WO2018202204A1 - 一种基于反转服务流特性的通信方法及装置 - Google Patents

一种基于反转服务流特性的通信方法及装置 Download PDF

Info

Publication number
WO2018202204A1
WO2018202204A1 PCT/CN2018/085867 CN2018085867W WO2018202204A1 WO 2018202204 A1 WO2018202204 A1 WO 2018202204A1 CN 2018085867 W CN2018085867 W CN 2018085867W WO 2018202204 A1 WO2018202204 A1 WO 2018202204A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
network element
service flow
access network
reverse service
Prior art date
Application number
PCT/CN2018/085867
Other languages
English (en)
French (fr)
Inventor
韩立锋
张宏平
曾清海
黄曲芳
郭英昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710458757.9A external-priority patent/CN108809596B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21152968.0A priority Critical patent/EP3897031B1/en
Priority to JP2019551302A priority patent/JP6801123B2/ja
Priority to AU2018263200A priority patent/AU2018263200B2/en
Priority to EP18794574.6A priority patent/EP3592027B1/en
Publication of WO2018202204A1 publication Critical patent/WO2018202204A1/zh
Priority to US16/566,638 priority patent/US11159998B2/en
Priority to US17/486,654 priority patent/US11968580B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus based on reverse service flow characteristics.
  • QoS Quality of Service
  • the flow-based QoS architecture mainly includes a QoS flow mapping of a Non Access Stratum (NAS) layer and an Access Stratum (AS) layer.
  • QoS flow refers to a data flow with the same QoS requirements in a packet data unit (PDU) session. It can also be understood as multiple network interconnection protocols with the same QoS requirements. Protocol, IP) flow or a group of other types of packets with the same QoS requirements.
  • the NAS layer is mainly responsible for mapping the IP flow or other types of data packets and QoS flows.
  • the core QoS flow is generated by the User Plane Function (UPF) of the core network, and the terminal generates the uplink QoS flow.
  • UPF User Plane Function
  • the AS layer is mainly responsible for mapping the QoS flow to the Data Radio Bearer (DRB).
  • the network side (for example, the base station) configures the mapping relationship between the QoS flow and the DRB, and provides QoS services for the QoS flow in the DRB of the air interface.
  • a reverse QoS feature is also introduced in the stream-based QoS architecture.
  • the Reflective QoS feature means that the QoS flow has the characteristics of uplink and downlink symmetry, that is, the QoS of the uplink flow and the downlink flow are the same, and the uplink and downlink packet filtering templates are also symmetric, for example, the uplink source address and the source port number are downlink. Address and destination port number; the upstream destination address and destination port number are the downstream source address and source port number.
  • the network side In the process of communicating based on the Reflective QoS feature, in order to save control signaling, the network side does not notify the terminal of the uplink IP flow or other types of data packets to the QoS flow mapping rule by signaling, but implicitly notifies the downlink data packet. terminal.
  • the terminal After receiving the downlink data packet with the Reflective QoS feature, the terminal inverts the information quintuple of the downlink data packet header to obtain an uplink packet filter, and the index value of the QoS parameter corresponding to the uplink packet filter It is the QoS parameter index value carried in the downlink packet header, so that the terminal can obtain uplink QoS information, such as a packet filter and a QoS flow identifier (Identity, id), without receiving the NAS signaling notification.
  • uplink QoS information such as a packet filter and a QoS flow identifier (Identity, id)
  • the terminal needs to detect the received header information of each downlink data packet to determine whether the received downlink data packet has the Reflective QoS feature, and in the 5G communication system, the data transmission The rate is huge. If the terminal detects each downlink packet, it will cause a lot of overhead, which affects the performance and power consumption of the terminal.
  • Embodiments of the present application provide a communication method and apparatus based on reverse service flow characteristics to reduce signaling overhead.
  • a communication method based on a reversed service flow characteristic (Reflective QoS) feature in which an access network element determines whether a service flow identifier (QoS flow id) needs to be sent to a terminal, and determines the need When the QoS flow id is sent to the terminal, the QoS flow id is sent to the terminal. If the QoS flow id is not required to be sent, the QoS flow id is not sent, and the signaling overhead is saved.
  • QoS flow id service flow identifier
  • the core network element sends the first information to the access network element, and the first information is used to indicate whether the data packet has a Reflective QoS feature.
  • the access network element receives the first information sent by the core network element, and determines, according to the first information, whether the QoS flow id needs to be sent to the terminal.
  • the access network element may also send the first indication information to the terminal, where the first indication information is used to indicate whether the terminal needs to read the QoS flow id.
  • the core network element may be a core network control plane network element, such as AMF.
  • the access network element may be a base station, such as a gNB.
  • the data packet has a Reflective QoS feature, which means that the data packet can be obtained by the terminal in an inverted manner to obtain an uplink QoS flow id and a packet filter.
  • the data packet does not have the Reflective QoS feature, which means that the data packet cannot be forwarded by the terminal through the reverse manner to obtain the uplink QoS flow id and the packet filter.
  • the first information is also used to indicate the data packet Reflective QoS type.
  • the data packet Reflective QoS type includes all data packets with Reflective QoS characteristics, some data packets with Reflective QoS characteristics, or all data packets without Reflective QoS characteristics.
  • the access network element may determine whether the data packet has Reflective QoS characteristics based on the first information, and determine that all data packets have Reflective QoS characteristics, some data packets have Reflective QoS characteristics, or all data packets are not available based on the data packet Reflective QoS type. Reflective QoS feature. The access network element may also determine whether the data packet has Reflective QoS characteristics based on the data packet Reflective QoS type.
  • the first information may be Reflective QoS information sent by the core network control plane network element, and the Reflective QoS information is used to indicate whether the data packet has a Reflective QoS feature.
  • the core network control plane network element sends Reflective QoS information to the access network network element, and the access network element receives the Reflective QoS information sent by the core network control plane network element, and determines based on the Reflective QoS information sent by the core network control plane network element. Whether to send a QoS flow id to the terminal.
  • the access network element determines that the QoS flow id needs to be sent to the terminal when determining that the data packet has the Reflective QoS feature. If it is determined that the data packet does not have the Reflective QoS feature, it is determined that the QoS flow id does not need to be sent to the terminal, which saves signaling overhead.
  • the Reflective QoS information may be Reflective QoS information of the QoS flows, or may also be Reflective QoS information of the PDU sessions.
  • the core network control plane network element may further send a Reflective QoS information update indication information to the access network network element, where the Reflective QoS information update indication information is used to indicate that the access network network element device is updated. Reflective QoS information that has been received.
  • the access network element may determine the mapping relationship between the QoS flow and the DRB according to the QoS flow or the Reflective QoS information of the PDU session. For example, the QoS flow of different Reflective QoS characteristics may be mapped to different DRB.
  • the first indication information may be the Reflective QoS information sent by the access network element to the terminal.
  • the access network element sends the Reflective QoS information to the terminal.
  • the terminal receives the Reflective QoS information sent by the access network element, and determines whether the QoS flow id needs to be read based on the Reflective QoS information.
  • the Reflective QoS information sent by the access network element to the terminal may be the Reflective QoS information of the QoS flows, the Reflective QoS information of the DRB, or the Reflective QoS information of the PDU sessions (or the SDAP entity).
  • the QoS flow id is detected by the terminal, and the QoS flow id is detected by the terminal, and the QoS flow id is detected according to the detected QoS flow id, and the uplink QoS flow id and the corresponding are generated according to the detected QoS flow id.
  • Packet filter For the DRB, SDAP entity, and QoS flow of the packet without the reflectvie QoS feature, the terminal may not detect the QoS flow id and detect the packet header, thereby saving the signaling overhead of the terminal.
  • the first information may be a reverse service flow characteristic indication (RQI) sent by a core network user plane network element, where the RQI is used to indicate that a partial data packet has a reverse service flow characteristic.
  • RQI reverse service flow characteristic indication
  • the core network element may not send the Reflective QoS feature of the QoS flow to the access network element.
  • the RQI is used to indicate that the data packet has a Reflective QoS feature, and the access network element determines that the QoS flow has a Reflective QoS feature, and Some packets have Reflective QoS features.
  • the access network element may have the Reflective QoS feature by default for the QoS flow, and some of the data packets have Reflective QoS characteristics.
  • the core network element may send a Reflective QoS information deactivation indication information to the access network element, the Reflective QoS information deactivation indication information is used to indicate to deactivate the Reflective QoS information, the deactivation Reflective QoS information means that the Reflective QoS feature indicates that the packet with the Reflective QoS feature no longer has the Reflective QoS feature.
  • the access network element receives the Reflective QoS information deactivation indication information sent by the core network element, deactivates the indication information based on the Reflective QoS information to deactivate the Reflective QoS feature of the data packet, and determines that the data packet for deactivating the Reflective QoS feature is not needed.
  • the Reflective QoS information deactivated indication information sent by the core network element to the access network element may be the deactivated QoS information of the QoS flows, or may be the deactivated QoS information of the PDU sessions. .
  • the Reflective QoS information deactivation indication information may be used to indicate that the Reflective QoS feature of one or more QoS flows or PDU sessions is deactivated.
  • the access network element may send the Reflective QoS information to the terminal to deactivate the indication information.
  • the Reflective QoS information sent by the access network element to the terminal is not the deactivated QoS information of the QoS flows and the PDU sessions, or the deactivated QoS of the DRB. information.
  • the terminal receives the Reflective QoS information sent by the access network element to deactivate the indication information, and determines that the QoS flow id of the data packet that does not have the Reflective QoS feature is not required to be read, thereby saving signaling overhead.
  • the decompression operation of the Robust Header Compression (ROHC) of the PDCP layer at the receiving end of the terminal can directly decompress the PDCP SDU of the PDCP header without decompressing the SDAP header. Operation such as offset of the starting position saves signaling overhead.
  • ROHC Robust Header Compression
  • the access network element notifies the QoS flow, the DRB, or the Reflective QoS information of the PDU session, and may deactivate the Reflective QoS feature of the QoS flow, the DRB, or the PDU session, and the terminal may determine whether the QoS information is based on the Reflective QoS information. It is necessary to read the QoS flow id and whether the ROHC position offset is required in the air interface.
  • the DRB that does not have the Reflective QoS does not perform the QoS flow id detection, and does not perform the offset operation of the ROHC decompression position, thereby reducing the terminal-to-air interface data. Packet inspection, reducing overhead, improving processing efficiency and saving power.
  • the source access network element that obtains the first information (Reflective QoS information) can be switched to the target access network element (the target base station) Sending the obtained Reflective QoS information
  • the target access network element determines whether to send the QoS flow id on the air interface, configures whether the terminal needs to read the QoS flow id, configures the QoS flow to the DRB mapping relationship, and determines the decision Whether to configure one or more operations such as a SDAP entity for a PDU session.
  • the core network element may also send a QoS rule effective timing time to the access network element, wherein the QoS rule is valid within the effective timing time of the QoS rule.
  • the access network element may send the QoS rule to the QoS flow by using the same QoS rule in the effective timing time of the QoS rule to map the data packet with the Reflective QoS feature to the QoS flow.
  • the effective timing time of the QoS rule sent by the core network element to the access network element may be the effective timing of the QoS flows of the Reflective QoS rule, or may be the effective timing of the Reflective QoS rule of the PDU sessions.
  • the core network element may also send QoS rule effective timing update update information to the access network element, where the QoS rule effective timing update information is used to indicate the updated QoS rule effective timing.
  • the access network element receives at least two data packets having the Reflective QoS characteristic within the effective timing time of the QoS rule, the at least one of the QoS rules may be valid for the timing time.
  • a part of the data packets of the two data packets are sent to indicate whether the data packet has the first information of the Reflective QoS feature, and the first information sent is filtered to save signaling overhead.
  • the source access network element can send the QoS rule effective timing of the switched QoS flow data packet to the target access network element (target base station) that the terminal switches.
  • the target access network element can filter the Reflective QoS information sent to the terminal based on the effective timing of the QoS rule, and implement filtering on the Reflective QoS information sent by the terminal, thereby saving signaling overhead.
  • the target access network element may ignore the effective timing of the QoS rule of the data packet sent by the source access network element to avoid the effective timing of the QoS rule between the source access network element and the target access network element. Synchronize.
  • the effective timing time of the QoS rule sent by the source access network element to the target access network element switched by the terminal may be the effective timing time of the QoS rules of the QoS flows, or may be the effective timing time of the QoS rules of the PDU sessions.
  • the QoS Flow data packet is transmitted in a non-transparent mode SDAP frame format or in a transparent mode SDAP frame format.
  • the SDAP frame format in the transparent mode means that the SDB header is not configured in the DRB, that is, the SDAP protocol header is not included in the SDAP PDU.
  • the non-transparent mode of the SDAP frame format refers to the DRB configuration SDAP header, that is, the SDAP PDU contains the SDAP protocol header.
  • the QFI field may not be carried in the SDAP protocol layer header. If at least one of the bit indicating the NRQI and the bit indicating the ARQI is set to 1, the QFI field is carried.
  • the data receiving end of the SDAP entity receives the PDCP SDU from the PDCP layer and reads the SDAP protocol header. If the value of the bit indicating the NRQI is 1, indicating that the packet has a reflective QoS characteristic, the SDAP entity delivers the data portion of the SDAP and the QoS flow id read from the SDAP header to the upper protocol layer, such as the NAS layer. The data portion and the QoS flow id delivered to the upper layer can be used by the upper protocol layer to generate a QoS rule. Further, the SDAP entity can also send the NRQI to the upper layer protocol layer.
  • the SDAP frame format in the non-transparent mode further includes a bit for indicating the URQI in the SDAP protocol header.
  • the SDAP frame format in the non-transparent mode sets a bit for indicating whether the QoS flow packet is terminated in the corresponding DRB in the SDAP protocol header, for example, setting an End field.
  • a control command for feeding back a certain QoS Flow data packet in the DRB may be set in the SDAP protocol header.
  • a one-way SDAP transparent mode can be set.
  • the transparent mode of the SDAP is configured in the downlink direction of the at least one DRB, or the transparent mode of the SDAP is configured in the uplink direction of the at least one DRB.
  • the access network element may send the SDAP mode information to the terminal during the data transmission process, where the SDAP mode information is used to indicate that the SDAP frame format is transparent mode or non-transparent mode, and the SDAP is indicated. The direction corresponding to the mode.
  • the source access network element may send the SDAP mode information to the target access network element (the target base station) that the terminal switches.
  • the access network element may also filter the sent QoS flow id to determine that the QoS flow id is carried in the packet header when the QoS flow id is carried in the packet header sent to the terminal.
  • the QoS flow id may not be carried in the packet header, and the number of QoS flow ids transmitted by the air interface is reduced, thereby saving signaling overhead.
  • the access network element determines the packet header information, and determines whether the QoS flow id needs to be carried in the packet header sent to the terminal according to the packet header information.
  • the core network element sends the Reflective QoS information and the packet filter composition information to the access network element.
  • the packet filter composition information may be a packet filter composition information corresponding to the QoS flow and the Reflective QoS feature of the PDU session, and may be, for example, an IP 5 tuple (source address, destination address, source port number, destination port number, protocol number). Or media access control (MAC) source address, destination address, and so on.
  • IP 5 tuple source address, destination address, source port number, destination port number, protocol number
  • MAC media access control
  • the access network element receives the Reflective QoS information and the packet filter composition information sent by the core network element.
  • the access network element determines whether the QoS flow id needs to be carried in the packet header sent to the terminal according to the packet filter composition information in the data packet header. For example, the access network element detects the packet header of each packet of the received QoS flow according to the composition of the packet filter. If the corresponding packet filter part of the packet header is new content, the QoS flow id is carried when the data packet is sent by the air interface. If the corresponding packet filter part of the packet header is not new, the QoS flow id is not carried when the data packet is sent by the air interface.
  • the access network element may further determine whether it is required to carry indication information indicating that the data packet has a Reflective QoS characteristic in a data packet header sent to the terminal. For example, the access network element detects the packet header of each packet of the received QoS flow according to the composition of the packet filter. If the corresponding packet filter part of the packet header is new content, an indication information may also be carried to indicate that the data packet has a Reflective QoS feature. If the corresponding packet filter part of the packet header is not new, the indication information indicating that the data packet has the Reflective QoS feature is not carried.
  • the user plane control PDU is sent to the terminal (for example, a SDAP control PDU or a PDCP control).
  • PDU for example, a SDAP control PDU or a PDCP control
  • RRC signaling including but not limited to RRC configuration message or RRC reconfiguration, etc.
  • the user plane control PDU and the RRC signaling include a QoS flow id of the data packet and data packet header information.
  • the access network element determines that the QoS flow id needs to be carried in the data packet header sent to the terminal, and based on the packet filter composition information, the data packet corresponding to the packet filter composition information is used. The content in the header is reversed to get the upstream packet filter.
  • the access network element sends the uplink packet filter and the QoS flow id to the terminal, and the terminal receives the QoS flow id and the corresponding uplink packet filter to generate an uplink QoS flow.
  • the terminal may send the first capability information to the access network element or send the first capability information to the core network element, and the core network element receives the first capability information and sends the first capability information to the access network element.
  • the capability of reading the QoS flow id refers to the capability of the terminal to obtain the QoS flow id from the received air interface data packet.
  • the capability of generating an uplink packet filter refers to the capability of the terminal to generate an uplink packet filter based on the received downlink air interface data packet.
  • the access network element receives the first capability information, and if the capability or state of the terminal does not support reading the QoS flow id and generating the uplink packet filter according to the first capability information, the user plane control PDU or the RRC signaling manner is used to notify the terminal. QoS flow id and the upstream packet filter corresponding to the QoS flow id.
  • the network element of the access network can notify the QoS flow id of the terminal and the uplink packet filter corresponding to the QoS flow id through the user plane control PDU or RRC signaling, which reduces the overhead of the terminal and reduces the overhead caused by the QoS flow id.
  • the terminal may also send the second capability information to the access network element, or the terminal sends the second capability information to the core network element, and the core network element sends the second capability information to Core network element.
  • the second capability information is used to indicate whether the terminal has the capability of the Reflective Mapping.
  • the Reflective mapping capability refers to the capability of the terminal to obtain the uplink QoS flow to the DRB mapping relationship by using the QoS flow id carried in the downlink data packet header.
  • the access network element receives the second capability information sent by the terminal, and if the access network element determines that the terminal does not support the Reflective mapping capability, the access network element needs to configure the uplink QoS flow to the DRB by using other methods.
  • the mapping relationship of the uplink QoS flow to the DRB is configured by means of RRC signaling.
  • a communication apparatus based on reverse service flow characteristics has a function of implementing an access network element related to the first aspect and the second aspect, the function It can be implemented by hardware or by software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device based on the reverse service flow characteristic includes a receiving unit and a processing unit, and may further include a transmitting unit.
  • the functions of the receiving unit, the processing unit, and the sending unit may correspond to the method steps involved above, and are not described herein.
  • a communication apparatus based on reverse service flow characteristics has a function of implementing the core network element related to the first aspect and the second aspect, and the function may be Through hardware implementation, the corresponding software implementation can also be performed by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above. The modules can be software and/or hardware.
  • the communication device based on the reverse service flow characteristic includes a processing unit and a transmitting unit, and the functions of the processing unit and the transmitting unit may correspond to the method steps involved above, and details are not described herein.
  • a communication apparatus based on reverse service flow characteristics has a function of implementing the terminal related to the first aspect and the second aspect, and the function can be implemented by hardware
  • the corresponding software implementation can also be performed by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device based on the reverse service flow characteristic includes a receiving unit and a processing unit, and the functions of the receiving unit and the processing unit may correspond to the method steps involved above, and details are not described herein.
  • an access network element including a processor, a memory, a bus system, a receiver, and a transmitter.
  • the processor, the memory, the receiver and the transmitter are connected by a bus system for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and controlling the transmitter to send signals to complete
  • the first aspect, the second aspect, and the execution function of the access network element in any possible design of the above aspects.
  • a core network element including a processor, a memory, a bus system, and a transmitter.
  • the processor, the memory and the transmitter are connected by a bus system for storing instructions for executing instructions stored in the memory to control the transmitter to transmit signals, completing the first aspect, the second aspect, and the above
  • the execution function of the core network element in any possible design in all aspects.
  • a terminal comprising a transmitter, a receiver, a processor and a memory, and an antenna.
  • the transmitter, the receiver, the processor and the memory are connectable by a bus system for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and controlling the transmitter to transmit signals to complete the above.
  • a ninth aspect provides a communication system, including the access network element of the sixth aspect, the core network element of the seventh aspect, and one or more terminals of the eighth aspect.
  • a tenth aspect provides a computer storage medium for storing instructions, which, when executed, can complete the terminal, the access network element in any of the above aspects, the second aspect, and any of the foregoing aspects. Or any method involved in the core network element.
  • a computer program product for storing a computer program for performing the communication method of any of the first aspect, the second aspect, and any of the above aspects.
  • the access network element determines whether the QoS flow id needs to be sent to the terminal, and sends the QoS flow id to the terminal when it is determined that the QoS flow id needs to be sent to the terminal, and the QoS flow id is not required to be sent. If the QoS flow id is not sent, the signaling overhead is saved. Further, the access network element may also filter the sent QoS flow id, and determine that the QoS flow id needs to be carried in the packet header when the QoS flow id is carried in the packet header sent to the terminal. When the QoS flow id is carried in the packet header sent to the terminal, the QoS flow id may not be carried in the packet header, which saves signaling overhead.
  • FIG. 1 is a structural diagram of a communication system to which an embodiment of the present application is applied;
  • FIG. 3 is a schematic diagram of a mapping process from QoS flow to DRB
  • FIG. 4 is a schematic diagram of a process of acquiring an uplink QoS flow id and a packet filter
  • FIG. 5 is a schematic diagram of an uplink flow to DRB mapping process
  • FIG. 6 is a communication method based on a Reflective QoS feature according to an embodiment of the present application.
  • FIG. 7 is a flowchart of an implementation method of a communication method based on a Reflective QoS feature according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of another implementation method of a communication method based on a Reflective QoS feature according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of still another implementation method of a communication method based on a Reflective QoS feature according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of an implementation method for filtering a QoS flow id according to an embodiment of the present application
  • FIG. 11 is a flowchart of another implementation method for filtering a QoS flow id according to an embodiment of the present application.
  • FIG. 12 is a flowchart of still another implementation method for filtering a QoS flow id according to an embodiment of the present disclosure
  • FIG. 13 is a flowchart of still another implementation of filtering an QoS flow id of an access network element according to an embodiment of the present disclosure
  • FIG. 14 is a flowchart of still another implementation method of a communication method based on a Reflective QoS feature according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a SDAP frame format according to an embodiment of the present disclosure.
  • FIG. 16 is another schematic diagram of a SDAP frame format according to an embodiment of the present disclosure.
  • FIG. 17 is still another schematic diagram of a SDAP frame format provided by an embodiment of the present application.
  • FIG. 18 is still another schematic diagram of a SDAP frame format according to an embodiment of the present application.
  • FIG. 19 is still another schematic diagram of a SDAP frame format provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communications apparatus based on a Reflective QoS feature according to an embodiment of the present disclosure
  • FIG. 21 is a schematic structural diagram of an access network element according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of another communication apparatus based on the Reflective QoS feature according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a core network element according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of another communication apparatus based on the Reflective QoS feature according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • a base station also referred to as a base station device, is a device deployed in a radio access network to provide wireless communication functions.
  • a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and the device that provides a base station function in the 3G network includes a node B ( NodeB) and a radio network controller (RNC), the device providing the base station function in the 4G network includes an evolved NodeB (eNB), in a wireless local area network (WLAN),
  • the device providing the function of the base station is an access point (AP).
  • the device providing base station functionality in the future 5G New Radio (NR) includes a Node B (gNB) that continues to evolve.
  • a terminal is a device that provides voice and/or data connectivity to a user, and may include various handheld devices having wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or other processes connected to a wireless modem.
  • the device and various forms of user equipment (User Equipment, UE), mobile station (MS), terminal equipment (Terminal Equipment), transmission point (TRP or transmission point, TP) and the like.
  • the interaction in this application refers to the process in which the two parties exchange information with each other.
  • the information transmitted here may be the same or different.
  • the two parties are the base station 1 and the base station 2, and the base station 1 may request information from the base station 2, and the base station 2 provides the base station 1 with the information requested by the base station 1.
  • the base station 1 and the base station 2 may request information from each other, and the information requested here may be the same or different.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • PDU Session can be understood as a link between the terminal and the data network (DN) to provide PDU link service.
  • QoS flow refers to a data flow with the same QoS requirements in a PDU session, where it can be multiple IP flows with the same QoS requirements.
  • the DRB can be understood as a data bearer between the base station and the terminal, and the data packets in the data bearer have the same forwarding process.
  • DN refers to the external data network.
  • Reflective QoS feature means that the QoS flow has the uplink and downlink symmetry characteristics, that is, the uplink and downlink QoS are the same, and the uplink and downlink packet filtering templates are also symmetric, for example, the uplink source address and the source port number are the downlink destination addresses. And the destination port number; the destination address and destination port number of the uplink are the source address and source port number of the downlink.
  • the terminal obtains the uplink packet filter and the QoS flow id according to the inversion characteristics by using the downlink packet header information.
  • the embodiment of the present application provides a communication method based on a Reflective QoS feature, and the method is applicable to a system based on a QoS flow based QoS architecture.
  • a terminal accesses a fifth-generation core network (5G Core, 5GC) through a Next Generation Node-B (gNB), including a terminal accessing the network through a single link, or connecting through a multi-link.
  • 5G Core 5G Core
  • gNB Next Generation Node-B
  • the terminal accesses the 5G network through the primary base station (Master gNB, MgNB) and the secondary base station (Secondary gNB, SgNB).
  • the following describes the 5G network scenario in the wireless communication network as an example. It should be noted that the solution in the embodiment of the present application can also be applied to other wireless communication networks, and the corresponding name can also be used in other wireless communication networks. Replace the name of the corresponding function in .
  • FIG. 1 is a schematic structural diagram of a communication system to which the present application is applied.
  • the communication system shown in FIG. 1 includes a Next Generation Core (NGC) (also referred to as 5GC) and a Next Generation Radio Access Network (NG-RAN).
  • NGC Next Generation Core
  • NG-RAN Next Generation Radio Access Network
  • the 5GC mainly includes an Access and Mobility Management Function (AMF) and a User Plane Function (UPF).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF is mainly responsible for terminal access and mobility management.
  • the UPF is mainly responsible for terminal IP address allocation and PDU session control management, and also includes functions such as routing and forwarding of data packets and QoS management.
  • the primary network element included in the NG-RAN is a Next Generation Node-B (gNB), wherein the gNB provides a new radio (NR) control plane and a user plane protocol stack terminated by the terminal, for example, the gNB is responsible for the terminal. Access control, link management, measurement, dynamic resource allocation and bearer management functions, and responsible for radio resource management (RRM) functions within and between cells.
  • the interface between the control plane between the 5GC and the NG-RAN is an N2 interface
  • the interface between the user planes between the 5GC and the NG-RAN is an N3 interface
  • the interface between the gNBs is an Xn interface.
  • the non-access stratum service bearers the QoS flow, and the access layer service carries the radio bearers (RBs) and the ground side (RAN and 5GC).
  • the tunnel is established by PDU session, that is, the service flows belonging to the same PDU session use the same tunnel.
  • PDU session has a unique identifier.
  • the unique identifier of the PDU session may be one of the following: a PDU session identifier, an access point name (APN), an identifier of the user plane core network device, and a user plane core network device.
  • the address (for example, the IP address), the IP address assigned by the user-side core network device to the user device.
  • the QoS flow-based QoS architecture mainly includes QoS flow mapping between the access layer and the non-access stratum, wherein the access layer is responsible for mapping QoS flow to DRB, and the non-access stratum is responsible for mapping IP flow to QoS flow, further It also contains mappings of other types of packets to QoS flows.
  • the mapping process from QoS flow to DRB can be seen in Figure 3.
  • the service is used on the Packet Data Convergence Protocol (PDCP) layer.
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the SDAP entity that implements the SDAP protocol is established by session and is also responsible for adding the uplink QoS flow id and the downlink QoS flow id to the air interface protocol stack.
  • the QoS flow to DRB mapping process multiple QoS flows in the same sesison can be mapped to the same DRB, based on the QoS profile corresponding to the QoS flow id in the packet header of the user plane (the QoS profile refers to the QoS flow).
  • the QoS parameter corresponding to the id including one or more of a delay, a packet loss rate, a priority, a guaranteed rate, a maximum rate, and a notification indicating that the rate is not satisfied, can obtain the same data packet in the same DRB.
  • each session of each terminal corresponds to a default DRB (default DRB), and the terminal maps the QoS flow without the uplink QoS flow and the DRB mapping relationship to the default DRB.
  • the gNB on the radio access network side may adopt Radio Resource Control (RRC) signaling or reverse mapping (Reflective mapping), where the downlink packet carries the QoS flow id, and the terminal detects the QoS.
  • RRC Radio Resource Control
  • Reflective mapping Reflective mapping
  • the Reflective QoS feature can be used to map IP flow or other types of data packets to the QoS flow mapping process.
  • the core network may activate the Reflective QoS feature by means of a control plane or a user plane. Specifically, the core network may notify the terminal QoS flow to activate the Reflective QoS feature by using a non-access stratum message, for example, carrying a rule in the QoS flow rule. Instructing the QoS flow to activate the Reflective QoS feature (reverse service flow feature) indication information, or the core network carries a Reverse Service Flow Feature Indicator (RQI) in the packet header sent to the radio access network side. To indicate that the packet has Reflective QoS features. For example, in FIG.
  • the downlink data packet includes a QoS flow id, an IP header, a Transmission Control Protocol (TCP) header, and a data content (Data), and the uplink QoS rule is to source and destination the IP header and the TCP header.
  • the source address and source port number to be uplinked are the destination address and destination port number of the downlink; the destination address and destination port number of the uplink are the source address and source port number of the downlink.
  • the terminal obtains the uplink packet filter and the QoS flow id according to the reverse characteristics through the downlink packet header information, and performs QoS marking by the QoS flow id.
  • the terminal performs the configuration of the implicit uplink QoS flow to the DRB mapping, that is, the terminal maps the uplink QoS flow to the DRB where the downlink QoS flow of the same QoS flow id is located, and maps the upstream flow1 to the DRB1 where the downlink flow1 is located as shown in FIG. .
  • the RRC configuration signaling for configuring the upstream to radio bearer mapping can be reduced on the radio access network side.
  • the terminal needs to determine whether the received downlink data packet has Reflective QoS characteristics for each downlink data packet received, and in the 5G communication system, the data transmission rate is huge, and if the terminal detects each downlink data packet, This causes a lot of overhead, which affects the performance and power consumption of the terminal.
  • the embodiment of the present application provides a communication method based on the Reflective QoS feature, in which the access network element determines whether a service flow identifier needs to be sent to the terminal, and determines that the service flow identifier needs to be sent to the terminal. Then, the service flow identifier is sent to the terminal, and if the service flow identifier is not required to be sent, the service flow identifier is not sent, and signaling overhead is saved. Further, the access network element may further filter the sent service flow identifier, and determine that the service flow identifier is carried in the data packet header when the service packet identifier is carried in the data packet header sent to the terminal. In the case that the service flow identifier is carried in the data packet header sent to the terminal, the service flow identifier may not be carried in the data packet header, thereby saving signaling overhead.
  • FIG. 6 is a schematic diagram of a communication method based on the Reflective QoS feature provided by the embodiment of the present application. Referring to FIG. 6, the method includes:
  • the core network element sends the first information to the access network element, and the access network element receives the first information sent by the core network element, where the first information is used to indicate whether the data packet has a Reflective QoS feature.
  • the core network element in this application may be a core network control plane network element, such as AMF.
  • the access network element may be a base station, such as a gNB.
  • the core network element may send, by using the N2 interface message, the first information indicating whether the data packet has the Reflective QoS feature, to the access network element.
  • the N2 interface message includes, but is not limited to, a PDU Session Resource Setup message, a PDU Session Resource Modify message, and the like.
  • the first information is used to indicate whether the data packet has a Reflective QoS feature.
  • the data packet with the Reflective QoS feature means that the data packet can be obtained by the terminal in the reverse manner to obtain the uplink QoS flow id and the packet filter, and the packet filter is used to filter the uplink data packet to obtain the uplink QoS flow.
  • the data packet does not have the Reflective QoS feature, which means that the data packet cannot be forwarded by the terminal through the reverse manner to obtain the uplink QoS flow id and the packet filter.
  • the access network element determines, according to the first information, whether a QoS flow id needs to be sent to the terminal.
  • the access network element sends the first indication information to the terminal, where the first indication information is used to indicate whether the terminal needs to read the QoS flow id.
  • the terminal receives the first indication information, and determines, according to the first indication information, whether the QoS flow id needs to be read.
  • the access network element determines that the QoS flow id needs to be sent to the terminal, and optionally, in this case, the access network element indicates that the terminal needs to read Take the QoS flow id. If the first information indicates that the data packet does not have the Reflective QoS feature, the access network element may determine that the QoS flow id does not need to be sent to the terminal. In this case, the access network element may indicate that the terminal does not need to read the QoS flow id. To save signaling overhead.
  • the first information is further used to indicate a data packet Reflective QoS type.
  • the data packet Reflective QoS type includes all data packets with Reflective QoS characteristics, some data packets with Reflective QoS characteristics, or all data packets without Reflective QoS characteristics.
  • the access network element may determine whether the data packet has Reflective QoS characteristics based on the first information, and determine that all data packets have Reflective QoS characteristics, some data packets have Reflective QoS characteristics, or all data packets do not have Reflective QoS characteristics based on the data packet Reflective QoS type. characteristic. The access network element may also determine whether the data packet has Reflective QoS characteristics based on the data packet Reflective QoS type.
  • the data packet Reflective QoS type may be represented by the following manner.
  • the manner in which the core network element notifies the terminal of the Reflective QoS feature by using the control plane message of the non-access stratum indicates that all the data packets have the Reflective QoS feature.
  • the indication in the header of the user plane indicates that some data packets have Reflective QoS characteristics.
  • the core network element does not notify the terminal of the Reflective QoS feature or the core network element notifies the terminal that the QoS flow or the PDU session does not have the Reflective QoS feature, indicating that all the data packets do not have the Reflective QoS feature.
  • the core network element may indicate the manner in which the access network element notifies the terminal of the Reflective QoS feature, and implements whether the terminal indicates whether the data packet has a Reflective QoS feature and a Reflective QoS type of the data packet.
  • the following describes the implementation process of determining whether the QoS flow id needs to be sent to the terminal by the access network element involved in the embodiment of the present application.
  • the first information may be Reflective QoS information sent by a core network control plane network element, where the Reflective QoS information is used to indicate whether the data packet has a Reflective QoS feature.
  • the first indication information is the Reflective QoS information sent by the access network element to the terminal.
  • FIG. 7 is a flowchart of an implementation method of a communication method based on a Reflective QoS feature according to an embodiment of the present application.
  • the core network control plane network element sends Reflective QoS information to the access network network element, where the Reflective QoS information is used to indicate whether the data packet has a Reflective QoS feature.
  • Reflective QoS information may also be used to indicate information about the type of data of the Reflective QoS.
  • the Reflective QoS information in the embodiment of the present application may be Reflective QoS information of QoS flows, or may also be Reflective QoS information of PDU sessions.
  • the core network control plane network element can indicate the Reflective QoS information of the QoS flow or the Reflective QoS information of the PDU sessions through the N2 interface message.
  • the Reflective QoS information may indicate the Reflective QoS information of the QoS flow or the Reflective QoS information of the PDU sessions through the message of the PDU Session Resource Setup, or may indicate the Reflective QoS information of the QoS flow or the Reflective QoS information of the PDU sessions by using the PDU Session Resource Modify message. .
  • the protocol format of the QoS flow Reflective QoS information indicated by the message of the PDU Session Resource Setup can be as shown in Table 1.
  • the protocol format of the Reflective QoS information of the PDU sessions indicated by the message of the PDU Session Resource Setup can be as shown in Table 2.
  • the protocol format of the QoS flow Reflective QoS information indicated by the message of the PDU Session Resource Modify can be as shown in Table 3.
  • the protocol format of the Reflective QoS information of the PDU sessions indicated by the message of the PDU Session Resource Setup can be as shown in Table 4.
  • the core network control plane network element may further send a Reflective QoS information update update indication information to the access network element, where the Reflective QoS information update indication information is used to indicate the access
  • the network element updates the Reflective QoS information that has been received.
  • the core network control plane network element may update the indication information to the access network element (for example, the base station) by using the N2 interface message.
  • the N2 interface message used includes, but is not limited to, a PDU Session Resource Modify message.
  • the Reflective QoS information indicated by the Reflexive QoS information update indication information in the present application is the same as the Reflective QoS information.
  • the access network element receives the Reflective QoS information sent by the network element of the core network control plane, and determines whether the QoS flow id needs to be sent to the terminal according to the Reflective QoS information sent by the network element of the core network control plane.
  • the access network element determines that the QoS flow id needs to be sent to the terminal when determining that the data packet has the Reflective QoS feature. If it is determined that the data packet does not have the Reflective QoS feature, it is determined that the QoS flow id does not need to be sent to the terminal, which saves signaling overhead.
  • the access network element may determine whether the QoS flow id is carried in the data packet header sent in the air interface according to the QoS flow or the Reflective QoS information of the PDU session, for example, the data packet sent by the air interface with the Reflective QoS feature.
  • the QoS flow id is carried in the packet header, and the QoS flow id is not carried in the data packet without the Reflective QoS feature to save signaling overhead.
  • the access network element may determine the mapping relationship between the QoS flow and the DRB according to the QoS flow or the Reflective QoS information of the PDU session. For example, the QoS flow of different Reflective QoS characteristics may be mapped to different DRBs.
  • the access network element in the embodiment of the present application may send the Reflective QoS information to the terminal, so that the terminal determines whether the data packet is Reflective QoS information is available to determine if a QoS flow id needs to be detected.
  • the following steps may also be included:
  • the access network element sends the Reflective QoS information to the terminal.
  • the access network element (for example, the base station) sends the Reflective QoS information to the terminal by means of RRC signaling or user plane control PDU.
  • the Reflective QoS information sent by the access network element to the terminal is similar to the related Reflexive QoS information sent by the core network element to the terminal, except that the access network element sends the Reflective QoS to the terminal.
  • the information may be Reflective QoS information of the QoS flows, Reflective QoS information of the DRB or Reflective QoS information of the PDU sessions (or SDAP entities).
  • the access network element may indicate Reflective QoS information of the terminal QoS flow, Reflective QoS information of the DRB, or Reflective QoS information of the PDU sessions (or SDAP entity).
  • the protocol format of the QoS flows Reflective QoS information can be as shown in Table 5:
  • the protocol format of the DRB's Reflective QoS information can be as shown in Table 6:
  • the protocol format of the Reflective QoS information of the PDU sessions or the SDAP entity can be as shown in Table 7:
  • the terminal receives the Reflective QoS information sent by the access network element, and determines whether the QoS flow id needs to be read based on the Reflective QoS information.
  • the access network element may indicate the Reflective QoS feature of the data packet by sending the indication information indicating whether the terminal needs to read the QoS flow id to the terminal. For example, the access network element sends an indication to the terminal indicating whether the terminal needs to read the QoS flow id in the DRB or the SDAP, indicating the Reflective QoS feature of the data packet.
  • the access network element may send the Reflective QoS information update indication information to the terminal by means of RRC signaling or a user plane control PDU.
  • the Reflective QoS information that is updated by the access network element to the terminal is not the same as the Reflective QoS information sent by the network element of the access network to the terminal, and is not described here.
  • the terminal After receiving the Reflective QoS information sent by the network element of the access network, the terminal determines a data packet with a reflectvie QoS characteristic according to the Reflective QoS information, and performs a QoS flow id for the DRB, the SDAP entity, and the QoS flow of the data packet including the reflectvie QoS feature.
  • the detection and the detection of the packet header, and the uplink QoS flow id and the corresponding packet filter are generated according to the detected QoS flow id.
  • the terminal may not detect the QoS flow id and detect the packet header, thereby saving the signaling overhead of the terminal.
  • the core network element does not notify the QoS parameter of the access network element QoS flow through the N2 interface message, but the data sent through the N3 port.
  • the packet header carries a QoS flow id, which corresponds to a set of standardized QoS parameters.
  • the core network element may not send the Reflective QoS feature of the QoS flow to the access network element.
  • the access network element may default to the QoS flow with the Reflective QoS feature, and some of the data packets have Reflective QoS characteristics, or the access network element resolves to the RQI in the header of the data packet sent through the N3 interface.
  • the RQI is used to indicate that the data packet has a Reflective QoS feature, and the access network element determines that the QoS flow has a Reflective QoS feature, and that some of the data packets have Reflective QoS characteristics.
  • the core network element may send the Reflective QoS information deactivation indication information to the access network element, where the Reflective QoS information deactivation indication information is used to indicate that the Reflective QoS information is deactivated.
  • Deactivating Reflective QoS information means that the Reflective QoS feature indicates that the packet with the Reflective QoS feature no longer has the Reflective QoS feature.
  • FIG. 8 is a flowchart of another implementation method of a communication method based on the Reflective QoS feature provided by the embodiment of the present application.
  • the execution steps of S301 are the same as the execution steps of S201, and details are not described herein again.
  • the core network element sends a deactivated QoS information indication information to the access network element.
  • the Reflective QoS information deactivation indication information is used to indicate that the access network element metadevice deactivates the Reflective QoS information, where the Deactivated QoS information refers to the data with the Reflective QoS feature indicated by the Reflective QoS information.
  • the package no longer has the Reflective QoS feature.
  • the deactivated QoS information may be used to deactivate the Reflective QoS feature of all data packets or deactivate a partial data packet Reflective QoS feature.
  • the Reflective QoS information deactivation indication information indicates that the deactivated QoS information of the deactivation may be the deactivated QoS information of the QoS flows or the deactivated QoS information of the PDU sessions. It can be understood that the data packet of the core network element indicating that the QoS flow no longer has the Reflective QoS feature or the QoS flow of the PDU sessions no longer has the Reflective QoS feature.
  • the Founder Service Flow Information Deactivation Indication information can be used to indicate the Reflexive QoS feature of the QoS flow or PDU session packet of the deactivated ⁇ all packets with Reflective QoS feature ⁇ or ⁇ partial packet with Reflective QoS feature ⁇ .
  • the Reflective QoS information deactivation indication information may be used to indicate that the Reflective QoS feature of one or more QoS flows or PDU sessions is deactivated.
  • the deactivated QoS information carries an identifier of the QoS flow such as the QoS flow id.
  • the Reflective QoS information deactivation indication information indicates that the Reflective QoS feature of the PDU session is deactivated, the identifier of the PDU session such as the PDU session id is carried in the Deactivated QoS information.
  • the core network control plane network element may send the deactivated QoS information to the access network element (for example, the base station) through the N2 interface message.
  • the N2 interface message includes, but is not limited to, a PDU Session Resource Modify message, and other independent messages may also be used.
  • the Reflective QoS information deactivation indication information may be sent to the access network element (for example, the base station) by the core network user network element (for example, the UPF) sending the data packet through the N3 interface.
  • the access network element for example, the base station
  • the core network user network element for example, the UPF
  • the Reflective QoS information may be carried in the packet header of the N3 interface to deactivate the indication information, and the Reflective QoS feature indicating the deactivation of the data packet is implemented.
  • Reflective QoS information deactivation indication information carried in the data packet header of the N3 interface may be added according to the QoS flow, or may be added according to the PDU session.
  • the number may be set to be multiple to enhance robustness.
  • the access network element receives the Reflective QoS information deactivation indication information, and deactivates the indication information to deactivate the Reflective QoS feature of the data packet based on the Reflective QoS information.
  • the manner in which the core network element sends the data packet to the access network element (for example, the base station) to send the Reflective QoS information to activate the indication information is described as an example. If the QoS flow id and the Reflective QoS information deactivation indication information are carried in the packet header of the N3 interface received by the access network element, the Reflective QoS feature of the QoS flow is deactivated. If the N3 interface packet header received by the access network element does not carry the QoS flow id and only carries the Reflective QoS information to deactivate the indication information, it indicates that the Reflective QoS feature of the PDU session is deactivated.
  • the PDU session id and the Reflective QoS information deactivation indication information in the packet header of the N3 interface received by the access network element are instructed to deactivate the PDU session corresponding to the PDU session id, the PDU session corresponding to the PDU session id is deactivated. Reflective QoS feature.
  • the access network element determines that the data packet for deactivating the Reflective QoS feature does not need to send the QoS flow id.
  • the access network element no longer carries the QoS flow id in the packet header of the QoS flow sent by the air interface.
  • the access network element may further send a Reflective QoS information deactivation indication information to the terminal.
  • the method in which the access network element sends the Reflective QoS information to the terminal to deactivate the indication information may be performed on the basis of the method shown in FIG. 7 or may be performed on the basis of the method shown in FIG. 8.
  • the embodiment of the present application is as follows in FIG. The execution method based on the method is described as an example. The method according to the above FIG. 8 may further include the following steps:
  • the access network element sends a Reflective QoS information to the terminal to deactivate the indication information.
  • the Reflective QoS information sent by the access network element to the terminal the Reflective QoS information indicated by the deactivation indication information, and the Reflective QoS information deactivation indication information sent by the core network element to the access network element are sent.
  • the Reflective QoS information indicated to be deactivated is similar, except that the Reflective QoS information sent by the access network element to the terminal is not the QoS flows and the PDU sessions are deactivated.
  • Reflective QoS information which can also be DRB deactivation of Reflective QoS information.
  • the access network element may activate the Reflective QoS information by means of RRC signaling or a user plane control PDU to indicate that the data packet no longer has the Reflective QoS feature.
  • the access network element may send the Reflective QoS information to the terminal to deactivate the indication information by using RRC signaling (such as an RRC configuration message or an RRC reconfiguration message) or a user plane control PDU (SDAP control PDU or PDCP control PDU).
  • RRC signaling such as an RRC configuration message or an RRC reconfiguration message
  • RRC reconfiguration message such as an RRC configuration message or an RRC reconfiguration message
  • SDAP control PDU or PDCP control PDU user plane control PDU
  • the Reflective QoS information deactivation indication carries the QoS flow ids to indicate that the QoS flow packet no longer has the Reflective QoS feature.
  • the access network element may send the Reflective QoS information to the terminal to deactivate the indication information by using RRC signaling (such as an RRC configuration message or an RRC reconfiguration message) or a user plane control PDU (SDAP control PDU or PDCP control PDU).
  • RRC signaling such as an RRC configuration message or an RRC reconfiguration message
  • RRC reconfiguration message such as an RRC configuration message or an RRC reconfiguration message
  • SDAP control PDU or PDCP control PDU user plane control PDU
  • the DRB ids are carried in the Reflective QoS information deactivation indication information to indicate that the data packet of the corresponding DRB no longer has the Reflective QoS feature.
  • the access network element may send the Reflective QoS information to the terminal to deactivate the indication information by using RRC signaling (such as an RRC configuration message or an RRC reconfiguration message) or a user plane control PDU (SDAP control PDU or PDCP control PDU).
  • RRC signaling such as an RRC configuration message or an RRC reconfiguration message
  • SDAP control PDU or PDCP control PDU user plane control PDU
  • the PDU session ids or SDAP entity ids are carried in the Reflective QoS information deactivation indication information to indicate that the data packets of the PDU sessions no longer have the Reflective QoS feature.
  • the access network element may also send the Reflective QoS information to the terminal to deactivate the indication information by using the user plane data.
  • the access network element carries the Reflective QoS information deactivation indication information in the packet header sent by the air interface to indicate the deactivation of the Reflective QoS feature.
  • the 1 bit bit is used to characterize the Reflective QoS information to deactivate the indication information, and the bit position mode indicates to deactivate the Reflective QoS feature.
  • the Reflective QoS information deactivation indication information carried in the data packet header of the air interface can be used to deactivate ⁇ all packets with Reflective QoS characteristics ⁇ or ⁇ partial packets with Reflective QoS characteristics ⁇ QoS flow, DRB or PDU session The Reflective QoS feature of the packet.
  • the access network element may instruct a QoS flow to deactivate the Reflective QoS information each time.
  • the number of Reflective QoS information deactivation indication information for the same QoS flow may be set to be multiple to enhance robustness.
  • the Reflective QoS information is always sent to activate the indication information, and if the base station obtains the reception confirmation of the data packet of the terminal, the transmission of the Reflective QoS information deactivation indication information is stopped.
  • the access network element carries the QoS flow id and the Reflective QoS information deactivation indication information in the data packet header sent by the air interface to indicate that the Reflective QoS feature of the QoS flow is deactivated.
  • the access network element carries only the Reflective QoS information deactivation indication information in the packet header sent by the air interface to indicate that the Reflective QoS feature of the PDU session is deactivated, or carries an indication information to indicate that the Reflective QoS information deactivates the indication information.
  • the range is the PDU session. For example, the PDU session id or the SDAP entity id corresponding to the PDU session is carried.
  • the access network element may perform an indication of deactivating the Reflective QoS feature of the data packet by indicating that the terminal no longer needs to read the QoS flow id.
  • the terminal receives the Reflective QoS information sent by the access network element to deactivate the indication information, and determines that the QoS flow id of the data packet that does not have the Reflective QoS feature is not required to be read.
  • the terminal does not perform the QoS flow id reading on the received PDCP SDU for the DRB that no longer has the Reflective QoS feature, or the SDAP entity that does not have the Reflective QoS feature or the DRB under the PDU session.
  • a received data packet is tested for QoS flow id, which saves signaling overhead.
  • the following operations can be performed on the data packet that does not have the Reflective QoS feature, thereby saving signaling overhead.
  • the terminal does not perform the acquisition of the IP 5-tuple of the data packet (or the byte in other protocol packet headers, such as the MAC source address and the destination address) of the received PDCP SDU, thereby saving signaling overhead.
  • the terminal does not perform reading and identification of the SDAP header for each data packet, thereby saving signaling overhead.
  • the decompression operation of the Robust Header Compression (ROHC) of the PDCP layer of the terminal receiving end can directly decompress the PDCP Service Data Unit (SDU) of the PDCP header without performing the SDAP header.
  • the operation of decompressing the start position offset that is, without first detecting the existence of the SDAP header, and then decompressing the SDAP header from the PDCP SDU, and then re-adding the SDAP header to the decompressed content. And other operations, saving signaling overhead.
  • the offset operation of the header compression start position is not performed.
  • the offset operation of the header decompression starting position is also not performed during decompression, thereby saving signaling overhead.
  • the SDAP layer entity of the receiving end fails to perform header decompression, the data packet is continuously delivered to the SDAP layer, and the SDAP layer entity can read the header of the SDAP at the tail or the head of the data packet, thereby obtaining the QoS flow id.
  • the upstream QoS flow to the DRB mapping relationship can be obtained according to the Reflective mapping rule, and then the SDAP layer entity discards the data packet.
  • the PDCP SDU of the receiving end fails to perform the header decompression operation
  • the PDCP SDU carries the SDAP header or the QoS flow id
  • the PDCP SDU is delivered to the SDAP layer, and the header decompression fails, and the SDAP layer can be
  • the tail or header of the packet reads the header of the SDAP, and the QoS flow id is obtained.
  • the mapping relationship between the upstream QoS flow and the DRB can be obtained according to the Reflective mapping rule, and then the SDAP layer entity discards the data packet.
  • the PDCP layer of the receiving end after the PDCP layer of the receiving end fails the header decompression operation, if the PDCP SDU carries the SDAP header or the QoS flow id, the PDCP layer of the receiving end sends a PDCP status report to the sending end. Indicates that the data packet fails to be sent. When the PDCP layer of the transmitting end receives the sending PDCP status report, the data packet is retransmitted. Or, as long as the receiving end decompression fails, the PDCP layer of the receiving end sends a status report to the transmitting end, indicating that the data packet is failed to be sent, and the PDCP layer of the transmitting end receives the sending status report, and retransmits the data packet.
  • the PDCP layer on the transmitting end deletes the data packet only when receiving the PDCP status report sent by the receiving end to the data packet carrying the QoS flow id indicating that the data packet is successfully received.
  • the PDCP status report includes a data packet that is successfully received and/or received by the receiving end, and includes a PDCP layer sequence number of the data packet. This method is applicable to the case where the header and the tail of the SDU of the SDAP layer are added to the SDAP header.
  • the core network element may notify the access network element QoS flows or the Reflective QoS information of the PDU sessions, and may notify the access network element to deactivate the Reflective QoS feature of the QoS flow or the PDU session.
  • the access network element can obtain Reflective QoS information to determine whether to send the QoS flow id on the air interface.
  • the access network element notifies the terminal of the QoS flow, the DRB or the Reflective QoS information of the PDU session, and can deactivate the Reflective QoS feature of the QoS flow, the DRB or the PDU session, and the terminal can determine whether it needs to be in the air interface according to the Reflective QoS information.
  • the DRB that does not have Reflective QoS does not detect the QoS flow id, and does not perform the offset operation of the ROHC decompression position, which can reduce the detection of the air interface data of the terminal. Work, reduce overhead, improve processing efficiency and save power.
  • Another communication method based on the Reflective QoS feature provided by the present application can filter the QoS flow id sent by the air interface, reduce the number of QoS flow ids sent by the air interface, and save signaling overhead.
  • the implementation process of filtering the QoS flow id sent by the air interface may be performed on the basis of the foregoing embodiment, or may be performed independently.
  • FIG. 9 is a flowchart of still another implementation method of a communication method based on the Reflective QoS feature provided by the embodiment of the present application.
  • the access network element determines the packet header information.
  • the access network element determines, according to the data packet header information, whether the QoS flow id needs to be carried in the data packet header sent to the terminal.
  • filtering of the QoS flow id sent by the air interface is implemented by determining whether the QoS flow id needs to be carried in the data packet header sent to the terminal.
  • the core network element sends packet filter composition information to the network element of the access network, and the access network element determines whether it needs to be in the terminal according to the packet filter composition information in the data packet header.
  • the transmitted packet header carries the QoS flow id.
  • the access network element may further determine, according to the packet filter composition information in the data packet header, whether an indication indicating that the data packet has a Reflective QoS characteristic is required to be carried in a data packet header sent to the terminal. information.
  • FIG. 10 is a flowchart of an implementation method for filtering a QoS flow id according to an embodiment of the present application.
  • S501 The core network element sends the Reflective QoS information to the access network element.
  • the core network element sends the packet filter composition information to the access network element to the access network element.
  • the core network element sends the Reflective QoS information to the access network element, notifies the QoS flow of the access network element or the Reflective QoS feature of the PDU session, and notifies the control plane or the user plane to make the access network element Determine whether all packets have Reflective QoS features, or whether some packets have Reflective QoS features.
  • the core network element sends the packet filter information to the network element of the access network, which may be the packet filter composition information corresponding to the QoS flow and the Reflective QoS feature of the PDU session, for example, an IP 5 tuple (source address, destination address, Source port number, destination port number, protocol number, or Medium Access Control (MAC) source address, destination address, and so on.
  • IP 5 tuple source address, destination address, Source port number, destination port number, protocol number, or Medium Access Control (MAC) source address, destination address, and so on.
  • MAC Medium Access Control
  • step S502 may also be included:
  • the core network element may also send the packet filter composition information to the terminal, for example, the QoS flow and the packet filter composition information corresponding to the Reflective QoS feature of the PDU session may be notified, for example, the IP 5 tuple (source address, destination address, Source port number, destination port number, protocol number), or mac source address, destination address, and so on.
  • the IP 5 tuple source address, destination address, Source port number, destination port number, protocol number
  • mac source address, destination address, and so on for example, the IP 5 tuple (source address, destination address, Source port number, destination port number, protocol number), or mac source address, destination address, and so on.
  • S502 is an optional step.
  • the access network element receives the Reflective QoS information and the packet filter composition information sent by the core network element, and determines, according to the packet filter component information part in the data packet header, whether the data packet needs to be sent to the terminal.
  • the QoS flow id is carried in the packet header.
  • the network element of the access network may also determine whether it is required to carry an indication information in the packet header sent to the terminal, where the indication information is used to indicate that the data packet has a Reflective QoS feature.
  • the access network element performs packet detection on each data packet of the QoS flow received from the N3 interface, and detects the packet header of the data packet according to the composition of the packet filter.
  • the packet filter is composed of an IP 5-tuple group, and the detection data is detected.
  • the contents of the IP 5-tuple in the packet header If the corresponding packet filter part of the packet header is new content, for example, the content of the IP 5-tuple in the packet header is new, that is, the access network element does not send the same IP 5 carrying the QoS flow id on the air interface.
  • the data packet of the tuple content carries the QoS flow id when the air interface sends the data packet.
  • the data packet may carry an indication information for indicating that the data packet has the Reflective QoS feature. If the corresponding packet filter part of the packet header is not new, the QoS flow id is not carried when the data packet is sent by the air interface, and the indication information indicating that the data packet has the Reflective QoS characteristic is not carried.
  • the access network element has confirmed that the terminal has received the downlink data packet containing the same content (the part corresponding to the packet filter) in the packet header (and the data packet carries the QoS flow id), or the access network element has succeeded Sending N data packets with the same IP 5-tuple content in the downlink (N may be a network setting, such as a core network element or an access network element setting), when the access network element sends the data packet in an air interface. It does not carry the QoS flow id and does not carry indication information indicating that the packet has Reflective QoS characteristics.
  • the access network element performs packet detection on the data packet carrying the QoS flow id and the RQI received from the N3 interface, and detects the packet header of the data packet according to the packet filter composition information, for example, the packet filter is composed of an IP 5-tuple. , the content of the IP 5-tuple in the packet header is detected. If the corresponding packet filter part of the packet header is new, for example, the content of the IP 5-tuple in the packet header is new content, that is, the access network element does not send the same IP 5 carrying the QoS flow id on the air interface.
  • the tuple content packet carries the QoS flow id when the packet is sent by the air interface. Further, the packet may carry an indication information indicating that the packet has the Reflective QoS feature. If the packet filter component in the packet header is not new, the QoS flow id is not carried when the packet is sent by the air interface.
  • the access network element has confirmed that the terminal has received the downlink data packet containing the same content (the packet filtering corresponding part) in the packet header (and the data packet carries the QoS flow id), or the access network element has succeeded Sending N the downlink data packets (N may be a network setting, such as a core network element or an access network element setting), and the access network element does not carry the QoS flow id when transmitting the data packet on the air interface, and does not Carrying indication information indicating that the data packet has a Reflective QoS feature.
  • N may be a network setting, such as a core network element or an access network element setting
  • the QoS flow id sent by the air interface is filtered in this manner, and the number of QoS flow ids is reduced.
  • the terminal can reduce the QoS flow id and obtain the packet filter operation, thereby reducing the terminal. Overhead.
  • the user plane control PDU or the radio resource control RRC message is sent to the terminal.
  • the user plane control PDU and the RRC signaling include a QoS flow id of the data packet and data packet header information.
  • FIG. 11 is a flowchart of another implementation method for filtering a QoS flow id according to an embodiment of the present application.
  • the access network element if it is determined that the QoS flow id needs to be carried in the data packet header sent to the terminal, send a user plane control PDU (such as a SDAP control PDU or a PDCP control PDU) to the terminal or RRC signaling (including but not limited to RRC configuration message or RRC reconfiguration, etc.), the user plane control PDU and the RRC signaling include a QoS flow id of the data packet and data packet header information.
  • a user plane control PDU such as a SDAP control PDU or a PDCP control PDU
  • RRC signaling including but not limited to RRC configuration message or RRC reconfiguration, etc.
  • the access network element performs packet detection on the data packet carrying the QoS flow id and the RQI received from the N3 interface, and detects the packet header of the data packet according to the packet filter composition information, for example, the packet filter is composed of an IP 5-tuple. , the content of the IP 5-tuple in the packet header is detected. If the corresponding packet filter part of the packet header is new, for example, the content of the IP 5-tuple in the packet header is new content, that is, the access network element does not send the same IP 5 carrying the QoS flow id on the air interface.
  • the tuple content data packet generates a user plane control PDU/RRC signaling notification terminal, wherein the user plane control PDU or RRC signaling includes a QoS flow id of the data packet and a packet header of the data packet, or a QoS flow id containing the data packet. And part of the packet header (corresponding to the composition of the packet filter, for example, the source IP address is x, the destination IP address is y, the source port number is 22, the destination port number is 67, and the protocol number is TCP).
  • the user plane control PDU and RRC signaling are not generated.
  • the access network element does not send the user plane control PDU.
  • the access network element does not carry the QoS flow id when it sends the data packet on the air interface.
  • the access network element In the scenario where the QoS flow has a Reflective QoS feature, the access network element only performs packet detection on the RQI carrying data packet of the QoS flow received from the N3 interface, and the remaining operations and all packets for the QoS flow.
  • the scenario with the Reflective QoS feature works the same.
  • the access network element determines that the QoS flow id needs to be carried in the data packet header sent to the terminal, the access network element is based on the packet filter composition information, and The content of the packet header corresponding to the packet filter composition information is reversed to obtain an uplink packet filter; the access network element sends the uplink packet filter and the QoS flow id to the terminal.
  • FIG. 12 is a flowchart of still another implementation method for filtering a QoS flow id according to an embodiment of the present application.
  • S701, S702, and S703 are the same as the execution steps of S501, S502, and S503 described above, and are not described herein again. Only differences will be described below.
  • the access network element may perform a reverse operation on the content of the corresponding packet filter in the downlink data packet header to obtain an uplink packet filter, for example, inverting the IP 5-tuple content in the downlink data packet header, the source address and the destination address.
  • the source port number and the destination port number are exchanged to obtain an uplink packet filter.
  • a filter may be composed of the following: the source IP address is y, the destination IP address is x, and the source port number is 67.
  • the port number is 22 and the protocol number is TCP.
  • the access network element sends the uplink packet filter and the QoS flow id to the terminal.
  • the access network element may send a QoS flow id and an uplink packet filter to the terminal.
  • the access network element may notify the terminal of the QoS flow id and the uplink packet filter by using a user plane control PDU or RRC signaling.
  • the network element of the access network may further indicate that the packet filter sent by the terminal is an uplink packet filter, and the terminal receives the QoS flow id and the corresponding uplink packet filter for generating an uplink QoS flow.
  • the terminal QoS flow id and the corresponding uplink packet filter are notified by the user plane control PDU or RRC signaling, so that the QoS flow id of the access network element can be sent in the air interface, and the terminal does not use the QoS flow id.
  • the detection and the operation of obtaining the packet filter reduce the terminal overhead to some extent.
  • the terminal may send, to the access network element, whether the terminal has the capability of reading the QoS flow id capability and generating the uplink packet filter. Multiple. Or the terminal sends the status of the terminal to the access network element to support reading the QoS flow id and generating one or more of the uplink packet filters.
  • FIG. 13 is a flowchart of still another implementation of filtering an QoS flow id of an access network element according to an embodiment of the present application. Referring to FIG. 13, the method includes:
  • S804 The terminal sends the first capability information, where the access network element receives the first capability information sent by the terminal.
  • the first capability information is used to indicate whether the terminal has at least one of a QoS flow id read capability and an uplink packet filter generation capability.
  • the capability of reading the QoS flow id refers to the capability of the terminal to obtain the QoS flow id from the received air interface data packet.
  • the capability of generating an uplink packet filter refers to the capability of the terminal to generate an uplink packet filter based on the received downlink air interface data packet.
  • the terminal may report the first capability information to the access network element by using RRC signaling, or the terminal may report the first capability information to the core network element, and then notify the network element by the core network element.
  • Network element may report the first capability information to the access network element by using RRC signaling, or the terminal may report the first capability information to the core network element, and then notify the network element by the core network element.
  • the embodiment of the present application does not limit the execution sequence of S801, S802, S803, and S504.
  • the execution steps of S504 may precede S801, S802, and S803.
  • the terminal can report the Reflective mapping capability, where the Reflective mapping capability refers to the capability of the terminal to obtain the uplink QoS flow to the DRB mapping relationship by using the QoS flow id carried in the downlink data packet header.
  • the Reflective mapping capability reported by the terminal may be referred to as second capability information.
  • the terminal may also send the second capability information, where the access network element receives the second capability information sent by the terminal.
  • the terminal may report the Reflective mapping capability information to the access network element by using RRC signaling, or the terminal may also report the Reflective mapping capability information to the core network element, and then notify the access by the core network element. Network element.
  • the access network element determines that the terminal does not support the Reflective mapping capability, the access network element needs to configure the uplink QoS flow to the DRB mapping relationship in other manners, for example, configuring the uplink QoS flow to the DRB through RRC signaling. Mapping relations.
  • the RRC signaling may include, but is not limited to, an RRC configuration message or a message such as an RRC reconfiguration.
  • the access network element may further determine that the terminal supports the Reflective mapping capability according to whether the terminal has the capability of reading the QoS flow id. If the terminal supports the QoS flow id capability, the terminal has the Reflective mapping capability. Otherwise, the terminal does not have the Reflective mapping capability.
  • the access network element determines that the terminal supports generating the uplink packet filter, the QoS flow id and the packet header part of the terminal may be sent to the terminal through the air interface data packet.
  • the access network element may notify the terminal QoS flow id and the uplink packet filter corresponding to the QoS flow id through the user plane control PDU or the RRC signaling manner, thereby reducing the overhead of the terminal and reducing the air interface due to carrying the QoS.
  • the overhead caused by the flow id may be notified.
  • the access network element may filter the first information sent to indicate whether the data packet has a Reflective QoS feature, thereby saving signaling overhead.
  • the implementation process of filtering the first information may be performed on the basis of the foregoing embodiments, or may be performed independently.
  • FIG. 14 is a flowchart of still another implementation of a communication method based on a Reflective QoS feature according to an embodiment of the present application. Referring to FIG. 14, the method includes:
  • the core network element sends a valid timing time of the QoS rule to the access network element.
  • the QoS rule effective timing time is used to indicate activation and deactivation of the QoS rule, wherein the QoS rule is valid within the effective timing time of the QoS rule.
  • the QoS rule refers to a QoS rule obtained through the Reflective QoS feature.
  • the effective timing time of the QoS rule sent by the core network element to the access network element may be the effective timing time of the QoS rules of the QoS flows, or may be the effective timing time of the QoS rules of the PDU sessions.
  • the core network element may send one or more QoS flow effective timing times to the access network element at one time. If the effective timing time of the QoS rule sent by the core network element to the access network element is the effective timing time of the QoS rules of the PDU sessions, the effective timing of the QoS rules of the PDU sessions is applicable to all the Reflective QoS features in the corresponding PDU sessions. QoS flow.
  • the core network element may send the QoS rule effective timing time to the access network element through the N2 interface message.
  • the N2 interface message includes, but is not limited to, a PDU Session Resource Setup message, a PDU Session Resource Modify message, and the like.
  • the access network element receives the effective timing time of the QoS rule sent by the core network element, and if the access network element receives at least two data packets with Reflective QoS characteristics within the effective timing time of the QoS rule, A first information indicating whether the data packet has a Reflective QoS characteristic may be sent for a part of the at least two data packets during the effective timing time of the QoS rule.
  • the access network element receives a plurality of data packets having the Reflective QoS feature, and determines that the receiving time of the multiple data packets with the Reflective QoS feature is within the effective timing time of the QoS rule, Sending the first information indicating whether the data packet has the Reflective QoS feature only for some of the received multiple data packets, without sending the first information for all the data packets, thereby implementing the first information sent Filtering saves signaling overhead.
  • the effective timing of the QoS rule can be implemented by using a timer. For example, if the access network element determines that a data packet has a reflective QoS feature, a QoS rule is generated according to the data packet (including a QoS rule id and a QoS flow id). At least one of a packet filter, a priority, and the like, and a timer is started. If a QoS rule with the same packet filter already exists in the access network element, the access network element can restart the timer. If the timer expires, the corresponding QoS rule is deleted.
  • a timer For example, if the access network element determines that a data packet has a reflective QoS feature, a QoS rule is generated according to the data packet (including a QoS rule id and a QoS flow id). At least one of a packet filter, a priority, and the like, and a timer is started. If a QoS rule with the same packet
  • the access network element When the timer does not time out, the access network element receives the N packet with the reflective QoS feature from the core network user plane network element, and the access network element can send the first information only for the M data packets.
  • M is less than N, and M and N are both positive integers.
  • the first information used in the embodiment of the present application to indicate whether the data packet has the Reflective QoS feature may include one or more of a QoS flow id and a NAS reflective QoS indicator (NRQI). item.
  • NRQI NAS reflective QoS indicator
  • each data packet received by the access network element from the core network user plane network element has a reflective QoS feature, so the access network element may be All received QoS flow packets are sent for filtering of the first message.
  • the access network element receives the RQI data packet received from the core network user plane network element to have the reflective QoS feature, so the access network element can have the reflected
  • the QoS characteristic packet is used to filter the first information.
  • the access network element may send the terminal to the terminal, so that the terminal maps the data packet with the Reflective QoS characteristic to the QoS flow by using the same QoS rule within the effective timing time of the QoS rule.
  • the effective timing of the QoS rule can be implemented by using a timer. For example, if the terminal determines that a certain packet has a reflective QoS feature, the terminal generates a QoS rule according to the data packet (including a QoS rule id, a QoS flow id, and a packet). At least one of a filter, a priority, etc., and a timer is started. If a QoS rule with the same packet filter already exists in the terminal, the terminal can restart the timer. If the timer expires, the corresponding QoS rule is deleted.
  • a timer For example, if the terminal determines that a certain packet has a reflective QoS feature, the terminal generates a QoS rule according to the data packet (including a QoS rule id, a QoS flow id, and a packet). At least one of a filter, a priority, etc., and a timer is started. If a QoS rule with the
  • the core network element may also send QoS rule effective timing update information to the access network element, where the QoS rule effective timing update information is used to indicate the updated QoS rule effective timing time.
  • the QoS rule effective timing update information may be the QoS rules effective timing update information of the QoS flows, or may also be the QoS rules effective timing update information of the PDU sessions.
  • the source access network element (source base station) of the terminal may be switched to the target access network element (target base station).
  • the source access network element (source base station) can send the QoS rule effective timing time of the QoS flow for handover to the target access network element (target base station) that the terminal switches.
  • the target access network element can filter the Reflective QoS information sent to the terminal based on the effective timing of the QoS rule, and implement filtering on the Reflective QoS information sent by the terminal, thereby saving signaling overhead.
  • the source access network element may send the QoS flow for handover to the target access network element (target base station) by including but not limited to the handover request message, the secondary base station addition request message, and the secondary base station modification request message.
  • the QoS rule is valid for the timing.
  • the effective timing time of the QoS rule sent by the source access network element to the target access network element switched by the terminal may be the effective timing time of the QoS rules of the QoS flows, or may be the effective timing time of the QoS rules of the PDU sessions.
  • the effective timing time of the QoS rule that the source access network element has sent the data packet may be ignored, and only sent according to the target access network network element.
  • the effective timing of the QoS rule corresponding to the data packet is used to filter the first information to avoid effective timing synchronization of the QoS rule between the source access network element and the target access network element.
  • the SDAP frame format involved in the data packet transmission process may be optimized for the SDAP entity responsible for adding the uplink QoS flow id and the downlink QoS flow id in the air interface protocol stack to meet the foregoing QoS.
  • the air interface of the flow packet is sent.
  • a SDAP frame format in a transparent mode and a SDAP frame format in a non-transparent mode may be configured.
  • the SDAP frame format in the transparent mode means that the SDB header is not configured in the DRB, that is, the SDAP protocol header is not included in the SDAP PDU.
  • the non-transparent mode of the SDAP frame format refers to the DRB configuration SDAP header, that is, the SDAP PDU contains the SDAP protocol header.
  • FIG. 15 is a schematic diagram of a downlink SDAP frame format according to an embodiment of the present application.
  • the SDAP protocol header of the downlink SDAP frame format includes a NAS reflective QoS indicator (NRQI) and an access layer reversal mapping indicator (ARQI) field.
  • NRQI and ARQI can be indicated by one bit respectively.
  • indicating that the bit of the NRQI is set to 1 it indicates that the data packet has a reflective QoS characteristic.
  • the bit indicating NRQI is set to 0 it indicates that the packet does not have the reflective QoS feature.
  • the bit indicating the ARQI is set to 1, indicating that the QoS flow has a reflective mapping characteristic.
  • the bit indicating the ARQI is set to 0, indicating that the QoS flow does not have the reflective mapping feature.
  • QFI represents the service flow quality indicator
  • Data represents data
  • R represents idle bits
  • Qct represents bytes
  • the SDAP entity at the data transmitting end sets the bit indicating the NRQI to 1 if it is determined that the transmitted data packet has a reflective QoS characteristic when transmitting the data packet. If it is determined that the transmitted data packet does not have the reflective QoS feature, the bit indicating the NRQI is set to zero.
  • the bit indicating the ARQI is set to 1. If it is determined that the QoS flow of the transmitted data packet does not have the reflective mapping feature, the bit indicating the ARQI is set to zero.
  • the QoS flow id (QFI) field may not be carried in the SDAP protocol layer header. If at least one of the bit indicating the NRQI and the bit indicating the ARQI is set to 1, the QFI field is carried.
  • the SDAP entity at the data transmitting end generates the SDAP protocol header in the above manner, and delivers the SDAP protocol header together with the data packet (Data) received from the UPF to the PDCP layer.
  • the SDAP entity at the data receiving end receives the PDCP SDU from the PDCP layer and reads the SDAP protocol header. If the value of the bit indicating the NRQI is 1, indicating that the packet has a reflective QoS characteristic, the SDAP entity delivers the data portion of the SDAP and the QoS flow id read from the SDAP header to the upper protocol layer, such as the NAS layer. The data portion and the QoS flow id delivered to the upper layer can be used by the upper protocol layer to generate a QoS rule. Further, the SDAP entity can also send the NRQI to the upper layer protocol layer.
  • the SDAP entity only delivers the data portion of the SDAP to the upper protocol layer, such as the NAS layer. If the value of the bit indicating the ARQI is 1, it indicates that the QoS flow has a reflective mapping characteristic, and the SDAP entity generates an uplink QoS flow to DRB mapping according to the downlink QoS flow id of the read data packet and the DRB id corresponding to the data packet. relationship. If the value of the bit indicating the ARQI is 0, it indicates that the QoS flow does not have the reflective mapping feature.
  • the SDAP entity does not generate an uplink QoS flow to DRB mapping relationship according to the downlink QoS flow id. If the bit indicating the NRQI and the bit indicating the ARQI are both set to 0, the SDAP entity can learn that the QFI field is not carried later, and the start position of the data packet can be known. For example, as shown in FIG. 16, the SDAP entity can learn from the SDAP entity. The second byte begins, which is the data part.
  • FIG. 17 is a schematic diagram of a downlink SDAP frame format according to an embodiment of the present application.
  • the SDAP frame format shown in FIG. 17 is similar to the SDA P frame format shown in FIG. 15 , except that the SDAP protocol header further includes a UP reflective QoS indicator (URQI).
  • URQI UP reflective QoS indicator
  • Bit The URQI is used to indicate whether the reflective QoS is controlled by the user plane. In other words, the packet indicating that the reflective QoS is sent by the UPF through the N3 interface carries the RQI to indicate the reflective QoS. If yes, the URQI bit is indicated. The value of the bit is set to 1, otherwise the value indicating the bit of the URQI is set to zero.
  • the SDAP entity at the data transmitting end sets the value of the bit indicating the URQI to 1 if it is determined that the RQI is carried in the data packet received from the UPF when transmitting the data packet. If it is determined that the RQI is not carried in the data packet received from the UPF, the value indicating the bit of the URQI is set to zero.
  • the SDAP entity at the data receiving end receives the PDCP SDU from the PDCP layer, and the SDAP reads the SDAP header.
  • the SDAP entity delivers the data portion of the SDAP and the QoS flow id read from the corresponding SDAP header to the upper protocol layer, for example, NAS layer. If the value of the bit indicating the URQI is 1, the SDAP entity carries the NRQI corresponding to the data packet to the upper protocol layer.
  • the foregoing embodiment of the present application can implement the delivery of the reflective QoS information of the NAS layer and the reflective mapping information of the AS layer in the SDAP protocol header of the air interface packet, and reduce the overhead of the air interface, and accurately determine whether to deliver the RQI indication. Information to the upper layer agreement.
  • a bit for indicating whether the data packet of the QoS flow is transmitted in the corresponding DRB may be set in the SDAP protocol header, for example, setting an End field, the End field. The end of the transmission of the data packet used to represent the QoS flow in the corresponding DRB.
  • FIG. 18 is a schematic diagram of still another SDAP frame format provided by an embodiment of the present application.
  • the bit indicating End is set to 1, indicating that the data packet of the QoS flow ends in the corresponding DRB.
  • the bit indicating End is set to 0, indicating that the data packet of the QoS flow is not terminated in the corresponding DRB.
  • the SDAP entity at the data transmitting end transmits the data packet
  • the SDAP entity determines to terminate the data packet of the QoS flow (for example, QoS flow1) in a certain DRB (for example, DRB1)
  • the data is transmitted.
  • the bit indicating End in the SDAP protocol header of the packet is set to 1.
  • the SDAP entity at the data receiving end receives the PDCP SDU from the PDCP layer, and the SDAP reads the SDAP protocol header. If the bit indicating End is set to 1, it indicates that the data packet of the QoS flow ends in the DRB; if End is indicated Setting the bit to 0 indicates that the data packet of the QoS flow does not end in the DRB.
  • the SDAP entity at the data receiving end determines that the bit indicating End is set to 1
  • the information about the receiving state of the data packet of the QoS flow may be fed back according to the information, for example, the QoS flow may be fed back in the DRB. The end of the packet.
  • the SDAP entity at the data receiving end determines that the bit indicating End is set to 1, the data packet of the same QoS flow received from different DRBs may be sorted according to the information.
  • the setting of the End field involved in the foregoing embodiment of the present application may be set based on the SDAP frame format described in FIG. 15 to FIG.
  • the SDAP frame format with the End field is applicable to the protocol header design of the uplink SDAP frame format and the downlink SDAP frame format.
  • FIG. 19 is a schematic diagram of still another SDAP frame format provided by an embodiment of the present application.
  • the D/C field indicates whether the PDU is a control PDU or a data PDU. For example, if the value of the bit indicating the D/C field is set to 1, it indicates that it is a control PDU. If the value of the bit indicating the D/C field is set to 0, it indicates that it is a data PDU.
  • the PDU type field indicates the type of the control PDU. For example, the value of the PDU type field is 000, indicating that the QoS Flow packet is received in a DRB.
  • the D/C field is set to 1
  • the PDU type field is set to correspond to the corresponding control command.
  • the value for example, the control command indicating the completion of receiving a QoS Flow packet in a DRB, is set to 000.
  • the SDAP entity at the data receiving end receives the PDCP SDU from the PDCP layer, and the SDAP reads the SDAP protocol header. If the D/C field is 1, the SDAP PDU is the control PDU, otherwise it is the data PDU.
  • the SDAP entity at the data receiving end reads the PDU type field to obtain a corresponding control command.
  • the PDU type field takes a value of 000, indicating a control command for receiving feedback of a QoS Flow packet in a DRB.
  • the QFI is 8 bit length as an example, and the QFI length must be 8 bits.
  • the embodiment of the present application may also include other QFIs of different lengths. Scenes.
  • the QFI in the foregoing embodiment may be a QoS flow id of the NAS layer generated by the user plane network element of the terminal or the core network, or may be a QoS flow id of the AS layer configured by the access network element.
  • the QoS flow id of the flow id and the AS layer has a mapping relationship, for example, one-to-one correspondence in the PDU session or the DRB.
  • the SDAP frame format in the transparent mode is configured, that is, the SDAP protocol header is not configured for the DRB, and the SDAP PDU is not included in the SDAP PDU, that is, the SDAP PDU is the SDAP SDU, which can reduce the overhead caused by the air interface carrying the SDAP protocol header. And has no effect on the ROHC processing of PDCP.
  • the SDAP is configured according to the DRB. If the transparent mode of the SDAP is configured in both directions, the uplink and downlink configurations must be configured, which will result in the limitation of the mapping relationship between the QoS flow and the DRB. The corresponding downlink direction only does not activate the reflective QoS and the reflective mapping. QoS flow can be mapped to the DRB configured with transparent mode SDAP. For the uplink direction, only the QoS flow that can carry the QoS flow id can be mapped to the DRB configured with the transparent mode SDAP.
  • the SDAP transparent mode cannot be configured for the scenario where the QoS flow id needs to be carried in the uplink or downlink. This causes additional air interface overhead and impact on the ROHC, for example, in PDCP.
  • the ROHC operates with a certain offset, avoiding the header part of the SDAP protocol. Therefore, in the embodiment of the present application, the unidirectional SDAP transparent mode may be set, that is, the uplink and downlink directions of the DRB may be configured in the unidirectional transparent mode, that is, the uplink direction and the downlink direction of the DRB, respectively.
  • Configure transparent mode SDAP may be set, that is, the uplink and downlink directions of the DRB may be configured in the unidirectional transparent mode, that is, the uplink direction and the downlink direction of the DRB, respectively.
  • the SDAP PDU does not carry the SDAP protocol header.
  • the access network element sends an indication to the terminal that the downlink SDAP of the DRB is configured to be in a transparent mode.
  • the RRC signaling or the user plane control PDU may be used to send an indication to the terminal that the downlink SDAP of the DRB is configured to be in a transparent mode. information.
  • the SDAP entity that sends the DRB to the network element of the access network routes the data packet received from the network element of the core network to the DRB, and does not configure the SDAP protocol header.
  • the access network element corresponds to the PDCP entity in the DRB, and does not perform the offset of the compression start position caused by the SDAP protocol header during the ROHC compression process.
  • the access network element only maps the QoS flow that does not activate the reflective QoS and the reflective mapping to the DRB configured with the transparent mode SDAP.
  • the terminal For the DRB configured in the SDAP transparent mode in the downlink direction, the terminal correspondingly receives the SDAP entity of the DRB, and does not perform the read processing of the SDAP protocol header, and directly delivers the data packet received from the DRB to the upper layer, for example, a NAS layer protocol entity.
  • the terminal corresponds to the PDCP entity that receives the DRB, and does not perform the offset of the decompression starting position caused by the SDAP protocol header during the ROHC decompression process.
  • the SDAP PDU does not carry the SDAP protocol header.
  • the access network element may send, by using an RRC or a user plane control PDU, indication information indicating that the uplink SDAP of the DRB is configured to be in a transparent mode.
  • the access network element only maps the uplink QoS flow that does not need to carry the QoS flow id to the DRB in which the transparent mode SDAP is configured in the uplink direction.
  • the terminal sends the data packet received from the NAS layer to the DRB corresponding to the SDAP entity that sends the DRB, and does not configure the SDAP protocol header.
  • the terminal correspondingly transmits the PDCP entity in the DRB, and does not perform the offset of the compression start position caused by the SDAP protocol header during the ROHC compression process.
  • the access network element corresponds to the SDAP entity that receives the DRB, and does not perform the read processing of the SDAP protocol header.
  • the access network element corresponds to the PDCP entity that receives the DRB, and does not perform the offset of the decompression starting position caused by the SDAP protocol header during the ROHC decompression process.
  • the access network element may send the SDAP mode information to the terminal, where the SDAP mode information is used to indicate the SDAP frame format. It is in transparent mode or non-transparent mode and indicates the direction corresponding to the SDAP mode.
  • the non-transparent mode of the SDAP may be further divided into two sub-modes: the SDAP PDU protocol header is a fixed length, and the SDAP PDU protocol header is not a fixed length.
  • the direction corresponding to the SDAP mode refers to an uplink direction or a downlink direction, or an uplink direction and a downlink direction. Further, the corresponding direction information is not carried in the SDAP mode information to indicate that the corresponding direction is bidirectional.
  • the SDAP mode information may be configured in a display mode or in an implicit manner. For example, if the displayed SDAP mode is configured for some DRBs or certain DRBs, the remaining directions of the remaining DRBs or all the remaining DRBs are in another direction. A SDAP mode.
  • the format of the notification message is that the mode information of the SDAP is included in the configuration message of the DRB.
  • the configuration of the DRB configuration message can be performed as follows:
  • DRB list / / Description can contain one or more DRB
  • SDAP mode ; / / Description: SDAP mode;
  • the configuration of the SDAP mode includes the identifier of the DRB to indicate the mode configuration of the SDB of the DRB.
  • SDAP id, / / indicates the identity of the SDAP entity
  • SDAP mode 1 Description: SDAP mode, such as transparent mode; may also include the direction corresponding to the mode, such as the downlink direction;
  • SDAP mode 2 Description: SDAP mode, such as transparent mode; may also include the direction corresponding to the mode, such as the uplink direction;
  • SDAP mode 2 Description: SDAP mode; for example, non-transparent mode; may also include the direction corresponding to the mode, such as the uplink direction;
  • the access network element may configure the SDAP mode according to the granularity of the PDU session, that is, configure the SDB mode of the DRB for a certain PDU session, that is, the SDAP entity configures only one SDAP mode in the uplink, downlink, or bidirectional, and the SDAP entity pair This type of SDAP should be used by all DRBs in the PDU session.
  • the source access network element may send the SDAP mode information corresponding to the DRB to the target access network element (target base station), so that the target access network element
  • the (target base station) may consider the SDAP mode information of the DRB in the process of determining the SDAP PDU format, whether the compression decompression process in the ROHC performs the offset of the start position, and the determination of the mapping relationship of the QoS flow to the DRB.
  • the source base station when the source base station decides to switch the terminal to the target cell of the target base station, the source base station sends a handover request message 1 to the target base station, and the message 1 of the handover request includes the SDAP mode information of the terminal DRB.
  • the SDAP mode information is that the source base station is configured for the terminal in the source cell.
  • the message 1 of the handover request may be sent through a direct interface or an indirect interface between the base stations.
  • the target base station receives the message 1 of the handover request from the source base station, and may perform the SDAP PDU format determination, whether the compression and decompression processing in the ROHC performs the offset of the initial position, and the mapping relationship between the QoS flow and the DRB is determined.
  • the SDAP mode information of the terminal DRB included in the message 1 of the handover request is referred to.
  • the QoS flow to DRB mapping relationship configuration in the target cell when the QoS flow to DRB mapping relationship configuration in the target cell is performed, the QoS flow that does not need to carry the QoS flow id in the air interface can be mapped to the DRB configured with the transparent SDAP mode.
  • the target base station may also perform configuration update of the DRB, for example, performing configuration update of the SDAP mode of the DRB according to the SDAP mode information of the terminal DRB included in the message 1 of the handover request.
  • the target base station includes the SDAP mode information of the DRB of the terminal in the target cell in the message 2 of the handover request acknowledgement.
  • the target base station may send a message 2 of the handover request acknowledgement.
  • the message 2 of the target base station handover request acknowledgement can be sent through a direct interface or an indirect interface between the base stations.
  • the source base station Upon receiving the handover request acknowledgement message 2, the source base station sends a message 3 of the handover command to the terminal.
  • the terminal receives the handover command and performs access in the target cell.
  • the SDAP mode information may also be transmitted.
  • the multi-connection and off-flow scenario means that the terminal accesses a communication network such as a 5G network through a primary base station (Master gNB, MgNB) and a secondary base station (Secondary gNB, SgNB).
  • the terminal may receive user plane data from the core network through the primary base station or the secondary base station, and the terminal may also send data to the core network through the primary base station or the secondary base station.
  • the primary base station may migrate the QoS flow from the primary base station to the secondary base station or from the secondary base station to the primary base station.
  • the primary base station may notify the secondary base station that the QoS flow to be migrated by the terminal corresponds to the SDAP mode information of the DRB, and the secondary base station may determine in the SDAP PDU format, whether the compression and decompression processing in the ROHC performs the offset of the starting position, and the QoS flow to the DRB.
  • the mapping relationship determines the SDAP mode information of the DRB in consideration of the processing.
  • the primary base station determines that the QoS flow migration request is sent to the secondary base station by the primary base station, and the message 1 of the QoS flow migration request includes the SDAP mode information of the terminal DRB, where the SDAP is transmitted.
  • the mode information is configured by the primary base station for the terminal.
  • the QoS flow migration refers to migrating QoS flow from the primary base station to the secondary base station for transmission, or offloading at the secondary base station.
  • the splitting of the secondary base station means that the downlink data packet is offloaded by the secondary base station to the primary base station, the terminal receives data at the primary base station and the secondary base station, and the uplink terminal transmits data to the primary base station and the secondary base station, and the secondary base station receives the data from the secondary base station and the primary base station. Receive data and send it to the core network user plane device.
  • the message 1 for the primary base station to send the QoS flow migration request to the secondary base station may be, but is not limited to, sent by using an SGNB addition request message and an SGNB modification request message. All QoS flows mapped to a certain DRB may be migrated as a whole, or part of the QoS flows mapped to a certain DRB may be migrated.
  • the secondary base station receives the QoS flow migration request message 1 from the primary base station, and sends a message 2 of the QoS flow migration request.
  • the secondary base station may perform the SDAP PDU format determination, whether the compression and decompression processing in the ROHC performs the offset of the initial position, and the QoS flow to the DRB mapping relationship determines one or more operations, and refers to the QoS flow migration request message.
  • the secondary base station may perform configuration update of the DRB, for example, performing configuration update of the SDAP mode of the DRB according to the SDAP mode information of the terminal DRB included in the QoS flow migration request message 1.
  • the target base station includes the SDAP mode information of the DRB of the terminal in the secondary base station in the message 2 of the QoS flow migration request acknowledgement.
  • the terminal receives the downlink QoS flow data sent by the secondary base station or the data of the secondary base station offload.
  • the terminal sends data of the uplink QoS flow at the secondary base station.
  • the secondary base station migrates the QoS flow to the primary base station, and the secondary base station can notify the primary base station of the QoS flow to be migrated by the terminal corresponding to the SDAP mode information of the DRB.
  • the core network element may be configured with a public QoS profile of a PDU session level, where the public QoS profile includes: a resource type (Resource Type), a priority level (Priority level), and a packet delay ( At least one of a parameter such as Packet Delay Budget, Packet Error Rate, and Allocation and Retention Priority.
  • the resource type includes a guaranteed bit rate (GBR) or a non-GBR (Non-GBR).
  • the core network element sends the public QoS profile of the PDU session to the access network element during the establishment and modification of the PDU session. For example, one of the PDU Session Resource Setup and the PDU Session Resource Modify message may be used to send to the access network element through the N2 interface.
  • the network element of the access network establishes the default DRB of the PDU session
  • the parameters of the default DRB such as the PDCP layer parameters and the RLC layer parameters corresponding to the DRB, are configured according to the public QoS profile.
  • the access network element may perform the PDU session establishment acceptance based on the public QoS profile of the PDU session. If it can be accepted, the establishment of the receiving PDU session is established. Otherwise, the PDU session is refused.
  • the access network element modifies the parameters of the default DRB corresponding to the PDU session according to the content of the public QoS profile.
  • the access network element may perform the PDU session establishment acceptance based on the public QoS profile of the PDU session. If it can be accepted, the establishment of the receiving PDU session is established. Otherwise, the PDU session is refused.
  • the access network element may send the public QoS profile of the PDU session to the target access network element, for example, in a handover request message.
  • the target access network element receives the public QoS profile of the PDU session, and establishes a default DRB corresponding to the PDU session according to the content of the public QoS profile.
  • the target access network element may perform the PDU session establishment acceptance based on the public QoS profile of the PDU session. If it can be accepted, the establishment of the receiving PDU session is established. Otherwise, the PDU session is refused.
  • the primary access network element decides to migrate part of the QoS flow in a PDU session or PDU session to the secondary access network element (eg, second gNB), the primary access network.
  • the network element sends the public QoS profile of the PDU session to the secondary access network element, and may be, but not limited to, an SGNB addition request message and an SGNB modification request message.
  • the secondary access network element may perform parameter configuration of the default DRB based on the public QoS profile of the PDU session, and may also accept the establishment of the PDU session based on the public QoS profile of the PDU session.
  • the core network element may be configured to implement a common QoS profile of the PDU session level, and may be applied to a scenario of a secondary cell group bearer (SCG Bearer) and a split bearer (split bearer).
  • SCG Bearer secondary cell group bearer
  • split bearer split bearer
  • an optimization of the sequential transmission of data packets of QoS flow is provided.
  • the core network element notifies the in-order transmission information of the QoS flow or PDU session of the access network element, and the sequential transmission information refers to whether the packets in the packet or PDU session in the QoS flow need to be transmitted in order.
  • the network element of the core network control plane can notify the in-sequence transmission information of the QoS flow or PDU session of the access network through the message of the N2 interface.
  • the adopted N2 interface messages include, but are not limited to, PDU Session Resource Setup, PDU Session Resource Modify, and the like.
  • the core network element also notifies the terminal of the QoS flow or the sequential transmission information of the PDU session, for example, through the NAS layer message.
  • the QoS flow includes uplink and/or downlink QoS flows.
  • the core network user plane network element can notify the RAN QoS flow or the PDU session of the sequence transmission information through the N3 interface, for example, the encapsulation header of the data packet of the N3 interface is used to indicate whether the data packet needs to be sequentially transmitted. Instructions.
  • the RAN implements the data packet transmission in the air interface, and considers the in-order transmission information of the data packet, and the following mainly adopts the following manner:
  • RAN implementation mode 1 QoS flow to DRB mapping according to the sequential transmission of information
  • the RAN can perform QoS flow to DRB mapping according to the QoS flow or the sequential transmission information of the PDU session.
  • the RAN can map the QoS flows that do not need to be transmitted in order to the same DRB, that is, the data in one DRB does not need to be transmitted in order. For example, multiple QoS flows that do not need to be sequentially transmitted with the same or similar QoS parameters are mapped into the same DRB. Or map the QoS flows that need to be transmitted in order to the same DRB, that is, the data in one DRB needs to be transmitted in order.
  • the base station For the uplink, the base station notifies the terminal of the mapping relationship between the QoS flow and the DRB. Further, the base station also informs the terminal that the data transmission in a DRB does not need to be transmitted in order. For example, the terminal is notified by means of an RRC message or by means of a user plane control PDU. The terminal may perform optimization processing when transmitting data of the DRB.
  • the base station informs the terminal that the data transmission in a certain DRB does not need to be transmitted in order, and the PDCP layer entity corresponding to the DRB in the terminal does not need to perform the sorting operation, and the PDCP layer protocol entity can directly deliver the data packet received from the RLC layer. Go to the upper layer protocol without sorting the packets.
  • the base station and the terminal can perform different processing according to the sequential transmission requirements of the DRB.
  • the PDCP layer can perform the sorting operation, thereby improving the processing efficiency.
  • RAN implementation 2 QoS flow to DRB mapping does not consider the sequential transmission of information
  • a DRB may contain packets that need to be transmitted in order and packets that do not need to be transmitted in order.
  • Option 1 Add an indication to the header of the SDAP protocol
  • the SDAP entity on the sending end obtains the in-sequence transmission information of the packet, and carries an indication information in the protocol header of the SDAP, which is used to indicate whether the sequential transmission is needed.
  • the PDU of the SDAP is sent to the receiving end through processing such as the PDCP layer, the RLC layer, the MAC layer, and the physical layer.
  • the PDCP layer entity at the receiving end reads the protocol header of the received SDCP SDU, and learns the information in the order according to the indication information in the SDAP protocol header. If the data packet does not need to be transmitted in sequence, the PDCP layer entity directly The data packet is delivered to the upper layer.
  • the PDCP layer entity sorts the PDCP SDU according to the PDCP SN, and then sequentially delivers the data packet to the upper layer after sorting.
  • the PDCP layer entity only reads the SDAP protocol headers for the PDCP SDUs that are received out of order, so as to know that the information is transmitted in order.
  • the PDCP receives the data packet 1, the data packet 3, and the data packet 5. If the data packet 3 does not need to be delivered in order, the PDCP layer entity delivers the data packet 1 and the data packet 3 to the upper layer, and records that the data packet 3 has been delivered. Go to the upper layer, save the data packet 5 in the PDCP layer, wait until the PDCP entity receives the data packet 2 and the data packet 4, and both the data packet 2 and the data packet 4 need to be delivered in order, then the data packet 2, the data packet 4 and the data Packet 5 is delivered to the upper protocol layer.
  • the PDCP layer can only read the SDAP protocol headers for the out-of-order packets 3 and 5 to learn to transmit information in order.
  • This solution can be applied to the uplink and downlink directions.
  • Option 2 Add an indication message to the header of the PDCP layer protocol
  • the SDAP entity at the sending end obtains the in-sequence transmission information of the packet, and notifies the PDCP layer of the sequential transmission information of the data packet through the SDAP and PDCP layer primitives.
  • the PDCP layer entity carries an indication message in the protocol header of the PDCP layer to indicate whether the data packet needs to be transmitted in order.
  • the PDU of the PDCP is sent to the receiving end through processing such as the RLC layer, the MAC layer, and the physical layer.
  • the PDCP layer entity of the receiving end reads the PDCP layer protocol header of the received PDCP SDU, and learns to transmit the information in order. If the data packet does not need to be transmitted in sequence, the PDCP layer entity directly delivers the data packet to the upper layer.
  • the PDCP layer entity sorts the PDCP SDUs according to the PDCP SN, and sequentially delivers the data packets to the upper layer after sorting.
  • the PDCP layer entity only reads the PDCP protocol headers for the PDCP SDUs received out of order to learn to transmit information in order.
  • the PDCP receives the data packet 1, the data packet 3, and the data packet 5. If the data packet 3 does not need to be delivered in order, the PDCP layer entity delivers the data packet 1 and the data packet 3 to the upper layer, and records that the data packet 3 has been delivered. Go to the upper layer, save the data packet 5 in the PDCP layer, wait until the PDCP entity receives the data packet 2 and the data packet 4, and both the data packet 2 and the data packet 4 need to be delivered in order, then the data packet 2, the data packet 4 and the data Packet 5 is delivered to the upper protocol layer.
  • the PDCP layer may only read the PDCP protocol headers for the out-of-order data packets 3 and 5 to learn to transmit information in order, or read part of the contents of the PDCP layer protocol header, for example, instructions for sequentially transmitting.
  • This solution can be applied to the uplink and downlink directions.
  • Solution 3 The receiving end PDCP entity reads the QoS flow id of the SDAP layer
  • the SDAP entity at the sending end carries the QoS flow id in the SDAP protocol header, and the PDCP PDU is sent to the receiving end through the RLC layer, the MAC layer, and the physical layer.
  • the PDCP layer entity at the receiving end reads the protocol header part of the SDAP layer of the received PDCP SDU, learns the QoS flow id, and learns the sequential transmission of the data packet according to the sequential transmission information of the QoS flow notified by the core network element to the RAN. information. If the data packet does not need to be transmitted in sequence, the PDCP layer entity directly delivers the data packet to the upper layer.
  • the PDCP layer entity sorts the PDCP SDU according to the PDCP SN, and sequentially delivers the data packet to the upper layer after sorting.
  • the PDCP layer entity only reads the SDAP layer protocol headers of the PDCP SDUs that are received out of order, and reads the QoS flow id therein to learn to transmit the information in order.
  • the PDCP layer receives the data packet 1, the data packet 3, and the data packet 5. If the data packet 3 does not need to be delivered in order, the PDCP layer entity delivers the data packet 1 and the data packet 3 to the upper layer, and records the data packet 3 Delivered to the upper layer, save the data packet 5 in the PDCP layer, wait until the PDCP entity receives the data packet 2 and the data packet 4, and both the data packet 2 and the data packet 4 need to be delivered in order, then the data packet 2, the data packet 4 and Packet 5 is delivered to the upper protocol layer.
  • the PDCP layer can only read the SDAP layer protocol header for the out-of-order packet 3 and the packet 5, and read the QoS flow id to learn to transmit the information in order.
  • This solution can be applied to the upstream direction.
  • the base station and the terminal can perform different processing according to the sequential transmission requirements of different data packets of the DRB.
  • the PDCP layer can perform the sorting operation, thereby improving the processing efficiency.
  • the PDCP layer performs the sorting operation to ensure the sequential transmission of the service.
  • the source access network element (source base station) that obtains the Reflexive QoS information may be the target access network element (target base station) that can be handed over to the terminal.
  • the Reflective QoS information may be sent to the target access network network element by using the handover request message, and the target access network element performs the execution steps of the access network element in the foregoing embodiment,
  • the target access network element may receive the Reflective QoS information sent by the source access network element, and determine whether to send the QoS flow id on the air interface, configure whether the terminal needs to read the QoS flow id, and configure the terminal according to the Reflective QoS information.
  • QoS flow to the DRB mapping relationship configuration whether the decision is one or more of the operations of configuring a SDAP entity for a PDU session.
  • the MgNB decides to migrate some QoS flows to the SgNB, and the MgNB sends the Reflective QoS information of the QoS flow to the SgNB, for example, the SGNB ADDITION REQUEST message, the SGNB modification request (SGNB)
  • the MODIFICATION REQUEST message is sent to enable the SgNB to decide whether to send the QoS flow id on the air interface, configure whether the terminal needs to read the QoS flow id, and configure the QoS flow to the DRB mapping relationship for the terminal according to the Reflective QoS information.
  • the mode whether the decision is one or more of the operations of configuring a SDAP entity for a PDU session.
  • the SDAP and PDCP protocols in the embodiments of the present application only describe their functions, and include any protocol layer names corresponding to the same functions.
  • first, second and the like in the specification and claims of the embodiments of the present application and the drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
  • the order, for example, the first indication information and the second indication information referred to in the foregoing embodiment of the present application are only for convenience of description and distinguishing different indication information, and do not constitute a limitation on the indication information.
  • the data so used may be interchanged where appropriate, so that the embodiments of the present application described herein can be implemented in a sequence other than those illustrated or described herein.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of the interaction between the terminal, the access network element, and the core network element. It can be understood that, in order to implement the above functions, the terminal, the access network element and the core network element include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements of the examples and algorithm steps described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application may perform functional unit division on a terminal, an access network element, and a core network element according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be used.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 20 is a schematic structural diagram of a communication device 100 based on the Reflective QoS feature provided by the embodiment of the present application, and the communication device 100 based on the Reflective QoS feature may correspond to the foregoing method.
  • the access network element as shown in FIG. 20, the communication device 100 based on the Reflective QoS feature includes a receiving unit 101 and a processing unit 102.
  • the communication device 100 based on the Reflective QoS feature may further include a transmitting unit 103.
  • the functions of the receiving unit 101, the processing unit 102, and the transmitting unit 103 may correspond to the method steps involved above, and are not described herein.
  • the receiving unit 101 may be a receiver, a communication interface, and a transceiver circuit
  • the processing unit 102 may be a processor or a controller
  • the transmitting unit 103 may be a transmitter, a communication interface, and a transceiver circuit.
  • the communication interface is a collective name and may include one or more interfaces.
  • FIG. 21 is another schematic structural diagram of a communication device 100 based on the Reflective QoS feature provided by the embodiment of the present application.
  • the communication device based on the Reflective QoS feature may correspond to the access network element in the foregoing method.
  • the network element of the access network may be a base station or other equipment, which is not limited herein.
  • the access network element 1000 can include a processor 1001, a memory 1002, a bus system 1003, a receiver 1004, and a transmitter 1005.
  • the processor 1001, the memory 1002, the receiver 1004, and the transmitter 1005 are connected by a bus system 1003.
  • the memory 1002 is configured to store instructions for executing the instructions stored by the memory 1002 to control the receiver 1004 to receive.
  • the signal is transmitted, and the transmitter 1005 is controlled to send a signal to complete the step of accessing the network element in the above method.
  • the receiver 1004 and the transmitter 1005 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 1002 may be integrated in the processor 1001 or may be separately provided from the processor 1001.
  • the functions of the receiver 1004 and the transmitter 1005 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 1001 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the access network element provided by the embodiment of the present application may be implemented by using a general-purpose computer, that is, the program code of the functions of the processor 1001, the receiver 1004, and the transmitter 1005 is stored in the memory.
  • the general purpose processor implements the functions of processor 1001, receiver 1004 and transmitter 1005 by executing code in memory.
  • FIG. 22 is a schematic structural diagram of a communication device 200 based on the Reflective QoS feature provided by the embodiment of the present application, and the communication device 200 based on the Reflective QoS feature may correspond to the foregoing method.
  • the core network element as shown in FIG. 22, the communication device 200 based on the Reflective QoS feature includes a processing unit 201 and a transmitting unit 202.
  • the functions of the processing unit 201 and the sending unit 202 may correspond to the method steps involved above, and are not described herein.
  • the processing unit 201 may be a processor or a controller
  • the transmitting unit 202 may be a transmitter, a communication interface, and a transceiver circuit.
  • the communication interface is a collective name and may include one or more interfaces.
  • FIG. 23 is another schematic structural diagram of a communication device 200 based on the Reflective QoS feature provided by the embodiment of the present application.
  • the communication device based on the Reflective QoS feature may correspond to the core network element in the foregoing method.
  • the network element of the core network may be AMF, UMF, or other devices, and is not limited herein.
  • the core network element 2000 can include a processor 2001, a memory 2002, a bus system 2003, and a transmitter 2004.
  • the processor 2001, the memory 2002 and the transmitter 2004 are connected by a bus system 2003 for storing instructions for executing instructions stored in the memory 2002 to control the transmitter 2004 to transmit signals to complete the above.
  • the transmitter 2004 can be collectively referred to as a transceiver.
  • the memory 2002 may be integrated in the processor 2001 or may be provided separately from the processor 2001.
  • the function of the transmitter 2004 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 2001 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the core network element provided by the embodiment of the present application may be implemented by using a general-purpose computer, that is, the processor 2001, the transmitter 2004, and the function code of the function are stored in the memory, and the general-purpose processor passes The code in the memory is executed to implement the functions of the processor 2001 and the transmitter 2004.
  • the communication device 200 and the core network element 2000 which are based on the Refractory QoS feature, refer to the foregoing method or other embodiments. Description, no further description here.
  • FIG. 24 is a schematic structural diagram of a communication device 300 based on the Reflective QoS feature provided by the embodiment of the present application.
  • the communication device 300 based on the Reflective QoS feature may correspond to the foregoing method.
  • Terminal referring to FIG. 24, the communication device 300 based on the Reflective QoS feature includes a receiving unit 301 and a processing unit 302.
  • the functions of the receiving unit 301 and the processing unit 302 may correspond to the method steps involved above, and are not described herein.
  • the processing unit 302 may be a processor or a controller
  • the receiving unit 301 may be a receiver, a communication interface, and a transceiver circuit.
  • the communication interface is a collective name and may include one or more interfaces.
  • FIG. 25 is a schematic diagram showing another structure of the communication device 300 based on the Reflective QoS feature provided by the embodiment of the present application.
  • the communication device 300 based on the Reflective QoS feature may correspond to the terminal in the above method.
  • the terminal 3000 may include a transmitter 3001, a receiver 3002, a processor 3003, and a memory 3004. Further, the terminal 3000 may further include an antenna 3005.
  • the transmitter 3001, the receiver 3002, the processor 3003, and the memory 3004 may be connected by a bus system for storing instructions, and the processor 3003 is configured to execute instructions stored by the memory 3004 to control the receiver 3002 to receive signals. And controlling the transmitter 3001 to send a signal to complete the steps of the terminal in the above method.
  • the receiver 3002 and the transmitter 3001 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 3004 may be integrated in the processor 3003 or may be separately provided from the processor 3003.
  • the functions of the receiver 3002 and the transmitter 3001 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 3003 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the terminal provided by the embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 3003, the receiver 3002, and the transmitter 3001 is stored in the memory, and the general-purpose processor passes The code in the memory is executed to implement the functions of the processor 3003, the receiver 3002, and the transmitter 3001.
  • the embodiment of the present application further provides a communication system, including the foregoing access network element, a core network element, and one or more terminals.
  • the embodiment of the present application further provides a computer storage medium, where some instructions are stored, and when the instructions are executed, the terminal, the access network element, or the core network element may be completed. Any of the methods.
  • the embodiment of the present application further provides a computer program product for storing a computer program, which is used to execute a communication method based on the Reflective QoS feature involved in the foregoing method embodiment.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). , off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to processor 310.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于反转服务流特性的通信方法及装置,在该方法中,接入网网元接收核心网网元发送的第一信息,第一信息用于指示数据包是否具备反转服务流特性;所述接入网网元基于所述第一信息,确定是否需要向终端发送服务流标识,以减少信令开销。

Description

一种基于反转服务流特性的通信方法及装置
本申请要求2017年5月5日提交、申请号为201710313900.5、发明名称为“一种基于反转服务流特性的通信方法及装置”和2017年6月16日提交、申请号为201710458757.9、发明名称为“一种基于反转服务流特性的通信方法及装置”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于反转服务流特性的通信方法及装置。
背景技术
在下一代通信系统中,一种基于流的服务质量(Quality of Service,QoS)架构被提出。
基于流的QoS架构中,主要包括非接入(Non Access Stratum,NAS)层和接入(Access Stratum,AS)层的服务流(QoS flow)映射。其中,QoS flow是指一个报文数据单元(packet Data Unit,PDU)会话(session)内,具备相同QoS需求的数据流,也可以理解为是多个具有相同QoS需求的网络互连协议(Internet Protocol,IP)flow或一组具有相同QoS需求的其它类型数据包。NAS层主要负责IP flow或其它类型数据包和QoS flow的映射关系,由核心网用户面功能(User Plane Function,UPF)产生下行的QoS flow,终端产生上行的QoS flow。AS层主要负责QoS flow与数据无线承载(Data radio bearer,DRB)的映射关系,网络侧(例如基站)配置QoS flow和DRB的映射关系,并在空口的DRB中为QoS flow提供QoS服务。
在第五代通信系统(5G)中,基于流的QoS架构中还引入了反转(Reflective)QoS特性。所述Reflective QoS特性是指QoS flow具备上行和下行对称特性,即上行flow和下行flow的QoS相同,上行和下行的包过滤模板也是对称的,例如上行的源地址和源端口号为下行的目的地址和目的端口号;上行的目的地址和目的端口号为下行的源地址和源端口号。
基于Reflective QoS特性进行通信的过程中,为节省控制信令,网络侧不通过信令通知终端上行IP flow或其它类型数据包到QoS flow的映射规则,而是通过下行数据包的方式隐式通知终端。终端接收到具备Reflective QoS特性的下行数据包后,将该下行数据包包头的信息五元组进行反转,得到上行包过滤器(packet filter),并且该上行packet filter对应的QoS参数的索引值是下行包包头中携带的QoS参数索引值,从而终端无需接收NAS信令通知,就可以得到上行QoS信息,例如packet filter以及QoS flow标识(Identity,id)等。
采用上述方式,虽然可以接收控制信令,但是终端需要检测接收到的每一下行数据包的包头信息,以确定接收到的下行数据包是否具备Reflective QoS特性,而在5G通信系统中,数据传输速率巨大,终端若对每一下行数据包进行检测,则会造成很大开销,从而影响终端的性能和耗电。
发明内容
本申请实施例提供一种基于反转服务流特性的通信方法及装置,以减少信令开销。
第一方面,提供一种基于反转服务流特性(Reflective QoS)特性的通信方法,在该方 法中,接入网网元确定是否需要向终端发送服务流标识(QoS flow id),在确定需要向终端发送QoS flow id的情况下再向终端发送QoS flow id,在不需要发送QoS flow id的情况下,则不发送QoS flow id,节省信令开销。
一种可能的设计中,核心网网元向接入网网元发送第一信息,第一信息用于指示数据包是否具备Reflective QoS特性。接入网网元接收核心网网元发送的第一信息,基于所述第一信息,确定是否需要向终端发送QoS flow id。接入网网元还可向终端发送第一指示信息,所述第一指示信息用于指示终端是否需要读取QoS flow id。
其中,核心网网元可以是核心网控制面网元,诸如AMF。接入网网元可以是基站,例如gNB。
其中,数据包具备Reflective QoS特性是指该数据包可被终端通过反转方式得到上行QoS flow id和包过滤器(packet filter)。数据包不具备Reflective QoS特性是指该数据包不能被终端通过反转方式得到上行QoS flow id和packet filter。
另一种可能的设计中,第一信息还用于指示数据包Reflective QoS类型。所述数据包Reflective QoS类型包括全部数据包具备Reflective QoS特性、部分数据包具备Reflective QoS特性或全部数据包不具备Reflective QoS特性。
其中,接入网网元可基于第一信息确定数据包是否具备Reflective QoS特性,并基于数据包Reflective QoS类型确定全部数据包具备Reflective QoS特性、部分数据包具备Reflective QoS特性或全部数据包不具备Reflective QoS特性。其中,接入网网元也可基于数据包Reflective QoS类型确定数据包是否具备Reflective QoS特性。
又一种可能的设计中,第一信息可以为核心网控制面网元发送的Reflective QoS信息,所述Reflective QoS信息用于指示数据包是否具备Reflective QoS特性。核心网控制面网元向接入网网元发送Reflective QoS信息,接入网网元接收核心网控制面网元发送的Reflective QoS信息,并基于核心网控制面网元发送的Reflective QoS信息,确定是否需要向终端发送QoS flow id。
其中,接入网网元在确定数据包具备Reflective QoS特性的情况下,确定需要向终端发送QoS flow id。确定数据包不具备Reflective QoS特性的情况下,确定不需要向终端发送QoS flow id,节省信令开销。
其中,Reflective QoS信息可以是QoS flows的Reflective QoS信息,或者也可以是PDU sessions的Reflective QoS信息。
又一种可能的设计中,核心网控制面网元还可向接入网网元发送Reflective QoS信息更新指示信息,所述Reflective QoS信息更新指示信息用于指示所述接入网网元设备更新已接收到的Reflective QoS信息。
又一种可能的设计中,接入网网元可以根据QoS flow或PDU session的Reflective QoS信息,来确定QoS flow到DRB的映射关系,例如,可将不同Reflective QoS特性的QoS flow映射到不同的DRB。
又一种可能的设计中,第一指示信息可以为接入网网元向终端发送的Reflective QoS信息。接入网网元向终端发送Reflective QoS信息。终端接收接入网网元发送的Reflective QoS信息,基于该Reflective QoS信息确定是否需要读取QoS flow id。
其中,接入网网元向终端发送的Reflective QoS信息可以是QoS flows的Reflective QoS 信息,DRB的Reflective QoS信息或者是PDU sessions(或SDAP实体)的Reflective QoS信息。
其中,对于包含具有reflectvie QoS特性的数据包的DRB、SDAP实体、QoS flow,终端进行QoS flow id的检测以及数据包包头的检测,并依据检测到的QoS flow id,生成上行QoS flow id和对应packet filter。而对于不具有reflectvie QoS特性的数据包的DRB、SDAP实体、QoS flow,终端可不进行QoS flow id的检测以及数据包包头的检测,节省终端的信令开销
又一种可能的设计中,所述第一信息可为核心网用户面网元发送的反转服务流特性指示(RQI),所述RQI用于指示部分数据包具备反转服务流特性。
核心网网元可不向接入网网元发送QoS flow的Reflective QoS特性。接入网网元在通过N3口发送的数据包的包头头中解析到RQI后,所述RQI用于指示数据包具备Reflective QoS特性,接入网网元确定该QoS flow具备Reflective QoS特性,且是部分数据包具备Reflective QoS特性。或者对于QoS参数是标准化的QoS flow,接入网网元可默认为该QoS flow具备Reflective QoS特性,且是部分数据包具备Reflective QoS特性,
又一种可能的设计中,核心网网元可向接入网网元发送Reflective QoS信息去激活指示信息,所述Reflective QoS信息去激活指示信息用于指示去激活Reflective QoS信息,所述去激活Reflective QoS信息是指Reflective QoS信息指示的具备Reflective QoS特性的数据包不再具备Reflective QoS特性。接入网网元接收核心网网元发送的Reflective QoS信息去激活指示信息,基于所述Reflective QoS信息去激活指示信息去激活数据包的Reflective QoS特性,并确定去激活Reflective QoS特性的数据包无需发送QoS flow id。
其中,核心网网元向接入网网元发送的Reflective QoS信息去激活指示信息指示去激活的Reflective QoS信息可以是QoS flows的去激活Reflective QoS信息,也可以是PDU sessions的去激活Reflective QoS信息。
其中,Reflective QoS信息去激活指示信息可以用于指示去激活一个或多个QoS flows或PDU sessions的Reflective QoS特性。
又一种可能的设计中,接入网网元可向终端发送Reflective QoS信息去激活指示信息。其中,接入网网元向终端发送的Reflective QoS信息去激活指示信息所指示去激活的Reflective QoS信息不但可以是QoS flows和PDU sessions的去激活Reflective QoS信息,还可以是DRB的去激活Reflective QoS信息。终端接收接入网网元发送的Reflective QoS信息去激活指示信息,并确定无需读取不再具备Reflective QoS特性的数据包的QoS flow id,节省信令开销。
又一种可能的设计中,终端接收端PDCP层的健壮头压缩(Robust Header Compression,ROHC)的解压缩操作,可以直接对去掉PDCP头的PDCP SDU进行解压缩,不用进行SDAP头造成的解压缩起始位置的偏移等操作,节省信令开销。
本申请实施例中,接入网网元通知终端QoS flow、DRB或PDU session的Reflective QoS信息,并且可以去激活QoS flow、DRB或PDU session的Reflective QoS特性,终端可以根据Reflective QoS信息来决定是否需要在空口读取QoS flow id和是否需要ROHC位置偏移的操作,对不具备Reflective QoS的DRB不进行QoS flow id的检测,不进行ROHC解压缩位置的偏移操作,可以减少终端对空口数据包的检测工作,减少开销,提升处理效率和节 电。
又一种可能的设计中,若终端发生小区切换,则获取到第一信息(Reflective QoS信息)的源接入网网元(源基站)可向终端切换的目标接入网网元(目标基站)发送该获取到的Reflective QoS信息,由目标接入网网元决策是否在空口发送QoS flow id、配置终端是否需要读取QoS flow id、给终端配置QoS flow到DRB映射关系的配置方式、决策是否为某一PDU session配置SDAP实体等操作中的一项或多项。
又一种可能的设计中,核心网网元还可向接入网网元发送QoS规则有效定时时间,其中,QoS规则在所述QoS规则有效定时时间内有效。接入网网元获取到QoS规则有效定时时间后,可发送给终端,以使终端在所述QoS规则有效定时时间内采用相同的QoS规则将具备Reflective QoS特性的数据包映射成QoS flow。
其中,核心网网元向接入网网元发送的QoS规则有效定时时间可以是QoS flows的Reflective QoS规则有效定时时间,或者也可以是PDU sessions的Reflective QoS规则有效定时时间。
又一种可能的设计中,核心网网元还可向接入网网元发送QoS规则有效定时时间更新更新信息,所述QoS规则有效定时时间更新信息用于指示更新的QoS规则有效定时时间。
又一种可能的设计中,接入网网元若在所述QoS规则有效定时时间内接收到至少两个具备Reflective QoS特性的数据包,则可针对所述QoS规则有效定时时间内所述至少两个数据包中的部分数据包发送用于指示数据包是否具备Reflective QoS特性的第一信息,实现对发送的第一信息的过滤,节省信令开销。
又一种可能的设计中,源接入网网元(源基站)可向终端切换的目标接入网网元(目标基站)发送切换的QoS flow的数据包的QoS规则有效定时时间。目标接入网网元可基于QoS规则有效定时时间,过滤向终端发送的Reflective QoS信息,实现对向终端发送的Reflective QoS信息的过滤,节省信令开销。
其中,目标接入网网元可忽略源接入网网元已发送数据包的QoS规则有效定时时间,以避免源接入网网元和目标接入网网元之间进行QoS规则有效定时时间同步。
其中,源接入网网元可向终端切换的目标接入网网元发送的QoS规则有效定时时间可以是QoS flows的QoS规则有效定时时间,或者也可以是PDU sessions的QoS规则有效定时时间。
又一种可能的设计中,QoS Flow的数据包通过非透明模式的SDAP帧格式传输或通过透明模式的SDAP帧格式传输。
其中,透明模式的SDAP帧格式是指DRB不配置SDAP头,即SDAP PDU中不包含SDAP协议头。非透明模式的SDAP帧格式是指DRB配置SDAP头,即SDAP PDU中包含SDAP协议头。
其中,非透明模式的SDAP帧格式中,若指示NRQI的比特位和指示ARQI的比特位都设置为0,则SDAP协议层头中可不携带QFI字段。若指示NRQI的比特位和指示ARQI的比特位二者中有至少一项设置为1,则携带QFI字段。
其中,在进行数据传输过程中,数据接收端的SDAP实体从PDCP层接收PDCP SDU,并读取SDAP协议头。若指示NRQI的比特位的值为1,表示该数据包具备reflective QoS特性,则SDAP实体将SDAP的数据部分和从SDAP头部中读取的QoS flow id,投递到上 层协议层,例如NAS层,该投递到上层的数据部分和QoS flow id可用于上层协议层产生QoS rule。进一步的,SDAP实体还可以向上层协议层发送NRQI。
其中,非透明模式的SDAP帧格式中,SDAP协议头中还包括有用于指示URQI的比特位。
其中,非透明模式的SDAP帧格式中,在SDAP协议头中设置用于指示QoS flow的数据包在对应DRB中传输的结束与否的比特位,例如设置End字段。
其中,非透明模式的SDAP帧格式中,SDAP协议头中可设置用于对在DRB中接收某QoS Flow数据包完成进行反馈的控制命令。
又一种可能的设计中,可设置单向SDAP透明模式。针对至少一个DRB的下行方向配置SDAP的透明模式,或者至少一个DRB的上行方向配置SDAP的透明模式。
又一种可能的设计中,在进行数据传输过程中,接入网网元可向终端发送SDAP模式信息,所述SDAP模式信息用于指示SDAP帧格式为透明模式或非透明模式,并指示SDAP模式对应的方向。
其中,源接入网网元(源基站)可向终端切换的目标接入网网元(目标基站)发送SDAP模式信息。
第二方面,接入网网元还可对发送的QoS flow id进行过滤,确定需要在向终端发送的数据包包头中携带QoS flow id的情况下,在数据包包头中携带QoS flow id,在不需要在向终端发送的数据包包头中携带QoS flow id的情况下,在数据包包头中可不携带QoS flow id,减少空口发送QoS flow id的数量,节省信令开销。
一种可能的设计中,接入网网元确定数据包包头信息,根据数据包包头信息,确定是否需要在向终端发送的数据包包头中携带QoS flow id。
一种可能的设计中,核心网网元向接入网网元发送Reflective QoS信息以及packet filter组成信息。其中,packet filter组成信息可以是QoS flow、PDU session的Reflective QoS特性对应的packet filter组成信息,例如可以是IP 5元组(源地址,目的地址,源端口号,目的端口号,协议号),或者媒体接入控制(MAC)源地址、目的地址等。
接入网网元接收核心网网元发送的Reflective QoS信息以及packet filter组成信息。接入网网元根据所述数据包包头中对应所述packet filter组成信息,确定是否需要在向终端发送的数据包包头中携带QoS flow id。例如,接入网网元对接收到的QoS flow的每一数据包的包头按照packet filter的组成进行检测。若数据包的包头中对应packet filter部分为新内容,则在空口发送该数据包时携带QoS flow id。若数据包的包头中对应packet filter部分不为新,则在空口发送该数据包时不携带QoS flow id。
进一步的,接入网网元还可确定是否需要在向终端发送的数据包包头中携带用于指示该数据包具备Reflective QoS特性的指示信息。例如,接入网网元对接收到的QoS flow的每一数据包的包头按照packet filter的组成进行检测。若数据包的包头中对应packet filter部分为新内容,则还可以携带一个指示信息,用于指示该数据包具备Reflective QoS特性。若数据包的包头中对应packet filter部分不为新,则不携带指示该数据包具备Reflective QoS特性的指示信息。
另一种可能的设计中,所述接入网网元若确定需要在向终端发送的数据包包头中携带QoS flow id,则向所述终端发送用户面控制PDU(例如SDAP control PDU或者PDCP control  PDU)或RRC信令(包含但不限于RRC配置消息或RRC重配置等消息),所述用户面控制PDU和所述RRC信令中包括数据包的QoS flow id以及数据包包头信息。
又一种可能的设计中,接入网网元若确定需要在向终端发送的数据包包头中携带QoS flow id,基于所述packet filter组成信息,对与所述packet filter组成信息对应的数据包包头中的内容进行反转操作,得到上行packet filter。接入网网元向所述终端发送所述上行packet filter以及QoS flow id,终端接收该QoS flow id和对应上行packet filter,产生上行QoS flow。
又一种可能的设计中,终端可以向接入网网元发送第一能力信息,或者向核心网网元发送第一能力信息,核心网网元接收第一能力信息并向接入网网元发送第一能力信息,所述第一能力信息用于指示所述终端是否具备QoS flow id读取能力和上行packet filter生成能力中的至少一项。其中,所述读取QoS flow id能力是指终端从接收的空口数据包中获取QoS flow id的能力。所述生成上行packet filter的能力是指终端基于接收的下行空口数据包生成上行packet filter的能力。接入网网元接收第一能力信息,若根据第一能力信息确定终端的能力或状态不支持读取QoS flow id以及生成上行packet filter时,则采用用户面control PDU或RRC信令方式通知终端QoS flow id以及与QoS flow id对应的上行packet filter。接入网网元可以通过用户面control PDU或RRC信令方式通知终端QoS flow id以及与QoS flow id对应的上行packet filter,减少终端的开销,并降低了空口由于携带QoS flow id造成的开销。
又一种可能的设计中,终端还可向接入网网元发送第二能力信息,或者终端向核心网网元发送第二能力信息,由核心网网元将所述第二能力信息发送给核心网网元。第二能力信息用于指示终端是否具备Reflective mapping能力,所述Reflective mapping能力是指终端通过下行数据包包头中携带的QoS flow id来获取上行QoS flow到DRB映射关系的能力。所述接入网网元接收所述终端发送的第二能力信息,接入网网元若确定终端不支持Reflective mapping能力,则接入网网元需要通过其它方式给终端配置上行QoS flow到DRB的映射关系,例如通过RRC信令的方式配置上行QoS flow到DRB的映射关系。
第三方面,提供一种基于反转服务流特性的通信装置,该基于反转服务流特性的通信装置具备实现上述第一方面和第二方面涉及的接入网网元的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
一种可能的设计中,基于反转服务流特性的通信装置包括接收单元和处理单元,还可包括发送单元。其中,接收单元、处理单元和发送单元的功能可以和上述涉及的各方法步骤相对应,在此不予赘述。
第四方面,提供一种基于反转服务流特性的通信装置,该基于反转服务流特性的通信装置具备实现上述第一方面和第二方面涉及的核心网网元的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
一种可能的设计中,基于反转服务流特性的通信装置包括处理单元和发送单元,处理单元和发送单元的功能可以和上述涉及的各方法步骤相对应,在此不予赘述。
第五方面,提供一种基于反转服务流特性的通信装置,该基于反转服务流特性的通信装置具备实现上述第一方面和第二方面涉及的终端的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应 的模块。所述模块可以是软件和/或硬件。
一种可能的设计中,基于反转服务流特性的通信装置包括接收单元和处理单元,接收单元和处理单元的功能可以和上述涉及的各方法步骤相对应,在此不予赘述。
第六方面,提供一种接入网网元,该接入网网元包括处理器、存储器、总线系统、接收器和发射器。其中,处理器、存储器、接收器和发射器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发射器发送信号,完成上述第一方面、第二方面以及上述各方面任意可能的设计中的接入网网元的执行功能。
第七方面,提供一种核心网网元,该核心网网元包括处理器、存储器、总线系统和发射器。其中,处理器、存储器和发射器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制发射器发送信号,完成上述第一方面、第二方面以及上述各方面任意可能的设计中的核心网网元的执行功能。
第八方面,提供一种终端,该终端包括发射器、接收器、处理器和存储器,还可以包括天线。发射器、接收器、处理器和存储器可通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发射器发送信号,完成上述第一方面、第二方面以及上述各方面任意可能的设计中的终端的执行功能。
第九方面,提供一种通信系统,包括第六方面的接入网网元、第七方面的核心网网元和一个或多于一个第八方面的终端。
第十方面,提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成上述第一方面、第二方面以及上述各方面任意可能的设计中的终端、接入网网元或核心网网元所涉及的任意一种方法。
第十一方面,提供一种计算机程序产品,用于存储计算机程序,该计算机程序用于执行上述第一方面、第二方面以及上述各方面任意可能的设计中的通信方法。
本申请实施例中,接入网网元确定是否需要向终端发送QoS flow id,在确定需要向终端发送QoS flow id的情况下再向终端发送QoS flow id,在不需要发送QoS flow id的情况下,则不发送QoS flow id,节省信令开销。进一步的,接入网网元还可对发送的QoS flow id进行过滤,确定需要在向终端发送的数据包包头中携带QoS flow id的情况下,在数据包包头中携带QoS flow id,在不需要在向终端发送的数据包包头中携带QoS flow id的情况下,在数据包包头中可不携带QoS flow id,节省信令开销。
附图说明
图1为本申请实施例适用的通信系统架构图;
图2为基于QoS flow的QoS架构图;
图3为QoS flow到DRB的映射过程示意图;
图4为获取上行QoS flow id和包过滤器过程示意图;
图5为上行flow到DRB映射过程示意图;
图6为本申请实施例提供的一种基于Reflective QoS特性的通信方法;
图7为本申请实施例提供的基于Reflective QoS特性的通信方法的一种实施方法流程图;
图8为本申请实施例提供的基于Reflective QoS特性的通信方法的另一种实施方法流程图;
图9为本申请实施例提供的基于Reflective QoS特性的通信方法的又一种实施方法流程图;
图10为本申请实施例提供的对QoS flow id进行过滤的一种实施方法流程图;
图11为本申请实施例提供的对QoS flow id进行过滤的另一种实施方法流程图;
图12为本申请实施例提供的对QoS flow id进行过滤的又一种实施方法流程图;
图13为本申请实施例提供的接入网网元过滤QoS flow id又一种实施流程图;
图14为本申请实施例提供的基于Reflective QoS特性的通信方法的又一种实施方法流程图;
图15为本申请实施例提供的SDAP帧格式的一种示意图;
图16为本申请实施例提供的SDAP帧格式的另一种示意图;
图17为本申请实施例提供的SDAP帧格式的又一种示意图;
图18为本申请实施例提供的SDAP帧格式的又一种示意图;
图19为本申请实施例提供的SDAP帧格式的又一种示意图;
图20为本申请实施例提供的一种基于Reflective QoS特性的通信装置的结构示意图;
图21为本申请实施例提供的接入网网元的结构示意图;
图22为本申请实施例提供的另一种基于Reflective QoS特性的通信装置的结构示意图;
图23为本申请实施例提供的核心网网元的结构示意图;
图24为本申请实施例提供的又一种基于Reflective QoS特性的通信装置的结构示意图;
图25为本申请实施例提供的终端的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、基站(base station,BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文:base transceiver station,简称:BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,WLAN)中,提供基站功能的设备为接入点(access point,AP)。在未来5G新无线(New Radio,NR)中的提供基站功能的设备包括继续演进的节点B(gNB)。
2)、终端,是一种向用户提供语音和/或数据连通性的设备,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端设备(Terminal Equipment),传输点(transmission and receiver point,TRP或者transmission point,TP)等等。
3)、交互,本申请中的交互是指交互双方彼此向对方传递信息的过程,这里传递的信 息可以相同,也可以不同。例如,交互双方为基站1和基站2,可以是基站1向基站2请求信息,基站2向基站1提供基站1请求的信息。当然,也可以基站1和基站2彼此向对方请求信息,这里请求的信息可以相同,也可以不同。
4)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
5)、名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
6)、PDU Session可以理解为是终端和数据网络(data network,DN)之间提供PDU链接服务的链接。
7)、QoS flow是指一个PDU session内,具备相同QoS需求的数据流,其中,可以是多个具有相同QoS需求的IP flow。
8)、DRB可以理解为是基站和终端之间的数据承载,该数据承载中的数据包具备相同的转发处理。
9)、DN是指外部数据网络。
10)、Reflective QoS特性是指QoS flow具备上行和下行对称特性,即上行和下行的QoS相同,上行和下行的包过滤模板也是对称的,例如上行的源地址和源端口号为下行的目的地址和目的端口号;上行的目的地址和目的端口号为下行的源地址和源端口号。终端通过下行数据包包头信息,根据反转特性得到上行包packet filter和QoS flow id。
本申请实施例提供一种基于Reflective QoS特性的通信方法,该方法适用于基于QoS flow的QoS架构的系统。例如,适用于终端通过下一代基站(Next Generation Node-B,gNB)接入第五代核心网(5G Core,5GC)的场景,包含终端通过单链路接入网络,或者通过多链路接入网络,例如多连接场景,终端通过主基站(Master gNB,MgNB)和辅基站(Secondary gNB,SgNB)接入5G网络。
本申请实施例以下以无线通信网络中5G网络场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
图1所示为本申请适用的一种通信系统的结构示意图。图1所示的通信系统中包括下一代核心网((Next Generation Core,NGC),也称为5GC)和下一代无线接入网络(Next Generation Radio Access Network,NG-RAN)。其中,5GC主要包括控制面网元移动性管理功能(Access and Mobility Management Function,AMF)和用户面网元(User Plane Function,UPF)。其中,AMF主要负责终端的接入和移动性管理。UPF主要负责终端IP地址分配和PDU会话控制管理,还包含数据包的路由转发、QoS管理等功能。NG-RAN包括的主要网元为下一代基站(Next Generation Node-B,gNB),其中,gNB提供终止于终端的新无线(new radio,NR)控制面和用户面协议栈,例如gNB负责终端的接入控制、链路管理、测量、动态资源分配和承载管理功能,并负责小区内和小区间的无线资源管理(Radio Resource  Management,RRM)功能。进一步的,5GC和NG-RAN之间控制面之间的接口为N2接口,5GC和NG-RAN之间用户面之间的接口为N3接口,gNB之间的接口为Xn接口。
5G场景下,基于QoS flow的QoS架构如图2所示,非接入层业务承载对应QoS flow,接入层业务承载对应空口的无线承载(radio bearer,RB)和地面侧(RAN和5GC之间)的隧道,所述隧道是按PDU session建立的,即属于同一PDU session的服务流采用同一隧道。每一PDU session具有唯一标识,PDU session的唯一标识可以是以下几种之一:PDU session标识,接入点名称(access point name,APN),用户面核心网设备的标识;用户面核心网设备的地址(例如,IP地址),用户面核心网设备为用户设备分配的IP地址。
基于QoS flow的QoS架构中,主要包括接入层和非接入层的QoS flow映射,其中,接入层负责QoS flow到DRB的映射,非接入层负责IP flow到QoS flow的映射,进一步,还包含其它类型数据包(packets)到QoS flow的映射。QoS flow到DRB的映射过程可参阅图3所示,在链接到NGC的无线接入网侧的协议栈中,在用户面分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层之上是用服务数据适配协议(Service Data Adaptation Protocol,SDAP)协议层,SDAP协议层负责将来自非接入层的QoS flow映射到接入层的DRB上。执行SDAP协议的SDAP实体是按会话(session)建立的,还负责在空口协议栈中添加上行QoS flow id和下行QoS flow id。其中,在进行QoS flow到DRB的映射过程中,可将同一sesison内的多个QoS flow映射到同一DRB中,基于用户面数据包包头中QoS flow id对应的QoS profile(QoS profile是指QoS flow id对应的QoS参数,包含时延、丢包率、优先级、保证速率、最大速率、速率不满足的通知指示等其中一项或多项),可使同一DRB中的数据包包得到相同的转发处理。其中,不同session的QoS flow不能映射到同一DRB中。进一步的,每一终端的每一session对应一个默认DRB(default DRB),终端将没有配置上行QoS flow和DRB映射关系的QoS flow映射到default DRB中。进一步的,无线接入网侧的gNB可通过无线资源控制(Radio Resource Control,RRC)信令或反转映射(Reflective mapping)(Reflective mapping是指下行数据包中携带QoS flow id,终端检测到QoS flow id,并将上行相同QoS flow id的QoS flow映射到同一DRB中)的方式给终端配置上行QoS flow和DRB的映射关系。
IP flow或其它类型数据包到QoS flow的映射过程中可采用Reflective QoS特性进行映射。其中,核心网可通过控制面或用户面的方式来激活Reflective QoS特性,具体的,核心网可通过非接入层消息通知终端QoS flow激活Reflective QoS特性,例如将在QoS flow的规则中携带一个指示该QoS flow激活Reflective QoS特性(反转服务流特性)的指示信息,或者,核心网在发送到无线接入网侧的数据包包头中携带反转服务流特性指示(Reflective QoS indicator,RQI),以指示该数据包具备Reflective QoS特性。例如图4中,下行数据包中包括QoS flow id,IP头、传输控制协议(Transmission Control Protocol,TCP)头以及数据内容(Data),上行QoS规则为将IP头和TCP头进行源和目的的反转,即将上行的源地址和源端口号为下行的目的地址和目的端口号;上行的目的地址和目的端口号为下行的源地址和源端口号。终端通过下行数据包包头信息,根据反转特性得到上行包packet filter和QoS flow id,通过QoS flow id进行QoS标记(QoS marking)。终端进行隐式的上行QoS flow到DRB映射的配置,即终端将上行QoS flow映射到相同QoS flow id的下行QoS flow所在的DRB,如图5所示将上行flow1映射到下行flow1所在的DRB1上。在无线接入网侧 可以减少配置上行流到无线承载映射的RRC配置信令。但是终端需要针对接收到的每一下行数据包确定接收到的下行数据包是否具备Reflective QoS特性,而在5G通信系统中,数据传输速率巨大,终端若对每一下行数据包进行检测,则会造成很大开销,从而影响终端的性能和耗电。
有鉴于此,本申请实施例提供一种基于Reflective QoS特性的通信方法,在该方法中,接入网网元确定是否需要向终端发送服务流标识,在确定需要向终端发送服务流标识的情况下再向终端发送服务流标识,在不需要发送服务流标识的情况下,则不发送服务流标识,节省信令开销。进一步的,接入网网元还可对发送的服务流标识进行过滤,确定需要在向终端发送的数据包包头中携带服务流标识的情况下,在数据包包头中携带服务流标识,在不需要在向终端发送的数据包包头中携带服务流标识的情况下,在数据包包头中可不携带服务流标识,节省信令开销。
图6所示为本申请实施例提供的一种基于Reflective QoS特性的通信方法,参阅图6所示,包括:
S101:核心网网元向接入网网元发送第一信息,接入网网元接收核心网网元发送的第一信息,第一信息用于指示数据包是否具备Reflective QoS特性。
本申请中核心网网元可以是核心网控制面网元,诸如AMF。接入网网元可以是基站,例如gNB。
核心网网元为核心网控制面网元的情况下,核心网网元可通过N2接口消息向接入网网元发送用于指示数据包是否具备Reflective QoS特性的第一信息。其中,所述N2接口消息包括但不限于PDU会话建立消息(PDU Session Resource Setup)、PDU会话修改消息(PDU Session Resource Modify)等。
其中,第一信息用于指示数据包是否具备Reflective QoS特性。数据包具备Reflective QoS特性是指该数据包可被终端通过反转方式得到上行QoS flow id和packet filter,packet filter用于过滤上行数据包得到上行QoS flow。数据包不具备Reflective QoS特性是指该数据包不能被终端通过反转方式得到上行QoS flow id和packet filter。
S102:接入网网元基于所述第一信息,确定是否需要向终端发送QoS flow id。
S103:接入网网元向终端发送第一指示信息,所述第一指示信息用于指示终端是否需要读取QoS flow id。
终端接收第一指示信息,基于所述第一指示信息,确定是否需要读取QoS flow id。
本申请实施例中,若第一信息指示数据包具备Reflective QoS特性,则接入网网元确定需要向终端发送QoS flow id,可选的,此种情况下接入网网元指示终端需要读取QoS flow id。若第一信息指示数据包不具备Reflective QoS特性,则接入网网元可确定不需要向终端发送QoS flow id,此种情况下接入网网元可指示终端不需要读取QoS flow id,以节省信令开销。
一种可能的实施方式中,所述第一信息还用于指示数据包Reflective QoS类型。所述数据包Reflective QoS类型包括全部数据包具备Reflective QoS特性、部分数据包具备Reflective QoS特性或全部数据包不具备Reflective QoS特性。
接入网网元可基于第一信息确定数据包是否具备Reflective QoS特性,并基于数据包Reflective QoS类型确定全部数据包具备Reflective QoS特性、部分数据包具备Reflective QoS 特性或全部数据包不具备Reflective QoS特性。其中,接入网网元也可基于数据包Reflective QoS类型确定数据包是否具备Reflective QoS特性。
本申请实施例中,数据包Reflective QoS类型可采用如下方式表示,例如可由核心网网元通过非接入层的控制面消息通知终端Reflective QoS特性的方式指示全部数据包具备Reflective QoS特性。通过采用用户面的包头中携带指示的方式来指示部分数据包具备Reflective QoS特性。核心网网元不通知终端Reflective QoS特性或者核心网网元通知终端QoS flow或PDU session不具备Reflective QoS特性的方式,指示全部数据包都不具备Reflective QoS特性。
本申请实施例中,核心网网元可指示接入网网元通知终端Reflective QoS特性的方式,实现对终端指示数据包是否具备Reflective QoS特性,以及数据包的Reflective QoS类型。
本申请实施例以下将结合实际应用对本申请实施例涉及的接入网网元确定是否需要向终端发送QoS flow id的实施过程进行说明。
本申请的一个可能的实施方式中,所述第一信息可以为核心网控制面网元发送的Reflective QoS信息,所述Reflective QoS信息用于指示数据包是否具备Reflective QoS特性。第一指示信息为接入网网元向终端发送的Reflective QoS信息。
图7所示为本申请实施例提供的基于Reflective QoS特性的通信方法的一种实施方法流程图,参阅图7所示包括:
S201:核心网控制面网元向接入网网元发送Reflective QoS信息,所述Reflective QoS信息用于指示数据包是否具备Reflective QoS特性。
进一步的,Reflective QoS信息还可用于指示数据包Reflective QoS类型的信息。
本申请实施例中Reflective QoS信息可以是QoS flows的Reflective QoS信息,或者也可以是PDU sessions的Reflective QoS信息。换言之,核心网控制面网元可通过N2接口消息指示QoS flow的Reflective QoS信息或者PDU sessions的Reflective QoS信息。
其中,Reflective QoS信息可以通过PDU Session Resource Setup的消息指示QoS flow的Reflective QoS信息或者PDU sessions的Reflective QoS信息,也可通过PDU Session Resource Modify消息指示QoS flow的Reflective QoS信息或者PDU sessions的Reflective QoS信息。
其中,通过PDU Session Resource Setup的消息指示QoS flow的Reflective QoS信息的协议格式可如表1,通过PDU Session Resource Setup的消息指示PDU sessions的Reflective QoS信息的协议格式可如表2所示。
表1
Figure PCTCN2018085867-appb-000001
表2
Figure PCTCN2018085867-appb-000002
其中,通过PDU Session Resource Modify的消息指示QoS flow的Reflective QoS信息的协议格式可如表3,通过PDU Session Resource Setup的消息指示PDU sessions的Reflective QoS信息的协议格式可如表4所示。
表3
Figure PCTCN2018085867-appb-000003
表4
Figure PCTCN2018085867-appb-000004
本申请实施例一种可能的实现方式中,核心网控制面网元还可向接入网网元发送Reflective QoS信息更新更新指示信息,所述Reflective QoS信息更新指示信息用于指示所述接入网网元更新已接收到的Reflective QoS信息。
其中,核心网控制面网元(例如AMF)可通过N2接口消息向接入网网元(例如基站)方式Reflective QoS信息更新指示信息。其中,采用的N2接口消息包括但不限于PDU Session Resource Modify消息。
本申请中Reflective QoS信息更新指示信息所指示更新的Reflective QoS信息与上述涉及的Reflective QoS信息相同,具体可参阅上述实施例涉及的Reflective QoS信息相关描述,在此不再赘述。
S202:接入网网元接收核心网控制面网元发送的Reflective QoS信息,并基于核心网控制面网元发送的Reflective QoS信息,确定是否需要向终端发送QoS flow id。
其中,接入网网元在确定数据包具备Reflective QoS特性的情况下,确定需要向终端发送QoS flow id。确定数据包不具备Reflective QoS特性的情况下,确定不需要向终端发送QoS flow id,节省信令开销。
接入网网元可以根据QoS flow或PDU session的Reflective QoS信息,来确定在空口中发送的数据包包头中是否携带QoS flow id,例如对具备Reflective QoS特性的数据包,在空口发送的数据包包头中携带QoS flow id,对不具备Reflective QoS特性的数据包,则不携带 QoS flow id,以节省信令开销。
进一步的,接入网网元可以根据QoS flow或PDU session的Reflective QoS信息,来确定QoS flow到DRB的映射关系,例如,可将不同Reflective QoS特性的QoS flow映射到不同的DRB。
另一种可能的实施方式中,本申请实施例接入网网元接收到核心网控制面网元发送的Reflective QoS信息后,可将该Reflective QoS信息发送给终端,以使终端确定数据包是否具备Reflective QoS信息,以便确定是否需要检测QoS flow id。例如,在图7所示的方法上,还可包括如下步骤:
S203:接入网网元向终端发送Reflective QoS信息。
本申请实施例中,接入网网元(例如基站)通过RRC信令或用户面控制(control)PDU的方式向终端发送Reflective QoS信息。
本申请实施例中接入网网元向终端发送的Reflective QoS信息与上述核心网网元向终端发送的涉及的Reflective QoS信息类似,不同之处在于,接入网网元向终端发送的Reflective QoS信息可以是QoS flows的Reflective QoS信息,DRB的Reflective QoS信息或者是PDU sessions(或SDAP实体)的Reflective QoS信息。换言之,接入网网元可指示终端QoS flow的Reflective QoS信息、DRB的Reflective QoS信息或者PDU sessions(或SDAP实体)的Reflective QoS信息。
其中,QoS flows的Reflective QoS信息的协议格式可如表5所示:
表5
Figure PCTCN2018085867-appb-000005
其中,DRB的Reflective QoS信息的协议格式可如表6所示:
表6
Figure PCTCN2018085867-appb-000006
其中,PDU sessions或SDAP实体的Reflective QoS信息的协议格式可如表7所示:
表7
Figure PCTCN2018085867-appb-000007
终端接收接入网网元发送的Reflective QoS信息,基于所述Reflective QoS信息,确定是否需要读取QoS flow id。
进一步的,接入网网元可以采用向终端发送指示终端是否需要读取QoS flow id的指示信息的方式来指示数据包的Reflective QoS特性。例如,接入网网元向终端发送指示终端是否需要在DRB中或SDAP中读取QoS flow id的指示信息,指示数据包的Reflective QoS特性。
进一步的,接入网网元可通过RRC信令或用户面control PDU的方式向终端发送Reflective QoS信息更新指示信息。其中,接入网网元向终端发送的Reflective QoS信息更新指示信息所指示更新的Reflective QoS信息与上述接入网网元向终端发送的Reflective QoS信息相同,在此不再赘述。
终端接收接入网网元发送的Reflective QoS信息后,根据Reflective QoS信息确定具有reflectvie QoS特性的数据包,对于包含具有reflectvie QoS特性的数据包的DRB、SDAP实体、QoS flow,终端进行QoS flow id的检测以及数据包包头的检测,并依据检测到的QoS flow id,生成上行QoS flow id和对应packet filter。而对于不具有reflectvie QoS特性的数据包的DRB、SDAP实体、QoS flow,终端可不进行QoS flow id的检测以及数据包包头的检测,节省终端的信令开销。
本申请另一可能的实施例中,对于QoS参数是标准化的QoS flow,核心网网元并不通过N2接口消息通知接入网网元QoS flow的QoS参数,而是在通过N3口发送的数据包包头中携带QoS flow id,该QoS flow id对应一套标准化的QoS参数。对于这种场景,核心网网元可不向接入网网元发送QoS flow的Reflective QoS特性。接入网网元可默认为该QoS flow具备Reflective QoS特性,且是部分数据包具备Reflective QoS特性,或者接入网网元在通过N3口发送的数据包的包头头中解析到RQI后,所述RQI用于指示数据包具备Reflective QoS特性,接入网网元确定该QoS flow具备Reflective QoS特性,且是部分数据包具备Reflective QoS特性。
本申请又一可能的实施例中,核心网网元可向接入网网元发送Reflective QoS信息去激活指示信息,所述Reflective QoS信息去激活指示信息用于指示去激活Reflective QoS信息,所述去激活Reflective QoS信息是指Reflective QoS信息指示的具备Reflective QoS特性的数据包不再具备Reflective QoS特性。
图8所示为本申请实施例提供的基于Reflective QoS特性的通信方法的另一种实施方法流程图,参阅图8所示包括:
S301的执行步骤与S201的执行步骤相同,在此不再赘述。
S302:核心网网元向接入网网元发送去激活Reflective QoS信息指示信息。
本申请实施例中,Reflective QoS信息去激活指示信息用于指示所述接入网网元设备去激活Reflective QoS信息,所述去激活Reflective QoS信息是指Reflective QoS信息指示的具备Reflective QoS特性的数据包不再具备Reflective QoS特性。具体的,所述去激活Reflective QoS信息可以用于去激活全部数据包的Reflective QoS特性或去激活部分数据包Reflective QoS特性。
本申请实施例中Reflective QoS信息去激活指示信息指示去激活的Reflective QoS信息可以是QoS flows的去激活Reflective QoS信息,也可以是PDU sessions的去激活Reflective QoS信息。可以理解为,核心网网元指示QoS flow的数据包不再具备Reflective QoS特性或者PDU sessions的的所有QoS flow的数据包不再具备Reflective QoS特性。也可以理解为方正服务流信息去激活指示信息可以用于指示去激活{所有的packet具备Reflective QoS特性}或{部分packet具备Reflective QoS特性}的QoS flow或PDU session的数据包的Reflective QoS特性。
其中,Reflective QoS信息去激活指示信息可以用于指示去激活一个或多个QoS flows或PDU sessions的Reflective QoS特性。其中,所述Reflective QoS信息去激活指示信息指示去激活QoS flows的Reflective QoS特性时,在所述去激活Reflective QoS信息中携带QoS flow id等QoS flow的标识。所述Reflective QoS信息去激活指示信息指示去激活PDU session的Reflective QoS特性时,在所述去激活Reflective QoS信息中携带PDU session id等PDU session的标识。
本申请实施例一种可能的实施方式中,可由核心网控制面网元(例如AMF)通过N2接口消息向接入网网元(例如基站)发送去激活Reflective QoS信息。其中,N2接口消息包括但不限于PDU Session Resource Modify消息,还可以采用其它独立的消息。
本申请另一种可能的实施方式中,可由核心网用户网元(例如UPF)通过N3接口发送数据包的方式向接入网网元(例如基站)发送Reflective QoS信息去激活指示信息。
其中,可以在N3接口的数据包包头中携带Reflective QoS信息去激活指示信息,实现指示去激活数据包的Reflective QoS特性。
进一步的,在N3接口的数据包包头中携带的Reflective QoS信息去激活指示信息可以按照QoS flow来添加,也可以按照PDU session来添加。其中,对于同一QoS flow或PDU session的指示信息,数目可以设置多个,以增强健壮性。
S303:接入网网元接收Reflective QoS信息去激活指示信息,基于所述Reflective QoS信息去激活指示信息去激活数据包的Reflective QoS特性。
一种可能的实现方式中,以核心网网元通过N3接口发送数据包的方式向接入网网元(例如基站)发送Reflective QoS信息去激活指示信息的方式为例进行说明。若接入网网元接收的N3接口数据包包头中携带QoS flow id和Reflective QoS信息去激活指示信息,则去激活该QoS flow的Reflective QoS特性。若接入网网元接收的N3接口数据包包头中不携带QoS flow id,只携带Reflective QoS信息去激活指示信息,则表示去激活该PDU session的Reflective QoS特性。或者若接入网网元接收的N3接口数据包包头中携带PDU session id和Reflective QoS信息去激活指示信息,指示去激活PDU session id对应的PDU session,则去 激活该PDU session id对应的PDU session的Reflective QoS特性。
S304:接入网网元确定去激活Reflective QoS特性的数据包无需发送QoS flow id。
例如,对于去激活Reflective QoS特性的QoS flow,接入网网元在空口发送QoS flow的数据包包头中不再携带QoS flow id。
一种可能的实施方式中,本申请实施例所述接入网网元获取所述Reflective QoS信息之后,还可向终端发送Reflective QoS信息去激活指示信息。其中,接入网网元向终端发送Reflective QoS信息去激活指示信息可以在图7所示方法基础上执行,也可在图8所示方法基础上执行,本申请实施例以下以在图8所示方法基础上执行为例进行说明,在上述图8所涉及的方法基础上还可包括如下步骤:
S305:接入网网元向终端发送Reflective QoS信息去激活指示信息。
本申请实施例中接入网网元向终端发送的Reflective QoS信息去激活指示信息所指示去激活的Reflective QoS信息与上述核心网网元向接入网网元发送的Reflective QoS信息去激活指示信息所指示去激活的Reflective QoS信息类似,不同之处在于,接入网网元向终端发送的Reflective QoS信息去激活指示信息所指示去激活的Reflective QoS信息不但可以是QoS flows和PDU sessions的去激活Reflective QoS信息,还可以是DRB的去激活Reflective QoS信息。
本申请实施例中,接入网网元可通过RRC信令或者用户面control PDU的方式去激活Reflective QoS信息,以指示数据包不再具备Reflective QoS特性。
例如,接入网网元可通过RRC信令(例如RRC配置消息或RRC重配置消息)或用户面control PDU(SDAP control PDU或PDCP control PDU),向终端发送Reflective QoS信息去激活指示信息,在该Reflective QoS信息去激活指示信息中携带QoS flow ids,以指示QoS flow的数据包不再具备Reflective QoS特性。
再例如,接入网网元可通过RRC信令(例如RRC配置消息或RRC重配置消息)或用户面control PDU(SDAP control PDU或PDCP control PDU),向终端发送Reflective QoS信息去激活指示信息,在该Reflective QoS信息去激活指示信息中携带DRB ids,以指示对应DRB的数据包不再具备Reflective QoS特性。
又例如,接入网网元可通过RRC信令(例如RRC配置消息或RRC重配置消息)或用户面control PDU(SDAP control PDU或PDCP control PDU),向终端发送Reflective QoS信息去激活指示信息,在该Reflective QoS信息去激活指示信息中携带PDU session ids或SDAP entity ids,以指示PDU sessions的数据包不再具备Reflective QoS特性。
本申请另一实施例中,接入网网元也可通过用户面数据向终端发送Reflective QoS信息去激活指示信息。例如,接入网网元在空口发送的数据包包头中携带Reflective QoS信息去激活指示信息,用于指示去激活Reflective QoS特性。例如采用1bit的比特位表征Reflective QoS信息去激活指示信息,通过比特位置位方式指示去激活Reflective QoS特性。所述空口的数据包包头中携带的Reflective QoS信息去激活指示信息,可以用来去激活{所有的packet具备Reflective QoS特性}或{部分packet具备Reflective QoS特性}的QoS flow、DRB或PDU session的数据包的Reflective QoS特性。
进一步的,接入网网元可每次指示一个QoS flow的去激活Reflective QoS信息。
进一步的,对于同一QoS flow的Reflective QoS信息去激活指示信息的数目可以设置 多个,以增强健壮性。或者一直发送该Reflective QoS信息去激活指示信息,若基站得到终端的数据包的接收确认,则停止该Reflective QoS信息去激活指示信息的发送。
一种可能的实现方式是,接入网网元在空口发送的数据包包头中携带QoS flow id和Reflective QoS信息去激活指示信息,以指示QoS flow的Reflective QoS特性被去激活。接入网网元在空口发送的数据包包头中只携带Reflective QoS信息去激活指示信息,以指示PDU session的Reflective QoS特性被去激活,或者携带一个指示信息来指示Reflective QoS信息去激活指示信息的范围是PDU session。例如携带PDU session id或PDU session对应的SDAP实体id。
另一种可能的实现方式中,接入网网元可以采用指示终端不再需要读取QoS flow id的方式,实现对数据包的去激活Reflective QoS特性的指示。
S306:终端接收接入网网元发送的Reflective QoS信息去激活指示信息,并确定无需读取不再具备Reflective QoS特性的数据包的QoS flow id。
例如,终端对于不再具备Reflective QoS特性的DRB,或者不再具备Reflective QoS特性的SDAP实体或PDU session下的DRB,终端对接收到的PDCP SDU不进行QoS flow id读取工作,即终端不对每一收到的数据包进行QoS flow id的检测,节省信令开销。
本申请实施例中,对于不具备Reflective QoS特性的数据包可进行如下操作,节省信令开销。
例如,终端对接收到的PDCP SDU不再进行数据包的IP 5元组(或其它协议数据包头中字节,例如MAC源地址、目的地址)的获取工作,节省信令开销。
再例如,终端不再对每一数据包进行SDAP头的阅读和识别,节省信令开销。
进一步的,终端接收端PDCP层的健壮头压缩(Robust Header Compression,ROHC)的解压缩操作,可以直接对去掉PDCP头的PDCP服务数据单元(Service Data Unit,SDU)进行解压缩,不用进行SDAP头造成的解压缩起始位置的偏移等操作,即不用先检测SDAP头的存在,再从PDCP SDU中移除SDAP头后开始进行解压缩,对解压缩后的得到的内容再重新添加SDAP header等操作,节省信令开销。
进一步的,若SDAP协议头放在数据包的尾部,那么在发送端的PDCP层,对接收到的PDCP SDU执行ROCH头压缩时,不进行头压缩起始位置的偏移操作。在PDCP的接收端,进行解压缩时同样不进行头解压缩起始位置的偏移操作,节省信令开销。
进一步的,若接收端的PDCP层实体执行头解压缩失败,那么将此数据包继续投递到SDAP层,SDAP层实体可在数据包的尾部或头部读取SDAP的头,从而得到QoS flow id,可以根据Reflective mapping规则得到上行的QoS flow到DRB的mapping关系,然后SDAP层实体丢弃该数据包。
进一步的,接收端的PDCP实体在头解压缩操作失败后,若该PDCP SDU携带了SDAP头或者QoS flow id,则将该PDCP SDU投递到SDAP层,并且指示头解压缩失败,那么SDAP层可在数据包的尾部或头部读取SDAP的头,从而得到QoS flow id,可以根据Reflective mapping规则得到上行的QoS flow到DRB的mapping关系,然后SDAP层实体丢弃该数据包。
进一步的,另一种可能的实现方式中,接收端的PDCP层在头解压缩操作失败后,若该PDCP SDU携带了SDAP头或者QoS flow id,则接收端的PDCP层发送PDCP状态报告 到发送端,指示该数据包发送失败,发送端的PDCP层接收到该发送PDCP状态报告,则重发该数据包。或者只要接收端解压缩失败,接收端的PDCP层发送状态报告到发送端,指示该数据包发送失败,发送端的PDCP层接收到该发送状态报告,则重发该数据包。发送端的PDCP层,对于携带QoS flow id的数据包,只有接收到接收端发送的PDCP状态报告,指示该数据包成功接收,才会删该数据包。其中,所述PDCP状态报告包含接收端的接收成功和/或接收失败的数据包,包含数据包的PDCP层序号。这种方式适用于SDAP头添加SDAP层的SDU的头部和尾部等情况。
本申请实施例中,核心网网元可以通知接入网网元QoS flows或者是PDU sessions的Reflective QoS信息,并且可以通知接入网网元去激活QoS flow或PDU session的Reflective QoS特性。接入网网元可以获取Reflective QoS信息,从而决定是否在空口发送QoS flow id。
进一步的,接入网网元通知终端QoS flow、DRB或PDU session的Reflective QoS信息,并且可以去激活QoS flow、DRB或PDU session的Reflective QoS特性,终端可以根据Reflective QoS信息来决定是否需要在空口读取QoS flow id和是否需要ROHC位置偏移的操作,对不具备Reflective QoS的DRB不进行QoS flow id的检测,不进行ROHC解压缩位置的偏移操作,可以减少终端对空口数据包的检测工作,减少开销,提升处理效率和节电。
本申请提供的另一种基于Reflective QoS特性的通信方法中,可实现对空口发送的QoS flow id进行过滤,减少空口发送QoS flow id的数量,节省信令开销。对空口发送的QoS flow id进行过滤的实施过程可在上述实施例的基础上执行,也可独立执行,本申请实施例不做限定。
图9所示为本申请实施例提供的基于Reflective QoS特性的通信方法的又一种实施方法流程图,参阅图9所示包括:
S401:接入网网元确定数据包包头信息。
S402:所述接入网网元根据数据包包头信息,确定是否需要在向终端发送的数据包包头中携带QoS flow id。
本申请实施例中,通过确定是否需要在向终端发送的数据包包头中携带QoS flow id,实现对空口发送的QoS flow id的过滤。
一种可能的实施方式中,核心网网元向接入网网元发送packet filter组成信息,接入网网元根据所述数据包包头中对应所述packet filter组成信息,确定是否需要在向终端发送的数据包包头中携带QoS flow id。
进一步的,接入网网元根据所述数据包包头中对应所述packet filter组成信息,还可确定是否需要在向终端发送的数据包包头中携带用于指示该数据包具备Reflective QoS特性的指示信息。
图10所示为本申请实施例提供的对QoS flow id进行过滤的一种实施方法流程图,参阅图10所示包括:
S501:核心网网元向接入网网元发送Reflective QoS信息。
进一步的,核心网网元向接入网网元还可向接入网网元发送packet filter组成信息。
其中,核心网网元向接入网网元发送Reflective QoS信息,通知接入网网元的QoS flow或PDU session的Reflective QoS特性,并通知采用控制面还是用户面,以使接入网网元确定全部数据包具备Reflective QoS特性,还是部分数据包具备Reflective QoS特性。
其中,核心网网元向接入网网元发送packet filter组成信息,可以是QoS flow、PDU session的Reflective QoS特性对应的packet filter组成信息,例如可以是IP 5元组(源地址,目的地址,源端口号,目的端口号,协议号),或者媒体接入控制(Medium Access Control,MAC)源地址、目的地址等。
一种可能的实施方式中,还可包括步骤S502:
S502:核心网网元还可向终端发送packet filter组成信息,例如可以通知终端QoS flow、PDU session的Reflective QoS特性对应的packet filter组成信息,例如可以是IP 5元组(源地址,目的地址,源端口号,目的端口号,协议号),或者mac源地址、目的地址等。
其中,S502为可选步骤。
S503:接入网网元接收核心网网元发送的Reflective QoS信息以及packet filter组成信息,并根据所述数据包包头中对应所述packet filter组成信息部分,确定是否需要在向终端发送的数据包包头中携带QoS flow id。进一步的,接入网网元还可确定是否需要在向终端发送的数据包包头中携带一个指示信息,所述指示信息用于指示该数据包具备Reflective QoS特性。
其中,对于QoS flow的全部数据包都具备Reflective QoS特性的场景:
接入网网元对从N3接口接收的该QoS flow的每一数据包进行包检测,对数据包的包头按照packet filter的组成进行检测,例如packet filter的组成为IP 5元组,则检测数据包包头中的IP 5元组的内容。若数据包的包头中对应packet filter部分为新内容,例如,数据包包头中的IP 5元组的内容为新,即表明接入网网元未在空口发送携带QoS flow id的具备相同IP 5元组内容的数据包,则在空口发送该数据包时携带QoS flow id,进一步的,还可以携带一个指示信息,用于指示该数据包具备Reflective QoS特性。若数据包的包头中对应packet filter部分不为新,则在空口发送该数据包时不携带QoS flow id,且不携带指示该数据包具备Reflective QoS特性的指示信息。
进一步的,若接入网网元已确认终端已接收到包头中包含相同内容(packet filter对应的部分)的下行数据包(且数据包中携带QoS flow id),或者接入网网元已成功发送N个所述下行具备相同IP 5元组内容的数据包(N可以是网络设置,例如核心网网元或接入网网元设置),则接入网网元在空口发送该数据包时不携带QoS flow id,且不携带指示该数据包具备Reflective QoS特性的指示信息。
其中,对于QoS flow的部分数据包具备Reflective QoS特性的场景:
接入网网元对从N3接口接收到的携带该QoS flow id的以及RQI的数据包进行包检测,对数据包的包头按照packet filter组成信息进行检测,例如packet filter的组成为IP 5元组,则检测数据包包头中的IP 5元组的内容。若数据包的包头中对应packet filter部分为新,例如,数据包包头中的IP 5元组的内容为新内容,即表明接入网网元未在空口发送携带QoS flow id的具备相同IP 5元组内容数据包,则在空口发送该数据包时携带QoS flow id,进一步的,还可以携带一个指示信息,用于指示该数据包具备Reflective QoS特性。若数据包的包头中对应packet filter组成部分不为新,则在空口发送该数据包时不携带QoS flow id,。
进一步的,若接入网网元已确认终端已接收到包头中包含相同内容(包过滤对应的部分)的下行数据包(且数据包中携带QoS flow id),或者接入网网元已成功发送N个所述下行数据包(N可以是网络设置,例如核心网网元或接入网网元设置),则接入网网元在空口 发送该数据包时不携带QoS flow id,且不携带指示该数据包具备Reflective QoS特性的指示信息。
本申请实施例,采用此种方式对在空口发送的QoS flow id进行过滤,减少了发送QoS flow id的数量,终端可以减少对QoS flow id进行检测,以及获取packet filter的操作,从减少了终端开销。
另一种可能的实施方式中,核所述接入网网元若确定需要在向终端发送的数据包包头中携带QoS flow id,则向所述终端发送用户面控制PDU或无线资源控制RRC信令,所述用户面控制PDU和所述RRC信令中包括数据包的QoS flow id以及数据包包头信息。
图11所示为本申请实施例提供的对QoS flow id进行过滤的另一种实施方法流程图,参阅图11所示包括:
S601、S602和S603的执行步骤与上述S501、S502和S503的执行步骤相同,在此不再赘述,以下仅就不同之处进行说明。
S604:所述接入网网元若确定需要在向终端发送的数据包包头中携带QoS flow id,则向所述终端发送用户面控制(control)PDU(例如SDAP control PDU或者PDCP control PDU)或RRC信令(包含但不限于RRC配置消息或RRC重配置等消息),所述用户面controlPDU和所述RRC信令中包括数据包的QoS flow id以及数据包包头信息。
其中,对于QoS flow的所有数据包具备Reflective QoS特性的场景:
接入网网元对从N3接口接收到的携带该QoS flow id的以及RQI的数据包进行包检测,对数据包的包头按照packet filter组成信息进行检测,例如packet filter的组成为IP 5元组,则检测数据包包头中的IP 5元组的内容。若数据包的包头中对应packet filter部分为新,例如,数据包包头中的IP 5元组的内容为新内容,即表明接入网网元未在空口发送携带QoS flow id的具备相同IP 5元组内容数据包,则生成用户面control PDU/RRC信令通知终端,其中,用户面control PDU或RRC信令包含数据包的QoS flow id和数据包的包头,或包含数据包的QoS flow id和数据包包头的部分内容(对应于packet filter的组成,例如源IP地址为x,目的IP地址为y,源端口号为22,目的端口号为67,协议号为TCP)。
若数据包的包头中对应packet filter部分不为新,则不生成用户面control PDU以及RRC信令。
进一步的,若接入网网元已确认终端已接收到包含相同内容的用户面control PDU或RRC信令,则,接入网网元不再发送用户面control PDU。接入网网元在空口发送该数据包时不携带QoS flow id。
其中,对于QoS flow的部分包具备Reflective QoS特性的场景,接入网网元只对从N3接口接收到的该QoS flow的携带RQI的数据包进行包检测,其余操作与对于QoS flow的全部包具备Reflective QoS特性的场景的操作相同。
又一种可能的实施方式中,所述接入网网元若确定需要在向终端发送的数据包包头中携带QoS flow id;所述接入网网元基于所述packet filter组成信息,对与所述packet filter组成信息对应的数据包包头中的内容进行反转操作,得到上行packet filter;所述接入网网元向所述终端发送所述上行packet filter以及QoS flow id。
图12所示为本申请实施例提供的对QoS flow id进行过滤的又一种实施方法流程图,参阅图12所示包括:
S701、S702和S703的执行步骤与上述S501、S502和S503的执行步骤相同,在此不再赘述,以下仅就不同之处进行说明。
S704:接入网网元若确定需要在向终端发送的数据包包头中携带QoS flow id,基于所述packet filter组成信息,对与所述packet filter组成信息对应的数据包包头中的内容进行反转操作,得到上行packet filter。
接入网网元可以对下行数据包包头中对应packet filter的内容进行反转操作,得到上行packet filter,例如,对下行数据包包头中的IP 5元组内容进行反转,源地址和目的地址进行互换,源端口号和目的端口号进行互换,得到上行packet filter,例如,一个过滤器可由下述内容组成:源IP地址为y,目的IP地址为x,源端口号为67,目的端口号为22,协议号为TCP。
S705:接入网网元向所述终端发送所述上行packet filter以及QoS flow id。
接入网网元可以向终端发送QoS flow id和上行packet filter。其中,接入网网元可以通过用户面control PDU或RRC信令方式通知终端所述QoS flow id和上行packet filter。
一种可能的实施例中,接入网网元还可以指示终端该发送的packet filter为上行packet filter,终端接收到该QoS flow id和对应上行packet filter,用于产生上行QoS flow。
本申请实施例中,通过用户面control PDU或RRC信令通知终端上行QoS flow id和对应上行packet filter,使得接入网网元可以在不用在空口发送的QoS flow id,终端不用对QoS flow id进行检测,以及获取packet filter的操作,一定程度上减少了终端开销。
进一步的,本申请实施例中,在上述图10至图12所示方法基础上,终端可以向接入网元发送终端是否具备读取QoS flow id能力、生成上行packet filter的能力中一项或多项。或者终端向接入网元发送终端的状态是否支持读取QoS flow id、生成上行packet filter中一项或多项。
图13所示为本申请实施例提供的接入网网元过滤QoS flow id又一实施流程图,参阅图13所示,包括:
图13中S801、S802和S803的执行步骤与上述S501、S502和S503的执行步骤相同,在此不再赘述,以下仅就不同之处进行说明。
S804:终端发送第一能力信息,接入网网元接收所述终端发送的第一能力信息。
所述第一能力信息用于指示所述终端是否具备QoS flow id读取能力和上行packet filter生成能力中的至少一项。
其中,所述读取QoS flow id能力是指终端从接收的空口数据包中获取QoS flow id的能力。所述生成上行packet filter的能力是指终端基于接收的下行空口数据包生成上行packet filter的能力。
其中,终端可通过RRC信令方式上报所述第一能力信息到接入网网元,或终端也可上报所述第一能力信息到核心网网元,再由核心网网元通知给接入网网元。
其中,本申请实施例并不限定S801、S802、S803和S504执行先后顺序,例如S504的执行步骤可在S801、S802和S803之前。
进一步的,终端可以上报Reflective mapping能力,所述Reflective mapping能力是指终端通过下行数据包包头中携带的QoS flow id来获取上行QoS flow到DRB映射关系的能力。为描述方便可将终端上报的Reflective mapping能力称为第二能力信息。终端还可发送第二 能力信息,所述接入网网元接收所述终端发送的第二能力信息。
其中,终端可通过RRC信令方式上报所述Reflective mapping能力信息到接入网网元,或终端也可上报所述Reflective mapping能力信息到核心网网元,再由核心网网元通知到接入网网元。
接入网网元若确定终端不支持Reflective mapping能力,则接入网网元需要通过其它方式给终端配置上行QoS flow到DRB的映射关系,例如通过RRC信令的方式配置上行QoS flow到DRB的映射关系。其中,所述RRC信令,可以包含但不限于RRC配置消息或RRC重配置等消息。
进一步的,接入网网元还可以根据终端是否具备读取QoS flow id能力来判断终端支持Reflective mapping能力。若终端支持读取QoS flow id能力,则终端具备Reflective mapping能力,反之,终端不具备Reflective mapping能力。
S805:接入网网元若确定终端的能力或状态不支持读取QoS flow id以及生成上行packet filter时,则采用用户面control PDU或RRC信令方式通知终端QoS flow id以及与QoS flow id对应的上行packet filter。
S806:接入网网元若确定终端支持生成上行packet filter,则可通过空口数据包向终端发送端QoS flow id和数据包包头部分。
本申请实施例中,接入网网元可以通过用户面control PDU或RRC信令方式通知终端QoS flow id以及与QoS flow id对应的上行packet filter,减少终端的开销,并降低了空口由于携带QoS flow id造成的开销。
本申请提供的又一种基于Reflective QoS特性的通信方法中,接入网网元可对发送的用于指示数据包是否具备Reflective QoS特性的第一信息进行过滤,节省信令开销。对第一信息进行过滤的实施过程可在上述实施例的基础上执行,也可独立执行,本申请实施例不做限定。
图14所示为本申请实施例提供的又一种基于Reflective QoS特性的通信方法实施流程图,参阅图14所示,包括:
S901:核心网网元向接入网网元发送QoS规则有效定时时间。
本申请实施例中,QoS规则有效定时时间用于指示QoS规则的激活以及去激活,其中,QoS规则在所述QoS规则有效定时时间内有效。所述QoS规则是指通过Reflective QoS特性得到的QoS规则。
其中,核心网网元向接入网网元发送的QoS规则有效定时时间可以是QoS flows的QoS规则有效定时时间,或者也可以是PDU sessions的QoS规则有效定时时间。
具体的,核心网网元可一次性向接入网网元发送一个或多个QoS flow的QoS规则有效定时时间。核心网网元向接入网网元发送的QoS规则有效定时时间若为PDU sessions的QoS规则有效定时时间,则该PDU sessions的QoS规则有效定时时间适用于该对应PDU sessions内所有具备Reflective QoS特性的QoS flow。
其中,核心网网元可通过N2接口消息向接入网网元发送QoS规则有效定时时间。其中,所述N2接口消息包括但不限于PDU会话建立消息(PDU Session Resource Setup)、PDU会话修改消息(PDU Session Resource Modify)等。
S902:接入网网元接收核心网网元发送的QoS规则有效定时时间,并且接入网网元若 在所述QoS规则有效定时时间内接收到至少两个具备Reflective QoS特性的数据包,则可针对所述QoS规则有效定时时间内所述至少两个数据包中的部分数据包发送用于指示数据包是否具备Reflective QoS特性的第一信息。
本申请实施例中,接入网网元若接收到多个具备Reflective QoS特性的数据包,并且确定该多个具备Reflective QoS特性的数据包的接收时间均属于QoS规则有效定时时间内,则可仅针对接收到的多个数据包中的部分数据包发送用于指示数据包是否具备Reflective QoS特性的第一信息,而无需针对全部数据包发送第一信息,进而可实现对发送的第一信息的过滤,节省信令开销。
其中,QoS规则有效定时时间可采用定时器的方式实现,例如,接入网网元确定某个数据包具备reflective QoS特性,则根据此数据包产生一个QoS规则(包含QoS rule id、QoS flow id、包过滤器、优先级等其中至少一项),并启动定时器,若接入网网元中已存在一个具备同样包过滤器的QoS规则,则接入网网元可重启该定时器。若定时器超时,则删除对应的QoS规则。在定时器未超时时,接入网网元从核心网用户面网元接收到N包具备reflective QoS特性的数据包,则接入网网元可只针对M个数据包发送第一信息。其中,M小于N,M和N均为正整数。其中,本申请实施例中用于指示数据包是否具备Reflective QoS特性的第一信息中可可包含QoS flow id和非接入层反射服务质量指示(NAS reflective QoS indicator,NRQI)中的一项或多项。
本申请实施例中,对于控制面方式控制reflective QoS的QoS flow,接入网网元从核心网用户面网元接收到的每一数据包都具备reflective QoS特性,故接入网网元可对所有收到的QoS flow的数据包进行发送第一信息的过滤。而对于用户面方式控制QoS的QoS flow,接入网网元从核心网用户面网元接收到的携带RQI的数据包才具备reflective QoS特性,故接入网网元可对接收到的具备reflective QoS特性的数据包进行发送第一信息的过滤。
S903:接入网网元获取到QoS规则有效定时时间后,可发送给终端,以使终端在所述QoS规则有效定时时间内采用相同的QoS规则将具备Reflective QoS特性的数据包映射成QoS flow。
其中,QoS规则有效定时时间可采用定时器的方式实现,例如,若终端确定某个数据包具备reflective QoS特性,则终端根据此数据包产生一个QoS规则(包含QoS rule id、QoS flow id、包过滤器、优先级等其中至少一项),并启动定时器,若终端中已存在一个具备同样包过滤器的QoS规则,则终端可重启该定时器。若定时器超时,则删除对应的QoS规则。
又一种可能的设计中,核心网网元还可向接入网网元发送QoS规则有效定时时间更新信息,所述QoS规则有效定时时间更新信息用于指示更新的QoS规则有效定时时间。其中,QoS规则有效定时时间更新信息可以是QoS flows的QoS规则有效定时时间更新信息,或者也可以是PDU sessions的QoS规则有效定时时间更新信息。
在终端发生小区切换过程或多连接过程中,终端的业务进行切换时,终端在源接入网网元(源基站)的部分或全部QoS flow可切换到目标接入网网元(目标基站)。源接入网网元(源基站)可向终端切换的目标接入网网元(目标基站)发送进行切换的QoS flow的QoS规则有效定时时间。目标接入网网元可基于QoS规则有效定时时间,过滤向终端发送的Reflective QoS信息,实现对向终端发送的Reflective QoS信息的过滤,节省信令开销。
其中,源接入网网元(源基站)可通过包含但不限于切换请求消息、辅基站增加请求 消息、辅基站修改请求消息向目标接入网网元(目标基站)发送进行切换的QoS flow的QoS规则有效定时时间。
其中,源接入网网元可向终端切换的目标接入网网元发送的QoS规则有效定时时间可以是QoS flows的QoS规则有效定时时间,或者也可以是PDU sessions的QoS规则有效定时时间。
进一步的,目标接入网网元在目标小区中发送QoS flow的数据包时,可忽略源接入网网元已发送数据包的QoS规则有效定时时间,仅依据从目标接入网网元发送的数据包对应的QoS规则有效定时时间,进行第一信息的过滤,以避免源接入网网元和目标接入网网元之间进行QoS规则有效定时时间同步。
本申请的又一实施例中,可针对负责在空口协议栈中添加上行QoS flow id和下行QoS flow id的SDAP实体进行数据包传输过程中涉及的SDAP帧格式进行优化,以满足上述涉及的QoS flow数据包的空口发送。
本申请实施例中,可配置透明模式的SDAP帧格式和非透明模式的SDAP帧格式。其中,透明模式的SDAP帧格式是指DRB不配置SDAP头,即SDAP PDU中不包含SDAP协议头。非透明模式的SDAP帧格式是指DRB配置SDAP头,即SDAP PDU中包含SDAP协议头。
本申请实施例以下将分别针对透明模式的SDAP帧格式和非透明模式的SDAP帧格式进行说明。首先,针对非透明模式的SDAP帧格式进行说明。
图15所示为本申请实施例提供的一种下行SDAP帧格式示意图。参阅图15所示,在下行SDAP帧格式的SDAP协议头中包含非接入层反射服务质量指示(NAS reflective QoS indicator,NRQI)、接入层反转映射指示(reflective mapping indicator,ARQI)字段。其中,NRQI和ARQI可分别通过一个比特位指示。其中,指示NRQI的比特位设置为1,则表示该数据包具备reflective QoS特性。指示NRQI的比特位设置为0,则表示该数据包不具备reflective QoS特性。指示ARQI的比特位设置为1,表示该QoS flow具备reflective mapping特性。指示ARQI的比特位设置为0,表示该QoS flow不具备reflective mapping特性。
图15中,QFI表示服务流质量标识,Data表示数据,R表示空闲比特位,Qct表示字节,一个字节占用8个比特位。
在进行数据包的传输过程中,数据发送端的SDAP实体在发送数据包时,若确定发送的数据包具备reflective QoS特性,则设置指示NRQI的比特位为1。若确定发送的数据包不具备reflective QoS特性,则设置指示NRQI的比特位为0。数据发送端的SDAP实体在发送数据包时,若确定发送的数据包的QoS flow具备reflective mapping特性,则设置指示ARQI的比特位为1。若确定发送的数据包的QoS flow不具备reflective mapping特性,则设置指示ARQI的比特位为0。
本申请的一种可能的实施例中,若指示NRQI的比特位和指示ARQI的比特位都设置为0,则SDAP协议层头中可不携带服务质量流标识(QoS flow id,QFI)字段。若指示NRQI的比特位和指示ARQI的比特位二者中有至少一项设置为1,则携带QFI字段。
数据发送端的SDAP实体按照上述方式生成SDAP协议头,并将该SDAP协议头和从UPF接收的数据包(Data)一起,投递到PDCP层。
在进行数据包的传输过程中,数据接收端的SDAP实体从PDCP层接收PDCP SDU,并读取SDAP协议头。若指示NRQI的比特位的值为1,表示该数据包具备reflective QoS特性,则SDAP实体将SDAP的数据部分和从SDAP头部中读取的QoS flow id,投递到上层协议层,例如NAS层,该投递到上层的数据部分和QoS flow id可用于上层协议层产生QoS rule。进一步的,SDAP实体还可以向上层协议层发送NRQI。若指示NRQI的比特位的值为0,表示该数据包不具备reflective QoS特性。SDAP实体只将SDAP的数据部分投递到上层协议层,例如NAS层。若指示ARQI的比特位的值为1,表示该QoS flow具备reflective mapping特性,SDAP实体根据读取数据包的下行QoS flow id和所述数据包对应的DRB id,产生上行QoS flow到DRB的映射关系。若指示ARQI的比特位的值为0,表示该QoS flow不具备reflective mapping特性。SDAP实体不根据下行QoS flow id来产生上行的QoS flow到DRB的映射关系。若指示NRQI的比特位和指示ARQI的比特位都设置为0,则SDAP实体可获知后面没有携带QFI字段,并且可得知数据包的开始位置,例如如图16所示,SDAP实体可获知从第二个字节开始,就是数据部分。
图17所示为本申请实施例提供的一种下行SDAP帧格式示意图。图17所示的SDAP帧格式与图15所示的SDA P帧格式类似,不同之处在于,SDAP协议头中还包括有用于指示用户面反转服务流指示信息(UP reflective QoS indicator,URQI)的比特位。其中,URQI用于指示reflective QoS是否是通过用户面方式控制的,换言之,用于指示reflective QoS是否是UPF通过N3接口发送的数据包携带RQI来指示reflective QoS,若是,则将指示URQI的比特位的值设置为1,否则,将指示URQI的比特位的值设置为0。
在进行数据包的传输过程中,数据发送端的SDAP实体在发送数据包时,若确定从UPF接收的数据包中携带了RQI,则将指示URQI的比特位的值设置为1。若确定从UPF接收的数据包中不携带RQI,则将指示URQI的比特位的值设置为0。数据接收端的SDAP实体从PDCP层接收PDCP SDU,SDAP读取SDAP头。若指示NRQI的比特位的值为1,表示该数据包具备reflective QoS特性,则SDAP实体将SDAP的数据部分和从对应的SDAP头部中读取的QoS flow id,投递到上层协议层,例如NAS层。若指示URQI的比特位的值为1,SDAP实体还携带该数据包对应的NRQI投递到上层协议层。
通过本申请上述实施例,可以实现在空口的数据包的SDAP协议头中携带NAS层的reflective QoS信息和AS层的reflective mapping信息的传递,并且减少空口的开销,并准确的决定是否投递RQI指示信息到上层协议。
一种可能的设计中,本申请实施例中还可在SDAP协议头中设置用于指示QoS flow的数据包在对应DRB中传输的结束与否的比特位,例如设置End字段,所述End字段用于表示QoS flow的数据包在对应DRB中传输的结束与否。
图18所示为本申请实施例提供的又一种SDAP帧格式示意图。其中,指示End的比特位设置为1,则表示该QoS flow的数据包在对应DRB中传输结束。指示End的比特位设置为0,表示该QoS flow的数据包在对应DRB中传输未结束。
在进行数据包的传输过程中,数据发送端的SDAP实体在发送数据包时,SDAP实体若确定在某一DRB(例如,DRB1)中终止发送QoS flow(例如QoS flow1)的数据包,则将数据包的SDAP协议头中指示End的比特位设置为1。或者发送一个SDAP PDU,其中不包含data字段,即该SDAP PDU仅用于表示QoS flow的数据包在所述DRB中数据传输的结 束。数据接收端的SDAP实体从PDCP层接收PDCP SDU,SDAP读取SDAP协议头,若指示End的比特位设置为1,则说明QoS flow的数据包在所述DRB中数据传输的结束;若指示End的比特位设置为0,则说明QoS flow的数据包在所述DRB中数据传输未结束。
本申请实施例中,若数据接收端的SDAP实体若确定指示End的比特位设置为1,可根据此信息进行该QoS flow的数据包的接收状态的反馈,例如可反馈在DRB中接收该QoS flow的数据包的结束。
进一步的,数据接收端的SDAP实体若确定指示End的比特位设置为1,还可根据此信息,进行从不同DRB中接收的同一QoS flow的数据包的排序。
可以理解的是,本申请实施例可在图15至图17所述的SDAP帧格式基础上,设置本申请上述实施例涉及的设置有End字段。其中,设置有End字段的SDAP帧格式,可适用于上行SDAP帧格式和下行SDAP帧格式的协议头设计。
又一种可能的设计中,本申请实施例中还可在SDAP协议头中设置用于对在DRB中接收某QoS Flow数据包完成进行反馈的控制命令。图19所示为本申请实施例提供的又一种SDAP帧格式示意图。图19中,D/C域,表示该PDU是控制PDU还是数据PDU。例如,若指示D/C域的比特位取值设置为1,则表示是控制PDU,若指示D/C域的比特位取值设置为0,则表示是数据PDU。其中,PDU type域,表示控制PDU的类型,例如PDU type域取值000,表示在某DRB中接收QoS Flow数据包完成的反馈。
在进行数据包的传输过程中,数据发送端的SDAP实体在发送数据包时,若确定需要发送控制PDU,则将D/C字段设置为1,并将PDU type字段设置为对应控制命令对应的取值,例如对表示在某DRB中接收某QoS Flow数据包完成的反馈的控制命令,设置为000。数据接收端的SDAP实体从PDCP层接收PDCP SDU,SDAP读取SDAP协议头,若D/C字段为1,则说明该SDAP PDU为控制PDU,否则,为数据PDU。对于控制PDU,数据接收端的SDAP实体读取PDU type字段,得到对应的控制命令。例如,PDU type域取值000,表示在某DRB中接收某QoS Flow数据包完成的反馈的控制命令。
可以理解的是,本申请实施例图15至图19中,是以QFI为8bit长度为例进行说明的,并不限定QFI长度必须为8bit,本申请实施例还可包含其他不同长度的QFI的场景。
进一步的,上述实施例中的QFI可以是终端或核心网用户面网元产生的NAS层的QoS flow id,还可以是接入网网元配置的AS层的QoS flow id.其中NAS层的QoS flow id和AS层的QoS flow id具备映射关系,例如在PDU session或DRB内一一对应。
本申请实施例以下针对透明模式的SDAP帧格式进行说明。
本申请实施例中配置透明模式的SDAP帧格式,即针对DRB不配置SDAP协议头,SDAP PDU中不包含SDAP协议头,即SDAP PDU就是SDAP SDU,可减少空口携带SDAP协议头带来的开销,并且对PDCP的ROHC处理没有影响。
SDAP是按照DRB来配置的,若是双向配置SDAP的透明模式,即必须是上行和下行同时配置,那么会导致QoS flow到DRB的映射关系的限制,对应下行方向只有不激活reflective QoS和reflective mapping的QoS flow才能映射到配置了透明模式SDAP的DRB中。对于上行方向,只有可以不携带QoS flow id的QoS flow,才能映射到配置了透明模式SDAP的DRB中。
若根据QoS flow到DRB的映射关系来配置SDAP透明模式,那么对于上行或下行需 要携带QoS flow id的场景,都不能配置SDAP透明模式,从而造成额外的空口开销和对ROHC的影响,例如在PDCP中ROHC操作时进行一定偏移,避开SDAP协议头部分。故,本申请实施例中可设置单向SDAP透明模式,即对DRB的上行和下行方向,可分别本申请实施例可配置单向透明模式的SDAP,即对DRB的上行方向和下行方向,可分别配置透明模式的SDAP。
其中,接入网网元若确定针对至少一个DRB的下行方向配置SDAP的透明模式,即针对至少一个DRB的下行方向,SDAP PDU中不携带SDAP协议头。接入网网元向终端发送指示所述DRB的下行SDAP配置为透明模式的指示信息,例如可通过RRC信令或用户面控制PDU向终端发送指示所述DRB的下行SDAP配置为透明模式的指示信息。
对于下行配置SDAP透明模式的DRB,接入网网元对应发送所述DRB的SDAP实体将从核心网网元接收的数据包路由到DRB中,不配置SDAP协议头。接入网网元对应发送所述DRB中的PDCP实体,进行ROHC压缩处理过程中,不进行SDAP协议头造成的压缩起始位置的偏移。
进一步,本申请实施例中接入网网元只将不激活reflective QoS和reflective mapping的QoS flow映射到配置了透明模式SDAP的所述DRB中。
对于下行方向配置了SDAP透明模式的DRB,终端对应接收所述DRB的SDAP实体,不进行SDAP协议头的读取处理,直接将从DRB中接收的数据包投递到上层,例如NAS层协议实体。终端对应接收所述DRB的PDCP实体,进行ROHC的解压缩处理过程中,不进行SDAP协议头造成的解压缩起始位置的偏移。
其中,接入网网元若确定针对至少一个DRB的上行方向配置SDAP的透明模式,即针对至少一个DRB的上行方向,SDAP PDU中不携带SDAP协议头部分。接入网网元可通过RRC或用户面控制PDU向终端发送指示所述DRB的上行SDAP配置为透明模式的指示信息。
其中,接入网网元只将不需携带QoS flow id的上行QoS flow映射到上行方向配置了透明模式SDAP的所述DRB中。
对于上行配置SDAP透明模式的DRB,终端对应发送所述DRB的SDAP实体将从NAS层接收的数据包投递到DRB中,不配置SDAP协议头。终端对应发送所述DRB中的PDCP实体,进行ROHC压缩处理过程中,不进行SDAP协议头造成的压缩起始位置的偏移。接入网网元对应接收所述DRB的SDAP实体,不进行SDAP协议头的读取处理。接入网网元对应接收所述DRB的PDCP实体,进行ROHC的解压缩处理过程中,不进行SDAP协议头造成的解压缩起始位置的偏移。
本申请实施例中针对SDAP帧格式配置了透明模式或非透明模式后,在进行数据传输过程中,接入网网元可向终端发送SDAP模式信息,所述SDAP模式信息用于指示SDAP帧格式为透明模式或非透明模式,并指示SDAP模式对应的方向。进一步的,SDAP的非透明模式可进一步划分为SDAP PDU协议头是固定长度、SDAP PDU协议头不是固定长度两种子模式。
所述SDAP模式对应的方向是指上行方向或下行方向,或者是上行和下行方向。进一步的,可在SDAP模式信息中不携带具体方向信息的方式来指示对应的方向为双向。
进一步的,可通过显示或隐式的方式配置SDAP模式信息,例如,为某些DRB或某些DRB的某些方向配置显示的SDAP模式,则其余DRB的剩余方向或其余的DRB所有方向为另一种SDAP模式。
一种通知消息的格式,是在DRB的配置消息中包括SDAP的模式信息,例如可采用如下方式进行DRB配置消息的配置:
一种可能的设计中:
DRB list//说明:可包含一个或多个DRB;
{DRB id;//说明:DRB的标识;
SDAP mode;//说明:SDAP模式;
Direction;//说明:SDAP模式对应的方向:上行或下行或上下行;
};
另一种可能的设计中:
在SDAP的模式的配置中包含DRB的标识,来指示DRB的SDAP的模式配置;
SDAP list{
SDAP id,//说明SDAP实体的标识;
SDAP模式1://说明:SDAP模式,例如透明模式;还可包含该模式对应的方向,例如下行方向;
{DRB id list;//说明:DRB标识列表;
}
SDAP模式2://说明:SDAP模式,例如透明模式;还可包含该模式对应的方向,例如上行方向;
{DRB id list;//说明:DRB标识列表;
}
SDAP模式2://说明:SDAP模式;例如非透明模式;还可包含该模式对应的方向,例如上行方向;
{DRB id list;//说明:DRB标识列表;
}
}
进一步的,接入网网元可以按照PDU session的粒度配置SDAP模式,即针对某一PDU session配置DRB的SDAP模式,即SDAP实体中上行、下行或双向只配置一种SDAP模式,则SDAP实体对应该PDU session内的所有DRB都采用这种SDAP模式。
进一步的,在终端发生小区切换过程中,源接入网网元(源基站)可将DRB对应的SDAP模式信息发送给目标接入网网元(目标基站),以使目标接入网网元(目标基站)可在SDAP PDU格式的确定,ROHC中的压缩解压缩处理是否进行起始位置的偏移,QoS flow到DRB的映射关系的确定等处理过程中考虑DRB的SDAP模式信息。
一种可能的设计中,源基站决定将终端切换到目标基站的目标小区时,源基站向目标基站发送切换请求消息1,在所述切换请求的消息1中包含终端DRB的SDAP模式信息, 所述SDAP模式信息是源基站在源小区中为所述终端配置的。其中,切换请求的消息1可通过基站间的直接接口或间接接口发送。目标基站接收来自源基站的切换请求的消息1,可进行SDAP PDU格式确定,ROHC中的压缩解压缩处理是否进行起始位置的偏移,QoS flow到DRB的映射关系确定等其中一项或多项操作时,参考切换请求的消息1中包含的终端DRB的SDAP模式信息。例如,在进行目标小区中QoS flow到DRB的映射关系配置时,可将不需要在空口携带QoS flow id的QoS flow映射到配置了透明SDAP模式的DRB中。进一步,目标基站还可进行DRB的配置更新,例如根据切换请求的消息1中包含的终端DRB的SDAP模式信息,进行DRB的SDAP模式的配置更新。进一步的,目标基站在切换请求确认的消息2中包含终端在目标小区中的DRB的SDAP模式信息。
其中,目标基站接收到切换请求消息后,可发送切换请求确认的消息2。目标基站切换请求确认的消息2可通过基站间的直接接口或间接接口发送。源基站接收到切换请求确认消息2,则发送切换命令的消息3到终端。终端收到切换命令,在目标小区进行接入。
进一步的,在多连接分流场景中,也可传递SDAP模式信息。其中,多连接分流场景,是指终端通过主基站(Master gNB,MgNB)和辅基站(Secondary gNB,SgNB)接入例如5G网络等通信网络。终端可通过主基站或辅基站接收来自核心网的用户面数据,终端也可通过主基站或辅基站向核心网发送数据。
在QoS flow迁移过程中,主基站可将QoS flow从主基站迁移到辅基站,或者从辅基站迁移到主基站。主基站可以将终端待迁移的QoS flow对应DRB的SDAP模式信息通知到辅基站,辅基站可在SDAP PDU格式确定,ROHC中的压缩解压缩处理是否进行起始位置的偏移,QoS flow到DRB的映射关系确定等处理中考虑DRB的SDAP模式信息。主基站确定将终端的部分QoS flow迁移辅基站中,主基站向辅基站发送QoS flow迁移请求的消息1,在所述QoS flow迁移请求的消息1中包含终端DRB的SDAP模式信息,所述SDAP模式信息是主基站为所述终端配置的。所述QoS flow迁移是指将QoS flow从主基站迁移到辅基站进行发送,或者在辅基站分流。所述在辅基站分流,是指下行数据包由辅基站分流到主基站,终端在主基站和辅基站接收数据,上行方向终端向主基站和辅基站发送数据,由辅基站从终端和主基站接收数据并发送到核心网用户面设备。其中,主基站向辅基站发送QoS flow迁移请求的消息1可以采用但不限于通过SGNB添加请求(SGNB addition request)消息、SGNB modification request消息发送。其中,可将映射到某一DRB的所有QoS flow整体进行迁移,或者映射到某一DRB的部分QoS flow进行迁移。
辅基站接收来主基站的QoS flow迁移请求消息1,发送QoS flow迁移请求的消息2。辅基站可进行SDAP PDU格式确定,ROHC中的压缩解压缩处理是否进行起始位置的偏移,QoS flow到DRB的映射关系确定等其中一项或多项操作时,参考QoS flow迁移请求的消息1中包含的终端DRB的SDAP模式信息。例如,在辅基站中进行QoS flow到DRB的映射关系配置时,可将不需要在空口携带QoS flow id的QoS flow映射到配置了透明SDAP模式的DRB中。进一步,辅基站还可进行DRB的配置更新,例如根据QoS flow迁移请求消息1中包含的终端DRB的SDAP模式信息,进行DRB的SDAP模式的配置更新。进一步的,目标基站在QoS flow迁移请求确认的消息2中包含终端在辅基站中的DRB的SDAP模式信息。终端接收在辅基站发送的所述下行QoS flow数据或辅基站分流的数据。终端在辅基站发送上行QoS flow的数据。
同理,辅基站将QoS flow迁移到主基站,辅基站可以将终端待迁移的QoS flow对应DRB的SDAP模式信息通知到主基站。
本申请的又一实施例中,核心网网元可设置一个PDU session级的公共QoS profile,其中所述公共QoS profile包含:资源类型(Resource Type)、优先级(Priority level)、包时延(Packet Delay Budget)、包误码率(Packet Error Rate)和分配保留优先级(Allocation and Retention Priority)等参数中的至少一项。其中,所述资源类型包括保证比特率(Guaranteed Bit Rat,GBR)或者非GBR(Non-GBR)。
核心网网元在PDU Session建立、修改过程中,将该PDU session的公共QoS profile发送至接入网网元。例如可采用包含但不限于PDU Session Resource Setup、PDU Session Resource Modify消息之一,通过N2接口发送至接入网网元。接入网网元在建立所述PDU Session的default DRB时,根据所述公共QoS profile配置default DRB的参数,例如DRB对应的PDCP层参数、RLC层参数等。接入网网元可基于PDU session的公共QoS profile进行PDU session建立的接纳,若能够接纳,则建立接收PDU session的建立请求,否则,拒绝建立该PDU session。
若某PDU session的公共QoS profile发生修改,则接入网网元根据公共QoS profile的内容对所述PDU session对应的default DRB的参数进行修改。接入网网元可基于PDU session的公共QoS profile进行PDU session建立的接纳,若能够接纳,则建立接收PDU session的建立请求,否则,拒绝建立该PDU session。
其中,进一步的,在终端发生小区切换过程中,接入网网元可将PDU session的公共QoS profile发送到目标接入网网元,例如在切换请求消息中发送。
目标接入网网元接收到该PDU session的公共QoS profile,根据该公共QoS profile的内容,建立该PDU session对应的default DRB。目标接入网网元可基于PDU session的公共QoS profile进行PDU session建立的接纳,若能够接纳,则建立接收PDU session的建立请求,否则,拒绝建立该PDU session。
数据分流的架构中,主接入网网元(例如,master gNB)决定将某PDU session或PDU session中的部分QoS flow迁移到辅助接入网网元(例如,second gNB),主接入网网元将PDU session的公共QoS profile发送到辅接入网网元,可以采用但不限于SGNB添加请求(SGNB addition request)消息、SGNB modification request消息。辅接入网网元可基于PDU session的公共QoS profile进行default DRB的参数配置,还可以可基于PDU session的公共QoS profile进行PDU session建立的接纳。
本申请实施例中,核心网网元可设置PDU session级的公共QoS profile的实施方式,可适用于辅小区负载(second cell group bearer,SCG Bearer)和切片负载(split Bearer)的场景。
本申请的又一实施例中,提供一种QoS flow的数据包按序传输的优化。核心网网元通知接入网网元QoS flow或PDU session的按序传输信息,所述按序传输信息是指QoS flow中packet或PDU session中的packet是否需要按序传输。核心网控制面网元可通过N2口的消息来通知接入网网元QoS flow或PDU session的按序传输信息。采用的N2接口消息包括但不限于PDU Session Resource Setup、PDU Session Resource Modify等消息。进一步的,核心网网元还通知终端QoS flow或PDU session的按序传输信息,例如通过NAS层消息。所 述QoS flow包含上行和或下行的QoS flow。
进一步的,核心网用户面网元可通过N3口来通知RAN QoS flow或PDU session的按序传输信息,例如在N3接口的数据包的封装头中携带用于指示该数据包是否需要按序传输的指示信息。
RAN实现数据包在空口传输,其中考虑数据包的按序传输信息,具体主要采用如下方式:
RAN的实现方式一:按照按序传输信息进行QoS flow到DRB的映射;
RAN可以根据QoS flow或PDU session的的按序传输信息,来进行QoS flow到DRB的映射。RAN可以将不需要按序传输的QoS flow映射到同一DRB中,即一个DRB中的数据均为不需要按序传输。例如将QoS参数相同或相似的不需要按序传输的多个QoS flow映射到同一DRB中。或者将需要按序传输的QoS flow映射到同一DRB中,即一个DRB中的数据均需要按序传输。
对于上行,基站将QoS flow和DRB的映射关系通知到终端。进一步的,基站还通知终端某DRB中的数据传输不需要按序传输。例如,通过RRC消息通知终端或通过用户面control PDU的方式通知终端。终端可以在发送所述DRB的数据时进行优化处理。
对于下行,基站通知终端某DRB中的数据传输不需要按序传输,则终端中所述DRB对应的PDCP层实体不用进行排序操作,PDCP层协议实体可将从RLC层收到的数据包直接投递到上层协议而不用进行数据包的排序操作。
通过这种方式,基站和终端之间可以根据DRB的按序传输需求进行不同的处理,对于不需要进行按序传输的DRB,PDCP层可以不执行排序操作,提高了处理效率。
RAN的实现方式二:QoS flow到DRB的映射不考虑按序传输信息;
在这种场景中,一个DRB中可能包含需要按序传输的数据包和不需要按序传输的数据包。
针对RAN的实现方式二,本申请提供3种技术方案,分别如下:
方案1:在SDAP协议头中增加一个指示信息;
发送端的SDAP实体获取packet的按序传输信息,在SDAP的协议头中携带一指示信息,用于指示是否需要按序传输。SDAP的PDU经过PDCP层、RLC层、MAC层、物理层等处理发送到接收端。接收端的PDCP层实体,读取接收到的PDCP SDU的SDAP的协议头,根据SDAP协议头中的指示信息来获知按序传输信息,若该数据包不需要进行按序传输,则PDCP层实体直接将该数据包投递上层,否则,PDCP层实体将该PDCP SDU按照PDCP SN进行排序,排序之后将数据包顺序投递到上层。另一种方式是,PDCP层实体只对乱序收到的PDCP SDU进行SDAP协议头的读取,来获知按序传输信息。
例如,PDCP收到数据包1、数据包3和数据包5,若数据包3不需要按序投递,则PDCP层实体将数据包1和数据包3投递到上层,并记录数据包3已经投递到上层,将数据包5保存在PDCP层,等到PDCP实体接收到数据包2和数据包4,且数据包2和数据包4都需要按序投递,则将数据包2、数据包4和数据包5投递到上层协议层。PDCP层可只对乱序的数据包3和数据包5进行SDAP协议头的读取来获知按序传输信息。
本方案可适用于上行和下行方向。
方案2:在PDCP层协议头中增加一个指示信息;
发送端的SDAP实体获取packet的按序传输信息,通过SDAP和PDCP层原语来通知PDCP层该数据包的按序传输信息。PDCP层实体在PDCP层的协议头中携带一指示信息,用于指示该数据包是否需要按序传输。PDCP的PDU经过RLC层、MAC层、物理层等处理发送到接收端。接收端的PDCP层实体,读取接收到的PDCP SDU的PDCP层协议头,获知按序传输信息,若该数据包不需要进行按序传输,则PDCP层实体直接将该数据包投递上层,否则,PDCP层实体将该PDCP SDU按照PDCP SN进行排序,排序之后将数据包顺序投递到上层。另一种方式是,PDCP层实体只对乱序收到的PDCP SDU进行PDCP协议头的读取,来获知按序传输信息。
例如,PDCP收到数据包1、数据包3和数据包5,若数据包3不需要按序投递,则PDCP层实体将数据包1和数据包3投递到上层,并记录数据包3已经投递到上层,将数据包5保存在PDCP层,等到PDCP实体接收到数据包2和数据包4,且数据包2和数据包4都需要按序投递,则将数据包2、数据包4和数据包5投递到上层协议层。PDCP层可只对对乱序的数据包3和数据包5进行PDCP协议头的读取来获知按序传输信息,或读取PDCP层协议头的部分内容,例如按序传输的指示信息。
本方案可适用于上行和下行方向。
方案3:接收端PDCP实体读取SDAP层的QoS flow id;
发送端的SDAP实体将QoS flow id携带在SDAP协议头中,PDCP的PDU经过RLC层、MAC层、物理层等处理发送到接收端。接收端的PDCP层实体,读取接收到的PDCP SDU的SDAP层的协议头部分,获知QoS flow id,根据核心网网元通知RAN的QoS flow的按序传输信息,来获知数据包的按序传输信息。若该数据包不需要进行按序传输,则PDCP层实体直接将该数据包投递上层,否则,PDCP层实体将该PDCP SDU按照PDCP SN进行排序,排序之后将数据包顺序投递到上层。另一种方式是,PDCP层实体只对乱序收到的PDCP SDU进行SDAP层协议头的读取,读取其中的QoS flow id来获知按序传输信息。
例如,PDCP层收到数据包1、数据包3和数据包5,若数据包3不需要按序投递,则PDCP层实体将数据包1和数据包3投递到上层,并记录数据包3已经投递到上层,将数据包5保存在PDCP层,等到PDCP实体接收到数据包2和数据包4,且数据包2和数据包4都需要按序投递,则将数据包2、数据包4和数据包5投递到上层协议层。PDCP层可只对对乱序的数据包3和数据包5进行SDAP层协议头的读取,读取QoS flow id来获知按序传输信息。
本方案可适用于上行方向。
通过这种方式,基站和终端之间可以根据DRB的不同数据包的按序传输需求进行不同的处理,对于不需要进行按序传输的数据包,PDCP层可以不执行排序操作,提高了处理效率。对应需要按序传输的数据包,PDCP层执行排序操作,保证了业务的按序传输的需求。
本申请的一种可能的实施方式中,若终端发生小区切换,则获取到上述Reflective QoS信息的源接入网网元(源基站)可向终端切换的目标接入网网元(目标基站)发送该获取到的Reflective QoS信息,可以通过切换请求消息将Reflective QoS信息发送给目标接入网网元,并由目标接入网网元执行上述实施例中有关接入网网元的执行步骤,例如目标接入网网元可以接收源接入网网元发送的Reflective QoS信息,根据所述Reflective QoS信息来决策是否在空口发送QoS flow id、配置终端是否需要读取QoS flow id、给终端配置QoS flow 到DRB映射关系的配置方式、决策是否为某一PDU session配置SDAP实体等操作中的一项或多项。
进一步的,在多连接场景中,MgNB决定将某些QoS flow迁移到SgNB中,MgNB将所述QoS flow的Reflective QoS信息发送到SgNB中,例如,可通过SGNB ADDITION REQUEST消息、SGNB修改请求(SGNB MODIFICATION REQUEST)消息等消息来发送,以使SgNB可以根据所述Reflective QoS信息来决策是否在空口发送QoS flow id、配置终端是否需要读取QoS flow id、给终端配置QoS flow到DRB映射关系的配置方式、决策是否为某一PDU session配置SDAP实体等操作中的一项或多项。
本申请实施例中的SDAP和PDCP协议,只是描述其功能,包含对应相同功能的任何协议层名称。
需要说明的是,本申请实施例的说明书和权利要求书及附图中涉及的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,例如本申请实施例中上述涉及的第一指示信息和第二指示信息仅是用于方便描述以及区分不同的指示信息,不构成对指示信息的限定。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
上述主要从终端、接入网网元和核心网网元交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端、接入网网元和核心网网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对终端、接入网网元和核心网网元进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
根据前述方法,在采用集成单元的情况下,图20示出了本申请实施例提供的一种基于Reflective QoS特性的通信装置100结构示意图,该基于Reflective QoS特性的通信装置100可对应上述方法中的接入网网元,参阅图20所示,基于Reflective QoS特性的通信装置100包括接收单元101和处理单元102。基于Reflective QoS特性的通信装置100还可包括发送单元103。
其中,接收单元101、处理单元102和发送单元103的功能可以和上述涉及的各方法步骤相对应,在此不予赘述。
在采用硬件形式实现时,上述接收单元101可以是接收器、通信接口和收发电路,处理单元102可以是处理器或者控制器,发送单元103可以是发射器、通信接口和收发电路。其中,通信接口为统称,可以包括一个或多个接口。
根据前述方法,图21示出了本申请实施例提供的基于Reflective QoS特性的通信装置100的另一种结构示意图,该基于Reflective QoS特性的通信装置可以对应上述方法中的接 入网网元,该接入网网元可以是基站,也可以为其他设备,在此不予限定。
参阅图21所示,接入网网元1000可以包括处理器1001、存储器1002、总线系统1003、接收器1004和发射器1005。其中,处理器1001、存储器1002、接收器1004和发射器1005通过总线系统1003相连,该存储器1002用于存储指令,该处理器1001用于执行该存储器1002存储的指令,以控制接收器1004接收信号,并控制发射器1005发送信号,完成上述方法中接入网网元的步骤。其中,接收器1004和发射器1005可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器1002可以集成在所述处理器1001中,也可以与所述处理器1001分开设置。
作为一种实现方式,接收器1004和发射器1005的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器1001可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的接入网网元,即将实现处理器1001,接收器1004和发射器1005功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器1001,接收器1004和发射器1005的功能。
基于Reflective QoS特性的通信装置100和接入网网元1000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,在采用集成单元的情况下,图22示出了本申请实施例提供的一种基于Reflective QoS特性的通信装置200结构示意图,该基于Reflective QoS特性的通信装置200可对应上述方法中的核心网网元,参阅图22所示,基于Reflective QoS特性的通信装置200包括处理单元201和发送单元202。其中,处理单元201和发送单元202的功能可以和上述涉及的各方法步骤相对应,在此不予赘述。
在采用硬件形式实现时,上述处理单元201可以是处理器或者控制器,发送单元202可以是发射器、通信接口和收发电路。其中,通信接口为统称,可以包括一个或多个接口。
根据前述方法,图23示出了本申请实施例提供的基于Reflective QoS特性的通信装置200的另一种结构示意图,该基于Reflective QoS特性的通信装置可以对应上述方法中的核心网网元,该核心网网元可以是AMF,也可以为UMF,还可以为其他设备,在此不予限定。
参阅图23所示,核心网网元2000可以包括处理器2001、存储器2002、总线系统2003和发射器2004。其中,处理器2001、存储器2002和发射器2004通过总线系统2003相连,该存储器2002用于存储指令,该处理器2001用于执行该存储器2002存储的指令,以控制发射器2004发送信号,完成上述方法中核心网网元的步骤。其中,发射器2004可以统称为收发器。所述存储器2002可以集成在所述处理器2001中,也可以与所述处理器2001分开设置。
作为一种实现方式,发射器2004的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器2001可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的核心网网元,即将实现处理器2001,发射器2004和功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器2001和发射器2004的功能。
基于Reflective QoS特性的通信装置200和核心网网元2000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,在采用集成单元的情况下,图24示出了本申请实施例提供的一种基于Reflective QoS特性的通信装置300结构示意图,该基于Reflective QoS特性的通信装置300可对应上述方法中的终端,参阅图24所示,基于Reflective QoS特性的通信装置300包括接收单元301和处理单元302。其中,接收单元301和处理单元302的功能可以和上述涉及的各方法步骤相对应,在此不予赘述。
在采用硬件形式实现时,上述处理单元302可以是处理器或者控制器,接收单元301可以是接收器、通信接口和收发电路。其中,通信接口为统称,可以包括一个或多个接口。
根据前述方法,图25示出了本申请实施例提供的基于Reflective QoS特性的通信装置300的另一种结构示意图。该基于Reflective QoS特性的通信装置300可以对应上述方法中的终端。
参阅图25所示,终端3000可以包括发射器3001、接收器3002、处理器3003和存储器3004。进一步的,所述终端3000还可以包括天线3005。发射器3001、接收器3002、处理器3003和存储器3004可通过总线系统相连,该存储器3004用于存储指令,该处理器3003用于执行该存储器3004存储的指令,以控制接收器3002接收信号,并控制发射器3001发送信号,完成上述方法中终端的步骤。其中,接收器3002和发射器3001可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器3004可以集成在所述处理器3003中,也可以与所述处理器3003分开设置。
作为一种实现方式,接收器3002和发射器3001的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器3003可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端,即将实现处理器3003,接收器3002和发射器3001功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器3003,接收器3002和发射器3001的功能。
基于Reflective QoS特性的通信装置300和终端3000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述接入网网元、核心网网元和一个或多于一个终端。
根据本申请实施例提供的方法,本申请实施例还提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述终端、接入网网元或核心网网元所涉及的任意一种方法。
根据本申请实施例提供的方法,本申请实施例还提供一种计算机程序产品,用于存储计算机程序,该计算机程序用于执行上述方法实施例中涉及的基于Reflective QoS特性的通信方法。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit, CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以包括只读存储器和随机存取存储器,并向处理器310提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计 算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (50)

  1. 一种通信方法,其特征在于:终端接收来自接入网网元的配置消息,所述配置消息包括数据无线承载DRB的标识ID、和指示所述DRB的上行方向配置或不配置服务数据适配协议SDAP头的信息;
    在所述配置消息包括指示所述DRB的上行方向不配置服务数据适配协议SDAP头的信息的情况下,所述终端对投递到所述DRB的数据包不配置SDAP头。
  2. 如权1所述的通信方法,其特征在于:所述配置消息还包括指示所述DRB的下行方向配置或不配置服务数据适配协议SDAP头的信息;
    在所述配置消息包括指示所述DRB的下行方向不配置服务数据适配协议SDAP头的信息的情况下,所述终端直接将从所述DRB中接收的数据包投递到上层。
  3. 如权1或2所述的通信方法,其特征在于:
    所述终端接收来自所述接入网网元的配置消息,包括:所述终端通过无线资源控制RRC信令接收来自所述接入网网元的配置消息。
  4. 一种通信方法,其特征在于:终端接收来自接入网网元的配置消息,所述配置消息包括数据无线承载DRB的标识ID、和指示所述DRB的下行方向配置或不配置服务数据适配协议SDAP头的信息;
    在所述配置消息包括指示所述DRB的下行方向不配置服务数据适配协议SDAP头的信息的情况下,所述终端直接将从所述DRB中接收的数据包投递到上层。
  5. 如权4所述的通信方法,其特征在于:
    所述终端接收来自所述接入网网元的配置消息,包括:所述终端通过无线资源控制RRC信令接收来自所述接入网网元的配置消息。
  6. 一种通信方法,其特征在于包括:
    接入网网元确定数据无线承载DRB配置或不配置服务数据适配协议SDAP头;
    所述接入网网元向终端发送所述配置消息,所述配置消息包括所述DRB的标识ID、和指示所述DRB配置或不配置SDAP头的信息。
  7. 如权6所述的通信方法,其特征在于:所述指示所述DRB配置或不配置服务数据适配协议SDAP头的信息包括指示所述DRB的上行和/或下行方向配置或不配置服务数据适配协议SDAP头的信息。
  8. 如权6或7所述的通信方法,其特征在于:
    所述接入网网元向终端发送所述配置消息,包括:所述接入网网元通过无线资源控制RRC信令向所述终端发送所述配置信息。
  9. 如权6-8任一所述的通信方法,其特征在于:所述接入网网元是源接入网网元;
    所述方法还包括:
    所述源接入网网元向目标接入网网元发送所述指示所述DRB配置或不配置服务数据适配协议SDAP头的信息。
  10. 如权6-9任一所述的通信方法,其特征在于:
    不激活反转服务质量QoS和反转映射的QoS流映射到的DRB不配置所述SDAP头。
  11. 一种终端,其特征在于包括:
    接收单元,用于接收来自接入网网元的配置消息,所述配置消息包括数据无线承载DRB的标识ID、和指示所述DRB的上行方向配置或不配置服务数据适配协议SDAP头的信息;
    处理单元,用于在所述配置消息包括指示所述DRB的上行方向不配置服务数据适配协议SDAP头的信息的情况下,对投递到所述DRB的数据包不配置SDAP头。
  12. 如权11所述的终端,其特征在于:所述配置消息还包括指示所述DRB的下行方向配置或不配置服务数据适配协议SDAP头的信息;
    所述处理单元,还用于在所述配置消息包括指示所述DRB的下行方向不配置服务数据适配协议SDAP头的信息的情况下,直接将从所述DRB中接收的数据包投递到上层。
  13. 如权11或12所述的终端,其特征在于:
    所述接收单元通过无线资源控制RRC信令接收所述配置消息。
  14. 一种终端,其特征在于包括:
    接收单元,用于接收来自接入网网元的配置消息,所述配置消息包括数据无线承载DRB的标识ID、和指示所述DRB的下行方向配置或不配置服务数据适配协议SDAP头的信息;
    处理单元,用于在所述配置消息包括指示所述DRB的下行方向不配置服务数据适配协议SDAP头的信息的情况下,直接将从所述DRB中接收的数据包投递到上层。
  15. 如权14所述的终端,其特征在于:
    所述接收单元通过无线资源控制RRC信令接收所述配置消息。
  16. 一种接入网网元,其特征在于包括:
    处理单元,用于确定数据无线承载DRB配置或不配置服务数据适配协议SDAP头;
    第一发送单元,用于向终端发送所述配置消息,所述配置消息包括所述DRB的标识ID、和指示所述DRB配置或不配置SDAP头的信息。
  17. 如权16所述的接入网网元,其特征在于:所述指示所述DRB配置或不配置服务数据适配协议SDAP头的信息包括指示所述DRB的上行和/或下行方向配置或不配置服务数据适配协议SDAP头的信息。
  18. 如权16或17所述的接入网网元,其特征在于:
    所述第一发送单元通过无线资源控制RRC信令发送所述配置消息。
  19. 如权16-18任一所述的接入网网元,其特征在于:所述接入网网元是源 接入网网元;
    所述接入网网元还包括:
    第二发送单元,用于向目标接入网网元发送所述指示所述DRB配置或不配置服务数据适配协议SDAP头的信息。
  20. 如权16-19任一所述的通信方法,其特征在于:
    不激活反转服务质量QoS和反转映射的QoS流映射到的DRB不配置所述SDAP头。
  21. 一种基于反转服务流特性的通信方法,其特征在于,包括:
    接入网网元接收核心网网元发送的第一信息,第一信息用于指示数据包是否具备反转服务流特性;
    所述接入网网元基于所述第一信息,确定是否需要向终端发送服务流标识。
  22. 如权利要求21所述的方法,其特征在于,所述第一信息为核心网控制面网元发送的反转服务流信息,所述反转服务流信息用于指示数据包是否具备反转服务流特性。
  23. 如权利要求21或22所述的方法,其特征在于,所述第一信息还用于指示数据包反转服务流类型;
    所述数据包反转服务流类型包括全部数据包具备反转服务流特性、部分数据包具备反转服务流特性或全部数据包不具备反转服务流特性。
  24. 如权利要求21至23任一项所述的方法,其特征在于,所述接入网网元确定是否需要向终端发送服务流标识之前,所述方法还包括:
    所述接入网网元接收核心网网元发送的反转服务流信息去激活指示信息;
    所述反转服务流信息去激活指示信息用于指示去激活反转服务流信息,所述去激活反转服务流信息是指反转服务流信息指示的具备反转服务流特性的数据包不再具备反转服务流特性。
  25. 如权利要求22至24任一项所述的方法,其特征在于,所述接入网网元接收所述反转服务流信息之后,所述方法还包括:
    所述接入网网元向终端发送所述反转服务流信息。
  26. 如权利要求25所述的方法,其特征在于,所述接入网网元向终端发送所述反转服务流信息之后,所述方法还包括:
    所述接入网网元向所述终端发送反转服务流信息去激活指示信息。
  27. 如权利要求21所述的方法,其特征在于,所述第一信息为核心网用户面网元发送的反转服务流特性指示RQI,所述RQI用于指示部分数据包具备反转服务流特性。
  28. 如权利要求21至27任一项所述的方法,其特征在于,所述接入网网元接收核心网网元发送的第一信息之后,所述方法还包括:
    所述接入网网元向终端切换的目标接入网网元发送所述第一信息。
  29. 一种基于反转服务流特性的通信方法,其特征在于,包括:
    核心网网元确定第一信息,所述第一信息用于指示数据包是否具备反转服 务流特性;
    所述核心网网元向接入网网元发送所述第一信息。
  30. 如权利要求29所述的方法,其特征在于,所述核心网网元为核心网控制面网元;
    所述第一信息为所述核心网控制面网元发送的反转服务流信息,所述反转服务流信息用于指示数据包是否具备反转服务流特性。
  31. 如权利要求29或30所述的方法,其特征在于,所述第一信息还用于指示数据包反转服务流类型;
    所述数据包反转服务流类型包括全部数据包具备反转服务流特性、部分数据包具备反转服务流特性或全部数据包不具备反转服务流特性。
  32. 如权利要求29至31任一项所述的方法,其特征在于,所述方法还包括:
    所述核心网网元向接入网网元发送反转服务流信息去激活指示信息;
    所述反转服务流信息去激活指示信息用于指示去激活反转服务流信息,所述去激活反转服务流信息是指反转服务流信息指示的具备反转服务流特性的数据包不再具备反转服务流特性。
  33. 如权利要求29所述的方法,其特征在于,所述核心网网元为核心网用户面网元;
    所述第一信息为核心网用户面网元发送的反转服务流特性指示RQI,所述RQI用于指示部分数据包具备反转服务流特性。
  34. 一种基于反转服务流特性的通信方法,其特征在于,包括:
    终端接收接入网网元发送的反转服务流信息,所述反转服务流信息用于指示数据包是否具备反转服务流特性;
    所述终端基于所述反转服务流信息,确定是否需要读取服务流标识。
  35. 如权利要求34所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述接入网网元发送的反转服务流信息去激活指示信息;
    所述反转服务流信息去激活指示信息用于指示去激活反转服务流信息,所述去激活反转服务流信息是指反转服务流信息指示的具备反转服务流特性的数据包不再具备反转服务流特性。
  36. 一种基于反转服务流特性的通信装置,其特征在于,包括:
    接收单元,用于接收核心网网元发送的第一信息,第一信息用于指示数据包是否具备反转服务流特性;
    处理单元,用于基于所述接收单元接收的所述第一信息,确定是否需要向终端发送服务流标识。
  37. 如权利要求36所述的装置,其特征在于,所述第一信息为核心网控制面网元发送的反转服务流信息,所述反转服务流信息用于指示数据包是否具备反转服务流特性。
  38. 如权利要求36或37所述的装置,其特征在于,所述第一信息还用于指示数据包反转服务流类型;
    所述数据包反转服务流类型包括全部数据包具备反转服务流特性、部分数据包具备反转服务流特性或全部数据包不具备反转服务流特性。
  39. 如权利要求36至38任一项所述的装置,其特征在于,所述接收单元,还用于:
    在所述处理单元确定是否需要向终端发送服务流标识之前,接收核心网网元发送的反转服务流信息去激活指示信息;
    所述反转服务流信息去激活指示信息用于指示去激活反转服务流信息,所述去激活反转服务流信息是指反转服务流信息指示的具备反转服务流特性的数据包不再具备反转服务流特性。
  40. 如权利要求37至39任一项所述的装置,其特征在于,所述装置还包括发送单元;
    所述发送单元,用于:
    在所述接收单元接收所述反转服务流信息之后,向终端发送所述反转服务流信息。
  41. 如权利要求40所述的装置,其特征在于,所述发送单元,还用于:
    向终端发送所述反转服务流信息之后,向所述终端发送反转服务流信息去激活指示信息。
  42. 如权利要求36所述的装置,其特征在于,所述第一信息为核心网用户面网元发送的反转服务流特性指示RQI,所述RQI用于指示部分数据包具备反转服务流特性。
  43. 如权利要求36至42任一项所述的装置,其特征在于,所述装置还包括发送单元;
    所述发送单元,用于:
    在所述接收单元接收核心网网元发送的第一信息之后,向终端切换的目标接入网网元发送所述第一信息。
  44. 一种基于反转服务流特性的通信装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息用于指示数据包是否具备反转服务流特性;
    发送单元,用于向接入网网元发送所述处理单元确定的所述第一信息。
  45. 如权利要求44所述的装置,其特征在于,所述第一信息为反转服务流信息,所述反转服务流信息用于指示数据包是否具备反转服务流特性。
  46. 如权利要求44或45所述的装置,其特征在于,所述第一信息还用于指示数据包反转服务流类型;
    所述数据包反转服务流类型包括全部数据包具备反转服务流特性、部分数据包具备反转服务流特性或全部数据包不具备反转服务流特性。
  47. 如权利要求44至46任一项所述的装置,其特征在于,所述发送单元,还用于:
    向接入网网元发送反转服务流信息去激活指示信息;
    所述反转服务流信息去激活指示信息用于指示去激活反转服务流信息,所 述去激活反转服务流信息是指反转服务流信息指示的具备反转服务流特性的数据包不再具备反转服务流特性。
  48. 如权利要求44所述的装置,其特征在于,所述第一信息为反转服务流特性指示RQI,所述RQI用于指示部分数据包具备反转服务流特性。
  49. 一种基于反转服务流特性的通信装置,其特征在于,包括:
    接收单元,用于接收接入网网元发送的反转服务流信息,所述反转服务流信息用于指示数据包是否具备反转服务流特性;
    处理单元,用于基于所述反转服务流信息,确定是否需要读取服务流标识。
  50. 如权利要求49所述的装置,其特征在于,所述接收单元,还用于:
    接收所述接入网网元发送的反转服务流信息去激活指示信息;
    所述反转服务流信息去激活指示信息用于指示去激活反转服务流信息,所述去激活反转服务流信息是指反转服务流信息指示的具备反转服务流特性的数据包不再具备反转服务流特性。
PCT/CN2018/085867 2017-05-05 2018-05-07 一种基于反转服务流特性的通信方法及装置 WO2018202204A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21152968.0A EP3897031B1 (en) 2017-05-05 2018-05-07 Reflective qos flow characteristic-based communications method and apparatus
JP2019551302A JP6801123B2 (ja) 2017-05-05 2018-05-07 Reflective QoSフロー特性に基づく通信方法および装置
AU2018263200A AU2018263200B2 (en) 2017-05-05 2018-05-07 Reflective qos flow characteristic-based communications method and apparatus
EP18794574.6A EP3592027B1 (en) 2017-05-05 2018-05-07 Reflective service flow characteristic-based communication method and device
US16/566,638 US11159998B2 (en) 2017-05-05 2019-09-10 Reflective QoS flow characteristic-based communications method and apparatus
US17/486,654 US11968580B2 (en) 2017-05-05 2021-09-27 Reflective QoS flow characteristic-based communications method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710313900 2017-05-05
CN201710313900.5 2017-05-05
CN201710458757.9A CN108809596B (zh) 2017-05-05 2017-06-16 一种基于反转服务流特性的通信方法及装置
CN201710458757.9 2017-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/566,638 Continuation US11159998B2 (en) 2017-05-05 2019-09-10 Reflective QoS flow characteristic-based communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2018202204A1 true WO2018202204A1 (zh) 2018-11-08

Family

ID=64015903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085867 WO2018202204A1 (zh) 2017-05-05 2018-05-07 一种基于反转服务流特性的通信方法及装置

Country Status (1)

Country Link
WO (1) WO2018202204A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832352B2 (en) 2018-08-14 2023-11-28 Huawei Technologies Co., Ltd. Service flow transmission method and apparatus and communications method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170034688A1 (en) * 2014-04-13 2017-02-02 Lg Electronics Inc. Method for proximity-based notification in wireless communication system, and device for same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170034688A1 (en) * 2014-04-13 2017-02-02 Lg Electronics Inc. Method for proximity-based notification in wireless communication system, and device for same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Reflective QoS and Flow-ID", 3GPP TSG-RAN WG2 #98 TDOC R2-1704379, 19 May 2017 (2017-05-19), XP051264392 *
ITRI ET AL.: "Discussion on Omitting QoS Flow ID", 3GPP TSG-RAN WG2 MEETING #97BIS R2-1703145, 7 April 2017 (2017-04-07), XP051253807 *
NOKIA ET AL.: "QoS Flow Marking", 3GPP TSG-RAN WG2 MEETING #97 R2-1700810, 17 February 2017 (2017-02-17), XP051222763 *
See also references of EP3592027A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832352B2 (en) 2018-08-14 2023-11-28 Huawei Technologies Co., Ltd. Service flow transmission method and apparatus and communications method and apparatus

Similar Documents

Publication Publication Date Title
CN113055146B (zh) 一种基于反转服务流特性的通信方法及装置
WO2018141284A1 (zh) 一种QoS流处理方法、设备和通信系统
WO2019029643A1 (zh) 通信方法、基站、终端设备和系统
WO2018103675A1 (zh) 数据流重映射方法及装置和用户设备、ran设备
WO2019242749A1 (zh) 一种切换方法及装置
US20200178138A1 (en) Communication method, base station, terminal device, and system
WO2018127018A1 (zh) 多链接通信方法、设备和终端
WO2020233249A1 (zh) 一种报文传输方法以及相关装置
WO2016191963A1 (zh) 一种建立承载的方法、用户设备及基站
WO2018166517A1 (zh) 一种数据传输方法、数据发送设备及数据接收设备
WO2021004191A1 (zh) 一种支持时间敏感网络的方法及装置
WO2020146991A1 (zh) 一种数据流处理方法、设备及存储介质
WO2018202148A1 (zh) 一种数据传输方法、相关设备及系统
CN110972215B (zh) 一种切换方法及基站
WO2018202204A1 (zh) 一种基于反转服务流特性的通信方法及装置
WO2021208863A1 (zh) 数据传输方法及通信装置
WO2017028681A1 (zh) 一种数据传输状态的报告、确定传输数据量的方法及装置
WO2021128100A1 (zh) 一种通信方法及装置
CN117793958A (zh) 终端装置、基站装置以及方法
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2024011462A1 (zh) 一种通信方法及装置、通信设备、接入网架构
WO2021104384A1 (zh) Ftp上下行业务同传方法、系统、网络设备及存储介质
EP4210431A1 (en) Communication method and apparatus
WO2020124540A1 (zh) 一种数据包重排序方法、电子设备及存储介质
WO2015168894A1 (zh) 承载配置装置、方法以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794574

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018263200

Country of ref document: AU

Date of ref document: 20180507

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019551302

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018794574

Country of ref document: EP

Effective date: 20191001

NENP Non-entry into the national phase

Ref country code: DE