WO2018201897A1 - 会话分流的方法及装置、设备、存储介质 - Google Patents

会话分流的方法及装置、设备、存储介质 Download PDF

Info

Publication number
WO2018201897A1
WO2018201897A1 PCT/CN2018/083554 CN2018083554W WO2018201897A1 WO 2018201897 A1 WO2018201897 A1 WO 2018201897A1 CN 2018083554 W CN2018083554 W CN 2018083554W WO 2018201897 A1 WO2018201897 A1 WO 2018201897A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
session
secondary base
ambr
station side
Prior art date
Application number
PCT/CN2018/083554
Other languages
English (en)
French (fr)
Inventor
方建民
施小娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/610,617 priority Critical patent/US11363494B2/en
Priority to EP18794793.2A priority patent/EP3621341A4/en
Publication of WO2018201897A1 publication Critical patent/WO2018201897A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0257Traffic management, e.g. flow control or congestion control per individual bearer or channel the individual bearer or channel having a maximum bit rate or a bit rate guarantee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device, device, and storage medium for session offloading.
  • gNB Next Generation Node B
  • eLTE enhanced Long Term Evolution
  • eNB evolved Node B
  • LTE Long
  • gNB is 5G base station connected to core network 5GC (5G Core Network, 5th generation core network) through NG interface
  • LTE eNB is 4G base station connected to core network EPC through S1 interface (Evolved Packet Core, Evolved Packet Core Network)
  • the eLTE eNB is a 4G to 5G transition type base station that can be simultaneously connected to the core network EPC (through the S1 interface) and 5GC (through the NG interface).
  • connection interface between the LTE eNB base stations is called the X2 interface
  • connection interface between the gNB base stations is called the Xn interface
  • the eLTE eNB base station can play the role of the LTE eNB base station and the role of the gNB base station.
  • a User Equipment can have multiple PDU Sessions (Protocol Data Unit Sessions).
  • a PDU Session can contain multiple QoS Flows (Quality of Service Flow). , quality of service flow).
  • QoS flows of the same PDU session can be mapped to the same DRB (Data Radio Bearer).
  • DRB Data Radio Bearer
  • part of the PDU Session of one UE and/or part of QoS Flow in the PDU Session may be offloaded from the primary base station to the secondary base station.
  • the UE AMBR indicating the maximum allowable bit rate of a PDU Session
  • the UE AMBR indicating the maximum allowed bit rate of a UE. Program.
  • the embodiments of the present invention provide a method, a device, and a storage medium for session offloading, so as to solve at least the problem that the related technologies cannot allocate and calculate the session AMBR and the UE AMBR during the DC operation.
  • An embodiment of the present invention provides a method for session offloading, including: determining, by a primary base station, a session aggregation maximum bit rate AMBR of a secondary mobile station side; and transmitting, by the primary base station, a session AMBR of the secondary base station side to a secondary base station .
  • the embodiment of the present invention provides another method for session offloading, including: the core network calculates a session AMBR of the offloading session on the secondary base station side; and the core network sends the session AMBR of the secondary base station side to the primary base station.
  • the embodiment of the present invention provides another method for session offloading, including: receiving, by the secondary base station, a session aggregation maximum bit rate AMBR of the offloaded session sent by the primary base station on the secondary base station side; and the secondary base station according to the session of the secondary base station side
  • the AMBR calculates the user equipment UE AMBR on the secondary base station side.
  • Another embodiment of the present invention provides a device for session offloading, which is applied to a primary base station, and includes: a determining module, configured to determine a session aggregation maximum bit rate AMBR of the offloading session on the secondary base station side; and a sending module configured to The session AMBR on the secondary base station side is sent to the secondary base station.
  • An embodiment of the present invention provides another apparatus for session offloading, which is applied to a core network, and includes: a calculation module, configured to calculate a session AMBR of the offloading session on the secondary base station side; and a sending module configured to: The session AMBR is sent to the primary base station.
  • Another embodiment of the present invention provides a device for session offloading, which is applied to a secondary base station, and includes: a receiving module, configured to receive a session aggregation maximum bit rate AMBR of a splitting session sent by the primary base station on the secondary base station side; And configuring, according to the session AMBR on the secondary base station side, the user equipment UE AMBR on the secondary base station side.
  • the embodiment of the invention further provides a storage medium, which is arranged to store program code for performing the following steps:
  • An embodiment of the present invention further provides a session offloading device, including a memory and a processor, wherein the memory stores a computer program executable on a processor, wherein the processor implements the method when the program is executed by the processor The steps in .
  • the primary base station determines the session aggregation maximum bit rate AMBR of the offloading session on the secondary base station side; the primary base station sends the session AMBR of the secondary base station side to the secondary base station.
  • the problem that the related technology cannot allocate and calculate the session AMBR and the UE AMBR during the DC operation is solved by the primary base station assigning the session aggregation maximum bit rate AMBR of the offloading session to the secondary base station.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for session offloading according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another method for session offloading according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of an apparatus for session offloading according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of another apparatus for session offloading according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of still another apparatus for session offloading according to an embodiment of the present invention.
  • Fig. 9 is a flowchart of the fourth embodiment.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • the network architecture includes: a core network 11 , a primary base station 12 , and a secondary base station 13 . They are connected to each other.
  • FIG. 2 is a flowchart of a method for session offloading according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the primary base station determines a session aggregation maximum bit rate AMBR of the offloading session on the secondary base station side;
  • Step S204 The primary base station sends the session AMBR on the secondary base station side to the secondary base station.
  • the primary base station determines the session aggregation maximum bit rate AMBR of the offloading session on the secondary base station side; the primary base station sends the session AMBR of the secondary base station side to the secondary base station.
  • the problem that the related technology cannot allocate and calculate the session AMBR and the UE AMBR during the DC operation is solved by the primary base station assigning the session aggregation maximum bit rate AMBR of the offloading session to the secondary base station.
  • the primary base station determines that the session AMBR of the offloaded session on the secondary base station side includes one of the following: the primary base station acquires the session AMBR of the offloaded session on the secondary base station side from the core network; and the primary base station generates the session of the offloaded session on the secondary base station side. AMBR.
  • the session AMBR of the primary base station acquiring the offloaded session from the core network on the secondary base station side includes:
  • the primary base station sends a first request message to the core network.
  • the primary base station receives the first response message that is sent by the core network and is based on the feedback of the first request message, where the first response message carries the session AMBR on the secondary base station side, and the session AMBR on the secondary base station side is the core network according to the first request message. owned.
  • the primary base station generates the session AMBR of the offloading session on the secondary base station side, and the primary base station generates the session AMBR of the offloaded session on the secondary base station side according to the quality of service QoS information of the flow Flow that is offloaded to the secondary base station in the session.
  • the primary base station sends the session AMBR on the secondary base station side to the secondary base station, and the primary base station sends a second request message carrying the session AMBR on the secondary base station side to the secondary base station.
  • the primary base station sends the session AMBR on the secondary base station side to the secondary base station, and the primary base station sends a first notification message carrying the session AMBR on the secondary base station side to the secondary base station.
  • the solution of the embodiment further includes: receiving, by the primary base station, the second response message sent by the secondary base station, where The second response message is used to indicate that the request of the primary base station is accepted in whole or in part.
  • the second response message carries at least one of the following: an unacceptable session identifier of the offloaded session, and an unacceptable secondary base station side. Session AMBR, recommended session AMBR on the secondary base station side.
  • the method further includes: the primary base station sends a second notification message to the core network, where the second notification message carries a part of the flow splitting to the session of the secondary base station.
  • the session AMBR information on the secondary base station side and the session AMBR information on the secondary base station side include: a session identifier of the session and a session AMBR of each session on the secondary base station side.
  • the solution of the embodiment further includes: the primary base station calculates its own user equipment UE AMBR, where the UE AMBR is equal to the UE on the primary base station side. The sum of each session AMBR.
  • the first request message carries the traffic information of the flow in the session, where the traffic information of the flow includes: a session identifier of the session, and a flow identifier of one or more flows that are offloaded to the secondary base station in each session.
  • the first request message carries the offload information of the session, where the offload information of the session includes: a session identifier of the session, a session AMBR on the secondary base station side after the session is split, or a session AMBR percentage on the secondary base station side.
  • FIG. 3 is a flowchart of another method for session offloading according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps. step:
  • Step S302 the core network calculates a session AMBR of the offloading session on the secondary base station side;
  • Step S304 the core network sends the session AMBR on the secondary base station side to the primary base station.
  • the core network calculates the session AMBR of the offloading session on the secondary base station side, including:
  • the core network receives the first request message sent by the primary base station.
  • the core network calculates the session AMBR on the secondary base station side according to the information in the first request message.
  • the first request message carries the traffic information of the flow in the session, where the traffic information of the flow includes: a session identifier of the session, and a flow identifier of one or more flows that are offloaded to the secondary base station in each session.
  • calculating, by the core network, the session AMBR according to the information in the first request message includes: the core network obtaining, according to the information in the first request message, QoS information of the Flow that is offloaded to the secondary base station in the session; and the core network is offloaded according to the session.
  • the QoS information of the Flow to the secondary base station determines the session AMBR on the secondary base station side.
  • the first request message carries the offload information of the session, where the offload information of the session includes: a session identifier of the session, a session AMBR on the secondary base station side after the session is split, or a session AMBR percentage on the secondary base station side.
  • the calculating, by the core network, the session AMBR according to the information in the first request message includes: determining, by the core network, the flow flow that is offloaded to the secondary base station in the session according to the information in the first request message; The QoS information of the Flow of the base station recalculates the session AMBR on the secondary base station side.
  • the core network sends the session AMBR on the secondary base station side to the primary base station.
  • the core network carries the session AMBR on the secondary base station side in the first response message and sends the message to the primary base station, where the first response message is A feedback message requesting a message.
  • FIG. 4 is a flowchart of still another method for session offloading according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps. step:
  • Step S402 the secondary base station receives the session aggregation maximum bit rate AMBR of the offloading session sent by the primary base station on the secondary base station side;
  • Step S404 The secondary base station calculates the user equipment UE AMBR on the secondary base station side according to the session AMBR on the secondary base station side.
  • the secondary base station calculates the UE AMBR on the secondary base station side according to the session AMBR on the secondary base station side, and the secondary base station determines the sum of the session AMBRs of the UE on the secondary base station side as the UE AMBR on the secondary base station side.
  • the first request message is one of the following: an evolved radio access bearer change indication message E-RAB MODIFICATION INDICATION, a protocol data unit session resource indication message PDU SESSION RESOURCE INDICATION, a redefined message;
  • the first response message is one of the following: an E-RAB change confirmation message E-RAB MODIFICATION CONFIRM, a PDU session resource confirmation message PDU SESSION RESOURCE CONFIRM, a redefined message;
  • the first notification message is one of the following: a secondary evolved base station add request message SENB ADDITION REQUEST, a secondary next generation base station add request message SGNB ADDITION REQUEST, a redefined message;
  • the second request message is one of the following: a SENB add request message SENB ADDITION REQUEST, an SGNB add request message SGNB ADDITION REQUEST, a redefined message;
  • the second response message is one of the following: SENB Add Request Acknowledgement message SENB ADDITION REQUEST ACKNOWLEDGE, SGNB Add Request Acknowledgement message SGLB ADDITION REQUEST ACKNOWLEDGE, redefined message;
  • the second notification message is one of the following: an E-RAB change indication message E-RAB MODIFICATION INDICATION, a PDU session resource indication message PDU SESSION RESOURCE INDICATION, a redefined message.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a device for converging a session is provided, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of a device for session offloading according to an embodiment of the present invention, which is applied to a primary base station, as shown in FIG. 5, the device includes:
  • the determining module 50 is configured to determine a session aggregation maximum bit rate AMBR of the offloading session on the secondary base station side;
  • the sending module 52 is configured to send the session AMBR on the secondary base station side to the secondary base station.
  • the determining module includes one of the following: an obtaining unit configured to acquire a session AMBR of the offloading session on the secondary base station side from the core network, and a generating unit configured to generate a session AMBR of the offloading session on the secondary base station side.
  • FIG. 6 is a structural block diagram of another apparatus for session offloading according to an embodiment of the present invention, which is applied to a core network.
  • the apparatus includes: a calculation module 60 configured to calculate a session AMBR of a offloaded session on a secondary base station side.
  • the sending module 62 is configured to send the session AMBR to the primary base station.
  • FIG. 7 is a structural block diagram of another apparatus for session offloading according to an embodiment of the present invention, which is applied to a secondary base station.
  • the apparatus includes: a receiving module 70 configured to receive a splitting session sent by a primary base station at a secondary base station.
  • the session aggregation maximum bit rate AMBR is configured on the side
  • the calculating module 72 is configured to calculate the user equipment UE AMBR on the secondary base station side according to the session AMBR.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, and is used to describe the present application in detail in conjunction with a specific embodiment:
  • Embodiment 1 Core network calculates Session AMBR on the secondary base station side
  • Step 800 The primary base station decides to offload part of the flow in the partial session and/or the session to the secondary base station.
  • Step 801 The primary base station sends a first request message to the core network.
  • the first request message carries the information of the part of the flow in the session to the secondary base station, including the session identifier of the session and the flow identifier of one or more flows of the secondary base station in each session.
  • Step 802 The core network calculates the Session AMBR (Aggregate Maximum Bitrate) of the Session on the primary base station side and the secondary base station side according to the information of the part of the received Flow in the received secondary network.
  • Session AMBR Average Maximum Bitrate
  • Step 803 The core network sends a first response message to the primary base station.
  • the first response message carries a Session AMBR that is split between the Session and the secondary base station and the Session AMBR on the secondary base station side.
  • Step 804 The primary base station sends a first notification message to the secondary base station.
  • the first notification message carries the Session AMBR information of the Session of the secondary base station on the secondary base station, and includes the Session identifier of the Session and the Session AMBR of each Session on the secondary base station side.
  • Step 805 The primary base station and the secondary base station respectively calculate their own UE AMBR.
  • the UE AMBR on the primary base station side is equal to the sum of the Session AMBRs of the UE on the primary base station side
  • the UE AMBR on the secondary base station side is equal to the sum of the Session AMBRs on the secondary base station side of the UE.
  • Embodiment 2 (Core network calculates Session AMBR on the secondary base station side)
  • Step 800 is the same as Embodiment 1.
  • Step 801 is the same as Embodiment 1.
  • Step 802 The core network calculates the Session AMBR (Aggregate Maximum Bit Rate) of the Session on the secondary base station side according to the information of the part of the received Flow to the secondary base station.
  • Session AMBR Average Maximum Bit Rate
  • Step 803 The core network sends a first response message to the primary base station.
  • the session in the first response message carries the Session AMBR of the secondary base station and the Session of the secondary base station.
  • Step 804 is the same as Embodiment 1.
  • Step 805 The primary base station and the secondary base station respectively calculate their own UE AMBR.
  • the UE AMBR on the primary base station side is equal to the sum of the Session AMBRs of the UE on the primary base station side (the Session AMBR on the primary base station side can be obtained by subtracting the Session AMBR on the secondary base station side from the old Session AMBR), and the UE AMBR on the secondary base station side. It is equal to the sum of the Session AMBRs of the UE on the secondary base station side.
  • Embodiment 3 (Core network calculates Session AMBR on the secondary base station side)
  • Step 800 The primary base station decides to offload part of the flow in the partial session and/or the session to the secondary base station.
  • Step 801 The primary base station sends a first request message to the core network.
  • the first request message carries the information that the part of the flow in the session is offloaded to the secondary base station, including the session identifier of the session and the Session AMBR on the secondary base station side after the split in each session (or the session on the secondary base station side) Percentage of AMBR).
  • Step 802 The core network divides the flow of the flow into the secondary base station according to the information of the part of the received flow in the received session, determines which flows in the session are offloaded to the secondary base station, and recalculates the session on the primary base station side according to the determined flow information that is offloaded to the secondary base station. And the Session AMBR (Aggregate Maximum Bitrate) on the secondary base station side.
  • Session AMBR Average Maximum Bitrate
  • Step 803 The core network sends a first response message to the primary base station.
  • Step 804 The primary base station sends a first notification message to the secondary base station.
  • the first notification message carries the Session AMBR information of the Session that is split to the secondary base station on the secondary base station side, including the Session identifier of the Session, the Session AMBR of each Session on the secondary base station side, and the secondary base station in each Session.
  • Step 805 The primary base station and the secondary base station respectively calculate their own UE AMBR.
  • the UE AMBR on the primary base station side is equal to the sum of the Session AMBRs of the UE on the primary base station side
  • the UE AMBR on the secondary base station side is equal to the sum of the Session AMBRs on the secondary base station side of the UE.
  • Embodiment 4 The primary base station calculates the Session AMBR on the secondary base station side
  • Embodiment 9 is a flowchart of Embodiment 4. As shown in FIG. 9, the embodiment includes:
  • Step 900 The primary base station decides to offload part of the flow in the partial session and/or the session to the secondary base station.
  • Step 901 The primary base station calculates the Session AMBR (Aggregate Maximum Bit Rate) of the Session on the primary base station side and the secondary base station side according to the information of the secondary flow in the Session.
  • Session AMBR Average Maximum Bit Rate
  • Step 902 The primary base station sends a second request message to the secondary base station.
  • the second request message carries information of a part of the flow in the session to the secondary base station, including the session identifier of the session and the Session AMBR on the secondary base station side in each session.
  • Step 903 The secondary base station sends a second response message to the primary base station.
  • the second response message indicates that the request of the primary base station is received in whole or in part.
  • the second response message carries the unacceptable session identifier of the session, and the reason is unacceptable on the secondary base station side.
  • the Session AMBR can also carry the proposed Session AMBR on the secondary base station side.
  • Step 904 The primary base station sends a second notification message to the core network.
  • the second notification message carries at least part of the Session AMBR information of the Session destined to the secondary base station on the secondary base station side, including the Session identifier of the Session and the Session AMBR of each Session on the secondary base station side.
  • Step 905 The primary base station and the secondary base station respectively calculate their own UE AMBR.
  • the UE AMBR on the primary base station side is equal to the sum of the Session AMBRs of the UE on the primary base station side
  • the UE AMBR on the secondary base station side is equal to the sum of the Session AMBRs on the secondary base station side of the UE.
  • the allocation and calculation of the Session AMBR and the UE AMBR can be performed well.
  • the above method of session offloading is implemented in the form of a software function module and sold or used as a standalone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computing device (which may be a personal computer, server, or network device, etc.) is implemented to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • embodiments of the present invention also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • the primary base station sends the session AMBR on the secondary base station side to the secondary base station.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor performs, according to the stored program code in the storage medium, a session aggregation maximum bit rate AMBR that determines the offloading session on the secondary base station side;
  • the processor executes the primary base station to transmit the session AMBR on the secondary base station side to the secondary base station according to the stored program code in the storage medium.
  • an embodiment of the present invention provides a session offloading device (a network device in a base station or a core network), including a memory and a processor, where the memory stores a computer program executable on a processor, where The steps in the method for implementing the above-described session offloading when the processor executes the program.
  • a session offloading device a network device in a base station or a core network
  • the memory stores a computer program executable on a processor
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units; they may be located in one place or distributed on multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a removable storage device, a read only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM read only memory
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • One device (which may be a base station or a network device in a core network, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种会话分流的方法及装置、设备、存储介质,其中,该方法包括:主基站确定分流会话在辅基站侧的会话聚合最大比特率AMBR;所述主基站将所述辅基站侧的会话 AMBR 发送给辅基站。

Description

会话分流的方法及装置、设备、存储介质
相关申请的交叉引用
本申请基于申请号为201710309151.9、申请日为2017年05月04日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本发明涉及通信领域,具体而言,涉及一种会话分流的方法及装置、设备、存储介质。
背景技术
相关技术在5G(New Radio)网络中,将存在gNB(Next Generation Node B,下一代基站)、eLTE(enhanced Long Term Evolution,增强的长期演进)eNB(evolved Node B,演进基站)、LTE(Long Term Evolution,长期演进)eNB三中类型的基站,gNB为5G基站通过NG接口连接到核心网5GC(5G Core Network,第5代核心网),LTE eNB为4G基站通过S1接口连接到核心网EPC(Evolved Packet Core,演进的分组核心网),而eLTE eNB为4G到5G的过渡型基站可同时连接到核心网EPC(通过S1接口)和5GC(通过NG接口)。LTE eNB基站之间的连接接口称为X2接口,gNB基站之间的连接接口称为Xn接口,而eLTE eNB基站即可扮演LTE eNB基站的角色又可扮演gNB基站的角色。
在LTE(Long Term Evolution,长期演进)系统中,将具有相同QoS(Quality of Service,服务质量)要求的数据流聚合为承载,基站与核心网对QoS的处理都按承载进行。在5G系统中,将采用新的QoS机制以支持 eMBB(enhanced Mobile Broadband,增强移动宽带)、mMTC(massive Machine Type Communication,巨量机器类型通讯)、URLLC(Ultra Reliable and Low Latency Communication,高可靠低时延通讯)等5G特性业务。
在5G新的QoS机制下,一个UE(User Equipment,用户设备)可以建有多个PDU Session(Protocol Data Unit Session,协议数据单元会话),一个PDU Session可以包含多个QoS Flow(Quality of Service Flow,服务质量流)。同一个PDU Session的多个QoS flow可以映射到同一个DRB(Data Radio Bearer,数据无线承载),不同PDU Session的QoS flow(流)不可以映射到同一个DRB。
当在5G网络中进行DC(Dual Connectivity,双连接)操作时,一个UE的部分PDU Session和/或PDU Session中的部分QoS Flow可以从主基站分流到辅基站。然而、对于表示一个PDU Session的最大允许比特率的Session AMBR(Aggregate Maximum Bitrate,聚合最大比特率)和表示一个UE的最大允许比特率的UE AMBR如何在DC时进行分配与计算,目前尚没有具体方案。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种会话分流的方法及装置、设备、存储介质,以至少解决相关技术在DC操作时不能对会话AMBR、UE AMBR进行分配和计算的问题。
本发明实施例,提供了一种会话分流的方法,包括:主基站确定分流会话在辅基站侧的会话聚合最大比特率AMBR;所述主基站将所述辅基站侧的会话AMBR发送给辅基站。
本发明实施例,提供了另一种会话分流的方法,包括:核心网计算分流会话在辅基站侧的会话AMBR;所述核心网将所述辅基站侧的会话 AMBR发送给主基站。
本发明实施例,提供了又一种会话分流的方法,包括:辅基站接收主基站发送的分流会话在辅基站侧的会话聚合最大比特率AMBR;所述辅基站根据所述辅基站侧的会话AMBR计算辅基站侧的用户设备UE AMBR。
本发明另一个实施例,提供了一种会话分流的装置,应用在主基站,包括:确定模块,配置为确定分流会话在辅基站侧的会话聚合最大比特率AMBR;发送模块,配置为将所述辅基站侧的会话AMBR发送给辅基站。
本发明实施例,提供了另一种另会话分流的装置,应用在核心网,包括:计算模块,配置为计算分流会话在辅基站侧的会话AMBR;发送模块,配置为将所述辅基站侧的会话AMBR发送给主基站。
本发明另一个实施例,提供了又一种会话分流的装置,应用在辅基站,包括:接收模块,配置为接收主基站发送的分流会话在辅基站侧的会话聚合最大比特率AMBR;计算模块,配置为根据所述辅基站侧的会话AMBR计算辅基站侧的用户设备UE AMBR。
本发明实施例,还提供了一种存储介质,该存储介质设置为存储用于执行以下步骤的程序代码:
确定分流会话在辅基站侧的会话聚合最大比特率AMBR;
将所述辅基站侧的会话AMBR发送给辅基站。
本发明实施例,还一种会话分流的设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现上述方法中的步骤。
通过本发明实施例,主基站确定分流会话在辅基站侧的会话聚合最大比特率AMBR;所述主基站将所述辅基站侧的会话AMBR发送给辅基站。通过由主基站将分流会话在辅基站侧的会话聚合最大比特率AMBR分配给辅基站,解决了相关技术在DC操作时不能对会话AMBR、UE AMBR进行 分配和计算的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例的网络架构示意图;
图2是本发明实施例的一种会话分流的方法的流程图;
图3是本发明实施例的另一种会话分流的方法的流程图;
图4是本发明实施例的又一种会话分流的方法的流程图;
图5是本发明实施例的一种会话分流的装置的结构框图;
图6是本发明实施例的另一种会话分流的装置的结构框图;
图7是本发明实施例的又一种会话分流的装置的结构框图;
图8是实施方式1~3的流程图;
图9是实施方式4的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例可以运行于图1所示的网络架构上,如图1所示,图1是本发明实施例的网络架构示意图,该网络架构包括:核心网11、主基站12、辅基站13,它们三者之间相互连接。
在本实施例中提供了一种运行于上述网络架构的会话分流的方法,图2是本发明实施例的一种会话分流的方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,主基站确定分流会话在辅基站侧的会话聚合最大比特率AMBR;
步骤S204,主基站将辅基站侧的会话AMBR发送给辅基站。
通过上述步骤,主基站确定分流会话在辅基站侧的会话聚合最大比特率AMBR;所述主基站将所述辅基站侧的会话AMBR发送给辅基站。通过由主基站将分流会话在辅基站侧的会话聚合最大比特率AMBR分配给辅基站,解决了相关技术在DC操作时不能对会话AMBR、UE AMBR进行分配和计算的问题。
在其他实施例中,主基站确定分流会话在辅基站侧的会话AMBR包括以下之一:主基站从核心网获取分流会话在辅基站侧的会话AMBR;主基站生成分流会话在辅基站侧的会话AMBR。
在本发明实施例中,主基站从核心网获取分流会话在辅基站侧的会话AMBR包括:
S11,主基站向核心网发送第一请求消息;
S12,主基站接收核心网发送的基于第一请求消息反馈的第一响应消息,其中,第一响应消息携带辅基站侧的会话AMBR,辅基站侧的会话AMBR是核心网根据第一请求消息中得到的。
在其他实施例中,主基站生成分流会话在辅基站侧的会话AMBR包括:主基站根据会话中分流到辅基站的流Flow的服务质量QoS信息生成分流会话在辅基站侧的会话AMBR。
在其他实施例中,主基站将辅基站侧的会话AMBR发送给辅基站包括:主基站向辅基站发送携带辅基站侧的会话AMBR的第二请求消息。
在其他实施例中,主基站将辅基站侧的会话AMBR发送给辅基站包括:主基站向辅基站发送携带辅基站侧的会话AMBR的第一通知消息。
在其他实施例中,在主基站向辅基站发送携带辅基站侧的会话AMBR的第二请求消息之后,本实施例的方案还包括:主基站接收辅基站发送的第二响应消息,其中,第二响应消息用于指示全部或部分接受主基站的请求,当指示部分接受主基站的请求时,第二响应消息携带以下至少之一:不能接受的分流会话的会话标识、不能接受的辅基站侧的会话AMBR、建议的辅基站侧的会话AMBR。
在其他实施例中,在主基站接收辅基站发送的第二响应消息之后,方法还包括:主基站向核心网发送第二通知消息,其中,第二通知消息携带部分Flow分流到辅基站的会话在辅基站侧的会话AMBR信息,辅基站侧的会话AMBR信息包括:会话的会话标识以及各会话在辅基站侧的会话AMBR。
在其他实施例中,在主基站将辅基站侧的会话AMBR发送给辅基站之后,本实施例的方案还包括:主基站计算自身的用户设备UE AMBR,其中,UE AMBR等于UE在主基站侧的各会话AMBR之和。
在其他实施例中,第一请求消息携带会话中Flow的分流信息,其中,Flow的分流信息包括:会话的会话标识、各会话中分流到辅基站的一个或多个Flow的Flow标识。
在其他实施例中,第一请求消息携带会话的分流信息,其中,会话的分流信息包括:会话的会话标识,各会话分流后在辅基站侧的会话AMBR或在辅基站侧的会话AMBR百分比。
在本实施例中提供了另一种运行于上述网络架构的会话分流的方法,图3是本发明实施例的另一种会话分流的方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,核心网计算分流会话在辅基站侧的会话AMBR;
步骤S304,核心网将辅基站侧的会话AMBR发送给主基站。
在其他实施例中,核心网计算分流会话在辅基站侧的会话AMBR包括:
S21,核心网接收主基站发送的第一请求消息;
S22,核心网根据第一请求消息中的信息计算辅基站侧的会话AMBR。
在其他实施例中,第一请求消息携带会话中Flow的分流信息,其中,Flow的分流信息包括:会话的会话标识、各会话中分流到辅基站的一个或多个Flow的Flow标识。
在其他实施例中,核心网根据第一请求消息中的信息计算会话AMBR包括:核心网根据第一请求消息中的信息得到会话中分流到辅基站的Flow的QoS信息;核心网根据会话中分流到辅基站的Flow的QoS信息确定辅基站侧的会话AMBR。
在其他实施例中,第一请求消息携带会话的分流信息,其中,会话的分流信息包括:会话的会话标识,各会话分流后在辅基站侧的会话AMBR或在辅基站侧的会话AMBR百分比。
在其他实施例中,核心网根据第一请求消息中的信息计算会话AMBR包括:核心网根据第一请求消息中的信息确定会话中分流到辅基站的流Flow;核心网根据确定的分流到辅基站的Flow的QoS信息重新计算辅基站侧的会话AMBR。
在其他实施例中,核心网将辅基站侧的会话AMBR发送给主基站包括:核心网将辅基站侧的会话AMBR携带在第一响应消息中发送给主基站,其中,第一响应消息是第一请求消息的反馈消息。
在本实施例中提供了又一种运行于上述网络架构的会话分流的方法,图4是本发明实施例的又一种会话分流的方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,辅基站接收主基站发送的分流会话在辅基站侧的会话聚合最大比特率AMBR;
步骤S404,辅基站根据辅基站侧的会话AMBR计算辅基站侧的用户设备UE AMBR。
在其他实施例中,辅基站根据辅基站侧的会话AMBR计算辅基站侧的UE AMBR包括:辅基站将UE在辅基站侧的各会话AMBR之和确定为辅基站侧的UE AMBR。
本实施例的消息类型可以如下:
第一请求消息为以下之一:演进的无线接入承载更改指示消息E-RAB MODIFICATION INDICATION、协议数据单元会话资源指示消息PDU SESSION RESOURCE INDICATION、重新定义的消息;
第一响应消息为以下之一:E-RAB更改确认消息E-RAB MODIFICATION CONFIRM、PDU会话资源确认消息PDU SESSION RESOURCE CONFIRM、重新定义的消息;
第一通知消息为以下之一:辅演进基站添加请求消息SENB ADDITION REQUEST、辅下一代基站添加请求消息SGNB ADDITION REQUEST、重新定义的消息;
第二请求消息为以下之一:SENB添加请求消息SENB ADDITION REQUEST、SGNB添加请求消息SGNB ADDITION REQUEST、重新定义的消息;
第二响应消息为以下之一:SENB添加请求确认消息SENB ADDITION REQUEST ACKNOWLEDGE、SGNB添加请求确认消息SGNB ADDITION REQUEST ACKNOWLEDGE、重新定义的消息;
第二通知消息为以下之一:E-RAB更改指示消息E-RAB MODIFICATION INDICATION、PDU会话资源指示消息PDU SESSION  RESOURCE INDICATION、重新定义的消息。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种会话分流的装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是本发明实施例的一种会话分流的装置的结构框图,应用在主基站,如图5所示,该装置包括:
确定模块50,配置为确定分流会话在辅基站侧的会话聚合最大比特率AMBR;
发送模块52,配置为将辅基站侧的会话AMBR发送给辅基站。
在其他实施例中,确定模块包括以下之一:获取单元,配置为从核心网获取分流会话在辅基站侧的会话AMBR;生成单元,配置为生成分流会话在辅基站侧的会话AMBR。
图6是本发明实施例的另一种会话分流的装置的结构框图,应用在核心网,如图6所示,该装置包括:计算模块60,配置为计算分流会话在辅 基站侧的会话AMBR;发送模块62,配置为将会话AMBR发送给主基站。
图7是本发明实施例的又一种会话分流的装置的结构框图,应用在辅基站,如图7所示,该装置包括:接收模块70,配置为接收主基站发送的分流会话在辅基站侧的会话聚合最大比特率AMBR;计算模块72,配置为根据会话AMBR计算辅基站侧的用户设备UE AMBR。
以上装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本发明装置实施例中未披露的技术细节,请参照本发明方法实施例的描述而理解。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本发明的可选实施例,用于结合具体的实施方式对本申请进行详细说明:
实施方式1(核心网计算辅基站侧的Session AMBR)
图8是实施方式1~3的流程图,如图8所示,该实施方式包括:
步骤800、主基站决定将部分Session和/或Session中的部分Flow分流到辅基站。
步骤801、主基站向核心网发送第一请求消息;
其中,第一请求消息携带Session中的部分Flow分流到辅基站的信息,包括这些Session(会话)的Session标识以及各Session中分流到辅基站的一个或多个Flow(流)的Flow标识。
步骤802、核心网根据收到的Session中的部分Flow分流到辅基站的信息,计算该Session在主基站侧的和在辅基站侧的Session AMBR(Aggregate Maximum Bitrate,聚合最大比特率)。
步骤803、核心网向主基站发送第一响应消息;
其中,第一响应消息中携带部分Flow分流到辅基站的Session在主基站侧的和在辅基站侧的Session AMBR。
步骤804、主基站向辅基站发送第一通知消息;
其中,第一通知消息中携带部分Flow分流到辅基站的Session在辅基站侧的Session AMBR信息,包括这些Session的Session标识以及各Session在辅基站侧的Session AMBR。
步骤805、主基站和辅基站分别计算自己的UE AMBR;
其中,主基站侧的UE AMBR等于UE在主基站侧的各Session AMBR之和,辅基站侧的UE AMBR等于UE在辅基站侧的各Session AMBR之和。
实施方式2(核心网计算辅基站侧的Session AMBR)
步骤800、同实施方式1。
步骤801、同实施方式1。
步骤802、核心网根据收到的Session中的部分Flow分流到辅基站的信息,计算该Session在辅基站侧的Session AMBR(Aggregate Maximum Bitrate,聚合最大比特率)。
步骤803、核心网向主基站发送第一响应消息;
其中,第一响应消息中携带部分Flow分流到辅基站的Session在辅基站侧的Session AMBR。
步骤804、同实施方式1。
步骤805、主基站和辅基站分别计算自己的UE AMBR;
其中,主基站侧的UE AMBR等于UE在主基站侧的各Session AMBR之和(主基站侧的Session AMBR可以通过老的Session AMBR减去辅基站侧的Session AMBR得到),辅基站侧的UE AMBR等于UE在辅基站侧的各Session AMBR之和。
实施方式3(核心网计算辅基站侧的Session AMBR)
步骤800、主基站决定将部分Session和/或Session中的部分Flow分流到辅基站。
步骤801、主基站向核心网发送第一请求消息;
其中,第一请求消息中携带Session中的部分Flow分流到辅基站的信息,包括这些Session(会话)的Session标识以及各Session中分流后在辅基站侧的Session AMBR(或在辅基站侧的Session AMBR百分比)。
步骤802、核心网根据收到的Session中的部分Flow分流到辅基站的信息,确定Session中哪些Flow分流到辅基站,并根据确定的分流到辅基站的Flow信息重新计算该Session在主基站侧的和在辅基站侧的Session AMBR(Aggregate Maximum Bitrate,聚合最大比特率)。
步骤803、核心网向主基站发送第一响应消息;
其中,第一响应消息中携带部分Flow分流到辅基站的Session在主基站侧的和在辅基站侧的Session AMBR、以及各Session中分流到辅基站的一个或多个Flow(流)的Flow标识。
步骤804、主基站向辅基站发送第一通知消息;
其中,第一通知消息中携带部分Flow分流到辅基站的Session在辅基站侧的Session AMBR信息,包括这些Session的Session标识、各Session在辅基站侧的Session AMBR、以及各Session中分流到辅基站的一个或多个Flow(流)的Flow标识。
步骤805、主基站和辅基站分别计算自己的UE AMBR;
其中,主基站侧的UE AMBR等于UE在主基站侧的各Session AMBR之和,辅基站侧的UE AMBR等于UE在辅基站侧的各Session AMBR之和。
实施方式4(主基站计算辅基站侧的Session AMBR)
图9是实施方式4的流程图,如图9所示,该实施方式包括:
步骤900、主基站决定将部分Session和/或Session中的部分Flow分流到辅基站。
步骤901、主基站根据Session中的部分Flow分流到辅基站的信息,计算该Session在主基站侧的和在辅基站侧的Session AMBR(Aggregate Maximum Bitrate,聚合最大比特率)。
步骤902、主基站向辅基站发送第二请求消息;
其中,第二请求消息中携带Session中的部分Flow分流到辅基站的信息,包括这些Session(会话)的Session标识以及各Session中在辅基站侧的Session AMBR。
步骤903、辅基站向主基站发送第二响应消息;
其中,第二响应消息表示全部或部分接受主基站的请求,当表示部分接受主基站的请求时,第二响应消息中携带不能接受的分流Session的Session标识、原因为不能接受的辅基站侧的Session AMBR、还可以携带建议的辅基站侧的Session AMBR。
步骤904、主基站向核心网发送第二通知消息;
其中,第二通知消息中至少携带部分Flow分流到辅基站的Session在辅基站侧的Session AMBR信息,包括这些Session的Session标识以及各Session在辅基站侧的Session AMBR。
步骤905、主基站和辅基站分别计算自己的UE AMBR;
其中,主基站侧的UE AMBR等于UE在主基站侧的各Session AMBR之和,辅基站侧的UE AMBR等于UE在辅基站侧的各Session AMBR之和。
采用本实施例的方法,当在5G网络中进行双连接操作时,可以很好地进行Session AMBR和UE AMBR的分配与计算。
实施例4
本发明实施例中,如果以软件功能模块的形式实现上述的会话分流的 方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
对应地,本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,确定分流会话在辅基站侧的会话聚合最大比特率AMBR;
S2,主基站将辅基站侧的会话AMBR发送给辅基站。
在其他实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在其他实施例中,处理器根据存储介质中已存储的程序代码执行确定分流会话在辅基站侧的会话聚合最大比特率AMBR;
在其他实施例中,处理器根据存储介质中已存储的程序代码执行主基站将辅基站侧的会话AMBR发送给辅基站。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
对应地,本发明实施例提供一种会话分流的设备(基站或核心网中的网络设备),包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现上述会话分流的方法中的步骤。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台设备(可以是基站或者核心网中的网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种会话分流的方法,其中,包括:
    主基站确定分流会话在辅基站侧的会话聚合最大比特率AMBR;
    所述主基站将所述辅基站侧的会话AMBR发送给辅基站。
  2. 根据权利要求1所述的方法,其中,主基站确定分流会话在辅基站侧的会话AMBR包括以下之一:
    所述主基站从核心网获取分流会话在辅基站侧的会话AMBR;
    所述主基站生成分流会话在辅基站侧的会话AMBR。
  3. 根据权利要求2所述的方法,其中,主基站从核心网获取分流会话在辅基站侧的会话AMBR包括:
    所述主基站向核心网发送第一请求消息;
    所述主基站接收核心网发送的基于所述第一请求消息反馈的第一响应消息,其中,所述第一响应消息携带所述辅基站侧的会话AMBR,所述辅基站侧的会话AMBR是所述核心网根据所述第一请求消息得到的。
  4. 根据权利要求2所述的方法,其中,主基站生成分流会话在辅基站侧的会话AMBR包括:
    所述主基站根据会话中分流到辅基站的流Flow的服务质量QoS信息生成分流会话在辅基站侧的会话AMBR。
  5. 根据权利要求4所述的方法,其中,所述主基站将所述辅基站侧的会话AMBR发送给辅基站包括:
    所述主基站向辅基站发送携带所述辅基站侧的会话AMBR的第二请求消息。
  6. 根据权利要求3所述的方法,其中,所述主基站将所述辅基站侧的会话AMBR发送给辅基站包括:
    所述主基站向辅基站发送携带所述辅基站侧的会话AMBR的第一通 知消息。
  7. 根据权利要求5所述的方法,其中,在所述主基站向辅基站发送携带所述辅基站侧的会话AMBR的第二请求消息之后,所述方法还包括:
    所述主基站接收所述辅基站发送的第二响应消息,其中,所述第二响应消息用于指示全部或部分接受主基站的请求,当指示部分接受主基站的请求时,所述第二响应消息携带以下至少之一:不接受的分流会话的会话标识、不接受的辅基站侧的会话AMBR、建议的辅基站侧的会话AMBR。
  8. 根据权利要求7所述的方法,其中,在所述主基站接收所述辅基站发送的第二响应消息之后,所述方法还包括:
    所述主基站向核心网发送第二通知消息,其中,所述第二通知消息携带部分Flow分流到辅基站的会话在辅基站侧的会话AMBR信息,所述辅基站侧的会话AMBR信息包括:会话的会话标识以及各会话在辅基站侧的会话AMBR。
  9. 根据权利要求7所述的方法,其中,在所述主基站将所述辅基站侧的会话AMBR发送给辅基站之后,所述方法还包括:
    所述主基站计算自身的用户设备UE AMBR,其中,所述UE AMBR等于UE在主基站侧的各会话AMBR之和。
  10. 根据权利要求3、5、6、8任一项所述的方法,其中,其中,
    所述第一请求消息为以下之一:演进的无线接入承载更改指示消息E-RAB MODIFICATION INDICATION、协议数据单元会话资源指示消息PDU SESSION RESOURCE INDICATION、重新定义的消息;
    所述第一响应消息为以下之一:E-RAB更改确认消息E-RAB MODIFICATION CONFIRM、PDU会话资源确认消息PDU SESSION RESOURCE CONFIRM、重新定义的消息;
    所述第一通知消息为以下之一:辅演进基站添加请求消息SENB ADDITION REQUEST、辅下一代基站添加请求消息SGNB ADDITION REQUEST、重新定义的消息;
    所述第二请求消息为以下之一:SENB添加请求消息SENB ADDITION REQUEST、SGNB添加请求消息SGNB ADDITION REQUEST、重新定义的消息;
    所述第二响应消息为以下之一:SENB添加请求确认消息SENB ADDITION REQUEST ACKNOWLEDGE、SGNB添加请求确认消息SGNB ADDITION REQUEST ACKNOWLEDGE、重新定义的消息;
    所述第二通知消息为以下之一:E-RAB更改指示消息E-RAB MODIFICATION INDICATION、PDU会话资源指示消息PDU SESSION RESOURCE INDICATION、重新定义的消息。
  11. 根据权利要求3所述的方法,其中,所述第一请求消息携带会话中Flow的分流信息,其中,所述Flow的分流信息包括:会话的会话标识、各会话中分流到辅基站的一个或多个Flow的Flow标识。
  12. 根据权利要求3所述的方法,其中,所述第一请求消息携带会话的分流信息,其中,所述会话的分流信息包括:会话的会话标识,各会话分流后在辅基站侧的会话AMBR或在辅基站侧的会话AMBR百分比。
  13. 一种会话分流的方法,其中,包括:
    核心网计算分流会话在辅基站侧的会话AMBR;
    所述核心网将所述辅基站侧的会话AMBR发送给主基站。
  14. 根据权利要求13所述的方法,其中,核心网计算分流会话在辅基站侧的会话AMBR包括:
    所述核心网接收所述主基站发送的第一请求消息;
    所述核心网根据第一请求消息中的信息计算所述辅基站侧的会话AMBR。
  15. 根据权利要求14所述的方法,其中,所述第一请求消息携带会话中Flow的分流信息,其中,所述Flow的分流信息包括:会话的会话标识、各会话中分流到辅基站的一个或多个Flow的Flow标识。
  16. 根据权利要求15所述的方法,其中,所述核心网根据第一请求消息中的信息计算所述辅基站侧的会话AMBR包括:
    所述核心网根据第一请求消息中的信息得到会话中分流到辅基站的Flow的QoS信息;
    所述核心网根据所述会话中分流到辅基站的Flow的QoS信息确定所述辅基站侧的会话AMBR。
  17. 根据权利要求14所述的方法,其中,所述第一请求消息携带会话的分流信息,其中,所述会话的分流信息包括:会话的会话标识,各会话分流后在辅基站侧的会话AMBR或在辅基站侧的会话AMBR百分比。
  18. 根据权利要求17所述的方法,其中,所述核心网根据第一请求消息中的信息计算所述辅基站侧的会话AMBR包括:
    所述核心网根据所述第一请求消息中的信息确定会话中分流到辅基站的流Flow;
    所述核心网根据确定的分流到辅基站的Flow的QoS信息重新计算所述辅基站侧的会话AMBR。
  19. 根据权利要求14所述的方法,其中,所述核心网将所述辅基站侧的会话AMBR发送给主基站包括:
    所述核心网将所述辅基站侧的会话AMBR携带在第一响应消息中发送给主基站,其中,所述第一响应消息是所述第一请求消息的反馈消息。
  20. 一种会话分流的方法,其中,包括:
    辅基站接收主基站发送的分流会话在辅基站侧的会话聚合最大比特率AMBR;
    所述辅基站根据所述辅基站侧的会话AMBR计算辅基站侧的用户设备UE AMBR。
  21. 根据权利要求20所述的方法,其中,所述辅基站根据所述辅基站侧的会话AMBR计算辅基站侧的UE AMBR包括:
    所述辅基站将UE在辅基站侧的各会话AMBR之和确定为所述辅基站侧的UE AMBR。
  22. 一种会话分流的装置,其中,应用在主基站,包括:
    确定模块,配置为确定分流会话在辅基站侧的会话聚合最大比特率AMBR;
    发送模块,配置为将所述在辅基站侧的会话AMBR发送给辅基站。
  23. 根据权利要求22所述的装置,其中,所述确定模块包括以下之一:
    获取单元,配置为从核心网获取分流会话在辅基站侧的会话AMBR;
    生成单元,配置为生成分流会话在辅基站侧的会话AMBR。
  24. 一种会话分流的装置,其中,应用在核心网,包括:
    计算模块,配置为计算分流会话在辅基站侧的会话AMBR;
    发送模块,配置为将所述在辅基站侧的会话AMBR发送给主基站。
  25. 一种会话分流的装置,其中,应用在辅基站,包括:
    接收模块,配置为接收主基站发送的分流会话在辅基站侧的会话聚合最大比特率AMBR;
    计算模块,配置为根据所述辅基站侧的会话AMBR计算辅基站侧的用户设备UE AMBR。
  26. 一种存储介质,其中,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至12中任一项、或者13至19中任一项、或者,20或21所述的方法。
  27. 一种会话分流的设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现权利要求1至12中任一项、或者13至19中任一项、或者,20或21所述的方法。
PCT/CN2018/083554 2017-05-04 2018-04-18 会话分流的方法及装置、设备、存储介质 WO2018201897A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/610,617 US11363494B2 (en) 2017-05-04 2018-04-18 Method and apparatus for session offloading, device and storage medium
EP18794793.2A EP3621341A4 (en) 2017-05-04 2018-04-18 METHOD AND DEVICE FOR SESSION OFFLOAD, DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710309151.9A CN108810954B (zh) 2017-05-04 2017-05-04 会话分流的方法及装置
CN201710309151.9 2017-05-04

Publications (1)

Publication Number Publication Date
WO2018201897A1 true WO2018201897A1 (zh) 2018-11-08

Family

ID=64016009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083554 WO2018201897A1 (zh) 2017-05-04 2018-04-18 会话分流的方法及装置、设备、存储介质

Country Status (4)

Country Link
US (1) US11363494B2 (zh)
EP (1) EP3621341A4 (zh)
CN (1) CN108810954B (zh)
WO (1) WO2018201897A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918415B (zh) * 2019-05-10 2022-11-01 大唐移动通信设备有限公司 一种双连接修改的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247547A (zh) * 2012-04-20 2014-12-24 华为技术有限公司 数据分流配置方法、基站系统和用户终端
EP2903225A1 (en) * 2014-01-30 2015-08-05 Alcatel Lucent Bit-rate control for access to content stored in local delivery devices of a content-delivery network
CN105848222A (zh) * 2015-01-16 2016-08-10 北京三星通信技术研究有限公司 切换方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2830352A1 (en) * 2013-07-24 2015-01-28 Panasonic Intellectual Property Corporation of America Efficient discard mechanism in small cell deployment
CN104955109B (zh) * 2014-03-28 2020-02-07 北京三星通信技术研究有限公司 配置UE的聚合最大速率的方法、协调non-GBR业务的聚合速率及基站
CN105101253B (zh) * 2014-05-09 2020-04-24 上海诺基亚贝尔股份有限公司 在双连接系统中使用的方法、主基站和用户设备
US10349329B2 (en) * 2015-07-28 2019-07-09 Qualcomm Incorporated Mechanisms for differentiated treatment of offloaded traffic
US20200059989A1 (en) * 2017-08-16 2020-02-20 Lenovo (Singapore) Pte. Ltd. Indicating a packet data unit session as unavailable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247547A (zh) * 2012-04-20 2014-12-24 华为技术有限公司 数据分流配置方法、基站系统和用户终端
EP2903225A1 (en) * 2014-01-30 2015-08-05 Alcatel Lucent Bit-rate control for access to content stored in local delivery devices of a content-delivery network
CN105848222A (zh) * 2015-01-16 2016-08-10 北京三星通信技术研究有限公司 切换方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3621341A4 *
ZTE, SAMSUNG: "TS 23.501 Calculation of UE AMBR", 3GPP ''TS 23.501 SA WG2 MEETING #120 , S 2-172203, 31 March 2017 (2017-03-31), XP051247929 *

Also Published As

Publication number Publication date
EP3621341A1 (en) 2020-03-11
US11363494B2 (en) 2022-06-14
CN108810954B (zh) 2023-04-18
CN108810954A (zh) 2018-11-13
US20200077302A1 (en) 2020-03-05
EP3621341A4 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6905065B2 (ja) ベアラ変換
KR102452940B1 (ko) 무선 통신 시스템에서 이동성 향상을 위한 방법 및 장치
WO2018171398A1 (zh) QoS处理方法和设备
JP5568143B2 (ja) 無線リソースのスケジューリング方法、アクセスネットワーク要素及び端末
WO2019184651A1 (zh) 一种通信方法及装置
JP2016529579A5 (zh)
WO2018202153A1 (zh) 一种新型服务质量架构在双连接系统的配置方法及装置
US20120069737A1 (en) Overload avoidance with home node b gateway (henb gw) in lte
WO2018145670A1 (zh) 基站的切换方法、系统和存储介质
WO2018059457A1 (zh) 一种会话连接建立方法、相关设备及系统
WO2018006773A1 (zh) 信息、数据发送方法及装置、接入网和系统
JP2016525819A5 (zh)
JP7210563B2 (ja) 複製送信の方法および装置
US10952265B2 (en) Dynamic resource scaling and VM migration in NG-RAN
WO2020135850A1 (zh) 通信方法和装置
US20230070712A1 (en) Communication method, apparatus, and system
JP2016512670A5 (zh)
CN110649997B (zh) 数据处理方法及装置
CN109246833B (zh) 承载配置确定、信息发送方法及装置、主基站和辅基站
US11140573B2 (en) Apparatus for V2X-oriented local E2E path establishment and QoS control
US10645615B2 (en) Method and apparatus for establishing bearers in a wireless communication system
JP7128874B2 (ja) 異種ネットワーク環境での次世代ネットワークサービスを提供する方法及び装置
EP3499922B1 (en) Method, device and computer-readable storage medium for applying qos based on user plane data mapping
TWI670985B (zh) 處理雙連結的裝置及方法
WO2021129018A1 (zh) 网络连接的重建立方法及装置、存储介质、电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018794793

Country of ref document: EP

Effective date: 20191204