手できなかったシンドビスウイルスについては、1%メチルセルロース添加培養液で72~96時間静置培養してプラクを形成させるプラク形成法により、感染価を測定した(プラク形成法は、Song J et al., J Gen Virol., 80, 879-886, 1999に記載の方法)。
 また、細胞障害活性および溶血活性の測定は、以下の方法により行った。
 具体的には、細胞障害活性は、WST-1アッセイ(El-Bitar et al., Virol. J., 12, 47, 2015に記載)により測定した。まず、96ウェルプレートに播種されたHuh7it-1細胞に、2倍段階希釈した種々の濃度の被験物質を含む培養液を添加し、ウイルス非存在下で、37℃で24時間処理した。その後、10μlのWST-1試薬(Roche社製)を加えて4時間培養した。WST-1試薬は、ミトコンドリアの脱水素酵素によりフォルマザンに変換されるため、フォルマザンの量を分光光度計(450nmおよび630nm)で測定することにより、細胞生存率を求めた。コントロールとしては、被験物質での処理を行っていない細胞を用いた。これらの結果を基にして、被験物質が培養細胞の50%を障害する濃度(CC50;50%-cytotoxicity concentration)を算出した。
 また、細胞障害活性は、LDH細胞障害性測定キット(MK401、タカラバイオ社製)によっても測定した。細胞膜に損傷を受けた細胞は、乳酸脱水素酵素(LDH)を漏出する。LDHアッセイにおいては、培養液中に漏出したLDHの活性を指標にして細胞障害活性を測定する。まず、96ウェルプレートに播種されたHuh7it-1細胞に、2倍段階希釈した種々の濃度の被験物質を含む培養液を添加し、ウイルス非存在下で、37℃で24時間処理した。各ウェルの培養上清100μlをELISA用96ウェルプレートに移し、上記キットに添付されている試薬Cを100μl加えて、遮光して室温で30分間反応させた。50μlの1N HClを加えて反応を停止させ、分光光度計(492nm)で吸光度を測定して、LDH活性を算出し、細胞生存率を求めた。陰性コントロールとしては、被験物質での処理を行っていない細胞の培養上清を、また、陽性コントロールとしては、1%のTritonX-100溶液で処理した細胞の培養上清を用いた。この結果を基にして、被験物質が培養細胞の50%を障害する濃度(CC50;50%-cytotoxicity concentration)を算出した。
 溶血活性の測定は、ヒトの赤血球細胞を用いて、既報(Moerman L et al., Eur J Biochem., 269, 4799-4810, 2002 および Diego-Garcia E et al., Cell Mol Life Sci., 65, 187-200, 2008)に準じて行った。具体的には、ヒトの赤血球細胞をバッファー(0.81%のNaCl、20mMのHEPES、pH7.4)で3回洗浄後、同じ組成のバッファーで懸濁した。この赤血球細胞懸濁液(1mlあたり10~10個の赤血球細胞を含む)を、最終体積が100μlとなるように、被験物質を含むバッファーに加え、37℃で60分間インキュベートした。続いて遠心した後、遠心上清の570nmの吸光度を測定することにより、溶血の有無を決定した。バッファー(または滅菌水)に赤血球細胞を懸濁した溶液、および0.5%のTritonX-100を含むバッファー(または滅菌水)に赤血球細胞を懸濁した溶液を、それぞれ、0%溶血および100%溶血のコントロールとした。
 抗ウイルス活性(IC50)、細胞障害活性(CC50)および溶血活性(HC50)についての結果を下記の表1に示す。なお、N.m.mossambica由来の分泌型ホスホリパーゼA(アイソフォームCM-II)についての測定を実施例1とし、真正細菌の一種S.violaceoruber由来の分泌型ホスホリパーゼAについての測定を比較例1とし、ウシ膵臓由来の分泌型ホスホリパーゼAについての測定を比較例2とし、ブタ膵臓由来の分泌型ホスホリパーゼAについての測定を比較例3とする。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、被験物質としてN.m.mossambica由来の分泌型ホスホリパーゼA(アイソフォームCM-II)を用いた実施例1では、デングウイルスおよびC型肝炎ウイルスに対して、それぞれ、0.31ng/mlおよび0.036ng/mlという低い濃度で抗ウイルス活性を示した。一方、シンドビスウイルスおよびA型インフルエンザウイルスに対しては、10,000ng/mlの高濃度においても、十分な抗ウイルス活性を示さなかった。
 また、実施例1では、10μg/ml(10,000ng/ml)という極めて高い濃度で用いた場合でも、30~40%の細胞を障害するのみであり、細胞障害活性や溶血活性は低いことがわかった。このことから、N.m.mossambica由来の分泌型ホスホリパーゼA(アイソフォームCM-II)は、デングウイルスおよびC型肝炎ウイルスに対して強い抗ウイルス活性を有すると共に、処置対象の細胞に対して低い細胞毒性や溶血活性を示すことがわかった。
 一方、被験物質がS.violaceoruber由来の分泌型ホスホリパーゼA、ウシ膵臓由来の分泌型ホスホリパーゼA、およびブタ膵臓由来の分泌型ホスホリパーゼAの場合には、10,000ng/mlの高濃度においても、デングウイルスおよびC型肝炎ウイルスに対して、十分な抗ウイルス活性を示さなかった。
 〔2.作用機序解析〕
 N.m.mossambica由来の分泌型ホスホリパーゼA(アイソフォームCM-II)の、デングウイルス、C型肝炎ウイルスおよびB型肝炎ウイルスに対する、抗ウイルス作用の作用機序を調べる目的で、被験物質を作用させる時期を下記(1)~(3)のように設定し、蛍光抗体法またはプラク形成法により感染細胞を計測した。
 (1)ウイルス感染の24時間前からウイルス接種直前まで、種々の濃度(1ng/ml、10ng/ml、100ng/mlおよび1,000ng/ml)の被験物質で細胞を2時間処理した。培養液で細胞を3回洗浄して被験物質を除いた後、被験物質を含まない状態で細胞に200μlのウイルスを接種した。ウイルス接種の1時間後に細胞を培養液で洗浄して余剰のウイルスを除き、被験物質を含まない培養液で細胞を一定時間培養した。24時間後に、細胞に蛍光抗体染色を行い、感染細胞を計測した。なお、蛍光抗体染色用の抗体が入手できなかったシンドビスウイルスおよび脳心筋炎ウイルスについては、プラク形成法により、感染価を測定した(Song J et al., J Gen Virol., 80, 879-886, 1999に記載の方法)。
 (2)100μlのウイルスと、100μlの種々の濃度(2ng/ml、20ng/ml、200ng/ml、および2,000ng/ml)の被験物質とを混合して1時間反応させた後に、当該ウイルス・被験物質混合液200μlを細胞に接種した。ウイルス接種の1時間後に、培養液で細胞を洗浄してウイルスと被験物質とを除き、被験物質を含まない培養液で細胞を一定時間培養した。上記(1)と同様に、蛍光抗体法またはプラク形成法により感染細胞を計測した。
 (3)被験物質を含まない状態で、200μlのウイルスを細胞に接種し、ウイルス接種の1時間後に、培養液で細胞を洗浄して余剰のウイルスを除き、種々の濃度(1ng/ml、10ng/ml、100ng/mlおよび1,000ng/ml)の被験物質を含む培養液で細胞を24時間培養した。上記(1)と同様に、一定時間後に蛍光抗体法またはプラク形成法により感染細胞を計測した。
 蛍光抗体法においては、一次抗体として、抗デングウイルスのマウスのモノクローナル抗体(Hotta H et al., Proc Soc Exp Biol Med., 175, 320-327, 1984に記載)、C型肝炎ウイルス感染患者血清(紫外線照射によりウイルス感染性を不活化したもの)(El-Bitar AM et al., Virol J., 12, 47, 2015に記載)、および抗B型肝炎ウイルスのコアタンパク質のマウスのモノクローナル抗体(B0586, DAKO社)もしくはHBsエンベロープタンパク質の免疫ウサギ血清(ab39716, Abcam社)を用いた。二次抗体としては、上記一次抗体に対してそれぞれ、FITC標識抗マウスIgG、FITC標識抗ヒトIgGを用いた。「培養液」は、10%牛胎児血清加ダルベッコ改変イーグル培地(日水製薬株式会社製)を用いた。
 上記(1)~(3)において、被験物質で処理されていない細胞に各ウイルスを感染させた場合の感染細胞数をコントロールとして用いた。コントロールにおける感染細胞数に対する、被験物質で処理された場合の感染細胞数の割合を、阻害率(%)とした。
 各条件における阻害率を下記の表2に示す。なお表2中、「-」は未測定であることを意味する。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、上記(1)~(3)において、特に(2)の方法(被験物質をウイルスに直接作用させる方法)を用いた際に、最も強い抗ウイルス活性が観察された。このことから、N.m.mossambica由来の分泌型ホスホリパーゼA(アイソフォームCM-II)は、感染性ウイルス粒子の感染能を直接阻害する効果が特に高い、換言すれば、宿主細胞外での中和活性が高いことがわかった。
 上記の結果に基づいて、以下の実験は、(2)の方法を用いて行った。
 〔3.種々のウイルスに対する分泌型ホスホリパーゼA(アイソフォームCM-II)の機能解析〕
 N.m.mossambica由来の分泌型ホスホリパーゼA(アイソフォームCM-II)について、以下のウイルスに対する抗ウイルス活性の測定を行った。抗ウイルス活性の測定方法は、上記〔1〕と同様である。
・実施例2:デングウイルス(Trinidad 1751株)(Hotta H et al., Infect Immun., 41, 462-469, 1983等に記載のウイルス株)
・実施例3:日本脳炎ウイルス(Nakayama株)(Song J et al., J Gen Virol., 80, 879-886, 1999に記載のウイルス株)
・実施例4:C型肝炎ウイルス(J6/JFH-1株)(Bungyoku Y et al., J Gen Virol., 90, 1681-1691, 2009等に記載のウイルス株)
・実施例5:B型肝炎ウイルス(Bj_JPN56株)(Hayashi M et al., Microbiol Immunol., 60, 17-25, 2016に記載のウイルス株)
・比較例4:シンドビスウイルス(Matsumura T et al., J Gen Virol., 17, 343-347, 1972に記載のウイルス株)
・比較例5:A型インフルエンザウイルス(A/Udorn/307/72[H3N2])(El-Bitar AM et al., Virol J., 12, 47, 2015に記載のウイルス株)
・比較例6:センダイウイルス(Fushimi株)(Hayashi T et al., J Gen Virol., 72, 979-982, 1991に記載のウイルス株)
・比較例7:単純ヘルペスウイルス1型(CHR3株)(Hayashi K et al., J Virol., 57, 942-951, 1986に記載のウイルス株)
・比較例8:脳心筋炎ウイルス(DK-27株)(Song J et al., J Gen Virol., 80, 879-886, 1999に記載のウイルス株)
・比較例9:コクサッキーウイルス(Nancy株)(Mikami S et al., Biochem Biophys Res Commun., 220, 983-989, 1996に記載のウイルス株)。
 また、ウイルス感染価の測定のための蛍光抗体法において、一次抗体は、抗デングウイルスのマウスのモノクローナル抗体(Hotta H et al., Proc Soc Exp Biol Med., 175, 320-327, 1984に記載)、日本脳炎ウイルス免疫ウサギIgG(GTX131368またはGTX125868、 GeneTex, Inc.)、C型肝炎ウイルス感染患者血清(紫外線照射によりウイルス感染性を不活化したもの)(El-Bitar AM et al., Virol J., 12, 47, 2015に記載)、抗B型肝炎ウイルスのコアタンパク質のマウスのモノクローナル抗体(B0586, DAKO社)またはXタンパク質の免疫ウサギ血清(ab39716, Abcam社)、センダイウイルス免疫ウサギ血清(Hayashi T et al., J Gen Virol., 72, 979-982, 1991)、単純ヘルペスウイルス1型免疫ウサギ血清(Hayashi K et.al, J Virol., 57, 942-951, 1986)、コクサッキーウイルス免疫ウサギ血清(No.300638, Denka Seiken社)である。二次抗体として、上記マウスのモノクローナル抗体に対してFITC標識抗マウスIgGを、上記免疫ウサギIgGに対してFITC標識抗ウサギIgGを、上記感染患者血清に対してFITC標識抗ヒトIgGを用いた。
 なお、蛍光抗体染色用の抗体が入手できなかったシンドビスウイルスおよび脳心筋炎ウイルスについては、前述のプラク形成法により感染価を測定した(Song J et al., J Gen Virol., 80, 879-886, 1999に記載の方法)。
 結果を下記の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、小胞体膜由来の脂質二重層を含むエンベロープを有する、デングウイルス、日本脳炎ウイルスおよびC型肝炎ウイルス(いずれもフラビウイルス科に属する)について、N.m.mossambica由来の分泌型ホスホリパーゼA(アイソフォームCM-II)のIC50は、それぞれ、0.31ng/ml、0.92ng/mlおよび0.036ng/mlであった。同様に、小胞体膜由来の脂質二重層を含むエンベロープを有すると考えられるB型肝炎ウイルス(ヘパドナウイルス科に属する)のIC50は、0.65ng/mlであった。このことから、N.m.mossambica由来の分泌型ホスホリパーゼA(アイソフォームCM-II)は、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対して強い抗ウイルス活性を有することがわかった。
 一方で、細胞膜由来の脂質二重層を含むエンベロープを有する、シンドビスウイルス、A型インフルエンザウイルス、センダイウイルス、および単純ヘルペスウイルス1型について、10,000ng/mlという高い濃度を投与した場合においても、ウイルス感染阻害は5%以下にしか阻害できなかった。同様に、エンベロープを有さない、脳心筋炎ウイルスおよびコクサッキーウイルスについても、10,000ng/mlという高い濃度を投与した場合においても、ウイルス感染阻害は5%以下にしか阻害できなかった。
 本発明の一態様におけるポリペプチドは、抗ウイルス活性、とりわけ、小胞体膜由来の脂質二重層を含むエンベロープを有するウイルスに対する抗ウイルス活性を有するため、当該ポリペプチドまたは遺伝子を含む本発明の薬剤は、当該ウイルス感染症の治療薬として有用である。また、本発明の一態様は、被処理物からウイルスを除去することが求められるあらゆる技術分野において、とりわけ、医療分野において有用である。

Claims (4)

  1.  以下の(a)~(g)からなる群より選択されるいずれかのポリペプチドまたは遺伝子を含むことを特徴とする、抗ウイルス剤であって、
     前記抗ウイルス剤の処置対象となるウイルスが、小胞体膜由来の脂質二重層を含むエンベロープを有することを特徴とする、抗ウイルス剤:
     (a)配列番号1で示されるアミノ酸配列からなるポリペプチド、
     (b)配列番号1で示されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチド、
     (c)配列番号1で示されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチド、
     (d)配列番号1で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子、
     (e)配列番号1で示されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子、
     (f)配列番号1で示されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子、および
     (g)前記(d)~(f)のいずれかの遺伝子と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつ、抗ウイルス活性を有するポリペプチドをコードする遺伝子。
  2.  コブラ毒由来の分泌型ホスホリパーゼAのアイソフォームCM-IIポリペプチド、および/または当該ポリペプチドをコードする遺伝子を含む、抗ウイルス剤であって、
     前記抗ウイルス剤の処置対象となるウイルスが、小胞体膜由来の脂質二重層を含むエンベロープを有することを特徴とする、抗ウイルス剤。
  3.  前記抗ウイルス剤の処置対象となるウイルスが、フラビウイルス科またはヘパドナウイルス科に属することを特徴とする、請求項1または2に記載の抗ウイルス剤。
  4.  前記抗ウイルス剤の処置対象となるウイルスが、デングウイルス、日本脳炎ウイルス、C型肝炎ウイルスおよびB型肝炎ウイルスからなる群より選択される少なくとも一つであることを特徴とする、請求項1~3のいずれか1項に記載の抗ウイルス剤。
PCT/JP2018/004151 2017-05-02 2018-02-07 抗ウイルス剤 WO2018203427A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019516360A JP6993720B2 (ja) 2017-05-02 2018-02-07 抗ウイルス剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-091926 2017-05-02
JP2017091926 2017-05-02

Publications (1)

Publication Number Publication Date
WO2018203427A1 true WO2018203427A1 (ja) 2018-11-08

Family

ID=64016039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004151 WO2018203427A1 (ja) 2017-05-02 2018-02-07 抗ウイルス剤

Country Status (2)

Country Link
JP (1) JP6993720B2 (ja)
WO (1) WO2018203427A1 (ja)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, MING ET AL.: "Broad-spectrum antiviral agents: secreted phospholipase A2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane", SCIENTIFIC REPORTS, vol. 7, no. 15931, 21 November 2017 (2017-11-21), pages 1 - 8, XP055612649, ISSN: 2045-2322 *
FENARD, DAVID ET AL.: "Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells", J. CLIN. INVEST., vol. 104, 1999, pages 611 - 618, XP002178980, ISSN: 0021-9738, DOI: doi:10.1172/JCI6915 *
LIN, WAN-WAN ET AL.: "Pharmacological Study on Phospholipases A2 Isolated from Naja mossambica mossambica Venom", PROC. NATL. SCI. COUNC. B. ROC., vol. 11, no. 2, 1987, pages 155 - 163, ISSN: 0255-6596 *
MULLER, VANESSA DANIELLE ET AL.: "Phospholipase A2 Isolated from the Venom of Crotalus durissus terrificus Inactivates Dengue virus and Other Enveloped Viruses by Disrupting the Viral Envelope", PLOS ONE, vol. 9, no. 11, 2014, pages 1 - 10, XP055612648, ISSN: 1932-6203 *
MULLER, VANESSA DANIELLE MENJON ET AL.: "Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses", TOXICON, vol. 59, 2012, pages 507 - 515, XP028891859, ISSN: 0041-0101, DOI: doi:10.1016/j.toxicon.2011.05.021 *

Also Published As

Publication number Publication date
JP6993720B2 (ja) 2022-01-14
JPWO2018203427A1 (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
Park et al. Towards the application of human defensins as antivirals
EP2201035B1 (en) Novel avian cytokines and genetic sequences encoding same
JP4705026B2 (ja) 血管内皮増殖促進遺伝子
El-Fakharany et al. Potential activity of camel milk-amylase and lactoferrin against hepatitis C virus infectivity in HepG2 and lymphocytes
EP1797112B1 (en) Inhibitors of hepatitits c virus
JPH0648956A (ja) ヒト免疫不全ウィルス感染・増殖抑制剤
CN113425832A (zh) 干扰素λ在新型冠状病毒(2019-nCoV)感染治疗中的应用
JP2021514987A (ja) ウイルスの処置
CZ303409B6 (cs) Zkrácený a mutovaný lidský chemokin
KR20210023737A (ko) 신규 인터페론 람다 변이체 및 이의 제조방법
JP6993720B2 (ja) 抗ウイルス剤
JP2018533974A (ja) 医薬としてのヒト由来免疫抑制タンパク質およびペプチドの使用
US10125184B2 (en) Apolipoprotein E polypeptides and their use
US20140128447A1 (en) Novel non-primate hepacivirus
Li et al. Characterization, functional and signaling elucidation of pigeon (Columba livia) interferon-α: Knockdown p53 negatively modulates antiviral response
CN101668537A (zh) 急性肝炎治疗剂或爆发性肝炎预防、治疗剂
Ball et al. SU proteins from virulent and avirulent EIAV demonstrate distinct biological properties
KR20170056902A (ko) C형 간염 바이러스 감염 또는 감염과 관련된 질병의 예방 또는 치료용 약학 조성물
US20230302104A1 (en) Treatment and/or prevention of a disease or a syndrome related to a virus infection
JP7570324B2 (ja) 抗炎症特性を有する新規タンパク質
NL2027924B1 (en) Antimicrobial peptide for prevention and treatment of virusinfections
WO2017126340A1 (ja) 抗ウイルス剤
McLean The Novel Functions of the SARS CoV-2 Accessory Protein ORF8
CN115955978A (zh) 干扰素tau作为抗病毒疗法
CN118684738A (zh) 靶向人呼吸道合胞病毒融合糖蛋白的多肽拮抗剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516360

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794138

Country of ref document: EP

Kind code of ref document: A1