WO2018203175A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2018203175A1
WO2018203175A1 PCT/IB2018/052790 IB2018052790W WO2018203175A1 WO 2018203175 A1 WO2018203175 A1 WO 2018203175A1 IB 2018052790 W IB2018052790 W IB 2018052790W WO 2018203175 A1 WO2018203175 A1 WO 2018203175A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
insulator
oxide
gate
conductor
Prior art date
Application number
PCT/IB2018/052790
Other languages
French (fr)
Japanese (ja)
Inventor
加藤清
熱海知昭
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2019516297A priority Critical patent/JP7106529B2/en
Publication of WO2018203175A1 publication Critical patent/WO2018203175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors

Definitions

  • One embodiment of the present invention relates to a semiconductor device.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a display device, a light-emitting device, a memory device, an electro-optical device, a power storage device, a semiconductor circuit, and an electronic device may include a semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • an OS transistor an oxide semiconductor transistor, hereinafter referred to as an OS transistor
  • an oxide semiconductor or a metal oxide is used for a region where a channel is formed (hereinafter also referred to as a channel formation region)
  • an OS transistor containing indium (In), gallium (Ga), and zinc (Zn) is known.
  • Patent Documents 1 and 2 disclose a shift register including only an n-channel OS transistor.
  • the logic circuit can be classified into a static logic circuit, a dynamic logic circuit, a pseudo logic circuit, and the like. Since a dynamic logic circuit is a circuit that operates by temporarily holding data, a leakage current of a transistor becomes a problem as compared with a static logic circuit.
  • Patent Documents 3 to 5 disclose techniques for reducing a leakage current of a dynamic logic circuit using an OS transistor.
  • One embodiment of the present invention is a semiconductor device including first to third transistors and a capacitor.
  • the first transistor has a first gate and a second gate.
  • the second transistor has a third gate and a fourth gate.
  • the third transistor has a fifth gate and a sixth gate.
  • a first potential is applied to the drain of the first transistor.
  • the source of the first transistor is electrically connected to the drain of the second transistor.
  • the source of the second transistor is electrically connected to the drain of the third transistor.
  • a second potential is applied to the source of the third transistor.
  • the first terminal of the capacitor is electrically connected to the source of the first transistor.
  • the first clock signal is input to the first gate and the second gate.
  • the second clock signal is input to the third gate and the fourth gate.
  • the second clock signal is an inverted signal of the first clock signal.
  • the first signal is input to the fifth gate and the sixth gate.
  • the source of the first transistor outputs a second signal.
  • the first to third transistors preferably include an
  • One embodiment of the present invention is a semiconductor device including first to third transistors and a capacitor.
  • the first transistor has a first gate and a second gate.
  • the second transistor has a third gate and a fourth gate.
  • the third transistor has a fifth gate and a sixth gate.
  • a first potential is applied to the drain of the first transistor.
  • the source of the first transistor is electrically connected to the drain of the second transistor.
  • the source of the second transistor is electrically connected to the drain of the third transistor.
  • a second potential is applied to the source of the third transistor.
  • the first terminal of the capacitor is electrically connected to the source of the first transistor.
  • the first clock signal is input to the first gate and the second gate.
  • the second clock signal is input to the fifth gate and the sixth gate.
  • the second clock signal is an inverted signal of the first clock signal.
  • the first signal is input to the third gate and the fourth gate.
  • the source of the first transistor outputs a second signal.
  • the first to third transistors preferably include an
  • the capacitor element when the first clock signal is at a high potential, the capacitor element is charged, and when the first clock signal is at a low potential, the second signal outputs an inverted signal of the first signal.
  • the first gate is provided with the first insulator on the side wall
  • the third gate is provided with the second insulator on the side wall.
  • the capacitor element has an electrode electrically connected to the second terminal.
  • the first gate and the electrode are provided with a first insulator interposed therebetween, and the third gate and the electrode are provided with a second insulator interposed therebetween.
  • an inverter circuit including low-power consumption and unipolar transistors can be provided.
  • an inverter circuit having a high operating frequency and including a unipolar transistor can be provided.
  • a novel semiconductor device can be provided.
  • FIG. 10 is a circuit diagram illustrating an example of a structure of a semiconductor device.
  • A, B Circuit symbols of transistors.
  • a and B timing charts showing an example of the operation of the semiconductor device.
  • FIG. 10 is a circuit diagram illustrating an example of a structure of a semiconductor device.
  • a and B are circuit diagrams illustrating an example of a structure of a semiconductor device.
  • a and B are circuit diagrams illustrating an example of a structure of a semiconductor device.
  • AD Top view and cross-sectional view of a semiconductor device.
  • FIG. 14 is a cross-sectional view of a semiconductor device.
  • B and C are cross-sectional views of the semiconductor device.
  • B and C are cross-sectional views of the semiconductor device.
  • a and B Cross-sectional views of a semiconductor device.
  • B and C are cross-sectional views of the semiconductor device.
  • a and B Schematic diagrams showing examples of electronic components.
  • AE A schematic diagram illustrating an example of an electronic device.
  • AD Schematic diagram illustrating an example of an electronic device.
  • a and B Schematic diagrams illustrating examples of electronic devices.
  • FIG. 11 is a schematic diagram illustrating an example of an electronic device.
  • a high power supply voltage may be referred to as an H level (or VDD), and a low power supply voltage may be referred to as an L level (or GND).
  • circuit symbols of transistors may be expressed as in FIGS. 2A and 2B both illustrate a transistor having a first gate and a second gate.
  • the first gate may be referred to as a front gate (FG)
  • the second gate may be referred to as a back gate (BG).
  • the circuit symbol in FIG. 2B is used to emphasize that the front gate of the transistor applies an electric field to the top and side surfaces of the semiconductor layer.
  • the front gate is provided so as to have a region facing the top surface and the side surface of the semiconductor layer with the first gate insulator interposed therebetween.
  • the back gate is provided so as to have a region facing the lower surface of the semiconductor layer with the second gate insulator interposed therebetween.
  • the thickness of the semiconductor layer is preferably larger than the channel width of the transistor. Note that the specific structure of the transistor in FIGS. 2A and 2B will be described in Embodiments 2 and 4 described later.
  • circuit gates in FIGS. 2A and 2B may each omit the back gate.
  • a semiconductor device 10 illustrated in FIG. 1 includes a capacitor C1, and a transistor M1, a transistor M2, and a transistor M3 connected in series.
  • the semiconductor device 10 has a function as an inverter circuit.
  • transistors M1 to M3 are n-channel transistors. Since the semiconductor device 10 is composed only of n-channel transistors, the manufacturing cost can be reduced compared to an inverter circuit composed of CMOS transistors.
  • the transistor M1 has a first gate and a second gate that are electrically connected to each other.
  • the first gate and the second gate have regions overlapping each other with a semiconductor layer interposed therebetween. The same applies to the transistors M2 and M3.
  • the semiconductor device 10 has a terminal IN, a terminal OUT, a terminal CLK, and a terminal CLKB.
  • the terminal IN functions as an input terminal
  • the terminal OUT functions as an output terminal.
  • a clock signal is input to the terminal CLK, and an inverted signal of the clock signal input to the terminal CLK is input to the terminal CLKB.
  • the semiconductor device 10 is supplied with VDD and VSS as power supply voltages.
  • VDD is a high power supply voltage and is input to the drain of the transistor M1.
  • VSS is a low power supply voltage and is input to the source of the transistor M3.
  • the front gate and the back gate are electrically connected to the terminal CLK, and the source is electrically connected to the drain of the transistor M2.
  • the front gate and the back gate are electrically connected to the terminal CLKB, and the source is electrically connected to the drain of the transistor M3.
  • the front gate and the back gate are electrically connected to the terminal IN.
  • the first terminal of the capacitor C1 is electrically connected to the source of the transistor M1.
  • VSS is input to the second terminal of the capacitive element C1.
  • the terminal OUT is electrically connected to the source of the transistor M1, the drain of the transistor M2, and the first terminal of the capacitor C1.
  • FIG. 3A is a timing chart for explaining the operation of the semiconductor device 10 and represents potential changes of the terminals IN, CLK, CLKB, and OUT, respectively.
  • the operation is classified into three periods P1, P2, and P3.
  • the terminal IN is given an H (high) level during the periods P1 to P3. That is, in the periods P1 to P3, the transistor M3 is on.
  • the potential VH is input to the terminal CLK, and the potential VL is input to the terminal CLKB.
  • Transistor M1 is turned on and transistor M2 is turned off. At this time, VDD is supplied to the capacitor C1, and the capacitor C1 starts to be charged (precharge).
  • the potential VH is preferably higher than or equal to a voltage (VDD + V th ) obtained by adding VDD and the threshold voltage (V th ) of the transistor M1. By doing so, VDD can be accurately transmitted to the terminal OUT.
  • the potential VL may be a low power supply voltage (or GND). Note that the potential VH may be referred to as a high potential and the potential VL may be referred to as a low potential.
  • the potential VL is input to the terminal CLK, and the potential VH is input to the terminal CLKB.
  • Transistor M1 is turned off and transistor M2 is turned on.
  • the terminal OUT outputs the L level. That is, the terminal OUT outputs an inverted signal of the signal input to the terminal IN.
  • the potential VH is input to the terminal CLK, and the potential VL is input to the terminal CLKB.
  • Transistor M1 is turned on and transistor M2 is turned off. Similar to the period P1, the capacitive element C1 starts precharging again.
  • FIG. 3B is a timing chart in the case where the input of the terminal IN in the periods P1 to P3 is set to the L (low) level.
  • the transistor M3 is off, and the capacitor C1 holds the potential precharged in the period P1.
  • the terminal OUT outputs an H level. That is, the terminal OUT outputs an inverted signal of the signal input to the terminal IN.
  • the semiconductor device 10 precharges the capacitor C1 when the terminal CLK is at the potential VH, and operates as an inverter circuit when the terminal CLK is at the potential VL. Recognize.
  • the semiconductor device 10 functions as a dynamic logic circuit that operates by repeatedly charging and discharging the capacitor C1.
  • the transistor M1 functions as a precharging transistor that charges the capacitor C1
  • the transistor M2 functions as a discharging transistor that discharges the charge accumulated in the capacitor C1.
  • transistors M1 to M3 transistors with low off-state current are preferably used.
  • an OS transistor can be given.
  • the small off-state current here means that the off-state current of the transistor per channel width is preferably 10 ⁇ 18 A / ⁇ m or less, more preferably 10 ⁇ 21 A / ⁇ m or less, and further preferably 10 ⁇ 24. A / ⁇ m or less.
  • the semiconductor device 10 can reduce the through current. As a result, the semiconductor device 10 can reduce power consumption.
  • the semiconductor device 10 can transmit data more accurately.
  • the semiconductor device 10 can realize an inverter circuit with a high operating frequency.
  • Patent Document 5 discloses an inverter circuit composed of two n-channel transistors.
  • the circuit diagram is shown in FIG.
  • a semiconductor device 90 shown in FIG. 8 includes two n-channel transistors, a transistor Tr1 and a transistor Tr2.
  • the semiconductor device 90 since the transistor Tr1 is always on, a through current flows when the transistor Tr2 is on. For this reason, the semiconductor device 90 consumes a large amount of power.
  • the transistors Tr1 and Tr2 are single gate drive transistors that are driven by only one gate, so that the on-current is small.
  • the semiconductor device 10 shown in FIG. 1 consumes much less power than the semiconductor device 90 because the through current is small even in an inverter circuit made of the same n-channel transistor.
  • the transistors M1 to M3 included in the semiconductor device 10 have a large on-state current because of dual gate driving. Therefore, the semiconductor device 10 has a higher operating frequency than the semiconductor device 90.
  • a semiconductor device 11 shown in FIG. 4 is a modification of the semiconductor device 10, and the terminal IN is electrically connected to the front gate and the back gate of the transistor M 2, and the terminal CLKB is electrically connected to the front gate and the back gate of the transistor M 3. Connected.
  • a semiconductor device 12 illustrated in FIG. 5A is a circuit diagram in the case where all back gates of the transistors M1 to M3 are electrically connected in the semiconductor device 10 and a common potential VG0 is applied to the back gates. It is. By doing so, the semiconductor device 11 can control the threshold voltages of the transistors M1 to M3.
  • the potential VG1 is applied to the back gate included in the transistor M1
  • the potential VG2 is applied to the back gate included in the transistor M2
  • the potential VG3 is applied to the back gate included in the transistor M3.
  • the threshold voltages of the transistors M1 to M3 can be individually controlled by applying individual potentials to the back gates of the transistors.
  • a semiconductor device 20 illustrated in FIG. 6A includes a capacitor C21 and a transistor M21, a transistor M22, and a transistor M23 connected in series.
  • the semiconductor device 20 is a modified example of the semiconductor device 12 and has a function as an inverter circuit like the semiconductor device 12.
  • the transistors M21 to M23 can cause an on-current to flow also to the side surface of the semiconductor layer, the on-current can be increased by increasing the thickness of the semiconductor layer. As a result, the semiconductor device 20 can realize an inverter circuit with a high operating frequency.
  • a semiconductor device 21 illustrated in FIG. 6B is a modification example of the semiconductor device 20, and the terminal IN is electrically connected to the front gate of the transistor M2, and the terminal CLKB is electrically connected to the front gate of the transistor M3. ing.
  • a semiconductor device 22 illustrated in FIG. 7A is a modified example of the semiconductor device 20, and the transistors M21 to M22 each electrically connect the front gate and the back gate.
  • the transistors M21 to M23 can apply a gate electric field from the top, bottom, left, and right of the semiconductor layer, and can further increase the on-state current. As a result, the operating frequency of the semiconductor device 22 can be further increased.
  • a semiconductor device 23 illustrated in FIG. 7B is a modification of the semiconductor device 20.
  • a potential VG1 is applied to the back gate included in the transistor M21
  • a potential VG2 is applied to the back gate included in the transistor M22
  • a potential VG3 is applied to the back gate included in the transistor M3.
  • the threshold voltages of the transistors M21 to M23 can be individually controlled by applying individual potentials to the back gates of the transistors.
  • the semiconductor devices 10 to 13 may omit all the back gates of the transistors M1 to M3. In that case, the manufacturing process can be simplified. The same applies to the semiconductor devices 20 to 23.
  • the capacitor C1 may be replaced with a parasitic capacitance of a wiring or a gate capacitance of a transistor. In that case, the area occupied by these semiconductor devices can be reduced. The same applies to the capacitive element C21 of the semiconductor devices 20 to 23.
  • an inverter circuit including a unipolar transistor with low power consumption can be provided.
  • an inverter circuit having a high operating frequency and including a unipolar transistor can be provided.
  • a semiconductor device 10 of one embodiment of the present invention includes a transistor including an oxide in a channel formation region.
  • the semiconductor device 10 includes a transistor M1, a transistor M2, a transistor M3, a capacitor C1, and a wiring.
  • FIG. 9B there is a case where a sign is mainly given to the structure of the transistor M1 and a sign of the structure of the transistor M2 or the transistor M3 is omitted.
  • a structure having the same function as the structure to which the sign of the transistor M1 is given may be described using the same sign.
  • a semiconductor device which can be miniaturized or highly integrated can be provided by using a structure in which a plurality of transistors and a capacitor have a common structure.
  • FIG. 9A is a top view of the semiconductor device 10.
  • FIG. 9B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 9A, and is also a cross-sectional view in the channel length direction of the transistors M1, M2, and M3.
  • FIG. 9C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 9A and also a cross-sectional view in the channel width direction of the transistor M1.
  • FIG. 9D is a cross-sectional view taken along dashed-dotted line A5-A6 in FIG. 9A and also a cross-sectional view of the capacitor C1. Note that in the top view of FIG. 9A, some elements are omitted for clarity.
  • the semiconductor device 10 is provided over a substrate 201 and includes a transistor M1, a transistor M2, a transistor M3, and a capacitor C1, and an insulator 210, an insulator 212, and an insulator 280 that function as interlayer films. Further, the semiconductor device 10 is electrically connected to the transistor M1, the transistor M2, or the transistor M3 and is electrically connected to the conductors 203 and 240 that function as wirings, and the capacitor C1 and is a conductor that functions as wiring. 204, 206.
  • part of the structure forming the transistor is used in combination with part of the structure forming the capacitor.
  • part of the structure of the transistor may function as part of the structure of the capacitor.
  • the total area of the projected area of the transistor and the projected area of the capacitor can be reduced.
  • the degree of freedom in design can be increased.
  • the plurality of transistors and the capacitor can be formed in the same process. Therefore, since the process can be shortened, productivity can be improved.
  • the conductor 203 and the conductor 204 are formed to be embedded in the insulator 212.
  • the heights of the upper surfaces of the conductor 203 and the conductor 204 and the height of the upper surface of the insulator 212 can be approximately the same.
  • the conductor 203 and the conductor 204 are illustrated as single layers, the present invention is not limited to this.
  • the conductor 203 and the conductor 204 may have a multilayer structure of two or more layers.
  • the transistor M1, the transistor M2, and the transistor M3 each include a metal oxide that functions as an oxide semiconductor over the oxide 230 (oxide 230a, oxide 230b, oxide 230c, and oxide 230d) including a region where a channel is formed. It is preferable to use a material (hereinafter also referred to as an oxide semiconductor). As illustrated in FIG. 9B, the transistor M1, the transistor M2, and the transistor M3 can include the oxide 230a, the oxide 230b, and the oxide 230c in common. With this structure, the distance between the transistors can be reduced; thus, miniaturization or high integration can be achieved. Further, with this structure, it is not necessary to separately provide a wiring and the like for connecting the transistors, so that the process can be simplified.
  • the transistor M1, the transistor M2, and the transistor M3 include an insulator 214 and an insulator 216 which are disposed over the substrate 201, a conductor 205 which is disposed so as to be embedded in the insulator 214 and the insulator 216, and a conductive layer.
  • An insulator 220 disposed on the body 205 and on the insulator 216; an insulator 222 disposed on the insulator 220; an insulator 224 disposed on the insulator 222; and an insulator 224.
  • An insulator 272 disposed in contact with a side surface of the body 250, a side surface of the metal oxide 252; a side surface of the conductor 260; and a side surface of the insulator 270; an insulator 275 disposed in contact with at least the insulator 272; And an insulator 274 provided in contact with the upper surface of the oxide 230 and the side surface of the insulator 275.
  • the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d may be collectively referred to as the oxide 230.
  • the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d are stacked; however, the present invention is not limited to this.
  • the oxide 230b may be provided.
  • a single layer, two layers, three layers, or a stacked structure of five layers or more may be used.
  • the conductor 260 and the conductor 205 may be provided as a single layer or a stack of three or more layers.
  • FIG. 9B an enlarged view of a region near the channel of the transistor M1 in FIG. 9B is shown in FIG. Note that the transistor M1 can be referred to for the structures of the transistor M2 and the transistor M3.
  • the oxide 230 includes a region 234 that functions as a channel formation region of a transistor, a region 231 that functions as a source region or a drain region (a region 231 a and a region 231 b), a region 234, and a region 231.
  • a bonding region 232 (a bonding region 232a and a bonding region 232b) provided between the two.
  • the region 231 functioning as a source region or a drain region is a region with low carrier resistance and high carrier density.
  • the region 234 functioning as a channel formation region is a region having a lower carrier density than the region 231 functioning as a source region or a drain region.
  • the junction region 232 has a lower carrier density than the region 231 that functions as a source region or a drain region and a higher carrier density than the region 234 that functions as a channel formation region. In other words, the junction region 232 functions as a junction region between the channel formation region and the source region or the drain region.
  • the region 231 preferably has a concentration of at least one of a metal element and an impurity element such as hydrogen and nitrogen higher than that of the junction region 232 and the region 234.
  • the region 231 preferably includes a metal element such as ruthenium, titanium, tantalum, or tungsten in addition to the oxide 230.
  • a metal element such as ruthenium, titanium, tantalum, or tungsten in addition to the oxide 230.
  • the resistance of the region 231 can be reduced.
  • a metal element for example, a metal film, an oxide film containing a metal element, or a nitride film containing a metal element is formed on and in contact with the region 231 of the oxide 230, and then the film is removed. Good.
  • a metal element such as ruthenium, titanium, tantalum, or tungsten may enter the constituent elements of the oxide 230.
  • a constituent element included in the oxide 230 and a metal element such as ruthenium, titanium, tantalum, or tungsten may be alloyed in part of the region 231, typically over the region 231.
  • the alloyed region that is, the region with reduced resistance can be formed relatively stably, so that a highly reliable semiconductor device can be provided.
  • the bonding region 232 has a region overlapping with the insulator 272.
  • the junction region 232 preferably has a concentration of at least one of a metal element such as indium and an impurity element such as hydrogen and nitrogen higher than that of the region 234.
  • One or both of the bonding region 232a and the bonding region 232b may have a region overlapping with the conductor 260.
  • the region 234 has a region overlapping with the conductor 260.
  • the region 234 is disposed between the junction region 232 a and the junction region 232 b, and the region 231 has a concentration of at least one of a metal element such as indium and an impurity element such as hydrogen and nitrogen, and the junction region 232. More preferably, it is smaller.
  • the boundary between the region 231, the junction region 232, and the region 234 may not be clearly detected in some cases.
  • Concentrations of metal elements such as indium and impurity elements such as hydrogen and nitrogen detected in each region are not limited to stepwise changes in each region, but also continuously change in each region (also referred to as gradation). You may do it. That is, the closer to the region 234 from the region 231 to the junction region 232, the lower the concentration of the metal element such as indium and the impurity element such as hydrogen and nitrogen.
  • the region 234, the region 231 and the junction region 232 are formed in the oxide 230c.
  • the present invention is not limited to this.
  • these regions may be formed in the oxide 230a.
  • the boundary of each region is displayed substantially perpendicular to the upper surface of the oxide 230, but this embodiment is not limited to this.
  • the transistor M1 may be used as a representative for explanation.
  • the transistor M1 can be referred to for the configurations of the transistor M2 and the transistor M3.
  • the oxide 230 is preferably formed using a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor).
  • a metal oxide functioning as an oxide semiconductor
  • An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
  • the oxide semiconductor preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. Further, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, or the like may be included.
  • the oxide semiconductor is an In-M-Zn oxide containing indium, the element M, and zinc is considered.
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • the atomic ratio of the element M in the constituent element is the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230c. Larger is preferred.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230c.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a and the oxide 230b. .
  • the atomic ratio of the element M in the constituent element is preferably larger than the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230b.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the energy at the lower end of the conduction band of the oxide 230a is preferably higher than the energy at the lower end of the conduction band in a region where the energy at the lower end of the conduction band of the oxide 230b is low.
  • the electron affinity of the oxide 230a is preferably smaller than the electron affinity in a region where the energy at the lower end of the conduction band of the oxide 230b is low.
  • the energy at the lower end of the conduction band of the oxide 230b is preferably higher than the energy at the lower end of the conduction band in a region where the energy at the lower end of the conduction band of the oxide 230c is low.
  • the electron affinity of the oxide 230b is preferably smaller than the electron affinity in a region where the energy at the lower end of the conduction band of the oxide 230c is low.
  • the energy level at the lower end of the conduction band changes gently. In other words, it can be said that it is continuously changed or continuously joined.
  • the defect state density of the mixed layer formed at the interface between the oxide 230a and the oxide 230b or the interface between the oxide 230b and the oxide 230c is preferably low.
  • the oxide 230a, the oxide 230b, and the oxide 230c have a common element (main component) in addition to oxygen, a mixed layer with a low density of defect states can be formed.
  • the oxide 230c is an In—Ga—Zn oxide
  • an In—Ga—Zn oxide, a Ga—Zn oxide, a gallium oxide, or the like may be used as the oxide 230b or the oxide 230a.
  • the main path of carriers is a narrow gap portion formed in the oxide 230c. Since the defect level density at the interface between the oxide 230c and the oxide 230b and the interface between the oxide 230b and the oxide 230c can be reduced, the influence on carrier conduction due to interface scattering is small, and a large on-current is obtained. It is done.
  • a transistor including an oxide semiconductor its electrical characteristics are likely to vary due to impurities and oxygen vacancies in the oxide semiconductor, and reliability may deteriorate.
  • hydrogen contained in the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons serving as carriers may be generated.
  • a transistor including an oxide semiconductor in which oxygen vacancies are included in a channel formation region is likely to be normally on. For this reason, it is preferable that oxygen vacancies in the channel formation region be reduced as much as possible.
  • the presence of oxygen vacancies at the interface between the region 234 where the channel is formed in the oxide 230 and the insulator 250 functioning as the first gate insulator of the transistors M1, M2, and M3 has electrical characteristics. Fluctuations are likely to occur, and reliability may deteriorate.
  • the insulator 250 located above the region 234 of the oxide 230 contain more oxygen (also referred to as excess oxygen) than oxygen that satisfies the stoichiometric composition. That is, excess oxygen in the insulator 250 diffuses into the region 234, so that oxygen vacancies in the region 234 can be reduced.
  • a metal oxide 252 may be provided in order to efficiently supply excess oxygen included in the insulator 250 to the oxide 230. Therefore, the metal oxide 252 preferably suppresses oxygen diffusion. By providing the metal oxide 252 that suppresses diffusion of oxygen, diffusion of excess oxygen into the conductor 260 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 230 can be suppressed. In addition, oxidation of the conductor 260 due to excess oxygen can be suppressed.
  • the metal oxide 252 may function as part of the gate insulator. Therefore, when silicon oxide, silicon oxynitride, or the like is used for the insulator 250, the metal oxide 252 is preferably a metal oxide that is a high-k material with a high relative dielectric constant. By setting it as the said laminated structure, it can be set as the laminated structure stable with respect to a heat
  • EOT equivalent oxide thickness
  • the metal oxide 252 may function as part of the first gate electrode.
  • an oxide semiconductor that can be used as the oxide 230 can be used as the metal oxide 252.
  • the conductor 260 by forming the conductor 260 by a sputtering method, the electric resistance value of the metal oxide 252 can be reduced, whereby the conductor can be obtained.
  • This can be called an OC (Oxide Conductor) electrode.
  • the on-current can be improved without weakening the influence of the electric field from the conductor 260.
  • leakage current can be suppressed by maintaining the distance between the conductor 260 and the oxide 230 depending on the physical thickness of the insulator 250 and the metal oxide 252.
  • the physical distance between the conductor 260 and the oxide 230 and the electric field strength applied from the conductor 260 to the oxide 230 can be reduced. It can be easily adjusted as appropriate.
  • the metal oxide 252 a metal containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like.
  • An oxide can be used.
  • the metal oxide 252 can be used.
  • the insulator 220, the insulator 222, and the insulator 224 function as second gate insulators of the transistor M1, the transistor M2, and the transistor M3.
  • the structure in which the insulator 220, the insulator 222, and the insulator 224 are stacked is shown; however, the present invention is not limited to this.
  • any two layers of the insulator 220, the insulator 222, and the insulator 224 may be stacked, or any one of the layers may be used.
  • the insulator 222 and the insulator 214 functioning as an interlayer film can function as a barrier insulator that prevents impurities such as water or hydrogen from entering the transistor from below.
  • the insulator 214 and the insulator 222 are preferably formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen.
  • silicon nitride or the like is used as the insulator 214, and aluminum oxide, hafnium oxide, an oxide containing silicon and hafnium (hafnium silicate), an oxide containing aluminum and hafnium (hafnium aluminate), or the like is used as the insulator 222. Is preferred.
  • the insulator 214 and the insulator 222 include at least one of impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitric oxide molecule (N 2 O, NO, NO 2, and the like) and a copper atom. It preferably has a function of suppressing transmission. The same applies to the case where an insulating material having a function of suppressing the permeation of impurities is described below.
  • the insulator 214 and the insulator 222 are preferably formed using an insulating material having a function of suppressing transmission of oxygen (for example, oxygen atoms or oxygen molecules). Thus, downward diffusion of oxygen contained in the insulator 224 and the like can be suppressed.
  • an insulating material having a function of suppressing transmission of oxygen for example, oxygen atoms or oxygen molecules.
  • the concentration of impurities such as water, hydrogen, or nitrogen oxide in the insulator 222 is preferably reduced.
  • the amount of hydrogen desorbed from the insulator 222 is converted to hydrogen molecules when the surface temperature of the insulator 222 is in the range of 50 ° C. to 500 ° C. in the temperature programmed desorption gas analysis method (TDS (Thermal Desorption Spectroscopy)). 2 ⁇ 10 15 molecules / cm 2 or less, preferably 1 ⁇ 10 15 molecules / cm 2 or less, more preferably 5 ⁇ 10 14 molecules / cm 2 in terms of the amount of the desorbed in terms of the area of the insulator 222.
  • TDS Temperaturetroscopy
  • the conductor 260 functions as a first gate electrode of the transistor M1, the transistor M2, and the transistor M3.
  • the conductor 205 functions as a second gate electrode of the transistor M1, the transistor M2, and the transistor M3.
  • the conductor 205 functioning as the second gate electrode of the transistor M1, the transistor M2, or the transistor M3 is provided so as to overlap with the oxide 230 and the conductor 260.
  • the potential applied to the conductor 205 is preferably the same as the potential applied to the conductor 260. Further, it may be a ground potential or an arbitrary potential.
  • the threshold voltage of the transistor M1, the transistor M2, and the transistor M3 is controlled by independently changing the potential applied to the conductor 205 without being interlocked with the potential applied to the conductor 260. Can do. In particular, by applying a negative potential to the conductor 205, the threshold voltage of the transistor M1, the transistor M2, and the transistor M3 can be made higher than 0 V and the off-state current can be reduced. Therefore, the drain current when the voltage applied to the conductor 260 is 0 V can be reduced.
  • the conductor 205 is provided so as to overlap with the oxide 230 and the conductor 260.
  • the conductor 205 may be disposed so as to overlap with the conductor 260 also in a region outside the end portion of the region 234 of the oxide 230 that intersects with the one-dot chain line (channel width direction) of A3-A4.
  • preferable it is preferable that the conductor 205 and the conductor 260 overlap with each other with an insulator outside the side surface of the oxide 230.
  • the channel formation region in the region 234 can be electrically surrounded by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode.
  • a transistor structure that electrically surrounds a channel formation region by an electric field of the first gate electrode and the second gate electrode is referred to as a surrounded channel (S-channel) structure.
  • the conductor 203 is extended in the channel width direction similarly to the conductor 260 and functions as a wiring for applying a potential to the conductor 205.
  • the conductor 203 functioning as a wiring and providing the conductor 205 embedded in the insulator 214 and the insulator 216, the insulator 214 and the conductor 260 are interposed between the conductor 203 and the conductor 260.
  • An insulator 216 and the like are provided, so that the parasitic capacitance between the conductor 203 and the conductor 260 can be reduced and the withstand voltage can be increased.
  • the switching speed of the transistor can be improved and a transistor having high frequency characteristics can be obtained. Further, by increasing the withstand voltage between the conductor 203 and the conductor 260, the reliability of the transistor can be improved. Therefore, it is preferable to increase the thickness of the insulator 214 and the insulator 216. Note that the extending direction of the conductor 203 is not limited to this, and may be extended in the channel length direction of the transistor M1, the transistor M2, and the transistor M3, for example.
  • the conductor 205 includes a first conductor provided in contact with the inner walls of the openings of the insulator 214 and the insulator 216, and a second conductor provided further inside.
  • the height of the upper surface of the conductor 205 and the height of the upper surface of the insulator 216 can be approximately the same.
  • this invention is not limited to this. For example, a single layer or a stacked structure of three or more layers may be used.
  • a conductive material having a function of suppressing transmission of impurities such as water or hydrogen (difficult to transmit) is preferably used, and a single layer or a stacked layer may be used.
  • impurities such as hydrogen and water from the lower layer than the insulator 214 can be prevented from diffusing into the upper layer through the conductor 205.
  • the first conductor is an impurity such as a hydrogen atom, a hydrogen molecule, a water molecule, an oxygen atom, an oxygen molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2 ), a copper atom, or the like.
  • it preferably has a function of suppressing transmission of at least one of oxygen (for example, oxygen atoms and oxygen molecules).
  • oxygen for example, oxygen atoms and oxygen molecules.
  • a conductive material having a function of suppressing the permeation of impurities is described below.
  • the second conductor As the second conductor, a conductive material containing tungsten, copper, or aluminum as a main component is preferably used. Although not illustrated, the second conductor 205 may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
  • the conductor 260 includes a first conductor and a second conductor.
  • a metal such as tungsten can be used.
  • a conductor that can improve the conductivity of the metal oxide 252 by adding an impurity such as nitrogen to the metal oxide 252 is used as the first conductor.
  • an oxide semiconductor is used as the metal oxide 252
  • a conductor that can improve the conductivity of the metal oxide 252 by adding an impurity such as nitrogen to the metal oxide 252 is used as the first conductor.
  • titanium nitride or the like is preferably used for the first conductor.
  • the second conductor is preferably formed using a metal such as aluminum or tungsten with low resistance.
  • the insulator 270 may be provided over the conductor 260.
  • an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen is preferably used.
  • oxidation of the conductor 260 can be prevented.
  • impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260 and the insulator 250.
  • the structure including the insulator 250, the metal oxide 252, the conductor 260, and the insulator 270 has a side surface that is substantially perpendicular to the insulator 222.
  • the semiconductor device described in this embodiment is not limited to this.
  • the side surface of the structure including the insulator 250, the metal oxide 252, the conductor 260, and the insulator 270 may have a tapered structure with respect to the upper surface of the insulator 222. In that case, the angle formed between the side surface of the structure and the top surface of the insulator 222 is preferably as large as possible (close to the vertical).
  • the insulator 271 functioning as a hard mask may be provided over the insulator 270.
  • the side surface of the structure body is substantially vertical, specifically, the structure body
  • the angle formed between the side surface and the substrate surface can be set to 75 ° to 100 °, preferably 80 ° to 95 °.
  • the insulator 272 is provided in contact with at least the side surfaces of the insulator 250, the metal oxide 252, the conductor 260, and the insulator 270.
  • the insulator 272 preferably has a function of suppressing diffusion of oxygen (for example, at least one of an oxygen atom and an oxygen molecule) (the above-described oxygen is difficult to transmit). Since the insulator 272 has a function of suppressing diffusion of oxygen, oxygen in a region where oxygen is present in excess of the stoichiometric composition (hereinafter also referred to as excess oxygen region) diffuses toward the insulator 275 side. Without being supplied to the region 234 efficiently. That is, oxygen in the insulator 250 can be prevented from diffusing outside.
  • excess oxygen region oxygen in a region where oxygen is present in excess of the stoichiometric composition
  • the insulator 272 is preferably an insulator in which impurities such as water or hydrogen are reduced.
  • an insulator having a barrier property which prevents entry of impurities such as water or hydrogen is preferable. That is, entry of impurities such as hydrogen and water into the oxide 230 from the end portion of the insulator 250 or the like can be suppressed. Accordingly, formation of oxygen vacancies at the interface between the oxide 230 and the insulator 250 is suppressed, and the reliability of the transistor can be improved.
  • the insulator 270 and the insulator 272 each include an oxide of one or both of aluminum and hafnium, which is an insulating material having a function of suppressing transmission of impurities such as water or hydrogen, and oxygen. Can be used.
  • the insulator containing one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the top surface and the side surface of the conductor 260 and the side surface of the insulator 250 can be covered with an insulator having a function of suppressing permeation of impurities such as water or hydrogen and oxygen. .
  • an insulator having a function of suppressing permeation of impurities such as water or hydrogen and oxygen can be covered with an insulator having a function of suppressing permeation of impurities such as water or hydrogen and oxygen.
  • the insulator 270 and the insulator 272 function as a barrier for protecting the gate electrode and the gate insulator.
  • the insulator 272 is preferably formed using an ALD (Atomic Layer Deposition) method.
  • ALD atomic layer Deposition
  • the insulator 272 can be formed with a thickness of about 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm.
  • the insulator 272 may be formed by a sputtering method.
  • a sputtering method By using a sputtering method, an insulator with few impurities such as water or hydrogen can be formed.
  • a film forming method using a facing target type sputtering apparatus can be referred to as VDSP (Vapor Deposition SP) (registered trademark).
  • ions and sputtered particles exist between the target and the substrate.
  • the target is connected to a power source and is supplied with the potential E0.
  • the substrate is given a potential E1 such as a ground potential.
  • the substrate may be electrically floating.
  • Ions in the plasma are accelerated by the potential difference E2-E0 and collide with the target, whereby particles sputtered from the target are ejected.
  • the sputtered particles adhere to and deposit on the film formation surface to form a film.
  • Some ions recoil by the target pass through a film formed as recoil ions, and may be taken into the insulator 250 in contact with the deposition surface.
  • ions in the plasma are accelerated by the potential difference E2-E1, and impact the film formation surface. At this time, some ions reach the inside of the insulator 250.
  • the ions are taken into the insulator 250, a region into which the ions are taken is formed in the insulator 250. That is, when the ions are oxygen-containing ions, an excess oxygen region is formed in the insulator 250.
  • an excess oxygen region can be formed. Excess oxygen in the insulator 250 is supplied to the oxide 230, so that oxygen vacancies in the oxide 230 can be compensated.
  • the insulator 272 may be formed by stacking a film formed using an ALD method and a film formed using a sputtering method.
  • the film formed using the ALD method is sufficiently thin, an excess oxygen region is formed in the insulator 250 through the film formed using the ALD method when the film is formed using the sputtering method. Can do. Therefore, the film formed by using the ALD method is preferably 0.5 nm to 1.5 nm.
  • the insulator 272 may contain an impurity such as carbon.
  • impurities such as carbon contained in the insulator formed by the ALD method are formed by the sputtering method. May be more than the insulation made.
  • the quantification of impurities can be performed using X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
  • the insulator 275 is provided on the side surfaces of the conductor 260, the metal oxide 252, and the insulator 250 with the insulator 272 interposed therebetween.
  • the transistor M ⁇ b> 1 and the transistor M ⁇ b> 3 have a high probability that parasitic capacitance is formed between the conductor 260 and the conductor 240.
  • the transistor M1 and the transistor M2 have a high probability that parasitic capacitance is formed between the conductor 260 and the conductor 120 that is a part of the capacitor C1.
  • the parasitic capacitance may affect the electrical characteristics of the transistor.
  • each parasitic capacitance can be reduced.
  • the semiconductor device 10 can be operated at high speed.
  • the insulator 275 preferably includes an insulator having a small relative dielectric constant.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide or resin having holes, or the like is included. It is preferable. In particular, silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • an insulator 274 is provided on a side surface of the insulator 275.
  • An insulator 280 that functions as an interlayer film is provided so as to cover the transistor M1, the transistor M2, and the transistor M3. Note that the insulator 280 preferably has reduced concentration of impurities such as water or hydrogen in the film.
  • the opening of the insulator 280 is formed so that at least a part of the side surface of the insulator 274 is exposed.
  • the processing can be performed by setting an opening condition in the insulator 280 such that the etching rate of the insulator 274 is significantly lower than the etching rate of the insulator 280.
  • the etching rate of the insulator 274 is 1, the etching rate of the insulator 280 is preferably 5 or more, and more preferably 10 or more.
  • the conductor 240 is provided in contact with the insulator 274.
  • the conductor 240 is in contact with the region 231 of the oxide 230.
  • the conductor 240 a material similar to that of the conductor 205 can be used.
  • the conductor 240 may be formed after aluminum oxide is formed on the side wall of the opening.
  • aluminum oxide By forming aluminum oxide on the side wall portion of the opening, it is possible to suppress the permeation of oxygen from the outside and to prevent the conductor 240 from being oxidized.
  • impurities such as water and hydrogen can be prevented from diffusing from the conductor 240 to the outside.
  • the aluminum oxide can be formed by forming an aluminum oxide film in the opening using an ALD method or the like and performing anisotropic etching.
  • the capacitor C1 has a structure in common with the transistor M1, the transistor M2, and the transistor M3.
  • the capacitor C1 is provided between the transistor M1 and the transistor M2.
  • the capacitor C ⁇ b> 1 includes a part of the region 231 of the oxide 230, the insulator 130, and the conductor 120 over the insulator 130. That is, at least part of the conductor 120 is disposed so as to overlap with part of the region 231 with the insulator 130 interposed therebetween.
  • the region 231 functions as one of the electrodes of the capacitor C1, and the conductor 120 functions as the other of the electrodes of the capacitor C1. That is, the region 231 has a function as the source of the transistor M1, a function as the drain of the transistor M2, and a function as one of the electrodes of the capacitor C1. A part of the insulator 130 functions as a dielectric of the capacitor C1.
  • the insulator 130 is preferably an insulator having a large relative dielectric constant.
  • an insulator including one or both of aluminum and hafnium can be used.
  • the insulator containing one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the insulator 130 may have a stacked structure, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, hafnium oxide, oxide containing hafnium, aluminum (hafnium aluminate), or the like. Therefore, two or more layers may be selected to form a laminated structure.
  • hafnium oxide, aluminum oxide, and hafnium oxide are sequentially formed by an ALD method to form a stacked structure.
  • the film thicknesses of hafnium oxide and aluminum oxide are 0.5 nm to 5 nm, respectively.
  • an insulator 272 and an insulator 275 are provided on the side surfaces of the conductors 260 of the transistors M1 and M2. By providing the insulator 272 and the insulator 275 between the conductor 260 and the conductor 120, parasitic capacitance between the conductor 260 and the conductor 120 can be reduced.
  • the conductor 120 may have a stacked structure.
  • the conductor 120 may have a stacked structure of a conductive material mainly containing titanium, titanium nitride, tantalum, or tantalum nitride and a conductive material mainly containing tungsten, copper, or aluminum.
  • the conductor 120 may have a single-layer structure or a stacked structure including three or more layers.
  • the insulator 220, the insulator 222, the insulator 224, and the oxide 230a have openings.
  • the oxide 230b and the oxide 230c are electrically connected to the conductor 206 through the opening.
  • the series resistance and the contact resistance can be reduced by connecting the oxides 230b and 230c with high electron affinity to the conductor 206 without using the oxide 230a with low electron affinity. Is possible. With such a configuration, a semiconductor device with good electrical characteristics can be obtained. More specifically, a transistor with improved on-state current and a semiconductor device using the transistor can be obtained.
  • the semiconductor device of one embodiment of the present invention has a structure in which the transistor M1, the transistor M2, the transistor M3, and the capacitor C can be arranged in the same layer.
  • the semiconductor device can be highly integrated because transistors and capacitors can be arranged at high density.
  • an insulator substrate As a substrate over which the transistor is formed, for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • there is a semiconductor substrate having an insulator region inside the semiconductor substrate for example, an SOI (Silicon On Insulator) substrate.
  • the conductor substrate examples include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate having a metal nitride examples include a substrate having a metal oxide, and the like.
  • a substrate in which a conductor or a semiconductor is provided on an insulator substrate examples include a substrate in which a conductor or an insulator is provided on a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided on a conductor substrate, and the like.
  • a substrate in which an element is provided may be used.
  • the element provided on the substrate include a capacitor element, a resistor element, a switch element, a light emitting element, and a memory element.
  • a flexible substrate may be used as the substrate.
  • a method for providing a transistor over a flexible substrate there is a method in which after a transistor is formed over a non-flexible substrate, the transistor is peeled off and transferred to a substrate which is a flexible substrate.
  • a separation layer is preferably provided between the non-flexible substrate and the transistor.
  • a sheet, a film, a foil, or the like in which fibers are knitted may be used as the substrate.
  • the substrate may have elasticity. Further, the substrate may have a property of returning to the original shape when bending or pulling is stopped. Or you may have a property which does not return to an original shape.
  • the substrate has a region having a thickness of, for example, 5 ⁇ m to 700 ⁇ m, preferably 10 ⁇ m to 500 ⁇ m, more preferably 15 ⁇ m to 300 ⁇ m.
  • a semiconductor device including a transistor can be reduced in weight. Further, by making the substrate thin, it may have elasticity even when glass or the like is used, or may have a property of returning to its original shape when bending or pulling is stopped. Therefore, an impact applied to the semiconductor device on the substrate due to dropping or the like can be reduced. That is, a durable semiconductor device can be provided.
  • a substrate that is a flexible substrate for example, metal, alloy, resin or glass, or fiber thereof can be used.
  • a substrate that is a flexible substrate is preferably as the linear expansion coefficient is lower because deformation due to the environment is suppressed.
  • a material having a linear expansion coefficient of 1 ⁇ 10 ⁇ 3 / K or less, 5 ⁇ 10 ⁇ 5 / K or less, or 1 ⁇ 10 ⁇ 5 / K or less may be used.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • aramid has a low coefficient of linear expansion, it is suitable as a substrate that is a flexible substrate.
  • the insulator examples include an insulating oxide, nitride, oxynitride, nitride oxide, metal oxide, metal oxynitride, and metal nitride oxide.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen By surrounding the transistor with an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen, electrical characteristics of the transistor can be stabilized.
  • an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen can be used as the insulator 210, the insulator 214, the insulator 222, the insulator 270, and the insulator 272
  • Examples of the insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium.
  • An insulator containing lanthanum, neodymium, hafnium, or tantalum may be used as a single layer or a stacked layer.
  • the insulator 210, the insulator 214, the insulator 222, the insulator 270, and the insulator 272 include aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, and neodymium oxide.
  • hafnium oxide, an oxide containing silicon and hafnium, an oxide containing aluminum and hafnium, a metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like may be used.
  • the insulator 210, the insulator 214, the insulator 222, the insulator 270, and the insulator 272 preferably include aluminum oxide, hafnium oxide, or the like.
  • the insulator 274 for example, an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum is used. Or a single layer or a stacked layer.
  • the insulator 274 preferably includes silicon oxide, silicon oxynitride, or silicon nitride.
  • the insulator 222, the insulator 224, the insulator 250, and the insulator 130 preferably include an insulator with a high relative dielectric constant.
  • the insulator 222, the insulator 224, the insulator 250, and the insulator 130 include gallium oxide, hafnium oxide, zirconium oxide, an oxide including aluminum and hafnium, an oxynitride including aluminum and hafnium, silicon, and hafnium. It is preferable to have an oxide, an oxynitride including silicon and hafnium, a nitride including silicon and hafnium, or the like.
  • the insulator 222, the insulator 224, the insulator 250, and the insulator 130 preferably have a stacked structure of silicon oxide or silicon oxynitride and an insulator with a high relative dielectric constant. Since silicon oxide and silicon oxynitride are thermally stable, they can be combined with an insulator having a large relative dielectric constant to form a stacked structure that is thermally stable and has a large relative dielectric constant.
  • the insulator 250 has a structure in which aluminum oxide, gallium oxide, or hafnium oxide is in contact with the oxide 230, so that silicon contained in silicon oxide or silicon oxynitride is prevented from entering the oxide 230. Can do.
  • a trap center can be formed at the interface between aluminum oxide, gallium oxide, or hafnium, and silicon oxide or silicon oxynitride. May be formed. In some cases, the trap center can change the threshold voltage of the transistor in the positive direction by capturing electrons.
  • the insulator 212, the insulator 216, the insulator 280, and the insulator 275 preferably include an insulator with a low relative dielectric constant.
  • the insulator 212, the insulator 216, the insulator 280, and the insulator 275 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, carbon, and nitrogen It is preferable to have silicon oxide to which is added, silicon oxide having holes, resin, or the like.
  • the insulator 212, the insulator 216, the insulator 280, and the insulator 275 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, carbon, and It is preferable to have a laminated structure of silicon oxide to which nitrogen is added or silicon oxide having pores and a resin. Since silicon oxide and silicon oxynitride are thermally stable, they can be combined with a resin to form a stacked structure that is thermally stable and has a low relative dielectric constant. Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • Conductor 203 As the conductor 203, the conductor 205, the conductor 260, the conductor 240, and the conductor 120, aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, A material containing one or more metal elements selected from manganese, magnesium, zirconium, beryllium, indium, ruthenium, and the like can be used. Alternatively, a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
  • a conductive material containing oxygen and a metal element contained in a metal oxide applicable to the oxide 230 may be used.
  • the above-described conductive material containing a metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • hydrogen contained in the oxide 230 can be captured by using such a material.
  • hydrogen mixed from an external insulator or the like may be captured.
  • a plurality of conductive layers formed using the above materials may be stacked.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen may be combined.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed.
  • a stacked structure of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen are combined as the gate electrode is preferably used.
  • a conductive material containing oxygen is preferably provided on the channel formation region side.
  • a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used.
  • an oxide semiconductor metal oxide functioning as an oxide semiconductor
  • metal oxides applicable to the semiconductor layer and the oxide 230 according to the present invention will be described.
  • the oxide semiconductor preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. Further, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, or the like may be included.
  • the oxide semiconductor is an In-M-Zn oxide containing indium, an element M, and zinc is considered.
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • composition of metal oxide A structure of a CAC (Cloud-Aligned Composite) -OS that can be used for the transistor disclosed in one embodiment of the present invention is described below.
  • CAAC c-axis aligned crystal
  • CAC Cloud-aligned Composite
  • CAC-OS or CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material has a function as a semiconductor.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is an electron serving as carriers. It is a function that does not flow.
  • a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily.
  • CAC-OS or CAC-metal oxide by separating each function, both functions can be maximized.
  • the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material, respectively.
  • the conductive region may be observed with the periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
  • CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor include a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), and a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor).
  • OS amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and have a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement is changed between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons.
  • a lattice arrangement such as a pentagon and a heptagon in the distortion.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. This is probably because of this.
  • the CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked.
  • In layer a layer containing indium and oxygen
  • M, Zn elements M, zinc, and oxygen
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
  • the CAAC-OS is an oxide semiconductor with high crystallinity.
  • CAAC-OS cannot confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs.
  • the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the physical properties of the oxide semiconductor including a CAAC-OS are stable. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability.
  • the nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
  • the a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and different properties.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the oxide semiconductor for a transistor, a transistor with high field-effect mobility can be realized. In addition, a highly reliable transistor can be realized.
  • an oxide semiconductor with low carrier density is preferably used.
  • the impurity concentration in the oxide semiconductor film may be decreased and the defect level density may be decreased.
  • a low impurity concentration and a low density of defect states are referred to as high purity intrinsic or substantially high purity intrinsic.
  • the oxide semiconductor has a carrier density of less than 8 ⁇ 10 11 / cm 3 , preferably less than 1 ⁇ 10 11 / cm 3 , more preferably less than 1 ⁇ 10 10 / cm 3 , and 1 ⁇ 10 ⁇ 9 / What is necessary is just to be cm 3 or more.
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low density of defect states, and thus may have a low density of trap states.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel region is formed in an oxide semiconductor with a high trap state density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metal, alkaline earth metal, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level is formed and carriers may be generated in some cases. Therefore, a transistor including an oxide semiconductor containing an alkali metal or an alkaline earth metal is likely to be normally on. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the oxide semiconductor.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • nitrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the nitrogen concentration in the oxide semiconductor is less than 5 ⁇ 10 19 atoms / cm 3 in SIMS, preferably 5 ⁇ 10 18. atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less, and even more preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases.
  • an oxygen vacancy may be formed in some cases.
  • electrons serving as carriers may be generated.
  • a part of hydrogen may be combined with oxygen bonded to a metal atom to generate electrons as carriers. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to be normally on. For this reason, it is preferable that hydrogen in the oxide semiconductor be reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , more preferably 5 ⁇ 10 18 atoms / cm 3. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • FIG. 11A is a top view of a semiconductor device including a transistor 300.
  • FIG. FIG. 11B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 11A and is a cross-sectional view in the channel length direction of the transistor 300.
  • 11C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 11A and is a cross-sectional view in the channel width direction of the transistor 300.
  • the semiconductor device of one embodiment of the present invention includes the transistor 300, the insulator 280 that functions as an interlayer film, the insulator 282, and the insulator 286, and the barrier that covers the side surfaces of the openings included in the insulator 280 and the insulator 282.
  • the conductor 240 (the conductor 240a and the conductive layer) embedded in the opening of the layer 276 (the barrier layer 276a and the barrier layer 276b) and the insulator 280, the insulator 282, and the insulator 286 with the barrier layer 276 interposed therebetween. Body 240b).
  • the conductor 240 functions as a plug or a wiring.
  • the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • the transistor 300 includes a conductor 260 functioning as a first gate electrode, a conductor 205 functioning as a second gate electrode, an insulator 270 in contact with the conductor 260, an insulator 220 functioning as a gate insulator, The insulator 222, the insulator 224, and the insulator 250, and the oxide 230 (the oxide 230a, the oxide 230c, and the oxide 230d) each including a region where a channel is formed are included.
  • the oxide 230 is preferably formed using an oxide semiconductor. Since a transistor including an oxide semiconductor has extremely low leakage current in a non-conduction state, a semiconductor device with low power consumption can be provided.
  • An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
  • the conductor 205 is a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing any of the above-described elements (a tantalum nitride film or a nitride film). Titanium film, molybdenum nitride film, tungsten nitride film).
  • a metal nitride film such as tantalum nitride is preferable because it has a barrier property against hydrogen or oxygen and is difficult to oxidize (high oxidation resistance).
  • indium tin oxide indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon oxide added It is also possible to apply a conductive material such as indium tin oxide.
  • the insulator 224 is preferably an insulator containing oxygen, such as a silicon oxide film or a silicon oxynitride film.
  • the insulator 224 preferably has an excess oxygen region.
  • an insulator having an excess oxygen region is provided in a peripheral material of the transistor 300, whereby oxygen vacancies in the oxide 230 included in the transistor 300 are reduced, so that reliability is improved. be able to.
  • the insulator 222 preferably has a barrier property against oxygen, hydrogen, and water.
  • the insulator 222 is made of, for example, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO. 3
  • An insulator including a so-called high-k material such as (BST) is preferably used in a single layer or a stacked layer.
  • an insulator having a barrier property against oxygen and hydrogen such as aluminum oxide and hafnium oxide. In the case of using such a material, it functions as a layer which prevents release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the outside.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 220, the insulator 222, and the insulator 224 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient.
  • the insulator 222 can capture electrons under a specific condition and increase the threshold voltage. . That is, the insulator 222 may be negatively charged.
  • the operating temperature of the semiconductor device in the case where silicon oxide is used for the insulator 220 and the insulator 224 and a material with many electron capture levels such as hafnium oxide, aluminum oxide, or tantalum oxide is used for the insulator 222, the operating temperature of the semiconductor device Alternatively, under a temperature higher than the storage temperature (eg, 125 ° C. or higher and 450 ° C. or lower, typically 150 ° C. or higher and 300 ° C. or lower), the potential of the conductor 205 is higher than the potential of the source electrode or the drain electrode. By maintaining for 10 milliseconds or longer, typically 1 minute or longer, electrons move from the oxide included in the transistor 300 toward the conductor 205. At this time, some of the moving electrons are captured by the electron capture level of the insulator 222.
  • the storage temperature eg, 125 ° C. or higher and 450 ° C. or lower, typically 150 ° C. or higher and 300 ° C. or lower
  • the threshold voltage of the transistor that captures an amount of electrons necessary for the electron trap level of the insulator 222 is shifted to the positive side. Note that the amount of electrons captured can be controlled by controlling the voltage of the conductor 205, and the threshold voltage can be controlled accordingly.
  • the transistor 300 is a normally-off transistor that is non-conductive (also referred to as an off state) even when the gate voltage is 0 V.
  • the process for capturing electrons may be performed in the manufacturing process of the transistor. For example, after the formation of the conductor connected to the source region or drain region of the transistor, after the completion of the previous process (wafer processing), after the wafer dicing process, after packaging, etc. It is good to do.
  • the threshold voltage can be controlled by appropriately adjusting the film thicknesses of the insulator 220, the insulator 222, and the insulator 224.
  • the total thickness of the insulator 220, the insulator 222, and the insulator 220 is 65 nm or less, preferably 20 nm or less.
  • a transistor with small leakage current when non-conducting it is possible to provide a transistor with small leakage current when non-conducting.
  • a transistor having stable electrical characteristics can be provided.
  • a transistor with high on-state current can be provided.
  • a transistor with a small subthreshold swing value can be provided.
  • a highly reliable transistor can be provided.
  • the oxide 230 includes an oxide 230a, an oxide 230c over the oxide 230a, and an oxide 230d over the oxide 230c.
  • a current flows mainly in the oxide 230c (a channel is formed).
  • a current may flow in the vicinity of the interface with the oxide 230c (which may be a mixed region), but the other region may function as an insulator. .
  • the transistor 300 described in this embodiment includes the region 231 in the oxide 230.
  • the region 231 preferably has a concentration of at least one of a metal element and an impurity element such as hydrogen and nitrogen higher than that of a channel formation region (not illustrated).
  • the region 231 preferably includes a metal element such as ruthenium, titanium, tantalum, or tungsten in addition to the oxide 230.
  • a metal element such as ruthenium, titanium, tantalum, or tungsten in addition to the oxide 230.
  • the resistance of the region 231 can be reduced.
  • a metal element for example, a metal film, an oxide film containing a metal element, or a nitride film containing a metal element is formed on and in contact with the region 231 of the oxide 230, and then the film is removed. Good.
  • a metal element such as ruthenium, titanium, tantalum, or tungsten may enter the constituent elements of the oxide 230.
  • a constituent element included in the oxide 230 and a metal element such as ruthenium, titanium, tantalum, or tungsten may be alloyed in part of the region 231, typically over the region 231.
  • the alloyed region that is, the region with reduced resistance can be formed relatively stably, so that a highly reliable semiconductor device can be provided.
  • the region 231 functions as a source or a drain in the transistor 300.
  • the oxide 230d is preferably provided so as to cover the side surfaces of the oxide 230a and the oxide 230c.
  • impurities such as hydrogen, water, and halogen are transferred from the insulator 280 to the oxide 230c. Diffusion can be suppressed.
  • the insulator 280 functioning as an interlayer film is preferably an insulator containing oxygen, such as a silicon oxide film or a silicon oxynitride film.
  • the insulator 280 provided in the vicinity of the transistor 300 is preferably an insulator containing oxygen, such as a silicon oxide film or a silicon oxynitride film.
  • the insulator 280 is preferably formed using an oxide containing more oxygen than that in the stoichiometric composition. That is, it is preferable that an excess oxygen region be formed in the insulator 280.
  • oxygen vacancies in the oxide 230 included in the transistor 300 can be reduced, so that reliability can be improved.
  • the insulator 282 preferably has a barrier property against oxygen, hydrogen, and water. Since the insulator 282 has a barrier property against oxygen, oxygen in the excess oxygen region can be efficiently supplied to the oxide 230 without diffusing to the insulator 286 side.
  • the insulator 222 included in the transistor 300 also preferably has a barrier property against oxygen, hydrogen, and water, like the insulator 282. Since the insulator 222 has a barrier property against oxygen, oxygen in the excess oxygen region can be efficiently supplied to the oxide 230 without diffusing to the insulator 220 side.
  • the insulator 282 includes, for example, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO. 3
  • An insulator including a so-called high-k material such as (BST) is preferably used in a single layer or a stacked layer.
  • an insulator having a barrier property against oxygen and hydrogen such as aluminum oxide and hafnium oxide. In the case of using such a material, it functions as a layer which prevents release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the outside.
  • the insulator 280, the insulator 282, and the insulator 286 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient. Note that the insulator 280 that covers the transistor 300 may function as a planarization film that covers the uneven shape below the transistor 280.
  • the transistor 300 may be electrically connected to another structure through a plug or a wiring such as the insulator 280, the insulator 282, and the conductor 240 embedded in the insulator 286. Further, hydrogen which is an impurity contained in another structure formed around the transistor 300 may diffuse into a structure in contact with the conductor through a conductor used for a plug or a wiring.
  • a barrier layer 276 is preferably provided between the conductor 240, the insulator 280 having an excess oxygen region, and the insulator 282 having a barrier property.
  • the barrier layer 276 is preferably provided in contact with the insulator 282 having a barrier property and the insulator 222.
  • the barrier layer 276 is preferably in contact with part of the insulator 286.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material can be used as a single layer or a stacked layer.
  • a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity.
  • a low-resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low-resistance conductive material.
  • a metal oxide can be used for the barrier layer 276, for example.
  • an insulator having a barrier property against oxygen and hydrogen such as aluminum oxide, hafnium oxide, and gallium oxide.
  • silicon nitride formed by a chemical vapor deposition (CVD) method may be used.
  • a semiconductor device having stable electrical characteristics can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with low power consumption can be provided.
  • the degree of freedom in designing the semiconductor device can be increased.
  • ⁇ Configuration example of semiconductor device> 12A to 12C are a top view and a cross-sectional view of the transistor 302 and the periphery of the transistor 302.
  • FIG. The transistor 302 illustrated in FIGS. 12A to 12C can be used as the transistors M21 to M23 in Embodiment 1.
  • FIG. 12A is a top view of a semiconductor device including a transistor 302.
  • FIG. 12B and 12C are cross-sectional views of the semiconductor device.
  • FIG. 12B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 12A and also a cross-sectional view in the channel length direction of the transistor 302.
  • 12C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 12A and is a cross-sectional view in the channel width direction of the transistor 302.
  • FIG. 12A In the top view of FIG. 12A, some elements are omitted for clarity.
  • the semiconductor device of one embodiment of the present invention includes the transistor 302, the insulator 510 functioning as an interlayer film, the insulator 512, and the insulator 580.
  • a conductor 540 which functions as a plug (a conductor 540a and a conductor 540b) are provided.
  • the conductor 503 has a first conductor formed in contact with the inner wall of the opening of the insulator 512, and a second conductor formed further inside.
  • the height of the upper surface of the conductor 503 and the height of the upper surface of the insulator 512 can be approximately the same.
  • the transistor 302 shows the case where the conductor 503 has a two-layer structure, the present invention is not limited to this.
  • the conductor 503 may have a single layer or a stacked structure including three or more layers.
  • the conductor 540 is formed in contact with the inner wall of the opening of the insulator 580.
  • the height of the upper surface of the conductor 540 and the height of the upper surface of the insulator 580 can be approximately the same.
  • the transistor 302 shows the case where the conductor 540 has a two-layer structure, the present invention is not limited to this.
  • the conductor 540 may have a single layer or a stacked structure including three or more layers.
  • the transistor 302 includes an insulator 514 and an insulator 516 disposed on a substrate (not shown), a conductor 505 disposed to be embedded in the insulator 514 and the insulator 516, the conductor 505, and An insulator 520 disposed on the insulator 516, an insulator 522 disposed on the insulator 520, an insulator 524 disposed on the insulator 522, and the insulator 524 Oxide 530 (oxide 530a, oxide 530c, and oxide 530d), insulator 550 disposed on oxide 530, metal oxide 552 disposed on insulator 550, and metal A conductor 560 disposed over the oxide 552, an insulator 570 disposed over the conductor 560, an insulator 571 disposed over the insulator 570, and at least the oxide 530; , An insulator 572 disposed in contact with the insulator 572, an insulator 572 disposed in contact with the insulator 572, an
  • the oxide 530 including the channel formation region (the oxide 530a, the oxide 530c, and the oxide 530d) has a structure similar to that of the oxide 230 described above.
  • the oxide 530 includes a channel formation region, a source region, a drain region, a junction region provided between the channel formation region and the source region, and a junction region provided between the channel formation region and the drain region.
  • the bonding region has a region overlapping with the insulator 572.
  • Concentrations of metal elements such as indium and impurity elements such as hydrogen and nitrogen detected in each region are not limited to stepwise changes in each region, but also continuously change in each region (also referred to as gradation). You may do it. In other words, the closer to the channel formation region, the lower the concentration of metal elements such as indium and impurity elements such as hydrogen and nitrogen.
  • each region is formed in the oxide 530c.
  • the present invention is not limited to this, and for example, these regions may be formed in the oxide 530a.
  • the boundary of each region is displayed substantially perpendicular to the upper surface of the oxide 530, but this embodiment is not limited to this.
  • the bonding region may have a shape that protrudes toward the conductor 560 near the surface of the oxide 530c and recedes toward the conductor 540 near the lower surface of the oxide 530c.
  • a structure in which the oxide 530a, the oxide 530c, and the oxide 530d are stacked is described; however, the present invention is not limited to this.
  • a single layer of the oxide 530c, a two-layer structure of the oxide 530c and the oxide 530a, a two-layer structure of the oxide 530c and the oxide 530d, or a stacked structure of four or more layers may be provided.
  • the oxide 530c When the oxide 530c is provided over the oxide 530a, diffusion of impurities into the oxide 530c can be suppressed from a structure formed below the oxide 530a. Further, by including the oxide 530c below the oxide 530d, diffusion of impurities into the oxide 530c can be suppressed from the structure formed above the oxide 530d.
  • the thickness (t) of the oxide 530 c is preferably larger than the channel length (L) of the transistor 302. That is, as illustrated in FIG. 12B, the thickness (t) of the oxide 530c is larger than the channel length (L) of the transistor 302 (t> L).
  • the thickness (t) of the oxide 530 c is preferably larger than the channel width (W) of the transistor 302. That is, as illustrated in FIG. 12C, the thickness (t) of the oxide 530c is larger than the channel width (W) of the transistor 302 (t> W).
  • At least a side surface of the oxide 530c preferably has a tapered structure with respect to a plane parallel to the substrate.
  • the taper angle of the side surface of the oxide 530c is preferably 45 ° to 80 °.
  • a conductor 560 functioning as a first gate electrode is attached to a side surface of the oxide 530 with an insulator 550 functioning as a gate insulator interposed therebetween.
  • an insulator 550 functioning as a gate insulator interposed therebetween.
  • cover Provide to cover.
  • a gate voltage is applied from the upper surface and both sides of the oxide 530c, and the entire region overlapping with the conductor 560 of the oxide 530c is a channel formation region. It becomes.
  • a transistor structure in which a channel formation region is electrically surrounded by a first gate electrode is referred to as a surrounded channel (S-channel) structure.
  • the conductor 560 functioning as the first gate electrode covers the side surface of the oxide 530 with the insulator 550 functioning as the gate insulator interposed therebetween, whereby the projected area (L ⁇ The on-current per W) can be improved. Accordingly, the transistor 302 can be miniaturized.
  • the conductor 505 functions as the second gate electrode of the transistor 302. Since the side surface of the oxide 530c has a taper angle, when a potential is applied to the second gate electrode, a gate electric field can be applied to the entire region overlapping with the second gate electrode of the oxide 530c. it can.
  • the insulator 550 positioned above a region where a channel is formed in the oxide 530 include excess oxygen. That is, excess oxygen in the insulator 550 diffuses into a region where a channel in the oxide 530 is formed, so that oxygen vacancies in the region where the channel in the oxide 530 is formed can be reduced.
  • the metal oxide 552 may be provided in order to efficiently supply the excess oxygen included in the insulator 550 to the oxide 530. Therefore, the metal oxide 552 preferably suppresses oxygen diffusion. By providing the metal oxide 552 that suppresses diffusion of oxygen, diffusion of excess oxygen into the conductor 560 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 530 can be suppressed. Further, oxidation of the conductor 560 due to excess oxygen can be suppressed.
  • the metal oxide 552 may function as part of the gate insulator. Therefore, when silicon oxide, silicon oxynitride, or the like is used for the insulator 550, the metal oxide 552 is preferably a metal oxide that is a high-k material with a high relative dielectric constant. By setting it as the said laminated structure, it can be set as the laminated structure stable with respect to a heat
  • EOT equivalent oxide thickness
  • the metal oxide 552 may function as a part of the first gate electrode.
  • an oxide semiconductor that can be used as the oxide 530 can be used as the metal oxide 552.
  • the electric resistance value of the metal oxide 552 can be reduced to obtain a conductor. This can be called an OC (Oxide Conductor) electrode.
  • the on-state current can be improved without weakening the influence of the electric field from the conductor 560.
  • leakage current can be suppressed by maintaining the distance between the conductor 560 and the oxide 530 depending on the physical thickness of the insulator 550 and the metal oxide 552.
  • the physical distance between the conductor 560 and the oxide 530 and the electric field strength applied from the conductor 560 to the oxide 530 can be reduced. It can be easily adjusted as appropriate.
  • the metal oxide 552 a metal containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, and the like.
  • An oxide can be used.
  • the oxide semiconductor can be used as the metal oxide 552.
  • the insulator 520, the insulator 522, and the insulator 524 function as a second gate insulator of the transistor 302.
  • the structure in which the insulator 520, the insulator 522, and the insulator 524 are stacked is shown; however, the present invention is not limited to this.
  • any two layers of the insulator 520, the insulator 522, and the insulator 524 may be stacked, or any one of the layers may be used.
  • the insulator 522 and the insulator 514 functioning as an interlayer film can function as a barrier insulator that prevents impurities such as water or hydrogen from entering the transistor from below.
  • an insulating material having a function of suppressing permeation of impurities such as water or hydrogen is preferably used.
  • silicon nitride or the like is used as the insulator 514, and aluminum oxide, hafnium oxide, an oxide containing silicon and hafnium (hafnium silicate), an oxide containing aluminum and hafnium (hafnium aluminate), or the like is used as the insulator 522. Is preferred.
  • the insulator 514 and the insulator 522 include at least one of impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2, and the like) and a copper atom. It preferably has a function of suppressing transmission. The same applies to the case where an insulating material having a function of suppressing the permeation of impurities is described below.
  • the insulator 514 and the insulator 522 are preferably formed using an insulating material having a function of suppressing permeation of oxygen (eg, an oxygen atom or an oxygen molecule).
  • an insulating material having a function of suppressing permeation of oxygen eg, an oxygen atom or an oxygen molecule.
  • the concentration of impurities such as water, hydrogen, or nitrogen oxide in the insulator 522 is preferably reduced.
  • the amount of hydrogen desorbed from the insulator 522 is converted into hydrogen molecules when the surface temperature of the insulator 522 is in the range of 50 ° C. to 500 ° C. in the temperature programmed desorption gas analysis method (TDS (Thermal Desorption Spectroscopy)). 2 ⁇ 10 15 molecules / cm 2 or less, preferably 1 ⁇ 10 15 molecules / cm 2 or less, more preferably 5 ⁇ 10 14 molecules / cm 2 in terms of the amount of the desorbed in terms of the area of the insulator 522.
  • TDS Temperaturetroscopy
  • the conductor 560 functions as the first gate electrode of the transistor 302.
  • the conductor 505 functions as a second gate electrode of the transistor 302.
  • the conductor 505 functioning as the second gate electrode of the transistor 302 is provided so as to overlap with the oxide 530 and the conductor 560.
  • the conductor 505 is preferably provided so that the length in the channel width direction is larger than the channel formation region in the oxide 530.
  • the conductor 505 preferably extends even in a region outside the end portion where the channel formation region of the oxide 530 intersects with the one-dot chain line (channel width direction) of A3-A4 in the region 234. That is, it is preferable that the conductor 505 and the conductor 560 overlap with each other through the insulator on the side surface of the oxide 530 in the channel width direction.
  • the potential applied to the conductor 505 is preferably the same as the potential applied to the conductor 560. Further, it may be a ground potential or an arbitrary potential.
  • the threshold voltage of the transistor 302 can be controlled by changing the potential applied to the conductor 505 independently of the potential applied to the conductor 560 without being linked. In particular, by applying a negative potential to the conductor 505, the threshold voltage of the transistor 302 can be higher than 0 V and the off-state current can be reduced. Therefore, the drain current when the voltage applied to the conductor 560 is 0 V can be reduced.
  • the conductor 505 is provided so as to overlap with the oxide 530 and the conductor 560.
  • the conductor 505 is also arranged so as to overlap with the conductor 560 in a region outside the end portion of the region 234 of the oxide 530 that intersects with the one-dot chain line (channel width direction) of A3-A4. Is preferred. That is, it is preferable that the conductor 505 and the conductor 560 overlap with each other with an insulator outside the side surface of the oxide 530.
  • the channel formation region can be electrically surrounded by the electric field of the conductor 560 functioning as the first gate electrode and the electric field of the conductor 505 functioning as the second gate electrode.
  • the conductor 503 is extended in the channel width direction like the conductor 560 and functions as a wiring for applying a potential to the conductor 505.
  • the conductor 503 functioning as a wiring and providing the insulator 514 and the conductor 505 embedded in the insulator 516
  • the insulator 514 and the conductor 560 are provided between the conductor 503 and the conductor 560.
  • An insulator 516 and the like are provided, so that the parasitic capacitance between the conductor 503 and the conductor 560 can be reduced and the withstand voltage can be increased.
  • the switching speed of the transistor can be improved and a transistor having high frequency characteristics can be obtained.
  • the extending direction of the conductor 503 is not limited thereto, and the conductor 503 may be extended in the channel length direction of the transistor 302, for example.
  • the conductor 505 includes a first conductor that is in contact with the inner walls of the openings of the insulator 514 and the insulator 516, and a second conductor that is provided inside the first conductor. Further, the height of the upper surface of the conductor 505 and the height of the upper surface of the insulator 516 can be approximately the same. In addition, although the figure has shown about the structure which laminates
  • a conductive material having a function of suppressing transmission of impurities such as water or hydrogen (difficult to transmit) as the first conductor.
  • impurities such as water or hydrogen (difficult to transmit)
  • tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, and a single layer or a stacked layer may be used. Accordingly, impurities such as hydrogen and water from the lower layer than the insulator 514 can be prevented from diffusing into the upper layer through the conductor 505.
  • the first conductor is an impurity such as a hydrogen atom, a hydrogen molecule, a water molecule, an oxygen atom, an oxygen molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2 ), a copper atom, or the like.
  • it preferably has a function of suppressing transmission of at least one of oxygen (for example, oxygen atoms and oxygen molecules).
  • oxygen for example, oxygen atoms and oxygen molecules.
  • a conductive material having a function of suppressing the permeation of impurities is described below.
  • the second conductor is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component.
  • the second conductor may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
  • the conductor 560 includes a first conductor and a second conductor.
  • a metal such as tungsten can be used.
  • a conductor that can improve conductivity of the metal oxide 552 by adding an impurity such as nitrogen to the metal oxide 552 is used as the first conductor.
  • an oxide semiconductor is used as the metal oxide 552
  • a conductor that can improve conductivity of the metal oxide 552 by adding an impurity such as nitrogen to the metal oxide 552 is used as the first conductor.
  • titanium nitride or the like is preferably used for the first conductor.
  • the second conductor is preferably formed using a metal such as aluminum or tungsten with low resistance.
  • the insulator 570 may be provided over the conductor 560.
  • the insulator 570 may be formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen. By including the insulator 570, oxidation of the conductor 560 can be prevented. In addition, impurities such as water or hydrogen can be prevented from entering the oxide 530 through the conductor 560 and the insulator 550.
  • a structure including the insulator 550, the metal oxide 552, the conductor 560, and the insulator 570 has a side surface that is substantially perpendicular to the insulator 522.
  • the semiconductor device described in this embodiment is not limited to this.
  • the side surface of the structure including the insulator 550, the metal oxide 552, the conductor 560, and the insulator 570 may have a tapered structure with respect to the upper surface of the insulator 522. In that case, the angle formed between the side surface of the structure and the top surface of the insulator 522 is preferably as large as possible (close to vertical).
  • the insulator 571 functioning as a hard mask may be provided over the insulator 570.
  • the side surface of the structure body is substantially vertical.
  • the angle formed between the side surface and the substrate surface can be set to 75 ° to 100 °, preferably 80 ° to 95 °.
  • the insulator 572 is provided in contact with at least the side surfaces of the insulator 550, the metal oxide 552, the conductor 560, and the insulator 570.
  • the insulators 550, 571, and 572 are provided in the same manner as the insulators 250, 270, and 272 described above.
  • An insulator 575 is provided on the side surfaces of the conductor 560, the metal oxide 552, and the insulator 550 with an insulator 572 interposed therebetween.
  • the transistor 302 has a high probability that parasitic capacitance is formed between the conductor 560 and the conductor 540.
  • the transistor 302 has a high probability that a parasitic capacitance is formed between the conductor 560 and the conductor 320.
  • the parasitic capacitance may affect the electrical characteristics of the transistor.
  • each parasitic capacitance can be reduced.
  • the transistor 302 can be operated at high speed.
  • the insulator 575 preferably includes an insulator having a small relative dielectric constant.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide or resin having holes, or the like is included. It is preferable. In particular, silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • An insulator 580 functioning as an interlayer film is provided so as to cover the transistor 302.
  • the insulator 580 preferably has reduced concentration of impurities such as water or hydrogen in the film.
  • an opening is preferably provided in the insulator 580 so that the conductor 540 is embedded in the opening. Note that the conductor 540 is in contact with the source region or the drain region of the oxide 530.
  • the conductor 540 a material similar to that of the conductor 505 can be used.
  • the conductor 540 may be formed after aluminum oxide is formed on the side wall portion of the opening.
  • aluminum oxide By forming aluminum oxide on the side wall portion of the opening, permeation of oxygen from the outside can be suppressed and oxidation of the conductor 540 can be prevented. Further, impurities such as water and hydrogen can be prevented from diffusing from the conductor 540 to the outside.
  • the aluminum oxide can be formed by forming an aluminum oxide film in the opening using an ALD method or the like and performing anisotropic etching.
  • a substrate (not illustrated) for forming the transistor 302 As a substrate (not illustrated) for forming the transistor 302, a substrate similar to the above-described substrate 201 can be used.
  • the conductor, the insulator, the oxide semiconductor, and the like used for the semiconductor device of this embodiment the same materials as those of the semiconductor device of the above embodiment can be used.
  • FIGS. 13A and 13B illustrates a semiconductor device that can be miniaturized or highly integrated by having a structure in which a plurality of transistors and a capacitor have a common structure. Can be provided.
  • FIG. 13A is a diagram illustrating a cross-sectional structure of the semiconductor device 20, and FIG. 13B is a cross-sectional view of a portion indicated by a dashed-dotted line W1-W2 in FIG. 13A.
  • the semiconductor device 20 is a semiconductor device including a transistor including an oxide in a channel formation region.
  • the semiconductor device 20 includes a transistor M21, a transistor M22, a transistor M23, a capacitor C21, and a wiring.
  • FIGS. 13A and 13B reference numerals may be given only to the structure of the transistor M21, and reference numerals of the structure of the transistor M22 or the transistor M23 may be omitted.
  • a structure having the same function as the structure to which the reference numeral of the transistor M21 is given may be described using the same reference numeral.
  • the semiconductor device 20 is provided over a substrate 501, and includes a transistor M21, a transistor M22, a transistor M23, and a capacitor C21, an insulator 510 that functions as an interlayer film, an insulator 512, and an insulator 580.
  • a conductor 503 which is electrically connected to the transistor M21, the transistor M22, or the transistor M23 and functions as a wiring is provided.
  • a conductor 540 that is electrically connected to the transistor M21 or the transistor M23 and functions as a wiring is provided.
  • a conductor 504 and a conductor 506 which are electrically connected to the capacitor C21 and function as wirings are provided.
  • part of the structure forming the transistor can be used together with a part of the structure forming the capacitor.
  • part of the structure of the transistor may function as part of the structure of the capacitor.
  • the total area of the projected area of the transistor and the projected area of the capacitor can be reduced.
  • the conductor 503 and the conductor 504 are formed to be embedded in the insulator 512.
  • the heights of the upper surfaces of the conductor 503 and the conductor 504 and the height of the upper surface of the insulator 512 can be approximately the same.
  • the conductor 503 and the conductor 504 are illustrated as single layers, the present invention is not limited to this.
  • the conductor 503 and the conductor 504 may have a multilayer structure including two or more layers.
  • the oxide 530a and the oxide 530c can be provided in common. With this structure, the distance between the transistors can be reduced; thus, miniaturization or high integration can be achieved. Further, with this structure, it is not necessary to separately provide a wiring and the like for connecting the transistors, so that the process can be simplified.
  • the description of the transistor 302 can be referred to for a structure to which the same sign as the transistor 302 is given.
  • the oxide 530a, the oxide 530c, and the oxide 530d may be collectively referred to as the oxide 530.
  • the oxide 530a, the oxide 530c, and the oxide 530d are stacked; however, the present invention is not limited to this.
  • the oxide 530c may be provided.
  • a single layer, two layers, or a stacked structure of four or more layers may be used.
  • this invention is not limited to this.
  • the conductor 560 and the conductor 505 may be provided as a single layer or a stack of three or more layers.
  • the capacitor C21 has a structure in common with the transistor M21, the transistor M22, and the transistor M23.
  • part of the transistor M21 and the oxide 530 of the transistor M22 functions as an electrode of the capacitor C21. Therefore, the capacitive element C21 is provided between the transistor M21 and the transistor M22.
  • the capacitor C ⁇ b> 21 includes a part of the oxide 530 in which the resistance is reduced, the insulator 330, and the conductor 320 over the insulator 330. That is, at least part of the conductor 320 is disposed so as to overlap with part of the region where the resistance of the oxide 530 is reduced, with the insulator 330 interposed therebetween.
  • a part of the region of the oxide 530 whose resistance is reduced functions as one of the electrodes of the capacitor C21, and the conductor 320 functions as the other of the electrodes of the capacitor C21.
  • part of the region of the oxide 530 whose resistance is reduced serves as the source of the transistor M21, the drain of the transistor M22, and the function of one of the electrodes of the capacitor C21.
  • a part of the insulator 330 functions as a dielectric of the capacitor C21.
  • part of the oxide 530 whose resistance is reduced is provided in contact with the conductor 506.
  • the semiconductor device can be miniaturized.
  • the insulator 330 may be provided similarly to the insulator 130. By stacking an insulator having a large relative dielectric constant, the capacitor C21 having a large capacitance value and a small leakage current can be obtained.
  • an insulator 572 and an insulator 575 are provided on side surfaces of the transistor M21 and the conductor 560 of the transistor M22.
  • parasitic capacitance between the conductor 560 and the conductor 320 can be reduced.
  • the conductor 320 is similar to the conductor 120 described above, and may have a stacked structure of two or more layers.
  • the semiconductor device of one embodiment of the present invention has a structure in which the transistors M21 to M23 and the capacitor C21 can be arranged in the same layer. With such a structure, the semiconductor device can be highly integrated because transistors and capacitors can be arranged at high density.
  • FIG. 14A is a top view of a semiconductor device including a transistor 303.
  • FIG. 14B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 14A and also a cross-sectional view of the transistor 303 in the channel length direction.
  • FIG. 14C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 14A and is a cross-sectional view in the channel width direction of the transistor 303.
  • some elements are omitted for clarity.
  • the semiconductor device of one embodiment of the present invention includes the transistor 303, the insulator 580 functioning as an interlayer film, the insulator 582, and the insulator 586, and the barrier that covers the side surfaces of the openings included in the insulator 580 and the insulator 582.
  • the conductor 540 (the conductor 540a and the conductor 540) embedded in the opening of the layer 576 (the barrier layer 576a and the barrier layer 576b) and the insulator 580, the insulator 582, and the insulator 586 with the barrier layer 576 interposed therebetween. Body 540b).
  • the conductor 540 functions as a plug or a wiring.
  • the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • the transistor 303 includes a conductor 560 functioning as a first gate electrode, a conductor 505 functioning as a second gate electrode, an insulator 570 in contact with the conductor 560, an insulator 520 functioning as a gate insulator,
  • the insulator 522, the insulator 524, and the insulator 550, and the oxide 530 each include a region where a channel is formed.
  • an oxide semiconductor is preferably used. Since a transistor including an oxide semiconductor has extremely low leakage current in a non-conduction state, a semiconductor device with low power consumption can be provided.
  • An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
  • the oxide 530 includes an oxide 530a, an oxide 530c over the oxide 530a, and an oxide 530d over the oxide 530c.
  • a current mainly flows through the oxide 530c (a channel is formed).
  • current may flow in the vicinity of the interface with the oxide 530c (which may be a mixed region), but other regions may function as an insulator. .
  • the transistor 303 described in this embodiment includes the region 531 in the oxide 530.
  • the region 531 preferably has a lower oxygen concentration than the channel formation region, and at least one concentration of a metal element and an impurity element such as hydrogen and nitrogen is higher than that of the channel formation region (not illustrated). Is preferred.
  • the region 531 preferably includes any one or more metal elements selected from aluminum, ruthenium, titanium, tantalum, and tungsten in addition to the constituent elements included in the oxide 530.
  • a metal element for example, a metal film, a metal compound film, an oxide film containing a metal element, a nitride film containing a metal element, or the like is formed in contact with the region 531 of the oxide 530, and then the film Should be removed.
  • heat treatment is preferably performed before removal.
  • a metal film, a metal compound film, an oxide film containing a metal element, a nitride film containing a metal element, or the like is formed in contact with the region 531 of the oxide 530, and then heat treatment is performed, so that the vicinity of the metal film or the like is performed. In some cases, part of oxygen in the oxide 530 located in the region is absorbed by the metal film and the resistance of the region 531 is reduced.
  • the heat treatment can be performed at 200 ° C. or more and 500 ° C. or less, typically 400 ° C.
  • a metal element such as aluminum, ruthenium, titanium, tantalum, or tungsten may enter the constituent element of the oxide 530.
  • a constituent element included in the oxide 530 and a metal element such as aluminum, ruthenium, titanium, tantalum, or tungsten may be alloyed in part of the region 531, typically over the region 531.
  • the alloyed region that is, the region having low resistance can be formed relatively stably, so that a highly reliable semiconductor device can be provided.
  • the region 531 functions as a source or a drain in the transistor 303.
  • the oxide 530d is preferably provided so as to cover the side surfaces of the oxide 530a and the oxide 530c.
  • impurities such as hydrogen, water, and halogen are transferred from the insulator 580 to the oxide 530c. Diffusion can be suppressed.
  • the thickness (t) of the oxide 530 c is preferably larger than the channel length (L) of the transistor 303. That is, as illustrated in FIG. 14B, the thickness (t) of the oxide 530c is larger than the channel length (L) of the transistor 303 (t> L). In addition, the thickness (t) of the oxide 530 c is preferably larger than the channel width (W) of the transistor 303. That is, as illustrated in FIG. 14C, the thickness (t) of the oxide 530c is larger than the channel width (W) of the transistor 303 (t> W).
  • At least a side surface of the oxide 530c preferably has a tapered structure with respect to a plane parallel to the substrate.
  • the taper angle of the side surface of the oxide 530c is preferably 45 ° to 80 °.
  • a conductor 560 functioning as a first gate electrode is attached to a side surface of the oxide 530 with an insulator 550 functioning as a gate insulator interposed therebetween.
  • an insulator 550 functioning as a gate insulator interposed therebetween.
  • the conductor 560 functioning as the first gate electrode covers the side surface of the oxide 530 with the insulator 550 functioning as the gate insulator interposed therebetween, whereby the channel of the transistor 303 is formed.
  • the on-current per projected area (L ⁇ W) of the region can be improved. Accordingly, the transistor 303 can be miniaturized.
  • the conductor 505 functions as the second gate electrode of the transistor 303. Since the side surface of the oxide 530c has a taper angle, when a potential is applied to the second gate electrode, a gate electric field can be applied to the entire region overlapping with the second gate electrode of the oxide 530c. it can.
  • the insulator 582 includes, for example, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO. 3
  • An insulator including a so-called high-k material such as (BST) is preferably used in a single layer or a stacked layer.
  • an insulator having a barrier property against oxygen and hydrogen such as aluminum oxide and hafnium oxide. In the case of using such a material, it functions as a layer which prevents release of oxygen from the oxide 530 and entry of impurities such as hydrogen from the outside.
  • a material applicable to the insulator 580 can be used.
  • the insulator 580, the insulator 582, and the insulator 586 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient. Note that the insulator 580 covering the transistor 303 may function as a planarization film covering the uneven shape below the transistor 303.
  • the transistor 303 may be electrically connected to another structure through a plug or a wiring such as the insulator 580, the insulator 582, and the conductor 540 embedded in the insulator 586. Further, hydrogen that is an impurity contained in another structure formed around the transistor 303 may diffuse into a structure in contact with the conductor through a conductor used for a plug or a wiring.
  • a barrier layer 576 is preferably provided between the conductor 540, the insulator 580 having an excess oxygen region, and the insulator 582 having a barrier property.
  • the barrier layer 576 is preferably provided in contact with the insulator 582 having a barrier property.
  • the barrier layer 576 is preferably provided in contact with the insulator 522 (not shown). By providing the barrier layer 576 in contact with the insulator 582 and the insulator 522, the insulator 580 and the transistor 303 are sealed with the insulator having a barrier property and the barrier layer. be able to.
  • the barrier layer 576 is preferably in contact with part of the insulator 586. When the barrier layer 576 extends to the insulator 586, diffusion of oxygen and impurities can be further suppressed.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material can be used as a single layer or a stacked layer.
  • a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity.
  • a low-resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low-resistance conductive material.
  • a metal oxide can be used for the barrier layer 576.
  • an insulator having a barrier property against oxygen and hydrogen such as aluminum oxide, hafnium oxide, and gallium oxide.
  • silicon nitride formed by a chemical vapor deposition (CVD) method may be used.
  • a semiconductor device having stable electrical characteristics can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with low power consumption can be provided.
  • the degree of freedom in designing the semiconductor device can be increased.
  • An electronic component 7000 illustrated in FIG. 15A is an IC chip and includes a lead and a circuit portion.
  • the electronic component 7000 is mounted on a printed circuit board 7002, for example.
  • a plurality of such IC chips are combined and each is electrically connected on the printed circuit board 7002 to complete a substrate on which electronic components are mounted (a mounting substrate 7004).
  • the circuit portion of the electronic component 7000 is formed by stacking a substrate 7031, a layer 7032, and a layer 7033.
  • the substrate 7031 a substrate that can be used for the substrate 201 described in Embodiment 2 may be used.
  • a semiconductor substrate such as silicon
  • an integrated circuit may be formed over the substrate 7031 and the layer 7032 including an OS transistor may be formed thereover.
  • the layer 7032 includes the OS transistor described in the above embodiment.
  • the semiconductor device 10 described in the above embodiment can be provided in the layer 7032.
  • the layer 7033 includes a memory.
  • a memory using an OS transistor such as NOSRAM (registered trademark) or DOSRAM (registered trademark) (hereinafter referred to as an OS memory) can be used. Since the OS memory can be provided by being stacked over another semiconductor element, the electronic component 7000 can be downsized. Further, the OS memory consumes less power when data is rewritten, and the power consumption of the electronic component 7000 can be reduced.
  • NOSRAM is an abbreviation for “Nonvolatile Oxide Semiconductor Random Access Memory” and refers to a RAM having a gain cell type (2T (transistor) type, 3T type) memory cell.
  • DOSRAM is an abbreviation for “Dynamic Oxide Semiconductor RAM”, and refers to a RAM having 1T (transistor) 1C (capacitance) type memory cells.
  • NOSRAM and DOSRAM are each a type of OS memory that utilizes the small off-state current of the OS transistor.
  • the OS memory may be provided in the layer 7032 instead of the layer 7033. By doing so, the IC chip manufacturing process can be shortened.
  • the layer 7033 may include a memory such as a ReRAM (Resistive RAM), an MRAM (Magnetic Resistive RAM), a PRAM (Phase change RAM), or a FeRAM (Ferroelectric RAM).
  • a memory such as a ReRAM (Resistive RAM), an MRAM (Magnetic Resistive RAM), a PRAM (Phase change RAM), or a FeRAM (Ferroelectric RAM).
  • QFP Quad Flat Package
  • FIG. 15B is a schematic view of the electronic component 7400.
  • An electronic component 7400 is a camera module and includes an image sensor chip 7451.
  • the electronic component 7400 includes a package substrate 7411 for fixing the image sensor chip 7451, a lens cover 7421, a lens 7435, and the like.
  • an IC chip 7490 having functions such as a drive circuit and a signal conversion circuit of the imaging device is also provided between the package substrate 7411 and the image sensor chip 7451, and has a configuration as a SiP (System in package). Yes.
  • FIG. 15B illustrates a part of the lens cover 7421 and the lens 7435 which are not shown in order to show the inside of the electronic component 7400.
  • the circuit portion of the image sensor chip 7451 is formed by stacking a substrate 7031, a layer 7032, a layer 7033, and a layer 7034.
  • the details of the substrate 7031, the layer 7032, and the layer 7033 may be referred to the description of the electronic component 7000 described above.
  • the layer 7034 includes a light receiving element.
  • a light receiving element for example, a pn junction photodiode using a selenium-based material as a photoelectric conversion layer can be used.
  • a photoelectric conversion element using a selenium-based material has high external quantum efficiency with respect to visible light, and can realize a highly sensitive photosensor.
  • Selenium-based materials can be used as p-type semiconductors.
  • the selenium-based material include crystalline selenium such as single crystal selenium and polycrystalline selenium, amorphous selenium, copper, indium, selenium compound (CIS), or copper, indium, gallium, selenium compound (CIGS), etc. Can be used.
  • the n-type semiconductor of the pn junction photodiode is preferably formed using a material having a wide band gap and a light-transmitting property with respect to visible light.
  • a material having a wide band gap and a light-transmitting property with respect to visible light for example, zinc oxide, gallium oxide, indium oxide, tin oxide, or an oxide in which they are mixed can be used.
  • a pn junction photodiode using a p-type silicon semiconductor and an n-type silicon semiconductor may be used as the light-receiving element included in the layer 7034. Further, it may be a pin junction photodiode in which an i-type silicon semiconductor layer is provided between a p-type silicon semiconductor and an n-type silicon semiconductor.
  • the photodiode using silicon can be formed using single crystal silicon. At this time, it is preferable that the layer 7033 and the layer 7034 be electrically bonded by using a bonding process.
  • the photodiode using silicon can also be formed using a thin film such as amorphous silicon, microcrystalline silicon, or polycrystalline silicon.
  • An information terminal 2910 illustrated in FIG. 16A includes a housing 2911, a display portion 2912, a microphone 2917, a speaker portion 2914, a camera 2913, an external connection portion 2916, an operation switch 2915, and the like.
  • the display portion 2912 includes a display panel using a flexible substrate and a touch screen.
  • the information terminal 2910 includes an antenna, a battery, and the like inside the housing 2911.
  • the information terminal 2910 can be used as, for example, a smartphone, a mobile phone, a tablet information terminal, a tablet personal computer, an electronic book terminal, or the like.
  • a laptop personal computer 2920 illustrated in FIG. 16B includes a housing 2921, a display portion 2922, a keyboard 2923, a pointing device 2924, and the like.
  • the laptop personal computer 2920 includes an antenna, a battery, and the like inside the housing 2921.
  • a video camera 2940 illustrated in FIG. 16C includes a housing 2941, a housing 2942, a display portion 2944, operation switches 2944, a lens 2945, a connection portion 2946, and the like.
  • the operation switch 2944 and the lens 2945 are provided on the housing 2941
  • the display portion 2944 is provided on the housing 2942.
  • the video camera 2940 includes an antenna, a battery, and the like inside the housing 2941.
  • the housing 2941 and the housing 2942 are connected to each other by a connection portion 2946.
  • the angle between the housing 2941 and the housing 2942 can be changed by the connection portion 2946.
  • the orientation of the image displayed on the display portion 2943 can be changed, and display / non-display of the image can be switched.
  • FIG. 16D illustrates an example of a bangle information terminal.
  • the information terminal 2950 includes a housing 2951, a display portion 2952, and the like.
  • the information terminal 2950 includes an antenna, a battery, and the like inside the housing 2951.
  • the display portion 2952 is supported by a housing 2951 having a curved surface. Since the display portion 2952 includes a display panel using a flexible substrate, an information terminal 2950 that is flexible, light, and easy to use can be provided.
  • FIG. 16E illustrates an example of a wristwatch type information terminal.
  • the information terminal 2960 includes a housing 2961, a display portion 2962, a band 2963, a buckle 2964, an operation switch 2965, an input / output terminal 2966, and the like.
  • the information terminal 2960 includes an antenna, a battery, and the like inside the housing 2961.
  • the information terminal 2960 can execute various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games.
  • the display surface of the display portion 2962 is curved, and display can be performed along the curved display surface.
  • the display portion 2962 includes a touch sensor and can be operated by touching the screen with a finger, a stylus, or the like.
  • an application can be started by touching an icon 2967 displayed on the display unit 2962.
  • the operation switch 2965 can have various functions such as time setting, power on / off operation, wireless communication on / off operation, manner mode execution and release, and power saving mode execution and release. .
  • the function of the operation switch 2965 can be set by an operating system incorporated in the information terminal 2960.
  • the information terminal 2960 can execute short-range wireless communication that is a communication standard. For example, it is possible to talk hands-free by communicating with a headset capable of wireless communication.
  • the information terminal 2960 includes an input / output terminal 2966, and can directly exchange data with other information terminals via a connector. Charging can also be performed via the input / output terminal 2966. Note that the charging operation may be performed by wireless power feeding without using the input / output terminal 2966.
  • a robot 2100 illustrated in FIG. 17A includes an arithmetic device 2110, an illuminance sensor 2101, a microphone 2102, an upper camera 2103, a speaker unit 2104, a display unit 2105, a lower camera 2106, an obstacle sensor 2107, and a moving mechanism 2108.
  • the electronic components can be used for the arithmetic device 2110, the illuminance sensor 2101, the upper camera 2103, the display unit 2105, the lower camera 2106, the obstacle sensor 2107, and the like.
  • the microphone 2102 has a function of detecting a user's speaking voice, environmental sound, and the like.
  • the speaker unit 2104 has a function of emitting sound.
  • the robot 2100 can communicate with the user using the microphone 2102 and the speaker unit 2104.
  • the display unit 2105 has a function of displaying various information.
  • the robot 2100 can display information desired by the user on the display unit 2105.
  • the display unit 2105 may be equipped with a touch panel.
  • the upper camera 2103 and the lower camera 2106 have a function of imaging the surroundings of the robot 2100.
  • the obstacle sensor 2107 can detect the presence or absence of an obstacle in the traveling direction when the robot 2100 moves forward using the moving mechanism 2108.
  • the robot 2100 can recognize the surrounding environment using the upper camera 2103, the lower camera 2106, and the obstacle sensor 2107, and can move safely.
  • a flying object 2120 illustrated in FIG. 17B includes a calculation device 2121, a propeller 2123, and a camera 2122, and has a function of flying independently.
  • the electronic components can be used for the arithmetic device 2121 and the camera 2122.
  • FIG. 17C is an external view illustrating an example of an automobile.
  • the automobile 2980 has a camera 2981 and the like.
  • the automobile 2980 includes various sensors such as an infrared radar, a millimeter wave radar, and a laser radar.
  • the automobile 2980 can analyze an image taken by the camera 2981, determine surrounding traffic conditions such as the presence or absence of a pedestrian, and perform automatic driving.
  • the electronic component can be used for the camera 2981.
  • FIG. 17D illustrates a situation in which the portable electronic device 2130 performs simultaneous interpretation in communication between a plurality of people who speak in different languages.
  • the portable electronic device 2130 includes a microphone, a speaker, and the like, and has a function of recognizing a user's speaking voice and translating it into a language spoken by the speaking partner.
  • the electronic component can be used for the arithmetic device of the portable electronic device 2130.
  • the user has a portable microphone 2131.
  • the portable microphone 2131 has a wireless communication function and a function of transmitting detected sound to the portable electronic device 2130.
  • FIG. 18A is a schematic cross-sectional view showing an example of a pacemaker.
  • the pacemaker body 5300 includes at least batteries 5301a and 5301b, a regulator, a control circuit, an antenna 5304, a wire 5302 to the right atrium, and a wire 5303 to the right ventricle.
  • the electronic component can be used for the pacemaker main body 5300.
  • the pacemaker body 5300 is placed in the body by surgery, and two wires pass through the human subclavian vein 5305 and superior vena cava 5306, one wire tip is placed in the right ventricle and the other wire tip is placed in the right atrium. To be.
  • the pacemaker body 5300 has a plurality of batteries, it is highly safe, and even if one of the pacemakers breaks down, the other can function, and thus functions as an auxiliary power source.
  • an antenna that can transmit physiological signals may be provided.
  • physiological signals such as a pulse, a respiratory rate, a heart rate, and a body temperature can be confirmed by an external monitor device.
  • a system for monitoring cardiac activity may be configured.
  • a sensor 5900 illustrated in FIG. 18B is attached to a human body using an adhesive pad or the like.
  • the sensor 5900 gives a signal to the electrode 5931 or the like attached to the human body via the wiring 5932 and acquires biological information such as a heart rate and an electrocardiogram.
  • the acquired information is transmitted as a wireless signal to a terminal such as a reader.
  • the above electronic components can be used.
  • FIG. 19 is a schematic diagram illustrating an example of a cleaning robot.
  • the cleaning robot 5100 includes a display unit 5101 arranged on the upper surface, a plurality of cameras 5102 arranged on the side surface, a brush 5103, and a plurality of operation buttons 5104.
  • the lower surface of the cleaning robot 5100 is provided with a tire, a suction port, and the like.
  • the cleaning robot 5100 includes various sensors such as an infrared sensor, an ultrasonic sensor, an acceleration sensor, a piezo sensor, an optical sensor, and a gyro sensor.
  • the cleaning robot 5100 includes a wireless communication unit.
  • the electronic component can be used for the camera 5102.
  • the cleaning robot 5100 is self-propelled, can detect the dust 5120, and can suck the dust 5120 from the suction port provided on the lower surface.
  • the cleaning robot 5100 can analyze an image captured by the camera 5102 and determine whether there is an obstacle such as a wall, furniture, or a step. In addition, when an object that is likely to be entangled with the brush 5103 such as wiring is detected by image analysis, the rotation of the brush 5103 can be stopped.
  • the display portion 5101 can display the remaining amount of battery, the amount of sucked dust, and the like. Further, the route traveled by the cleaning robot 5100 may be displayed on the display unit 5101. Alternatively, the display portion 5101 may be a touch panel and the operation buttons 5104 may be provided on the display portion 5101.
  • the cleaning robot 5100 can communicate with a portable electronic device 5140 such as a smartphone. An image captured by the camera 5102 can be displayed on the portable electronic device 5140. Therefore, the owner of the cleaning robot 5100 can know the state of the room even when away from home.
  • a portable electronic device 5140 such as a smartphone. An image captured by the camera 5102 can be displayed on the portable electronic device 5140. Therefore, the owner of the cleaning robot 5100 can know the state of the room even when away from home.
  • on-state current refers to drain current when a transistor is in an on state.
  • the ON state (sometimes abbreviated as ON) is a state where the voltage between the gate and the source (V G ) is equal to or higher than the threshold voltage (V th ) in an n-channel transistor, unless otherwise specified, p
  • V G is a state of V th or less.
  • the on-current of the n-channel transistor V G refers to a drain current when the above V th.
  • the on-state current of the transistor may depend on a voltage (V D ) between the drain and the source.
  • off-state current refers to drain current when a transistor is off.
  • the OFF state (sometimes referred to as OFF), unless otherwise specified, the n-channel type transistor, V G is lower than V th state, the p-channel type transistor, V G is higher than V th state Say.
  • the off-current of the n-channel transistor refers to the drain current when V G is lower than V th.
  • Off-state current of the transistor may be dependent on the V G. Accordingly, the off current of the transistor is less than 10 -21 A, and may refer to the value of V G to off-current of the transistor is less than 10 -21 A are present.
  • the off-state current of the transistor may depend on V D.
  • the off-state current is such that the absolute value of V D is 0.1 V, 0.8 V, 1 V, 1.2 V, 1.8 V, 2.5 V, 3 V, 3.3 V, 10 V , 12V, 16V, or 20V may be represented.
  • the off-state current in V D used in a semiconductor device or the like including the transistor may be represented.
  • the voltage is a potential difference from a reference potential.
  • the reference potential is a ground potential (ground potential)
  • the voltage can be rephrased as a potential.
  • the ground potential does not necessarily mean 0V. Note that the potential is relative, and the potential applied to the wiring or the like may be changed depending on the reference potential.
  • X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • an element that enables electrical connection between X and Y for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.
  • X and Y are connected without passing through an element, a light emitting element, a load, or the like.
  • an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.
  • a switch for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.
  • More than one element, light emitting element, load, etc. can be connected between X and Y.
  • the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current.
  • the switch has a function of selecting and switching a path through which a current flows.
  • the case where X and Y are electrically connected includes the case where X and Y are directly connected.
  • C1, C21 Capacitance elements, M1, M2, M3, M21, M22, M23, Tr1, Tr2: Transistors 10, 11, 12, 13, 20, 21, 22, 23, 90: Semiconductor devices, 120, 203, 204, 205, 206, 240, 240a, 240b, 260, 320, 503, 504, 505, 506, 540, 540a, 540b, 560: conductor, 130, 210, 212, 214, 216, 220, 222, 224 250, 270, 271, 272, 274, 275, 280, 282, 286, 330, 510, 512, 514, 516, 520, 522, 524, 550, 570, 571, 572, 575, 580, 582, 586 : Insulator, 201, 501: Substrate, 230, 230a, 230b, 230c, 230d, 5 0, 530a, 530c, 530d: oxide, 232, 232a,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Logic Circuits (AREA)

Abstract

Provided is a semiconductor device having low power consumption and formed using unipolar transistors. The semiconductor device comprises first to third transistors connected in series and a capacitive element connected to the source of the first transistor. The first to third transistors each comprise a first gate and a second gate that are connected to one another. A first signal is input to the first gate of the first transistor, and an inverted signal of the first signal is input to the first gate of the second transistor. When the first signal is high voltage, the capacitive element is charged, when the first signal is low voltage, the source of the first transistor outputs an inverted signal of the signal inputted to the first gate of the third transistor.

Description

半導体装置Semiconductor device
本発明の一形態は半導体装置に関する。 One embodiment of the present invention relates to a semiconductor device.
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置、発光装置、記憶装置、電気光学装置、蓄電装置、半導体回路及び電子機器は、半導体装置を有する場合がある。 Note that in this specification and the like, a semiconductor device refers to any device that can function by utilizing semiconductor characteristics. A display device, a light-emitting device, a memory device, an electro-optical device, a power storage device, a semiconductor circuit, and an electronic device may include a semiconductor device.
なお、本発明の一形態は上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一形態は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。 Note that one embodiment of the present invention is not limited to the above technical field. The technical field of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
近年、チャネルが形成される領域(以下、チャネル形成領域ともいう)に酸化物半導体または金属酸化物を用いたトランジスタ(Oxide Semiconductorトランジスタ、以下、OSトランジスタと呼ぶ)が注目されている。例えば、インジウム(In)、ガリウム(Ga)、および亜鉛(Zn)を含むOSトランジスタが知られている。 In recent years, a transistor (an oxide semiconductor transistor, hereinafter referred to as an OS transistor) in which an oxide semiconductor or a metal oxide is used for a region where a channel is formed (hereinafter also referred to as a channel formation region) has attracted attention. For example, an OS transistor containing indium (In), gallium (Ga), and zinc (Zn) is known.
また、表示装置の駆動回路などのように、CMOS回路を用いずに、単一導電型のトランジスタのみで回路を設計する技術が知られている。例えば、特許文献1および2には、nチャネル型のOSトランジスタのみで構成されたシフトレジスタが開示されている。 In addition, a technique for designing a circuit using only a single conductivity type transistor without using a CMOS circuit, such as a driving circuit of a display device, is known. For example, Patent Documents 1 and 2 disclose a shift register including only an n-channel OS transistor.
また、ロジック回路は、スタティックロジック回路、ダイナミックロジック回路、および疑似(pseudo)ロジック回路等に分類できる。ダイナミックロジック回路は、データを一時的に保持することで動作する回路であるため、スタティックロジック回路と比較して、トランジスタのリーク電流が問題となる。例えば、特許文献3乃至5には、OSトランジスタを用いてダイナミックロジック回路のリーク電流を低減する技術が開示されている。 The logic circuit can be classified into a static logic circuit, a dynamic logic circuit, a pseudo logic circuit, and the like. Since a dynamic logic circuit is a circuit that operates by temporarily holding data, a leakage current of a transistor becomes a problem as compared with a static logic circuit. For example, Patent Documents 3 to 5 disclose techniques for reducing a leakage current of a dynamic logic circuit using an OS transistor.
特開2011−090761号公報JP 2011-090761 A 特開2011−209714号公報JP 2011-209714 A 特開2013−9311号公報JP2013-931A 特開2013−9313号公報JP 2013-9313 A 特開2016−72982号公報Japanese Patent Application Laid-Open No. 2006-72982
本発明の一形態は、消費電力が小さく、単極性のトランジスタで構成されるインバータ回路を提供することを課題の一とする。また、本発明の一形態は、動作周波数が高く、単極性のトランジスタで構成されるインバータ回路を提供することを課題の一とする。また、本発明の一形態は、新規な半導体装置を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide an inverter circuit including low-power consumption and unipolar transistors. Another object of one embodiment of the present invention is to provide an inverter circuit including a single transistor with a high operating frequency. Another object of one embodiment of the present invention is to provide a novel semiconductor device.
なお、複数の課題の記載は、互いの課題の存在を妨げるものではない。なお、本発明の一形態は、これらの課題の全てを解決する必要はない。また、列記した以外の課題が、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、これらの課題も、本発明の一形態の課題となり得る。 Note that the description of a plurality of tasks does not disturb each other's existence. Note that one embodiment of the present invention does not have to solve all of these problems. Problems other than those listed will be apparent from descriptions of the specification, drawings, claims, and the like, and these problems may also be a problem of one embodiment of the present invention.
本発明の一形態は、第1乃至第3トランジスタおよび容量素子を有する半導体装置である。第1トランジスタは、第1ゲートおよび第2ゲートを有する。第2トランジスタは、第3ゲートおよび第4ゲートを有する。第3トランジスタは、第5ゲートおよび第6ゲートを有する。第1トランジスタのドレインは第1電位が与えられる。第1トランジスタのソースは第2トランジスタのドレインに電気的に接続される。第2トランジスタのソースは第3トランジスタのドレインに電気的に接続される。第3トランジスタのソースは第2電位が与えられる。容量素子の第1端子は第1トランジスタのソースに電気的に接続される。第1ゲートおよび第2ゲートは、第1クロック信号が入力される。第3ゲートおよび第4ゲートは、第2クロック信号が入力される。第2クロック信号は第1クロック信号の反転信号である。第5ゲートおよび第6ゲートは、第1信号が入力される。第1トランジスタのソースは、第2信号を出力する。第1乃至第3トランジスタはチャネル形成領域に酸化物半導体を有することが好ましい。 One embodiment of the present invention is a semiconductor device including first to third transistors and a capacitor. The first transistor has a first gate and a second gate. The second transistor has a third gate and a fourth gate. The third transistor has a fifth gate and a sixth gate. A first potential is applied to the drain of the first transistor. The source of the first transistor is electrically connected to the drain of the second transistor. The source of the second transistor is electrically connected to the drain of the third transistor. A second potential is applied to the source of the third transistor. The first terminal of the capacitor is electrically connected to the source of the first transistor. The first clock signal is input to the first gate and the second gate. The second clock signal is input to the third gate and the fourth gate. The second clock signal is an inverted signal of the first clock signal. The first signal is input to the fifth gate and the sixth gate. The source of the first transistor outputs a second signal. The first to third transistors preferably include an oxide semiconductor in a channel formation region.
本発明の一形態は、第1乃至第3トランジスタ、および容量素子を有する半導体装置である。第1トランジスタは、第1ゲートおよび第2ゲートを有する。第2トランジスタは、第3ゲートおよび第4ゲートを有する。第3トランジスタは、第5ゲートおよび第6ゲートを有する。第1トランジスタのドレインは第1電位が与えられる。第1トランジスタのソースは第2トランジスタのドレインに電気的に接続される。第2トランジスタのソースは第3トランジスタのドレインに電気的に接続される。第3トランジスタのソースは第2電位が与えられる。容量素子の第1端子は第1トランジスタのソースに電気的に接続される。第1ゲートおよび第2ゲートは、第1クロック信号が入力される。第5ゲートおよび第6ゲートは、第2クロック信号が入力される。第2クロック信号は第1クロック信号の反転信号である。第3ゲートおよび第4ゲートは、第1信号が入力される。第1トランジスタのソースは、第2信号を出力する。第1乃至第3トランジスタはチャネル形成領域に酸化物半導体を有することが好ましい。 One embodiment of the present invention is a semiconductor device including first to third transistors and a capacitor. The first transistor has a first gate and a second gate. The second transistor has a third gate and a fourth gate. The third transistor has a fifth gate and a sixth gate. A first potential is applied to the drain of the first transistor. The source of the first transistor is electrically connected to the drain of the second transistor. The source of the second transistor is electrically connected to the drain of the third transistor. A second potential is applied to the source of the third transistor. The first terminal of the capacitor is electrically connected to the source of the first transistor. The first clock signal is input to the first gate and the second gate. The second clock signal is input to the fifth gate and the sixth gate. The second clock signal is an inverted signal of the first clock signal. The first signal is input to the third gate and the fourth gate. The source of the first transistor outputs a second signal. The first to third transistors preferably include an oxide semiconductor in a channel formation region.
上記形態において、第1クロック信号が高電位のとき、容量素子は充電を行い、第1クロック信号が低電位のとき、第2信号は第1信号の反転信号を出力する。 In the above embodiment, when the first clock signal is at a high potential, the capacitor element is charged, and when the first clock signal is at a low potential, the second signal outputs an inverted signal of the first signal.
上記形態において、第1ゲートは、側壁に第1絶縁体が設けられ、第3ゲートは、側壁に第2絶縁体が設けられる。容量素子は第2端子に電気的に接続された電極を有する。第1ゲートと電極は、第1絶縁体を間に介して設けられ、第3ゲートと電極は、第2絶縁体を間に介して設けられる。 In the above embodiment, the first gate is provided with the first insulator on the side wall, and the third gate is provided with the second insulator on the side wall. The capacitor element has an electrode electrically connected to the second terminal. The first gate and the electrode are provided with a first insulator interposed therebetween, and the third gate and the electrode are provided with a second insulator interposed therebetween.
本発明の一形態により、消費電力が小さく、単極性のトランジスタで構成されるインバータ回路を提供することができる。また、本発明の一形態により、動作周波数が高く、単極性のトランジスタで構成されるインバータ回路を提供することができる。また、本発明の一形態により、新規な半導体装置を提供することができる。 According to one embodiment of the present invention, an inverter circuit including low-power consumption and unipolar transistors can be provided. According to one embodiment of the present invention, an inverter circuit having a high operating frequency and including a unipolar transistor can be provided. According to one embodiment of the present invention, a novel semiconductor device can be provided.
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一形態は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention need not have all of these effects. It should be noted that the effects other than these are naturally obvious from the description of the specification, drawings, claims, etc., and it is possible to extract the other effects from the descriptions of the specification, drawings, claims, etc. It is.
半導体装置の構成の一例を示す回路図。FIG. 10 is a circuit diagram illustrating an example of a structure of a semiconductor device. A、B:トランジスタの回路記号。A, B: Circuit symbols of transistors. A、B:半導体装置の動作の一例を示すタイミングチャート。A and B: timing charts showing an example of the operation of the semiconductor device. 半導体装置の構成の一例を示す回路図。FIG. 10 is a circuit diagram illustrating an example of a structure of a semiconductor device. A、B:半導体装置の構成の一例を示す回路図。A and B are circuit diagrams illustrating an example of a structure of a semiconductor device. A、B:半導体装置の構成の一例を示す回路図。A and B are circuit diagrams illustrating an example of a structure of a semiconductor device. A、B:半導体装置の構成の一例を示す回路図。A and B are circuit diagrams illustrating an example of a structure of a semiconductor device. インバータ回路の構成の一例を示す回路図。The circuit diagram which shows an example of a structure of an inverter circuit. A−D:半導体装置の上面図、および断面図。AD: Top view and cross-sectional view of a semiconductor device. 半導体装置の断面図。FIG. 14 is a cross-sectional view of a semiconductor device. A:半導体装置の上面図。B、C:半導体装置の断面図。A: Top view of the semiconductor device. B and C are cross-sectional views of the semiconductor device. A:半導体装置の上面図。B、C:半導体装置の断面図。A: Top view of the semiconductor device. B and C are cross-sectional views of the semiconductor device. A、B:半導体装置の断面図。A and B: Cross-sectional views of a semiconductor device. A:半導体装置の上面図。B、C:半導体装置の断面図。A: Top view of the semiconductor device. B and C are cross-sectional views of the semiconductor device. A、B:電子部品の例を示す模式図。A and B: Schematic diagrams showing examples of electronic components. A—E:電子機器の例を示す模式図。AE: A schematic diagram illustrating an example of an electronic device. A—D:電子機器の例を示す模式図。AD: Schematic diagram illustrating an example of an electronic device. A、B:電子機器の例を示す模式図。A and B: Schematic diagrams illustrating examples of electronic devices. 電子機器の例を示す模式図。FIG. 11 is a schematic diagram illustrating an example of an electronic device.
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる形態で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments will be described with reference to the drawings. However, the embodiments can be implemented in many different forms, and it is easily understood by those skilled in the art that the forms and details can be variously changed without departing from the spirit and the scope thereof. . Therefore, the present invention should not be construed as being limited to the description of the following embodiments.
また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。 In the drawings, the size, the thickness of layers, or regions are exaggerated for clarity in some cases. Therefore, it is not necessarily limited to the scale. The drawings schematically show an ideal example, and are not limited to the shapes or values shown in the drawings.
また、本明細書は、以下の実施の形態を適宜組み合わせることが可能である。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。 Further, in this specification, the following embodiments can be combined as appropriate. In the case where a plurality of structure examples are given in one embodiment, any of the structure examples can be combined as appropriate.
また、本明細書中において、高電源電圧をHレベル(又はVDD)、低電源電圧をLレベル(又はGND)と呼ぶ場合がある。 In this specification, a high power supply voltage may be referred to as an H level (or VDD), and a low power supply voltage may be referred to as an L level (or GND).
(実施の形態1)
本実施の形態では、単極性トランジスタからなるインバータ回路について説明を行う。
(Embodiment 1)
In this embodiment, an inverter circuit including a unipolar transistor will be described.
なお、本明細書において、トランジスタの回路記号を図2(A)、図2(B)のように表す場合がある。図2(A)、図2(B)は、ともに第1ゲートと第2ゲートを有するトランジスタを表している。なお、本明細書において、第1ゲートをフロントゲート(FG)、第2ゲートをバックゲート(BG)という場合がある。 Note that in this specification, circuit symbols of transistors may be expressed as in FIGS. 2A and 2B both illustrate a transistor having a first gate and a second gate. In this specification, the first gate may be referred to as a front gate (FG), and the second gate may be referred to as a back gate (BG).
図2(B)の回路記号は、トランジスタのフロントゲートが半導体層の上面と側面に電界を印加していることを強調する場合に用いられる。図2(A)のトランジスタにおいて、フロントゲートは、第1のゲート絶縁体を間に介して、半導体層の上面および側面と対向する領域を有するように設けられる。また、バックゲートは、第2のゲート絶縁体を間に介して、半導体層の下面と対向する領域を有するように設けられる。このとき、半導体層の厚さはトランジスタのチャネル幅よりも大きくすることが好ましい。なお、図2(A)、図2(B)のトランジスタの具体的な構造は、後述する実施の形態2および実施の形態4で説明を行う。 The circuit symbol in FIG. 2B is used to emphasize that the front gate of the transistor applies an electric field to the top and side surfaces of the semiconductor layer. In the transistor in FIG. 2A, the front gate is provided so as to have a region facing the top surface and the side surface of the semiconductor layer with the first gate insulator interposed therebetween. The back gate is provided so as to have a region facing the lower surface of the semiconductor layer with the second gate insulator interposed therebetween. At this time, the thickness of the semiconductor layer is preferably larger than the channel width of the transistor. Note that the specific structure of the transistor in FIGS. 2A and 2B will be described in Embodiments 2 and 4 described later.
図2(B)のトランジスタは、半導体層の上下だけでなく側面にもチャネルが形成される。そのため、オン電流が大きい。なお、図2(A)、図2(B)の回路記号は、それぞれ、バックゲートが省略される場合もある。 In the transistor in FIG. 2B, a channel is formed not only on the top and bottom of the semiconductor layer but also on the side surface. Therefore, the on-current is large. Note that the circuit gates in FIGS. 2A and 2B may each omit the back gate.
<インバータ回路の構成例>
図1に示す半導体装置10は、容量素子C1と、直列に接続されたトランジスタM1、トランジスタM2およびトランジスタM3を有する。半導体装置10は、インバータ回路としての機能を有する。
<Configuration example of inverter circuit>
A semiconductor device 10 illustrated in FIG. 1 includes a capacitor C1, and a transistor M1, a transistor M2, and a transistor M3 connected in series. The semiconductor device 10 has a function as an inverter circuit.
図1において、トランジスタM1乃至M3はnチャネル型トランジスタである。半導体装置10はnチャネル型のトランジスタのみで構成されているので、CMOSトランジスタで構成されるインバータ回路と比べて、製造コストを低減させることができる。 In FIG. 1, transistors M1 to M3 are n-channel transistors. Since the semiconductor device 10 is composed only of n-channel transistors, the manufacturing cost can be reduced compared to an inverter circuit composed of CMOS transistors.
トランジスタM1は、互いに電気的に接続された第1ゲートと第2ゲートを有する。第1ゲートと第2ゲートとは半導体層を間に介して互いに重なる領域を有する。トランジスタM2、M3についても同様である。 The transistor M1 has a first gate and a second gate that are electrically connected to each other. The first gate and the second gate have regions overlapping each other with a semiconductor layer interposed therebetween. The same applies to the transistors M2 and M3.
半導体装置10は、端子IN、端子OUT、端子CLKおよび端子CLKBを有する。端子INは入力端子として機能し、端子OUTは出力端子として機能する。端子CLKはクロック信号が入力され、端子CLKBは端子CLKに入力されるクロック信号の反転信号が入力される。 The semiconductor device 10 has a terminal IN, a terminal OUT, a terminal CLK, and a terminal CLKB. The terminal IN functions as an input terminal, and the terminal OUT functions as an output terminal. A clock signal is input to the terminal CLK, and an inverted signal of the clock signal input to the terminal CLK is input to the terminal CLKB.
また、半導体装置10は、電源電圧としてVDD、VSSが供給される。VDDは、高電源電圧であり、トランジスタM1のドレインに入力される。VSSは、低電源電圧であり、トランジスタM3のソースに入力される。 The semiconductor device 10 is supplied with VDD and VSS as power supply voltages. VDD is a high power supply voltage and is input to the drain of the transistor M1. VSS is a low power supply voltage and is input to the source of the transistor M3.
トランジスタM1において、フロントゲートおよびバックゲートは端子CLKに電気的に接続され、ソースはトランジスタM2のドレインに電気的に接続される。 In the transistor M1, the front gate and the back gate are electrically connected to the terminal CLK, and the source is electrically connected to the drain of the transistor M2.
トランジスタM2において、フロントゲートおよびバックゲートは端子CLKBに電気的に接続され、ソースはトランジスタM3のドレインに電気的に接続される。 In the transistor M2, the front gate and the back gate are electrically connected to the terminal CLKB, and the source is electrically connected to the drain of the transistor M3.
トランジスタM3において、フロントゲートおよびバックゲートは端子INに電気的に接続される。 In the transistor M3, the front gate and the back gate are electrically connected to the terminal IN.
容量素子C1の第1端子はトランジスタM1のソースに電気的に接続される。容量素子C1の第2端子はVSSが入力される。 The first terminal of the capacitor C1 is electrically connected to the source of the transistor M1. VSS is input to the second terminal of the capacitive element C1.
端子OUTは、トランジスタM1のソース、トランジスタM2のドレインおよび容量素子C1の第1端子に電気的に接続される。 The terminal OUT is electrically connected to the source of the transistor M1, the drain of the transistor M2, and the first terminal of the capacitor C1.
次に、図3(A)を用いて、半導体装置10の動作について説明を行う。 Next, the operation of the semiconductor device 10 will be described with reference to FIG.
図3(A)は半導体装置10の動作を説明するためのタイミングチャートであり、端子IN、CLK、CLKB、OUTの電位変化をそれぞれ表している。また、図3(A)では、動作を3つの期間P1、P2、P3に分類している。 FIG. 3A is a timing chart for explaining the operation of the semiconductor device 10 and represents potential changes of the terminals IN, CLK, CLKB, and OUT, respectively. In FIG. 3A, the operation is classified into three periods P1, P2, and P3.
端子INは、期間P1乃至P3の間、H(高)レベルが与えられている。すなわち、期間P1乃至P3において、トランジスタM3はオンになっている。 The terminal IN is given an H (high) level during the periods P1 to P3. That is, in the periods P1 to P3, the transistor M3 is on.
期間P1において、端子CLKに電位VHが入力され、端子CLKBに電位VLが入力される。トランジスタM1はオンになり、トランジスタM2はオフになる。このとき、容量素子C1にVDDが供給され、容量素子C1は充電(プリチャージ)を開始する。 In the period P1, the potential VH is input to the terminal CLK, and the potential VL is input to the terminal CLKB. Transistor M1 is turned on and transistor M2 is turned off. At this time, VDD is supplied to the capacitor C1, and the capacitor C1 starts to be charged (precharge).
なお、電位VHは、VDDとトランジスタM1のしきい値電圧(Vth)を足し合わせた電圧(VDD+Vth)以上にすることが好ましい。そうすることで、端子OUTにVDDを正確に伝えることができる。電位VLは低電源電圧(又はGND)とすればよい。なお、電位VHを高電位、電位VLを低電位と呼ぶ場合もある。 Note that the potential VH is preferably higher than or equal to a voltage (VDD + V th ) obtained by adding VDD and the threshold voltage (V th ) of the transistor M1. By doing so, VDD can be accurately transmitted to the terminal OUT. The potential VL may be a low power supply voltage (or GND). Note that the potential VH may be referred to as a high potential and the potential VL may be referred to as a low potential.
期間P2において、端子CLKに電位VLが入力され、端子CLKBに電位VHが入力される。トランジスタM1はオフになり、トランジスタM2はオンになる。このとき、トランジスタM3はオンであるため、容量素子C1の第1端子とトランジスタM3のソースが導通状態になり、容量素子C1は放電を開始する。最終的に端子OUTはLレベルを出力する。すなわち、端子OUTは端子INに入力された信号の反転信号を出力する。 In the period P2, the potential VL is input to the terminal CLK, and the potential VH is input to the terminal CLKB. Transistor M1 is turned off and transistor M2 is turned on. At this time, since the transistor M3 is on, the first terminal of the capacitor C1 and the source of the transistor M3 are brought into conduction, and the capacitor C1 starts discharging. Finally, the terminal OUT outputs the L level. That is, the terminal OUT outputs an inverted signal of the signal input to the terminal IN.
期間P3において、端子CLKに電位VHが入力され、端子CLKBに電位VLが入力される。トランジスタM1はオンになり、トランジスタM2はオフになる。期間P1と同様に、容量素子C1は再びプリチャージを開始する。 In the period P3, the potential VH is input to the terminal CLK, and the potential VL is input to the terminal CLKB. Transistor M1 is turned on and transistor M2 is turned off. Similar to the period P1, the capacitive element C1 starts precharging again.
図3(B)は、期間P1乃至P3における端子INの入力をL(低)レベルとした場合のタイミングチャートである。この場合、期間P2において、トランジスタM3はオフであり、容量素子C1は期間P1でプリチャージされた電位を保持する。その結果、端子OUTはHレベルを出力する。すなわち、端子OUTは端子INに入力された信号の反転信号を出力する。 FIG. 3B is a timing chart in the case where the input of the terminal IN in the periods P1 to P3 is set to the L (low) level. In this case, in the period P2, the transistor M3 is off, and the capacitor C1 holds the potential precharged in the period P1. As a result, the terminal OUT outputs an H level. That is, the terminal OUT outputs an inverted signal of the signal input to the terminal IN.
図3(A)、図3(B)より、半導体装置10は、端子CLKが電位VHのときに容量素子C1のプリチャージを行い、端子CLKが電位VLのときにインバータ回路として動作することがわかる。 3A and 3B, the semiconductor device 10 precharges the capacitor C1 when the terminal CLK is at the potential VH, and operates as an inverter circuit when the terminal CLK is at the potential VL. Recognize.
また、図3(A)、図3(B)より、半導体装置10は、容量素子C1の充電と放電を繰り返すことで動作するダイナミックロジック回路として機能することがわかる。トランジスタM1は容量素子C1を充電するプリチャージ用のトランジスタとして機能し、トランジスタM2は容量素子C1に蓄積された電荷を放電するディスチャージ用のトランジスタとして機能する。 3A and 3B that the semiconductor device 10 functions as a dynamic logic circuit that operates by repeatedly charging and discharging the capacitor C1. The transistor M1 functions as a precharging transistor that charges the capacitor C1, and the transistor M2 functions as a discharging transistor that discharges the charge accumulated in the capacitor C1.
トランジスタM1乃至M3は、オフ電流が小さいトランジスタを用いることが好ましい。オフ電流が小さいトランジスタとして、OSトランジスタが挙げられる。なお、ここでオフ電流が小さいとは、チャネル幅が1μm当たりのトランジスタのオフ電流が、好ましくは10−18A/μm以下、さらに好ましくは10−21A/μm以下、さらに好ましくは10−24A/μm以下のことを言う。 As the transistors M1 to M3, transistors with low off-state current are preferably used. As a transistor with a small off-state current, an OS transistor can be given. Note that the small off-state current here means that the off-state current of the transistor per channel width is preferably 10 −18 A / μm or less, more preferably 10 −21 A / μm or less, and further preferably 10 −24. A / μm or less.
トランジスタM1乃至M3にOSトランジスタを用いることで、半導体装置10は貫通電流を小さくすることができる。その結果、半導体装置10は消費電力を低減させることができる。 By using OS transistors for the transistors M1 to M3, the semiconductor device 10 can reduce the through current. As a result, the semiconductor device 10 can reduce power consumption.
また、トランジスタM1乃至M3にOSトランジスタを用いることで、容量素子C1にプリチャージされた電荷が、リーク電流によって失われずに済む。その結果、半導体装置10はより正確にデータを伝えることができる。 In addition, by using OS transistors as the transistors M1 to M3, the charge precharged in the capacitor C1 can be prevented from being lost due to the leakage current. As a result, the semiconductor device 10 can transmit data more accurately.
トランジスタM1は、フロントゲートとバックゲートを電気的に接続することで、フロントゲートとバックゲートから同時に半導体層にゲート電圧を印加することが可能になり、オン電流を増大させることができる。トランジスタM2およびトランジスタM3についても同様である。その結果、半導体装置10は、動作周波数の高いインバータ回路を実現することができる。 In the transistor M1, by electrically connecting the front gate and the back gate, a gate voltage can be applied to the semiconductor layer from the front gate and the back gate at the same time, and an on-current can be increased. The same applies to the transistor M2 and the transistor M3. As a result, the semiconductor device 10 can realize an inverter circuit with a high operating frequency.
特許文献5には、2つのnチャネル型トランジスタからなるインバータ回路が開示されている。その回路図を図8に示す。図8に示す半導体装置90は、トランジスタTr1とトランジスタTr2の2つのnチャネル型トランジスタから構成されている。 Patent Document 5 discloses an inverter circuit composed of two n-channel transistors. The circuit diagram is shown in FIG. A semiconductor device 90 shown in FIG. 8 includes two n-channel transistors, a transistor Tr1 and a transistor Tr2.
半導体装置90は、トランジスタTr1が常にオン状態であるため、トランジスタTr2がオンのとき、貫通電流が流れる。そのため、半導体装置90は消費電力が大きい。 In the semiconductor device 90, since the transistor Tr1 is always on, a through current flows when the transistor Tr2 is on. For this reason, the semiconductor device 90 consumes a large amount of power.
また、トランジスタTr1、Tr2は、それぞれ1つのゲートのみで駆動するシングルゲート駆動のトランジスタなので、オン電流が小さい。 The transistors Tr1 and Tr2 are single gate drive transistors that are driven by only one gate, so that the on-current is small.
図1に示す半導体装置10は、同じnチャネル型トランジスタからなるインバータ回路でも貫通電流が小さいため、半導体装置90と比較して消費電力が非常に小さい。また、半導体装置10が有するトランジスタM1乃至M3はデュアルゲート駆動なのでオン電流が大きい。そのため、半導体装置10は半導体装置90と比較して動作周波数が高い。 The semiconductor device 10 shown in FIG. 1 consumes much less power than the semiconductor device 90 because the through current is small even in an inverter circuit made of the same n-channel transistor. In addition, the transistors M1 to M3 included in the semiconductor device 10 have a large on-state current because of dual gate driving. Therefore, the semiconductor device 10 has a higher operating frequency than the semiconductor device 90.
以下に、半導体装置の他の構成例を説明する。 Hereinafter, another configuration example of the semiconductor device will be described.
図4に示す半導体装置11は半導体装置10の変形例であり、端子INをトランジスタM2のフロントゲートおよびバックゲートに電気的に接続し、端子CLKBをトランジスタM3のフロントゲートおよびバックゲートに電気的に接続している。 A semiconductor device 11 shown in FIG. 4 is a modification of the semiconductor device 10, and the terminal IN is electrically connected to the front gate and the back gate of the transistor M 2, and the terminal CLKB is electrically connected to the front gate and the back gate of the transistor M 3. Connected.
図5(A)に示す半導体装置12は、半導体装置10において、トランジスタM1乃至M3がそれぞれ有するバックゲートを全て電気的に接続し、これらのバックゲートに共通の電位VG0を与えた場合の回路図である。そうすることで、半導体装置11は、トランジスタM1乃至M3のしきい値電圧を制御することができる。 A semiconductor device 12 illustrated in FIG. 5A is a circuit diagram in the case where all back gates of the transistors M1 to M3 are electrically connected in the semiconductor device 10 and a common potential VG0 is applied to the back gates. It is. By doing so, the semiconductor device 11 can control the threshold voltages of the transistors M1 to M3.
図5(B)に示す半導体装置13は、半導体装置10において、トランジスタM1が有するバックゲートに電位VG1を与え、トランジスタM2が有するバックゲートに電位VG2を与え、トランジスタM3が有するバックゲートに電位VG3を与えた場合の回路図である。このように、それぞれのトランジスタが有するバックゲートに、個別の電位を与えることで、トランジスタM1乃至M3のしきい値電圧を、それぞれ個別に制御することができる。 5B, in the semiconductor device 10, the potential VG1 is applied to the back gate included in the transistor M1, the potential VG2 is applied to the back gate included in the transistor M2, and the potential VG3 is applied to the back gate included in the transistor M3. FIG. In this manner, the threshold voltages of the transistors M1 to M3 can be individually controlled by applying individual potentials to the back gates of the transistors.
以下、図2(B)に示すトランジスタが用いられた半導体装置の構成例を示す。 Hereinafter, a structural example of a semiconductor device in which the transistor illustrated in FIG.
図6(A)に示す半導体装置20は、容量素子C21と、直列に接続されたトランジスタM21、トランジスタM22およびトランジスタM23とを有する。半導体装置20は、半導体装置12の変形例であり、半導体装置12と同様インバータ回路としての機能を有する。 A semiconductor device 20 illustrated in FIG. 6A includes a capacitor C21 and a transistor M21, a transistor M22, and a transistor M23 connected in series. The semiconductor device 20 is a modified example of the semiconductor device 12 and has a function as an inverter circuit like the semiconductor device 12.
トランジスタM21乃至M23は、半導体層の側面にもオン電流を流すことができるため、半導体層を厚くすることで、オン電流を増大させることができる。その結果、半導体装置20は、動作周波数の高いインバータ回路を実現することができる。 Since the transistors M21 to M23 can cause an on-current to flow also to the side surface of the semiconductor layer, the on-current can be increased by increasing the thickness of the semiconductor layer. As a result, the semiconductor device 20 can realize an inverter circuit with a high operating frequency.
図6(B)に示す半導体装置21は、半導体装置20の変形例であり、端子INをトランジスタM2のフロントゲートに電気的に接続し、端子CLKBをトランジスタM3のフロントゲートに電気的に接続している。 A semiconductor device 21 illustrated in FIG. 6B is a modification example of the semiconductor device 20, and the terminal IN is electrically connected to the front gate of the transistor M2, and the terminal CLKB is electrically connected to the front gate of the transistor M3. ing.
図7(A)に示す半導体装置22は、半導体装置20の変形例でありトランジスタM21乃至M22はそれぞれがフロントゲートとバックゲートを電気的に接続している。そうすることで、トランジスタM21乃至M23は、半導体層の上下左右からゲート電界を印加することが可能になり、オン電流をより増大させることができる。その結果、半導体装置22は動作周波数をより高くすることができる。 A semiconductor device 22 illustrated in FIG. 7A is a modified example of the semiconductor device 20, and the transistors M21 to M22 each electrically connect the front gate and the back gate. By doing so, the transistors M21 to M23 can apply a gate electric field from the top, bottom, left, and right of the semiconductor layer, and can further increase the on-state current. As a result, the operating frequency of the semiconductor device 22 can be further increased.
図7(B)に示す半導体装置23は、半導体装置20の変形例である。トランジスタM21が有するバックゲートに電位VG1を与え、トランジスタM22が有するバックゲートに電位VG2を与え、トランジスタM3が有するバックゲートに電位VG3を与えている。このように、それぞれのトランジスタが有するバックゲートに、個別の電位を与えることで、トランジスタM21乃至M23のしきい値電圧を、それぞれ個別に制御することができる。 A semiconductor device 23 illustrated in FIG. 7B is a modification of the semiconductor device 20. A potential VG1 is applied to the back gate included in the transistor M21, a potential VG2 is applied to the back gate included in the transistor M22, and a potential VG3 is applied to the back gate included in the transistor M3. In this manner, the threshold voltages of the transistors M21 to M23 can be individually controlled by applying individual potentials to the back gates of the transistors.
なお、半導体装置10乃至13は、場合によっては、トランジスタM1乃至M3のバックゲートを全て省略してもよい。その場合、製造工程を簡略化することができる。半導体装置20乃至23についても同様である。 In some cases, the semiconductor devices 10 to 13 may omit all the back gates of the transistors M1 to M3. In that case, the manufacturing process can be simplified. The same applies to the semiconductor devices 20 to 23.
また、半導体装置10乃至13において、容量素子C1は配線の寄生容量やトランジスタのゲート容量で代用してもよい。その場合、これら半導体装置の占有面積を小さくすることができる。半導体装置20乃至23の容量素子C21についても同様である。 In the semiconductor devices 10 to 13, the capacitor C1 may be replaced with a parasitic capacitance of a wiring or a gate capacitance of a transistor. In that case, the area occupied by these semiconductor devices can be reduced. The same applies to the capacitive element C21 of the semiconductor devices 20 to 23.
以上述べたように、本実施の形態の半導体装置を用いることで、消費電力が小さく、単極性のトランジスタで構成されるインバータ回路を提供することができる。また、動作周波数が高く、単極性のトランジスタで構成されるインバータ回路を提供することができる。 As described above, by using the semiconductor device of this embodiment, an inverter circuit including a unipolar transistor with low power consumption can be provided. In addition, an inverter circuit having a high operating frequency and including a unipolar transistor can be provided.
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態2)
本実施の形態では、図9(A)乃至図9(D)、図10を用いて、実施の形態1に示す半導体装置10の具体的な構成の一例について説明する。本発明の一態様の半導体装置10は、チャネル形成領域に酸化物を有するトランジスタを有する半導体装置であって、半導体装置10は、トランジスタM1、トランジスタM2、トランジスタM3、容量素子C1、および配線を有する。なお、図9(B)では、主にトランジスタM1の構造に符号を付与し、トランジスタM2、またはトランジスタM3の構造の符号を省略する場合がある。その際、トランジスタM2、またはトランジスタM3において、トランジスタM1の符号を付与した構造と同じ機能を有する構造は、同じ符号を用いて説明する場合がある。
(Embodiment 2)
In this embodiment, an example of a specific structure of the semiconductor device 10 described in Embodiment 1 will be described with reference to FIGS. 9A to 9D and FIG. A semiconductor device 10 of one embodiment of the present invention includes a transistor including an oxide in a channel formation region. The semiconductor device 10 includes a transistor M1, a transistor M2, a transistor M3, a capacitor C1, and a wiring. . Note that in FIG. 9B, there is a case where a sign is mainly given to the structure of the transistor M1 and a sign of the structure of the transistor M2 or the transistor M3 is omitted. At that time, in the transistor M2 or the transistor M3, a structure having the same function as the structure to which the sign of the transistor M1 is given may be described using the same sign.
本実施の形態では、複数のトランジスタと、容量素子とが、共通の構造を有する構成とすることで、微細化または高集積化が可能な半導体装置を提供することができる。 In this embodiment, a semiconductor device which can be miniaturized or highly integrated can be provided by using a structure in which a plurality of transistors and a capacitor have a common structure.
<半導体装置10の構成例>
以下では、本発明の一態様に係るトランジスタM1、トランジスタM2、トランジスタM3、および容量素子C1を有する半導体装置10の一例について説明する。
<Configuration Example of Semiconductor Device 10>
Hereinafter, an example of the semiconductor device 10 including the transistor M1, the transistor M2, the transistor M3, and the capacitor C1 according to one embodiment of the present invention will be described.
図9(A)は、半導体装置10の上面図である。また、図9(B)は、図9(A)の一点鎖線A1−A2で示す部位の断面図であり、トランジスタM1、トランジスタM2、およびトランジスタM3のチャネル長方向の断面図でもある。また、図9(C)は、図9(A)の一点鎖線A3−A4で示す部位の断面図であり、トランジスタM1のチャネル幅方向の断面図でもある。図9(D)は、図9(A)の一点鎖線A5−A6で示す部位の断面図であり、容量素子C1の断面図でもある。なお、図9(A)の上面図では、図の明瞭化のために一部の要素を省いている。 FIG. 9A is a top view of the semiconductor device 10. FIG. 9B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 9A, and is also a cross-sectional view in the channel length direction of the transistors M1, M2, and M3. FIG. 9C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 9A and also a cross-sectional view in the channel width direction of the transistor M1. FIG. 9D is a cross-sectional view taken along dashed-dotted line A5-A6 in FIG. 9A and also a cross-sectional view of the capacitor C1. Note that in the top view of FIG. 9A, some elements are omitted for clarity.
半導体装置10は、基板201上に設けられ、トランジスタM1、トランジスタM2、トランジスタM3、および容量素子C1と、層間膜として機能する絶縁体210、絶縁体212および絶縁体280を有する。さらに、半導体装置10は、トランジスタM1、トランジスタM2、またはトランジスタM3と電気的に接続し、配線として機能する導電体203、240と、容量素子C1と電気的に接続し、配線として機能する導電体204、206とを有する。 The semiconductor device 10 is provided over a substrate 201 and includes a transistor M1, a transistor M2, a transistor M3, and a capacitor C1, and an insulator 210, an insulator 212, and an insulator 280 that function as interlayer films. Further, the semiconductor device 10 is electrically connected to the transistor M1, the transistor M2, or the transistor M3 and is electrically connected to the conductors 203 and 240 that function as wirings, and the capacitor C1 and is a conductor that functions as wiring. 204, 206.
図9に示す半導体装置10において、複数のトランジスタと、容量素子とを、同層に設けることで、トランジスタを構成する構造の一部が、容量素子を構成する構造の一部と、併用することができる。つまり、トランジスタの構造の一部は、容量素子の構造の一部として、機能する場合がある。 In the semiconductor device 10 illustrated in FIG. 9, by providing a plurality of transistors and a capacitor in the same layer, part of the structure forming the transistor is used in combination with part of the structure forming the capacitor. Can do. In other words, part of the structure of the transistor may function as part of the structure of the capacitor.
また、複数のトランジスタに、容量素子の一部、または全体が、重畳することで、トランジスタの投影面積、および容量素子の投影面積の合計した面積を小さくすることができる。 In addition, when a part or the whole of the capacitor overlaps the plurality of transistors, the total area of the projected area of the transistor and the projected area of the capacitor can be reduced.
上記構造を有することで、微細化または高集積化が可能である。また、設計自由度を高くすることができる。また、複数のトランジスタと容量素子とを同一の工程で形成することができる。従って、工程を短縮することができるため、生産性を向上させることができる。 With the above structure, miniaturization or high integration is possible. In addition, the degree of freedom in design can be increased. In addition, the plurality of transistors and the capacitor can be formed in the same process. Therefore, since the process can be shortened, productivity can be improved.
なお、導電体203、および導電体204は、絶縁体212に埋め込まれるように形成される。ここで、導電体203、および導電体204の上面の高さと、絶縁体212の上面の高さは同程度にできる。なお、導電体203、および導電体204は、単層とする構成について示しているが、本発明はこれに限られるものではない。例えば、導電体203、および導電体204を2層以上の多層膜構造としてもよい。 Note that the conductor 203 and the conductor 204 are formed to be embedded in the insulator 212. Here, the heights of the upper surfaces of the conductor 203 and the conductor 204 and the height of the upper surface of the insulator 212 can be approximately the same. Note that although the conductor 203 and the conductor 204 are illustrated as single layers, the present invention is not limited to this. For example, the conductor 203 and the conductor 204 may have a multilayer structure of two or more layers.
[トランジスタM1、トランジスタM2、およびトランジスタM3]
トランジスタM1、トランジスタM2、およびトランジスタM3は、チャネルが形成される領域を含む酸化物230(酸化物230a、酸化物230b、酸化物230c、および酸化物230d)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。また、図9(B)に示すように、トランジスタM1、トランジスタM2、およびトランジスタM3は、酸化物230a、酸化物230b、および酸化物230cを、共通に設けることができる。本構成とすることで、トランジスタとトランジスタとの間隔を小さくすることができるため、微細化または高集積化が可能である。また、本構成とすることで、トランジスタとトランジスタを接続する配線等を別途設ける必要がないため、工程を簡略化することができる。
[Transistor M1, Transistor M2, and Transistor M3]
The transistor M1, the transistor M2, and the transistor M3 each include a metal oxide that functions as an oxide semiconductor over the oxide 230 (oxide 230a, oxide 230b, oxide 230c, and oxide 230d) including a region where a channel is formed. It is preferable to use a material (hereinafter also referred to as an oxide semiconductor). As illustrated in FIG. 9B, the transistor M1, the transistor M2, and the transistor M3 can include the oxide 230a, the oxide 230b, and the oxide 230c in common. With this structure, the distance between the transistors can be reduced; thus, miniaturization or high integration can be achieved. Further, with this structure, it is not necessary to separately provide a wiring and the like for connecting the transistors, so that the process can be simplified.
また、トランジスタM1、トランジスタM2、およびトランジスタM3は、基板201上に配置された絶縁体214および絶縁体216と、絶縁体214および絶縁体216に埋め込まれるように配置された導電体205と、導電体205の上および絶縁体216の上に配置された絶縁体220と、絶縁体220の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230dと、酸化物230dの上に配置された絶縁体250と、絶縁体250の上に配置された金属酸化物252と、金属酸化物252の上に配置された導電体260と、導電体260の上に配置された絶縁体270と、絶縁体270の上に配置された絶縁体271と、少なくとも酸化物230dの上面、絶縁体250の側面、金属酸化物252の側面、導電体260の側面および絶縁体270の側面に接して配置された絶縁体272と、少なくとも絶縁体272に接して配置された絶縁体275と、少なくとも酸化物230の上面、絶縁体275の側面に接して配置された絶縁体274とをそれぞれ有する。 In addition, the transistor M1, the transistor M2, and the transistor M3 include an insulator 214 and an insulator 216 which are disposed over the substrate 201, a conductor 205 which is disposed so as to be embedded in the insulator 214 and the insulator 216, and a conductive layer. An insulator 220 disposed on the body 205 and on the insulator 216; an insulator 222 disposed on the insulator 220; an insulator 224 disposed on the insulator 222; and an insulator 224. The oxide 230d disposed on the top, the insulator 250 disposed on the oxide 230d, the metal oxide 252 disposed on the insulator 250, and the metal oxide 252 disposed A conductor 260; an insulator 270 disposed on the conductor 260; an insulator 271 disposed on the insulator 270; and at least an upper surface of the oxide 230d. An insulator 272 disposed in contact with a side surface of the body 250, a side surface of the metal oxide 252; a side surface of the conductor 260; and a side surface of the insulator 270; an insulator 275 disposed in contact with at least the insulator 272; And an insulator 274 provided in contact with the upper surface of the oxide 230 and the side surface of the insulator 275.
なお、トランジスタM1、トランジスタM2、およびトランジスタM3では、酸化物230a、酸化物230b、酸化物230c、および酸化物230dをまとめて酸化物230という場合がある。また、トランジスタM1、トランジスタM2、およびトランジスタM3では、酸化物230a、酸化物230b、酸化物230c、および酸化物230dを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bのみを設ける構成にしてもよい。また、例えば、単層、2層、3層、または5層以上の積層構造としてもよい。また、導電体260、および導電体205を、それぞれ積層として設ける構成について示しているが、本発明はこれに限られるものではない。例えば、導電体260、および導電体205は、単層、または3層以上の積層として設ける構成にしてもよい。 Note that in the transistor M1, the transistor M2, and the transistor M3, the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d may be collectively referred to as the oxide 230. In the transistors M1, M2, and M3, the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d are stacked; however, the present invention is not limited to this. For example, only the oxide 230b may be provided. In addition, for example, a single layer, two layers, three layers, or a stacked structure of five layers or more may be used. Further, although a structure in which the conductor 260 and the conductor 205 are provided as stacked layers is shown, the present invention is not limited to this. For example, the conductor 260 and the conductor 205 may be provided as a single layer or a stack of three or more layers.
ここで、図9(B)における、トランジスタM1のチャネル近傍の領域の拡大図を図10に示す。なお、トランジスタM2、およびトランジスタM3の構成については、トランジスタM1を参酌することができる。 Here, an enlarged view of a region near the channel of the transistor M1 in FIG. 9B is shown in FIG. Note that the transistor M1 can be referred to for the structures of the transistor M2 and the transistor M3.
図10に示すように、酸化物230は、トランジスタのチャネル形成領域として機能する領域234と、ソース領域またはドレイン領域として機能する領域231(領域231a、および領域231b)と、領域234と領域231との間に設けられる接合領域232(接合領域232a、および接合領域232b)とを有する。 As illustrated in FIG. 10, the oxide 230 includes a region 234 that functions as a channel formation region of a transistor, a region 231 that functions as a source region or a drain region (a region 231 a and a region 231 b), a region 234, and a region 231. A bonding region 232 (a bonding region 232a and a bonding region 232b) provided between the two.
ソース領域またはドレイン領域として機能する領域231は、共にキャリア密度が高い低抵抗化した領域である。また、チャネル形成領域として機能する領域234は、ソース領域またはドレイン領域として機能する領域231よりも、キャリア密度が低い領域である。また、接合領域232は、ソース領域またはドレイン領域として機能する領域231よりもキャリア密度が低く、チャネル形成領域として機能する領域234よりもキャリア密度が高い領域である。すなわち接合領域232は、チャネル形成領域と、ソース領域またはドレイン領域との間の接合領域(junction region)としての機能を有する。 The region 231 functioning as a source region or a drain region is a region with low carrier resistance and high carrier density. The region 234 functioning as a channel formation region is a region having a lower carrier density than the region 231 functioning as a source region or a drain region. The junction region 232 has a lower carrier density than the region 231 that functions as a source region or a drain region and a higher carrier density than the region 234 that functions as a channel formation region. In other words, the junction region 232 functions as a junction region between the channel formation region and the source region or the drain region.
なお、領域231は、金属元素、並びに水素、および窒素などの不純物元素の少なくとも一の濃度が接合領域232、および領域234よりも大きいことが好ましい。 Note that the region 231 preferably has a concentration of at least one of a metal element and an impurity element such as hydrogen and nitrogen higher than that of the junction region 232 and the region 234.
例えば、領域231は、酸化物230の他に、ルテニウム、チタン、タンタル、タングステン、などの金属元素を有することが好ましい。酸化物230に、金属元素が添加されることで、領域231を低抵抗化することができる。金属元素を添加するには、例えば、酸化物230の領域231に接して上に、金属膜、金属元素を有する酸化膜、または金属元素を有する窒化膜などを成膜した後、該膜を除去するとよい。また、金属膜、金属元素を有する酸化膜、または金属元素を有する窒化膜を成膜した後、除去する前に熱処理を行うことが好ましい。なお、当該熱処理は、200℃以上500℃以下、代表的には400℃またはその近傍で行うことができる。また、上記熱処理を行うことで、酸化物230が有する構成元素中に、ルテニウム、チタン、タンタル、タングステンなどの金属元素が入り込む場合がある。この場合、領域231の一部、代表的には領域231の上部において、酸化物230が有する構成元素と、ルテニウム、チタン、タンタル、タングステンなどの金属元素とが、合金化する場合がある。領域231が合金化する場合、合金化した領域、すなわち、低抵抗化した領域を比較的安定に形成することができるため、信頼性の高い半導体装置を提供することができる。 For example, the region 231 preferably includes a metal element such as ruthenium, titanium, tantalum, or tungsten in addition to the oxide 230. By adding a metal element to the oxide 230, the resistance of the region 231 can be reduced. In order to add a metal element, for example, a metal film, an oxide film containing a metal element, or a nitride film containing a metal element is formed on and in contact with the region 231 of the oxide 230, and then the film is removed. Good. Further, it is preferable to perform heat treatment after the metal film, the oxide film containing a metal element, or the nitride film containing a metal element is formed and then removed. Note that the heat treatment can be performed at 200 ° C. or more and 500 ° C. or less, typically 400 ° C. or the vicinity thereof. In addition, when the heat treatment is performed, a metal element such as ruthenium, titanium, tantalum, or tungsten may enter the constituent elements of the oxide 230. In this case, a constituent element included in the oxide 230 and a metal element such as ruthenium, titanium, tantalum, or tungsten may be alloyed in part of the region 231, typically over the region 231. In the case where the region 231 is alloyed, the alloyed region, that is, the region with reduced resistance can be formed relatively stably, so that a highly reliable semiconductor device can be provided.
接合領域232は、絶縁体272と重畳する領域を有する。接合領域232は、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域234よりも大きいことが好ましい。また、接合領域232a、および接合領域232bのいずれか一方または双方は、導電体260と重畳する領域を有する構成としてもよい。 The bonding region 232 has a region overlapping with the insulator 272. The junction region 232 preferably has a concentration of at least one of a metal element such as indium and an impurity element such as hydrogen and nitrogen higher than that of the region 234. One or both of the bonding region 232a and the bonding region 232b may have a region overlapping with the conductor 260.
領域234は、導電体260と重畳する領域を有する。領域234は、接合領域232a、および接合領域232bとの間に配置しており、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域231、および接合領域232より、小さいことが好ましい。 The region 234 has a region overlapping with the conductor 260. The region 234 is disposed between the junction region 232 a and the junction region 232 b, and the region 231 has a concentration of at least one of a metal element such as indium and an impurity element such as hydrogen and nitrogen, and the junction region 232. More preferably, it is smaller.
なお、酸化物230において、領域231、接合領域232および領域234の境界は明確に検出できない場合がある。各領域内で検出されるインジウムなどの金属元素、並びに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう)していてもよい。つまり、領域231から接合領域232へ、領域234に近い領域であるほど、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素の濃度が減少していればよい。 Note that in the oxide 230, the boundary between the region 231, the junction region 232, and the region 234 may not be clearly detected in some cases. Concentrations of metal elements such as indium and impurity elements such as hydrogen and nitrogen detected in each region are not limited to stepwise changes in each region, but also continuously change in each region (also referred to as gradation). You may do it. That is, the closer to the region 234 from the region 231 to the junction region 232, the lower the concentration of the metal element such as indium and the impurity element such as hydrogen and nitrogen.
また、図10では、領域234、領域231および接合領域232が、酸化物230cに形成されているが、これに限られることなく、例えばこれらの領域は酸化物230aにも形成されていてもよい。また、図では、各領域の境界を、酸化物230の上面に対して略垂直に表示しているが、本実施の形態はこれに限られるものではない。 In FIG. 10, the region 234, the region 231 and the junction region 232 are formed in the oxide 230c. However, the present invention is not limited to this. For example, these regions may be formed in the oxide 230a. . Further, in the figure, the boundary of each region is displayed substantially perpendicular to the upper surface of the oxide 230, but this embodiment is not limited to this.
以下では、本発明の一態様に係るトランジスタM1、トランジスタM2、およびトランジスタM3を有する半導体装置の詳細な構成について説明する。なお、代表として、トランジスタM1を用いて説明する場合がある。その際、トランジスタM2、およびトランジスタM3の構成については、トランジスタM1を参酌することができる。 The detailed structure of the semiconductor device including the transistor M1, the transistor M2, and the transistor M3 according to one embodiment of the present invention is described below. Note that the transistor M1 may be used as a representative for explanation. At that time, the transistor M1 can be referred to for the configurations of the transistor M2 and the transistor M3.
なお、トランジスタにおいて、酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。金属酸化物としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。エネルギーギャップが大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。 Note that in the transistor, the oxide 230 is preferably formed using a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor). As the metal oxide, it is preferable to use one having an energy gap of 2 eV or more, preferably 2.5 eV or more. By using a metal oxide with a wide energy gap, off-state current of the transistor can be reduced.
酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。 Since a transistor including an oxide semiconductor has extremely low leakage current in a non-conduction state, a semiconductor device with low power consumption can be provided. An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。 The oxide semiconductor preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. Further, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, or the like may be included.
ここでは、酸化物半導体が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。元素Mに適用可能なそのほかの元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。 Here, a case where the oxide semiconductor is an In-M-Zn oxide containing indium, the element M, and zinc is considered. The element M is aluminum, gallium, yttrium, tin, or the like. Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium. However, the element M may be a combination of a plurality of the aforementioned elements.
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。 Note that in this specification and the like, metal oxides containing nitrogen may be collectively referred to as metal oxides. In addition, a metal oxide containing nitrogen may be referred to as a metal oxynitride.
ここで、酸化物230a、および酸化物230bに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230cに用いる金属酸化物における、構成元素中の元素Mの原子数比より大きいことが好ましい。また、酸化物230a、および酸化物230bに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230cに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230cに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230a、および酸化物230bに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。 Here, in the metal oxide used for the oxide 230a and the oxide 230b, the atomic ratio of the element M in the constituent element is the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230c. Larger is preferred. In the metal oxide used for the oxide 230a and the oxide 230b, the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230c. . In the metal oxide used for the oxide 230c, the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a and the oxide 230b. .
また、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。 In the metal oxide used for the oxide 230a, the atomic ratio of the element M in the constituent element is preferably larger than the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230b. In the metal oxide used for the oxide 230a, the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b. In the metal oxide used for the oxide 230b, the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a.
従って、酸化物230aの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーが低い領域における、伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aの電子親和力が、酸化物230bの伝導帯下端のエネルギーが低い領域における電子親和力より小さいことが好ましい。 Therefore, the energy at the lower end of the conduction band of the oxide 230a is preferably higher than the energy at the lower end of the conduction band in a region where the energy at the lower end of the conduction band of the oxide 230b is low. In other words, the electron affinity of the oxide 230a is preferably smaller than the electron affinity in a region where the energy at the lower end of the conduction band of the oxide 230b is low.
また、酸化物230bの伝導帯下端のエネルギーが、酸化物230cの伝導帯下端のエネルギーが低い領域における、伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230bの電子親和力が、酸化物230cの伝導帯下端のエネルギーが低い領域における電子親和力より小さいことが好ましい。 In addition, the energy at the lower end of the conduction band of the oxide 230b is preferably higher than the energy at the lower end of the conduction band in a region where the energy at the lower end of the conduction band of the oxide 230c is low. In other words, the electron affinity of the oxide 230b is preferably smaller than the electron affinity in a region where the energy at the lower end of the conduction band of the oxide 230c is low.
ここで、酸化物230a、酸化物230b、および酸化物230cにおいて、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、または酸化物230bと酸化物230cとの界面、において形成される混合層の欠陥準位密度を低くするとよい。 Here, in the oxide 230a, the oxide 230b, and the oxide 230c, the energy level at the lower end of the conduction band changes gently. In other words, it can be said that it is continuously changed or continuously joined. In order to achieve this, the defect state density of the mixed layer formed at the interface between the oxide 230a and the oxide 230b or the interface between the oxide 230b and the oxide 230c is preferably low.
具体的には、酸化物230a、酸化物230b、および酸化物230cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230cがIn−Ga−Zn酸化物の場合、酸化物230b、または酸化物230aとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。 Specifically, when the oxide 230a, the oxide 230b, and the oxide 230c have a common element (main component) in addition to oxygen, a mixed layer with a low density of defect states can be formed. . For example, in the case where the oxide 230c is an In—Ga—Zn oxide, an In—Ga—Zn oxide, a Ga—Zn oxide, a gallium oxide, or the like may be used as the oxide 230b or the oxide 230a.
このとき、キャリアの主たる経路は酸化物230cに形成されるナローギャップ部分となる。酸化物230cと酸化物230bとの界面、酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、大きなオン電流が得られる。 At this time, the main path of carriers is a narrow gap portion formed in the oxide 230c. Since the defect level density at the interface between the oxide 230c and the oxide 230b and the interface between the oxide 230b and the oxide 230c can be reduced, the influence on carrier conduction due to interface scattering is small, and a large on-current is obtained. It is done.
一方で、酸化物半導体を用いたトランジスタは、酸化物半導体中の不純物及び酸素欠損によって、その電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。チャネル形成領域に酸素欠損が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、チャネル形成領域中の酸素欠損はできる限り低減されていることが好ましい。 On the other hand, in a transistor including an oxide semiconductor, its electrical characteristics are likely to vary due to impurities and oxygen vacancies in the oxide semiconductor, and reliability may deteriorate. In addition, hydrogen contained in the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases. When hydrogen enters the oxygen vacancies, electrons serving as carriers may be generated. A transistor including an oxide semiconductor in which oxygen vacancies are included in a channel formation region is likely to be normally on. For this reason, it is preferable that oxygen vacancies in the channel formation region be reduced as much as possible.
特に、酸化物230におけるチャネルが形成される領域234と、トランジスタM1、トランジスタM2、およびトランジスタM3の第1のゲート絶縁体として機能する絶縁体250との界面に、酸素欠損が存在すると、電気特性の変動が生じやすく、また信頼性が悪くなる場合がある。 In particular, the presence of oxygen vacancies at the interface between the region 234 where the channel is formed in the oxide 230 and the insulator 250 functioning as the first gate insulator of the transistors M1, M2, and M3 has electrical characteristics. Fluctuations are likely to occur, and reliability may deteriorate.
そこで、酸化物230の領域234の上方に位置する絶縁体250が化学量論的組成を満たす酸素よりも多くの酸素(過剰酸素ともいう)を含むことが好ましい。つまり、絶縁体250が有する過剰酸素が、領域234へと拡散することで、領域234中の酸素欠損を低減することができる。 Thus, it is preferable that the insulator 250 located above the region 234 of the oxide 230 contain more oxygen (also referred to as excess oxygen) than oxygen that satisfies the stoichiometric composition. That is, excess oxygen in the insulator 250 diffuses into the region 234, so that oxygen vacancies in the region 234 can be reduced.
また、絶縁体250が有する過剰酸素を、効率的に酸化物230へ供給するために、金属酸化物252を設けてもよい。従って、金属酸化物252は、酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物252を設けることで、導電体260への過剰酸素の拡散が抑制される。つまり、酸化物230へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体260の酸化を抑制することができる。 Further, a metal oxide 252 may be provided in order to efficiently supply excess oxygen included in the insulator 250 to the oxide 230. Therefore, the metal oxide 252 preferably suppresses oxygen diffusion. By providing the metal oxide 252 that suppresses diffusion of oxygen, diffusion of excess oxygen into the conductor 260 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 230 can be suppressed. In addition, oxidation of the conductor 260 due to excess oxygen can be suppressed.
なお、金属酸化物252は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、金属酸化物252は、比誘電率が大きいhigh−k材料である金属酸化物を用いることが好ましい。当該積層構造とすることで、熱に対して安定、かつ比誘電率の大きい積層構造とすることができる。したがって、物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。 Note that the metal oxide 252 may function as part of the gate insulator. Therefore, when silicon oxide, silicon oxynitride, or the like is used for the insulator 250, the metal oxide 252 is preferably a metal oxide that is a high-k material with a high relative dielectric constant. By setting it as the said laminated structure, it can be set as the laminated structure stable with respect to a heat | fever, and a large dielectric constant. Therefore, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness. In addition, it is possible to reduce the equivalent oxide thickness (EOT) of an insulator that functions as a gate insulator.
また、金属酸化物252は、第1のゲート電極の一部としての機能を有してもよい。例えば、酸化物230として用いることができる酸化物半導体を金属酸化物252として用いることができる。その場合、導電体260をスパッタリング法で成膜することで、金属酸化物252の電気抵抗値を低下させて導電体とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。 Further, the metal oxide 252 may function as part of the first gate electrode. For example, an oxide semiconductor that can be used as the oxide 230 can be used as the metal oxide 252. In that case, by forming the conductor 260 by a sputtering method, the electric resistance value of the metal oxide 252 can be reduced, whereby the conductor can be obtained. This can be called an OC (Oxide Conductor) electrode.
金属酸化物252を有することで、導電体260からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、絶縁体250と、金属酸化物252との物理的な厚みにより、導電体260と、酸化物230との間の距離を保つことで、リーク電流を抑制することができる。また、絶縁体250、および金属酸化物252との積層構造を設けることで、導電体260と酸化物230との間の物理的な距離、および導電体260から酸化物230へかかる電界強度を、容易に適宜調整することができる。 By including the metal oxide 252, the on-current can be improved without weakening the influence of the electric field from the conductor 260. In addition, leakage current can be suppressed by maintaining the distance between the conductor 260 and the oxide 230 depending on the physical thickness of the insulator 250 and the metal oxide 252. In addition, by providing a stacked structure of the insulator 250 and the metal oxide 252, the physical distance between the conductor 260 and the oxide 230 and the electric field strength applied from the conductor 260 to the oxide 230 can be reduced. It can be easily adjusted as appropriate.
具体的には、金属酸化物252として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、酸化物230に用いることができる酸化物半導体を低抵抗化することで、金属酸化物252として用いることができる。 Specifically, as the metal oxide 252, a metal containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like. An oxide can be used. Further, by reducing the resistance of an oxide semiconductor that can be used for the oxide 230, the metal oxide 252 can be used.
また、絶縁体220、絶縁体222、および絶縁体224は、トランジスタM1、トランジスタM2、およびトランジスタM3の第2のゲート絶縁体として機能する。図では、絶縁体220、絶縁体222、および絶縁体224を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、絶縁体220、絶縁体222、および絶縁体224のうちいずれか2層を積層した構造にしてもよいし、いずれか1層を用いる構造にしてもよい。 The insulator 220, the insulator 222, and the insulator 224 function as second gate insulators of the transistor M1, the transistor M2, and the transistor M3. In the drawing, the structure in which the insulator 220, the insulator 222, and the insulator 224 are stacked is shown; however, the present invention is not limited to this. For example, any two layers of the insulator 220, the insulator 222, and the insulator 224 may be stacked, or any one of the layers may be used.
また、絶縁体222、および層間膜として機能する絶縁体214は、下層から水または水素などの不純物がトランジスタに混入するのを防ぐバリア絶縁体として機能できる。絶縁体214および絶縁体222は、水または水素などの不純物の透過を抑制する機能を有する絶縁性材料を用いることが好ましい。例えば、絶縁体214として窒化シリコンなどを用い、絶縁体222として酸化アルミニウム、酸化ハフニウム、シリコンおよびハフニウムを含む酸化物(ハフニウムシリケート)、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。これにより、水素、水などの不純物が絶縁体214および絶縁体222より上層に拡散するのを抑制することができる。なお、絶縁体214および絶縁体222は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の少なくとも一の透過を抑制する機能を有することが好ましい。また、以下において、不純物の透過を抑制する機能を有する絶縁性材料について記載する場合も同様である。 Further, the insulator 222 and the insulator 214 functioning as an interlayer film can function as a barrier insulator that prevents impurities such as water or hydrogen from entering the transistor from below. The insulator 214 and the insulator 222 are preferably formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen. For example, silicon nitride or the like is used as the insulator 214, and aluminum oxide, hafnium oxide, an oxide containing silicon and hafnium (hafnium silicate), an oxide containing aluminum and hafnium (hafnium aluminate), or the like is used as the insulator 222. Is preferred. Thus, impurities such as hydrogen and water can be prevented from diffusing into layers above the insulator 214 and the insulator 222. Note that the insulator 214 and the insulator 222 include at least one of impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitric oxide molecule (N 2 O, NO, NO 2, and the like) and a copper atom. It preferably has a function of suppressing transmission. The same applies to the case where an insulating material having a function of suppressing the permeation of impurities is described below.
また、絶縁体214および絶縁体222は、酸素(例えば、酸素原子または酸素分子など)の透過を抑制する機能を有する絶縁性材料を用いることが好ましい。これにより、絶縁体224などに含まれる酸素が下方拡散するのを抑制することができる。 The insulator 214 and the insulator 222 are preferably formed using an insulating material having a function of suppressing transmission of oxygen (for example, oxygen atoms or oxygen molecules). Thus, downward diffusion of oxygen contained in the insulator 224 and the like can be suppressed.
また、絶縁体222中の水、水素または窒素酸化物などの不純物濃度が低減されていることが好ましい。例えば、絶縁体222の水素の脱離量は、昇温脱離ガス分析法(TDS(Thermal Desorption Spectroscopy))において、絶縁体222の表面温度が50℃から500℃の範囲において、水素分子に換算した脱離量が、絶縁体222の面積当たりに換算して、2×1015molecules/cm以下、好ましくは1×1015molecules/cm以下、より好ましくは5×1014molecules/cm以下であればよい。また、絶縁体222は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。 In addition, the concentration of impurities such as water, hydrogen, or nitrogen oxide in the insulator 222 is preferably reduced. For example, the amount of hydrogen desorbed from the insulator 222 is converted to hydrogen molecules when the surface temperature of the insulator 222 is in the range of 50 ° C. to 500 ° C. in the temperature programmed desorption gas analysis method (TDS (Thermal Desorption Spectroscopy)). 2 × 10 15 molecules / cm 2 or less, preferably 1 × 10 15 molecules / cm 2 or less, more preferably 5 × 10 14 molecules / cm 2 in terms of the amount of the desorbed in terms of the area of the insulator 222. The following is sufficient. The insulator 222 is preferably formed using an insulator from which oxygen is released by heating.
導電体260は、トランジスタM1、トランジスタM2、およびトランジスタM3の第1のゲート電極として機能する。また、導電体205は、トランジスタM1、トランジスタM2、およびトランジスタM3の第2のゲート電極として機能する。トランジスタM1、トランジスタM2、またはトランジスタM3の第2のゲート電極として機能する導電体205は、酸化物230および導電体260と重なるように配置する。 The conductor 260 functions as a first gate electrode of the transistor M1, the transistor M2, and the transistor M3. The conductor 205 functions as a second gate electrode of the transistor M1, the transistor M2, and the transistor M3. The conductor 205 functioning as the second gate electrode of the transistor M1, the transistor M2, or the transistor M3 is provided so as to overlap with the oxide 230 and the conductor 260.
ここで、導電体205は、酸化物230における領域234よりも、チャネル幅方向の長さが大きくなるように設けるとよい。特に、導電体205は、酸化物230の領域234のA3−A4の一点鎖線(チャネル幅方向)と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。 Here, the conductor 205 is preferably provided so that its length in the channel width direction is larger than that of the region 234 in the oxide 230. In particular, the conductor 205 is preferably extended also in a region outside the end portion intersecting with the one-dot chain line (channel width direction) of A3-A4 of the region 234 of the oxide 230. That is, it is preferable that the conductor 205 and the conductor 260 overlap with each other through the insulator on the side surface of the oxide 230 in the channel width direction.
導電体205に印加する電位は、導電体260に印加する電位と同電位とするとよい。また、接地電位や、任意の電位としてもよい。また、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタM1、トランジスタM2、およびトランジスタM3のしきい値電圧を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタM1、トランジスタM2、およびトランジスタM3のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。従って、導電体260に印加する電圧が0Vのときのドレイン電流を小さくすることができる。 The potential applied to the conductor 205 is preferably the same as the potential applied to the conductor 260. Further, it may be a ground potential or an arbitrary potential. In addition, the threshold voltage of the transistor M1, the transistor M2, and the transistor M3 is controlled by independently changing the potential applied to the conductor 205 without being interlocked with the potential applied to the conductor 260. Can do. In particular, by applying a negative potential to the conductor 205, the threshold voltage of the transistor M1, the transistor M2, and the transistor M3 can be made higher than 0 V and the off-state current can be reduced. Therefore, the drain current when the voltage applied to the conductor 260 is 0 V can be reduced.
また、導電体205は、酸化物230、および導電体260と重なるように配置する。ここで、酸化物230の領域234のA3−A4の一点鎖線(チャネル幅方向)と交わる端部よりも外側の領域においても、導電体205は、導電体260と重畳するように配置することが好ましい。つまり、酸化物230の側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。 The conductor 205 is provided so as to overlap with the oxide 230 and the conductor 260. Here, the conductor 205 may be disposed so as to overlap with the conductor 260 also in a region outside the end portion of the region 234 of the oxide 230 that intersects with the one-dot chain line (channel width direction) of A3-A4. preferable. That is, it is preferable that the conductor 205 and the conductor 260 overlap with each other with an insulator outside the side surface of the oxide 230.
上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界とがつながることで、閉回路を形成し、酸化物230に形成されるチャネル形成領域を覆うことができる。 With the above structure, when a potential is applied to the conductor 260 and the conductor 205, the electric field generated from the conductor 260 and the electric field generated from the conductor 205 are connected to form a closed circuit, and the oxide The channel formation region formed in 230 can be covered.
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。 That is, the channel formation region in the region 234 can be electrically surrounded by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode. . In this specification, a transistor structure that electrically surrounds a channel formation region by an electric field of the first gate electrode and the second gate electrode is referred to as a surrounded channel (S-channel) structure.
なお、導電体203は、導電体260と同様にチャネル幅方向に延伸されており、導電体205に電位を印加する配線として機能する。ここで、配線として機能する導電体203の上に積層して、絶縁体214および絶縁体216に埋め込まれた導電体205を設けることにより、導電体203と導電体260の間に絶縁体214および絶縁体216などが設けられ、導電体203と導電体260の間の寄生容量を低減し、絶縁耐圧を高めることができる。導電体203と導電体260の間の寄生容量を低減することで、トランジスタのスイッチング速度を向上させ、高い周波数特性を有するトランジスタにすることができる。また、導電体203と導電体260の間の絶縁耐圧を高めることで、トランジスタの信頼性を向上させることができる。よって、絶縁体214および絶縁体216の膜厚を大きくすることが好ましい。なお、導電体203の延伸方向はこれに限られず、例えば、トランジスタM1、トランジスタM2、およびトランジスタM3のチャネル長方向に延伸されてもよい。 Note that the conductor 203 is extended in the channel width direction similarly to the conductor 260 and functions as a wiring for applying a potential to the conductor 205. Here, by stacking over the conductor 203 functioning as a wiring and providing the conductor 205 embedded in the insulator 214 and the insulator 216, the insulator 214 and the conductor 260 are interposed between the conductor 203 and the conductor 260. An insulator 216 and the like are provided, so that the parasitic capacitance between the conductor 203 and the conductor 260 can be reduced and the withstand voltage can be increased. By reducing the parasitic capacitance between the conductor 203 and the conductor 260, the switching speed of the transistor can be improved and a transistor having high frequency characteristics can be obtained. Further, by increasing the withstand voltage between the conductor 203 and the conductor 260, the reliability of the transistor can be improved. Therefore, it is preferable to increase the thickness of the insulator 214 and the insulator 216. Note that the extending direction of the conductor 203 is not limited to this, and may be extended in the channel length direction of the transistor M1, the transistor M2, and the transistor M3, for example.
また、導電体205は、絶縁体214および絶縁体216の開口の内壁に接して設けられた第1の導電体と、さらに内側に設けられた第2の導電体とを有する。また、導電体205の上面の高さと、絶縁体216の上面の高さは同程度にできる。なお、図では、導電体205を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、単層、または3層以上の積層構造としてもよい。 The conductor 205 includes a first conductor provided in contact with the inner walls of the openings of the insulator 214 and the insulator 216, and a second conductor provided further inside. In addition, the height of the upper surface of the conductor 205 and the height of the upper surface of the insulator 216 can be approximately the same. In addition, although the figure has shown about the structure which laminates | stacks the conductor 205, this invention is not limited to this. For example, a single layer or a stacked structure of three or more layers may be used.
ここで、第1の導電体は、水または水素などの不純物の透過を抑制する機能を有する(透過しにくい)導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましく、単層または積層とすればよい。これにより、絶縁体214より下層から水素、水などの不純物が導電体205を通じて上層に拡散するのを抑制することができる。なお、第1の導電体は、水素原子、水素分子、水分子、酸素原子、酸素分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の透過を抑制する機能を有することが好ましい。また、以下において、不純物の透過を抑制する機能を有する導電性材料について記載する場合も同様である。第1の導電体が酸素の透過を抑制する機能を持つことにより、第2の導電体が酸化して導電率が低下することを防ぐことができる。 Here, it is preferable to use a conductive material having a function of suppressing transmission of impurities such as water or hydrogen (difficult to transmit) as the first conductor. For example, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, and a single layer or a stacked layer may be used. Thus, impurities such as hydrogen and water from the lower layer than the insulator 214 can be prevented from diffusing into the upper layer through the conductor 205. Note that the first conductor is an impurity such as a hydrogen atom, a hydrogen molecule, a water molecule, an oxygen atom, an oxygen molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2 ), a copper atom, or the like. Alternatively, it preferably has a function of suppressing transmission of at least one of oxygen (for example, oxygen atoms and oxygen molecules). The same applies to the case where a conductive material having a function of suppressing the permeation of impurities is described below. When the first conductor has a function of suppressing the permeation of oxygen, it is possible to prevent the second conductor from being oxidized and the conductivity from being lowered.
第2の導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、図示しないが、第2の導電体205は積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 As the second conductor, a conductive material containing tungsten, copper, or aluminum as a main component is preferably used. Although not illustrated, the second conductor 205 may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
また、導電体260は、第1の導電体、および第2の導電体を有する。第1の導電体は、例えばタングステンなどの金属を用いることができる。また、金属酸化物252として、酸化物半導体を用いた場合、第1の導電体として、金属酸化物252に窒素などの不純物を添加し、金属酸化物252の導電性を向上できる導電体を用いるとよい。例えば、第1の導電体は、窒化チタンなどを用いることが好ましい。また、第2の導電体は、抵抗が小さいアルミニウム、またはタングステンなどの金属を用いることが好ましい。 The conductor 260 includes a first conductor and a second conductor. For the first conductor, for example, a metal such as tungsten can be used. In the case where an oxide semiconductor is used as the metal oxide 252, a conductor that can improve the conductivity of the metal oxide 252 by adding an impurity such as nitrogen to the metal oxide 252 is used as the first conductor. Good. For example, titanium nitride or the like is preferably used for the first conductor. The second conductor is preferably formed using a metal such as aluminum or tungsten with low resistance.
また、導電体260の上に、絶縁体270を配置してもよい。絶縁体270は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。絶縁体270を有することで、導電体260の酸化を防ぐことができる。また、導電体260および絶縁体250を介して、水または水素などの不純物が酸化物230に混入することを防ぐことができる。 Further, the insulator 270 may be provided over the conductor 260. As the insulator 270, an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen is preferably used. By including the insulator 270, oxidation of the conductor 260 can be prevented. In addition, impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260 and the insulator 250.
ここで、図9(B)に示すように、絶縁体250、金属酸化物252、導電体260、および絶縁体270からなる構造体は、その側面が絶縁体222に対し、略垂直であることが好ましい。ただし、本実施の形態に示す半導体装置はこれに限られるものではない。例えば、絶縁体250、金属酸化物252、導電体260、および絶縁体270からなる構造体の側面は、絶縁体222の上面に対し、テーパー構造を有していてもよい。その場合、当該構造体の側面と絶縁体222の上面のなす角は、大きい(垂直に近い)ほど好ましい。 Here, as illustrated in FIG. 9B, the structure including the insulator 250, the metal oxide 252, the conductor 260, and the insulator 270 has a side surface that is substantially perpendicular to the insulator 222. Is preferred. Note that the semiconductor device described in this embodiment is not limited to this. For example, the side surface of the structure including the insulator 250, the metal oxide 252, the conductor 260, and the insulator 270 may have a tapered structure with respect to the upper surface of the insulator 222. In that case, the angle formed between the side surface of the structure and the top surface of the insulator 222 is preferably as large as possible (close to the vertical).
従って、絶縁体270上に、ハードマスクとして機能する絶縁体271を配置してもよい。絶縁体271を設けることで、絶縁体250、金属酸化物252、導電体260、絶縁体270からなる構造体を形成する際、該構造体の側面が概略垂直、具体的には、該構造体の側面と基板表面のなす角を、75度以上100度以下、好ましくは80度以上95度以下とすることができる。 Therefore, the insulator 271 functioning as a hard mask may be provided over the insulator 270. By providing the insulator 271, when a structure body including the insulator 250, the metal oxide 252, the conductor 260, and the insulator 270 is formed, the side surface of the structure body is substantially vertical, specifically, the structure body The angle formed between the side surface and the substrate surface can be set to 75 ° to 100 °, preferably 80 ° to 95 °.
絶縁体272は、少なくとも絶縁体250、金属酸化物252、導電体260、および絶縁体270の側面に接して設けられる。 The insulator 272 is provided in contact with at least the side surfaces of the insulator 250, the metal oxide 252, the conductor 260, and the insulator 270.
絶縁体272は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。絶縁体272が、酸素の拡散を抑制する機能を有することで、化学量論的組成よりも酸素が過剰に存在する領域(以下、過剰酸素領域ともいう)の酸素は絶縁体275側へ拡散することなく、効率よく領域234へ供給される。つまり、絶縁体250中の酸素が外部に拡散することを防ぐことができる。 The insulator 272 preferably has a function of suppressing diffusion of oxygen (for example, at least one of an oxygen atom and an oxygen molecule) (the above-described oxygen is difficult to transmit). Since the insulator 272 has a function of suppressing diffusion of oxygen, oxygen in a region where oxygen is present in excess of the stoichiometric composition (hereinafter also referred to as excess oxygen region) diffuses toward the insulator 275 side. Without being supplied to the region 234 efficiently. That is, oxygen in the insulator 250 can be prevented from diffusing outside.
また、絶縁体272は、水または水素などの不純物が低減されている絶縁体であることが好ましい。また、水または水素などの不純物の混入を防ぐバリア性を有する絶縁体であることが好ましい。つまり、絶縁体250の端部などから酸化物230に水素、水などの不純物が混入するのを抑制することができる。従って、酸化物230と、絶縁体250との界面における酸素欠損の形成が抑制され、トランジスタの信頼性を向上させることができる。 The insulator 272 is preferably an insulator in which impurities such as water or hydrogen are reduced. In addition, an insulator having a barrier property which prevents entry of impurities such as water or hydrogen is preferable. That is, entry of impurities such as hydrogen and water into the oxide 230 from the end portion of the insulator 250 or the like can be suppressed. Accordingly, formation of oxygen vacancies at the interface between the oxide 230 and the insulator 250 is suppressed, and the reliability of the transistor can be improved.
例えば、絶縁体270、および絶縁体272には、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料である、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いることができる。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。 For example, the insulator 270 and the insulator 272 each include an oxide of one or both of aluminum and hafnium, which is an insulating material having a function of suppressing transmission of impurities such as water or hydrogen, and oxygen. Can be used. As the insulator containing one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
絶縁体270および絶縁体272を設けることで、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁体で導電体260の上面と側面および絶縁体250の側面を覆うことができる。これにより、導電体260の酸化、導電体260および絶縁体250を介して、水または水素などの不純物が酸化物230に混入することを抑制することができる。従って、絶縁体270および絶縁体272は、ゲート電極およびゲート絶縁体を保護するバリアとして機能する。 By providing the insulator 270 and the insulator 272, the top surface and the side surface of the conductor 260 and the side surface of the insulator 250 can be covered with an insulator having a function of suppressing permeation of impurities such as water or hydrogen and oxygen. . Thus, the oxidation of the conductor 260 and the entry of impurities such as water or hydrogen into the oxide 230 through the conductor 260 and the insulator 250 can be suppressed. Therefore, the insulator 270 and the insulator 272 function as a barrier for protecting the gate electrode and the gate insulator.
絶縁体272は、ALD(Atomic Layer Deposition)法を用いて成膜することが好ましい。ALD法を用いることで、被覆性に優れ、ピンホールなどの欠陥の少ない絶縁体を成膜することができる。これにより、絶縁体272の膜厚を0.5nm以上10nm以下程度、好ましくは0.5nm以上3nm以下で形成することができる。 The insulator 272 is preferably formed using an ALD (Atomic Layer Deposition) method. By using the ALD method, an insulator with excellent coverage and few defects such as pinholes can be formed. Accordingly, the insulator 272 can be formed with a thickness of about 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm.
また、絶縁体272は、スパッタリング法を用いて成膜してもよい。スパッタリング法を用いることにより、水または水素などの不純物の少ない絶縁体を成膜することができる。スパッタリング法を用いる場合は、例えば、対向ターゲット型のスパッタリング装置を用いて成膜することが好ましい。対向ターゲット型のスパッタリング装置は、対向するターゲット間の高電界領域に被成膜面が晒されることなく成膜できるので、被成膜面がプラズマによる損傷を受けにくく成膜することができるので、絶縁体272となる絶縁体の成膜時に酸化物230への成膜ダメージを小さくすることができるので好ましい。対向ターゲット型のスパッタリング装置を用いた成膜法を、VDSP(Vapor Deposition SP)(登録商標)と呼ぶことができる。 The insulator 272 may be formed by a sputtering method. By using a sputtering method, an insulator with few impurities such as water or hydrogen can be formed. In the case of using a sputtering method, for example, it is preferable to form a film using a facing target type sputtering apparatus. Since the facing target type sputtering apparatus can form a film without exposing the film formation surface to a high electric field region between the facing targets, the film formation surface can be formed without being easily damaged by plasma. It is preferable because film formation damage to the oxide 230 can be reduced when the insulator to be the insulator 272 is formed. A film forming method using a facing target type sputtering apparatus can be referred to as VDSP (Vapor Deposition SP) (registered trademark).
また、スパッタリング法による成膜時には、ターゲットと基板との間には、イオンとスパッタされた粒子とが存在する。例えば、ターゲットは、電源が接続されており、電位E0が与えられる。また、基板は、接地電位などの電位E1が与えられる。ただし、基板が電気的に浮いていてもよい。また、ターゲットと基板の間には電位E2となる領域が存在する。各電位の大小関係は、E2>E1>E0である。 In addition, during film formation by sputtering, ions and sputtered particles exist between the target and the substrate. For example, the target is connected to a power source and is supplied with the potential E0. The substrate is given a potential E1 such as a ground potential. However, the substrate may be electrically floating. In addition, there is a region having the potential E2 between the target and the substrate. The magnitude relationship between the potentials is E2> E1> E0.
プラズマ内のイオンが、電位差E2−E0によって加速され、ターゲットに衝突することにより、ターゲットからスパッタされた粒子がはじき出される。このスパッタされた粒子が成膜表面に付着し、堆積することにより成膜が行われる。また、一部のイオンはターゲットによって反跳し、反跳イオンとして形成された膜を通過し、被成膜面と接する絶縁体250に取り込まれる場合がある。また、プラズマ内のイオンは、電位差E2−E1によって加速され、成膜表面を衝撃する。この際、一部のイオンは、絶縁体250内部まで到達する。イオンが絶縁体250に取り込まれることにより、イオンが取り込まれた領域が絶縁体250に形成される。つまり、イオンが酸素を含むイオンであった場合において、絶縁体250に過剰酸素領域が形成される。 Ions in the plasma are accelerated by the potential difference E2-E0 and collide with the target, whereby particles sputtered from the target are ejected. The sputtered particles adhere to and deposit on the film formation surface to form a film. Some ions recoil by the target, pass through a film formed as recoil ions, and may be taken into the insulator 250 in contact with the deposition surface. Further, ions in the plasma are accelerated by the potential difference E2-E1, and impact the film formation surface. At this time, some ions reach the inside of the insulator 250. When the ions are taken into the insulator 250, a region into which the ions are taken is formed in the insulator 250. That is, when the ions are oxygen-containing ions, an excess oxygen region is formed in the insulator 250.
絶縁体250に過剰な酸素を導入することで、過剰酸素領域を形成することができる。絶縁体250の過剰な酸素は、酸化物230に供給され、酸化物230の酸素欠損を補填することができる。 By introducing excess oxygen into the insulator 250, an excess oxygen region can be formed. Excess oxygen in the insulator 250 is supplied to the oxide 230, so that oxygen vacancies in the oxide 230 can be compensated.
なお、絶縁体272は、ALD法を用いて成膜した膜とスパッタリング法を用いて成膜した膜を積層して設けてもよい。ALD法を用いて成膜した膜が十分に薄い場合、スパッタリング法を用いて成膜する際に、ALD法を用いて成膜した膜を介して、絶縁体250に過剰酸素領域を形成することができる。従って、ALD法を用いて成膜した膜は、0.5nm以上1.5nm以下であることが好ましい。 Note that the insulator 272 may be formed by stacking a film formed using an ALD method and a film formed using a sputtering method. When the film formed using the ALD method is sufficiently thin, an excess oxygen region is formed in the insulator 250 through the film formed using the ALD method when the film is formed using the sputtering method. Can do. Therefore, the film formed by using the ALD method is preferably 0.5 nm to 1.5 nm.
なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、絶縁体272は、炭素などの不純物を含む場合がある。例えば、スパッタリング法で形成された絶縁体と、ALD法で形成された絶縁体は、同じ膜種であっても、ALD法で形成された絶縁体に含まれる炭素などの不純物がスパッタリング法で形成された絶縁体より多い場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。 Note that some precursors used in the ALD method include impurities such as carbon. For this reason, the insulator 272 may contain an impurity such as carbon. For example, even if the insulator formed by the sputtering method and the insulator formed by the ALD method are the same film type, impurities such as carbon contained in the insulator formed by the ALD method are formed by the sputtering method. May be more than the insulation made. The quantification of impurities can be performed using X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
また、導電体260、金属酸化物252、および絶縁体250の側面に、絶縁体272を介して、絶縁体275を設ける。図9(B)に示すように、トランジスタM1、およびトランジスタM3は、導電体260と、導電体240との間に寄生容量が形成される蓋然性が高い。また、トランジスタM1、およびトランジスタM2は、導電体260と、容量素子C1の一部である導電体120との間に寄生容量が形成される蓋然性が高い。特に、トランジスタの微細化に伴い、例えば、設計されるチャネル長が10nm以上30nm以下で形成される場合、寄生容量はトランジスタの電気特性に影響を与える場合がある。 The insulator 275 is provided on the side surfaces of the conductor 260, the metal oxide 252, and the insulator 250 with the insulator 272 interposed therebetween. As illustrated in FIG. 9B, the transistor M <b> 1 and the transistor M <b> 3 have a high probability that parasitic capacitance is formed between the conductor 260 and the conductor 240. In addition, the transistor M1 and the transistor M2 have a high probability that parasitic capacitance is formed between the conductor 260 and the conductor 120 that is a part of the capacitor C1. In particular, with the miniaturization of a transistor, for example, when the designed channel length is 10 nm or more and 30 nm or less, the parasitic capacitance may affect the electrical characteristics of the transistor.
従って、トランジスタM1、トランジスタM2、およびトランジスタM3に絶縁体275を設けることで、それぞれの寄生容量を低減することができる。寄生容量を低減することで、半導体装置10を高速に動作することができる。 Therefore, by providing the insulator 275 for the transistor M1, the transistor M2, and the transistor M3, each parasitic capacitance can be reduced. By reducing the parasitic capacitance, the semiconductor device 10 can be operated at high speed.
絶縁体275は、比誘電率の小さい絶縁体を有することが好ましい。例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。 The insulator 275 preferably includes an insulator having a small relative dielectric constant. For example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide or resin having holes, or the like is included. It is preferable. In particular, silicon oxide and silicon oxynitride are preferable because they are thermally stable.
また、絶縁体275の側面に、絶縁体274を設ける。また、トランジスタM1、トランジスタM2、およびトランジスタM3を覆う様に、層間膜として機能する絶縁体280を設ける。なお、絶縁体280は、膜中の水または水素などの不純物濃度が低減されていることが好ましい。 In addition, an insulator 274 is provided on a side surface of the insulator 275. An insulator 280 that functions as an interlayer film is provided so as to cover the transistor M1, the transistor M2, and the transistor M3. Note that the insulator 280 preferably has reduced concentration of impurities such as water or hydrogen in the film.
絶縁体280の開口は、絶縁体274の少なくとも一部の側面が露出するように形成する。当該加工は、絶縁体280に開口を設ける際に、絶縁体274のエッチング速度が、絶縁体280のエッチング速度に比べて著しく小さい開口条件とすることで形成することができる。例えば、絶縁体274のエッチング速度を1とすると、絶縁体280のエッチング速度は5以上が好ましく、より好ましくは10以上である。このように開口することで、自己整合的に開口を形成することができ、開口とゲート電極との間隔を小さく設計することができるので、半導体装置の高集積化が可能となる。 The opening of the insulator 280 is formed so that at least a part of the side surface of the insulator 274 is exposed. The processing can be performed by setting an opening condition in the insulator 280 such that the etching rate of the insulator 274 is significantly lower than the etching rate of the insulator 280. For example, when the etching rate of the insulator 274 is 1, the etching rate of the insulator 280 is preferably 5 or more, and more preferably 10 or more. By opening in this manner, the opening can be formed in a self-aligned manner, and the distance between the opening and the gate electrode can be designed to be small, so that the semiconductor device can be highly integrated.
従って、導電体240は、絶縁体274と接して設けられる。また、導電体240は、酸化物230の領域231と接する。当該構造とすることで、半導体装置10を高密度に配置することが可能となり半導体装置10の高集積化が可能となる。 Therefore, the conductor 240 is provided in contact with the insulator 274. In addition, the conductor 240 is in contact with the region 231 of the oxide 230. With this structure, the semiconductor devices 10 can be arranged with high density, and the semiconductor device 10 can be highly integrated.
導電体240は、導電体205と同様の材料を用いることができる。また、開口の側壁部に酸化アルミニウムを形成した後に、導電体240を形成してもよい。開口の側壁部に酸化アルミニウムを形成することで、外方からの酸素の透過を抑制し、導電体240の酸化を防止することができる。また、導電体240から、水、水素などの不純物が外部に拡散することを防ぐことができる。該酸化アルミニウムの形成は、開口にALD法などを用いて酸化アルミニウムを成膜し、異方性エッチングを行うことで形成することができる。 For the conductor 240, a material similar to that of the conductor 205 can be used. Alternatively, the conductor 240 may be formed after aluminum oxide is formed on the side wall of the opening. By forming aluminum oxide on the side wall portion of the opening, it is possible to suppress the permeation of oxygen from the outside and to prevent the conductor 240 from being oxidized. In addition, impurities such as water and hydrogen can be prevented from diffusing from the conductor 240 to the outside. The aluminum oxide can be formed by forming an aluminum oxide film in the opening using an ALD method or the like and performing anisotropic etching.
[容量素子C1]
図9(B)に示すように、容量素子C1は、トランジスタM1、トランジスタM2、およびトランジスタM3と共通の構造を有する構成である。本実施の形態では、トランジスタM1、およびトランジスタM2の酸化物230に設けられた領域231の一部が、容量素子C1の電極の一方として機能する例について示す。従って、容量素子C1は、トランジスタM1、およびトランジスタM2の間に設ける。
[Capacitance element C1]
As illustrated in FIG. 9B, the capacitor C1 has a structure in common with the transistor M1, the transistor M2, and the transistor M3. In this embodiment, an example in which part of the region 231 provided in the oxide M230 of the transistor M1 and the transistor M2 functions as one of the electrodes of the capacitor C1 is described. Therefore, the capacitor C1 is provided between the transistor M1 and the transistor M2.
容量素子C1は、酸化物230の領域231の一部、絶縁体130、絶縁体130上の導電体120を有する。つまり、導電体120の少なくとも一部は、絶縁体130を介して、領域231の一部と重なるように配置される。 The capacitor C <b> 1 includes a part of the region 231 of the oxide 230, the insulator 130, and the conductor 120 over the insulator 130. That is, at least part of the conductor 120 is disposed so as to overlap with part of the region 231 with the insulator 130 interposed therebetween.
領域231の一部は、容量素子C1の電極の一方として機能し、導電体120は容量素子C1の電極の他方として機能する。すなわち、領域231は、トランジスタM1のソースとしての機能と、トランジスタM2のドレインとしての機能と、容量素子C1の電極の一方としての機能とを兼ねている。また、絶縁体130の一部は、容量素子C1の誘電体として機能する。 Part of the region 231 functions as one of the electrodes of the capacitor C1, and the conductor 120 functions as the other of the electrodes of the capacitor C1. That is, the region 231 has a function as the source of the transistor M1, a function as the drain of the transistor M2, and a function as one of the electrodes of the capacitor C1. A part of the insulator 130 functions as a dielectric of the capacitor C1.
絶縁体130は、比誘電率の大きい絶縁体を用いることが好ましい。例えば、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いることができる。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。また、絶縁体130は、積層構造であってもよい、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などから、2層以上を選び積層構造としても良い。例えば、ALD法によって、酸化ハフニウム、酸化アルミニウムおよび酸化ハフニウムを順に成膜し、積層構造とすることが好ましい。酸化ハフニウムおよび酸化アルミニウムの膜厚は、それぞれ、0.5nm以上5nm以下とする。このような積層構造とすることで、容量値が大きく、かつ、リーク電流の小さな容量素子C1とすることができる。 The insulator 130 is preferably an insulator having a large relative dielectric constant. For example, an insulator including one or both of aluminum and hafnium can be used. As the insulator containing one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. The insulator 130 may have a stacked structure, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, hafnium oxide, oxide containing hafnium, aluminum (hafnium aluminate), or the like. Therefore, two or more layers may be selected to form a laminated structure. For example, it is preferable that hafnium oxide, aluminum oxide, and hafnium oxide are sequentially formed by an ALD method to form a stacked structure. The film thicknesses of hafnium oxide and aluminum oxide are 0.5 nm to 5 nm, respectively. With such a stacked structure, the capacitor C1 having a large capacitance value and a small leakage current can be obtained.
ここで、トランジスタM1、およびトランジスタM2の導電体260の側面には、絶縁体272および絶縁体275が設けられている。導電体260と導電体120の間に絶縁体272および絶縁体275が設けられることで、導電体260と導電体120の間の寄生容量を低減することができる。 Here, an insulator 272 and an insulator 275 are provided on the side surfaces of the conductors 260 of the transistors M1 and M2. By providing the insulator 272 and the insulator 275 between the conductor 260 and the conductor 120, parasitic capacitance between the conductor 260 and the conductor 120 can be reduced.
なお、導電体120は、積層構造であってもよい。例えば、導電体120は、チタン、窒化チタン、タンタル、または窒化タンタルを主成分とする導電性材料と、タングステン、銅、またはアルミニウムを主成分とする導電性材料との積層構造としてもよい。また、導電体120は、単層構造としてもよいし、3層以上の積層構造としてもよい。 Note that the conductor 120 may have a stacked structure. For example, the conductor 120 may have a stacked structure of a conductive material mainly containing titanium, titanium nitride, tantalum, or tantalum nitride and a conductive material mainly containing tungsten, copper, or aluminum. The conductor 120 may have a single-layer structure or a stacked structure including three or more layers.
また、絶縁体220、絶縁体222、絶縁体224、および酸化物230aは、開口を有している。また、酸化物230b、および酸化物230cは、上記開口を介して導電体206と電気的に接続している。 The insulator 220, the insulator 222, the insulator 224, and the oxide 230a have openings. The oxide 230b and the oxide 230c are electrically connected to the conductor 206 through the opening.
従って、電子親和力が大きい酸化物230b、および酸化物230cと、導電体206とが、電子親和力が小さい酸化物230aを介さずに接続する構成とすることで、直列抵抗及び接触抵抗を低減することが可能となる。このような構成により、電気特性の良好な半導体装置が得られる。より具体的には、オン電流の向上したトランジスタ、および当該トランジスタを用いた半導体装置が得られる。 Therefore, the series resistance and the contact resistance can be reduced by connecting the oxides 230b and 230c with high electron affinity to the conductor 206 without using the oxide 230a with low electron affinity. Is possible. With such a configuration, a semiconductor device with good electrical characteristics can be obtained. More specifically, a transistor with improved on-state current and a semiconductor device using the transistor can be obtained.
以上のように、本発明の一態様の半導体装置は、トランジスタM1、トランジスタM2、トランジスタM3、および容量素子Cを同じ層に配置することが可能な構成となっている。この様な構成とすることで、半導体装置は、高密度にトランジスタおよび容量素子を配置することができるので、高集積化することができる。 As described above, the semiconductor device of one embodiment of the present invention has a structure in which the transistor M1, the transistor M2, the transistor M3, and the capacitor C can be arranged in the same layer. With such a structure, the semiconductor device can be highly integrated because transistors and capacitors can be arranged at high density.
<基板>
トランジスタを形成する基板としては、例えば、絶縁体基板、半導体基板または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
<Board>
As a substrate over which the transistor is formed, for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used. Examples of the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate), and a resin substrate. Examples of the semiconductor substrate include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide. Furthermore, there is a semiconductor substrate having an insulator region inside the semiconductor substrate, for example, an SOI (Silicon On Insulator) substrate. Examples of the conductor substrate include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate. Alternatively, there are a substrate having a metal nitride, a substrate having a metal oxide, and the like. Further, there are a substrate in which a conductor or a semiconductor is provided on an insulator substrate, a substrate in which a conductor or an insulator is provided on a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided on a conductor substrate, and the like. Alternatively, a substrate in which an element is provided may be used. Examples of the element provided on the substrate include a capacitor element, a resistor element, a switch element, a light emitting element, and a memory element.
また、基板として、可とう性基板を用いてもよい。なお、可とう性基板上にトランジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トランジスタを剥離し、可とう性基板である基板に転置する方法もある。その場合には、非可とう性基板とトランジスタとの間に剥離層を設けるとよい。なお、基板として、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。また、基板が伸縮性を有してもよい。また、基板は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板を薄くすると、トランジスタを有する半導体装置を軽量化することができる。また、基板を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板上の半導体装置に加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができる。 A flexible substrate may be used as the substrate. Note that as a method for providing a transistor over a flexible substrate, there is a method in which after a transistor is formed over a non-flexible substrate, the transistor is peeled off and transferred to a substrate which is a flexible substrate. In that case, a separation layer is preferably provided between the non-flexible substrate and the transistor. Note that a sheet, a film, a foil, or the like in which fibers are knitted may be used as the substrate. Further, the substrate may have elasticity. Further, the substrate may have a property of returning to the original shape when bending or pulling is stopped. Or you may have a property which does not return to an original shape. The substrate has a region having a thickness of, for example, 5 μm to 700 μm, preferably 10 μm to 500 μm, more preferably 15 μm to 300 μm. When the substrate is thinned, a semiconductor device including a transistor can be reduced in weight. Further, by making the substrate thin, it may have elasticity even when glass or the like is used, or may have a property of returning to its original shape when bending or pulling is stopped. Therefore, an impact applied to the semiconductor device on the substrate due to dropping or the like can be reduced. That is, a durable semiconductor device can be provided.
可とう性基板である基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。可とう性基板である基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板として好適である。 As the substrate which is a flexible substrate, for example, metal, alloy, resin or glass, or fiber thereof can be used. A substrate that is a flexible substrate is preferably as the linear expansion coefficient is lower because deformation due to the environment is suppressed. As the substrate which is a flexible substrate, for example, a material having a linear expansion coefficient of 1 × 10 −3 / K or less, 5 × 10 −5 / K or less, or 1 × 10 −5 / K or less may be used. . Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic. In particular, since aramid has a low coefficient of linear expansion, it is suitable as a substrate that is a flexible substrate.
<絶縁体>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
<Insulator>
Examples of the insulator include an insulating oxide, nitride, oxynitride, nitride oxide, metal oxide, metal oxynitride, and metal nitride oxide.
トランジスタを、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。例えば、絶縁体210、絶縁体214、絶縁体222、絶縁体270、および絶縁体272として、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。 By surrounding the transistor with an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen, electrical characteristics of the transistor can be stabilized. For example, as the insulator 210, the insulator 214, the insulator 222, the insulator 270, and the insulator 272, an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen can be used.
水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。 Examples of the insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium. An insulator containing lanthanum, neodymium, hafnium, or tantalum may be used as a single layer or a stacked layer.
また、例えば、絶縁体210、絶縁体214、絶縁体222、絶縁体270、および絶縁体272としては、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、シリコンおよびハフニウムを含む酸化物、アルミニウムおよびハフニウムを含む酸化物または酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いればよい。なお、例えば、絶縁体210、絶縁体214、絶縁体222、絶縁体270、および絶縁体272は、酸化アルミニウムおよび酸化ハフニウムなどを有することが好ましい。 For example, the insulator 210, the insulator 214, the insulator 222, the insulator 270, and the insulator 272 include aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, and neodymium oxide. Alternatively, hafnium oxide, an oxide containing silicon and hafnium, an oxide containing aluminum and hafnium, a metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like may be used. Note that for example, the insulator 210, the insulator 214, the insulator 222, the insulator 270, and the insulator 272 preferably include aluminum oxide, hafnium oxide, or the like.
絶縁体274としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。例えば、絶縁体274としては、酸化シリコン、酸化窒化シリコンまたは、窒化シリコンを有することが好ましい。 As the insulator 274, for example, an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum is used. Or a single layer or a stacked layer. For example, the insulator 274 preferably includes silicon oxide, silicon oxynitride, or silicon nitride.
絶縁体222、絶縁体224、絶縁体250、絶縁体130は、比誘電率の大きい絶縁体を有することが好ましい。例えば、絶縁体222、絶縁体224、絶縁体250、絶縁体130は、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などを有することが好ましい。または、絶縁体222、絶縁体224、絶縁体250、絶縁体130は、酸化シリコンまたは酸化窒化シリコンと、比誘電率の大きい絶縁体との積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、比誘電率の大きい絶縁体と組み合わせることで、熱的に安定かつ比誘電率の大きい積層構造とすることができる。例えば、絶縁体250において、酸化アルミニウム、酸化ガリウムまたは酸化ハフニウムを酸化物230と接する構造とすることで、酸化シリコンまたは酸化窒化シリコンに含まれるシリコンが、酸化物230に混入することを抑制することができる。また、例えば、絶縁体250において、酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化アルミニウム、酸化ガリウムまたは酸化ハフニウムと、酸化シリコンまたは酸化窒化シリコンとの界面にトラップセンターが形成される場合がある。該トラップセンターは、電子を捕獲することでトランジスタのしきい値電圧をプラス方向に変動させることができる場合がある。 The insulator 222, the insulator 224, the insulator 250, and the insulator 130 preferably include an insulator with a high relative dielectric constant. For example, the insulator 222, the insulator 224, the insulator 250, and the insulator 130 include gallium oxide, hafnium oxide, zirconium oxide, an oxide including aluminum and hafnium, an oxynitride including aluminum and hafnium, silicon, and hafnium. It is preferable to have an oxide, an oxynitride including silicon and hafnium, a nitride including silicon and hafnium, or the like. Alternatively, the insulator 222, the insulator 224, the insulator 250, and the insulator 130 preferably have a stacked structure of silicon oxide or silicon oxynitride and an insulator with a high relative dielectric constant. Since silicon oxide and silicon oxynitride are thermally stable, they can be combined with an insulator having a large relative dielectric constant to form a stacked structure that is thermally stable and has a large relative dielectric constant. For example, the insulator 250 has a structure in which aluminum oxide, gallium oxide, or hafnium oxide is in contact with the oxide 230, so that silicon contained in silicon oxide or silicon oxynitride is prevented from entering the oxide 230. Can do. For example, in the insulator 250, when silicon oxide or silicon oxynitride is in contact with the oxide 230, a trap center can be formed at the interface between aluminum oxide, gallium oxide, or hafnium, and silicon oxide or silicon oxynitride. May be formed. In some cases, the trap center can change the threshold voltage of the transistor in the positive direction by capturing electrons.
絶縁体212、絶縁体216、絶縁体280、および絶縁体275は、比誘電率の小さい絶縁体を有することが好ましい。例えば、絶縁体212、絶縁体216、絶縁体280、絶縁体275は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、絶縁体212、絶縁体216、絶縁体280、および絶縁体275は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂との積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の小さい積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。 The insulator 212, the insulator 216, the insulator 280, and the insulator 275 preferably include an insulator with a low relative dielectric constant. For example, the insulator 212, the insulator 216, the insulator 280, and the insulator 275 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, carbon, and nitrogen It is preferable to have silicon oxide to which is added, silicon oxide having holes, resin, or the like. Alternatively, the insulator 212, the insulator 216, the insulator 280, and the insulator 275 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, carbon, and It is preferable to have a laminated structure of silicon oxide to which nitrogen is added or silicon oxide having pores and a resin. Since silicon oxide and silicon oxynitride are thermally stable, they can be combined with a resin to form a stacked structure that is thermally stable and has a low relative dielectric constant. Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
<導電体>
導電体203、導電体205、導電体260、導電体240、導電体120としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
<Conductor>
As the conductor 203, the conductor 205, the conductor 260, the conductor 240, and the conductor 120, aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, A material containing one or more metal elements selected from manganese, magnesium, zirconium, beryllium, indium, ruthenium, and the like can be used. Alternatively, a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
また、特に、導電体260として、酸化物230に適用可能な金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いてもよい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、酸化物230に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。 In particular, as the conductor 260, a conductive material containing oxygen and a metal element contained in a metal oxide applicable to the oxide 230 may be used. Alternatively, the above-described conductive material containing a metal element and nitrogen may be used. For example, a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used. In addition, indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon were added Indium tin oxide may be used. Alternatively, indium gallium zinc oxide containing nitrogen may be used. In some cases, hydrogen contained in the oxide 230 can be captured by using such a material. Alternatively, hydrogen mixed from an external insulator or the like may be captured.
また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料とを組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料とを組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料とを組み合わせた積層構造としてもよい。 A plurality of conductive layers formed using the above materials may be stacked. For example, a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen may be combined. Alternatively, a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed. Alternatively, a stacked structure of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.
なお、トランジスタのチャネル形成領域に酸化物を用いる場合は、ゲート電極として前述した金属元素を含む材料と、酸素を含む導電性材料とを組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。 Note that in the case where an oxide is used for a channel formation region of the transistor, a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen are combined as the gate electrode is preferably used. In this case, a conductive material containing oxygen is preferably provided on the channel formation region side. By providing a conductive material containing oxygen on the channel formation region side, oxygen released from the conductive material can be easily supplied to the channel formation region.
<金属酸化物>
酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。以下では、本発明に係る半導体層および酸化物230に適用可能な金属酸化物について説明する。
<Metal oxide>
As the oxide 230, a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used. Hereinafter, metal oxides applicable to the semiconductor layer and the oxide 230 according to the present invention will be described.
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。 The oxide semiconductor preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. Further, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, or the like may be included.
ここでは、酸化物半導体が、インジウム、元素Mおよび亜鉛を有するIn‐M‐Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。元素Mに適用可能なそのほかの元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。 Here, a case where the oxide semiconductor is an In-M-Zn oxide containing indium, an element M, and zinc is considered. The element M is aluminum, gallium, yttrium, tin, or the like. Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium. However, the element M may be a combination of a plurality of the aforementioned elements.
[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
[Composition of metal oxide]
A structure of a CAC (Cloud-Aligned Composite) -OS that can be used for the transistor disclosed in one embodiment of the present invention is described below.
なお、本明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。 In addition, in this specification etc., it may describe as CAAC (c-axis aligned crystal) and CAC (Cloud-aligned Composite). Note that CAAC represents an example of a crystal structure, and CAC represents an example of a function or a material structure.
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。 CAC-OS or CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material has a function as a semiconductor. Note that in the case where CAC-OS or CAC-metal oxide is used for an active layer of a transistor, the conductive function is a function of flowing electrons (or holes) serving as carriers, and the insulating function is an electron serving as carriers. It is a function that does not flow. A function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。 In addition, the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region. The conductive region has the above-described conductive function, and the insulating region has the above-described insulating function. In the material, the conductive region and the insulating region may be separated at the nanoparticle level. In addition, the conductive region and the insulating region may be unevenly distributed in the material, respectively. In addition, the conductive region may be observed with the periphery blurred and connected in a cloud shape.
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。 In CAC-OS or CAC-metal oxide, the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。 Further, CAC-OS or CAC-metal oxide is composed of components having different band gaps. For example, CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region. In the case of the configuration, when the carrier flows, the carrier mainly flows in the component having the narrow gap. In addition, the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。 That is, CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
[金属酸化物の構造]
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
[Structure of metal oxide]
An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor. Examples of the non-single-crystal oxide semiconductor include a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), and a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor). OS: amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域との間で格子配列の向きが変化している箇所を指す。 The CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and have a strain. Note that the strain refers to a portion where the orientation of the lattice arrangement is changed between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。 Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons. In addition, there may be a lattice arrangement such as a pentagon and a heptagon in the distortion. Note that in the CAAC-OS, a clear crystal grain boundary (also referred to as a grain boundary) cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. This is probably because of this.
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。 The CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked. There is a tendency to have a structure (also called a layered structure). Note that indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。 The CAAC-OS is an oxide semiconductor with high crystallinity. On the other hand, since CAAC-OS cannot confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs. In addition, since the crystallinity of an oxide semiconductor may be deteriorated due to entry of impurities, generation of defects, or the like, the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the physical properties of the oxide semiconductor including a CAAC-OS are stable. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability.
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。 The nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm). In addition, the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。 The a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor. The a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。 Oxide semiconductors have various structures and different properties. The oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
[酸化物半導体を有するトランジスタ]
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
[Transistor having oxide semiconductor]
Next, the case where the above oxide semiconductor is used for a transistor is described.
なお、上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。 Note that by using the oxide semiconductor for a transistor, a transistor with high field-effect mobility can be realized. In addition, a highly reliable transistor can be realized.
また、トランジスタには、キャリア密度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア密度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。例えば、酸化物半導体は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。 For the transistor, an oxide semiconductor with low carrier density is preferably used. In the case where the carrier density of the oxide semiconductor film is decreased, the impurity concentration in the oxide semiconductor film may be decreased and the defect level density may be decreased. In this specification and the like, a low impurity concentration and a low density of defect states are referred to as high purity intrinsic or substantially high purity intrinsic. For example, the oxide semiconductor has a carrier density of less than 8 × 10 11 / cm 3 , preferably less than 1 × 10 11 / cm 3 , more preferably less than 1 × 10 10 / cm 3 , and 1 × 10 −9 / What is necessary is just to be cm 3 or more.
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。 In addition, a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low density of defect states, and thus may have a low density of trap states.
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル領域が形成されるトランジスタは、電気特性が不安定となる場合がある。 In addition, the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel region is formed in an oxide semiconductor with a high trap state density may have unstable electrical characteristics.
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。 Therefore, in order to stabilize the electrical characteristics of the transistor, it is effective to reduce the impurity concentration in the oxide semiconductor. In order to reduce the impurity concentration in the oxide semiconductor, it is preferable to reduce the impurity concentration in an adjacent film. Impurities include hydrogen, nitrogen, alkali metal, alkaline earth metal, iron, nickel, silicon, and the like.
[不純物]
ここで、酸化物半導体中における各不純物の影響について説明する。
[impurities]
Here, the influence of each impurity in the oxide semiconductor is described.
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。 In the oxide semiconductor, when silicon or carbon which is one of Group 14 elements is included, a defect level is formed in the oxide semiconductor. Therefore, the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor (concentration obtained by secondary ion mass spectrometry (SIMS)) are 2 × 10 18 atoms / cm 3 or less, preferably 2 × 10 17 atoms / cm 3 or less.
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。 In addition, when the oxide semiconductor contains an alkali metal or an alkaline earth metal, a defect level is formed and carriers may be generated in some cases. Therefore, a transistor including an oxide semiconductor containing an alkali metal or an alkaline earth metal is likely to be normally on. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the oxide semiconductor. Specifically, the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 × 10 18 atoms / cm 3 or less, preferably 2 × 10 16 atoms / cm 3 or less.
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい、例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。 In addition, when nitrogen is contained in an oxide semiconductor, electrons serving as carriers are generated, the carrier density is increased, and the oxide semiconductor is likely to be n-type. As a result, a transistor using an oxide semiconductor containing nitrogen as a semiconductor is likely to be normally on. Accordingly, nitrogen in the oxide semiconductor is preferably reduced as much as possible. For example, the nitrogen concentration in the oxide semiconductor is less than 5 × 10 19 atoms / cm 3 in SIMS, preferably 5 × 10 18. atoms / cm 3 or less, more preferably 1 × 10 18 atoms / cm 3 or less, and even more preferably 5 × 10 17 atoms / cm 3 or less.
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。 In addition, hydrogen contained in the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases. When hydrogen enters the oxygen vacancies, electrons serving as carriers may be generated. In addition, a part of hydrogen may be combined with oxygen bonded to a metal atom to generate electrons as carriers. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to be normally on. For this reason, it is preferable that hydrogen in the oxide semiconductor be reduced as much as possible. Specifically, in an oxide semiconductor, the hydrogen concentration obtained by SIMS is less than 1 × 10 20 atoms / cm 3 , preferably less than 1 × 10 19 atoms / cm 3 , more preferably 5 × 10 18 atoms / cm 3. Less than 3 , more preferably less than 1 × 10 18 atoms / cm 3 .
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。 By using an oxide semiconductor in which impurities are sufficiently reduced for a channel formation region of a transistor, stable electrical characteristics can be imparted.
以上、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 As described above, the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態3)
本実施の形態では、先の実施の形態に用いることのできる半導体装置について、説明する。なお、先の実施の形態で用いた符号と同じ機能を有する場合には、同じ符号を用い、その詳細な説明を省略する場合がある。
(Embodiment 3)
In this embodiment, a semiconductor device that can be used in the above embodiment will be described. Note that in the case where the same function as the reference numeral used in the previous embodiment is used, the same reference numeral is used, and detailed description thereof may be omitted.
<半導体装置の変形例>
図11(A)は、トランジスタ300を有する半導体装置の上面図である。図11(B)は、図11(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ300のチャネル長方向の断面図でもある。また、図11(C)は、図11(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ300のチャネル幅方向の断面図でもある。図11(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
<Modification of semiconductor device>
FIG. 11A is a top view of a semiconductor device including a transistor 300. FIG. FIG. 11B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 11A and is a cross-sectional view in the channel length direction of the transistor 300. 11C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 11A and is a cross-sectional view in the channel width direction of the transistor 300. FIG. In the top view of FIG. 11A, some elements are omitted for clarity of illustration.
本発明の一態様の半導体装置は、トランジスタ300と、層間膜として機能する絶縁体280、絶縁体282、および絶縁体286と、絶縁体280、および絶縁体282が有する開口の側面を被覆するバリア層276(バリア層276a、およびバリア層276b)と、絶縁体280、絶縁体282、および絶縁体286が有する開口に、バリア層276を介して埋め込まれた導電体240(導電体240a、および導電体240b)とを有する。 The semiconductor device of one embodiment of the present invention includes the transistor 300, the insulator 280 that functions as an interlayer film, the insulator 282, and the insulator 286, and the barrier that covers the side surfaces of the openings included in the insulator 280 and the insulator 282. The conductor 240 (the conductor 240a and the conductive layer) embedded in the opening of the layer 276 (the barrier layer 276a and the barrier layer 276b) and the insulator 280, the insulator 282, and the insulator 286 with the barrier layer 276 interposed therebetween. Body 240b).
なお、半導体装置において、導電体240はプラグ、または配線として機能する。なお、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。 Note that in the semiconductor device, the conductor 240 functions as a plug or a wiring. Note that in this specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
トランジスタ300は、第1のゲート電極として機能する導電体260と、第2のゲート電極として機能する導電体205と、導電体260と接する絶縁体270と、ゲート絶縁体として機能する絶縁体220、絶縁体222、絶縁体224、および絶縁体250と、チャネルが形成される領域を有する酸化物230(酸化物230a、酸化物230c、および酸化物230d)とを有する。 The transistor 300 includes a conductor 260 functioning as a first gate electrode, a conductor 205 functioning as a second gate electrode, an insulator 270 in contact with the conductor 260, an insulator 220 functioning as a gate insulator, The insulator 222, the insulator 224, and the insulator 250, and the oxide 230 (the oxide 230a, the oxide 230c, and the oxide 230d) each including a region where a channel is formed are included.
トランジスタ300において、酸化物230は、酸化物半導体を用いることが好ましい。酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。 In the transistor 300, the oxide 230 is preferably formed using an oxide semiconductor. Since a transistor including an oxide semiconductor has extremely low leakage current in a non-conduction state, a semiconductor device with low power consumption can be provided. An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
<構成要素>
以下では、トランジスタ300の構成要素の一例について説明する。
<Components>
Hereinafter, an example of components of the transistor 300 will be described.
導電体205は、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等である。特に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があり、また、酸化しにくい(耐酸化性が高い)ため、好ましい。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。 The conductor 205 is a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing any of the above-described elements (a tantalum nitride film or a nitride film). Titanium film, molybdenum nitride film, tungsten nitride film). In particular, a metal nitride film such as tantalum nitride is preferable because it has a barrier property against hydrogen or oxygen and is difficult to oxidize (high oxidation resistance). Or indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon oxide added It is also possible to apply a conductive material such as indium tin oxide.
絶縁体224は、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体であることが好ましい。特に、絶縁体224には、過剰酸素領域が形成されていることが好ましい。トランジスタ300に酸化物半導体を用いる場合、トランジスタ300の周辺材料に、過剰酸素領域を有する絶縁体を設けることで、トランジスタ300が有する酸化物230の酸素欠損を低減することで、信頼性を向上させることができる。 The insulator 224 is preferably an insulator containing oxygen, such as a silicon oxide film or a silicon oxynitride film. In particular, the insulator 224 preferably has an excess oxygen region. In the case where an oxide semiconductor is used for the transistor 300, an insulator having an excess oxygen region is provided in a peripheral material of the transistor 300, whereby oxygen vacancies in the oxide 230 included in the transistor 300 are reduced, so that reliability is improved. be able to.
また、絶縁体224が、過剰酸素領域を有する場合、絶縁体222は、酸素、水素、および水に対するバリア性を有することが好ましい。 In the case where the insulator 224 has an excess oxygen region, the insulator 222 preferably has a barrier property against oxygen, hydrogen, and water.
絶縁体222は、例えば、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。特に、酸化アルミニウム、および酸化ハフニウム、などの、酸素や水素に対してバリア性のある絶縁体を用いることが好ましい。このような材料を用いて形成した場合、酸化物230からの酸素の放出や、外部からの水素等の不純物の混入を防ぐ層として機能する。 The insulator 222 is made of, for example, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO. 3 An insulator including a so-called high-k material such as (BST) is preferably used in a single layer or a stacked layer. In particular, it is preferable to use an insulator having a barrier property against oxygen and hydrogen, such as aluminum oxide and hafnium oxide. In the case of using such a material, it functions as a layer which prevents release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the outside.
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。 Alternatively, for example, aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators. Alternatively, these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
なお、絶縁体220、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。 Note that the insulator 220, the insulator 222, and the insulator 224 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient.
また、絶縁体220及び絶縁体224の間に、high−k材料を含む絶縁体222を有することで、特定の条件で絶縁体222が電子を捕獲し、しきい値電圧を増大させることができる。つまり、絶縁体222が負に帯電する場合がある。 In addition, by including the insulator 222 including a high-k material between the insulator 220 and the insulator 224, the insulator 222 can capture electrons under a specific condition and increase the threshold voltage. . That is, the insulator 222 may be negatively charged.
例えば、絶縁体220、および絶縁体224に、酸化シリコンを用い、絶縁体222に、酸化ハフニウム、酸化アルミニウム、酸化タンタルのような電子捕獲準位の多い材料を用いた場合、半導体装置の使用温度、あるいは保管温度よりも高い温度(例えば、125℃以上450℃以下、代表的には150℃以上300℃以下)の下で、導電体205の電位をソース電極やドレイン電極の電位より高い状態を、10ミリ秒以上、代表的には1分以上維持することで、トランジスタ300を構成する酸化物から導電体205に向かって、電子が移動する。この時、移動する電子の一部が、絶縁体222の電子捕獲準位に捕獲される。 For example, in the case where silicon oxide is used for the insulator 220 and the insulator 224 and a material with many electron capture levels such as hafnium oxide, aluminum oxide, or tantalum oxide is used for the insulator 222, the operating temperature of the semiconductor device Alternatively, under a temperature higher than the storage temperature (eg, 125 ° C. or higher and 450 ° C. or lower, typically 150 ° C. or higher and 300 ° C. or lower), the potential of the conductor 205 is higher than the potential of the source electrode or the drain electrode. By maintaining for 10 milliseconds or longer, typically 1 minute or longer, electrons move from the oxide included in the transistor 300 toward the conductor 205. At this time, some of the moving electrons are captured by the electron capture level of the insulator 222.
絶縁体222の電子捕獲準位に必要な量の電子を捕獲させたトランジスタは、しきい値電圧がプラス側にシフトする。なお、導電体205の電圧の制御によって電子の捕獲する量を制御することができ、それに伴ってしきい値電圧を制御することができる。当該構成を有することで、トランジスタ300は、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタとなる。 The threshold voltage of the transistor that captures an amount of electrons necessary for the electron trap level of the insulator 222 is shifted to the positive side. Note that the amount of electrons captured can be controlled by controlling the voltage of the conductor 205, and the threshold voltage can be controlled accordingly. With this structure, the transistor 300 is a normally-off transistor that is non-conductive (also referred to as an off state) even when the gate voltage is 0 V.
また、電子を捕獲する処理は、トランジスタの作製過程におこなえばよい。例えば、トランジスタのソース領域あるいはドレイン領域に接続する導電体の形成後、あるいは、前工程(ウェハー処理)の終了後、あるいは、ウェハーダイシング工程後、パッケージ後等、工場出荷前のいずれかの段階で行うとよい。 Further, the process for capturing electrons may be performed in the manufacturing process of the transistor. For example, after the formation of the conductor connected to the source region or drain region of the transistor, after the completion of the previous process (wafer processing), after the wafer dicing process, after packaging, etc. It is good to do.
また、絶縁体220、絶縁体222、および絶縁体224の膜厚を適宜調整することで、しきい値電圧を制御することができる。例えば、絶縁体220、絶縁体222、および絶縁体220の合計膜厚を薄くすることで導電体205からの電圧が効率的にかかる為、消費電力が小さいトランジスタを提供することができる。絶縁体220、絶縁体222、および絶縁体224の合計膜厚は、65nm以下、好ましくは20nm以下であることが好ましい。 In addition, the threshold voltage can be controlled by appropriately adjusting the film thicknesses of the insulator 220, the insulator 222, and the insulator 224. For example, by reducing the total thickness of the insulator 220, the insulator 222, and the insulator 220, a voltage from the conductor 205 is efficiently applied, so that a transistor with low power consumption can be provided. The total film thickness of the insulator 220, the insulator 222, and the insulator 224 is 65 nm or less, preferably 20 nm or less.
従って、非導通時のリーク電流の小さいトランジスタを提供することができる。また、安定した電気特性を有するトランジスタを提供することができる。または、オン電流の大きいトランジスタを提供することができる。または、サブスレッショルドスイング値の小さいトランジスタを提供することができる。または、信頼性の高いトランジスタを提供することができる。 Accordingly, it is possible to provide a transistor with small leakage current when non-conducting. In addition, a transistor having stable electrical characteristics can be provided. Alternatively, a transistor with high on-state current can be provided. Alternatively, a transistor with a small subthreshold swing value can be provided. Alternatively, a highly reliable transistor can be provided.
酸化物230は、酸化物230aと、酸化物230a上の酸化物230cと、酸化物230c上の酸化物230dとを有する。トランジスタ300をオンさせると、主として酸化物230cに電流が流れる(チャネルが形成される)。一方、酸化物230aおよび酸化物230dは、酸化物230cとの界面近傍(混合領域となっている場合もある)は電流が流れる場合があるものの、そのほかの領域は絶縁体として機能する場合がある。 The oxide 230 includes an oxide 230a, an oxide 230c over the oxide 230a, and an oxide 230d over the oxide 230c. When the transistor 300 is turned on, a current flows mainly in the oxide 230c (a channel is formed). On the other hand, in the oxide 230a and the oxide 230d, a current may flow in the vicinity of the interface with the oxide 230c (which may be a mixed region), but the other region may function as an insulator. .
また、本実施の形態に示すトランジスタ300では、酸化物230中に領域231を有する。なお、領域231は、金属元素、並びに水素、および窒素などの不純物元素の少なくとも一の濃度がチャネル形成領域(図示せず)よりも大きいことが好ましい。 Further, the transistor 300 described in this embodiment includes the region 231 in the oxide 230. Note that the region 231 preferably has a concentration of at least one of a metal element and an impurity element such as hydrogen and nitrogen higher than that of a channel formation region (not illustrated).
例えば、領域231は、酸化物230の他に、ルテニウム、チタン、タンタル、タングステン、などの金属元素を有することが好ましい。酸化物230に、金属元素が添加されることで、領域231を低抵抗化することができる。金属元素を添加するには、例えば、酸化物230の領域231に接して上に、金属膜、金属元素を有する酸化膜、または金属元素を有する窒化膜などを成膜した後、該膜を除去するとよい。また、金属膜、金属元素を有する酸化膜、または金属元素を有する窒化膜を成膜した後、除去する前に熱処理を行うことが好ましい。なお、当該熱処理は、200℃以上500℃以下、代表的には400℃またはその近傍で行うことができる。また、上記熱処理を行うことで、酸化物230が有する構成元素中に、ルテニウム、チタン、タンタル、タングステンなどの金属元素が入り込む場合がある。この場合、領域231の一部、代表的には領域231の上部において、酸化物230が有する構成元素と、ルテニウム、チタン、タンタル、タングステンなどの金属元素とが、合金化する場合がある。領域231が合金化する場合、合金化した領域、すなわち、低抵抗化した領域を比較的安定に形成することができるため、信頼性の高い半導体装置を提供することができる。 For example, the region 231 preferably includes a metal element such as ruthenium, titanium, tantalum, or tungsten in addition to the oxide 230. By adding a metal element to the oxide 230, the resistance of the region 231 can be reduced. In order to add a metal element, for example, a metal film, an oxide film containing a metal element, or a nitride film containing a metal element is formed on and in contact with the region 231 of the oxide 230, and then the film is removed. Good. Further, it is preferable to perform heat treatment after the metal film, the oxide film containing a metal element, or the nitride film containing a metal element is formed and then removed. Note that the heat treatment can be performed at 200 ° C. or more and 500 ° C. or less, typically 400 ° C. or the vicinity thereof. In addition, when the heat treatment is performed, a metal element such as ruthenium, titanium, tantalum, or tungsten may enter the constituent elements of the oxide 230. In this case, a constituent element included in the oxide 230 and a metal element such as ruthenium, titanium, tantalum, or tungsten may be alloyed in part of the region 231, typically over the region 231. In the case where the region 231 is alloyed, the alloyed region, that is, the region with reduced resistance can be formed relatively stably, so that a highly reliable semiconductor device can be provided.
なお、領域231は、トランジスタ300において、ソースまたはドレインとして機能する。 Note that the region 231 functions as a source or a drain in the transistor 300.
また、図11(B)、(C)に示すように、酸化物230dは、酸化物230a、および酸化物230cの側面を覆うように設けることが好ましい。絶縁体280と、チャネルが形成される領域を有する酸化物230cとの間に、酸化物230dが介在することにより、絶縁体280から、水素、水、およびハロゲン等の不純物が、酸化物230cへ拡散することを抑制することができる。 In addition, as illustrated in FIGS. 11B and 11C, the oxide 230d is preferably provided so as to cover the side surfaces of the oxide 230a and the oxide 230c. When the oxide 230d is interposed between the insulator 280 and the oxide 230c having a region where a channel is formed, impurities such as hydrogen, water, and halogen are transferred from the insulator 280 to the oxide 230c. Diffusion can be suppressed.
<層間膜として機能する絶縁体>
層間膜として機能する絶縁体280は、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体であることが好ましい。特に、トランジスタ300の近傍に設けられる絶縁体280は、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体であることが好ましい。特に、絶縁体280には、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を用いることが好ましい。つまり、絶縁体280には、過剰酸素領域が形成されていることが好ましい。特に、トランジスタ300近傍の層間膜に、過剰酸素領域を有する絶縁体を設けることで、トランジスタ300が有する酸化物230の酸素欠損を低減することで、信頼性を向上させることができる。
<Insulator that functions as an interlayer film>
The insulator 280 functioning as an interlayer film is preferably an insulator containing oxygen, such as a silicon oxide film or a silicon oxynitride film. In particular, the insulator 280 provided in the vicinity of the transistor 300 is preferably an insulator containing oxygen, such as a silicon oxide film or a silicon oxynitride film. In particular, the insulator 280 is preferably formed using an oxide containing more oxygen than that in the stoichiometric composition. That is, it is preferable that an excess oxygen region be formed in the insulator 280. In particular, by providing an insulator having an excess oxygen region in the interlayer film in the vicinity of the transistor 300, oxygen vacancies in the oxide 230 included in the transistor 300 can be reduced, so that reliability can be improved.
絶縁体280が、過剰酸素領域を有する場合、絶縁体282は、酸素、水素、および水に対するバリア性を有することが好ましい。絶縁体282が、酸素に対するバリア性を有することで、過剰酸素領域の酸素は、絶縁体286側へ拡散することなく、効率よく酸化物230へ供給することができる。 In the case where the insulator 280 has an excess oxygen region, the insulator 282 preferably has a barrier property against oxygen, hydrogen, and water. Since the insulator 282 has a barrier property against oxygen, oxygen in the excess oxygen region can be efficiently supplied to the oxide 230 without diffusing to the insulator 286 side.
なお、詳細は後述するが、トランジスタ300を構成する絶縁体222も、絶縁体282と同様に、酸素、水素、および水に対するバリア性を有することが好ましい。絶縁体222が、酸素に対するバリア性を有することで、過剰酸素領域の酸素は、絶縁体220側へ拡散することなく、効率よく酸化物230へ供給することができる。 Note that although details will be described later, the insulator 222 included in the transistor 300 also preferably has a barrier property against oxygen, hydrogen, and water, like the insulator 282. Since the insulator 222 has a barrier property against oxygen, oxygen in the excess oxygen region can be efficiently supplied to the oxide 230 without diffusing to the insulator 220 side.
絶縁体282は、例えば、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。特に、酸化アルミニウム、および酸化ハフニウム、などの、酸素や水素に対してバリア性のある絶縁体を用いることが好ましい。このような材料を用いて形成した場合、酸化物230からの酸素の放出や、外部からの水素等の不純物の混入を防ぐ層として機能する。 The insulator 282 includes, for example, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO. 3 An insulator including a so-called high-k material such as (BST) is preferably used in a single layer or a stacked layer. In particular, it is preferable to use an insulator having a barrier property against oxygen and hydrogen, such as aluminum oxide and hafnium oxide. In the case of using such a material, it functions as a layer which prevents release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the outside.
なお、絶縁体280、絶縁体282、および絶縁体286が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。なお、トランジスタ300を覆う絶縁体280は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。 Note that the insulator 280, the insulator 282, and the insulator 286 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient. Note that the insulator 280 that covers the transistor 300 may function as a planarization film that covers the uneven shape below the transistor 280.
また、トランジスタ300は、絶縁体280、絶縁体282、および絶縁体286に埋め込まれた導電体240などのプラグや配線を介して、他の構造と電気的に接続される場合がある。また、トランジスタ300の周辺に形成される他の構造に含まれる不純物である水素は、プラグや配線に用いられる導電体を介して、該導電体と接する構造へと拡散する場合がある。 The transistor 300 may be electrically connected to another structure through a plug or a wiring such as the insulator 280, the insulator 282, and the conductor 240 embedded in the insulator 286. Further, hydrogen which is an impurity contained in another structure formed around the transistor 300 may diffuse into a structure in contact with the conductor through a conductor used for a plug or a wiring.
そこで、導電体240と、過剰酸素領域を有する絶縁体280、およびバリア性を有する絶縁体282との間にバリア層276を設けるとよい。特に、バリア層276は、バリア性を有する絶縁体282、および絶縁体222と接して設けられることが好ましい。バリア層276と、絶縁体282、および絶縁体222とが接して設けられることで、絶縁体280、およびトランジスタ300は、バリア性を有する絶縁体、およびバリア層により、封止される構造とすることができる。さらに、バリア層276は、絶縁体286の一部とも接することが好ましい。バリア層276が、絶縁体286まで延在していることで、酸素や不純物の拡散を、より抑制することができる。 Therefore, a barrier layer 276 is preferably provided between the conductor 240, the insulator 280 having an excess oxygen region, and the insulator 282 having a barrier property. In particular, the barrier layer 276 is preferably provided in contact with the insulator 282 having a barrier property and the insulator 222. By providing the barrier layer 276 in contact with the insulator 282 and the insulator 222, the insulator 280 and the transistor 300 can be sealed with the insulator having a barrier property and the barrier layer. be able to. Further, the barrier layer 276 is preferably in contact with part of the insulator 286. When the barrier layer 276 extends to the insulator 286, diffusion of oxygen and impurities can be further suppressed.
また、導電体240の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。例えば、耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。 As the material of the conductor 240, a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material can be used as a single layer or a stacked layer. For example, it is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity. Alternatively, it is preferably formed using a low-resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low-resistance conductive material.
バリア層276には、例えば、金属酸化物を用いることができる。特に、酸化アルミニウム、酸化ハフニウム、酸化ガリウムなどの、酸素や水素に対してバリア性のある絶縁体を用いることが好ましい。また、化学気相堆積(CVD:Chemical Vapor Deposition)法で形成した窒化シリコンを用いてもよい。 For the barrier layer 276, for example, a metal oxide can be used. In particular, it is preferable to use an insulator having a barrier property against oxygen and hydrogen, such as aluminum oxide, hafnium oxide, and gallium oxide. Alternatively, silicon nitride formed by a chemical vapor deposition (CVD) method may be used.
以上より、安定した電気特性を有する半導体装置を提供することができる。また、信頼性が高い半導体装置を提供することができる。また、消費電力が小さい半導体装置を提供することができる。さらに、半導体装置を設計する際の自由度を高くすることができる。 As described above, a semiconductor device having stable electrical characteristics can be provided. In addition, a highly reliable semiconductor device can be provided. In addition, a semiconductor device with low power consumption can be provided. Furthermore, the degree of freedom in designing the semiconductor device can be increased.
以上、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 As described above, the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態4)
本実施の形態では、図12(A)乃至図12(C)、図13(A)及び図13(B)を用いて、本発明の一態様に用いることができる酸化物半導体を有する半導体装置の一例について説明する。
(Embodiment 4)
In this embodiment, a semiconductor device including an oxide semiconductor that can be used in one embodiment of the present invention with reference to FIGS. 12A to 12C, 13A, and 13B. An example will be described.
<半導体装置の構成例>
図12(A)乃至図12(C)は、トランジスタ302およびトランジスタ302周辺の上面図および断面図である。図12(A)乃至図12(C)に示すトランジスタ302は、実施の形態1のトランジスタM21乃至M23として用いることができる。
<Configuration example of semiconductor device>
12A to 12C are a top view and a cross-sectional view of the transistor 302 and the periphery of the transistor 302. FIG. The transistor 302 illustrated in FIGS. 12A to 12C can be used as the transistors M21 to M23 in Embodiment 1.
図12(A)は、トランジスタ302を有する半導体装置の上面図である。また、図12(B)、および図12(C)は当該半導体装置の断面図である。ここで、図12(B)は、図12(A)の一点鎖線A1−A2で示す部位の断面図であり、トランジスタ302のチャネル長方向の断面図でもある。また、図12(C)は、図12(A)の一点鎖線A3−A4で示す部位の断面図であり、トランジスタ302のチャネル幅方向の断面図でもある。図12(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。 FIG. 12A is a top view of a semiconductor device including a transistor 302. FIG. 12B and 12C are cross-sectional views of the semiconductor device. Here, FIG. 12B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 12A and also a cross-sectional view in the channel length direction of the transistor 302. 12C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 12A and is a cross-sectional view in the channel width direction of the transistor 302. FIG. In the top view of FIG. 12A, some elements are omitted for clarity.
本発明の一態様の半導体装置は、トランジスタ302と、層間膜として機能する絶縁体510、絶縁体512、絶縁体580を有する。また、トランジスタ302と電気的に接続し配線として機能する導電体503、およびプラグとして機能する導電体540(導電体540a、および導電体540b)とを有する。 The semiconductor device of one embodiment of the present invention includes the transistor 302, the insulator 510 functioning as an interlayer film, the insulator 512, and the insulator 580. In addition, a conductor 503 which functions as a wiring and is electrically connected to the transistor 302, and a conductor 540 which functions as a plug (a conductor 540a and a conductor 540b) are provided.
なお、導電体503は、絶縁体512の開口の内壁に接して第1の導電体が形成され、さらに内側に第2の導電体が形成されている。ここで、導電体503の上面の高さと、絶縁体512の上面の高さは同程度にできる。なお、トランジスタ302では、導電体503が2層の積層構造である場合について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または、3層以上の積層構造でもよい。 Note that the conductor 503 has a first conductor formed in contact with the inner wall of the opening of the insulator 512, and a second conductor formed further inside. Here, the height of the upper surface of the conductor 503 and the height of the upper surface of the insulator 512 can be approximately the same. Note that although the transistor 302 shows the case where the conductor 503 has a two-layer structure, the present invention is not limited to this. For example, the conductor 503 may have a single layer or a stacked structure including three or more layers.
また、導電体540は、絶縁体580の開口の内壁に接して形成されている。ここで、導電体540の上面の高さと、絶縁体580の上面の高さは同程度にできる。なお、トランジスタ302では、導電体540が2層の積層構造である場合について示しているが、本発明はこれに限られるものではない。例えば、導電体540は、単層、または、3層以上の積層構造でもよい。 The conductor 540 is formed in contact with the inner wall of the opening of the insulator 580. Here, the height of the upper surface of the conductor 540 and the height of the upper surface of the insulator 580 can be approximately the same. Note that although the transistor 302 shows the case where the conductor 540 has a two-layer structure, the present invention is not limited to this. For example, the conductor 540 may have a single layer or a stacked structure including three or more layers.
[トランジスタ302]
トランジスタ302は、基板(図示せず)上に配置された絶縁体514および絶縁体516と、絶縁体514および絶縁体516に埋め込まれるように配置された導電体505と、導電体505の上および絶縁体516の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530(酸化物530a、酸化物530c、および酸化物530d)と、酸化物530の上に配置された絶縁体550と、絶縁体550の上に配置された金属酸化物552と、金属酸化物552の上に配置された導電体560と、導電体560の上に配置された絶縁体570と、絶縁体570の上に配置された絶縁体571と、少なくとも酸化物530dの上面、絶縁体550の側面、金属酸化物552の側面、導電体560の側面および絶縁体570の側面に接して配置された絶縁体572と、少なくとも絶縁体572に接して配置された絶縁体575とを有する。
[Transistor 302]
The transistor 302 includes an insulator 514 and an insulator 516 disposed on a substrate (not shown), a conductor 505 disposed to be embedded in the insulator 514 and the insulator 516, the conductor 505, and An insulator 520 disposed on the insulator 516, an insulator 522 disposed on the insulator 520, an insulator 524 disposed on the insulator 522, and the insulator 524 Oxide 530 (oxide 530a, oxide 530c, and oxide 530d), insulator 550 disposed on oxide 530, metal oxide 552 disposed on insulator 550, and metal A conductor 560 disposed over the oxide 552, an insulator 570 disposed over the conductor 560, an insulator 571 disposed over the insulator 570, and at least the oxide 530; , An insulator 572 disposed in contact with the insulator 572, an insulator 572 disposed in contact with the insulator 572, and an insulator disposed in contact with at least the insulator 572. 575.
また、トランジスタ302において、チャネル形成領域を含む酸化物530(酸化物530a、酸化物530c、および酸化物530d)は、上掲の酸化物230と同様の構成である。 In the transistor 302, the oxide 530 including the channel formation region (the oxide 530a, the oxide 530c, and the oxide 530d) has a structure similar to that of the oxide 230 described above.
酸化物530は、トランジスタのチャネル形成領域と、ソース領域と、ドレイン領域と、チャネル形成領域とソース領域の間に設けられる接合領域と、チャネル形成領域とドレイン領域の間に設けられる接合領域とを有する。 The oxide 530 includes a channel formation region, a source region, a drain region, a junction region provided between the channel formation region and the source region, and a junction region provided between the channel formation region and the drain region. Have.
接合領域は、絶縁体572と重畳する領域を有する。 The bonding region has a region overlapping with the insulator 572.
なお、酸化物530において、各領域の境界は明確に検出できない場合がある。各領域内で検出されるインジウムなどの金属元素、並びに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう)していてもよい。つまり、チャネル形成領域に近い領域であるほど、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素の濃度が減少していればよい。 Note that in the oxide 530, a boundary between regions may not be clearly detected in some cases. Concentrations of metal elements such as indium and impurity elements such as hydrogen and nitrogen detected in each region are not limited to stepwise changes in each region, but also continuously change in each region (also referred to as gradation). You may do it. In other words, the closer to the channel formation region, the lower the concentration of metal elements such as indium and impurity elements such as hydrogen and nitrogen.
また、図12(B)に示すように、各領域が、酸化物530cに形成されているが、これに限られることなく、例えばこれらの領域は酸化物530aにも形成されていてもよい。また、図では、各領域の境界を、酸化物530の上面に対して略垂直に表示しているが、本実施の形態はこれに限られるものではない。例えば、接合領域が、酸化物530cの表面近傍では導電体560側に張り出し、酸化物530cの下面近傍では、導電体540側に後退する形状になる場合がある。 As shown in FIG. 12B, each region is formed in the oxide 530c. However, the present invention is not limited to this, and for example, these regions may be formed in the oxide 530a. Further, in the figure, the boundary of each region is displayed substantially perpendicular to the upper surface of the oxide 530, but this embodiment is not limited to this. For example, the bonding region may have a shape that protrudes toward the conductor 560 near the surface of the oxide 530c and recedes toward the conductor 540 near the lower surface of the oxide 530c.
また、図12(B)および(C)に示すように、酸化物530a、酸化物530c、および酸化物530dを積層する構成について示しているが、本発明はこれに限られるものではない。また、酸化物530cの単層、酸化物530cと酸化物530aの2層構造、酸化物530cと酸化物530dの2層構造、または4層以上の積層構造を設ける構成にしてもよい。 12B and 12C, a structure in which the oxide 530a, the oxide 530c, and the oxide 530d are stacked is described; however, the present invention is not limited to this. Alternatively, a single layer of the oxide 530c, a two-layer structure of the oxide 530c and the oxide 530a, a two-layer structure of the oxide 530c and the oxide 530d, or a stacked structure of four or more layers may be provided.
酸化物530a上に、酸化物530cを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530cに対する不純物の拡散を抑制することができる。また、酸化物530d下に、酸化物530cを有することで、酸化物530dよりも上方に形成された構造物から、酸化物530cに対する不純物の拡散を抑制することができる。 When the oxide 530c is provided over the oxide 530a, diffusion of impurities into the oxide 530c can be suppressed from a structure formed below the oxide 530a. Further, by including the oxide 530c below the oxide 530d, diffusion of impurities into the oxide 530c can be suppressed from the structure formed above the oxide 530d.
ここで、酸化物530cの厚さ(t)は、トランジスタ302のチャネル長(L)よりも、大きくすることが好ましい。つまり、図12(B)に示すように、酸化物530cの厚さ(t)が、トランジスタ302のチャネル長(L)よりも大きくなる(t>L)。また、酸化物530cの厚さ(t)は、トランジスタ302のチャネル幅(W)よりも、大きくすることが好ましい。つまり、図12(C)に示すように、酸化物530cの厚さ(t)が、トランジスタ302のチャネル幅(W)よりも大きくなる(t>W)。 Here, the thickness (t) of the oxide 530 c is preferably larger than the channel length (L) of the transistor 302. That is, as illustrated in FIG. 12B, the thickness (t) of the oxide 530c is larger than the channel length (L) of the transistor 302 (t> L). In addition, the thickness (t) of the oxide 530 c is preferably larger than the channel width (W) of the transistor 302. That is, as illustrated in FIG. 12C, the thickness (t) of the oxide 530c is larger than the channel width (W) of the transistor 302 (t> W).
また、少なくとも酸化物530cの側面は、基板と平行な面に対し、テーパー構造を有することが好ましい。なお、図12(C)に示すように、酸化物530cの側面が有するテーパー角度は、45°乃至80°とすることが好ましい。酸化物530cの側面がテーパー構造を有することで、酸化物530cよりも上層に形成される構造体の被膜性を向上させることができる。 In addition, at least a side surface of the oxide 530c preferably has a tapered structure with respect to a plane parallel to the substrate. Note that as illustrated in FIG. 12C, the taper angle of the side surface of the oxide 530c is preferably 45 ° to 80 °. When the side surface of the oxide 530c has a tapered structure, the film property of the structure formed in an upper layer than the oxide 530c can be improved.
また、図12(B)、図12(C)に示すように、第1のゲート電極として機能する導電体560を、ゲート絶縁体として機能する絶縁体550を介して、酸化物530の側面を覆うように設ける。当該構造とすることで、トランジスタ302を駆動した場合、酸化物530cの上面、および両側面の3方からゲート電圧が印加され、酸化物530cの導電体560と重畳する領域全体が、チャネル形成領域となる。本明細書において、第1のゲート電極によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。 12B and 12C, a conductor 560 functioning as a first gate electrode is attached to a side surface of the oxide 530 with an insulator 550 functioning as a gate insulator interposed therebetween. Provide to cover. With this structure, when the transistor 302 is driven, a gate voltage is applied from the upper surface and both sides of the oxide 530c, and the entire region overlapping with the conductor 560 of the oxide 530c is a channel formation region. It becomes. In this specification, a transistor structure in which a channel formation region is electrically surrounded by a first gate electrode is referred to as a surrounded channel (S-channel) structure.
つまり、第1のゲート電極として機能する導電体560が、ゲート絶縁体として機能する絶縁体550を介して、酸化物530の側面を覆うことで、トランジスタ302のチャネル形成領域の投影面積(L×W)当たりのオン電流を向上することができる。従って、トランジスタ302の微細化が可能となる。 That is, the conductor 560 functioning as the first gate electrode covers the side surface of the oxide 530 with the insulator 550 functioning as the gate insulator interposed therebetween, whereby the projected area (L × The on-current per W) can be improved. Accordingly, the transistor 302 can be miniaturized.
また、導電体505は、トランジスタ302の第2のゲート電極としての機能を有する。酸化物530cの側面がテーパー角を有することで、第2のゲート電極に電位が印加された際に、酸化物530cの第2のゲート電極と重畳する領域全体に、ゲート電界を印加することができる。 The conductor 505 functions as the second gate electrode of the transistor 302. Since the side surface of the oxide 530c has a taper angle, when a potential is applied to the second gate electrode, a gate electric field can be applied to the entire region overlapping with the second gate electrode of the oxide 530c. it can.
特に、酸化物530におけるチャネルが形成される領域と、トランジスタ302の第1のゲート絶縁体として機能する絶縁体550との界面に、酸素欠損が存在すると、電気特性の変動が生じやすく、また信頼性が悪くなる場合がある。 In particular, when oxygen vacancies exist in the interface between the region where a channel is formed in the oxide 530 and the insulator 550 functioning as the first gate insulator of the transistor 302, electric characteristics are likely to change and the reliability is improved. May be worse.
そこで、酸化物530におけるチャネルが形成される領域の上方に位置する絶縁体550が過剰酸素を含むことが好ましい。つまり、絶縁体550が有する過剰酸素が、酸化物530におけるチャネルが形成される領域へと拡散することで、酸化物530におけるチャネルが形成される領域中の酸素欠損を低減することができる。 Therefore, it is preferable that the insulator 550 positioned above a region where a channel is formed in the oxide 530 include excess oxygen. That is, excess oxygen in the insulator 550 diffuses into a region where a channel in the oxide 530 is formed, so that oxygen vacancies in the region where the channel in the oxide 530 is formed can be reduced.
また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、金属酸化物552を設けてもよい。従って、金属酸化物552は、酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物552を設けることで、導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。 The metal oxide 552 may be provided in order to efficiently supply the excess oxygen included in the insulator 550 to the oxide 530. Therefore, the metal oxide 552 preferably suppresses oxygen diffusion. By providing the metal oxide 552 that suppresses diffusion of oxygen, diffusion of excess oxygen into the conductor 560 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 530 can be suppressed. Further, oxidation of the conductor 560 due to excess oxygen can be suppressed.
なお、金属酸化物552は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体550に酸化シリコンや酸化窒化シリコンなどを用いる場合、金属酸化物552は、比誘電率が大きいhigh−k材料である金属酸化物を用いることが好ましい。当該積層構造とすることで、熱に対して安定、かつ比誘電率の大きい積層構造とすることができる。したがって、物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。 Note that the metal oxide 552 may function as part of the gate insulator. Therefore, when silicon oxide, silicon oxynitride, or the like is used for the insulator 550, the metal oxide 552 is preferably a metal oxide that is a high-k material with a high relative dielectric constant. By setting it as the said laminated structure, it can be set as the laminated structure stable with respect to a heat | fever, and a large dielectric constant. Therefore, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness. In addition, it is possible to reduce the equivalent oxide thickness (EOT) of an insulator that functions as a gate insulator.
また、金属酸化物552は、第1のゲート電極の一部としての機能を有してもよい。例えば、酸化物530として用いることができる酸化物半導体を金属酸化物552として用いることができる。その場合、導電体560をスパッタリング法で成膜することで、金属酸化物552の電気抵抗値を低下させて導電体とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。 The metal oxide 552 may function as a part of the first gate electrode. For example, an oxide semiconductor that can be used as the oxide 530 can be used as the metal oxide 552. In that case, by forming a film of the conductor 560 by a sputtering method, the electric resistance value of the metal oxide 552 can be reduced to obtain a conductor. This can be called an OC (Oxide Conductor) electrode.
金属酸化物552を有することで、導電体560からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、絶縁体550と、金属酸化物552との物理的な厚みにより、導電体560と、酸化物530との間の距離を保つことで、リーク電流を抑制することができる。また、絶縁体550、および金属酸化物552との積層構造を設けることで、導電体560と酸化物530との間の物理的な距離、および導電体560から酸化物530へかかる電界強度を、容易に適宜調整することができる。 With the metal oxide 552, the on-state current can be improved without weakening the influence of the electric field from the conductor 560. In addition, leakage current can be suppressed by maintaining the distance between the conductor 560 and the oxide 530 depending on the physical thickness of the insulator 550 and the metal oxide 552. Further, by providing a stacked structure of the insulator 550 and the metal oxide 552, the physical distance between the conductor 560 and the oxide 530 and the electric field strength applied from the conductor 560 to the oxide 530 can be reduced. It can be easily adjusted as appropriate.
具体的には、金属酸化物552として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、酸化物530に用いることができる酸化物半導体を低抵抗化することで、金属酸化物552として用いることができる。 Specifically, as the metal oxide 552, a metal containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, and the like. An oxide can be used. Further, by reducing the resistance of an oxide semiconductor that can be used for the oxide 530, the oxide semiconductor can be used as the metal oxide 552.
また、絶縁体520、絶縁体522、および絶縁体524は、トランジスタ302の第2のゲート絶縁体として機能する。図では、絶縁体520、絶縁体522、および絶縁体524を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、絶縁体520、絶縁体522、および絶縁体524のうちいずれか2層を積層した構造にしてもよいし、いずれか1層を用いる構造にしてもよい。 The insulator 520, the insulator 522, and the insulator 524 function as a second gate insulator of the transistor 302. In the drawing, the structure in which the insulator 520, the insulator 522, and the insulator 524 are stacked is shown; however, the present invention is not limited to this. For example, any two layers of the insulator 520, the insulator 522, and the insulator 524 may be stacked, or any one of the layers may be used.
また、絶縁体522、および層間膜として機能する絶縁体514は、下層から水または水素などの不純物がトランジスタに混入するのを防ぐバリア絶縁体として機能できる。絶縁体514および絶縁体522は、水または水素などの不純物の透過を抑制する機能を有する絶縁性材料を用いることが好ましい。例えば、絶縁体514として窒化シリコンなどを用い、絶縁体522として酸化アルミニウム、酸化ハフニウム、シリコンおよびハフニウムを含む酸化物(ハフニウムシリケート)、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。これにより、水素、水などの不純物が絶縁体514および絶縁体522より上層に拡散するのを抑制することができる。なお、絶縁体514および絶縁体522は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の少なくとも一の透過を抑制する機能を有することが好ましい。また、以下において、不純物の透過を抑制する機能を有する絶縁性材料について記載する場合も同様である。 The insulator 522 and the insulator 514 functioning as an interlayer film can function as a barrier insulator that prevents impurities such as water or hydrogen from entering the transistor from below. For the insulator 514 and the insulator 522, an insulating material having a function of suppressing permeation of impurities such as water or hydrogen is preferably used. For example, silicon nitride or the like is used as the insulator 514, and aluminum oxide, hafnium oxide, an oxide containing silicon and hafnium (hafnium silicate), an oxide containing aluminum and hafnium (hafnium aluminate), or the like is used as the insulator 522. Is preferred. Accordingly, impurities such as hydrogen and water can be prevented from diffusing into layers above the insulator 514 and the insulator 522. Note that the insulator 514 and the insulator 522 include at least one of impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2, and the like) and a copper atom. It preferably has a function of suppressing transmission. The same applies to the case where an insulating material having a function of suppressing the permeation of impurities is described below.
また、絶縁体514および絶縁体522は、酸素(例えば、酸素原子または酸素分子など)の透過を抑制する機能を有する絶縁性材料を用いることが好ましい。これにより、絶縁体524などに含まれる酸素が下方拡散するのを抑制することができる。 The insulator 514 and the insulator 522 are preferably formed using an insulating material having a function of suppressing permeation of oxygen (eg, an oxygen atom or an oxygen molecule). Thus, downward diffusion of oxygen contained in the insulator 524 and the like can be suppressed.
また、絶縁体522中の水、水素または窒素酸化物などの不純物濃度が低減されていることが好ましい。例えば、絶縁体522の水素の脱離量は、昇温脱離ガス分析法(TDS(Thermal Desorption Spectroscopy))において、絶縁体522の表面温度が50℃から500℃の範囲において、水素分子に換算した脱離量が、絶縁体522の面積当たりに換算して、2×1015molecules/cm以下、好ましくは1×1015molecules/cm以下、より好ましくは5×1014molecules/cm以下であればよい。また、絶縁体522は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。 In addition, the concentration of impurities such as water, hydrogen, or nitrogen oxide in the insulator 522 is preferably reduced. For example, the amount of hydrogen desorbed from the insulator 522 is converted into hydrogen molecules when the surface temperature of the insulator 522 is in the range of 50 ° C. to 500 ° C. in the temperature programmed desorption gas analysis method (TDS (Thermal Desorption Spectroscopy)). 2 × 10 15 molecules / cm 2 or less, preferably 1 × 10 15 molecules / cm 2 or less, more preferably 5 × 10 14 molecules / cm 2 in terms of the amount of the desorbed in terms of the area of the insulator 522. The following is sufficient. The insulator 522 is preferably formed using an insulator from which oxygen is released by heating.
導電体560は、トランジスタ302の第1のゲート電極として機能する。また、導電体505は、トランジスタ302の第2のゲート電極として機能する。トランジスタ302の第2のゲート電極として機能する導電体505は、酸化物530および導電体560と重なるように配置する。 The conductor 560 functions as the first gate electrode of the transistor 302. The conductor 505 functions as a second gate electrode of the transistor 302. The conductor 505 functioning as the second gate electrode of the transistor 302 is provided so as to overlap with the oxide 530 and the conductor 560.
ここで、導電体505は、酸化物530におけるチャネル形成領域よりも、チャネル幅方向の長さが大きくなるように設けるとよい。特に、導電体505は、酸化物530のチャネル形成領域が領域234のA3−A4の一点鎖線(チャネル幅方向)と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物530のチャネル幅方向における側面において、導電体505と、導電体560とは、絶縁体を介して重畳していることが好ましい。 Here, the conductor 505 is preferably provided so that the length in the channel width direction is larger than the channel formation region in the oxide 530. In particular, the conductor 505 preferably extends even in a region outside the end portion where the channel formation region of the oxide 530 intersects with the one-dot chain line (channel width direction) of A3-A4 in the region 234. That is, it is preferable that the conductor 505 and the conductor 560 overlap with each other through the insulator on the side surface of the oxide 530 in the channel width direction.
導電体505に印加する電位は、導電体560に印加する電位と同電位とするとよい。また、接地電位や、任意の電位としてもよい。また、導電体505に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ302のしきい値電圧を制御することができる。特に、導電体505に負の電位を印加することにより、トランジスタ302のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。従って、導電体560に印加する電圧が0Vのときのドレイン電流を小さくすることができる。 The potential applied to the conductor 505 is preferably the same as the potential applied to the conductor 560. Further, it may be a ground potential or an arbitrary potential. In addition, the threshold voltage of the transistor 302 can be controlled by changing the potential applied to the conductor 505 independently of the potential applied to the conductor 560 without being linked. In particular, by applying a negative potential to the conductor 505, the threshold voltage of the transistor 302 can be higher than 0 V and the off-state current can be reduced. Therefore, the drain current when the voltage applied to the conductor 560 is 0 V can be reduced.
また、図12(A)に示すように、導電体505は、酸化物530、および導電体560と重なるように配置する。ここで、酸化物530の領域234のA3−A4の一点鎖線(チャネル幅方向)と交わる端部よりも外側の領域においても、導電体505は、導電体560と、重畳するように配置することが好ましい。つまり、酸化物530の側面の外側において、導電体505と、導電体560とは、絶縁体を介して重畳していることが好ましい。 In addition, as illustrated in FIG. 12A, the conductor 505 is provided so as to overlap with the oxide 530 and the conductor 560. Here, the conductor 505 is also arranged so as to overlap with the conductor 560 in a region outside the end portion of the region 234 of the oxide 530 that intersects with the one-dot chain line (channel width direction) of A3-A4. Is preferred. That is, it is preferable that the conductor 505 and the conductor 560 overlap with each other with an insulator outside the side surface of the oxide 530.
上記構成を有することで、導電体560、および導電体505に電位を印加した場合、導電体560から生じる電界と、導電体505から生じる電界と、がつながることで、閉回路を形成し、酸化物530に形成されるチャネル形成領域を覆うことができる。 With the above structure, when a potential is applied to the conductor 560 and the conductor 505, the electric field generated from the conductor 560 and the electric field generated from the conductor 505 are connected to form a closed circuit, and oxidation A channel formation region formed in the object 530 can be covered.
つまり、第1のゲート電極としての機能を有する導電体560の電界と、第2のゲート電極としての機能を有する導電体505の電界によって、チャネル形成領域を電気的に取り囲むことができる。 In other words, the channel formation region can be electrically surrounded by the electric field of the conductor 560 functioning as the first gate electrode and the electric field of the conductor 505 functioning as the second gate electrode.
なお、導電体503は、導電体560と同様にチャネル幅方向に延伸されており、導電体505に電位を印加する配線として機能する。ここで、配線として機能する導電体503の上に積層して、絶縁体514および絶縁体516に埋め込まれた導電体505を設けることにより、導電体503と導電体560の間に絶縁体514および絶縁体516などが設けられ、導電体503と導電体560の間の寄生容量を低減し、絶縁耐圧を高めることができる。導電体503と導電体560の間の寄生容量を低減することで、トランジスタのスイッチング速度を向上させ、高い周波数特性を有するトランジスタにすることができる。また、導電体503と導電体560の間の絶縁耐圧を高めることで、トランジスタの信頼性を向上させることができる。よって、絶縁体514および絶縁体516の膜厚を大きくすることが好ましい。なお、導電体503の延伸方向はこれに限られず、例えば、トランジスタ302のチャネル長方向に延伸されてもよい。 Note that the conductor 503 is extended in the channel width direction like the conductor 560 and functions as a wiring for applying a potential to the conductor 505. Here, by stacking over the conductor 503 functioning as a wiring and providing the insulator 514 and the conductor 505 embedded in the insulator 516, the insulator 514 and the conductor 560 are provided between the conductor 503 and the conductor 560. An insulator 516 and the like are provided, so that the parasitic capacitance between the conductor 503 and the conductor 560 can be reduced and the withstand voltage can be increased. By reducing the parasitic capacitance between the conductor 503 and the conductor 560, the switching speed of the transistor can be improved and a transistor having high frequency characteristics can be obtained. Further, by increasing the withstand voltage between the conductor 503 and the conductor 560, the reliability of the transistor can be improved. Therefore, it is preferable to increase the thickness of the insulator 514 and the insulator 516. Note that the extending direction of the conductor 503 is not limited thereto, and the conductor 503 may be extended in the channel length direction of the transistor 302, for example.
また、導電体505は、絶縁体514および絶縁体516の開口の内壁に接する第1の導電体と、第1の導電体の内側に設けられた第2の導電体とを有する。また、導電体505の上面の高さと、絶縁体516の上面の高さは同程度にできる。なお、図では、導電体505を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、単層、または3層以上の積層構造としてもよい。 The conductor 505 includes a first conductor that is in contact with the inner walls of the openings of the insulator 514 and the insulator 516, and a second conductor that is provided inside the first conductor. Further, the height of the upper surface of the conductor 505 and the height of the upper surface of the insulator 516 can be approximately the same. In addition, although the figure has shown about the structure which laminates | stacks the conductor 505, this invention is not limited to this. For example, a single layer or a stacked structure of three or more layers may be used.
ここで、第1の導電体は、水または水素などの不純物の透過を抑制する機能を有する(透過しにくい)導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましく、単層または積層とすればよい。これにより、絶縁体514より下層から水素、水などの不純物が導電体505を通じて上層に拡散するのを抑制することができる。なお、第1の導電体は、水素原子、水素分子、水分子、酸素原子、酸素分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の透過を抑制する機能を有することが好ましい。また、以下において、不純物の透過を抑制する機能を有する導電性材料について記載する場合も同様である。第1の導電体が酸素の透過を抑制する機能を持つことにより、第2の導電体が酸化して導電率が低下することを防ぐことができる。 Here, it is preferable to use a conductive material having a function of suppressing transmission of impurities such as water or hydrogen (difficult to transmit) as the first conductor. For example, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, and a single layer or a stacked layer may be used. Accordingly, impurities such as hydrogen and water from the lower layer than the insulator 514 can be prevented from diffusing into the upper layer through the conductor 505. Note that the first conductor is an impurity such as a hydrogen atom, a hydrogen molecule, a water molecule, an oxygen atom, an oxygen molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2 ), a copper atom, or the like. Alternatively, it preferably has a function of suppressing transmission of at least one of oxygen (for example, oxygen atoms and oxygen molecules). The same applies to the case where a conductive material having a function of suppressing the permeation of impurities is described below. When the first conductor has a function of suppressing the permeation of oxygen, it is possible to prevent the second conductor from being oxidized and the conductivity from being lowered.
また、第2の導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、図示しないが、第2の導電体は積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 The second conductor is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. Although not illustrated, the second conductor may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
導電体560は、第1の導電体、および第2の導電体を有する。第1の導電体は、例えばタングステンなどの金属を用いることができる。また、金属酸化物552として、酸化物半導体を用いた場合、第1の導電体として、金属酸化物552に窒素などの不純物を添加し、金属酸化物552の導電性を向上できる導電体を用いるとよい。例えば、第1の導電体は、窒化チタンなどを用いることが好ましい。また、第2の導電体は、抵抗が小さいアルミニウム、またはタングステンなどの金属を用いることが好ましい。 The conductor 560 includes a first conductor and a second conductor. For the first conductor, for example, a metal such as tungsten can be used. In the case where an oxide semiconductor is used as the metal oxide 552, a conductor that can improve conductivity of the metal oxide 552 by adding an impurity such as nitrogen to the metal oxide 552 is used as the first conductor. Good. For example, titanium nitride or the like is preferably used for the first conductor. The second conductor is preferably formed using a metal such as aluminum or tungsten with low resistance.
また、導電体560の上に、絶縁体570を配置してもよい。絶縁体570は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。絶縁体570を有することで、導電体560の酸化を防ぐことができる。また、導電体560および絶縁体550を介して、水または水素などの不純物が酸化物530に混入することを防ぐことができる。 Further, the insulator 570 may be provided over the conductor 560. The insulator 570 may be formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen. By including the insulator 570, oxidation of the conductor 560 can be prevented. In addition, impurities such as water or hydrogen can be prevented from entering the oxide 530 through the conductor 560 and the insulator 550.
ここで、図12(B)に示すように、絶縁体550、金属酸化物552、導電体560、および絶縁体570からなる構造体は、その側面が絶縁体522に対し、略垂直であることが好ましい。ただし、本実施の形態に示す半導体装置はこれに限られるものではない。例えば、絶縁体550、金属酸化物552、導電体560、および絶縁体570からなる構造体の側面は、絶縁体522の上面に対し、テーパー構造を有していてもよい。その場合、当該構造体の側面と絶縁体522の上面のなす角は、大きい(垂直に近い)ほど好ましい。 Here, as illustrated in FIG. 12B, a structure including the insulator 550, the metal oxide 552, the conductor 560, and the insulator 570 has a side surface that is substantially perpendicular to the insulator 522. Is preferred. Note that the semiconductor device described in this embodiment is not limited to this. For example, the side surface of the structure including the insulator 550, the metal oxide 552, the conductor 560, and the insulator 570 may have a tapered structure with respect to the upper surface of the insulator 522. In that case, the angle formed between the side surface of the structure and the top surface of the insulator 522 is preferably as large as possible (close to vertical).
従って、絶縁体570上に、ハードマスクとして機能する絶縁体571を配置してもよい。絶縁体571を設けることで、絶縁体550、金属酸化物552、導電体560、絶縁体570からなる構造体を形成する際、該構造体の側面が概略垂直、具体的には、該構造体の側面と基板表面のなす角を、75度以上100度以下、好ましくは80度以上95度以下とすることができる。 Therefore, the insulator 571 functioning as a hard mask may be provided over the insulator 570. By providing the insulator 571, when a structure body including the insulator 550, the metal oxide 552, the conductor 560, and the insulator 570 is formed, the side surface of the structure body is substantially vertical. Specifically, the structure body The angle formed between the side surface and the substrate surface can be set to 75 ° to 100 °, preferably 80 ° to 95 °.
絶縁体572は、少なくとも絶縁体550、金属酸化物552、導電体560、および絶縁体570の側面に接して設けられる。絶縁体550、571、572はそれぞれ、上掲の絶縁体250、270、272と同様に設けられる。 The insulator 572 is provided in contact with at least the side surfaces of the insulator 550, the metal oxide 552, the conductor 560, and the insulator 570. The insulators 550, 571, and 572 are provided in the same manner as the insulators 250, 270, and 272 described above.
導電体560、金属酸化物552、および絶縁体550の側面に、絶縁体572を介して、絶縁体575を設ける。図12(B)に示すように、トランジスタ302は、導電体560と、導電体540との間に寄生容量が形成される蓋然性が高い。また、トランジスタ302は、導電体560と、導電体320との間に寄生容量が形成される蓋然性が高い。特に、トランジスタの微細化に伴い、例えば、設計されるチャネル長が10nm以上30nm以下で形成される場合、寄生容量はトランジスタの電気特性に影響を与える場合がある。 An insulator 575 is provided on the side surfaces of the conductor 560, the metal oxide 552, and the insulator 550 with an insulator 572 interposed therebetween. As illustrated in FIG. 12B, the transistor 302 has a high probability that parasitic capacitance is formed between the conductor 560 and the conductor 540. In addition, the transistor 302 has a high probability that a parasitic capacitance is formed between the conductor 560 and the conductor 320. In particular, with the miniaturization of a transistor, for example, when the designed channel length is 10 nm or more and 30 nm or less, the parasitic capacitance may affect the electrical characteristics of the transistor.
従って、トランジスタ302に絶縁体575を設けることで、それぞれの寄生容量を低減することができる。寄生容量を低減することで、トランジスタ302を高速に動作することができる。 Therefore, by providing the insulator 575 in the transistor 302, each parasitic capacitance can be reduced. By reducing the parasitic capacitance, the transistor 302 can be operated at high speed.
絶縁体575は、比誘電率の小さい絶縁体を有することが好ましい。例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。 The insulator 575 preferably includes an insulator having a small relative dielectric constant. For example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide or resin having holes, or the like is included. It is preferable. In particular, silicon oxide and silicon oxynitride are preferable because they are thermally stable.
トランジスタ302を覆う様に、層間膜として機能する絶縁体580を設ける。なお、絶縁体580は、膜中の水または水素などの不純物濃度が低減されていることが好ましい。続いて、絶縁体580に開口を設け、当該開口に導電体540を埋め込むように設けるとよい。なお、導電体540は、酸化物530のソース領域、またはドレイン領域と接する。 An insulator 580 functioning as an interlayer film is provided so as to cover the transistor 302. Note that the insulator 580 preferably has reduced concentration of impurities such as water or hydrogen in the film. Subsequently, an opening is preferably provided in the insulator 580 so that the conductor 540 is embedded in the opening. Note that the conductor 540 is in contact with the source region or the drain region of the oxide 530.
導電体540は、導電体505と同様の材料を用いることができる。また、開口の側壁部に酸化アルミニウムを形成した後に、導電体540を形成してもよい。開口の側壁部に酸化アルミニウムを形成することで、外方からの酸素の透過を抑制し、導電体540の酸化を防止することができる。また、導電体540から、水、水素などの不純物が外部に拡散することを防ぐことができる。該酸化アルミニウムの形成は、開口にALD法などを用いて酸化アルミニウムを成膜し、異方性エッチングを行うことで形成することができる。 For the conductor 540, a material similar to that of the conductor 505 can be used. Alternatively, the conductor 540 may be formed after aluminum oxide is formed on the side wall portion of the opening. By forming aluminum oxide on the side wall portion of the opening, permeation of oxygen from the outside can be suppressed and oxidation of the conductor 540 can be prevented. Further, impurities such as water and hydrogen can be prevented from diffusing from the conductor 540 to the outside. The aluminum oxide can be formed by forming an aluminum oxide film in the opening using an ALD method or the like and performing anisotropic etching.
トランジスタ302を形成する基板(図示せず)は、上掲の基板201と同様の基板を用いることができる。本実施の形態の半導体装置に用いられる導電体、絶縁体、酸化物半導体等は、上記実施の形態の半導体装置と同様のものを用いることができる。 As a substrate (not illustrated) for forming the transistor 302, a substrate similar to the above-described substrate 201 can be used. As the conductor, the insulator, the oxide semiconductor, and the like used for the semiconductor device of this embodiment, the same materials as those of the semiconductor device of the above embodiment can be used.
<半導体装置20の構成例>
以下では、図13(A)、図13(B)を用いて、実施の形態1に示す半導体装置20の一例の具体的な構成について説明する。図13(A)、図13(B)に示す構成例は、複数のトランジスタと、容量素子とが、共通の構造を有する構成とすることで、微細化または高集積化が可能な半導体装置を提供することができる。
<Configuration Example of Semiconductor Device 20>
Hereinafter, a specific configuration of an example of the semiconductor device 20 described in Embodiment 1 will be described with reference to FIGS. 13A and 13B illustrates a semiconductor device that can be miniaturized or highly integrated by having a structure in which a plurality of transistors and a capacitor have a common structure. Can be provided.
図13(A)は、半導体装置20の断面構造を示す図であり、図13(B)は、図13(A)の一点鎖線W1−W2で示す部位の断面図である。半導体装置20は、チャネル形成領域に酸化物を有するトランジスタを有する半導体装置であり、具体的には、トランジスタM21、トランジスタM22、トランジスタM23、容量素子C21、および配線を有する。なお、図13(A)、図13(B)では、トランジスタM21の構造にのみ符号を付与し、トランジスタM22、またはトランジスタM23の構造の符号を省略する場合がある。その際、トランジスタM22、またはトランジスタM23において、トランジスタM21の符号を付与した構造と同じ機能を有する構造は、同じ符号を用いて説明する場合がある。 13A is a diagram illustrating a cross-sectional structure of the semiconductor device 20, and FIG. 13B is a cross-sectional view of a portion indicated by a dashed-dotted line W1-W2 in FIG. 13A. The semiconductor device 20 is a semiconductor device including a transistor including an oxide in a channel formation region. Specifically, the semiconductor device 20 includes a transistor M21, a transistor M22, a transistor M23, a capacitor C21, and a wiring. Note that in FIGS. 13A and 13B, reference numerals may be given only to the structure of the transistor M21, and reference numerals of the structure of the transistor M22 or the transistor M23 may be omitted. At that time, in the transistor M22 or the transistor M23, a structure having the same function as the structure to which the reference numeral of the transistor M21 is given may be described using the same reference numeral.
半導体装置20は、基板501上に設けられ、トランジスタM21、トランジスタM22、トランジスタM23、および容量素子C21と、層間膜として機能する絶縁体510、絶縁体512および絶縁体580を有する。また、トランジスタM21、トランジスタM22、またはトランジスタM23と電気的に接続し、配線として機能する導電体503とを有する。また、トランジスタM21、またはトランジスタM23と電気的に接続し、配線として機能する導電体540とを有する。また、容量素子C21と電気的に接続し、配線として機能する導電体504、および導電体506とを有する。 The semiconductor device 20 is provided over a substrate 501, and includes a transistor M21, a transistor M22, a transistor M23, and a capacitor C21, an insulator 510 that functions as an interlayer film, an insulator 512, and an insulator 580. In addition, a conductor 503 which is electrically connected to the transistor M21, the transistor M22, or the transistor M23 and functions as a wiring is provided. In addition, a conductor 540 that is electrically connected to the transistor M21 or the transistor M23 and functions as a wiring is provided. Further, a conductor 504 and a conductor 506 which are electrically connected to the capacitor C21 and function as wirings are provided.
半導体装置20は、複数のトランジスタと、容量素子とを、同層に設けることで、トランジスタを構成する構造の一部が、容量素子を構成する構造の一部と、併用することができる。つまり、トランジスタの構造の一部は、容量素子の構造の一部として、機能する場合がある。 In the semiconductor device 20, by providing a plurality of transistors and a capacitor in the same layer, a part of the structure forming the transistor can be used together with a part of the structure forming the capacitor. In other words, part of the structure of the transistor may function as part of the structure of the capacitor.
また、複数のトランジスタに、容量素子の一部、または全体が、重畳することで、トランジスタの投影面積、および容量素子の投影面積の合計した面積を小さくすることができる。 In addition, when a part or the whole of the capacitor overlaps the plurality of transistors, the total area of the projected area of the transistor and the projected area of the capacitor can be reduced.
上記構造を有することで、微細化または高集積化が可能である。また、設計自由度を高くすることができる。また、複数のトランジスタと容量素子とを同一の工程で形成する。従って、工程を短縮することができるため、生産性を向上させることができる。 With the above structure, miniaturization or high integration is possible. In addition, the degree of freedom in design can be increased. In addition, the plurality of transistors and the capacitor are formed in the same process. Therefore, since the process can be shortened, productivity can be improved.
なお、導電体503、および導電体504は、絶縁体512に埋め込まれるように形成される。ここで、導電体503、および導電体504の上面の高さと、絶縁体512の上面の高さは同程度にできる。なお、導電体503、および導電体504は、単層とする構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503、および導電体504を2層以上の多層膜構造としてもよい。 Note that the conductor 503 and the conductor 504 are formed to be embedded in the insulator 512. Here, the heights of the upper surfaces of the conductor 503 and the conductor 504 and the height of the upper surface of the insulator 512 can be approximately the same. Note that although the conductor 503 and the conductor 504 are illustrated as single layers, the present invention is not limited to this. For example, the conductor 503 and the conductor 504 may have a multilayer structure including two or more layers.
[トランジスタM21、トランジスタM22、およびトランジスタM23]
トランジスタM21乃至M23は、酸化物530a、および酸化物530cを、共通に設けることができる。本構成とすることで、トランジスタとトランジスタとの間隔を小さくすることができるため、微細化または高集積化が可能である。また、本構成とすることで、トランジスタとトランジスタを接続する配線等を別途設ける必要がないため、工程を簡略化することができる。
[Transistor M21, Transistor M22, and Transistor M23]
In the transistors M21 to M23, the oxide 530a and the oxide 530c can be provided in common. With this structure, the distance between the transistors can be reduced; thus, miniaturization or high integration can be achieved. Further, with this structure, it is not necessary to separately provide a wiring and the like for connecting the transistors, so that the process can be simplified.
ここで、トランジスタM21、トランジスタM22、およびトランジスタM23のそれぞれの構成において、先述したトランジスタ302と同符号を付与した構造は、トランジスタ302の記載を参酌することができる。 Here, in each of the structures of the transistor M21, the transistor M22, and the transistor M23, the description of the transistor 302 can be referred to for a structure to which the same sign as the transistor 302 is given.
なお、トランジスタM21、トランジスタM22、およびトランジスタM23では、酸化物530a、酸化物530c、および酸化物530dをまとめて酸化物530という場合がある。また、トランジスタM21、トランジスタM22、およびトランジスタM23では、酸化物530a、酸化物530c、および酸化物530dを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530cのみを設ける構成にしてもよい。また、例えば、単層、2層、または4層以上の積層構造としてもよい。また、導電体560、および導電体505を、積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体560、および導電体505は、単層、または3層以上の積層として設ける構成にしてもよい。 Note that in the transistor M21, the transistor M22, and the transistor M23, the oxide 530a, the oxide 530c, and the oxide 530d may be collectively referred to as the oxide 530. In the transistors M21, M22, and M23, the oxide 530a, the oxide 530c, and the oxide 530d are stacked; however, the present invention is not limited to this. For example, only the oxide 530c may be provided. Further, for example, a single layer, two layers, or a stacked structure of four or more layers may be used. Moreover, although the structure which laminates | stacks the conductor 560 and the conductor 505 is shown, this invention is not limited to this. For example, the conductor 560 and the conductor 505 may be provided as a single layer or a stack of three or more layers.
[容量素子C21]
図13(A)に示すように、容量素子C21は、トランジスタM21、トランジスタM22、およびトランジスタM23と共通の構造を有する。本実施の形態では、トランジスタM21、およびトランジスタM22の酸化物530の一部が、容量素子C21の電極として機能する。従って、容量素子C21は、トランジスタM21とトランジスタM22の間に設けられている。
[Capacitance element C21]
As illustrated in FIG. 13A, the capacitor C21 has a structure in common with the transistor M21, the transistor M22, and the transistor M23. In this embodiment, part of the transistor M21 and the oxide 530 of the transistor M22 functions as an electrode of the capacitor C21. Therefore, the capacitive element C21 is provided between the transistor M21 and the transistor M22.
容量素子C21は、酸化物530の低抵抗化された領域の一部、絶縁体330、絶縁体330上の導電体320を有する。つまり、導電体320の少なくとも一部は、絶縁体330を介して、酸化物530の低抵抗化された領域の一部と重なるように配置される。 The capacitor C <b> 21 includes a part of the oxide 530 in which the resistance is reduced, the insulator 330, and the conductor 320 over the insulator 330. That is, at least part of the conductor 320 is disposed so as to overlap with part of the region where the resistance of the oxide 530 is reduced, with the insulator 330 interposed therebetween.
酸化物530の低抵抗化された領域の一部は、容量素子C21の電極の一方として機能し、導電体320は容量素子C21の電極の他方として機能する。すなわち、酸化物530の低抵抗化された領域の一部は、トランジスタM21のソースとしての機能と、トランジスタM22のドレインとしての機能と、容量素子C21の電極の一方としての機能とを兼ねている。また、絶縁体330の一部は、容量素子C21の誘電体として機能する。 A part of the region of the oxide 530 whose resistance is reduced functions as one of the electrodes of the capacitor C21, and the conductor 320 functions as the other of the electrodes of the capacitor C21. In other words, part of the region of the oxide 530 whose resistance is reduced serves as the source of the transistor M21, the drain of the transistor M22, and the function of one of the electrodes of the capacitor C21. . A part of the insulator 330 functions as a dielectric of the capacitor C21.
また、酸化物530の低抵抗化された領域の一部は、導電体506上に接して設けられる。酸化物530の低抵抗化された領域の一部と、導電体506とが接続する構成とすることで、半導体装置の微細化が可能となる。 Further, part of the oxide 530 whose resistance is reduced is provided in contact with the conductor 506. With the structure in which part of the oxide 530 in which the resistance is reduced and the conductor 506 are connected to each other, the semiconductor device can be miniaturized.
絶縁体330は、絶縁体130と同様に設ければよい。比誘電率の大きい絶縁体の積層とすることで、容量値が大きく、かつ、リーク電流の小さな容量素子C21とすることができる。 The insulator 330 may be provided similarly to the insulator 130. By stacking an insulator having a large relative dielectric constant, the capacitor C21 having a large capacitance value and a small leakage current can be obtained.
ここで、トランジスタM21、およびトランジスタM22の導電体560の側面には、絶縁体572および絶縁体575が設けられている。導電体560と導電体320の間に絶縁体572および絶縁体575が設けられることで、導電体560と導電体320の間の寄生容量を低減することができる。 Here, an insulator 572 and an insulator 575 are provided on side surfaces of the transistor M21 and the conductor 560 of the transistor M22. By providing the insulator 572 and the insulator 575 between the conductor 560 and the conductor 320, parasitic capacitance between the conductor 560 and the conductor 320 can be reduced.
なお、導電体320は、上掲の導電体120と同様であり、2層以上の積層構造としてもよい。 Note that the conductor 320 is similar to the conductor 120 described above, and may have a stacked structure of two or more layers.
以上のように、本発明の一態様の半導体装置は、トランジスタM21乃至M23、および容量素子C21を同じ層に配置することが可能な構成となっている。この様な構成とすることで、半導体装置は、高密度にトランジスタおよび容量素子を配置することができるので、高集積化することができる。 As described above, the semiconductor device of one embodiment of the present invention has a structure in which the transistors M21 to M23 and the capacitor C21 can be arranged in the same layer. With such a structure, the semiconductor device can be highly integrated because transistors and capacitors can be arranged at high density.
以上、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 As described above, the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態5)
本実施の形態では、上記実施の形態に示すトランジスタM21乃至M23に用いることのできる半導体装置の変形例について、図14(A)乃至図14(C)を用いて説明する。なお、先の実施の形態で用いた符号と同じ機能を有する場合には、同じ符号を用い、その詳細な説明を省略する場合がある。
(Embodiment 5)
In this embodiment, a modification example of the semiconductor device that can be used for the transistors M21 to M23 described in the above embodiments will be described with reference to FIGS. Note that in the case where the same function as the reference numeral used in the previous embodiment is used, the same reference numeral is used, and detailed description thereof may be omitted.
<半導体装置の変形例>
図14(A)は、トランジスタ303を有する半導体装置の上面図である。図14(B)は、図14(A)の一点鎖線A1−A2で示す部位の断面図であり、トランジスタ303のチャネル長方向の断面図でもある。また、図14(C)は、図14(A)の一点鎖線A3−A4で示す部位の断面図であり、トランジスタ303のチャネル幅方向の断面図でもある。図14(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
<Modification of semiconductor device>
FIG. 14A is a top view of a semiconductor device including a transistor 303. FIG. 14B is a cross-sectional view taken along dashed-dotted line A1-A2 in FIG. 14A and also a cross-sectional view of the transistor 303 in the channel length direction. FIG. 14C is a cross-sectional view taken along dashed-dotted line A3-A4 in FIG. 14A and is a cross-sectional view in the channel width direction of the transistor 303. In the top view of FIG. 14A, some elements are omitted for clarity.
本発明の一態様の半導体装置は、トランジスタ303と、層間膜として機能する絶縁体580、絶縁体582、および絶縁体586と、絶縁体580、および絶縁体582が有する開口の側面を被覆するバリア層576(バリア層576a、およびバリア層576b)と、絶縁体580、絶縁体582、および絶縁体586が有する開口に、バリア層576を介して埋め込まれた導電体540(導電体540a、および導電体540b)とを有する。 The semiconductor device of one embodiment of the present invention includes the transistor 303, the insulator 580 functioning as an interlayer film, the insulator 582, and the insulator 586, and the barrier that covers the side surfaces of the openings included in the insulator 580 and the insulator 582. The conductor 540 (the conductor 540a and the conductor 540) embedded in the opening of the layer 576 (the barrier layer 576a and the barrier layer 576b) and the insulator 580, the insulator 582, and the insulator 586 with the barrier layer 576 interposed therebetween. Body 540b).
なお、半導体装置において、導電体540はプラグ、または配線として機能する。なお、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。 Note that in the semiconductor device, the conductor 540 functions as a plug or a wiring. Note that in this specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
トランジスタ303は、第1のゲート電極として機能する導電体560と、第2のゲート電極として機能する導電体505と、導電体560と接する絶縁体570と、ゲート絶縁体として機能する絶縁体520、絶縁体522、絶縁体524、および絶縁体550と、チャネルが形成される領域を有する酸化物530(酸化物530a、酸化物530c、および酸化物530d)とを有する。 The transistor 303 includes a conductor 560 functioning as a first gate electrode, a conductor 505 functioning as a second gate electrode, an insulator 570 in contact with the conductor 560, an insulator 520 functioning as a gate insulator, The insulator 522, the insulator 524, and the insulator 550, and the oxide 530 (the oxide 530a, the oxide 530c, and the oxide 530d) each include a region where a channel is formed.
以下では、トランジスタ303の構成要素の一例について説明する。なお、トランジスタ303の構成要素について、トランジスタ302(図12(A)乃至図12(C)参照)と重複する部分については、トランジスタ302の説明を援用することができる。 Hereinafter, an example of components of the transistor 303 will be described. Note that the description of the transistor 302 can be referred to for the components of the transistor 303 which overlap with the transistor 302 (see FIGS. 12A to 12C).
酸化物530は、酸化物半導体を用いることが好ましい。酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。 As the oxide 530, an oxide semiconductor is preferably used. Since a transistor including an oxide semiconductor has extremely low leakage current in a non-conduction state, a semiconductor device with low power consumption can be provided. An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
酸化物530は、酸化物530aと、酸化物530a上の酸化物530cと、酸化物530c上の酸化物530dとを有する。トランジスタ303をオンさせると、主として酸化物530cに電流が流れる(チャネルが形成される)。一方、酸化物530aおよび酸化物530dは、酸化物530cとの界面近傍(混合領域となっている場合もある)は電流が流れる場合があるものの、そのほかの領域は絶縁体として機能する場合がある。 The oxide 530 includes an oxide 530a, an oxide 530c over the oxide 530a, and an oxide 530d over the oxide 530c. When the transistor 303 is turned on, a current mainly flows through the oxide 530c (a channel is formed). On the other hand, in the oxide 530a and the oxide 530d, current may flow in the vicinity of the interface with the oxide 530c (which may be a mixed region), but other regions may function as an insulator. .
また、本実施の形態に示すトランジスタ303では、酸化物530中に領域531を有する。なお、領域531は、チャネル形成領域よりも酸素濃度が小さいことが好ましく、金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度がチャネル形成領域(図示せず)よりも大きいことが好ましい。 In addition, the transistor 303 described in this embodiment includes the region 531 in the oxide 530. Note that the region 531 preferably has a lower oxygen concentration than the channel formation region, and at least one concentration of a metal element and an impurity element such as hydrogen and nitrogen is higher than that of the channel formation region (not illustrated). Is preferred.
例えば、領域531は、酸化物530が有する構成元素の他に、アルミニウム、ルテニウム、チタン、タンタル、タングステンの中から選ばれるいずれか一つまたは複数の金属元素を有することが好ましい。酸化物530に、金属元素が添加されることで、領域531を低抵抗化することができる。金属元素を添加するには、例えば、酸化物530の領域531に接して、金属膜、金属化合物膜、金属元素を有する酸化膜、または金属元素を有する窒化膜などを成膜した後、該膜を除去するとよい。また、金属膜、金属化合物膜、金属元素を有する酸化膜、または金属元素を有する窒化膜を成膜した後、除去する前に熱処理を行うことが好ましい。酸化物530の領域531に接して、金属膜、金属化合物膜、金属元素を有する酸化膜、または金属元素を有する窒化膜などを成膜した後、熱処理を行うことで、該金属膜などの近傍に位置する酸化物530中の一部の酸素が該金属膜などに吸収され、領域531が低抵抗化する場合がある。なお、当該熱処理は、200℃以上500℃以下、代表的には400℃またはその近傍で行うことができる。また、上記熱処理を行うことで、酸化物530が有する構成元素中に、アルミニウム、ルテニウム、チタン、タンタル、タングステンなどの金属元素が入り込む場合がある。この場合、領域531の一部、代表的には領域531の上部において、酸化物530が有する構成元素と、アルミニウム、ルテニウム、チタン、タンタル、タングステンなどの金属元素とが、合金化する場合がある、領域531が合金化する場合、合金化した領域、すなわち、低抵抗化した領域を比較的安定に形成することができるため、信頼性の高い半導体装置を提供することができる。 For example, the region 531 preferably includes any one or more metal elements selected from aluminum, ruthenium, titanium, tantalum, and tungsten in addition to the constituent elements included in the oxide 530. By adding a metal element to the oxide 530, the resistance of the region 531 can be reduced. In order to add a metal element, for example, a metal film, a metal compound film, an oxide film containing a metal element, a nitride film containing a metal element, or the like is formed in contact with the region 531 of the oxide 530, and then the film Should be removed. In addition, after a metal film, a metal compound film, an oxide film containing a metal element, or a nitride film containing a metal element is formed, heat treatment is preferably performed before removal. A metal film, a metal compound film, an oxide film containing a metal element, a nitride film containing a metal element, or the like is formed in contact with the region 531 of the oxide 530, and then heat treatment is performed, so that the vicinity of the metal film or the like is performed. In some cases, part of oxygen in the oxide 530 located in the region is absorbed by the metal film and the resistance of the region 531 is reduced. Note that the heat treatment can be performed at 200 ° C. or more and 500 ° C. or less, typically 400 ° C. or the vicinity thereof. In addition, by performing the heat treatment, a metal element such as aluminum, ruthenium, titanium, tantalum, or tungsten may enter the constituent element of the oxide 530. In this case, a constituent element included in the oxide 530 and a metal element such as aluminum, ruthenium, titanium, tantalum, or tungsten may be alloyed in part of the region 531, typically over the region 531. In the case where the region 531 is alloyed, the alloyed region, that is, the region having low resistance can be formed relatively stably, so that a highly reliable semiconductor device can be provided.
なお、領域531は、トランジスタ303において、ソースまたはドレインとして機能する。 Note that the region 531 functions as a source or a drain in the transistor 303.
また、図14(C)に示すように、酸化物530dは、酸化物530a、および酸化物530cの側面を覆うように設けることが好ましい。絶縁体580と、チャネルが形成される領域を有する酸化物530cとの間に、酸化物530dが介在することにより、絶縁体580から、水素、水、およびハロゲン等の不純物が、酸化物530cへ拡散することを抑制することができる。 As shown in FIG. 14C, the oxide 530d is preferably provided so as to cover the side surfaces of the oxide 530a and the oxide 530c. When the oxide 530d is interposed between the insulator 580 and the oxide 530c having a region where a channel is formed, impurities such as hydrogen, water, and halogen are transferred from the insulator 580 to the oxide 530c. Diffusion can be suppressed.
酸化物530cの厚さ(t)は、トランジスタ303のチャネル長(L)よりも、大きくすることが好ましい。つまり、図14(B)に示すように、酸化物530cの厚さ(t)が、トランジスタ303のチャネル長(L)よりも大きくなる(t>L)。また、酸化物530cの厚さ(t)は、トランジスタ303のチャネル幅(W)よりも、大きくすることが好ましい。つまり、図14(C)に示すように、酸化物530cの厚さ(t)が、トランジスタ303のチャネル幅(W)よりも大きくなる(t>W)。 The thickness (t) of the oxide 530 c is preferably larger than the channel length (L) of the transistor 303. That is, as illustrated in FIG. 14B, the thickness (t) of the oxide 530c is larger than the channel length (L) of the transistor 303 (t> L). In addition, the thickness (t) of the oxide 530 c is preferably larger than the channel width (W) of the transistor 303. That is, as illustrated in FIG. 14C, the thickness (t) of the oxide 530c is larger than the channel width (W) of the transistor 303 (t> W).
また、少なくとも酸化物530cの側面は、基板と平行な面に対し、テーパー構造を有することが好ましい。なお、図14(C)に示すように、酸化物530cの側面が有するテーパー角度は、45°乃至80°とすることが好ましい。酸化物530cの側面がテーパー構造を有することで、酸化物530cよりも上層に形成される構造体の被膜性を向上させることができる。 In addition, at least a side surface of the oxide 530c preferably has a tapered structure with respect to a plane parallel to the substrate. Note that as illustrated in FIG. 14C, the taper angle of the side surface of the oxide 530c is preferably 45 ° to 80 °. When the side surface of the oxide 530c has a tapered structure, the film property of the structure formed in an upper layer than the oxide 530c can be improved.
また、図14(B)、図14(C)に示すように、第1のゲート電極として機能する導電体560を、ゲート絶縁体として機能する絶縁体550を介して、酸化物530の側面を覆うように設ける。当該構造とすることで、トランジスタ303を駆動した場合、酸化物530cの上面、および両側面の3方からゲート電圧が印加され、酸化物530cの導電体560と重畳する領域全体が、チャネル形成領域となる。 14B and 14C, a conductor 560 functioning as a first gate electrode is attached to a side surface of the oxide 530 with an insulator 550 functioning as a gate insulator interposed therebetween. Provide to cover. With this structure, when the transistor 303 is driven, a gate voltage is applied from the upper surface and both sides of the oxide 530c and the entire region overlapping with the conductor 560 of the oxide 530c is a channel formation region. It becomes.
つまり、上記構成とすることで、第1のゲート電極として機能する導電体560が、ゲート絶縁体として機能する絶縁体550を介して、酸化物530の側面を覆うことで、トランジスタ303のチャネル形成領域の投影面積(L×W)当たりのオン電流を向上することができる。従って、トランジスタ303の微細化が可能となる。 In other words, with the above structure, the conductor 560 functioning as the first gate electrode covers the side surface of the oxide 530 with the insulator 550 functioning as the gate insulator interposed therebetween, whereby the channel of the transistor 303 is formed. The on-current per projected area (L × W) of the region can be improved. Accordingly, the transistor 303 can be miniaturized.
また、導電体505は、トランジスタ303の第2のゲート電極としての機能を有する。酸化物530cの側面がテーパー角を有することで、第2のゲート電極に電位が印加された際に、酸化物530cの第2のゲート電極と重畳する領域全体に、ゲート電界を印加することができる。 The conductor 505 functions as the second gate electrode of the transistor 303. Since the side surface of the oxide 530c has a taper angle, when a potential is applied to the second gate electrode, a gate electric field can be applied to the entire region overlapping with the second gate electrode of the oxide 530c. it can.
絶縁体582は、例えば、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。特に、酸化アルミニウム、および酸化ハフニウム、などの、酸素や水素に対してバリア性のある絶縁体を用いることが好ましい。このような材料を用いて形成した場合、酸化物530からの酸素の放出や、外部からの水素等の不純物の混入を防ぐ層として機能する。 The insulator 582 includes, for example, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO. 3 An insulator including a so-called high-k material such as (BST) is preferably used in a single layer or a stacked layer. In particular, it is preferable to use an insulator having a barrier property against oxygen and hydrogen, such as aluminum oxide and hafnium oxide. In the case of using such a material, it functions as a layer which prevents release of oxygen from the oxide 530 and entry of impurities such as hydrogen from the outside.
絶縁体586は絶縁体580に適用可能な材料を用いることができる。 For the insulator 586, a material applicable to the insulator 580 can be used.
なお、絶縁体580、絶縁体582、および絶縁体586が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。なお、トランジスタ303を覆う絶縁体580は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。 Note that the insulator 580, the insulator 582, and the insulator 586 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient. Note that the insulator 580 covering the transistor 303 may function as a planarization film covering the uneven shape below the transistor 303.
また、トランジスタ303は、絶縁体580、絶縁体582、および絶縁体586に埋め込まれた導電体540などのプラグや配線を介して、他の構造と電気的に接続される場合がある。また、トランジスタ303の周辺に形成される他の構造に含まれる不純物である水素は、プラグや配線に用いられる導電体を介して、該導電体と接する構造へと拡散する場合がある。 The transistor 303 may be electrically connected to another structure through a plug or a wiring such as the insulator 580, the insulator 582, and the conductor 540 embedded in the insulator 586. Further, hydrogen that is an impurity contained in another structure formed around the transistor 303 may diffuse into a structure in contact with the conductor through a conductor used for a plug or a wiring.
そこで、導電体540と、過剰酸素領域を有する絶縁体580、およびバリア性を有する絶縁体582との間にバリア層576を設けるとよい。特に、バリア層576は、バリア性を有する絶縁体582と接して設けられることが好ましい。バリア層576は絶縁体522と接して設けられることが好ましい(図示せず)。バリア層576と、絶縁体582、および絶縁体522とが接して設けられることで、絶縁体580、およびトランジスタ303は、バリア性を有する絶縁体、およびバリア層により、封止される構造とすることができる。さらに、バリア層576は、絶縁体586の一部とも接することが好ましい。バリア層576が、絶縁体586まで延在していることで、酸素や不純物の拡散を、より抑制することができる。 Therefore, a barrier layer 576 is preferably provided between the conductor 540, the insulator 580 having an excess oxygen region, and the insulator 582 having a barrier property. In particular, the barrier layer 576 is preferably provided in contact with the insulator 582 having a barrier property. The barrier layer 576 is preferably provided in contact with the insulator 522 (not shown). By providing the barrier layer 576 in contact with the insulator 582 and the insulator 522, the insulator 580 and the transistor 303 are sealed with the insulator having a barrier property and the barrier layer. be able to. Further, the barrier layer 576 is preferably in contact with part of the insulator 586. When the barrier layer 576 extends to the insulator 586, diffusion of oxygen and impurities can be further suppressed.
また、導電体540の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。例えば、耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。 As a material for the conductor 540, a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material can be used as a single layer or a stacked layer. For example, it is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity. Alternatively, it is preferably formed using a low-resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low-resistance conductive material.
バリア層576には、例えば、金属酸化物を用いることができる。特に、酸化アルミニウム、酸化ハフニウム、酸化ガリウムなどの、酸素や水素に対してバリア性のある絶縁体を用いることが好ましい。また、化学気相堆積(CVD:Chemical Vapor Deposition)法で形成した窒化シリコンを用いてもよい。 For the barrier layer 576, for example, a metal oxide can be used. In particular, it is preferable to use an insulator having a barrier property against oxygen and hydrogen, such as aluminum oxide, hafnium oxide, and gallium oxide. Alternatively, silicon nitride formed by a chemical vapor deposition (CVD) method may be used.
以上より、安定した電気特性を有する半導体装置を提供することができる。また、信頼性が高い半導体装置を提供することができる。また、消費電力が小さい半導体装置を提供することができる。さらに、半導体装置を設計する際の自由度を高くすることができる。 As described above, a semiconductor device having stable electrical characteristics can be provided. In addition, a highly reliable semiconductor device can be provided. In addition, a semiconductor device with low power consumption can be provided. Furthermore, the degree of freedom in designing the semiconductor device can be increased.
以上、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 As described above, the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態6)
本実施の形態は、上記実施の形態に示す半導体装置が組み込まれた電子部品および電子機器の一例を示す。
(Embodiment 6)
This embodiment shows an example of an electronic component and an electronic device in which the semiconductor device described in any of the above embodiments is incorporated.
<電子部品>
まず、半導体装置10が組み込まれた電子部品の例を、図15(A)、図15(B)を用いて説明を行う。
<Electronic parts>
First, an example of an electronic component in which the semiconductor device 10 is incorporated will be described with reference to FIGS. 15A and 15B.
図15(A)に示す電子部品7000はICチップであり、リード及び回路部を有する。電子部品7000は、例えばプリント基板7002に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板7002上で電気的に接続されることで電子部品が実装された基板(実装基板7004)が完成する。 An electronic component 7000 illustrated in FIG. 15A is an IC chip and includes a lead and a circuit portion. The electronic component 7000 is mounted on a printed circuit board 7002, for example. A plurality of such IC chips are combined and each is electrically connected on the printed circuit board 7002 to complete a substrate on which electronic components are mounted (a mounting substrate 7004).
電子部品7000の回路部は、基板7031、層7032、層7033の積層でなる。 The circuit portion of the electronic component 7000 is formed by stacking a substrate 7031, a layer 7032, and a layer 7033.
基板7031として、実施の形態2に示す基板201に用いることが可能な基板を適用すればよい。また、基板7031としてシリコンなどの半導体基板を用いた場合、基板7031に集積回路を形成し、その上にOSトランジスタを有する層7032を形成してもよい。 As the substrate 7031, a substrate that can be used for the substrate 201 described in Embodiment 2 may be used. In the case where a semiconductor substrate such as silicon is used as the substrate 7031, an integrated circuit may be formed over the substrate 7031 and the layer 7032 including an OS transistor may be formed thereover.
層7032は、上記実施の形態に示すOSトランジスタを有する。上記実施の形態に示す半導体装置10は、層7032に設けることができる。 The layer 7032 includes the OS transistor described in the above embodiment. The semiconductor device 10 described in the above embodiment can be provided in the layer 7032.
層7033はメモリを有する。当該メモリとして、例えば、NOSRAM(登録商標)、DOSRAM(登録商標)などのOSトランジスタを用いたメモリ(以下、OSメモリと呼ぶ)を用いることができる。OSメモリは、他の半導体素子に積層させて設けることができるため、電子部品7000を小型化することができる。また、OSメモリはデータを書き換える際の消費電力が小さく、電子部品7000の消費電力を低減させることができる。 The layer 7033 includes a memory. As the memory, for example, a memory using an OS transistor such as NOSRAM (registered trademark) or DOSRAM (registered trademark) (hereinafter referred to as an OS memory) can be used. Since the OS memory can be provided by being stacked over another semiconductor element, the electronic component 7000 can be downsized. Further, the OS memory consumes less power when data is rewritten, and the power consumption of the electronic component 7000 can be reduced.
なお、NOSRAMとは「Nonvolatile Oxide Semiconductor Random Access Memory」の略称であり、ゲインセル型(2T(トランジスタ)型、3T型)のメモリセルを有するRAMを指す。また、DOSRAMとは、「Dynamic Oxide Semiconductor RAM」の略称であり、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMを指す。NOSRAMおよびDOSRAMは、それぞれ、OSトランジスタのオフ電流が小さいことを利用したOSメモリの一種である。 Note that NOSRAM is an abbreviation for “Nonvolatile Oxide Semiconductor Random Access Memory” and refers to a RAM having a gain cell type (2T (transistor) type, 3T type) memory cell. DOSRAM is an abbreviation for “Dynamic Oxide Semiconductor RAM”, and refers to a RAM having 1T (transistor) 1C (capacitance) type memory cells. NOSRAM and DOSRAM are each a type of OS memory that utilizes the small off-state current of the OS transistor.
上記OSメモリは、層7033ではなく、層7032に設けてもよい。そうすることで、ICチップの製造工程を短縮することができる。 The OS memory may be provided in the layer 7032 instead of the layer 7033. By doing so, the IC chip manufacturing process can be shortened.
層7033はOSメモリ以外に、ReRAM(Resistive RAM)、MRAM(Magnetoresistive RAM)、PRAM(Phase change RAM)、FeRAM(Ferroelectric RAM)などのメモリを設けてもよい。 In addition to the OS memory, the layer 7033 may include a memory such as a ReRAM (Resistive RAM), an MRAM (Magnetic Resistive RAM), a PRAM (Phase change RAM), or a FeRAM (Ferroelectric RAM).
図15(A)では、電子部品7000のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。 In FIG. 15A, QFP (Quad Flat Package) is applied to the package of the electronic component 7000, but the form of the package is not limited to this.
図15(B)は、電子部品7400の模式図である。電子部品7400はカメラモジュールであり、イメージセンサチップ7451を内蔵している。電子部品7400は、イメージセンサチップ7451を固定するパッケージ基板7411、レンズカバー7421、およびレンズ7435等を有する。また、パッケージ基板7411およびイメージセンサチップ7451の間には撮像装置の駆動回路および信号変換回路などの機能を有するICチップ7490も設けられており、SiP(System in package)としての構成を有している。ランド7441は電極パッド7461と電気的に接続され、電極パッド7461はイメージセンサチップ7451またはICチップ7490とワイヤ7471によって電気的に接続されている。図15(B)は、電子部品7400の内部を示すために、レンズカバー7421およびレンズ7435の一部を省略して図示している。 FIG. 15B is a schematic view of the electronic component 7400. An electronic component 7400 is a camera module and includes an image sensor chip 7451. The electronic component 7400 includes a package substrate 7411 for fixing the image sensor chip 7451, a lens cover 7421, a lens 7435, and the like. In addition, an IC chip 7490 having functions such as a drive circuit and a signal conversion circuit of the imaging device is also provided between the package substrate 7411 and the image sensor chip 7451, and has a configuration as a SiP (System in package). Yes. The land 7441 is electrically connected to the electrode pad 7461, and the electrode pad 7461 is electrically connected to the image sensor chip 7451 or the IC chip 7490 through a wire 7471. FIG. 15B illustrates a part of the lens cover 7421 and the lens 7435 which are not shown in order to show the inside of the electronic component 7400.
イメージセンサチップ7451の回路部は、基板7031、層7032、層7033、層7034の積層でなる。 The circuit portion of the image sensor chip 7451 is formed by stacking a substrate 7031, a layer 7032, a layer 7033, and a layer 7034.
基板7031、層7032および層7033の詳細は、上述の電子部品7000の記載を参照すればよい。 The details of the substrate 7031, the layer 7032, and the layer 7033 may be referred to the description of the electronic component 7000 described above.
層7034は受光素子を有する。当該受光素子として、例えば、セレン系材料を光電変換層としたpn接合型フォトダイオードなどを用いることができる。セレン系材料を用いた光電変換素子は、可視光に対する外部量子効率が高く、高感度の光センサを実現することができる。 The layer 7034 includes a light receiving element. As the light receiving element, for example, a pn junction photodiode using a selenium-based material as a photoelectric conversion layer can be used. A photoelectric conversion element using a selenium-based material has high external quantum efficiency with respect to visible light, and can realize a highly sensitive photosensor.
セレン系材料はp型半導体として用いることができる。セレン系材料としては、単結晶セレンや多結晶セレンなどの結晶性セレン、非晶質セレン、銅、インジウム、セレンの化合物(CIS)、または、銅、インジウム、ガリウム、セレンの化合物(CIGS)などを用いることができる。 Selenium-based materials can be used as p-type semiconductors. Examples of the selenium-based material include crystalline selenium such as single crystal selenium and polycrystalline selenium, amorphous selenium, copper, indium, selenium compound (CIS), or copper, indium, gallium, selenium compound (CIGS), etc. Can be used.
上記pn接合型フォトダイオードのn型半導体は、バンドギャップが広く、可視光に対して透光性を有する材料で形成することが好ましい。例えば、亜鉛酸化物、ガリウム酸化物、インジウム酸化物、錫酸化物、またはそれらが混在した酸化物などを用いることができる。 The n-type semiconductor of the pn junction photodiode is preferably formed using a material having a wide band gap and a light-transmitting property with respect to visible light. For example, zinc oxide, gallium oxide, indium oxide, tin oxide, or an oxide in which they are mixed can be used.
また、層7034が有する受光素子として、p型シリコン半導体とn型シリコン半導体を用いたpn接合型フォトダイオードを用いてもよい。また、p型シリコン半導体とn型シリコン半導体の間にi型シリコン半導体層を設けたpin接合型フォトダイオードであってもよい。 Alternatively, a pn junction photodiode using a p-type silicon semiconductor and an n-type silicon semiconductor may be used as the light-receiving element included in the layer 7034. Further, it may be a pin junction photodiode in which an i-type silicon semiconductor layer is provided between a p-type silicon semiconductor and an n-type silicon semiconductor.
上記シリコンを用いたフォトダイオードは単結晶シリコンを用いて形成することができる。このとき、層7033と層7034とは、貼り合わせ工程を用いて電気的な接合を得ることが好ましい。また、上記シリコンを用いたフォトダイオードは、非晶質シリコン、微結晶シリコン、多結晶シリコンなどの薄膜を用いて形成することもできる。 The photodiode using silicon can be formed using single crystal silicon. At this time, it is preferable that the layer 7033 and the layer 7034 be electrically bonded by using a bonding process. The photodiode using silicon can also be formed using a thin film such as amorphous silicon, microcrystalline silicon, or polycrystalline silicon.
(実施の形態7)
<電子機器>
 上記実施の形態に示す半導体装置は、様々な電子機器に用いることができる。図16(A)等に、その具体例を示す。
(Embodiment 7)
<Electronic equipment>
The semiconductor device described in any of the above embodiments can be used for various electronic devices. A specific example is shown in FIG.
図16(A)に示す情報端末2910は、筐体2911、表示部2912、マイクロフォン2917、スピーカ部2914、カメラ2913、外部接続部2916、および操作スイッチ2915等を有する。表示部2912には、可撓性基板が用いられた表示パネルおよびタッチスクリーンを備える。また、情報端末2910は、筐体2911の内側にアンテナ、バッテリなどを備える。情報端末2910は、例えば、スマートフォン、携帯電話、タブレット型情報端末、タブレット型パーソナルコンピュータ、電子書籍端末等として用いることができる。 An information terminal 2910 illustrated in FIG. 16A includes a housing 2911, a display portion 2912, a microphone 2917, a speaker portion 2914, a camera 2913, an external connection portion 2916, an operation switch 2915, and the like. The display portion 2912 includes a display panel using a flexible substrate and a touch screen. In addition, the information terminal 2910 includes an antenna, a battery, and the like inside the housing 2911. The information terminal 2910 can be used as, for example, a smartphone, a mobile phone, a tablet information terminal, a tablet personal computer, an electronic book terminal, or the like.
図16(B)に示すノート型パーソナルコンピュータ2920は、筐体2921、表示部2922、キーボード2923、およびポインティングデバイス2924等を有する。また、ノート型パーソナルコンピュータ2920は、筐体2921の内側にアンテナ、バッテリなどを備える。 A laptop personal computer 2920 illustrated in FIG. 16B includes a housing 2921, a display portion 2922, a keyboard 2923, a pointing device 2924, and the like. The laptop personal computer 2920 includes an antenna, a battery, and the like inside the housing 2921.
図16(C)に示すビデオカメラ2940は、筐体2941、筐体2942、表示部2943、操作スイッチ2944、レンズ2945、および接続部2946等を有する。操作スイッチ2944およびレンズ2945は筐体2941に設けられており、表示部2943は筐体2942に設けられている。また、ビデオカメラ2940は、筐体2941の内側にアンテナ、バッテリなどを備える。そして、筐体2941と筐体2942は、接続部2946により接続されており、筐体2941と筐体2942の間の角度は、接続部2946により変えることが可能な構造となっている。筐体2941に対する筐体2942の角度によって、表示部2943に表示される画像の向きの変更や、画像の表示/非表示の切り換えを行うことができる。 A video camera 2940 illustrated in FIG. 16C includes a housing 2941, a housing 2942, a display portion 2944, operation switches 2944, a lens 2945, a connection portion 2946, and the like. The operation switch 2944 and the lens 2945 are provided on the housing 2941, and the display portion 2944 is provided on the housing 2942. In addition, the video camera 2940 includes an antenna, a battery, and the like inside the housing 2941. The housing 2941 and the housing 2942 are connected to each other by a connection portion 2946. The angle between the housing 2941 and the housing 2942 can be changed by the connection portion 2946. Depending on the angle of the housing 2942 with respect to the housing 2941, the orientation of the image displayed on the display portion 2943 can be changed, and display / non-display of the image can be switched.
図16(D)にバングル型の情報端末の一例を示す。情報端末2950は、筐体2951、および表示部2952等を有する。また、情報端末2950は、筐体2951の内側にアンテナ、バッテリなどを備える。表示部2952は、曲面を有する筐体2951に支持されている。表示部2952には、可撓性基板を用いた表示パネルを備えているため、フレキシブルかつ軽くて使い勝手の良い情報端末2950を提供することができる。 FIG. 16D illustrates an example of a bangle information terminal. The information terminal 2950 includes a housing 2951, a display portion 2952, and the like. In addition, the information terminal 2950 includes an antenna, a battery, and the like inside the housing 2951. The display portion 2952 is supported by a housing 2951 having a curved surface. Since the display portion 2952 includes a display panel using a flexible substrate, an information terminal 2950 that is flexible, light, and easy to use can be provided.
図16(E)に腕時計型の情報端末の一例を示す。情報端末2960は、筐体2961、表示部2962、バンド2963、バックル2964、操作スイッチ2965、入出力端子2966などを備える。また、情報端末2960は、筐体2961の内側にアンテナ、バッテリなどを備える。情報端末2960は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。 FIG. 16E illustrates an example of a wristwatch type information terminal. The information terminal 2960 includes a housing 2961, a display portion 2962, a band 2963, a buckle 2964, an operation switch 2965, an input / output terminal 2966, and the like. The information terminal 2960 includes an antenna, a battery, and the like inside the housing 2961. The information terminal 2960 can execute various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games.
表示部2962の表示面は湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示部2962はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部2962に表示されたアイコン2967に触れることで、アプリケーションを起動することができる。操作スイッチ2965は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、情報端末2960に組み込まれたオペレーティングシステムにより、操作スイッチ2965の機能を設定することもできる。 The display surface of the display portion 2962 is curved, and display can be performed along the curved display surface. The display portion 2962 includes a touch sensor and can be operated by touching the screen with a finger, a stylus, or the like. For example, an application can be started by touching an icon 2967 displayed on the display unit 2962. The operation switch 2965 can have various functions such as time setting, power on / off operation, wireless communication on / off operation, manner mode execution and release, and power saving mode execution and release. . For example, the function of the operation switch 2965 can be set by an operating system incorporated in the information terminal 2960.
また、情報端末2960は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、情報端末2960は入出力端子2966を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子2966を介して充電を行うこともできる。なお、充電動作は入出力端子2966を介さずに無線給電により行ってもよい。 In addition, the information terminal 2960 can execute short-range wireless communication that is a communication standard. For example, it is possible to talk hands-free by communicating with a headset capable of wireless communication. Further, the information terminal 2960 includes an input / output terminal 2966, and can directly exchange data with other information terminals via a connector. Charging can also be performed via the input / output terminal 2966. Note that the charging operation may be performed by wireless power feeding without using the input / output terminal 2966.
図17(A)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ部2104、表示部2105、下部カメラ2106、障害物センサ2107、および移動機構2108を備える。 A robot 2100 illustrated in FIG. 17A includes an arithmetic device 2110, an illuminance sensor 2101, a microphone 2102, an upper camera 2103, a speaker unit 2104, a display unit 2105, a lower camera 2106, an obstacle sensor 2107, and a moving mechanism 2108.
ロボット2100において、演算装置2110、照度センサ2101、上部カメラ2103、表示部2105、下部カメラ2106および障害物センサ2107等に、上記電子部品を使用することができる。 In the robot 2100, the electronic components can be used for the arithmetic device 2110, the illuminance sensor 2101, the upper camera 2103, the display unit 2105, the lower camera 2106, the obstacle sensor 2107, and the like.
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ部2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ部2104を用いて、使用者とコミュニケーションをとることが可能である。 The microphone 2102 has a function of detecting a user's speaking voice, environmental sound, and the like. The speaker unit 2104 has a function of emitting sound. The robot 2100 can communicate with the user using the microphone 2102 and the speaker unit 2104.
表示部2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報を表示部2105に表示することが可能である。表示部2105は、タッチパネルを搭載していてもよい。 The display unit 2105 has a function of displaying various information. The robot 2100 can display information desired by the user on the display unit 2105. The display unit 2105 may be equipped with a touch panel.
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。 The upper camera 2103 and the lower camera 2106 have a function of imaging the surroundings of the robot 2100. The obstacle sensor 2107 can detect the presence or absence of an obstacle in the traveling direction when the robot 2100 moves forward using the moving mechanism 2108. The robot 2100 can recognize the surrounding environment using the upper camera 2103, the lower camera 2106, and the obstacle sensor 2107, and can move safely.
図17(B)に示す飛行体2120は、演算装置2121と、プロペラ2123と、カメラ2122とを有し、自立して飛行する機能を有する。 A flying object 2120 illustrated in FIG. 17B includes a calculation device 2121, a propeller 2123, and a camera 2122, and has a function of flying independently.
飛行体2120において、演算装置2121およびカメラ2122に上記電子部品を用いることができる。 In the flying object 2120, the electronic components can be used for the arithmetic device 2121 and the camera 2122.
図17(C)は、自動車の一例を示す外観図である。自動車2980は、カメラ2981等を有する。また、自動車2980は、赤外線レーダー、ミリ波レーダー、レーザーレーダーなど各種センサなどを備える。自動車2980は、カメラ2981が撮影した画像を解析し、歩行者の有無など、周囲の交通状況を判断し、自動運転を行うことができる。 FIG. 17C is an external view illustrating an example of an automobile. The automobile 2980 has a camera 2981 and the like. The automobile 2980 includes various sensors such as an infrared radar, a millimeter wave radar, and a laser radar. The automobile 2980 can analyze an image taken by the camera 2981, determine surrounding traffic conditions such as the presence or absence of a pedestrian, and perform automatic driving.
自動車2980において、カメラ2981に上記電子部品を用いることができる。 In the automobile 2980, the electronic component can be used for the camera 2981.
図17(D)に、互いに別々の言語で話す複数の人間のコミュニケーションにおいて、携帯電子機器2130に同時通訳を行わせる状況を示す。 FIG. 17D illustrates a situation in which the portable electronic device 2130 performs simultaneous interpretation in communication between a plurality of people who speak in different languages.
携帯電子機器2130は、マイクロフォンおよびスピーカ等を有し、使用者の話し声を認識してそれを話し相手の話す言語に翻訳する機能を有する。携帯電子機器2130の演算装置に、上記電子部品を使用することができる。 The portable electronic device 2130 includes a microphone, a speaker, and the like, and has a function of recognizing a user's speaking voice and translating it into a language spoken by the speaking partner. The electronic component can be used for the arithmetic device of the portable electronic device 2130.
また、図17(D)において、使用者は携帯型マイクロフォン2131を有する。携帯型マイクロフォン2131は、無線通信機能を有し、検知した音声を携帯電子機器2130に送信する機能を有する。 In FIG. 17D, the user has a portable microphone 2131. The portable microphone 2131 has a wireless communication function and a function of transmitting detected sound to the portable electronic device 2130.
図18(A)は、ペースメーカの一例を示す断面模式図である。 FIG. 18A is a schematic cross-sectional view showing an example of a pacemaker.
ペースメーカ本体5300は、バッテリ5301a、5301bと、レギュレータと、制御回路と、アンテナ5304と、右心房へのワイヤ5302、右心室へのワイヤ5303とを少なくとも有している。 The pacemaker body 5300 includes at least batteries 5301a and 5301b, a regulator, a control circuit, an antenna 5304, a wire 5302 to the right atrium, and a wire 5303 to the right ventricle.
ペースメーカ本体5300に上記電子部品を用いることができる。 The electronic component can be used for the pacemaker main body 5300.
ペースメーカ本体5300は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5305及び上大静脈5306を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。 The pacemaker body 5300 is placed in the body by surgery, and two wires pass through the human subclavian vein 5305 and superior vena cava 5306, one wire tip is placed in the right ventricle and the other wire tip is placed in the right atrium. To be.
また、アンテナ5304で電力が受信でき、その電力は複数のバッテリ5301a、5301bに充電され、ペースメーカの交換頻度を少なくすることができる。ペースメーカ本体5300は複数のバッテリを有しているため、安全性が高く、一方が故障したとしてももう一方が機能させることができるため、補助電源としても機能する。 In addition, power can be received by the antenna 5304, and the power is charged in the plurality of batteries 5301a and 5301b, so that the replacement frequency of the pacemaker can be reduced. Since the pacemaker body 5300 has a plurality of batteries, it is highly safe, and even if one of the pacemakers breaks down, the other can function, and thus functions as an auxiliary power source.
また、電力を受信できるアンテナ5304とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。 In addition to an antenna 5304 that can receive power, an antenna that can transmit physiological signals may be provided. For example, physiological signals such as a pulse, a respiratory rate, a heart rate, and a body temperature can be confirmed by an external monitor device. A system for monitoring cardiac activity may be configured.
図18(B)に示すセンサ5900は、接着パッド等を用いて人体に取り付けられる。センサ5900は、配線5932を介して人体に取り付けられた電極5931等に信号を与えて心拍数や心電図などの生体情報を取得する。取得された情報は無線信号として、読み取り器等の端末に送信される。 A sensor 5900 illustrated in FIG. 18B is attached to a human body using an adhesive pad or the like. The sensor 5900 gives a signal to the electrode 5931 or the like attached to the human body via the wiring 5932 and acquires biological information such as a heart rate and an electrocardiogram. The acquired information is transmitted as a wireless signal to a terminal such as a reader.
センサ5900に、上記電子部品を用いることができる。 For the sensor 5900, the above electronic components can be used.
図19は、掃除ロボットの一例を示す模式図である。 FIG. 19 is a schematic diagram illustrating an example of a cleaning robot.
掃除ロボット5100は、上面に配置された表示部5101、側面に配置された複数のカメラ5102、ブラシ5103、複数の操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。 The cleaning robot 5100 includes a display unit 5101 arranged on the upper surface, a plurality of cameras 5102 arranged on the side surface, a brush 5103, and a plurality of operation buttons 5104. Although not shown, the lower surface of the cleaning robot 5100 is provided with a tire, a suction port, and the like. In addition, the cleaning robot 5100 includes various sensors such as an infrared sensor, an ultrasonic sensor, an acceleration sensor, a piezo sensor, an optical sensor, and a gyro sensor. Moreover, the cleaning robot 5100 includes a wireless communication unit.
カメラ5102に、上記電子部品を用いることができる。 The electronic component can be used for the camera 5102.
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミ5120を吸引することができる。 The cleaning robot 5100 is self-propelled, can detect the dust 5120, and can suck the dust 5120 from the suction port provided on the lower surface.
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。 In addition, the cleaning robot 5100 can analyze an image captured by the camera 5102 and determine whether there is an obstacle such as a wall, furniture, or a step. In addition, when an object that is likely to be entangled with the brush 5103 such as wiring is detected by image analysis, the rotation of the brush 5103 can be stopped.
表示部5101には、バッテリの残量や、吸引したゴミの量などを表示することができる。また、掃除ロボット5100が走行した経路を表示部5101に表示させてもよい。また、表示部5101をタッチパネルとし、操作ボタン5104を表示部5101に設けてもよい。 The display portion 5101 can display the remaining amount of battery, the amount of sucked dust, and the like. Further, the route traveled by the cleaning robot 5100 may be displayed on the display unit 5101. Alternatively, the display portion 5101 may be a touch panel and the operation buttons 5104 may be provided on the display portion 5101.
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。 The cleaning robot 5100 can communicate with a portable electronic device 5140 such as a smartphone. An image captured by the camera 5102 can be displayed on the portable electronic device 5140. Therefore, the owner of the cleaning robot 5100 can know the state of the room even when away from home.
以上、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 As described above, the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
本明細書において、特に断りがない場合、オン電流とは、トランジスタがオン状態にあるときのドレイン電流をいう。オン状態(オンと略す場合もある)とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧(V)がしきい値電圧(Vth)以上の状態、pチャネル型トランジスタでは、VがVth以下の状態をいう。例えば、nチャネル型のトランジスタのオン電流とは、VがVth以上のときのドレイン電流を言う。また、トランジスタのオン電流は、ドレインとソースの間の電圧(V)に依存する場合がある。 In this specification, unless otherwise specified, on-state current refers to drain current when a transistor is in an on state. The ON state (sometimes abbreviated as ON) is a state where the voltage between the gate and the source (V G ) is equal to or higher than the threshold voltage (V th ) in an n-channel transistor, unless otherwise specified, p In a channel type transistor, V G is a state of V th or less. For example, the on-current of the n-channel transistor, V G refers to a drain current when the above V th. In addition, the on-state current of the transistor may depend on a voltage (V D ) between the drain and the source.
本明細書において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態にあるときのドレイン電流をいう。オフ状態(オフと略す場合もある)とは、特に断りがない場合、nチャネル型トランジスタでは、VがVthよりも低い状態、pチャネル型トランジスタでは、VがVthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、VがVthよりも低いときのドレイン電流を言う。トランジスタのオフ電流は、Vに依存する場合がある。従って、トランジスタのオフ電流が10−21A未満である、とは、トランジスタのオフ電流が10−21A未満となるVの値が存在することを言う場合がある。 In this specification, unless otherwise specified, off-state current refers to drain current when a transistor is off. The OFF state (sometimes referred to as OFF), unless otherwise specified, the n-channel type transistor, V G is lower than V th state, the p-channel type transistor, V G is higher than V th state Say. For example, the off-current of the n-channel transistor, refers to the drain current when V G is lower than V th. Off-state current of the transistor may be dependent on the V G. Accordingly, the off current of the transistor is less than 10 -21 A, and may refer to the value of V G to off-current of the transistor is less than 10 -21 A are present.
また、トランジスタのオフ電流は、Vに依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、Vの絶対値が0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、または20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等において使用されるVにおけるオフ電流を表す場合がある。 In addition, the off-state current of the transistor may depend on V D. In this specification, unless otherwise specified, the off-state current is such that the absolute value of V D is 0.1 V, 0.8 V, 1 V, 1.2 V, 1.8 V, 2.5 V, 3 V, 3.3 V, 10 V , 12V, 16V, or 20V may be represented. Alternatively, the off-state current in V D used in a semiconductor device or the like including the transistor may be represented.
本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。 In this specification and the like, voltage and potential can be described as appropriate. The voltage is a potential difference from a reference potential. For example, when the reference potential is a ground potential (ground potential), the voltage can be rephrased as a potential. The ground potential does not necessarily mean 0V. Note that the potential is relative, and the potential applied to the wiring or the like may be changed depending on the reference potential.
本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。 In this specification and the like, when X and Y are explicitly described as being connected, X and Y are electrically connected and X and Y are directly connected. It is assumed that this is disclosed in this specification and the like.
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。 Here, X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。 As an example of the case where X and Y are directly connected, an element that enables electrical connection between X and Y (for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.) This is a case where X and Y are connected without passing through an element, a light emitting element, a load, or the like.
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。 As an example of the case where X and Y are electrically connected, an element (for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.) that enables electrical connection between X and Y is shown. More than one element, light emitting element, load, etc.) can be connected between X and Y. Note that the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current. Alternatively, the switch has a function of selecting and switching a path through which a current flows. Note that the case where X and Y are electrically connected includes the case where X and Y are directly connected.
C1、C21:容量素子、M1、M2、M3、M21、M22、M23、Tr1、Tr2:トランジスタ、10、11、12、13、20、21、22、23、90:半導体装置、120、203、204、205、206、240、240a、240b、260、320、503、504、505、506、540、540a、540b、560:導電体、130、210、212、214、216、220、222、224、250、270、271、272、274、275、280、282、286、330、510、512、514、516、520、522、524、550、570、571、572、575、580、582、586:絶縁体、201、501:基板、230、230a、230b、230c、230d、530、530a、530c、530d:酸化物、232、232a、232b:接合領域、231、231a、231b、234、531:領域、252、552:金属酸化物、276、276a、276b、576、576a、576b:バリア層、300、302、303:トランジスタ、2100:ロボット、2101:照度センサ、2102、2917:マイクロフォン、2103:上部カメラ、2104、2914:スピーカ部、2105、2912、2922、2943、2952、2962、5101:表示部、2106:下部カメラ、2107:障害物センサ、2108:移動機構、2110、2121:演算装置、2120:飛行体、2122、2913、2981、5102:カメラ、2123:プロペラ、2130、5140:携帯電子機器、2131:携帯型マイクロフォン、2910、2950、2960:情報端末、2911、2921、2941、2942、2951、2961:筐体、2915、2944、2965:操作スイッチ、2916:外部接続部、2920:ノート型パーソナルコンピュータ、2923:キーボード、2924:ポインティングデバイス、2940:ビデオカメラ、2945:レンズ、2946:接続部、2963:バンド、2964:バックル、2966:入出力端子、2967:アイコン、2980:自動車、5100:掃除ロボット、5103:ブラシ、5104:操作ボタン、5120:ゴミ、5301a、5301b:バッテリ、5300:ペースメーカ本体、5302、5303:ワイヤ、5304:アンテナ、5305:鎖骨下静脈、5306:上大静脈、5900:センサ、5931:電極、5932:配線、7000、7400:電子部品、7002:プリント基板、7004:実装基板、7031:基板、7032、7033、7034:層、7411:パッケージ基板、7421:レンズカバー、7435:レンズ、7441:ランド、7451:イメージセンサチップ、7461:電極パッド、7471:ワイヤ、7490:ICチップ C1, C21: Capacitance elements, M1, M2, M3, M21, M22, M23, Tr1, Tr2: Transistors 10, 11, 12, 13, 20, 21, 22, 23, 90: Semiconductor devices, 120, 203, 204, 205, 206, 240, 240a, 240b, 260, 320, 503, 504, 505, 506, 540, 540a, 540b, 560: conductor, 130, 210, 212, 214, 216, 220, 222, 224 250, 270, 271, 272, 274, 275, 280, 282, 286, 330, 510, 512, 514, 516, 520, 522, 524, 550, 570, 571, 572, 575, 580, 582, 586 : Insulator, 201, 501: Substrate, 230, 230a, 230b, 230c, 230d, 5 0, 530a, 530c, 530d: oxide, 232, 232a, 232b: junction region, 231, 231a, 231b, 234, 531: region, 252, 552: metal oxide, 276, 276a, 276b, 576, 576a, 576b: barrier layer, 300, 302, 303: transistor, 2100: robot, 2101: illuminance sensor, 2102, 2917: microphone, 2103: upper camera, 2104, 2914: speaker unit, 2105, 2912, 2922, 2943, 2952, 2962, 5101: Display unit, 2106: Lower camera, 2107: Obstacle sensor, 2108: Moving mechanism, 2110, 2121: Computing device, 2120: Aircraft, 2122, 2913, 2981, 5102: Camera, 2123: Propeller, 2130 , 140: Portable electronic device, 2131: Portable microphone, 2910, 2950, 2960: Information terminal, 2911, 2921, 2941, 2942, 2951, 2961: Case, 2915, 2944, 2965: Operation switch, 2916: External connection unit 2920: Notebook personal computer 2923: Keyboard 2924: Pointing device 2940: Video camera 2945: Lens 2946: Connection unit 2963: Band 2964: Buckle 2966: Input / output terminal 2967: Icon 2980 : Automobile, 5100: Cleaning robot, 5103: Brush, 5104: Operation button, 5120: Garbage, 5301a, 5301b: Battery, 5300: Pacemaker body, 5302, 5303: Wire, 5304: Ann Tena, 5305: Subclavian vein, 5306: Superior vena cava, 5900: Sensor, 5931: Electrode, 5932: Wiring, 7000, 7400: Electronic component, 7002: Printed circuit board, 7004: Mounting board, 7031: Board, 7032, 7033 , 7034: layer, 7411: package substrate, 7421: lens cover, 7435: lens, 7441: land, 7451: image sensor chip, 7461: electrode pad, 7471: wire, 7490: IC chip

Claims (10)

  1.  第1乃至第3トランジスタおよび容量素子を有し、
     前記第1トランジスタは、酸化物半導体を含む第1半導体層、第1絶縁体、第2絶縁体、第1ゲートおよび第2ゲートを有し、
     前記第1ゲートは、前記第1絶縁体を間に介して、前記第1半導体層の上面および側面と対向する領域を有し、
     前記第2ゲートは、前記第2絶縁体を間に介して、前記第1半導体層の下面と対向する領域を有し、
     前記第1半導体層の厚さは、前記第1トランジスタのチャネル幅よりも大きく、
     前記第2トランジスタは、酸化物半導体を含む第2半導体層、第3絶縁体、第4絶縁体、第3ゲートおよび第4ゲートを有し、
     前記第3ゲートは、前記第3絶縁体を間に介して、前記第2半導体層の上面および側面と対向する領域を有し、
     前記第4ゲートは、前記第4絶縁体を間に介して、前記第2半導体層の下面と対向する領域を有し、
     前記第2半導体層の厚さは、前記第2トランジスタのチャネル幅よりも大きく、
     前記第3トランジスタは、酸化物半導体を含む第3半導体層、第5絶縁体、第6絶縁体、第5ゲートおよび第6ゲートを有し、
     前記第5ゲートは、前記第5絶縁体を間に介して、前記第3半導体層の上面および側面と対向する領域を有し、
     前記第6ゲートは、前記第6絶縁体を間に介して、前記第3半導体層の下面と対向する領域を有し、
     前記第3半導体層の厚さは、前記第3トランジスタのチャネル幅よりも大きく、
     前記第1トランジスタのドレインは、第1電位が与えられ、
     前記第1トランジスタのソースは、前記第2トランジスタのドレインと前記容量素子の第1端子に電気的に接続され、
     前記第2トランジスタのソースは、前記第3トランジスタのドレインに電気的に接続され、
     前記第3トランジスタのソースは、第2電位が与えられ、
     前記第1ゲートは、第1クロック信号が入力され、
     前記第3ゲートは、前記第1クロック信号の反転信号である第2クロック信号が入力され、
     前記第5ゲートは、第1信号が入力され、
     前記第1トランジスタのソースは、第2信号を出力することを特徴とする半導体装置。
    Having first to third transistors and a capacitor;
    The first transistor includes a first semiconductor layer including an oxide semiconductor, a first insulator, a second insulator, a first gate, and a second gate,
    The first gate has a region facing an upper surface and a side surface of the first semiconductor layer with the first insulator interposed therebetween,
    The second gate has a region facing the lower surface of the first semiconductor layer with the second insulator interposed therebetween,
    The thickness of the first semiconductor layer is larger than the channel width of the first transistor,
    The second transistor has a second semiconductor layer including an oxide semiconductor, a third insulator, a fourth insulator, a third gate, and a fourth gate,
    The third gate has a region facing an upper surface and a side surface of the second semiconductor layer with the third insulator interposed therebetween;
    The fourth gate has a region facing the lower surface of the second semiconductor layer with the fourth insulator interposed therebetween,
    The thickness of the second semiconductor layer is larger than the channel width of the second transistor,
    The third transistor includes a third semiconductor layer including an oxide semiconductor, a fifth insulator, a sixth insulator, a fifth gate, and a sixth gate.
    The fifth gate has a region facing an upper surface and a side surface of the third semiconductor layer with the fifth insulator interposed therebetween;
    The sixth gate has a region facing the lower surface of the third semiconductor layer with the sixth insulator interposed therebetween,
    A thickness of the third semiconductor layer is larger than a channel width of the third transistor;
    The drain of the first transistor is given a first potential,
    A source of the first transistor is electrically connected to a drain of the second transistor and a first terminal of the capacitor;
    A source of the second transistor is electrically connected to a drain of the third transistor;
    The source of the third transistor is given a second potential,
    The first gate receives a first clock signal,
    The third gate receives a second clock signal that is an inverted signal of the first clock signal,
    The fifth gate receives the first signal,
    A semiconductor device, wherein the source of the first transistor outputs a second signal.
  2.  第1乃至第3トランジスタおよび容量素子を有し、
     前記第1トランジスタは、酸化物半導体を含む第1半導体層、第1絶縁体、第2絶縁体、第1ゲートおよび第2ゲートを有し、
     前記第1ゲートは、前記第1絶縁体を間に介して、前記第1半導体層の上面および側面と対向する領域を有し、
     前記第2ゲートは、前記第2絶縁体を間に介して、前記第1半導体層の下面と対向する領域を有し、
     前記第1半導体層の厚さは、前記第1トランジスタのチャネル幅よりも大きく、
     前記第2トランジスタは、酸化物半導体を含む第2半導体層、第3絶縁体、第4絶縁体、第3ゲートおよび第4ゲートを有し、
     前記第3ゲートは、前記第3絶縁体を間に介して、前記第2半導体層の上面および側面と対向する領域を有し、
     前記第4ゲートは、前記第4絶縁体を間に介して、前記第2半導体層の下面と対向する領域を有し、
     前記第2半導体層の厚さは、前記第2トランジスタのチャネル幅よりも大きく、
     前記第3トランジスタは、酸化物半導体を含む第3半導体層、第5絶縁体、第6絶縁体、第5ゲートおよび第6ゲートを有し、
     前記第5ゲートは、前記第5絶縁体を間に介して、前記第3半導体層の上面および側面と対向する領域を有し、
     前記第6ゲートは、前記第6絶縁体を間に介して、前記第3半導体層の下面と対向する領域を有し、
     前記第3半導体層の厚さは、前記第3トランジスタのチャネル幅よりも大きく、
     前記第1トランジスタのドレインは、第1電位が与えられ、
     前記第1トランジスタのソースは、前記第2トランジスタのドレインと前記容量素子の第1端子に電気的に接続され、
     前記第2トランジスタのソースは、前記第3トランジスタのドレインに電気的に接続され、
     前記第3トランジスタのソースは、第2電位が与えられ、
     前記第1ゲートは、第1クロック信号が入力され、
     前記第5ゲートは、前記第1クロック信号の反転信号である第2クロック信号が入力され、
     前記第3ゲートは、第1信号が入力され、
     前記第1トランジスタのソースは、第2信号を出力することを特徴とする半導体装置。
    Having first to third transistors and a capacitor;
    The first transistor includes a first semiconductor layer including an oxide semiconductor, a first insulator, a second insulator, a first gate, and a second gate,
    The first gate has a region facing an upper surface and a side surface of the first semiconductor layer with the first insulator interposed therebetween,
    The second gate has a region facing the lower surface of the first semiconductor layer with the second insulator interposed therebetween,
    The thickness of the first semiconductor layer is larger than the channel width of the first transistor,
    The second transistor has a second semiconductor layer including an oxide semiconductor, a third insulator, a fourth insulator, a third gate, and a fourth gate,
    The third gate has a region facing an upper surface and a side surface of the second semiconductor layer with the third insulator interposed therebetween;
    The fourth gate has a region facing the lower surface of the second semiconductor layer with the fourth insulator interposed therebetween,
    The thickness of the second semiconductor layer is larger than the channel width of the second transistor,
    The third transistor includes a third semiconductor layer including an oxide semiconductor, a fifth insulator, a sixth insulator, a fifth gate, and a sixth gate.
    The fifth gate has a region facing an upper surface and a side surface of the third semiconductor layer with the fifth insulator interposed therebetween;
    The sixth gate has a region facing the lower surface of the third semiconductor layer with the sixth insulator interposed therebetween,
    A thickness of the third semiconductor layer is larger than a channel width of the third transistor;
    The drain of the first transistor is given a first potential,
    A source of the first transistor is electrically connected to a drain of the second transistor and a first terminal of the capacitor;
    A source of the second transistor is electrically connected to a drain of the third transistor;
    The source of the third transistor is given a second potential,
    The first gate receives a first clock signal,
    The fifth gate receives a second clock signal that is an inverted signal of the first clock signal,
    The third gate receives a first signal,
    A semiconductor device, wherein the source of the first transistor outputs a second signal.
  3.  請求項1または請求項2において、
     前記第2ゲート、前記第4ゲートおよび前記第6ゲートは、第3電位が与えられることを特徴とする半導体装置。
    In claim 1 or claim 2,
    A semiconductor device, wherein a third potential is applied to the second gate, the fourth gate, and the sixth gate.
  4.  請求項1または請求項2において、
     前記第2ゲートは第3の電位が与えられ、前記第4ゲートは第4電位が与えられ、前記第6ゲートは第5電位が与えられることを特徴とする半導体装置。
    In claim 1 or claim 2,
    3. The semiconductor device according to claim 1, wherein a third potential is applied to the second gate, a fourth potential is applied to the fourth gate, and a fifth potential is applied to the sixth gate.
  5.  請求項1または請求項2において、
     前記第2ゲートは前記第1ゲートに電気的に接続され、前記第4ゲートは前記第3ゲートに電気的に接続され、前記第6ゲートは前記第5ゲートに電気的に接続されることを特徴とする半導体装置。
    In claim 1 or claim 2,
    The second gate is electrically connected to the first gate, the fourth gate is electrically connected to the third gate, and the sixth gate is electrically connected to the fifth gate. A featured semiconductor device.
  6.  請求項1または請求項2において、
     前記第1ゲートは、側壁に第7絶縁体が設けられ、
     前記第3ゲートは、側壁に第8絶縁体が設けられ、
     前記容量素子は、第2端子に電気的に接続された電極を有し、
     前記第1ゲートと前記電極は、前記第7絶縁体を間に介して設けられ、
     前記第3ゲートと前記電極は、前記第8絶縁体を間に介して設けられることを特徴とする半導体装置。
    In claim 1 or claim 2,
    The first gate is provided with a seventh insulator on a side wall;
    The third gate is provided with an eighth insulator on the side wall;
    The capacitive element has an electrode electrically connected to the second terminal,
    The first gate and the electrode are provided with the seventh insulator interposed therebetween,
    The semiconductor device, wherein the third gate and the electrode are provided with the eighth insulator interposed therebetween.
  7.  第1乃至第3トランジスタおよび容量素子を有し、
     前記第1トランジスタは、酸化物半導体を含む第1半導体層、第1ゲートおよび第2ゲートを有し、
     前記第2トランジスタは、酸化物半導体を含む第2半導体層、第3ゲートおよび第4ゲートを有し、
     前記第3トランジスタは、酸化物半導体を含む第3半導体層、第5ゲートおよび第6ゲートを有し、
     前記第1トランジスタのドレインは、第1電位が与えられ、
     前記第1トランジスタのソースは、前記第2トランジスタのドレインと前記容量素子の第1端子に電気的に接続され、
     前記第2トランジスタのソースは、前記第3トランジスタのドレインに電気的に接続され、
     前記第3トランジスタのソースは、第2電位が与えられ、
     前記第1ゲートおよび前記第2ゲートは、第1クロック信号が入力され、
     前記第3ゲートおよび前記第4ゲートは、前記第1クロック信号の反転信号である第2クロック信号が入力され、
     前記第5ゲートおよび前記第6ゲートは、第1信号が入力され、
     前記第1トランジスタのソースは、第2信号を出力することを特徴とする半導体装置。
    Having first to third transistors and a capacitor;
    The first transistor has a first semiconductor layer including an oxide semiconductor, a first gate, and a second gate,
    The second transistor has a second semiconductor layer including an oxide semiconductor, a third gate, and a fourth gate,
    The third transistor has a third semiconductor layer including an oxide semiconductor, a fifth gate, and a sixth gate,
    The drain of the first transistor is given a first potential,
    A source of the first transistor is electrically connected to a drain of the second transistor and a first terminal of the capacitor;
    A source of the second transistor is electrically connected to a drain of the third transistor;
    The source of the third transistor is given a second potential,
    A first clock signal is input to the first gate and the second gate,
    The third gate and the fourth gate receive a second clock signal that is an inverted signal of the first clock signal,
    A first signal is input to the fifth gate and the sixth gate,
    A semiconductor device, wherein the source of the first transistor outputs a second signal.
  8.  第1乃至第3トランジスタおよび容量素子を有し、
     前記第1トランジスタは、酸化物半導体を含む第1半導体層、第1ゲートおよび第2ゲートを有し、
     前記第2トランジスタは、酸化物半導体を含む第2半導体層、第3ゲートおよび第4ゲートを有し、
     前記第3トランジスタは、酸化物半導体を含む第3半導体層、第5ゲートおよび第6ゲートを有し、
     前記第1トランジスタのドレインは、第1電位が与えられ、
     前記第1トランジスタのソースは、前記第2トランジスタのドレインと前記容量素子の第1端子に電気的に接続され、
     前記第2トランジスタのソースは、前記第3トランジスタのドレインに電気的に接続され、
     前記第3トランジスタのソースは、第2電位が与えられ、
     前記第1ゲートおよび前記第2ゲートは、第1クロック信号が入力され、
     前記第5ゲートおよび前記第6ゲートは、前記第1クロック信号の反転信号である第2クロック信号が入力され、
     前記第3ゲートおよび前記第4ゲートは、第1信号が入力され、
     前記第1トランジスタのソースは、第2信号を出力することを特徴とする半導体装置。
    Having first to third transistors and a capacitor;
    The first transistor has a first semiconductor layer including an oxide semiconductor, a first gate, and a second gate,
    The second transistor has a second semiconductor layer including an oxide semiconductor, a third gate, and a fourth gate,
    The third transistor has a third semiconductor layer including an oxide semiconductor, a fifth gate, and a sixth gate,
    The drain of the first transistor is given a first potential,
    A source of the first transistor is electrically connected to a drain of the second transistor and a first terminal of the capacitor;
    A source of the second transistor is electrically connected to a drain of the third transistor;
    The source of the third transistor is given a second potential,
    A first clock signal is input to the first gate and the second gate,
    The fifth gate and the sixth gate receive a second clock signal that is an inverted signal of the first clock signal,
    A first signal is input to the third gate and the fourth gate,
    A semiconductor device, wherein the source of the first transistor outputs a second signal.
  9.  請求項7または請求項8において、
     前記第1ゲートは、側壁に第1絶縁体が設けられ、
     前記第3ゲートは、側壁に第2絶縁体が設けられ、
     前記容量素子は、第2端子に電気的に接続された電極を有し、
     前記第1ゲートと前記電極は、前記第1絶縁体を間に介して設けられ、
     前記第3ゲートと前記電極は、前記第2絶縁体を間に介して設けられることを特徴とする半導体装置。
    In claim 7 or claim 8,
    The first gate is provided with a first insulator on a sidewall,
    The third gate is provided with a second insulator on a side wall;
    The capacitive element has an electrode electrically connected to the second terminal,
    The first gate and the electrode are provided with the first insulator interposed therebetween,
    The semiconductor device, wherein the third gate and the electrode are provided with the second insulator interposed therebetween.
  10.  請求項1、請求項2、請求項7及び請求項8のいずれか一項において、
     前記第1クロック信号が高電位のとき、前記容量素子は充電を行い、
     前記第1クロック信号が低電位のとき、前記第2信号は前記第1信号の反転信号であることを特徴とする半導体装置。
    In any one of Claim 1, Claim 2, Claim 7, and Claim 8,
    When the first clock signal is at a high potential, the capacitor element is charged,
    When the first clock signal is at a low potential, the second signal is an inverted signal of the first signal.
PCT/IB2018/052790 2017-05-03 2018-04-23 Semiconductor device WO2018203175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019516297A JP7106529B2 (en) 2017-05-03 2018-04-23 semiconductor equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-092036 2017-05-03
JP2017092036 2017-05-03
JP2017095808 2017-05-12
JP2017-095808 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018203175A1 true WO2018203175A1 (en) 2018-11-08

Family

ID=64016006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/052790 WO2018203175A1 (en) 2017-05-03 2018-04-23 Semiconductor device

Country Status (2)

Country Link
JP (1) JP7106529B2 (en)
WO (1) WO2018203175A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103454A (en) * 2009-10-16 2011-05-26 Semiconductor Energy Lab Co Ltd Logic circuit and semiconductor device
JP2016174147A (en) * 2015-03-02 2016-09-29 株式会社半導体エネルギー研究所 Transistor, method of manufacturing transistor, semiconductor device, and electronic apparatus
JP2017076789A (en) * 2015-10-15 2017-04-20 株式会社半導体エネルギー研究所 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103454A (en) * 2009-10-16 2011-05-26 Semiconductor Energy Lab Co Ltd Logic circuit and semiconductor device
JP2016174147A (en) * 2015-03-02 2016-09-29 株式会社半導体エネルギー研究所 Transistor, method of manufacturing transistor, semiconductor device, and electronic apparatus
JP2017076789A (en) * 2015-10-15 2017-04-20 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
JPWO2018203175A1 (en) 2020-05-14
JP7106529B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
JP6630490B2 (en) Semiconductor device, touch sensor, touch panel, display device, touch panel module, display panel module, and electronic device
US10504925B2 (en) Semiconductor device and method for manufacturing semiconductor device
TW201803131A (en) Semiconductor device, semiconductor wafer, and electronic device
JP7305005B2 (en) Storage device
JP6986909B2 (en) Semiconductor device
JP6901863B2 (en) Semiconductor device
KR20210145104A (en) Semiconductor device
JP2023015156A (en) sense amplifier
WO2020128722A1 (en) Hysteresis comparator, semiconductor device, and storage battery device
JP2019046374A (en) Semiconductor device, electronic component, electronic equipment, and driving method of semiconductor device
WO2018220471A1 (en) Storage device and method for operating same
US11867503B2 (en) Anomaly detection system for secondary battery
JP2018201003A (en) Semiconductor device and electronic apparatus
WO2018203175A1 (en) Semiconductor device
WO2018220491A1 (en) Semiconductor device, electronic component, and electronic device
JP2018195794A (en) Storage device
JP7528063B2 (en) Semiconductor device and electronic device
WO2018211398A1 (en) Semiconductor device and electronic apparatus
US12126344B2 (en) Semiconductor device
WO2022018560A1 (en) Semiconductor device
US20220020683A1 (en) Semiconductor device
JP2021082775A (en) Imaging device and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794040

Country of ref document: EP

Kind code of ref document: A1