WO2018201986A1 - 一种参考信号传输方法、相关设备及系统 - Google Patents

一种参考信号传输方法、相关设备及系统 Download PDF

Info

Publication number
WO2018201986A1
WO2018201986A1 PCT/CN2018/084825 CN2018084825W WO2018201986A1 WO 2018201986 A1 WO2018201986 A1 WO 2018201986A1 CN 2018084825 W CN2018084825 W CN 2018084825W WO 2018201986 A1 WO2018201986 A1 WO 2018201986A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal sequence
overlapping resource
pilot pattern
target
Prior art date
Application number
PCT/CN2018/084825
Other languages
English (en)
French (fr)
Inventor
郤伟
孙晓东
丁昱
宋扬
沈晓冬
施源
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2018201986A1 publication Critical patent/WO2018201986A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a reference signal transmission method, related device, and system.
  • high-frequency transmission technology and large-scale antenna arrays in order to achieve high downlink transmission rates (eg, 20 Gbps) and high uplink transmission rates (eg, 10 Gbps) Technology has received much attention.
  • the high frequency band has more abundant spectrum resources, but the transmission distance is limited due to large attenuation.
  • large-scale antenna arrays can provide large beamforming gains, antenna apertures are typically larger.
  • the two can be combined: the short-wavelength characteristics of the high-frequency band reduce the aperture of the large-scale antenna array, making the dense deployment of the antenna easier and more feasible.
  • the large beamforming gain produced by large-scale antenna arrays can effectively combat high-frequency transmission losses, thereby greatly expanding the transmission distance of high-frequency transmission. Therefore, high-frequency transmission technology and large-scale antenna array technology are complementary, and the combination of the two can achieve complementary advantages, and it is the trend of the times.
  • the transmitting end when transmitting by using high-frequency transmission technology and large-scale antenna array technology, the transmitting end often needs to transmit at least two reference signals to the receiving end, for example, a phase tracking reference signal (PTRS) and a demodulation reference signal.
  • PTRS phase tracking reference signal
  • DMRS demodulation reference signal
  • the pilot patterns of different reference signals are also different, and the pilot patterns of different reference signals may meet at one or more resource elements (REs), that is, pilots of different reference signals. There are overlapping one or more REs in the pattern. If a plurality of reference signal sequences are directly transmitted in one or more overlapping REs, the plurality of reference signal sequences may affect each other, resulting in a lower performance of the reference signal.
  • REs resource elements
  • the embodiments of the present disclosure provide a reference signal transmission method, a related device, and a system to solve the problem that the performance of the reference signal is relatively low.
  • an embodiment of the present disclosure provides a reference signal transmission method, including:
  • an embodiment of the present disclosure provides a reference signal transmission method, including:
  • a reference signal sequence transmitted by the transmitting end if the pilot pattern of the at least two reference signal sequences generated by the transmitting end has overlapping resource particles, where the transmitted reference signal sequence includes a reference signal sequence that is subjected to preset processing, or
  • the reference signal includes the preset processing and the non-predetermined processing, and the preset processing includes at least one of a phase rotation processing and a punching processing.
  • an embodiment of the present disclosure provides a sending end, including:
  • a processing module configured to perform preset processing on at least one reference signal sequence of the at least two reference signal sequences if there is overlapping resource particles in a pilot pattern of the at least two reference signal sequences, where the The processing includes at least one of a phase rotation process and a puncturing process, the at least one reference signal sequence being a reference signal sequence in which the pilot pattern of the at least two reference signal sequences has overlapping resource particles;
  • a first transmission module configured to transmit a reference signal sequence to the receiving end, where the transmitted reference signal sequence includes a reference signal sequence that passes the preset processing, or includes performing the preset processing and not performing preset processing Reference signal.
  • an embodiment of the present disclosure provides a receiving end, including:
  • a first receiving module configured to receive a reference signal sequence transmitted by the transmitting end, if the pilot pattern of the at least two reference signal sequences generated by the transmitting end has overlapping resource particles, where the transmitted reference signal sequence includes a preset
  • the processed reference signal sequence or includes a reference signal that has undergone the preset processing and the non-preset processing, the preset processing including at least one of a phase rotation process and a punching process.
  • an embodiment of the present disclosure provides a reference signal transmission system, which includes a receiving end provided by an embodiment of the present disclosure and a sending end provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a transmitting end device, including: a processor, a memory, and a computer program stored on the memory and operable on the processor, where the computer program is processed
  • the steps in the reference signal transmission method as described in the first aspect are implemented when the device is executed.
  • an embodiment of the present disclosure provides a receiving end device, including: a processor, a memory, and a computer program stored on the memory and operable on the processor, where the computer program is processed
  • the steps in the reference signal transmission method as described in the second aspect are implemented when the device is executed.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements the reference signal according to the first aspect. The steps in the transfer method.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implements a reference signal as described in the second aspect. The steps in the transfer method.
  • At least two reference signal sequences are generated; if the pilot patterns of the at least two reference signal sequences have overlapping resource particles, at least one of the at least two reference signal sequences is referenced.
  • the sequence performs a preset process, where the preset process includes at least one of a phase rotation process and a puncturing process, the at least one reference signal sequence is an overlapping resource of the pilot pattern in the at least two reference signal sequences a reference signal sequence of the particle; transmitting the reference signal sequence to the receiving end, wherein the transmitted reference signal sequence includes the reference signal sequence subjected to the preset processing, or includes the preset processing and the non-preset processing Reference signal.
  • the transmitted reference signal sequence includes the reference signal sequence subjected to the preset processing, or includes the preset processing and the non-preset processing Reference signal.
  • Figure 1 is a structural diagram of reference signal transmission
  • FIG. 2 is a flowchart of a reference signal transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a pilot pattern of a reference signal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a pilot pattern of another reference signal according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a pilot pattern of another reference signal according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a pilot pattern of another reference signal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of phase rotation of a reference signal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of phase rotation of another reference signal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a pilot pattern of another reference signal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of phase rotation of another reference signal according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a punching of another reference signal according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a punching of another reference signal according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a punching of another reference signal according to an embodiment of the present disclosure.
  • 17 is a schematic diagram of puncturing of another reference signal according to an embodiment of the present disclosure.
  • FIG. 18 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of phase rotation of another reference signal according to an embodiment of the present disclosure.
  • FIG. 20 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure.
  • 21 is a schematic diagram of a pilot pattern of another reference signal according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of phase rotation of another reference signal according to an embodiment of the present disclosure.
  • 23 is a schematic diagram of puncturing another reference signal according to an embodiment of the present disclosure.
  • FIG. 24 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure.
  • 25 is a schematic diagram of a pilot pattern of another reference signal according to an embodiment of the present disclosure.
  • FIG. 26 is a schematic diagram of phase rotation of another reference signal according to an embodiment of the present disclosure.
  • FIG. 27 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure.
  • 29 is a structural diagram of another transmitting end according to an embodiment of the present disclosure.
  • FIG. 30 is a structural diagram of a receiving end according to an embodiment of the present disclosure.
  • FIG. 31 is a structural diagram of another receiving end according to an embodiment of the present disclosure.
  • FIG. 33 is a structural diagram of another receiving end according to an embodiment of the present disclosure.
  • FIG. 1 is a structural diagram of a reference signal transmission system applicable to an embodiment of the present disclosure.
  • the transmitting end 11 and the receiving end 12 are included, wherein the transmitting end 11 may be a base station or a terminal, and the receiving end 12 may also be a terminal or a base station.
  • the transmitting end 11 is a base station
  • the receiving end 12 is a terminal, so that communication between the terminal and the base station can be implemented.
  • the transmitting end 11 is a terminal
  • the receiving end 12 is a base station, and communication between the terminal and the base station can also be implemented.
  • the transmitting end 11 is a base station, and the receiving end 12 is also a base station, so that communication between the base station and the base station can be implemented.
  • the transmitting end 11 is a terminal, and the receiving end 12 is also a terminal, so that communication between the terminal and the terminal can be implemented.
  • the transmitting end 11 is not limited to a terminal or a base station.
  • the transmitting end 11 may also be another network side device.
  • the receiving end 12 is not limited to only a terminal or a device.
  • the receiving end 12 may also be another network side device, which is not limited in this embodiment of the disclosure.
  • the transmitting end 11 is a base station
  • the receiving end 12 is a terminal.
  • the terminal may be a user equipment (User Equipment, UE), for example, may be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile internet device. (Mobile Internet Device, MID) or a terminal device such as a wearable device, it should be noted that the specific type of the terminal is not limited in the embodiment of the present disclosure.
  • the base station may be a macro station, such as an LTE eNB, a 5G NR NB, or the like; or a small station, such as a low power node (LPN: low power node) pico, femto, or the like, or may be an access point (AP, access point)
  • LPN low power node
  • AP access point
  • the base station may also be a network node formed by a central unit (CU) and a plurality of transmission reception points (TRPs) managed and controlled by the central unit (CU).
  • TRPs transmission reception points
  • there is one or more cells under one base station for example: different frequency points or sector splits. It should be noted that the specific type of the base station is not limited in the embodiment of the present disclosure.
  • transmitting end 11 and the receiving end 12 are not limited in the embodiment of the present disclosure.
  • the specific functions of the transmitting end 11 and the receiving end 12 will be specifically described by the following embodiments.
  • FIG. 2 is a flowchart of a method for sending a time serial number according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • FIG. 2 is a flowchart of a reference signal transmission method according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Generate at least two reference signal sequences.
  • the generated at least two reference signal sequences may be at least two reference signal sequences in which the pilot pattern does not have overlapping resource particles, so as to avoid the influence of the reference signal sequence on the overlapping resource particles, so as to improve the performance of the reference signal, for example, :As shown in Figure 3.
  • the at least two reference signal sequences generated by the foregoing may be that the pilot pattern of one or more reference signal sequences overlaps with the pilot pattern of the other reference signal sequence, and the other one or more reference signal sequences There is no overlapping resource particle between the pilot pattern and the pilot pattern of other reference signal sequences, for example, as shown in FIG.
  • the pilot patterns of the at least two reference signal sequences generated as described above all have overlapping resource particles, for example, as shown in FIG.
  • the at least two reference signal sequences may include a PTRS, a DMRS, a SS block, a new radio primary synchronization signal (NR-PSS), and a new radio secondary synchronization signal (NR-).
  • a SSS a channel state information reference signal
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • NR-PBCH new radio physical broadcast channel
  • Step 202 Perform preset processing on at least one reference signal sequence of the at least two reference signal sequences if there is overlapping resource particles in a pilot pattern of the at least two reference signal sequences, where the preset processing is performed. At least one of a phase rotation process and a puncturing process, the at least one reference signal sequence being a reference signal sequence in which the pilot pattern of the at least two reference signal sequences has overlapping resource particles.
  • the pilot pattern of the at least two reference signal sequences may have overlapping resource particles.
  • the pilot pattern of a part of the reference signal sequence may have overlapping resource particles, for example, as shown in FIG. 4 .
  • the overlapping of the pilot patterns of the at least two reference signal sequences may be that the pilot patterns of the at least two reference signal sequences have overlapping resource particles, for example, as shown in FIG. 5 .
  • the preset processing may be at least one of performing phase rotation processing and puncturing processing on the at least one reference signal sequence.
  • the phase rotation processing may be to rotate the phase of the reference signal sequence, so that the influence of the reference signal sequences on each other at the overlapping resource particles may be reduced, for example, by rotating the phase of the at least one reference signal sequence, so that the at least two The phases of the reference signal sequences at the overlapping resource particles are of the same or similar phase, thereby avoiding or reducing the influence of the reference signal sequences on each other at the overlapping resource particles.
  • the puncturing process may punct the overlapping resource particles in the at least one reference signal sequence to transmit only one reference signal sequence at the overlapping resource particles, so as to avoid the influence on the overlapping resource particles.
  • Step 203 The reference signal sequence is transmitted to the receiving end, where the transmitted reference signal sequence includes a reference signal sequence that has undergone the preset processing, or includes a reference signal that has undergone the preset processing and is not subjected to preset processing.
  • the transmitting reference signal sequence includes a reference signal sequence that is subjected to the preset processing; if only the at least two reference signals are partially For the preset processing, the transmission of the reference signal sequence in step 203 includes the reference signal that has undergone the preset processing and has not undergone the preset processing.
  • At least one reference signal sequence subjected to the preset processing may be transmitted according to the pilot pattern, and if the puncturing process is performed, at least one reference signal sequence subjected to the preset processing is followed.
  • the pilot pattern is transmitted in combination with the puncturing process, that is, the resource particles corresponding to the pilot pattern are transmitted on the resource particles other than the punctured.
  • reference signal sequences that have not undergone the predetermined processing, they can be transmitted directly according to the pilot patterns of the reference signal sequences.
  • At least two reference signal sequences are generated; if there are overlapping resource particles in the pilot pattern of the at least two reference signal sequences, at least one of the at least two reference signal sequences is performed.
  • a preset process where the preset process includes at least one of a phase rotation process and a puncturing process, where the at least one reference signal sequence is an overlapping resource particle of a pilot pattern in the at least two reference signal sequences a reference signal sequence;
  • the reference signal sequence is transmitted to the receiving end, wherein the transmitted reference signal sequence includes a reference signal sequence subjected to the preset processing, or includes a reference signal that has undergone the preset processing and is not subjected to preset processing .
  • FIG. 6 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure. As shown in FIG. 6, the method includes the following steps:
  • Step 601 Generate at least two reference signal sequences.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • Step 602 If there is overlapping resource particles in a pilot pattern of the at least two reference signal sequences, perform a first phase rotation process on the first reference signal sequence in the at least two reference signal sequences to obtain a first target reference.
  • a signal sequence, the symbol of the first target reference signal sequence at the overlapping resource particle is the same as the phase of the symbol of the second reference signal sequence at the overlapping resource particle, and the second reference signal sequence is the at least The pilot pattern of the two reference signals and the pilot pattern of the first reference signal sequence have a reference signal sequence that overlaps the resource particles.
  • the above symbol can be understood as a resource of one subcarrier in orthogonal frequency division multiplexing (OFDM), for example, a square shown in FIG.
  • OFDM orthogonal frequency division multiplexing
  • the first reference signal sequence may be one or more reference signal sequences of the at least two reference signal sequences, such as a PTRS sequence or a DMRS reference sequence, or multiple DMRSs included in the at least two reference signal sequences. sequence.
  • the performing the first phase rotation processing on the first reference signal sequence may be: rotating the phase of the first reference signal sequence by a preset phase, where the preset phase is equal to the first reference signal at the overlapping resource particle.
  • the difference between the sign and the phase of the symbol of the second reference signal sequence at the overlapping resource particles For example, as shown in FIG. 7, the PTRS sequence intersects with the DMRS sequence of a single symbol, and the pilot patterns of the two are as shown in FIG.
  • the fourth column is the pilot pattern of the DMRS sequence.
  • the reference signal symbol on the nth subcarrier of the DMRS sequence, n 1, ..., K. It is assumed that the two overlap with the kth subcarrier of the mth symbol, that is, the gray filled resource particle, 1 ⁇ m ⁇ M, 1 ⁇ k ⁇ K.
  • phase rotation ⁇ is performed on the entire PTRS sequence, and the DMRS sequence remains unchanged.
  • the PTRS sequence and the DMRS sequence of the single symbol meet, and the pilot patterns of the two overlap with the kth subcarrier of the mth symbol, and the assumption is the same as the example shown in FIG. 7, and details are not described herein. 7 is shown.
  • the phase rotation ⁇ is performed on the entire DMRS sequence, and the PTRS sequence remains unchanged.
  • the at least two reference signal sequences include two DMRS sequences, that is, the PTRS sequence and the two symbol DMRS sequences meet, and the pilot patterns of the two are as shown in FIG.
  • the phase rotation ⁇ 1 is performed on the first DMRS sequence
  • the phase rotation ⁇ 2 is performed on the second DMRS sequence
  • the PTRS remains unchanged.
  • the step 602 can be implemented that the symbols of the first target reference signal sequence at the overlapping resource particles are the same as the phase of the second reference signal sequence at the overlapping resource particles, such that the two reference signal sequences are overlapped in the overlapping resources. When used, there will be no impact.
  • phase rotation parameter of the first phase rotation process is notified to the receiving end by physical layer signaling, media intervention control MAC layer signaling, or high layer signaling. This can notify that the phase of the received first reference signal sequence has been rotated.
  • Step 603 Transmit the first target reference signal sequence and the second reference signal sequence to the receiving end.
  • the first target reference signal sequence can be directly transmitted according to the first reference signal sequence.
  • the second reference signal sequence is not subjected to phase rotation processing, it can be directly transmitted in accordance with the pilot pattern of the second reference signal sequence.
  • step 603 and step 604 multiplexing and transmitting the first reference signal sequence and the second reference signal sequence at the overlapping resource particles can be implemented, and the overhead of the reference signal sequence is reduced without losing the performance of each reference signal.
  • the generated at least two reference signals are transmitted to the receiving end.
  • the pilot pattern of the generated at least two reference signal sequences may be free from overlapping resource particles, that is, in the embodiment of the present disclosure, when the at least two reference signal sequences are generated, the pilot pattern designed for the non-existent Overlapping resource particles.
  • the effect between the reference signal sequences can be avoided by step 205 to improve the performance of the reference signal sequence.
  • the phase rotation processing is performed on the first reference signal sequence, so that the influence of the first reference signal sequence and the second reference signal sequence on the overlapping resource particles can be reduced. To improve the performance of the reference signal.
  • FIG. 12 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure. As shown in FIG. 12, the method includes the following steps:
  • Step 1201 Generate at least two reference signal sequences.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • Step 1202 If there are overlapping resource particles in the pilot pattern of the at least two reference signal sequences, performing a second phase rotation process on the first reference signal sequence in the at least two reference signal sequences to obtain a second target reference And a third phase rotation process on the second reference signal sequence of the at least two reference signal sequences to obtain a third target reference signal sequence, wherein the second target reference signal sequence is in the overlapping resource
  • the symbol at the particle is the same as the phase of the symbol at the overlapping resource particle of the third target reference signal sequence, the overlapping resource particle being the pilot pattern of the second reference signal sequence and the first reference signal sequence Overlapping resource particles between pilot patterns.
  • the first reference signal sequence may be one or more reference signal sequences of the at least two reference signal sequences, such as a PTRS sequence or a DMRS reference sequence, or multiple DMRSs included in the at least two reference signal sequences. sequence.
  • the second reference signal sequence may be a reference signal sequence other than the first reference signal sequence described above.
  • the third target reference signal sequence may be obtained according to a phase of a symbol at the overlapping resource particle according to the first target reference signal sequence, and a second target reference signal sequence at the overlapping resource particle
  • the phase of the symbol is differentiated by a corresponding phase rotation such that the sign of the second target reference signal sequence at the overlapping resource particle is the same as the phase of the symbol of the third target reference signal sequence at the overlapping resource particle.
  • Step 1203 Transmit the second target reference signal sequence and the third target reference signal sequence to the receiving end.
  • the steps 1202 and 1203 can realize that the symbol of the second target reference signal sequence at the overlapping resource particle is the same as the phase of the symbol of the third target reference signal sequence at the overlapping resource particle, such that the two reference signal sequences are When overlapping resources are reused, there is no impact.
  • the transmitting the second target reference signal sequence and the third target reference signal sequence may be performed according to a pilot pattern according to the first reference signal sequence and a pilot pattern of the second reference signal sequence.
  • phase rotation parameters of the second phase rotation processing and the third phase rotation processing are notified to the receiving end by physical layer signaling, MAC layer signaling, or higher layer signaling. This can inform that the phases of the received first reference signal sequence and the second reference signal sequence are rotated.
  • phase rotation processing is performed on the first reference signal sequence and the second reference signal sequence, so that the first reference signal sequence and the second reference signal sequence are reduced in overlapping resources.
  • the effects on the particles are increased to improve the performance of the reference signal. It is also possible to directly generate at least two reference signal sequences without overlapping resource particles, which can also improve the performance of the reference signal.
  • FIG. 13 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure. As shown in Figure 13, the following steps are included:
  • Step 1301 Generate at least two reference signal sequences.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • Step 1302 If there are overlapping resource particles in the pilot pattern of the at least two reference signal sequences, performing a puncturing process on the symbols of the first reference signal sequence at the overlapping resource particles, so that the first reference signal sequence Empty at the overlapping resource particle, wherein the first reference signal sequence is a reference signal sequence other than the second reference signal sequence of the at least two reference signals, and the overlapping resource particle is the An overlapping resource particle between a pilot pattern of the second reference signal sequence and a pilot pattern of the first reference signal sequence.
  • the above puncturing process may be to control that the symbols of the first reference signal sequence at the overlapping resource particles are not transmitted, that is, the first reference signal sequence is empty at the overlapping resource particles.
  • the first reference signal sequence may be one or more reference signal sequences of the at least two reference signal sequences, such as a PTRS sequence or a DMRS reference sequence, or multiple DMRSs included in the at least two reference signal sequences. sequence.
  • the PTRS sequence and the DMRS sequence of the single symbol converge on the kth subcarrier of the mth symbol, and the assumption is the same as that in the first embodiment, and details are not described herein again.
  • the pilot patterns of the two are shown in Figure 7.
  • the reference symbol b(k) of the DMRS sequence on the resource particle is retained, and the reference symbol a(m) of the PTRS sequence on the resource particle is destroyed by a puncturing operation, as shown in FIG.
  • the receiving end can know the punching operation in advance.
  • the receiving end can estimate the phase noise according to the DMRS (such as b(k)), for example, using the DMRS as the PTRS.
  • the DMRS sequence remains unchanged and the PTRS sequence is punctured.
  • embodiments of the present disclosure are not limited thereto.
  • PTRS symbols at overlapping resource particles may be punctured, Keep NR-PSS, NR-SSS, CSI-RS, SRS and NR-PBCH unchanged.
  • the symbol of the first reference signal sequence at the overlapping resource particle is punctured, so that the first reference signal sequence is empty at the overlapping resource particle, including:
  • the method further includes:
  • the first reference signal sequence that is beaten is transferred to the target subcarrier for transmission, thereby ensuring performance of the reference signal, for example, the first reference signal is When PTRS is used, the estimated performance of phase noise can be guaranteed.
  • the adjusting the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle to the target subcarrier in the preset adjacent resource region includes:
  • the subcarrier position adjustment may be to adjust a subcarrier position of the symbol at the overlapping resource particle
  • the frequency domain density adjustment may be to adjust the frequency of the first reference signal sequence in the frequency domain
  • the frequency domain interval adjustment may be to adjust the first reference signal sequence.
  • the pilot pattern adjustment may be to adjust the pilot pattern of the first reference signal sequence.
  • the PTRS intersects with a synchronization signal block (SS block), wherein the synchronization signal block can be composed of NR-PSS, NR-SSS, and NR-PBCH.
  • SS block synchronization signal block
  • the PTRS symbols at the overlapping resource particles are punctured, as shown in FIG.
  • the subcarrier position of the PTRS in the region may be adjusted to maintain the frequency domain density unchanged, as shown in FIG. 16 and A. Or B shows.
  • the PTRS meets a synchronization signal block (SS block), wherein the synchronization signal block can be composed of NR-PSS, NR-SSS, and NR-PBCH.
  • SS block synchronization signal block
  • the PTRS symbols at the overlapping resource particles are punctured, as shown in FIG.
  • the frequency domain density and the frequency domain interval of the PTRS in the region may be changed, which may be by adjusting the subcarrier position or increasing the PTRS.
  • the subcarrier is implemented as shown in FIG.
  • the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle is adjusted to a preset by subcarrier position adjustment, frequency domain density adjustment, frequency domain interval adjustment, and pilot pattern adjustment.
  • the target subcarriers in the adjacent resource region can be flexibly adjusted to adjust the subcarriers of the first reference signal sequence, and the performance of the first reference signal sequence in the preset adjacent resource region can be ensured, for example, the PTRS is guaranteed to be preset. Estimated performance of phase noise in adjacent resource regions.
  • the preset adjacent resource area includes:
  • the preset adjacent resource region does not include the resource occupied by the second reference signal sequence.
  • the location of the target subcarrier is notified to the receiving end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the receiving end can accurately receive the first reference signal sequence on the target subcarrier.
  • Step 1303 Transmit the second reference signal sequence and the punctured first reference signal sequence to the receiving end.
  • the transmitting the first reference signal sequence may be transmitted on the resource particles that are not punctured on the resource particles corresponding to the pilot pattern of the first reference signal sequence.
  • the transmitting the second reference signal sequence may be performed according to a pilot pattern of the second reference signal sequence.
  • the receiving end may also use the received reference signal sequence on the overlapping resource particles to implement another reference signal sequence, for example, using the DMRS received on the overlapping resource particles for phase noise estimation. It is also possible to directly generate at least two reference signal sequences without overlapping resource particles, which can also improve the performance of the reference signal.
  • FIG. 18 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure. As shown in Figure 18, the following steps are included:
  • Step 1801 Generate at least two reference signal sequences.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • Step 1802 if there is overlapping resource particles in the pilot pattern of the at least two reference signal sequences, perform fourth phase rotation processing on the first reference signal sequence in the at least two reference signal sequences to obtain a fourth target reference.
  • a signal sequence, the symbol of the fourth target reference signal sequence at the first overlapping resource particle is the same as the phase of the symbol of the second reference signal sequence at the first overlapping resource particle, and the second reference signal sequence is Deriving at least one reference signal sequence of the at least two reference signals except the first reference signal sequence, the first overlapping resource particle being a pilot pattern of the first reference signal sequence and the second reference signal Overlapping resource particles of the pilot pattern of the sequence.
  • phase rotation processing refers to the first phase rotation processing introduced in the foregoing embodiment, which is not described herein, and the same or similar beneficial effects can be achieved.
  • Step 1803 performing a puncturing process on the symbol of the fourth target reference signal sequence at the second overlapping resource particle, so that the fourth target reference signal sequence is empty at the second overlapping resource particle, and the second overlapping
  • the resource particle is an overlapping resource particle of a pilot pattern of the first reference signal sequence and a pilot pattern of a third reference signal sequence, wherein the third reference signal sequence is the first of the at least two reference signals At least one reference signal sequence other than the reference signal sequence and the second reference signal sequence.
  • the at least two reference signal sequences include two DMRS sequences, that is, the PTRS sequence and the two symbol DMRS sequences meet, and the pilot patterns of the two are as shown in FIG.
  • phase rotation ⁇ is performed on the entire PTRS sequence, and the first DMRS sequence remains unchanged.
  • Step 1804 The second reference signal sequence, the third reference signal sequence, and the punctured fourth target reference signal sequence are transmitted to the receiving end.
  • the transmitting the fourth target reference signal sequence may be transmitted on the resource particles that are not punctured on the resource particles corresponding to the pilot pattern of the first reference signal sequence.
  • the transmitting the first reference signal sequence may be performed according to a pilot pattern of the second reference signal sequence.
  • the phase rotation and the puncturing process of the first reference signal sequence are performed when the overlapping resource particles are present, so that the influence of the multiple reference signal sequences on the overlapping resource particles can be avoided, so as to improve the reference signal. Performance. It is also possible to directly generate at least two reference signal sequences without overlapping resource particles, which can also improve the performance of the reference signal.
  • FIG. 20 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure. As shown in Figure 20, the following steps are included:
  • Step 2001 Generate at least two reference signal sequences, where the at least two reference signal sequences include a first reference signal sequence, a second reference signal sequence, and a third reference signal sequence, and the first reference signal sequence and the The pilot pattern of the second reference signal sequence has overlapping resource particles, the third reference signal sequence and the pilot pattern of the first reference signal sequence have no overlapping resource particles, and the third reference signal sequence and the The pilot pattern of the second reference signal sequence has no overlapping resources.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • Step 2002 Perform preset processing on the first reference signal sequence if the pilot patterns of the at least two reference signal sequences have overlapping resource particles, where the preset processing includes phase rotation processing and puncturing processing At least one of them.
  • preset processing refer to the preset processing introduced in the foregoing embodiment, for example, performing phase rotation processing or puncturing processing on the first reference signal sequence, or phase rotation processing and puncturing processing, which are not described herein.
  • phase rotation processing or puncturing processing on the first reference signal sequence, or phase rotation processing and puncturing processing, which are not described herein.
  • phase rotation processing and puncturing processing which are not described herein.
  • the at least two reference signal sequences include two DMRS sequences, that is, the PTRS sequence and the two symbol DMRS sequences meet, and the pilot patterns of the two are as shown in FIG. 21.
  • the first, third, fifth and seventh subcarriers of the fourth column are the pilot patterns of the first DMRS sequence
  • the eighth column is the pilot pattern of the DMRS sequence.
  • the phase rotation ⁇ is performed on the entire PTRS sequence, and the second DMRS sequence remains unchanged.
  • the symbols of the overlapping resource particles may be punctured for the PTRS sequence, as shown in FIG.
  • Step 2003 The second reference signal sequence, the third reference signal sequence, and the first reference signal sequence subjected to the preset processing are transmitted to the receiving end.
  • the first reference signal sequence that has undergone the above-mentioned preset processing may be transmitted according to the pilot pattern, and the puncturing process is performed, and the first reference signal sequence that has undergone the preset processing is followed by the pilot.
  • the pattern is combined with the puncturing process for transmission, that is, the resource particles corresponding to the pilot pattern are transmitted on the resource particles other than the punctured.
  • the transmitting the second reference signal sequence and the third reference signal sequence may be performed according to a pilot pattern of the second reference signal sequence.
  • the foregoing steps can be implemented to combine the non-overlapping resource particles with the foregoing preset processing, thereby increasing the flexibility of the system. It is also possible to directly generate at least two reference signal sequences without overlapping resource particles, which can also improve the performance of the reference signal.
  • FIG. 24 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure. As shown in Figure 24, the following steps are included:
  • Step 2401 generating at least two reference signal sequences.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • Step 2402 Perform preset processing on the first reference signal sequence if the pilot patterns of the at least two reference signal sequences have overlapping resource particles, where the preset processing includes phase rotation processing and puncturing processing And at least one of the at least two reference signal sequences includes a first reference signal sequence and a second reference signal sequence, wherein a pilot pattern of the second reference signal sequence occupies at least two consecutive OFDM symbols, and The pilot image of the first reference signal sequence and the partial OFDM symbol occupied by the pilot pattern of the second reference signal sequence have overlapping resource particles.
  • preset processing refer to the preset processing introduced in the foregoing embodiment, for example, performing phase rotation processing or puncturing processing on the first reference signal sequence, or phase rotation processing and puncturing processing, which are not described herein.
  • phase rotation processing or puncturing processing on the first reference signal sequence, or phase rotation processing and puncturing processing, which are not described herein.
  • phase rotation processing and puncturing processing which are not described herein.
  • the PTRS intersects with the DMRSs of two adjacent OFDM symbols, and the pilot patterns of the two are as shown in FIG. 25.
  • the 4th symbol of the 4th line is a pilot pattern of the PTRS
  • phase rotation ⁇ is performed on the PTRS sequence, and the DMRS remains unchanged.
  • this is also a punching process, which is not limited.
  • Step 2403 Transmit a second reference signal sequence and a first reference signal sequence that has undergone the preset processing to the receiving end.
  • the foregoing steps can be implemented to combine the non-overlapping resource particles with the foregoing preset processing, thereby increasing the flexibility of the system. It is also possible to directly generate at least two reference signal sequences without overlapping resource particles, which can also improve the performance of the reference signal.
  • FIG. 27 is a flowchart of another reference signal transmission method according to an embodiment of the present disclosure. As shown in Figure 27, the following steps are included:
  • Step 2701 Receive a reference signal sequence transmitted by the transmitting end, if the pilot pattern of the at least two reference signal sequences generated by the transmitting end has overlapping resource particles, where the transmitted reference signal sequence includes a reference signal that is processed by a preset process.
  • the sequence includes or includes a reference signal that has undergone the preset processing and has not undergone a preset process, and the preset processing includes at least one of a phase rotation process and a punching process.
  • the preset processing includes:
  • the second reference signal sequence has the same phase of the symbol at the overlapping resource particle, and the second reference signal sequence is that the pilot pattern of the at least two reference signals overlaps with the pilot pattern of the first reference signal sequence a reference signal sequence of resource particles;
  • the receiving reference signal sequence transmitted by the transmitting end includes:
  • phase rotation parameter of the first phase rotation process is notified by the sending end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the receiving reference signal sequence transmitted by the transmitting end includes:
  • phase rotation parameters of the second phase rotation process and the third phase rotation process are notified by the sending end by physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the overlapping resource particle being between the pilot pattern of the second reference signal sequence and the pilot pattern of the first reference signal sequence Overlapping resource particles;
  • the receiving reference signal sequence transmitted by the transmitting end includes:
  • the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle is adjusted to a target subcarrier in a preset adjacent resource region;
  • the method further includes:
  • adjusting the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle to the target subcarrier in the preset adjacent resource region is adjusted by:
  • the preset adjacent resource area includes:
  • the preset adjacent resource region does not include the resource occupied by the second reference signal sequence.
  • the location of the target subcarrier is notified by the sending end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the symbol of the fourth target reference signal sequence at the second overlapping resource particle is punctured such that the fourth target reference signal sequence is empty at the second overlapping resource particle, and the second overlapping resource particle is An overlapping resource particle of the pilot pattern of the first reference signal sequence and the pilot pattern of the third reference signal sequence, wherein the third reference signal sequence is the first reference signal sequence of the at least two reference signals And at least one reference signal sequence other than the second reference signal sequence;
  • the receiving reference signal sequence transmitted by the transmitting end includes:
  • the at least two reference signal sequences include a first reference signal sequence, a second reference signal sequence, and a third reference signal sequence, and pilots of the first reference signal sequence and the second reference signal sequence
  • the pattern has overlapping resource particles, the third reference signal sequence and the pilot pattern of the first reference signal sequence have no overlapping resource particles, and the third reference signal sequence and the pilot of the second reference signal sequence There are no overlapping resources in the pattern;
  • the preset processing includes:
  • the at least two reference signal sequences include a first reference signal sequence and a second reference signal sequence, where a pilot pattern of the second reference signal sequence occupies at least two consecutive OFDM symbols, and the The pilot image of a reference signal sequence and the partial OFDM symbol occupied by the pilot pattern of the second reference signal sequence have overlapping resource particles;
  • the preset processing includes:
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • the embodiment is used as an implementation manner of the transmitting device corresponding to the embodiment shown in FIG. 2 to FIG. 24 , and a specific implementation manner thereof may be referred to the related embodiment of the embodiment shown in FIG. 2 to FIG.
  • the same or similar beneficial effects, in order to avoid repeated explanation, will not be repeated here.
  • FIG. 28 is a structural diagram of another transmitting end according to an embodiment of the present disclosure. As shown in FIG. 8, the transmitting end 2800 includes:
  • Generating module 2801 configured to generate at least two reference signal sequences
  • the processing module 2802 is configured to perform preset processing on at least one reference signal sequence of the at least two reference signal sequences if there is overlapping resource particles in a pilot pattern of the at least two reference signal sequences, where
  • the preset processing includes at least one of a phase rotation process and a puncturing process, the at least one reference signal sequence being a reference signal sequence in which the pilot pattern of the at least two reference signal sequences has overlapping resource particles;
  • the first transmission module 2803 is configured to transmit a reference signal sequence to the receiving end, where the transmitted reference signal sequence includes the reference signal sequence that is processed by the preset, or includes the preset processing and the preset Processing reference signal.
  • the processing module 2802 is configured to perform a first phase rotation process on the first reference signal sequence of the at least two reference signal sequences to obtain a first target reference signal sequence, where the first target reference signal sequence a symbol at the overlapping resource particle is the same as a phase of a symbol of the second reference signal sequence at the overlapping resource particle, the second reference signal sequence being a pilot pattern of the at least two reference signals and the a pilot signal pattern of the first reference signal sequence having a reference signal sequence of overlapping resource particles;
  • the first transmission module 2803 is configured to transmit the first target reference signal sequence and the second reference signal sequence to the receiving end.
  • the processing module 2802 is configured to perform a second phase on the first reference signal sequence in the at least two reference signal sequences if the pilot pattern of the at least two reference signal sequences has overlapping resource particles Rotating processing to obtain a second target reference signal sequence, and performing a third phase rotation process on the second reference signal sequence of the at least two reference signal sequences to obtain a third target reference signal sequence, wherein the second target a symbol of the reference signal sequence at the overlapping resource particle is the same as a phase of a symbol of the third target reference signal sequence at the overlapping resource particle, the overlapping resource particle being a pilot pattern of the second reference signal sequence Overlapping resource particles between pilot patterns of the first reference signal sequence;
  • the first transmission module 2803 is configured to transmit the second target reference signal sequence and the third target reference signal sequence to the receiving end.
  • phase rotation parameters of the second phase rotation processing and the third phase rotation processing are notified to the receiving end by physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the processing module 2802 is configured to perform a puncturing process on a symbol of the first reference signal sequence at the overlapping resource particle if the pilot pattern of the at least two reference signal sequences has overlapping resource particles, Having the first reference signal sequence being empty at the overlapping resource particle, wherein the first reference signal sequence is a reference signal sequence other than the second reference signal sequence of the at least two reference signals,
  • the overlapping resource particles are overlapping resource particles between a pilot pattern of the second reference signal sequence and a pilot pattern of the first reference signal sequence;
  • the first transmission module 2803 is configured to transmit the second reference signal sequence and the punctured first reference signal sequence to the receiving end.
  • the processing module 2802 is configured to: when the pilot patterns of the at least two reference signal sequences have overlapping resource particles, use the subcarriers of the symbols of the first reference signal sequence at the overlapping resource particles The position is adjusted to the target subcarrier in the preset adjacent resource region;
  • the sending end 2800 further includes:
  • the second transmission module 2804 is configured to transmit the first reference signal sequence to the user terminal on the target subcarrier.
  • the processing module 2802 is configured to perform subcarrier position adjustment, frequency domain density adjustment, frequency domain interval adjustment, and pilot pattern adjustment if there are overlapping resource particles in the pilot pattern of the at least two reference signal sequences. And adjusting at least one of the subcarrier positions of the symbols of the first reference signal sequence at the overlapping resource particles to target subcarriers in a preset adjacent resource region.
  • the preset adjacent resource area includes:
  • the preset adjacent resource region does not include the resource occupied by the second reference signal sequence.
  • the location of the target subcarrier is notified to the receiving end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the processing module 2802 is configured to perform a fourth phase on the first reference signal sequence in the at least two reference signal sequences if the pilot pattern of the at least two reference signal sequences has overlapping resource particles Rotating processing to obtain a fourth target reference signal sequence, wherein the symbol of the fourth target reference signal sequence at the first overlapping resource particle is the same as the phase of the symbol of the second reference signal sequence at the first overlapping resource particle
  • the second reference signal sequence is at least one reference signal sequence of the at least two reference signals except the first reference signal sequence
  • the first overlapping resource particle is a pilot of the first reference signal sequence An overlapping resource particle of a pattern and a pilot pattern of the second reference signal sequence;
  • the fourth target reference signal sequence is empty at the second overlapping resource particle, the second overlapping resource particle
  • the first transmission module 2803 is configured to transmit the second reference signal sequence, the third reference signal sequence, and the punctured fourth target reference signal sequence to the receiving end.
  • the at least two reference signal sequences include a first reference signal sequence, a second reference signal sequence, and a third reference signal sequence, and pilots of the first reference signal sequence and the second reference signal sequence
  • the pattern has overlapping resource particles, the third reference signal sequence and the pilot pattern of the first reference signal sequence have no overlapping resource particles, and the third reference signal sequence and the pilot of the second reference signal sequence There are no overlapping resources in the pattern;
  • the processing module 2802 is configured to perform the preset processing on the first reference signal sequence if there is overlapping resource particles in a pilot pattern of the at least two reference signal sequences.
  • the at least two reference signal sequences include a first reference signal sequence and a second reference signal sequence, where a pilot pattern of the second reference signal sequence occupies at least two consecutive OFDM symbols, and the The pilot image of a reference signal sequence and the partial OFDM symbol occupied by the pilot pattern of the second reference signal sequence have overlapping resource particles;
  • the processing module 2802 is configured to perform the preset processing on the first reference signal sequence if there is overlapping resource particles in a pilot pattern of the at least two reference signal sequences.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • the sending end 2800 may be the sending end of any embodiment of the method embodiment in the embodiment of the present disclosure, and any implementation manner of the sending end in the method embodiment of the disclosure may be implemented by the present embodiment.
  • the above-mentioned transmitting end 2800 is implemented in the example, and the same or similar beneficial effects are achieved, and details are not described herein again.
  • FIG. 30, is a structural diagram of a receiving end according to an embodiment of the present disclosure.
  • the receiving end 3000 includes:
  • the first receiving module 3001 is configured to receive a reference signal sequence transmitted by the transmitting end, if the pilot pattern of the at least two reference signal sequences generated by the transmitting end has overlapping resource particles, where the transmitted reference signal sequence includes The processed reference signal sequence or the reference signal subjected to the preset processing and the non-preset processing, the preset processing including at least one of a phase rotation processing and a punching processing.
  • the preset processing includes:
  • the second reference signal sequence has the same phase of the symbol at the overlapping resource particle, and the second reference signal sequence is that the pilot pattern of the at least two reference signals overlaps with the pilot pattern of the first reference signal sequence a reference signal sequence of resource particles;
  • the first receiving module 3001 is configured to receive the first target reference signal sequence and the second reference signal sequence transmitted by the transmitting end.
  • phase rotation parameter of the first phase rotation process is notified by the sending end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the first receiving module 3001 is configured to receive the second target reference signal sequence and the third target reference signal sequence transmitted by the transmitting end.
  • phase rotation parameters of the second phase rotation process and the third phase rotation process are notified by the sending end by physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the overlapping resource particle being between the pilot pattern of the second reference signal sequence and the pilot pattern of the first reference signal sequence Overlapping resource particles;
  • the first receiving module 3001 is configured to receive the second reference signal sequence transmitted by the transmitting end and the first reference signal sequence that has been punctured.
  • the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle is adjusted to a target subcarrier in a preset adjacent resource region;
  • the receiving end 3000 further includes:
  • the second receiving module 3002 is configured to receive, on the target subcarrier, the first reference signal sequence transmitted by the transmitting end.
  • adjusting the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle to the target subcarrier in the preset adjacent resource region is adjusted by:
  • the preset adjacent resource area includes:
  • the preset adjacent resource region does not include the resource occupied by the second reference signal sequence.
  • the location of the target subcarrier is notified by the sending end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the symbol of the fourth target reference signal sequence at the second overlapping resource particle is punctured such that the fourth target reference signal sequence is empty at the second overlapping resource particle, and the second overlapping resource particle is An overlapping resource particle of the pilot pattern of the first reference signal sequence and the pilot pattern of the third reference signal sequence, wherein the third reference signal sequence is the first reference signal sequence of the at least two reference signals And at least one reference signal sequence other than the second reference signal sequence,
  • the first receiving module 3001 is configured to receive the second reference signal sequence, the third reference signal sequence, and the punctured fourth target reference signal sequence transmitted by the transmitting end.
  • the at least two reference signal sequences include a first reference signal sequence, a second reference signal sequence, and a third reference signal sequence, and pilots of the first reference signal sequence and the second reference signal sequence
  • the pattern has overlapping resource particles, the third reference signal sequence and the pilot pattern of the first reference signal sequence have no overlapping resource particles, and the third reference signal sequence and the pilot of the second reference signal sequence There are no overlapping resources in the pattern;
  • the preset processing includes:
  • the at least two reference signal sequences include a first reference signal sequence and a second reference signal sequence, where a pilot pattern of the second reference signal sequence occupies at least two consecutive OFDM symbols, and the The pilot image of a reference signal sequence and the partial OFDM symbol occupied by the pilot pattern of the second reference signal sequence have overlapping resource particles;
  • the preset processing includes:
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • the receiving end 3000 may be the receiving end of any embodiment of the method embodiment in the embodiment of the disclosure, and any implementation manner of the receiving end in the method embodiment of the disclosure may be implemented by the present embodiment.
  • the above-mentioned receiving end 3000 in the example is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • FIG. 32 is a structural diagram of a transmitting end of an application of an embodiment of the present disclosure.
  • the transmitting end 3200 includes a processor 3201, a transceiver 3202, a memory 3203, a user interface 3204, and a bus interface, where:
  • the processor 3201 is configured to read a program in the memory 3203 and perform the following process:
  • the reference signal sequence includes the reference signal sequence subjected to the preset processing, or includes a reference signal that passes through the preset processing and is not subjected to preset processing.
  • the transceiver 3202 is configured to receive and transmit data under the control of the processor 3201.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 3201 and various circuits of memory represented by memory 3203.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 3202 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 3204 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 3201 is responsible for managing the bus architecture and general processing, and the memory 3203 can store data used by the processor 3201 in performing operations.
  • the performing preset processing on the at least one reference signal sequence of the at least two reference signal sequences includes:
  • the second reference signal sequence has the same phase of the symbol at the overlapping resource particle, and the second reference signal sequence is that the pilot pattern of the at least two reference signals overlaps with the pilot pattern of the first reference signal sequence a reference signal sequence of resource particles;
  • Transmitting the reference signal sequence to the receiving end includes:
  • phase rotation parameter of the first phase rotation process is notified to the receiving end by physical layer signaling, media intervention control MAC layer signaling, or high layer signaling.
  • the performing preset processing on the at least one reference signal sequence of the at least two reference signal sequences includes:
  • Transmitting the reference signal sequence to the receiving end includes:
  • phase rotation parameters of the second phase rotation processing and the third phase rotation processing are notified to the receiving end by physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the performing preset processing on the at least one reference signal sequence of the at least two reference signal sequences includes:
  • the overlapping resource particle being between the pilot pattern of the second reference signal sequence and the pilot pattern of the first reference signal sequence Overlapping resource particles;
  • Transmitting the reference signal sequence to the receiving end includes:
  • the symbol of the first reference signal sequence at the overlapping resource particle is punctured, so that the first reference signal sequence is empty at the overlapping resource particle, including:
  • the processor 3201 is also configured to:
  • the adjusting the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle to the target subcarrier in the preset adjacent resource region includes:
  • the preset adjacent resource area includes:
  • Subcarriers having the same orthogonal frequency division multiplexing OFDM symbol as the overlapping resource particles are provided.
  • the preset adjacent resource region does not include the resource occupied by the second reference signal sequence.
  • the location of the target subcarrier is notified to the receiving end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the performing preset processing on the at least one reference signal sequence of the at least two reference signal sequences includes:
  • the symbol of the fourth target reference signal sequence at the second overlapping resource particle is punctured such that the fourth target reference signal sequence is empty at the second overlapping resource particle, and the second overlapping resource particle is An overlapping resource particle of the pilot pattern of the first reference signal sequence and the pilot pattern of the third reference signal sequence, wherein the third reference signal sequence is the first reference signal sequence of the at least two reference signals And at least one reference signal sequence other than the second reference signal sequence;
  • Transmitting the reference signal sequence to the receiving end includes:
  • the at least two reference signal sequences include a first reference signal sequence, a second reference signal sequence, and a third reference signal sequence, and pilots of the first reference signal sequence and the second reference signal sequence
  • the pattern has overlapping resource particles, the third reference signal sequence and the pilot pattern of the first reference signal sequence have no overlapping resource particles, and the third reference signal sequence and the pilot of the second reference signal sequence There are no overlapping resource particles in the pattern;
  • Performing preset processing on the at least one reference signal sequence of the at least two reference signal sequences including:
  • the at least two reference signal sequences include a first reference signal sequence and a second reference signal sequence, where a pilot pattern of the second reference signal sequence occupies at least two consecutive OFDM symbols, and the The pilot image of a reference signal sequence and the partial OFDM symbol occupied by the pilot pattern of the second reference signal sequence have overlapping resource particles;
  • Performing preset processing on the at least one reference signal sequence of the at least two reference signal sequences including:
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • the sending end 3200 may be the sending end of any embodiment of the method embodiment in the embodiment of the disclosure, and any implementation manner of the sending end in the method embodiment of the disclosure may be implemented by the present embodiment.
  • the above-mentioned transmitting end 3200 is implemented in the example, and the same or similar beneficial effects are achieved, and details are not described herein again.
  • FIG. 33 is a structural diagram of a receiving end of an application of an embodiment of the present disclosure.
  • the receiving end 3300 includes: at least one processor 3301, a memory 3302, at least one network interface 3304, and a user interface 3303.
  • the various components in the receiving end 3300 are coupled together by a bus system 3305.
  • the bus system 3305 is used to implement connection communication between these components.
  • the bus system 3305 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 3305 in FIG.
  • the user interface 3303 may include a display, a keyboard, or a pointing device (eg, a mouse, a track ball, a touch pad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a track ball, a touch pad, or a touch screen, etc.
  • the memory 3302 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 3302 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 33021 and an application 33022.
  • the operating system 33021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 33022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 33022.
  • the processor 3301 by calling the program or instruction stored in the memory 3302, specifically, the program or instruction stored in the application 3302, the processor 3301 is configured to:
  • a reference signal sequence transmitted by the transmitting end if the pilot pattern of the at least two reference signal sequences generated by the transmitting end has overlapping resource particles, where the transmitted reference signal sequence includes a reference signal sequence that is subjected to preset processing, or
  • the reference signal includes the preset processing and the non-predetermined processing, and the preset processing includes at least one of a phase rotation processing and a punching processing.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 3301 or implemented by the processor 3301.
  • the processor 3301 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 3301 or an instruction in a form of software.
  • the processor 3301 described above may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 3302, and the processor 3301 reads the information in the memory 3302 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the preset processing includes:
  • the second reference signal sequence has the same phase of the symbol at the overlapping resource particle, and the second reference signal sequence is that the pilot pattern of the at least two reference signals overlaps with the pilot pattern of the first reference signal sequence a reference signal sequence of resource particles;
  • the receiving reference signal sequence transmitted by the transmitting end includes:
  • phase rotation parameter of the first phase rotation process is notified by the sending end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the receiving reference signal sequence transmitted by the transmitting end includes:
  • phase rotation parameters of the second phase rotation process and the third phase rotation process are notified by the sending end by physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the overlapping resource particle being between the pilot pattern of the second reference signal sequence and the pilot pattern of the first reference signal sequence Overlapping resource particles;
  • the receiving reference signal sequence transmitted by the transmitting end includes:
  • the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle is adjusted to a target subcarrier in a preset adjacent resource region;
  • the processor 3331 is also used to:
  • adjusting the subcarrier position of the symbol of the first reference signal sequence at the overlapping resource particle to the target subcarrier in the preset adjacent resource region is adjusted by:
  • the preset adjacent resource area includes:
  • the preset adjacent resource region does not include the resource occupied by the second reference signal sequence.
  • the location of the target subcarrier is notified by the sending end by using physical layer signaling, MAC layer signaling, or higher layer signaling.
  • the preset processing includes:
  • the symbol of the fourth target reference signal sequence at the second overlapping resource particle is punctured such that the fourth target reference signal sequence is empty at the second overlapping resource particle, and the second overlapping resource particle is An overlapping resource particle of the pilot pattern of the first reference signal sequence and the pilot pattern of the third reference signal sequence, wherein the third reference signal sequence is the first reference signal sequence of the at least two reference signals And at least one reference signal sequence other than the second reference signal sequence;
  • the receiving reference signal sequence transmitted by the transmitting end includes:
  • the at least two reference signal sequences include a first reference signal sequence, a second reference signal sequence, and a third reference signal sequence, and pilots of the first reference signal sequence and the second reference signal sequence
  • the pattern has overlapping resource particles, the third reference signal sequence and the pilot pattern of the first reference signal sequence have no overlapping resource particles, and the third reference signal sequence and the pilot of the second reference signal sequence There are no overlapping resources in the pattern;
  • the preset processing includes:
  • the at least two reference signal sequences include a first reference signal sequence and a second reference signal sequence, where a pilot pattern of the second reference signal sequence occupies at least two consecutive OFDM symbols, and the The pilot image of a reference signal sequence and the partial OFDM symbol occupied by the pilot pattern of the second reference signal sequence have overlapping resource particles;
  • the preset processing includes:
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a demodulation reference signal sequence
  • the at least two reference signal sequences include a phase tracking reference signal sequence and a synchronization signal block.
  • the receiving end 3300 may be the receiving end of any embodiment of the method embodiment in the embodiment of the disclosure, and any implementation manner of the receiving end in the method embodiment of the disclosure may be implemented by the present embodiment.
  • the above-mentioned receiving end 3300 is implemented in the example, and the same beneficial effects are achieved, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present disclosure.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种参考信号传输方法、相关设备及系统。该方法包括:生成至少两个参考信号序列;若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列;向接收端设备传输参考信号序列,其中,所述传输的参考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。本公开实施例可以提高参考信号的性能。

Description

一种参考信号传输方法、相关设备及系统
相关申请的交叉引用
本申请主张在2017年5月4日在中国提交的中国专利申请号No.201710309764.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种参考信号传输方法、相关设备及系统。
背景技术
在未来移动通信系统(例如:5G)中,为了达到高下行链路传输速率(例如:20Gbps),以及高上行链路传输速率(例如:10Gbps)的目标,高频传输技术和大规模天线阵列技术备受关注。其中,高频频段有着更为丰富的频谱资源,但是由于衰减大导致传输距离有限。而大规模天线阵列虽然可以提供较大的波束成形增益,但是天线口径通常较大。但是,二者可以结合起来:高频频段的短波长特性会减小大规模天线阵列的口径,使得天线的密集部署更加容易和可行。反过来,大规模天线阵列产生的较大的波束成形增益可以有效地对抗高频传输损耗,从而大幅度扩展高频传输的传输距离。因此,高频传输技术和大规模天线阵列技术是相辅相成的,二者的结合可以达到优势互补,更是大势所趋。
其中,在使用高频传输技术和大规模天线阵列技术传输时,发送端往往需要向接收端传输至少两个参考信号,例如:相位跟踪参考信号(phase tracking reference signal,PTRS)和解调参考信号(demodulation reference signal,DMRS),其中,PTRS用于接收端根据其对相位噪声进行估计然后进行相应的相位补偿,而DMRS用于接收端对信道进行解调。
然而,实际应用中,不同参考信号的导频图案也不同,且不同参考信号的导频图案可能会在某一个或者多个资源粒子(resource element,RE)处交汇,即不同参考信号的导频图案中存在重叠的一个或者多个RE。如果在重叠 的一个或者多个RE直接传输多个参考信号序列,这多个参考信号序列彼此会产生影响,从而导致参考信号的性能比较低。
发明内容
本公开实施例提供一种参考信号传输方法、相关设备及系统,以解决导致参考信号的性能比较低的问题。
第一方面,本公开实施例提供了一种参考信号传输方法,包括:
生成至少两个参考信号序列;
若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项;
向接收端传输经过所述预设处理的至少一个参考信号序列;
若所述至少两个参考信号序列中存在未经过所述预设处理的参考信号序列,则向所述接收端传输未经过所述预设处理的参考信号序列;
若所述至少两个参考信号的导频图案不存在重叠资源粒子,则向所述接收端传输生成的至少两个参考信号。
第二方面,本公开实施例提供了一种参考信号传输方法,包括:
若发送端生成的至少两个参考信号序列的导频图案存在重叠资源粒子,则接收发送端传输的参考信号序列,其中,所述传输的参考信号序列包括经过预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号,所述预设处理包括相位旋转处理和打孔处理中的至少一项。
第三方面,本公开实施例提供了一种发送端,包括:
生成模块,用于生成至少两个参考信号序列;
处理模块,用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列;
第一传输模块,用于向接收端传输参考信号序列,其中,所述传输的参 考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。
第四方面,本公开实施例提供了一种接收端,包括:
第一接收模块,用于若发送端生成的至少两个参考信号序列的导频图案存在重叠资源粒子,则接收发送端传输的参考信号序列,其中,所述传输的参考信号序列包括经过预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号,所述预设处理包括相位旋转处理和打孔处理中的至少一项。
第五方面,本公开实施例提供了一种参考信号传输系统,其中,包括本公开实施例提供的接收端和本公开实施例提供的发送端。
第六方面,本公开实施例提供了一种发送端设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的参考信号传输方法中的步骤。
第七方面,本公开实施例提供了一种接收端设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的参考信号传输方法中的步骤。
第八方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的参考信号传输方法中的步骤。
第九方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第二方面所述的参考信号传输方法中的步骤。
这样,本公开实施例中,生成至少两个参考信号序列;若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列;向接收端 传输参考信号序列,其中,所述传输的参考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。这样可以实现存在重叠资源粒子时,对参考信号序列进行相位旋转处理和打孔处理中的至少一项处理,从而可以降低参考信号序列在重叠资源粒子上的产生影响,以提高参考信号的性能。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种参考信号传输的结构图;
图2是本公开实施例提供的一种参考信号传输方法的流程图;
图3是本公开实施例提供的一种参考信号的导频图案的示意图;
图4是本公开实施例提供的另一种参考信号的导频图案的示意图;
图5是本公开实施例提供的另一种参考信号的导频图案的示意图;
图6是本公开实施例提供的另一种参考信号传输方法的流程图;
图7是本公开实施例提供的另一种参考信号的导频图案的示意图;
图8是本公开实施例提供的一种参考信号的相位旋转示意图;
图9是本公开实施例提供的另一种参考信号的相位旋转示意图;
图10是本公开实施例提供的另一种参考信号的导频图案的示意图;
图11是本公开实施例提供的另一种参考信号的相位旋转示意图;
图12是本公开实施例提供的另一种参考信号传输方法的流程图;
图13是本公开实施例提供的另一种参考信号传输方法的流程图;
图14是本公开实施例提供的另一种参考信号的打孔示意图;
图15是本公开实施例提供的另一种参考信号的打孔示意图;
图16是本公开实施例提供的另一种参考信号的打孔示意图;
图17是本公开实施例提供的另一种参考信号的打孔示意图;
图18是本公开实施例提供的另一种参考信号传输方法的流程图;
图19是本公开实施例提供的另一种参考信号的相位旋转示意图;
图20是本公开实施例提供的另一种参考信号传输方法的流程图;
图21是本公开实施例提供的另一种参考信号的导频图案的示意图;
图22是本公开实施例提供的另一种参考信号的相位旋转示意图;
图23是本公开实施例提供的另一种参考信号的打孔示意图;
图24是本公开实施例提供的另一种参考信号传输方法的流程图;
图25是本公开实施例提供的另一种参考信号的导频图案的示意图;
图26是本公开实施例提供的另一种参考信号的相位旋转示意图;
图27是本公开实施例提供的另一种参考信号传输方法的流程图;
图28是本公开实施例提供的一种发送端的结构图;
图29是本公开实施例提供的另一种发送端的结构图;
图30是本公开实施例提供的一种接收端的结构图;
图31是本公开实施例提供的另一种接收端的结构图;
图32是本公开实施例提供的另一种发送端的结构图;以及
图33是本公开实施例提供的另一种接收端的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1为本公开实施例可应用的一种参考信号传输系统的结构图。如图1所示,包括发送端11和接收端12,其中,发送端11可以是基站或者终端,而接收端12也可以是终端或者基站。例如:发送端11为基站,接收端12为终端,则可以实现终端与基站之间的通信。又或者发送端11为终端,则接收端12为基站,也可以实现终端与基站之间的通信。又或者发送端11为基站,接收端12也为基站,则可以实现基站与基站之间的通信。又或者发送端11为终端,接收端12也为终端,则可以实现终端与终端之间的通信。当然,本公开实施例中,并不限定发送端11只能是终端或者基站,例 如:发送端11还可以是其他的网络侧设备,同理,接收端12也并不限定只是终端或者设备,例如:接收端12还可以是其他的网络侧设备,对此本公开实施例不作限定。这里,在图1中,以发送端11为基站,接收端12为终端进行举例示意。终端可以是用户终端(User Equipment,UE),例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。基站可以是宏站,如LTE eNB、5G NR NB等;也可以是小站,如低功率节点(LPN:low power node)pico、femto等小站,或者可以是接入点(AP,access point);基站也可以是中央单元(CU,central unit)与其管理和控制的多个传输接收点(TRP,Transmission Reception Point)共同组成的网络节点。另外,一个基站下有一个或多个小区(例如:不同的频点或扇区分裂)。需要说明的是,在本公开实施例中并不限定基站的具体类型。
需要说明的是,在本公开实施例中并不限定发送端11和接收端12的具体类型,发送端11和接收端12的具体功能将通过以下多个实施例进行具体描述。
参见图2,图2是本公开实施例提供的一种时间序号的发送方法的流程图,如图2所示,包括以下步骤:
参见图2,图2是本公开实施例提供的一种参考信号传输方法的流程图,如图2所示,包括以下步骤:
步骤201、生成至少两个参考信号序列。
其中,生成的至少两个参考信号序列可以是导频图案不存在重叠资源粒子的至少两个参考信号序列,这样可以避免参考信号序列在重叠资源粒子上的影响,以提高参考信号的性能,例如:如图3所示。或者上述生成的至少两个参考信号序列中,可以是某一个或者多个参考信号序列的导频图案与其他参考信号序列的导频图案存在重叠资源粒子,而另一个或者多个参考信号序列的导频图案与其他参考信号序列的导频图案不存在重叠资源粒子,例如:如图4所示。或者上述生成的至少两个参考信号序列的导频图案均存在重叠 资源粒子,例如:如图5所示。
另外,上述至少两个参考信号序列可以包括PTRS、DMRS、同步信号块(SS block)、主同步信号(new radio primary synchronization signal,NR-PSS)、辅同步信号(new radio secondary synchronization signal,NR-SSS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、探测参考信号(sounding reference signal,SRS)和物理广播信道(new radio physical broadcast channel,NR-PBCH)中的至少两个参考信号序列。当然,还可以其他参考信号序列,对此本公开实施例不作限定。
步骤202、若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列。
上述至少两个参考信号序列的导频图案存在重叠资源粒子可以是,某一部分参考信号序列的导频图案存在重叠资源粒子,例如:如图4所示。或者至少两个参考信号序列的导频图案存在重叠资源粒子可以是,上述至少两个参考信号序列的导频图案均存在重叠资源粒子,例如:如图5所示。
其中,上述预设处理可以是对上述至少一个参考信号序列进行相位旋转处理和打孔处理中的至少一项。其中,相位旋转处理可以是对参考信号序列的相位进行旋转,从而可以降低在重叠资源粒子处参考信号序列彼此的影响,例如:通过对上述至少一个参考信号序列的相位旋转,使得上述至少两个参考信号序列在重叠资源粒子处的符号的相位相同或者相近,从而避免或者降低在重叠资源粒子处参考信号序列彼此的影响。而上述打孔处理可以对上述至少一个参考信号序列在上述重叠资源粒子进行打孔,从而在上述重叠资源粒子处只传输一个参考信号序列,这样可以避免在重叠资源粒子上的影响。
步骤203、向接收端传输参考信号序列,其中,所述传输的参考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。
其中,如果只对上述至少两个参考信号全部做了预设处理,则步骤203 就传输参考信号序列包括经过所述预设处理的参考信号序列;如果对上述至少两个参考信号只部分做了预设处理,则步骤203就传输参考信号序列包括经过所述预设处理和未经过预设处理的参考信号。
另外,其中,只进行相位旋转时可以将经过上述预设处理的至少一个参考信号序列按照导频图案进行传输,而进行了打孔处理,则将经过上述预设处理的至少一个参考信号序列按照导频图案结合打孔处理进行传输,即在导频图案对应的资源粒子中除被打孔之外的资源粒子上传输。
对于未经过所述预设处理的参考信号序列,这样就可以直接按照这些参考信号序列的导频图案进行传输。
本公开实施例中,生成至少两个参考信号序列;若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列;向接收端传输参考信号序列,其中,所述传输的参考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。这样可以实现存在重叠资源粒子时,对参考信号序列进行相位旋转处理和打孔处理中的至少一项处理,从而可以降低参考信号序列在重叠资源粒子上的产生影响,以提高参考信号的性能。
参见图6,图6是本公开实施例提供的另一种参考信号传输方法的流程图,如图6所示,包括以下步骤:
步骤601、生成至少两个参考信号序列。
其中,生成的至少两个参考信号序列可以参见图2所示的实施例的相应说明,此处不作赘述。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
步骤602、若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处 理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列。
其中,上述符号可以理解为正交频分复用OFDM中的一个子载波的资源,例如:图7所示的一个方格。
其中,上述第一参考信号序列可以是上述至少两个参考信号序列中的一个或者多个参考信号序列,例如:PTRS序列或者DMRS参考序列,或者上述至少两个参考信号序列中包括的多个DMRS序列。其中,上述对第一参考信号序列进行第一相位旋转处理可以是,将第一参考信号序列的相位旋转预设相位,其中,该预设相位等于第一参考信号在所述重叠资源粒子处的符号的相同与第二参考信号序列在所述重叠资源粒子处的符号的相位之差。例如:如图7所示,PTRS序列与单个符号的DMRS序列交汇,二者的导频图案如图7所示。其中,第4行为PTRS序列的导频图案,
Figure PCTCN2018084825-appb-000001
为PTRS序列在第n个符号上的参考信号符号,n=1,…,M。第4列为DMRS序列的导频图案,
Figure PCTCN2018084825-appb-000002
为DMRS序列在第n个子载波上的参考信号符号,n=1,…,K。假设二者重叠于第m个符号的第k个子载波,即灰色填充的资源粒,1≤m≤M,1≤k≤K。
为了使得DMRS序列和PTRS序列在重叠资源粒子处的符号的相位相同,这里对整个PTRS序列进行相位旋转θ,DMRS序列保持不变。由
Figure PCTCN2018084825-appb-000003
可得θ=α mk。因此,旋转后的PTRS序列为
Figure PCTCN2018084825-appb-000004
n=1,…,M,如图8所示。
又例如:PTRS序列与单个符号的DMRS序列交汇,二者的导频图案重叠于第m个符号的第k个子载波,假设条件与图7所示的举例相同,此处不再赘述,如图7所示。
为了使得DMRS序列和PTRS序列在重叠资源粒子处的符号的相位相同,这里对整个DMRS序列进行相位旋转φ,PTRS序列保持不变。由
Figure PCTCN2018084825-appb-000005
可得φ=β km。因此,旋转后的DMRS序列为
Figure PCTCN2018084825-appb-000006
n=1,…,K,如图9所示。
又例如:上述至少两个参考信号序列包括两个DMRS序列,即PTRS序列与两个符号的DMRS序列交汇,二者的导频图案如图10所示。其中,第4行为PTRS的导频图案,
Figure PCTCN2018084825-appb-000007
为PTRS序列在第n个符号上的参考信号符号,n=1,…,M。第4和第8列为DMRS序列的导频图案,
Figure PCTCN2018084825-appb-000008
Figure PCTCN2018084825-appb-000009
分别为两个DMRS序列上第n个子载波上的参考信号符号,n=1,…,K。假设二者交汇于第m1和第m2个符号的第k个子载波,即灰色填充资源粒子,1≤m1<m2≤M,1≤k≤K。
为了使得DMRS序列和PTRS序列在重叠资源粒子处符号的相位相同,这里对第一个DMRS序列进行相位旋转φ 1,对第二个DMRS序列进行相位旋转φ 2,PTRS保持不变。由
Figure PCTCN2018084825-appb-000010
可得φ 1=β km1。同理,由
Figure PCTCN2018084825-appb-000011
可得φ 2=γ km2。因此,旋转后的第一个DMRS序列为
Figure PCTCN2018084825-appb-000012
Figure PCTCN2018084825-appb-000013
旋转后的第二个DMRS序列为
Figure PCTCN2018084825-appb-000014
n=1,…,K,如图11所示。
通过步骤602可以实现第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,这样这两个参考信号序列在重叠资源复用时,就不会存在影响。
可选的,所述第一相位旋转处理的相位旋转参数通过物理层信令、媒体介入控制MAC层信令或者高层信令通知所述接收端。这样可以通知接收第一参考信号序列的相位进行了旋转。
步骤603、向所述接收端传输所述第一目标参考信号序列和所述第二参考信号序列。
其中,由于第一目标参考信号仅是进行相位旋转得到,从而第一目标参考信号序列可以直接按照第一参考信号序列进行传输。
由于第二参考信号序列未进行相位旋转处理,从而可以直接按照第二参考信号序列的导频图案进行传输。
另外,通过步骤603和步骤604可以实现在重叠资源粒子处复用传输第一参考信号序列和第二参考信号序列,在不损失各个参考信号性能的前提下,降低了参考信号序列的开销。
可选的,本公开实施例中,若所述至少两个参考信号的导频图案不存在重叠资源粒子,则向所述接收端传输生成的至少两个参考信号。
该步骤中可以实现生成的至少两个参考信号序列的导频图案不存在重叠资源粒子,即本公开实施例中,在生成上述至少两个参考信号序列时,为其设计的导频图案不存在重叠资源粒子。通过步骤205可以避免参考信号序列之间的影响,以提高参考信号序列的性能。
本实施例中,通过上述步骤可以实现存在重叠资源粒子时,对第一参考信号序列进行相位旋转处理,从而可以降低第一参考信号序列和第二参考信号序列在重叠资源粒子上的产生影响,以提高参考信号的性能。
参见图12,图12是本公开实施例提供的另一种参考信号传输方法的流程图,如图12所示,包括以下步骤:
步骤1201、生成至少两个参考信号序列。
其中,生成的至少两个参考信号序列可以参见图2所示的实施例的相应说明,此处不作赘述。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
步骤1202、若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子。
其中,上述第一参考信号序列可以是上述至少两个参考信号序列中的一个或者多个参考信号序列,例如:PTRS序列或者DMRS参考序列,或者上述至少两个参考信号序列中包括的多个DMRS序列。第二参考信号序列可以除上述第一参考信号序列之外的参考信号序列。上述对所述至少两个参考信 号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列可以是,根据第一目标参考信号序列在所述重叠资源粒子处的符号的相位,以及第二目标参考信号序列在所述重叠资源粒子处的符号的相位的区别,进行相应的相位旋转,从而使得第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同。
步骤1203、向所述接收端传输所述第二目标参考信号序列和所述第三目标参考信号序列。
通过步骤1202和1203可以实现第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,这样这两个参考信号序列在重叠资源复用时,就不会存在影响。其中,传输所述第二目标参考信号序列和所述第三目标参考信号序列可以根据按照第一参考信号序列的导频图案和第二参考信号序列的导频图案进行传输。
可选的,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数通过物理层信令、MAC层信令或者高层信令通知所述接收端。这样可以通知接收第一参考信号序列和第二参考信号序列的相位进行了旋转。
本实施例中,通过上述步骤可以实现存在重叠资源粒子时,对第一参考信号序列和第二参考信号序列进行相位旋转处理,从而可以降低第一参考信号序列和第二参考信号序列在重叠资源粒子上的产生影响,以提高参考信号的性能。且还可以直接生成不存在重叠资源粒子的至少两个参考信号序列,这样同样可以提高参考信号的性能。
参见图13,图13是本公开实施例提供的另一种参考信号传输方法的流程图。如图13所示,包括以下步骤:
步骤1301、生成至少两个参考信号序列。
其中,生成的至少两个参考信号序列可以参见图2所示的实施例的相应说明,此处不作赘述。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
步骤1302、若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子。
其中,上述打孔处理可以是控制第一参考信号序列在所述重叠资源粒子处的符号不进行传输,即所述第一参考信号序列在所述重叠资源粒子处为空。其中,上述第一参考信号序列可以是上述至少两个参考信号序列中的一个或者多个参考信号序列,例如:PTRS序列或者DMRS参考序列,或者上述至少两个参考信号序列中包括的多个DMRS序列。
例如:PTRS序列与单个符号的DMRS序列交汇于第m个符号的第k个子载波,假设条件与实施例一相同,这里不再赘述。二者的导频图案如图7所示。在交汇资源粒子处,保留DMRS序列在该资源粒子上的参考符号b(k),将PTRS序列在该资源粒子上的参考符号a(m)通过打孔操作打掉,如图14所示。
此时PTRS序列为
Figure PCTCN2018084825-appb-000015
接收端可以预先已知打孔操作。对于交汇资源粒子所在符号,接收端可以根据DMRS(如b(k))进行相位噪声的估计,例如:将DMRS作为PTRS使用。
在本实施例中,DMRS序列保持不变,对PTRS序列打孔。但是本公开实施例不限于此。例如,当PTRS与,NR-PSS、NR-SSS、CSI-RS、SRS和NR-PBCH中的至少一个存在一个或者多个重叠资源粒子时,可以对在重叠资源粒子处的PTRS符号打孔,保持NR-PSS、NR-SSS、CSI-RS、SRS和NR-PBCH不变。
可选的,所述对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,包括:
将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调 整至预设相邻资源区域中目标子载波上;
所述方法还包括:
在所述目标子载波上向所述用户终端传输所述第一参考信号序列。
该实施方式中,可以实现第一参考信号序列被打孔后,将被打掉的第一参考信号序列转移至目标子载波上传输,从而保证了参考信号的性能,例如:第一参考信号为PTRS时,可以保证相位噪声的估计性能。
可选的,所述将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上,包括:
通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
其中,上述子载波位置调整可以是调整重叠资源粒子处的符号的子载波位置,频域密度调整可以是调整第一参考信号序列在频域密度,频域间隔调整可以是调整第一参考信号序列在频域间隔,导频图案调整可以是调整第一参考信号序列的导频图案。例如:PTRS与同步信号块(synchronization signal block,SS block)交汇,其中同步信号块可以由NR-PSS、NR-SSS和NR-PBCH组成。重叠资源粒子处的PTRS符号被打孔,如图15所示。为了保证与被打孔PTRS的预设相邻资源区域内资源粒子的相位噪声估计性能,可以调整所述区域内PTRS的所在子载波位置,保持其频域密度不变,如图16中和A或B所示。
又例如:PTRS与同步信号块(synchronization signal block,SS block)交汇,其中同步信号块可以由NR-PSS、NR-SSS和NR-PBCH组成。重叠资源粒子处的PTRS符号被打孔,如图15所示。为了保证与被打孔PTRS的预设相邻资源区域内资源粒子的相位噪声估计性能,可以改变所述区域内PTRS的频域密度和频域间隔,可以是通过调整子载波位置,或者增加PTRS子载波来实现,如图17所示。
该实施方式中,通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上,从而可以实现灵活调整第 一参考信号序列的子载波,且可以保证第一参考信号序列在预设相邻资源区域中的性能,例如:保证PTRS在预设相邻资源区域的相位噪声的估计性能。
可选的,所述预设相邻资源区域包括:
与所述重叠的资源粒子具有相同OFDM符号的子载波;或者
与所述重叠的资源粒子具有相同子载波的OFDM符号;
其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
其中,上述预设相邻资源区域可以参见图15至图17中所示的斜线填充区域,此处不作赘述。
可选的,所述目标子载波的位置通过物理层信令、MAC层信令或者高层信令通知所述接收端。这样可以实现接收端准确地在上述目标子载波上接收到第一参考信号序列。
步骤1303、向接收端传输所述第二参考信号序列和经过打孔处理的第一参考信号序列。
其中,传输第一参考信号序列可以是在第一参考信号序列的导频图案对应的资源粒子上未被打孔的资源粒子上传输。
其中,传输第二参考信号序列可以是按照第二参考信号序列的导频图案进行传输。
本实施例中,通过上述步骤可以实现存在重叠资源粒子时,对第一参考信号序列进行打孔处理,从而可以避免第一参考信号序列和第二参考信号序列在重叠资源粒子上的产生影响,以提高参考信号的性能,且接收端还可以使用重叠资源粒子上接收到参考信号序列实现另一个参考信号序列的功能,例如:使用重叠资源粒子上接收到DMRS进行相位噪声的估计。且还可以直接生成不存在重叠资源粒子的至少两个参考信号序列,这样同样可以提高参考信号的性能。
参见图18,图18是本公开实施例提供的另一种参考信号传输方法的流程图。如图18所示,包括以下步骤:
步骤1801、生成至少两个参考信号序列。
其中,生成的至少两个参考信号序列可以参见图2所示的实施例的相应说明,此处不作赘述。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
步骤1802、若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子。
其中,这里的第四相位旋转处理可以参见上述实施例介绍的第一相位旋转处理,此处不作赘述,且可以达到相同或相似的有益效果。
步骤1803、将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列。
其中,这里的打孔处理可以参见上述实施例介绍的打孔处理,此处不作赘述,且可以达到相同或相似的有益效果。
通过步骤1802和1803可以实现相位旋转处理和打孔处理结合实现,以进一步提高系统的性能。例如:上述至少两个参考信号序列包括两个DMRS序列,即PTRS序列与两个符号的DMRS序列交汇,二者的导频图案如图10所示。其中,竖线填充为PTRS的导频图案,
Figure PCTCN2018084825-appb-000016
为PTRS序列在第n个符号上的参考信号符号,n=1,…,M。横线填充为DMRS序列的导频图案,
Figure PCTCN2018084825-appb-000017
Figure PCTCN2018084825-appb-000018
分别为两个DMRS序列上第n个子载波上的参考信号符号,n=1,…,K。假设二者交汇于第m1和第m2个符号的第k个子载波,即黑点填充资源粒子,1≤m1<m2≤M,1≤k≤K。
为了使得DMRS序列和PTRS序列在重叠资源粒子处的符号的相位相同,这里对整个PTRS序列进行相位旋转θ,第一DMRS序列保持不变。由
Figure PCTCN2018084825-appb-000019
可得θ=α mk。因此,旋转后的PTRS序列为
Figure PCTCN2018084825-appb-000020
n=1,…,M,如图19所示,以及将PTRS序列与第二个DMRS序列重叠粒子的符号进行打孔。
步骤1804、向所述接收端传输所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
其中,传输第四目标参考信号序列可以是在第一参考信号序列的导频图案对应的资源粒子上未被打孔的资源粒子上传输。其中,传输第一参考信号序列可以是按照第二参考信号序列的导频图案进行传输。
本实施例中,通过上述步骤可以实现存在重叠资源粒子时,对第一参考信号序列进行相位旋转和打孔处理,从而可以避免多参考信号序列在重叠资源粒子上的产生影响,以提高参考信号的性能。且还可以直接生成不存在重叠资源粒子的至少两个参考信号序列,这样同样可以提高参考信号的性能。
参见图20,图20是本公开实施例提供的另一种参考信号传输方法的流程图。如图20所示,包括以下步骤:
步骤2001、生成至少两个参考信号序列,其中,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源。
其中,生成的至少两个参考信号序列可以参见图2所示的实施例的相应说明,此处不作赘述。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
步骤2002、若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述第一参考信号序列进行预设处理,其中,所述预设处理包括相位旋 转处理和打孔处理中的至少一项。
其中,这里的预设处理可以参见上述实施例介绍的预设处理,例如:对第一参考信号序列进行相位旋转处理或者打孔处理,或者相位旋转处理和打孔处理,此处不作赘述,且可以达到相同或相似的有益效果。
例如:上述至少两个参考信号序列包括两个DMRS序列,即PTRS序列与两个符号的DMRS序列交汇,二者的导频图案如图21所示。其中,第4行填充为PTRS的导频图案,
Figure PCTCN2018084825-appb-000021
为PTRS序列在第n个符号上的参考信号符号,n=1,…,M。第4列的第1、3、5和7子载波为第一个DMRS序列的导频图案,第8列为DMRS序列的导频图案,
Figure PCTCN2018084825-appb-000022
Figure PCTCN2018084825-appb-000023
分别为两个DMRS序列上第n个子载波上的参考信号符号,n1=1,3、5、7,n2=1,…,K。假设PTRS序列与第二个DMRS序列二者交汇于第m2个符号的第k个子载波,即灰色填充资源粒子,1≤m1<m2≤M,1≤k≤K。
为了使得第二DMRS序列和PTRS序列在重叠资源粒子处的符号的相位相同,这里对整个PTRS序列进行相位旋转θ,第二DMRS序列保持不变。由
Figure PCTCN2018084825-appb-000024
可得θ=α mk。因此,旋转后的PTRS序列为
Figure PCTCN2018084825-appb-000025
n=1,…,M,如图22所示。或者可以对PTRS序列在重叠资源粒子的符号进行打孔,例如图23所示。
步骤2003、向接收端传输第二参考信号序列、第三参考信号序列和经过所述预设处理的第一参考信号序列。
其中,只进行相位旋转时可以将经过上述预设处理的第一参考信号序列按照导频图案进行传输,而进行了打孔处理,则将经过上述预设处理的第一参考信号序列按照导频图案结合打孔处理进行传输,即在导频图案对应的资源粒子中除被打孔之外的资源粒子上传输。
其中,传输第二参考信号序列和第三参考信号序列可以是按照第二参考信号序列的导频图案进行传输。
本实施例中,通过上述步骤可以实现将不存在重叠资源粒子和上述预设处理结合实现,从而增加系统的灵活性。且还可以直接生成不存在重叠资源粒子的至少两个参考信号序列,这样同样可以提高参考信号的性能。
参见图24,图24是本公开实施例提供的另一种参考信号传输方法的流程图。如图24所示,包括以下步骤:
步骤2401、生成至少两个参考信号序列。
其中,生成的至少两个参考信号序列可以参见图2所示的实施例的相应说明,此处不作赘述。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
步骤2402、若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述第一参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,且所述至少两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子。
其中,这里的预设处理可以参见上述实施例介绍的预设处理,例如:对第一参考信号序列进行相位旋转处理或者打孔处理,或者相位旋转处理和打孔处理,此处不作赘述,且可以达到相同或相似的有益效果。
例如:PTRS与两个相邻OFDM符号的DMRS交汇,二者的导频图案如图25所示。其中,第4行的第4个符号起为PTRS的导频图案,
Figure PCTCN2018084825-appb-000026
为PTRS参考信号符号,n=1,…,M。第3和4列为DMRS的导频图案,即两个符号,
Figure PCTCN2018084825-appb-000027
Figure PCTCN2018084825-appb-000028
分别为两个DMRS符号上第n个子载波上的参考信号符号,n=1,…,K。假设PTRS与第二个DMRS符号交汇于红色资源粒子。
为了使得DMRS和PTRS在交汇资源粒子处符号的相位相同,对PTRS序列做相位旋转θ,DMRS保持不变。由
Figure PCTCN2018084825-appb-000029
可得θ=α 1k。因此,旋转后的PTRS序列为
Figure PCTCN2018084825-appb-000030
n=1,2,…,M,如图26所示。当然,这里也是打孔处理,对此不作限定。
步骤2403、向接收端传输第二参考信号序列和经过所述预设处理的第一参考信号序列。
本实施例中,通过上述步骤可以实现将不存在重叠资源粒子和上述预设处理结合实现,从而增加系统的灵活性。且还可以直接生成不存在重叠资源粒子的至少两个参考信号序列,这样同样可以提高参考信号的性能。
参见图27,图27是本公开实施例提供的另一种参考信号传输方法的流程图。如图27所示,包括以下步骤:
步骤2701、若发送端生成的至少两个参考信号序列的导频图案存在重叠资源粒子,则接收发送端传输的参考信号序列,其中,所述传输的参考信号序列包括经过预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号,所述预设处理包括相位旋转处理和打孔处理中的至少一项。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
所述接收发送端传输的参考信号序列,包括:
接收发送端传输的所述第一目标参考信号序列和所述第二参考信号序列。
可选的,所述第一相位旋转处理的相位旋转参数由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述接收发送端传输的参考信号序列,包括:
接收发送端传输的所述第二目标参考信号序列和所述第三目标参考信号序列。
可选的,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述接收发送端传输的参考信号序列,包括:
接收发送端传输的所述第二参考信号序列和经过打孔处理的第一参考信号序列。
可选的,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上;
所述方法还包括:
在所述目标子载波上接收所述发送端传输的所述第一参考信号序列。
可选的,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上是通过如下方式调整的:
通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
可选的,所述预设相邻资源区域包括:
与所述重叠的资源粒子具有相同OFDM符号的子载波;或者
与所述重叠的资源粒子具有相同子载波的OFDM符号;
其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
可选的,所述目标子载波的位置由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列;
所述接收发送端传输的参考信号序列,包括:
接收发送端传输的所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
可选的,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源;
所述预设处理,包括:
对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
所述预设处理,包括:
对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
需要说明的是,本实施例作为图2至图24所示的实施例对应的发送端设备的实施方式,其具体的实施方式可以参见图2至图24所示的实施例相关说明,以及达到相同或相似的有益效果,为了避免重复说明,此处不再赘述。
请参考图28,图28是本公开实施例提供的另一种发送端的结构图,如图8所示,发送端2800包括:
生成模块2801,用于生成至少两个参考信号序列;
处理模块2802,用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列;
第一传输模块2803,用于向接收端传输参考信号序列,其中,所述传输的参考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。
可选的,所述处理模块2802用于对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
所述第一传输模块2803用于向所述接收端传输所述第一目标参考信号序列和所述第二参考信号序列。
可选的,所述处理模块2802用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两 个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述第一传输模块2803用于向所述接收端传输所述第二目标参考信号序列和所述第三目标参考信号序列。
可选的,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数通过物理层信令、MAC层信令或者高层信令通知所述接收端。
可选的,所述处理模块2802用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述第一传输模块2803用于向接收端传输所述第二参考信号序列和经过打孔处理的第一参考信号序列。
可选的,所述处理模块2802用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上;
如图29所示,所述发送端2800还包括:
第二传输模块2804,用于在所述目标子载波上向所述用户终端传输所述第一参考信号序列。
可选的,所述处理模块2802用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
可选的,所述预设相邻资源区域包括:
与所述重叠的资源粒子具有相同OFDM符号的子载波;或者
与所述重叠的资源粒子具有相同子载波的OFDM符号;
其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
可选的,所述目标子载波的位置通过物理层信令、MAC层信令或者高层信令通知所述接收端。
可选的,所述处理模块2802用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
以及将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列;
所述第一传输模块2803用于向所述接收端传输所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
可选的,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源;
所述处理模块2802用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括第一参考信号序列和第二参考 信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
所述处理模块2802用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
需要说明的是,本实施例中上述发送端2800可以是本公开实施例中方法实施例中任意实施方式的发送端,本公开实施例中方法实施例中发送端的任意实施方式都可以被本实施例中的上述发送端2800所实现,以及达到相同或相似的有益效果,此处不再赘述。
请参考图30,图30是本公开实施例提供的一种接收端的结构图。如图30所示,接收端3000包括:
第一接收模块3001,用于若发送端生成的至少两个参考信号序列的导频图案存在重叠资源粒子,则接收发送端传输的参考信号序列,其中,所述传输的参考信号序列包括经过预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号,所述预设处理包括相位旋转处理和打孔处理中的至少一项。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
所述第一接收模块3001,用于接收发送端传输的所述第一目标参考信号序列和所述第二参考信号序列。
可选的,所述第一相位旋转处理的相位旋转参数由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述第一接收模块3001用于接收发送端传输的所述第二目标参考信号序列和所述第三目标参考信号序列。
可选的,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述第一接收模块3001用于接收发送端传输的所述第二参考信号序列和经过打孔处理的第一参考信号序列。
可选的,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上;
如图31所示,所述接收端3000还包括:
第二接收模块3002,用于在所述目标子载波上接收所述发送端传输的所述第一参考信号序列。
可选的,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上是通过如下方式调整的:
通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符 号的子载波位置调整至预设相邻资源区域中目标子载波上。
可选的,所述预设相邻资源区域包括:
与所述重叠的资源粒子具有相同OFDM符号的子载波;或者
与所述重叠的资源粒子具有相同子载波的OFDM符号;
其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
可选的,所述目标子载波的位置由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列,
所述第一接收模块3001用于接收发送端传输的所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
可选的,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源;
所述预设处理,包括:
对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
所述预设处理,包括:
对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
需要说明的是,本实施例中上述接收端3000可以是本公开实施例中方法实施例中任意实施方式的接收端,本公开实施例中方法实施例中接收端的任意实施方式都可以被本实施例中的上述接收端3000所实现,以及达到相同的有益效果,此处不再赘述。
参见图32,图32是本公开实施例应用的发送端的结构图。如图32所示,发送端3200包括:处理器3201、收发机3202、存储器3203、用户接口3204和总线接口,其中:
处理器3201,用于读取存储器3203中的程序,执行下列过程:
生成至少两个参考信号序列;
若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列;
向接收端传输参考信号序列,其中,所述传输的参考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。
其中,收发机3202,用于在处理器3201的控制下接收和发送数据。
在图32中,总线架构可以包括任意数量的互联的总线和桥,具体由处理 器3201代表的一个或多个处理器和存储器3203代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机3202可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口3204还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器3201负责管理总线架构和通常的处理,存储器3203可以存储处理器3201在执行操作时所使用的数据。
可选的,所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
所述向接收端传输参考信号序列,包括:
向所述接收端传输所述第一目标参考信号序列和所述第二参考信号序列。
可选的,所述第一相位旋转处理的相位旋转参数通过物理层信令、媒体介入控制MAC层信令或者高层信令通知所述接收端。
可选的,所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述向接收端传输参考信号序列,包括:
向所述接收端传输所述第二目标参考信号序列和所述第三目标参考信号序列。
可选的,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数通过物理层信令、MAC层信令或者高层信令通知所述接收端。
可选的,所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述向接收端传输参考信号序列,包括:
向接收端传输所述第二参考信号序列和经过打孔处理的第一参考信号序列。
可选的,所述对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,包括:
将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上;
处理器3201还用于:
在所述目标子载波上向所述用户终端传输所述第一参考信号序列。
可选的,所述将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上,包括:
通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
可选的,所述预设相邻资源区域包括:
与所述重叠的资源粒子具有相同正交频分复用OFDM符号的子载波;或者
与所述重叠的资源粒子具有相同子载波的OFDM符号;
其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
可选的,所述目标子载波的位置通过物理层信令、MAC层信令或者高层信令通知所述接收端。
可选的,所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列;
所述向接收端传输参考信号序列,包括:
向所述接收端传输所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
可选的,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源粒子;
所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
需要说明的是,本实施例中上述发送端3200可以是本公开实施例中方法实施例中任意实施方式的发送端,本公开实施例中方法实施例中发送端的任意实施方式都可以被本实施例中的上述发送端3200所实现,以及达到相同或相似的有益效果,此处不再赘述。
参见图33,图33是本公开实施例应用的接收端的结构图。如图33所示,接收端3300包括:至少一个处理器3301、存储器3302、至少一个网络接口3304和用户接口3303。接收端3300中的各个组件通过总线系统3305耦合在一起。可理解,总线系统3305用于实现这些组件之间的连接通信。总线系统3305除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图33中将各种总线都标为总线系统3305。
其中,用户接口3303可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(track ball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器3302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪 存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器3302旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器3302存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统33021和应用程序33022。
其中,操作系统33021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序33022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序33022中。
在本公开实施例中,通过调用存储器3302存储的程序或指令,具体的,可以是应用程序33022中存储的程序或指令,处理器3301用于:
若发送端生成的至少两个参考信号序列的导频图案存在重叠资源粒子,则接收发送端传输的参考信号序列,其中,所述传输的参考信号序列包括经过预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号,所述预设处理包括相位旋转处理和打孔处理中的至少一项。
上述本公开实施例揭示的方法可以应用于处理器3301中,或者由处理器3301实现。处理器3301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器3301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器3301可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific  Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器3302,处理器3301读取存储器3302中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
所述接收发送端传输的参考信号序列,包括:
接收发送端传输的所述第一目标参考信号序列和所述第二参考信号序列。
可选的,所述第一相位旋转处理的相位旋转参数由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述接收发送端传输的参考信号序列,包括:
接收发送端传输的所述第二目标参考信号序列和所述第三目标参考信号序列。
可选的,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
所述接收发送端传输的参考信号序列,包括:
接收发送端传输的所述第二参考信号序列和经过打孔处理的第一参考信号序列。
可选的,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上;
处理器3331还用于:
在所述目标子载波上接收所述发送端传输的所述第一参考信号序列。
可选的,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上是通过如下方式调整的:
通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中 的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
可选的,所述预设相邻资源区域包括:
与所述重叠的资源粒子具有相同OFDM符号的子载波;或者
与所述重叠的资源粒子具有相同子载波的OFDM符号;
其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
可选的,所述目标子载波的位置由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
可选的,所述预设处理,包括:
对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列;
所述接收发送端传输的参考信号序列,包括:
接收发送端传输的所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
可选的,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所 述第二参考信号序列的导频图案不存在重叠资源;
所述预设处理,包括:
对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
所述预设处理,包括:
对所述第一参考信号序列进行所述预设处理。
可选的,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
需要说明的是,本实施例中上述接收端3300可以是本公开实施例中方法实施例中任意实施方式的接收端,本公开实施例中方法实施例中接收端的任意实施方式都可以被本实施例中的上述接收端3300所实现,以及达到相同的有益效果,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (61)

  1. 一种参考信号传输方法,包括:
    生成至少两个参考信号序列;
    若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列;以及
    向接收端传输参考信号序列,其中,所述传输的参考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。
  2. 如权利要求1所述的方法,其中,所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
    所述向接收端传输参考信号序列,包括:
    向所述接收端传输所述第一目标参考信号序列和所述第二参考信号序列。
  3. 如权利要求2所述的方法,其中,所述第一相位旋转处理的相位旋转参数通过物理层信令、媒体介入控制MAC层信令或者高层信令通知所述接收端。
  4. 如权利要求1至3中任一项所述的方法,其中,所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其 中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
    所述向接收端传输参考信号序列,包括:
    向所述接收端传输所述第二目标参考信号序列和所述第三目标参考信号序列。
  5. 如权利要求4所述的方法,其中,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数通过物理层信令、MAC层信令或者高层信令通知所述接收端。
  6. 如权利要求1至5中任一项所述的方法,其中,所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
    对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
    所述向接收端传输参考信号序列,包括:
    向接收端传输所述第二参考信号序列和经过打孔处理的第一参考信号序列。
  7. 如权利要求6所述的方法,其中,所述对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,包括:
    将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上;
    所述方法还包括:
    在所述目标子载波上向所述用户终端传输所述第一参考信号序列。
  8. 如权利要求7所述的方法,其中,所述将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载 波上,包括:
    通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
  9. 如权利要求7或8所述的方法,其中,所述预设相邻资源区域包括:
    与所述重叠的资源粒子具有相同正交频分复用OFDM符号的子载波;或者
    与所述重叠的资源粒子具有相同子载波的OFDM符号;
    其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
  10. 如权利要求7或8所述的方法,其中,所述目标子载波的位置通过物理层信令、MAC层信令或者高层信令通知所述接收端。
  11. 如权利要求1至10中任一项所述的方法,其中,所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
    将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列;
    所述向接收端传输参考信号序列,包括:
    向所述接收端传输所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
  12. 如权利要求1至11中任一项所述的方法,其中,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源粒子;
    所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
    对所述第一参考信号序列进行所述预设处理。
  13. 如权利要求1至11中任一项所述的方法,其中,所述至少两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
    所述对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,包括:
    对所述第一参考信号序列进行所述预设处理。
  14. 如权利要求1至13中任一项所述的方法,其中,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
    所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
  15. 一种参考信号传输方法,包括:
    若发送端生成的至少两个参考信号序列的导频图案存在重叠资源粒子,则接收发送端传输的参考信号序列,其中,所述传输的参考信号序列包括经过预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号,所述预设处理包括相位旋转处理和打孔处理中的至少一项。
  16. 如权利要求15所述的方法,其中,所述预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位 相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
    所述接收发送端传输的参考信号序列,包括:
    接收发送端传输的所述第一目标参考信号序列和所述第二参考信号序列。
  17. 如权利要求16所述的方法,其中,所述第一相位旋转处理的相位旋转参数由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
  18. 如权利要求15至17中任一项所述的方法,其中,所述预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
    所述接收发送端传输的参考信号序列,包括:
    接收发送端传输的所述第二目标参考信号序列和所述第三目标参考信号序列。
  19. 如权利要求18所述的方法,其中,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
  20. 如权利要求15至19中任一项所述的方法,其中,所述预设处理,包括:
    对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
    所述接收发送端传输的参考信号序列,包括:
    接收发送端传输的所述第二参考信号序列和经过打孔处理的第一参考信号序列。
  21. 如权利要求20所述的方法,其中,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上;
    所述方法还包括:
    在所述目标子载波上接收所述发送端传输的所述第一参考信号序列。
  22. 如权利要求21所述的方法,其中,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上是通过如下方式调整的:
    通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
  23. 如权利要求21或22所述的方法,其中,所述预设相邻资源区域包括:
    与所述重叠的资源粒子具有相同OFDM符号的子载波;或者
    与所述重叠的资源粒子具有相同子载波的OFDM符号;
    其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
  24. 如权利要求21或22所述的方法,其中,所述目标子载波的位置由所述发送端通过物理层信令、MAC层信令或者高层信令通知。
  25. 如权利要求15至24中任一项所述的方法,其中,所述预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
    将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列;
    所述接收发送端传输的参考信号序列,包括:
    接收发送端传输的所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
  26. 如权利要求15至25中任一项所述的方法,其中,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源;
    所述预设处理,包括:
    对所述第一参考信号序列进行所述预设处理。
  27. 如权利要求15至25中任一项所述的方法,其中,所述至少两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
    所述预设处理,包括:
    对所述第一参考信号序列进行所述预设处理。
  28. 如权利要求15至27中任一项所述的方法,其中,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
    所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
  29. 一种发送端设备,包括:
    生成模块,用于生成至少两个参考信号序列;
    处理模块,用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的至少一个参考信号序列进行预设处理,其中,所述预设处理包括相位旋转处理和打孔处理中的至少一项,所述至少一个参考信号序列为所述至少两个参考信号序列中导频图案存在重叠资源粒子的参考信号序列;以及
    第一传输模块,用于向接收端设备传输参考信号序列,其中,所述传输的参考信号序列包括经过所述预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号。
  30. 如权利要求29所述的发送端设备,其中,所述处理模块用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
    所述第一传输模块用于向所述接收端设备传输所述第一目标参考信号序列和所述第二参考信号序列。
  31. 如权利要求30所述的发送端设备,其中,所述第一相位旋转处理的相位旋转参数通过物理层信令、媒体介入控制MAC层信令或者高层信令通知所述接收端设备。
  32. 如权利要求29至31中任一项所述的发送端设备,其中,所述处理模块用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
    所述第一传输模块用于向所述接收端设备传输所述第二目标参考信号序列和所述第三目标参考信号序列。
  33. 如权利要求32所述的发送端设备,其中,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数通过物理层信令、MAC层信令或者高层信令通知所述接收端设备。
  34. 如权利要求29至33中任一项所述的发送端设备,其中,所述处理模块用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
    所述第一传输模块用于向接收端设备传输所述第二参考信号序列和经过打孔处理的第一参考信号序列。
  35. 如权利要求34所述的发送端设备,其中,所述处理模块用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上;
    所述发送端设备还包括:
    第二传输模块,用于在所述目标子载波上向所述用户终端传输所述第一参考信号序列。
  36. 如权利要求35所述的发送端设备,其中,所述处理模块用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
  37. 如权利要求35或36所述的发送端设备,其中,所述预设相邻资源区域包括:
    与所述重叠的资源粒子具有相同OFDM符号的子载波;或者
    与所述重叠的资源粒子具有相同子载波的OFDM符号;
    其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
  38. 如权利要求35或36所述的发送端设备,其中,所述目标子载波的位置通过物理层信令、MAC层信令或者高层信令通知所述接收端设备。
  39. 如权利要求29至38中任一项所述的发送端设备,其中,所述处理模块用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
    以及将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列;
    所述第一传输模块用于向所述接收端设备传输所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
  40. 如权利要求29至39中任一项所述的发送端设备,其中,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源;
    所述处理模块用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述第一参考信号序列进行所述预设处理。
  41. 如权利要求29至39中任一项所述的发送端设备,其中,所述至少 两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
    所述处理模块用于若所述至少两个参考信号序列的导频图案存在重叠资源粒子,则对所述第一参考信号序列进行所述预设处理。
  42. 如权利要求29至41中任一项所述的发送端设备,其中,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
    所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
  43. 一种接收端设备,包括:
    第一接收模块,用于若发送端设备生成的至少两个参考信号序列的导频图案存在重叠资源粒子,则接收发送端设备传输的参考信号序列,其中,所述传输的参考信号序列包括经过预设处理的参考信号序列,或者包括经过所述预设处理和未经过预设处理的参考信号,所述预设处理包括相位旋转处理和打孔处理中的至少一项。
  44. 如权利要求43所述的接收端设备,其中,所述预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第一相位旋转处理,得到第一目标参考信号序列,所述第一目标参考信号序列在所述重叠资源粒子处的符号与第二参考信号序列在所述重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中导频图案与所述第一参考信号序列的导频图案存在重叠资源粒子的参考信号序列;
    所述第一接收模块,用于接收发送端设备传输的所述第一目标参考信号序列和所述第二参考信号序列。
  45. 如权利要求44所述的接收端设备,其中,所述第一相位旋转处理的相位旋转参数由所述发送端设备通过物理层信令、MAC层信令或者高层信令通知。
  46. 如权利要求43至45中任一项所述的接收端设备,其中,所述预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第二相位旋转 处理,得到第二目标参考信号序列,以及对所述至少两个参考信号序列中的第二参考信号序列进行第三相位旋转处理,得到第三目标参考信号序列,其中,所述第二目标参考信号序列在所述重叠资源粒子处的符号与第三目标参考信号序列在所述重叠资源粒子处的符号的相位相同,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
    所述第一接收模块用于接收发送端设备传输的所述第二目标参考信号序列和所述第三目标参考信号序列。
  47. 如权利要求46所述的接收端设备,其中,所述第二相位旋转处理和所述第三相位旋转处理的相位旋转参数由所述发送端设备通过物理层信令、MAC层信令或者高层信令通知。
  48. 如权利要求43至47中任一项所述的接收端设备,其中,所述预设处理,包括:
    对第一参考信号序列在所述重叠资源粒子处的符号进行打孔处理,使得所述第一参考信号序列在所述重叠资源粒子处为空,其中,所述第一参考信号序列为所述至少两个参考信号中除第二参考信号序列之外的参考信号序列,所述重叠资源粒子为所述第二参考信号序列的导频图案与所述第一参考信号序列的导频图案之间的重叠资源粒子;
    所述第一接收模块用于接收发送端设备传输的所述第二参考信号序列和经过打孔处理的第一参考信号序列。
  49. 如权利要求48所述的接收端设备,其中,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上;
    所述接收端设备还包括:
    第二接收模块,用于在所述目标子载波上接收所述发送端设备传输的所述第一参考信号序列。
  50. 如权利要求49所述的接收端设备,其中,所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置被调整至预设相邻资源区域中目标子载波上是通过如下方式调整的:
    通过子载波位置调整、频域密度调整、频域间隔调整和导频图案调整中的至少一项调整方式,将所述第一参考信号序列在所述重叠资源粒子处的符号的子载波位置调整至预设相邻资源区域中目标子载波上。
  51. 如权利要求49或50所述的接收端设备,其中,所述预设相邻资源区域包括:
    与所述重叠的资源粒子具有相同OFDM符号的子载波;或者
    与所述重叠的资源粒子具有相同子载波的OFDM符号;
    其中,所述预设相邻资源区域不包括所述第二参考信号序列所占的资源。
  52. 如权利要求49或50所述的接收端设备,其中,所述目标子载波的位置由所述发送端设备通过物理层信令、MAC层信令或者高层信令通知。
  53. 如权利要求43至52中任一项所述的接收端设备,其中,所述预设处理,包括:
    对所述至少两个参考信号序列中的第一参考信号序列进行第四相位旋转处理,得到第四目标参考信号序列,所述第四目标参考信号序列在第一重叠资源粒子处的符号与第二参考信号序列在所述第一重叠资源粒子处的符号的相位相同,所述第二参考信号序列为所述至少两个参考信号中除所述第一参考信号序列之外的至少一个参考信号序列,所述第一重叠资源粒子为所述第一参考信号序列的导频图案与所述第二参考信号序列的导频图案的重叠资源粒子;
    将第四目标参考信号序列在第二重叠资源粒子处的符号进行打孔处理,使得所述第四目标参考信号序列在所述第二重叠资源粒子处为空,所述第二重叠资源粒子为所述第一参考信号序列的导频图案与第三参考信号序列的导频图案的重叠资源粒子,所述第三参考信号序列为所述至少两个参考信号中除所述第一参考信号序列和所述第二参考信号序列之外的至少一个参考信号序列,
    所述第一接收模块用于接收发送端设备传输的所述第二参考信号序列、所述第三参考信号序列和经过打孔处理的第四目标参考信号序列。
  54. 如权利要求43至53中任一项所述的接收端设备,其中,所述至少两个参考信号序列包括第一参考信号序列、第二参考信号序列和第三参考信 号序列,且所述第一参考信号序列和所述第二参考信号序列的导频图案存在重叠资源粒子,所述第三参考信号序列和所述第一参考信号序列的导频图案不存在重叠资源粒子,且所述第三参考信号序列和所述第二参考信号序列的导频图案不存在重叠资源;
    所述预设处理,包括:
    对所述第一参考信号序列进行所述预设处理。
  55. 如权利要求43至53中任一项所述的接收端设备,其中,所述至少两个参考信号序列包括第一参考信号序列和第二参考信号序列,其中,所述第二参考信号序列的导频图案占用连续至少两个OFDM符号,且所述第一参考信号序列的导频图像与所述第二参考信号序列的导频图案占用的部分OFDM符号存在重叠资源粒子;
    所述预设处理,包括:
    对所述第一参考信号序列进行所述预设处理。
  56. 如权利要求43至55中任一项所述的接收端设备,其中,所述至少两个参考信号序列包括相位跟踪参考信号序列和解调参考信号序列;或者
    所述至少两个参考信号序列包括相位跟踪参考信号序列和同步信号块。
  57. 一种参考信号传输系统,包括如权利要求29至42中任一项所述接收端设备和如权利要求43至56中任一项所述发送端设备。
  58. 一种发送端设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至14中任一项所述的参考信号传输方法中的步骤。
  59. 一种接收端设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求15至28中任一项所述的参考信号传输方法中的步骤。
  60. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至14中任一项所述的参考信号传输方法中的步骤。
  61. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求15至28中任一项 所述的参考信号传输方法中的步骤。
PCT/CN2018/084825 2017-05-04 2018-04-27 一种参考信号传输方法、相关设备及系统 WO2018201986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710309764.2A CN108809570B (zh) 2017-05-04 2017-05-04 一种参考信号传输方法、相关设备及系统
CN201710309764.2 2017-05-04

Publications (1)

Publication Number Publication Date
WO2018201986A1 true WO2018201986A1 (zh) 2018-11-08

Family

ID=64015850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084825 WO2018201986A1 (zh) 2017-05-04 2018-04-27 一种参考信号传输方法、相关设备及系统

Country Status (2)

Country Link
CN (1) CN108809570B (zh)
WO (1) WO2018201986A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210266208A1 (en) * 2018-11-13 2021-08-26 Huawei Technologies Co., Ltd. Sequence generating and processing method and apparatus
US20230006873A1 (en) * 2021-07-02 2023-01-05 Qualcomm Incorporated Techniques to facilitate time varying reference signals with single carrier waveforms
WO2023211192A1 (ko) * 2022-04-27 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436062B (zh) * 2019-01-11 2022-02-01 华为技术有限公司 一种同步信号发送和接收的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823167A (zh) * 2010-03-24 2012-12-12 Lg电子株式会社 无线电通信系统中减少小区间干扰的方法和设备
CN102884751A (zh) * 2010-05-04 2013-01-16 高通股份有限公司 使用信道状态信息参考信号的方法和装置
CN104285462A (zh) * 2012-04-27 2015-01-14 株式会社Ntt都科摩 无线通信系统、基站装置、用户终端以及无线通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823167A (zh) * 2010-03-24 2012-12-12 Lg电子株式会社 无线电通信系统中减少小区间干扰的方法和设备
CN102884751A (zh) * 2010-05-04 2013-01-16 高通股份有限公司 使用信道状态信息参考信号的方法和装置
CN104285462A (zh) * 2012-04-27 2015-01-14 株式会社Ntt都科摩 无线通信系统、基站装置、用户终端以及无线通信方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210266208A1 (en) * 2018-11-13 2021-08-26 Huawei Technologies Co., Ltd. Sequence generating and processing method and apparatus
US11894963B2 (en) * 2018-11-13 2024-02-06 Huawei Technologies Co., Ltd. Sequence generating and processing method and apparatus
US20230006873A1 (en) * 2021-07-02 2023-01-05 Qualcomm Incorporated Techniques to facilitate time varying reference signals with single carrier waveforms
US11855822B2 (en) * 2021-07-02 2023-12-26 Qualcomm Incorporated Techniques to facilitate time varying reference signals with single carrier waveforms
WO2023211192A1 (ko) * 2022-04-27 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치

Also Published As

Publication number Publication date
CN108809570A (zh) 2018-11-13
CN108809570B (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2018201986A1 (zh) 一种参考信号传输方法、相关设备及系统
JP7018461B2 (ja) 共通ダウンリンク制御チャネル伝送方法及び関連機器
US9071304B2 (en) Digital-to-time converter and methods for generating phase-modulated signals
WO2016161893A1 (zh) 一种数据传输、接收信号检测的方法和设备
AU2019302968B2 (en) Method for Determining Search Space Parameter, and Terminal Device
US11950245B2 (en) Method and device for cross carrier scheduling physical downlink shared channel
WO2018133650A1 (zh) 一种边带信息的发送方法、接收方法、发送端和接收端
WO2018120833A1 (zh) 一种同步接入信号块的传输方法、网络侧设备和用户终端
ES2952417T3 (es) Método, aparato, sistema y programa informático para extensión de ancho de banda de portadora lte usando un espaciamiento entre subportadoras aumentado
CN114223226A (zh) Tci状态配置和激活或去激活的装置和方法
WO2018165873A1 (zh) 一种上行信号的传输方法及相关设备
WO2021093321A1 (zh) 一种基于轨道角动量oam的通信方法及相关装置
WO2018130093A1 (zh) 同步接入信号组的发送方法、接收方法、相关设备及系统
CN110858775A (zh) 用于多波束传输上行信号的方法、终端设备和网络侧设备
US20190305902A1 (en) Reference signal transmission method and apparatus
WO2018095068A1 (zh) 一种同步接入信号组的传输方法、设备和系统
US20180234156A1 (en) Apparatuses and methods for beam sweeping in a wireless communication system
WO2022083619A1 (zh) 通信信息的发送、接收方法及通信设备
US11184885B2 (en) Information transmission method, terminal device, and network device
US10645540B2 (en) Applying random phase to multicast data
WO2018228320A1 (zh) 功率余量报告触发方法和用户终端
WO2018171469A1 (zh) 同步接入信号组的发送方法、接收方法、相关设备和系统
WO2018145531A1 (zh) 同步接入信号组的发送方法、接收方法、相关设备及系统
WO2022176289A1 (ja) 基地局、無線通信方法、無線通信システム、端末、及びコンピュータ可読媒体
US20230076789A1 (en) System and Method for Phase Noise Reduction in Very High Frequency Spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794368

Country of ref document: EP

Kind code of ref document: A1