WO2018201869A1 - 一种确定上行信号发射功率的方法及设备 - Google Patents
一种确定上行信号发射功率的方法及设备 Download PDFInfo
- Publication number
- WO2018201869A1 WO2018201869A1 PCT/CN2018/082709 CN2018082709W WO2018201869A1 WO 2018201869 A1 WO2018201869 A1 WO 2018201869A1 CN 2018082709 W CN2018082709 W CN 2018082709W WO 2018201869 A1 WO2018201869 A1 WO 2018201869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uplink
- terminal device
- carrier
- power
- path loss
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 109
- 230000011664 signaling Effects 0.000 claims description 72
- 238000012545 processing Methods 0.000 claims description 65
- 230000009194 climbing Effects 0.000 claims description 50
- 230000008054 signal transmission Effects 0.000 claims description 21
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 abstract description 25
- 230000015654 memory Effects 0.000 description 36
- 230000006870 function Effects 0.000 description 35
- 238000004891 communication Methods 0.000 description 23
- 230000008569 process Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 239000000969 carrier Substances 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 101100411667 Arabidopsis thaliana RAN4 gene Proteins 0.000 description 1
- 101100274486 Mus musculus Cited2 gene Proteins 0.000 description 1
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 101150096622 Smr2 gene Proteins 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/50—TPC being performed in particular situations at the moment of starting communication in a multiple access environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/247—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/365—Power headroom reporting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/42—TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/10—Open loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/16—Deriving transmission power values from another channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
Definitions
- the present application relates to the field of wireless communications technologies, and in particular, to a method and device for determining uplink transmit power.
- LTE Long Term Evolution
- NR New Radio
- the functions are similar, and the main difference is the difference in the deployed frequency bands.
- the NR base station is mainly deployed in the high frequency band
- the LTE base station is mainly deployed in the low frequency band. Since in the wireless communication system, the higher the frequency of the carrier, the larger the path loss and the worse the uplink coverage. Since the NR base station is deployed in the high frequency band, the NR base station has a problem that the uplink coverage is limited.
- the related art has proposed a solution that the NR base station will share the uplink carrier resources of the LTE base station when the uplink LTE base station is lightly loaded, so that the uplink of the LTE base station can be improved.
- Resource utilization can increase the uplink coverage of the NR base station.
- the uplink working frequency band of the LTE base station is 1.75 GHz
- the downlink working frequency band is 1.85 GHz
- the uplink working frequency band 1.75 GHz is bound to the downlink working frequency band 1.85 GHz.
- an LTE terminal is a terminal that selects an LTE base station as a serving base station, and an LTE terminal receives a downlink signal from an LTE base station by using an LTE system, and transmits an uplink signal to the LTE base station.
- the NR terminal selects the NR base station as the terminal of the serving base station, and the NR terminal receives the downlink signal from the NR base station by using the NR system, and transmits the uplink signal to the NR base station.
- the uplink path loss is first estimated, and then the uplink signal transmission power, such as the estimated uplink path, is determined according to the estimated uplink path loss.
- the larger the loss the larger the transmission power of the uplink signal, to ensure that the base station can correctly receive and demodulate the uplink signal.
- the NR terminal for the NR terminal to transmit an uplink signal on the shared uplink carrier of the LTE base station, the downlink path loss measured on the NR high-frequency downlink carrier is used as the uplink loss on the shared uplink carrier, and the uplink signal is calculated.
- the transmit power will cause the uplink transmission performance of the NR terminal to degrade, and even affect the uplink transmission of the LTE terminal. For example, if the NR terminal's random access preamble transmission power is too large, it will flood the LTE terminal with which the uplink carrier is shared. Enter the preamble.
- the present application provides a method and apparatus for determining uplink transmit power to ensure uplink transmission performance of an NR base station and reduce uplink transmission to an LTE base station.
- the first aspect provides a method for determining an uplink signal transmission power, where the method includes: receiving, by the terminal device, a message sent by the network device, where the message carries a first loss parameter related to the first uplink carrier, a second loss parameter related to the second uplink carrier; the terminal device calculates a transmit power of the uplink signal, where the uplink signal is sent by using the first uplink carrier, and the transmit power of the uplink signal is based on the first uplink carrier
- the related first loss parameter is obtained by calculation, or the uplink signal is sent by using the second uplink carrier, and the transmit power of the uplink signal is calculated based on the second loss parameter related to the second uplink carrier.
- the first uplink carrier includes at least one of: an uplink carrier in a first frequency division duplex FDD carrier and an uplink time slot set of a first time division duplex TDD carrier;
- the two uplink carriers include at least one of the following: an uplink carrier in the second FDD carrier and an uplink time slot set of the second TDD carrier.
- the terminal device receives a message sent by the network device, where the terminal device receives a message sent by the network device on a first downlink carrier, where the first downlink carrier At least one of the following: a downlink carrier in the first FDD carrier and a downlink time slot set of the first TDD carrier, when the first uplink carrier is an uplink carrier in the first FDD carrier, the first The downlink carrier is a downlink carrier in the first FDD carrier, and when the first uplink carrier is an uplink time slot set of the first TDD carrier, the first downlink carrier is a downlink time slot set of the first TDD carrier.
- the first loss parameter is a first path loss compensation factor
- the second loss parameter is a second path loss compensation factor
- the first path loss compensation factor and the second The value of the path loss compensation factor is different.
- the terminal device calculates the transmit power of the uplink signal, and the method includes: when the terminal device sends the uplink signal by using the first uplink carrier, based on the first path loss compensation factor, Calculating a transmit power of the uplink signal;
- the terminal device calculates a transmit power of the uplink signal based on the second path loss compensation factor.
- the first loss parameter is a first power climbing factor
- the second loss parameter is a second power climbing factor
- the first power climbing factor and the second power climbing factor The value of the uplink signal is calculated by the terminal device, and the terminal device calculates the uplink signal based on the first power climbing factor when the uplink signal is sent by using the first uplink carrier. Transmit power; or, when the terminal device sends the uplink signal by using the second uplink carrier, calculating, according to the second power climbing factor, a transmit power of the uplink signal.
- the first loss parameter is a first path loss adjustment factor
- the second loss parameter is a second path loss adjustment factor
- the first path loss adjustment factor is the second The value of the path loss adjustment factor is different.
- the terminal device calculates the transmit power of the uplink signal, and the method includes: when the terminal device sends the uplink signal by using the first uplink carrier, based on the first path loss adjustment factor, And calculating, by the terminal device, the transmit power of the uplink signal, when the uplink signal is sent by using the second uplink carrier, based on the second path loss adjustment factor.
- the method further includes: the terminal device transmitting at least one of power headroom information and maximum power information to a network device, the power headroom information and the maximum power information,
- the network device calculates an uplink path loss of the terminal device; the power headroom information is obtained according to a maximum power that the terminal device sends an uplink signal, and a theoretical power that the terminal device sends uplink shared data;
- the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal;
- the maximum power information is obtained according to the maximum power of the uplink signal sent by the terminal device; and the terminal device receives the network device to send The uplink path loss.
- the terminal device sends at least the power headroom information to the network device, where the terminal device sends a random access third message to the network device, where the random access is in the third message. Carrying at least one of the power headroom information and the maximum power information; the terminal device receiving the uplink path loss sent by the network device, where: the terminal device receives a random access fourth sent by the network device The message, the random access fourth message carries the uplink path loss.
- the terminal device sends at least the power headroom information to the network device, where the terminal device sends uplink data to the network device, where the uplink data carries high layer signaling.
- the high-level signaling includes at least one of the power headroom information and the maximum power information.
- the terminal device receives the uplink path loss value sent by the network device, where the terminal receives the downlink data sent by the network device.
- the downlink data carries high layer signaling, and the high layer signaling includes the uplink path loss.
- a second aspect provides a method for determining an uplink signal transmission power, including: the terminal device transmitting at least one of power headroom information and maximum power information to a network device, where the power headroom information is according to the terminal device Obtained by the maximum power of the uplink signal and the theoretical power of the uplink shared data sent by the terminal device; the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; and the maximum power information is based on The terminal device obtains the maximum power of the uplink signal; the terminal device receives the uplink path loss sent by the network device; and the terminal device calculates the uplink signal transmission based on the received uplink path loss. power.
- the terminal device sends at least one of the power headroom information and the maximum power information to the network device, including: the terminal device sends a random access third message to the network device, where The at least one of the power headroom information and the maximum power information may be carried in the random access third message; the terminal device receiving the uplink path loss sent by the network device, where the terminal device receives the random And accessing the fourth message, where the random access fourth message carries the uplink path loss.
- the terminal device sends at least one of power headroom information and maximum power information to the network device, including: the terminal device sends uplink data to the network device, the uplink The high-level signaling is carried in the data, and the high-level signaling includes at least one of the power headroom information and the maximum power information; the terminal device receives the uplink path loss sent by the network device, and includes: the terminal The device receives the downlink data sent by the network device, where the downlink data carries the high layer signaling, and the high layer signaling includes the uplink path loss.
- a third aspect provides a method for determining an uplink signal transmission power, where the network device determines a message, where the message carries a first loss parameter related to a first uplink carrier and a second loss parameter related to a second uplink carrier information.
- the network device sends the message to the terminal device.
- the first uplink carrier includes at least one of: an uplink carrier in a first frequency division duplex FDD carrier and an uplink time slot set of a first time division duplex TDD carrier;
- the two uplink carriers include at least one of the following: an uplink carrier in the second FDD carrier and an uplink time slot set of the second TDD carrier.
- the sending, by the network device, the message to the terminal device includes: the network device sending the message on a first downlink carrier, where the first downlink carrier includes at least one of the following a downlink carrier set in the first FDD carrier and a downlink time slot set in the first TDD carrier, where the first uplink carrier is an uplink carrier in the first FDD carrier, the first downlink carrier is the a downlink carrier in the first FDD carrier.
- the first uplink carrier is an uplink time slot set of the first TDD carrier
- the first downlink carrier is a downlink time slot set of the first TDD carrier.
- the first loss parameter is a first path loss compensation factor
- the second loss parameter is a second path loss compensation factor
- the first path loss compensation factor and the second The value of the path loss compensation factor is different.
- the first loss parameter is a first power climbing factor
- the second loss parameter is a second power climbing factor
- the first power climbing factor and the second power climbing factor The value is different.
- the first loss parameter is a first path loss adjustment factor
- the second loss parameter is a second path loss adjustment factor
- the first path loss adjustment factor is the second The value of the path loss adjustment factor is different.
- the method further includes: the network device receiving at least one of power headroom information and maximum power information sent by the terminal device; the power headroom information being according to the terminal device Obtained by the maximum power of the uplink signal and the theoretical power of the uplink shared data sent by the terminal device; the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; and the maximum power information is based on Obtaining, by the network device, the maximum power of the uplink signal, where the network device determines an uplink path loss of the terminal device according to the power headroom information and the maximum power information; and the network device sends the uplink The path is lost to the terminal device.
- the network device determines an uplink path loss of the terminal device according to the power headroom information and the maximum power information, including: the terminal device according to the power headroom information and Determining, by the maximum power information, a transmit power of a target message; the terminal device determining an uplink path loss of the terminal device according to a difference between a transmit power and a received power of the target message.
- the network device receives at least one of the power headroom information and the maximum power information sent by the terminal device, where the network device receives the random access third message sent by the terminal device.
- the random access third message carries at least one of the power headroom information and the maximum power information;
- the network device sends the uplink path loss to the terminal device, including: the network The device sends a random access fourth message to the terminal device, where the random access fourth message carries the uplink path loss.
- the network device receives at least one of power headroom information and maximum power information sent by the terminal device, where the network device receives uplink data sent by the terminal device;
- the high-level signaling is carried in the uplink data, and the high-level signaling includes at least one of the power headroom information and the maximum power information.
- the network device sends the uplink path loss to the network device, including: The network device sends the downlink data to the terminal device, where the downlink data carries the high layer signaling, and the high layer signaling includes the uplink path loss.
- the fourth aspect provides a method for determining an uplink signal transmission power, where the network device receives at least one of power headroom information and maximum power information sent by the terminal device, where the power headroom information is according to the terminal.
- the uplink path is lost to the terminal device.
- the network device determines an uplink path loss of the terminal device according to the power headroom information and the maximum power information, including: the terminal device according to the power headroom information and Determining, by the maximum power information, a transmit power of a target message; the terminal device determining an uplink path loss of the terminal device according to a difference between a transmit power and a received power of the target message.
- the network device receives at least one of the power headroom information and the maximum power information sent by the terminal device, where the network device receives the random access third message sent by the terminal device.
- the random access third message carries at least one of the power headroom information and the maximum power information;
- the network device sends the uplink path loss to the terminal device, including: the network The device sends a random access fourth message to the terminal device, where the random access fourth message carries the uplink path loss.
- the network device receives at least one of power headroom information and maximum power information sent by the terminal device, where the network device receives uplink data sent by the terminal device;
- the high-level signaling is carried in the uplink data, and the high-level signaling includes at least one of the power headroom information and the maximum power information.
- the network device sends the uplink path loss to the network device, including: The network device sends the downlink data to the terminal device, where the downlink data carries the high layer signaling, and the high layer signaling includes the uplink path loss.
- the fifth aspect provides a terminal device, including: a receiving unit, configured to receive a message sent by a network device, where the message carries a first loss parameter related to a first uplink carrier, and a second uplink carrier related And a processing unit, configured to calculate a transmit power of the uplink signal, where the uplink signal is sent by using the first uplink carrier, and a transmit power of the uplink signal is based on a first loss associated with the first uplink carrier The parameter calculation is obtained, or the uplink signal is sent by using the second uplink carrier, and the transmit power of the uplink signal is calculated based on the second loss parameter related to the second uplink carrier.
- the first uplink carrier includes at least one of: an uplink carrier in a first frequency division duplex FDD carrier and an uplink time slot set of a first time division duplex TDD carrier;
- the two uplink carriers include at least one of the following: an uplink carrier in the second FDD carrier and an uplink time slot set of the second TDD carrier.
- the receiving unit when receiving the message sent by the network device, is specifically configured to: receive a message sent by the network device on the first downlink carrier, where the first downlink carrier And including at least one of: a downlink carrier in the first frequency division duplex FDD carrier and a downlink time slot set in the first time division duplex TDD carrier, where the first uplink carrier is an uplink in the first FDD carrier And the first downlink carrier is a downlink carrier in the first FDD carrier, and when the first uplink carrier is an uplink time slot set of the first TDD carrier, the first downlink carrier is A set of downlink time slots of a TDD carrier.
- the first loss parameter is a first path loss compensation factor
- the second loss parameter is a second path loss compensation factor
- the first path loss compensation factor and the second The value of the path loss compensation factor is different.
- the processing unit calculates the transmit power of the uplink signal
- the processing unit is specifically configured to: when the uplink signal is sent by using the first uplink carrier, based on the first path loss compensation factor, Calculating a transmit power of the uplink signal; or, when transmitting the uplink signal by using the second uplink carrier, calculating a transmit power of the uplink signal based on the second path loss compensation factor.
- the first loss parameter is a first power climbing factor
- the second loss parameter is a second power climbing factor
- the first loss parameter is a first path loss adjustment factor
- the second loss parameter is a second path loss adjustment factor
- the first path loss adjustment factor is the second The value of the path loss adjustment factor is different.
- the processing unit calculates the transmit power of the uplink signal
- the processing unit is specifically configured to: when the uplink signal is sent by using the first uplink carrier, based on the first path loss adjustment factor, Calculating a transmit power of the uplink signal; or, when transmitting the uplink signal by using the second uplink carrier, calculating a transmit power of the uplink signal based on the second path loss adjustment factor.
- the device further includes: a sending unit, configured to send at least one of power headroom information and maximum power information to the network device, the power headroom information and the maximum power information, Calculating, by the network device, an uplink path loss of the terminal device, where the power headroom information is obtained according to a maximum power that the terminal device sends an uplink signal, and a theoretical power that the terminal device sends uplink shared data; The theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; the maximum power information is obtained according to the maximum power of the uplink signal sent by the terminal device; and the receiving unit is further configured to receive The uplink path loss sent by the network device.
- a sending unit configured to send at least one of power headroom information and maximum power information to the network device, the power headroom information and the maximum power information, Calculating, by the network device, an uplink path loss of the terminal device, where the power headroom information is obtained according to a maximum power that the terminal device sends an uplink signal, and a theoretical power that the terminal device send
- the sending unit is specifically configured to: send a random access third message to the network device, where the random access third message carries the power headroom information and the maximum power At least one of the information; when receiving the uplink path loss, the receiving unit is specifically configured to: receive the uplink path loss sent by the network device, including:
- the sending unit is specifically configured to: send uplink data to the network device, where the uplink data carries high layer signaling, and the high layer signaling includes the power headroom information. At least one of the maximum and the maximum power information, the receiving unit, when receiving the uplink path loss, is specifically configured to: receive downlink data sent by the network device, where the downlink data carries high layer signaling, where the high layer signaling includes The uplink path loss.
- a terminal device includes: a sending unit, configured to send at least one of power headroom information and maximum power information to a network device, where the power headroom information is sent according to the terminal device
- the maximum power and the theoretical power of the terminal device transmitting the uplink shared data; the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; and the maximum power information is according to the terminal device
- the receiving unit is configured to receive the uplink path loss sent by the network device
- the processing unit is configured to calculate, according to the received uplink path loss, a transmit power of the uplink signal.
- the sending unit is specifically configured to: send a random access third message to the network device, where the random access third message may carry at least at least one of power headroom information and maximum power information.
- a receiving unit configured to: receive a random access fourth message sent by the network device, where the random access fourth message carries the uplink path loss.
- the sending unit is specifically configured to: send uplink data to the network device, where the uplink data carries high layer signaling, and the high layer signaling includes the power headroom information.
- the receiving unit is configured to: receive downlink data sent by the network device, where the downlink data carries high layer signaling, where the high layer signaling includes the uplink path loss.
- the uplink path loss value is determined by the network device according to a difference between a transmit power of a target message and a received power; a transmit power of the target message is that the network device is configured according to the terminal Determined by the power headroom information and maximum power information reported by the device.
- the seventh aspect provides a network device, including: a processing unit, configured to generate a message, where the message carries a first loss parameter related to the first uplink carrier information and a second loss parameter related to the second uplink carrier information; And a sending unit, configured to send the network device to send the message to the terminal device.
- the first uplink carrier includes at least one of: an uplink carrier in the first frequency division duplex FDD carrier and an uplink time slot set of the first time division duplex TDD carrier;
- the second uplink carrier includes at least one of the following: an uplink carrier in the second FDD carrier and an uplink time slot set of the second TDD carrier.
- the sending unit is specifically configured to: send the message on a first downlink carrier, where the first downlink carrier includes at least one of: a downlink carrier in a first FDD carrier And a downlink time slot set of the first TDD carrier, where the first uplink carrier is an uplink carrier in the first FDD carrier, the first downlink carrier is a downlink carrier in the first FDD carrier, When the first uplink carrier is an uplink time slot set of the first TDD carrier, the first downlink carrier is a downlink time slot set of the first TDD carrier.
- the first loss parameter is a first path loss compensation factor
- the second loss parameter is a second path loss compensation factor
- the first path loss compensation factor and the second The value of the path loss compensation factor is different.
- the first loss parameter is a first power climbing factor
- the second loss parameter is a second power climbing factor
- the first power climbing factor and the second power climbing factor The value is different.
- the device further includes: a receiving unit, configured to receive at least one of power headroom information and maximum power information sent by the terminal device; the power headroom information is according to the terminal The maximum power of the uplink signal sent by the device and the theoretical power of the uplink shared data sent by the terminal device; the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; the maximum power information is Obtaining, according to the maximum power of the uplink signal sent by the terminal device, the processing unit is further configured to determine an uplink path loss of the terminal device according to the power headroom information and the maximum power information; And the unit is further configured to send the uplink path loss to the terminal device.
- a receiving unit configured to receive at least one of power headroom information and maximum power information sent by the terminal device; the power headroom information is according to the terminal The maximum power of the uplink signal sent by the device and the theoretical power of the uplink shared data sent by the terminal device; the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; the maximum power
- the processing unit is specifically configured to: determine, according to the power headroom information and the maximum power information, a transmit power of a target message; according to a transmit power and a receive power of the target message. The difference is determined by the uplink path loss of the terminal device.
- the receiving unit is specifically configured to: receive a random access third message sent by the terminal device, where the random access third message carries the power headroom information and the maximum At least one of the power information, the sending unit is configured to: send a random access fourth message to the terminal device, where the random access fourth message carries the uplink path loss.
- the receiving unit is specifically configured to: receive uplink data sent by the terminal device; the uplink data carries high-layer signaling, where the high-level signaling includes the power headroom At least one of information and maximum power information;
- the sending unit is specifically configured to: send downlink data to the terminal device, where the downlink data carries high layer signaling, and the high layer signaling includes the uplink path loss.
- a network device includes: a receiving unit, configured to receive at least one of power headroom information and maximum power information sent by the terminal device; the power headroom information is sent according to the terminal device Obtained by the maximum power of the uplink signal and the theoretical power of the uplink shared data sent by the terminal device; the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; and the maximum power information is
- the processing unit is configured to determine an uplink path loss of the terminal device according to the power headroom information and the maximum power information, and a sending unit, configured to send the The uplink path is lost to the terminal device.
- the processing unit is specifically configured to: determine, according to the power headroom information and the maximum power information, a transmit power of a target message; according to a transmit power and a receive power of the target message. The difference is determined by the uplink path loss of the terminal device.
- the receiving unit is specifically configured to: receive a random access third message sent by the terminal device, where the random access third message carries the power headroom information and the maximum At least one of power information;
- the sending unit is specifically configured to: send a random access fourth message to the terminal device, where the random access fourth message carries the uplink path loss.
- the receiving unit is specifically configured to: receive uplink data sent by the terminal device; the uplink data carries high-layer signaling, where the high-level signaling includes the power headroom At least one of information and maximum power information; the sending unit is specifically configured to: send downlink data to the terminal device, where the downlink data carries high layer signaling, and the high layer signaling includes the uplink path loss.
- a ninth aspect an apparatus for determining an uplink signal transmission power, comprising: a memory and a processor;
- the memory is for storing instructions; the processor is configured to execute the memory stored instructions to perform the method of any of the above aspects.
- a computer readable storage medium comprising instructions that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
- the terminal device first receives a message sent by the network device, where the message carries a first loss parameter related to the first uplink carrier and a second loss parameter related to the second uplink carrier;
- the device sends the uplink signal by using the first uplink carrier
- the device calculates the transmit power of the uplink signal based on the first loss parameter, and calculates the transmit power of the uplink signal based on the second loss parameter when the uplink signal is sent by using the second uplink carrier. . Therefore, the transmit power of the uplink signal is matched with the uplink carrier, thereby ensuring uplink transmission performance of the terminal and reducing the impact on uplink transmission of other base stations.
- FIG. 1 is a schematic diagram of an application scenario provided by the present application
- FIG. 2 is a schematic diagram of an application scenario provided by the present application.
- FIG. 3 is a flowchart of a method for determining uplink transmit power provided by the present application
- FIG. 4 is a schematic diagram of a random access procedure provided by the present application.
- FIG. 5 is a flowchart of a method for determining uplink transmit power provided by the present application
- 6a is a schematic structural diagram of a wireless device provided by the present application.
- 6b is a schematic structural diagram of a wireless device provided by the present application.
- FIG. 7a is another schematic structural diagram of a wireless device provided by the present application.
- FIG. 7b is another schematic structural diagram of a wireless device provided by the present application.
- FIG. 8 is a schematic diagram of a wireless device provided by the present application.
- FIG. 9 is a schematic diagram of a network device provided by the present application.
- a base station (BS) device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functions.
- a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and the device that provides the base station function in the 3G network includes a Node B (English NodeB) and A radio network controller (RNC), which provides a base station function in a 4G network, includes an evolved NodeB (eNB).
- a device that provides a base station function is an access point.
- AP access point.
- devices providing base station functions include Node B (gNB), TRP (transmission and reception point), or TP (transmission point). point).
- gNB Node B
- TRP transmission and reception point
- TP transmission point
- the TRP or TP may not include the baseband portion, only the radio frequency portion, and may also include the baseband portion and the radio frequency portion.
- a Long Term Evolution (LTE) base station is a device deployed in a radio access network to provide wireless communication functions.
- the LTE base station is a type of base station specified in the 4G, and is mainly deployed in a low frequency band of about 2 GHz.
- the uplink carrier in the LTE FDD carrier of the band 1 may be in the 1920 MHz to 1980 MHz frequency band, and the downlink carrier may be in the 2110 MHz to 2170 MHz frequency band;
- the New Radio (NR) base station is a device deployed in the radio access network to provide wireless communication functions.
- the NR base station is mainly deployed in the high frequency band of 5G, for example, the 3.5G frequency band.
- a user equipment is a terminal device, which may be a mobile terminal device or a non-mobile terminal device.
- the device is mainly used to receive or send business data.
- User equipment can be distributed in the network.
- User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees.
- the user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
- RAN radio access network
- a network device is a device located on the network side of the wireless communication network, and may be an access network element, such as a base station or a controller (if any), or may be a core network element or other network element. .
- FIG. 2 shows a possible system network diagram of an embodiment of the present application.
- a radio access network RAN
- the RAN includes at least a first base station and a second base station, and the first base station and the second base station can be deployed in different frequency bands, for example, the first base station can be deployed in a high frequency band, such as in the fifth generation mobile communication.
- the first base station may be an NR base station
- the second base station may be deployed in a low frequency band, such as in a fifth generation mobile communication system
- the second base station may be an LTE base station.
- the RAN is connected to a core network (core netwrork, CN).
- the CN may be coupled to one or more external networks, such as the Internet, a public switched telephone network (PSTN), and the like.
- PSTN public switched telephone network
- the first base station may include a first uplink carrier and a first downlink carrier, and when the first uplink carrier is an uplink carrier in the first FDD carrier, the first downlink carrier is the first FDD carrier.
- the downlink carrier in the middle when the first uplink carrier is an uplink time slot set in the first TDD carrier, the first downlink carrier is a downlink time slot set in the first TDD carrier.
- the second base station may include a second uplink carrier and a second downlink carrier, and when the second uplink carrier is an uplink carrier in the second FDD carrier, the second downlink carrier is a downlink carrier in the second FDD carrier, When the second uplink carrier is an uplink time slot set of the second TDD carrier, the second downlink carrier is a downlink time slot set in the second TDD carrier.
- the first FDD carrier, the second FDD carrier, the first TDD carrier, and the second TDD carrier may be located in different carrier frequency bands.
- the first FDD carrier may be For Band1
- the second FDD carrier may be Band5
- the first TDD carrier may be Band33
- the second TDD carrier may be Band34.
- the first base station and the second base station may be deployed in different frequency bands, for example, the first base station may be deployed in a high frequency band, for example, the frequency band of the first uplink carrier may be 3.4G, The frequency band of a downlink carrier may be 3.5G, the first base station may be an NR base station in 5G, or the first uplink carrier is an uplink time slot set of a 3.5G TDD carrier, and the first downlink carrier is 3.5G.
- the downlink time slot of the TDD carrier; the second base station can be deployed in the low frequency band, for example, the frequency band of the second uplink carrier can be 1.75G, the frequency band of the second downlink carrier can be 1.85G, and the second base station can be LTE in 4G. Base station.
- the frequency of the carrier is high and the path loss will be larger. Therefore, there is a case where the uplink coverage is limited for the first base station deployed in the high frequency band (especially for the edge user of the first base station). The situation is more serious). Therefore, the related artisan proposes that when the second base station uplink carrier is lightly loaded, the first base station can use the uplink carrier of the second base station (for example, 1.75G) to perform uplink signal transmission; for the second base station, there is an uplink carrier.
- Matching downlink carriers such as 1.85G
- the downlink carrier can be used for the estimation of the uplink path loss; however, there is no matching first when the terminal camping on the first downlink carrier uses the shared second uplink carrier.
- the second downlink carrier therefore, when the terminal that camps on the first downlink carrier uses the second uplink carrier to perform uplink signal transmission, the uplink path loss cannot be accurately estimated, and correspondingly, the uplink cannot be accurately calculated.
- the transmit power of the signal In other words, the terminal residing on the first downlink carrier performs the estimation of the second shared uplink path loss based on the first downlink carrier, and the estimation of the uplink path loss is too large, so that the first downlink is performed.
- the transmit power of the uplink signal of the carrier sharing the second uplink carrier is too large, thereby affecting the transmission performance of the uplink signals of the two systems on the second shared uplink carrier.
- the present application provides a method for determining the uplink signal transmission power.
- the downlink reference signal on the downlink carrier existing on the first base station can be used as the path loss estimation, so that the first When the terminal of the line carrier transmits the uplink signal on the shared second uplink carrier, the transmission power of the uplink signal can be calculated relatively accurately, thereby improving the performance of the uplink signal transmitted to the first base station by using the second uplink carrier, and avoiding the influence of the uplink signal.
- the method or apparatus in the embodiments of the present application may be applied between a wireless network device and a user equipment, and may also be applied between a wireless network device and a wireless network device (such as a macro base station and a micro base station), and may also be Between the user equipment and the user equipment (such as a D2D scenario), in all embodiments of the present application, the communication between the wireless network device and the wireless network device is taken as an example for description.
- FIG. 3 is a flowchart of a method for determining uplink transmit power provided by the present application.
- the network device in the process may correspond to the first base station in FIG. 2, and the terminal device corresponds to the UE in FIG. 2, as shown in FIG. Show, including:
- Step S31 The network device generates a message.
- the message carries a first loss parameter related to the first uplink carrier and a second loss parameter related to the second uplink carrier;
- Step S32 The network device sends a message to the terminal device.
- the network device may send the message on the first downlink carrier; and the first downlink carrier includes at least one of the following: a downlink carrier and a first TDD carrier in the first FDD carrier a downlink time slot set; when the first uplink carrier is an uplink carrier in the first FDD carrier, the first downlink carrier is a downlink carrier in the first FDD carrier, when the first When the uplink carrier is the uplink time slot set of the first TDD carrier, the first downlink carrier is a downlink time slot set of the first TDD carrier.
- Step S33 The terminal device receives the message sent by the network device.
- Step S34 The terminal device calculates the transmission power of the uplink signal.
- the uplink signal is sent by using the first uplink carrier, and the transmit power of the uplink signal is calculated based on the first loss parameter, or the uplink signal is sent by using the second uplink carrier, where the uplink is sent.
- the transmit power of the signal is calculated based on the second loss parameter calculation.
- the first type the first loss parameter is a first path loss compensation factor
- the second loss parameter is a second path loss compensation factor
- the first path loss compensation factor and the second path loss compensation factor When the uplink signal is sent by using the first uplink carrier, the terminal device calculates a transmit power of the uplink signal based on the first path loss compensation factor; and the terminal device is in use When the second uplink carrier transmits the uplink signal, the transmit power of the uplink signal is calculated based on the second path loss compensation factor.
- the first loss parameter is a first power climbing factor
- the second loss parameter is a second power climbing factor
- the first power climbing factor is different from a value of the second power climbing factor
- the third type the first loss parameter is a first path loss adjustment factor, the second loss parameter is a second path loss adjustment factor, and the first path loss adjustment factor and the second path loss adjustment factor
- the value of the uplink signal is calculated based on the first path loss adjustment factor when the terminal device sends the uplink signal by using the first uplink carrier; the terminal device adopts the When the second uplink carrier transmits the uplink signal, the transmit power of the uplink signal is calculated based on the second path loss adjustment factor.
- the foregoing method may be specifically applied to the calculation of the transmit power of the uplink signal in the random access process of the terminal device.
- the random access process is as follows:
- Step S41 The terminal device sends a random access first message to the network device, for example, Message1 (Msg1) in the random access procedure.
- Msg1 Message1
- the random access first message may be specifically a preamble (random access preamble).
- Step S42 The network device sends a random access second message to the terminal device, for example, Message2 (Msg2) in the random access procedure.
- Msg2 Message2
- the M random access second message may be specifically a RAR (Random Access Response), and the RAR may be specifically sent by the network device after receiving the preamble sent by the terminal device.
- RAR Random Access Response
- Step S43 The terminal device sends a random access third message to the network device, for example, Message3 (Msg3) in the random access procedure.
- Msg3 Message3
- the random access third message is mainly an RRC request.
- Msg3 is an RRC Connection Request transmitted on the CCCH, and at least needs to carry NAS UE flag information.
- Msg3 is an encrypted and integrity-protected RRC Handover Confirm transmitted on the DCCH, and must contain the C-RNTI of the UE and, if possible, carry the BSR.
- Msg3 is an RRC Connection Re-establishment Request transmitted on the CCCH and does not carry any NAS message.
- at least C-RNTI needs to be carried in Msg3.
- Step S44 The network device sends a random access fourth message to the terminal device, for example, Message4 (Msg4) in the random access procedure.
- Msg4 Message4
- the random access fourth message is mainly used for contention resolution, and determines that the UE's temp CRNTI is CRNTI.
- the method provided in FIG. 3 can be used to calculate the transmission power of the random access preamble, as follows:
- the first type the first loss parameter in the method shown in FIG. 3 is a first path loss compensation factor, and the second loss parameter is a second path loss compensation factor, and the preamble transmission power is calculated, which is in accordance with the following formula:
- PreambleReceivedTarget Power preambleInitialReceivedTargetPower+deltaPreamble+(preambleTransmissionConter-1)*powerRampingStep
- P_PRACH min ⁇ P_CMAX, PreambleReceivedTargetPower+alpha(cc)*PL ⁇ ;Formula (1)
- the P_PRACH represents the transmit power of the random access preamble
- the P_CMAX represents the maximum transmit power of the terminal device
- the PreambleReceivedTargetPower represents the power that the network device expects to receive the random access preamble.
- the PL represents the downlink path loss measured by the terminal device according to the reference signal on the first downlink carrier; the preambleInitialReceivedTargetPower represents that the network device expects to receive the current device during the current random access process.
- the alpha (cc) takes the value of the first path loss compensation factor
- the terminal device uses the second uplink carrier to send the random connection.
- the alpha (cc) takes a value of the second path loss compensation factor
- the PL in the above formula (1) is the first device based on the existing network device of the terminal device.
- a downlink carrier is measured based on a reference signal on the first downlink carrier, and the downlink reference signal may be a cell reference signal CRS, a channel state reference signal CSI-RS, and a synchronization signal block SS- Block, etc.; for example, the terminal device receives the reference signal on the first downlink carrier, and then calculates the downlink path loss of the terminal device on the first downlink carrier based on the parameter signal.
- the value of the alpha (cc) takes 1; the first downlink carrier matches the first uplink carrier, for example, the first downlink carrier.
- Matching with the first uplink carrier in the frequency domain, and the RAN4 definition in LTE belongs to a band, for example, the first downlink carrier is 3.5G, and the first uplink carrier is 3.4G; or, the first downlink carrier and the first downlink carrier
- An uplink carrier is matched in the time domain.
- the first downlink carrier is a downlink time slot set of the first carrier, and then the first uplink carrier is an uplink time slot set of the first carrier.
- the value of the alpha (cc) is not 1, and the second uplink carrier does not match the first downlink carrier (the second uplink carrier and the first The downlink carrier does not match, which mainly means that the second uplink carrier and the first downlink carrier have a relatively large frequency spacing, and the uplink path loss is not accurate based on the downlink path loss, and the second uplink carrier does not match the first downlink carrier.
- the first uplink carrier matches the first downlink carrier.
- the second uplink carrier may be 1.75G
- the first downlink carrier may be 3.5G.
- alpha(cc) when the frequency of the second uplink carrier is greater than the frequency of the first uplink carrier, alpha(cc) is greater than 1, and the greater the difference between the two, the larger the alpha(cc); and when the first uplink carrier When the frequency is smaller than the frequency of the first uplink carrier, alpha(cc) is less than 1, and the larger the difference between the two, the smaller the alpha(cc).
- the first loss parameter in the method shown in FIG. 3 is the first power climbing factor
- the second loss parameter is the second power climbing factor
- PreambleReceivedTarget Power preambleInitialReceivedTargetPower+deltaPreamble+(preambleTransmissionConter-1)*powerRampingStep(cc)
- P_PRACH min ⁇ P_CMAX, PreambleReceivedTargetPower+PL ⁇ ;
- the P_PRACH represents the transmit power of the random access preamble
- the P_CMAX represents the maximum transmit power of the terminal device
- the PreambleReceivedTargetPower represents the power that the network device expects to receive the random access preamble.
- the PL represents a downlink path loss of the terminal device, and the downlink path loss is measured based on a reference signal on the first downlink carrier, and the downlink reference signal may be a cell reference signal CRS and a channel state reference signal CSI-RS.
- the preambleInitialReceivedTargetPower represents the power of the first random access preamble received by the network device in the current random access procedure of the terminal device; the deltaPreamble representative and a type-related adjustment amount of the random access preamble; the preambleTransmissionConter represents a number of times the terminal device sends the random access preamble in a current random access procedure; the powerRampingStep(cc) is the The power climbing factor of the random access preamble.
- the powerRampingStep(cc) takes the value of the first path loss compensation factor
- the terminal device uses the second uplink carrier to send the random connection.
- the powerRampingStep(cc) takes a value of the second path loss compensation factor.
- the above formula (2) is compared with the prior art, and the improvement of the uplink signal transmission power is calculated, mainly in the powerRampingStep (cc); the PL in the above formula (2) is the first device based on the existing network device of the terminal device.
- Line carrier (such as 3.5G), the calculated downlink path loss; in the present application, when the terminal device transmits the random access preamble code by using the first uplink carrier F1, the value of the powerRampingStep(cc) and the prior art The value of the uplink path loss is calculated to be the same, and the value is assumed to be powerRampingStep(cc-F1), the first uplink carrier is matched with the first downlink carrier, and the terminal device is configured to send the random access preamble by using the second uplink carrier F2. When the code is used, the second uplink carrier does not match the first downlink carrier.
- the value of the powerRampingStep (cc_F2) is smaller than the powerRampingStep (cc-). F1); if the frequency F2 of the second uplink carrier is greater than the frequency F1 of the first uplink carrier, the value of powerRampingStep(cc_F2) is greater than powerRampingStep(cc-F1).
- the third type the first loss parameter in the method shown in FIG. 3 is a first path loss adjustment factor, and the second loss parameter is a first path loss adjustment factor, and the transmission power of the random access code is calculated, which conforms to the following formula:
- PreambleReceivedTarget Power preambleInitialReceivedTargetPower+deltaPreamble+(preambleTransmissionConter-1)*powerRampingStep+delta(cc,PL);
- P_PRACH min ⁇ P_CMAX, PreambleReceivedTargetPower+PL ⁇ ;Formula (3)
- the P_PRACH represents the transmit power of the random access preamble
- the P_CMAX represents the maximum transmit power of the terminal device
- the PreambleReceivedTargetPower represents the power that the network device expects to receive the random access preamble.
- the downlink path loss is measured based on a reference signal on the first downlink carrier, and the downlink reference signal may be a cell reference signal CRS, a channel state reference signal CSI-RS, a synchronization signal block SS-Block, and the like;
- the preambleInitialReceivedTargetPower Representing, by the first terminal device, the power of the first random access preamble received by the network device in a current random access procedure;
- the deltaPreamble representative is related to a type of the random access preamble An adjustment amount;
- the preambleTransmissionConter represents a number of times the first terminal device sends the random access preamble in a current random access procedure; and the powerRampingStep represents that the terminal device is adjacent in a current random access procedure Sending a power up factor between the random access preambles twice; delta (cc, PL) representing the path loss adjustment factor.
- the delta (cc, PL) takes the value of the first path loss adjustment factor
- the terminal device uses the second uplink carrier to send
- the delta (cc, PL) takes a value of the second path loss adjustment factor
- the above formula (3) is compared with the prior art, and the improvement of the uplink signal transmission power is calculated, mainly in delta (cc, PL); the PL in the above formula (3) is the existing device based on the network device of the terminal device.
- a downlink carrier such as 3.5G
- the calculated downlink path loss when the terminal device sends the random access preamble by using the first uplink carrier, the value of the delta (cc, PL) is 0, the first The uplink carrier is matched with the first downlink carrier; when the terminal sends the random access preamble by using the second uplink carrier, the value of the delta (cc, PL) is non-zero, and the two uplink carriers and the first downlink If the frequency of the second uplink carrier is greater than the frequency of the first uplink carrier, the delta (cc, PL) is greater than 0, and the second uplink carrier is between the second uplink carrier and the first uplink carrier frequency.
- a downlink carrier such as 3.5G
- path loss compensation factor alpha(cc) of the first example above, the power ramping factor powerRampingStep(cc) in the second example, and the path loss adjustment factor delta(cc, PL) in the third example are directed to Related names in 4G LTE application scenarios; in future mobile communication systems, such as 5G, the carrier-related variables in the above formulas may have different names, but they will be reflected in the corresponding power control formula, so they should all be Within the scope of protection of this application.
- a method for determining an uplink signal transmission power is provided.
- the main principle of the method is: the terminal device reports a parameter indicating the uplink data transmission power to the network side device, and the network side device After receiving the parameter of the transmit power, calculating the transmit power of the uplink data according to the parameter; finally, calculating the uplink path loss of the terminal device according to the difference between the transmit power and the received power of the uplink data, and transmitting the uplink path loss to the terminal device, The terminal device determines the transmit power of the uplink signal based on the uplink path loss.
- the uplink signal may be an uplink signal or an uplink channel.
- Step S51 The terminal device sends at least one of the power headroom information PHR and the maximum power information P CMAX to the network device.
- the PHR and the P CMAX are used by the network device to calculate an uplink path loss of the terminal device;
- the PHR is a maximum power that is sent according to the terminal device, and the terminal device sends uplink shared data. Obtained by the theoretical power;
- the uplink shared data is sent on the PUSCH (Physical Uplink Shared Channel) as an example, and the calculation process of the PHR is introduced in detail:
- PUSCH Physical Uplink Shared Channel
- PHR represents a power headroom
- the P CMAX is a maximum power of a signal transmitted by the terminal device
- the P PUSCH is a theoretical power value of the terminal device transmitting uplink shared data on the PUSCH
- P PUSCH 10log 10 (M PUSCH )+P O_PUSCH + ⁇ c *PL+ ⁇ TF +f(2);Formula (5)
- the M PUSCH is the number of PRBs scheduled by the PUSCH
- P O_PUSCH is the power that the cell expects to receive
- ⁇ c is the path loss compensation factor
- ⁇ TF is the adjustment value of the MCS used for PUSCH transmission
- f The closed loop power control adjustment value is controlled by DCI
- the PL is a path loss measured by the terminal device based on the reference signal on the first downlink carrier.
- the terminal device simultaneously transmits the PHR and the P CMAX to the network device, and can only transmit the PHR to the network device.
- Step S52 The network device receives at least one of power headroom information and maximum power information.
- Step S53 The network device calculates an uplink path loss of the terminal device according to the power headroom information and the maximum power information.
- the network device calculates the uplink path loss according to the following formula
- the actual transmit power PCMAX-PHR
- the uplink path loss actual transmit power-actual received power
- the actual transmit power PCMAX
- the uplink path loss actual transmit power - actual received power.
- Step S54 The network device sends the uplink path loss information to the terminal device.
- Step S55 The terminal device receives the uplink path loss information sent by the network device.
- Step S56 The terminal device calculates the transmit power of the uplink signal based on the received uplink path loss.
- the terminal device sends at least one of the power headroom information and the maximum power information to the network device, where the terminal device sends a random access third message to the network device, where the random access
- the third message carries at least one of the power headroom information and the maximum power information;
- the random access third message may be Msg3 in FIG.
- Receiving, by the terminal device, the uplink path loss that is sent by the network device that: the terminal device receives a random access fourth message sent by the network device, where the random access fourth message carries the uplink path loss;
- the random access fourth message may be Msg4 in FIG.
- the terminal device sends the power headroom information to the network device, where the terminal device sends uplink data to the network device, where the uplink data carries high layer signaling, and the high layer signal
- the command includes at least one of the power headroom information and the maximum power information.
- the terminal device receives the uplink path loss value sent by the network device, where the terminal device receives downlink data sent by the network device, where The high-level signaling is carried in the downlink data, and the uplink path loss is included in the high-layer signaling; the high-layer signaling may be MAC CE signaling or RRC signaling.
- the present application further provides an apparatus for determining an uplink signal transmission power, which may be the wireless device 10.
- the UE may correspond to the terminal device in the above method.
- the device may include a processor 110 and a memory 120. Further, the device may further include a receiver 140 and a transmitter 150. Further, the apparatus may further include a bus system 130, wherein the processor 110, the memory 120, the receiver 140, and the transmitter 150 may be connected by the bus system 130.
- the memory 120 is configured to store instructions for executing the instructions stored by the memory 120 to control the receiver 140 to receive signals and to control the transmitter 150 to transmit signals to complete the steps of the terminal device in the above method.
- the receiver 140 and the transmitter 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
- the memory 120 may be integrated in the processor 110 or may be provided separately from the processor 110.
- the functions of the receiver 140 and the transmitter 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
- the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
- a wireless device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
- the program code that is to implement the functions of the processor 110, the receiver 140 and the transmitter 150 is stored in a memory, and the general purpose processor implements the functions of the processor 110, the receiver 140 and the transmitter 150 by executing the code in the memory.
- FIG. 6b provides a schematic structural diagram of a user equipment UE.
- the UE may be adapted for use in the system illustrated in FIG. 2 and/or in the scenario illustrated in FIG.
- Figure 6b shows only the main components of the user equipment.
- the terminal device 600 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
- the processor is mainly used for processing communication protocols and communication data, and controlling the entire user equipment, executing software programs, processing data of the software programs, for example, for supporting the UE to perform the actions described in FIG. 3 or FIG. .
- the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
- the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
- the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
- the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
- the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
- Figure 6b shows only one memory and processor. In an actual user device, there may be multiple processors and memories.
- the memory may also be referred to as a storage medium or a storage device, and the like.
- the processor may include a baseband processor and a central processing unit.
- the baseband processor is mainly used to process communication protocols and communication data
- the central processing unit is mainly used to control and execute the entire user equipment.
- the processor in FIG. 6b integrates the functions of the baseband processor and the central processing unit.
- the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
- the user equipment may include a plurality of baseband processors to accommodate different network standards, and the user equipment may include a plurality of central processors to enhance its processing capabilities, and various components of the user equipment may be connected through various buses.
- the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
- the central processing unit can also be expressed as a central processing circuit or a central processing chip.
- the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
- the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 101 of the UE 600, and the processor having the processing function is regarded as the processing unit 102 of the U600.
- the UE 100 includes a transceiver unit 101 and a processing unit 102.
- the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
- the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
- the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
- the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
- the present application further provides a terminal device 800:
- the terminal device 800 can include a receiving unit 801 and a processing unit 803.
- the receiving unit 801 is configured to receive a message sent by the network device, where the message carries a first loss parameter related to the first uplink carrier and a second loss parameter related to the second uplink carrier, where the processing unit 803 uses Calculating a transmit power of the uplink signal, where the uplink signal is sent by using the first uplink carrier, and the transmit power of the uplink signal is calculated based on a first loss parameter related to the first uplink carrier, or The uplink signal is sent by using the second uplink carrier, and the transmit power of the uplink signal is calculated based on the second loss parameter associated with the second uplink carrier.
- the terminal device 800 may further include a transmitting unit 802.
- the terminal device 800 may include a receiving unit 801, a processing unit 803, and a transmitting unit 802.
- the sending unit 802 is configured to send at least one of the power headroom information and the maximum power information to the network device, where the power headroom information is a maximum power that is sent according to the terminal device, and the terminal device sends an uplink. Obtained by the theoretical power of the shared data; the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; and the maximum power information is obtained according to the maximum power of the uplink signal sent by the terminal device.
- the receiving unit 801 is configured to receive the uplink path loss sent by the network device, and the processing unit 803 is configured to calculate, according to the received uplink path loss, a transmit power of the uplink signal.
- the function of the receiving unit 801 can be implemented by the transmitter of Fig. 6a or Fig. 6b
- the function of the transmitting unit 802 can be implemented by the receiver of Fig. 6a or Fig. 6b, the function of which can be handled by Fig. 6a or Fig. 6b Implemented.
- the embodiment of the present invention further provides another device for determining uplink transmit power, and the device may be a wireless device 20, where the wireless device 20 corresponds to the network device in the foregoing method. It can be understood that the second wireless device can also be other devices, which is not limited herein.
- the device can include a processor 210 and a memory 220. Further, the device may further include a receiver 240 and a transmitter 250. Still further, the device can also include a bus system 230.
- the processor 210, the memory 220, the receiver 240 and the transmitter 250 are connected by a bus system 230 for storing instructions for executing instructions stored in the memory 220 to control the receiver 240 to receive. Signaling, and controlling the transmitter 250 to send a signal, completes the steps of the network device in the above method.
- the receiver 240 and the transmitter 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
- the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
- the functions of the receiver 240 and the transmitter 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
- the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
- a wireless device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
- the program code that is to implement the functions of the processor 210, the receiver 240 and the transmitter 250 is stored in a memory, and the general purpose processor implements the functions of the processor 210, the receiver 240, and the transmitter 250 by executing code in the memory.
- an embodiment of the present invention further provides a schematic structural diagram of a wireless network device, such as a base station.
- the base station can be applied to the system as shown in FIG. 2.
- the first base station or the second base station may include one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBUs) (also referred to as digital units, Digital unit, DU) 202.
- the RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
- the RRU 201 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting signaling indications and/or reference signals described in the foregoing embodiments to user equipment.
- the BBU 202 part is mainly used for performing baseband processing, controlling a base station, and the like.
- the RRU 201 and the BBU 202 may be physically disposed together or physically separated, that is, distributed base stations
- the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
- the BBU processing unit
- the BBU can be used to control the base station to execute the flow shown in FIG.
- the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may separately support different access modes of wireless. Access Network.
- the BBU 202 also includes a memory 2021 and a processor 2022.
- the memory 2021 is used to store necessary instructions and data.
- the memory 2021 stores the correspondence between the information of the transmission delay difference and the transmission delay difference in the above embodiment.
- the processor 2022 is configured to control the base station to perform necessary actions, such as for controlling the actions of the base station as shown in the portion of FIG.
- the memory 2021 and the processor 2022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
- the present application further provides a network device 900.
- network device 900 includes a transmitting unit 902 and a processing unit 903.
- the processing unit 903 is configured to generate a message, where the message carries a first loss parameter related to the first uplink carrier information and a second loss parameter related to the second uplink carrier information, where the sending unit 902 is configured to send the The network device sends the message to the terminal device.
- the terminal device 900 may further include a receiving unit 901.
- network device 900 can include a receiving unit 901, a transmitting unit 902, and a processing unit 903.
- the receiving unit 901 is configured to receive at least one of power headroom information and maximum power information sent by the terminal device, where the power headroom information is a maximum power that is sent according to the terminal device, and the terminal Obtained by the device for transmitting the theoretical power of the uplink shared data; the theoretical power of the uplink shared data is obtained according to the downlink path loss of the terminal; and the maximum power information is the maximum power for transmitting the uplink signal according to the terminal device.
- the processing unit 903 is configured to determine an uplink path loss of the terminal device according to the power headroom information and the maximum power information, and send, by the sending unit 902, the uplink path loss to the terminal. device.
- the function of the receiving unit 901 can be implemented by the transmitter of FIG. 7a or FIG. 7b
- the function of the transmitting unit 902 can be implemented by the receiver of FIG. 7a or FIG. 7b
- the function of the processing unit 903 can be The processor implementation of Figure 7a or Figure 7b.
- the embodiment of the present invention further provides a communication system, including the foregoing first wireless network device and one or more user devices.
- the present application also provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the method of determining the uplink signal transmission power provided above.
- the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration. Circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the memory can include read only memory and random access memory and provides instructions and data to the processor.
- a portion of the memory may also include a non-volatile random access memory.
- the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
- a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
- the various buses are labeled as bus systems in the figure.
- the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
- the implementation process constitutes any limitation.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software it may be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
- the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
- the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种确定上行信号发射功率的方法及设备,该方法包括:终端设备接收网络设备发送的消息,其中,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波相关的第二损耗参数;所述终端设备计算上行信号的发射功率,其中,所述上行信号采用所述第一上行载波发送,所述上行信号的发射功率基于所述第一上行载波相关的第一损耗参数计算获得,或者,所述上行信号采用所述第二上行载波发送,所述上行信号的发射功率基于所述第二上行载波相关的第二损耗参数计算获得。采用本发明的方法及设备,可保证NR基站的上行传输性能,减少对LTE基站的上行传输。
Description
本申请要求在2017年5月5日提交中国专利局、申请号为201710314124.0、发明名称为“一种确定上行信号发射功率的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线通信技术领域,尤其涉及一种确定上行信号发射功率的方法及设备。
目前,在第五代移动通信系统中,主要提出了两种类型的基站,分别为长期演进(Long Term Evolution,LTE)基站和新空口(New Radio,NR)基站。对于这两种类型的基站,功能相类似,主要区别为部署频段的不同。在现有技术中,NR基站主要部署在高频频段,而LTE基站主要部署在低频频段。由于在无线通信系统中,载波的频率越高,路径损耗越大,上行覆盖越差。而NR基站由于部署在高频频段,因此,NR基站存在上行覆盖受限的问题。
为了解决NR基站上行覆盖受限的问题,相关技术人员提出了,如下解决方案:在LTE基站的上行轻载时,NR基站将共享LTE基站的上行载波资源,如此,既能提高LTE基站的上行资源利用率,又可提高NR基站的上行覆盖。比如,如图1所示,LTE基站的上行工作频段为1.75GHZ,下行工作频段为1.85GHZ,上行工作频段1.75GHZ与下行工作频段1.85GHZ相绑定。NR基站的上行工作频段为3.4GHZ,下行工作频段为3.5GHZ,上行工作频段3.4GHZ与下行工作频段3.5GHZ相绑定。在LTE基站的上行轻载时,NR基站可利用LTE基站的1.75GHZ的上行载波进行上行数据传输。
为了方便进行介绍,以下定义了两种终端,分别为LTE终端和NR终端,LTE终端为选择LTE基站作为服务基站的终端,LTE终端使用LTE制式接收来自LTE基站下行信号,传输上行信号给LTE基站;NR终端为选择NR基站作为服务基站的终端,NR终端使用NR制式接收来自NR基站下行信号,传输上行信号给NR基站。由于在实际应用中,无论是LTE终端,还是NR终端在上行数据传输时,首先都要估计上行路径损耗,然后根据所估计的上行路径损耗,确定上行信号的发射功率,比如所估计的上行路径损耗越大,上行信号的发射功率越大,才能保证基站能正确接收并解调上行信号。在现有技术中,对于NR终端在LTE基站的共享上行载波上传输上行信号,将在NR高频下行载波上测量的下行路径损耗,作为在共享上行载波上的上行路损耗,计算上行信号的发射功率,将会导致NR终端的上行传输性能下降,甚至影响LTE终端的上行传输,比如,NR终端的随机接入前导码发射功率过大,将会淹没与其共享上行载波的LTE终端的随机接入前导码。
发明内容
本申请提供一种确定上行信号发射功率的方法及设备,以保证NR基站的上行传输性能,减少对LTE基站的上行传输。
第一方面,提供一种确定上行信号发射功率的方法,其特征在于,包括:终端设备接 收网络设备发送的消息,其中,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波相关的第二损耗参数;所述终端设备计算上行信号的发射功率,其中,所述上行信号采用所述第一上行载波发送,所述上行信号的发射功率基于所述第一上行载波相关的第一损耗参数计算获得,或者,所述上行信号采用所述第二上行载波发送,所述上行信号的发射功率基于所述第二上行载波相关的第二损耗参数计算获得。
在一种可能的示例中,所述第一上行载波包括以下至少一种:第一频分双工FDD载波中的上行载波和第一时分双工TDD载波的上行时隙集合;所述第二上行载波包括以下至少一种:第二FDD载波中的上行载波和第二TDD载波的上行时隙集合。
在一种可能的示例中,所述终端设备接收网络设备发送的消息,包括:所述终端设备接收所述网络设备在第一下行载波上发送的消息,其中,所述第一下行载波包括以下至少一种:第一FDD载波中的下行载波和第一TDD载波的下行时隙集合,当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
在一种可能的示例中,所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同;所述终端设备计算上行信号的发射功率,包括:所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗补偿因子,计算所述上行信号的发射功率;
或者,所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗补偿因子,计算所述上行信号的发射功率。
在一种可能的示例中,所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同;所述终端设备计算上行信号的发射功率,包括:所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一功率攀升因子,计算所述上行信号的发射功率;或者,所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二功率攀升因子,计算所述上行信号的发射功率。
在一种可能的示例中,所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同;所述终端设备计算上行信号的发射功率,包括:所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗调整因子,计算所述上行信号的发射功率;或者,所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗调整因子,计算所述上行信号的发射功率。
在一种可能的示例中,所述方法还包括:所述终端设备发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息和所述最大功率信息,用于所述网络设备计算所述终端设备的上行路径损耗;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述终端设备接收所述网络设备发送的所述上行路径损耗。
在一种可能的示例中,所述终端设备至少发送功率余量信息至所述网络设备,包括:所述终端设备发送随机接入第三消息至网络设备,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路径损耗,包括:所述终端设备接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗。
在一种可能的示例中,所述终端设备至少发送功率余量信息至所述网络设备,包括:所述终端设备发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路损值,包括:所述终端接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
第二方面,提供一种确定上行信号发射功率的方法,包括:所述终端设备发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述终端设备接收所述网络设备发送的所述上行路径损耗;所述终端设备基于所接收的所述上行路径损耗,计算上行信号的发射功率。
在一种可能的示例中,所述终端设备至少发送功率余量信息和最大功率信息中的至少一个至所述网络设备,包括:所述终端设备发送随机接入第三消息至网络设备,所述随机接入第三消息中可携带功率余量信息和最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路径损耗,包括:所述终端设备接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗。
在一种可能的示例中,所述终端设备至少发送功率余量信息和最大功率信息中的至少一个至所述网络设备,包括:所述终端设备发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路径损耗,包括:所述终端设备接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
第三方面,提供一种确定上行信号发射功率的方法,包括:网络设备确定消息,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波信息相关的第二损耗参数;所述网络设备发送所述消息至终端设备。
在一种可能的示例中,所述第一上行载波包括以下至少一种:第一频分双工FDD载波中的上行载波和第一时分双工TDD载波的上行时隙集合;所述第二上行载波包括以下至少一种:第二FDD载波中的上行载波和第二TDD载波的上行时隙集合。
在一种可能的示例中,所述网络设备发送所述消息至终端设备,包括:所述网络设备在第一下行载波上发送所述消息,所述第一下行载波包括以下至少一种:第一FDD载波中的下行载波和第一TDD载波的下行时隙集合,当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
在一种可能的示例中,所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同。
在一种可能的示例中,所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同。
在一种可能的示例中,所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同。
在一种可能的示例中,所述方法还包括:所述网络设备接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述网络设备根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;所述网络设备发送所述上行路径损耗至所述终端设备。
在一种可能的示例中,所述网络设备根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗,包括:所述终端设备根据所述功率余量信息和所述最大功率信息,确定一目标消息的发射功率;所述终端设备根据所述目标消息的发射功率与接收功率之差,确定所述终端设备的上行路径损耗。
在一种可能的示例中,所述网络设备至少接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个,包括:所述网络设备接收终端设备发送的随机接入第三消息,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述网络设备发送所述上行路径损耗至所述终端设备,包括:所述网络设备发送随机接入第四消息至所述终端设备,所述随机接入第四消息中携带有所述上行路径损耗。
在一种可能的示例中,所述网络设备至少接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个,包括:所述网络设备接收所述终端设备发送的上行数据;所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述网络设备发送所述上行路径损耗至所述网络设备,包括:所述网络设备发送下行数据至所述终端设备,所这下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
第四方面,提供一种确定上行信号发射功率的方法,包括:网络设备接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述网络设备根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;所述网络设备发送所述上行路径损耗至所述终端设备。
在一种可能的示例中,所述网络设备根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗,包括:所述终端设备根据所述功率余量信息和所述最大功率信息,确定一目标消息的发射功率;所述终端设备根据所述目标消息的发射功率与接 收功率之差,确定所述终端设备的上行路径损耗。
在一种可能的示例中,所述网络设备至少接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个,包括:所述网络设备接收终端设备发送的随机接入第三消息,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述网络设备发送所述上行路径损耗至所述终端设备,包括:所述网络设备发送随机接入第四消息至所述终端设备,所述随机接入第四消息中携带有所述上行路径损耗。
在一种可能的示例中,所述网络设备至少接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个,包括:所述网络设备接收所述终端设备发送的上行数据;所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述网络设备发送所述上行路径损耗至所述网络设备,包括:所述网络设备发送下行数据至所述终端设备,所这下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
第五方面,提供一种终端设备,包括:接收单元,用于接收网络设备发送的消息,其中,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波相关的第二损耗参数;处理单元,用于计算上行信号的发射功率,其中,所述上行信号采用所述第一上行载波发送,所述上行信号的发射功率基于所述第一上行载波相关的第一损耗参数计算获得,或者,所述上行信号采用所述第二上行载波发送,所述上行信号的发射功率基于所述第二上行载波相关的第二损耗参数计算获得。
在一种可能的示例中,所述第一上行载波包括以下至少一种:第一频分双工FDD载波中的上行载波和第一时分双工TDD载波的上行时隙集合;所述第二上行载波包括以下至少一种:第二FDD载波中的上行载波和第二TDD载波的上行时隙集合。
在一种可能的示例中,所述接收单元在接收网络设备发送的消息时,具体用于:接收所述网络设备在第一下行载波上发送的消息,其中,所述第一下行载波包括以下至少一种:第一频分双工FDD载波中的下行载波和第一时分双工TDD载波的下行时隙集合,当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
在一种可能的示例中,所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同;所述处理单元在计算上行信号的发射功率时,具体用于:在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗补偿因子,计算所述上行信号的发射功率;或者,在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗补偿因子,计算所述上行信号的发射功率。
在一种可能的示例中,所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同;所述处理单元在计算上行信号的发射功率时,具体用于:在采用所述第一上行载波发送所述上行信号时,基于所述第一功率攀升因子,计算所述上行信号的发射功率;或者,在采用所述第二上行载波发送所述上行信号时,基于所述第二功率攀升因子,计算所述上行信号的发射功率。
在一种可能的示例中,所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参 数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同;所述处理单元在计算上行信号的发射功率时,具体用于:在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗调整因子,计算所述上行信号的发射功率;或者,在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗调整因子,计算所述上行信号的发射功率。
在一种可能的示例中,所述设备还包括:发送单元,用于发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息和所述最大功率信息,用于所述网络设备计算所述终端设备的上行路径损耗;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述接收单元,还用于接收所述网络设备发送的所述上行路径损耗。
在一种可能的示例中,所述发送单元,具体用于:发送随机接入第三消息至网络设备,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述接收单元在接收上行路径损耗时,具体用于:接收网络设备发送的所述上行路径损耗,包括:
接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗。
在一种可能的示例中,所述发送单元,具体用于:发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述接收单元在接收上行路径损耗时,具体用于:接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
第六方面,提供一种终端设备,包括:发送单元,用于发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;接收单元,用于接收所述网络设备发送的所述上行路径损耗;处理单元,用于基于所接收的所述上行路径损耗,计算上行信号的发射功率。
在一种可能的示例中,所述发送单元,具体用于:发送随机接入第三消息至网络设备,所述随机接入第三消息中可携带功率余量信息和最大功率信息中的至少一个;接收单元,具体用于:接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗。
在一种可能的示例中,所述发送单元,具体用于:发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述接收单元,具体用于:接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
在一种可能的示例中,所述上行路径损耗值为所述网络设备根据目标消息的发射功率以及接收功率之差所确定的;所述目标消息的发射功率为所述网络设备根据所述终端设备所上报的功率余量信息和最大功率信息所确定的。
第七方面,提供一种网络设备,包括:处理单元,用于生成消息,所述消息中携带有 第一上行载波信息相关的第一损耗参数、第二上行载波信息相关的第二损耗参数;发送单元,用于发送所述网络设备发送所述消息至终端设备。
在一种可能的示例中,所述第一上行载波包括以下至少一种:第一频分双工FDD载波中的上行载波和第一时分双工TDD载波的上行时隙集合;
所述第二上行载波包括以下至少一种:第二FDD载波中的上行载波和第二TDD载波的上行时隙集合。
在一种可能的示例中,所述发送单元,具体用于:在第一下行载波上发送所述消息,所述第一下行载波包括以下至少一种:第一FDD载波中的下行载波和第一TDD载波的下行时隙集合,当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
在一种可能的示例中,所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同。
在一种可能的示例中,所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同。
在一种可能的示例中,所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同。
在一种可能的示例中,所述设备还包括:接收单元,用于接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述处理单元,还用于根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;所述发送单元,还用于发送所述上行路径损耗至所述终端设备。
在一种可能的示例中,所述处理单元,具体用于:根据所述功率余量信息和所述最大功率信息,确定一目标消息的发射功率;根据所述目标消息的发射功率与接收功率之差,确定所述终端设备的上行路径损耗。
在一种可能的示例中,所述接收单元,具体用于:接收终端设备发送的随机接入第三消息,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述发送单元,具体用于:发送随机接入第四消息至所述终端设备,所述随机接入第四消息中携带有所述上行路径损耗。
在一种可能的示例中,所述接收单元,具体用于:接收所述终端设备发送的上行数据;所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;
所述发送单元,具体用于:发送下行数据至所述终端设备,所这下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
第八方面,提供一种网络设备,包括:接收单元,用于接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个;所述功率余量信息为根据所述终端设备发送上行 信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;处理单元,用于根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;发送单元,用于发送所述上行路径损耗至所述终端设备。
在一种可能的示例中,所述处理单元,具体用于:根据所述功率余量信息和所述最大功率信息,确定一目标消息的发射功率;根据所述目标消息的发射功率与接收功率之差,确定所述终端设备的上行路径损耗。
在一种可能的示例中,所述接收单元,具体用于:接收终端设备发送的随机接入第三消息,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;
所述发送单元,具体用于:发送随机接入第四消息至所述终端设备,所述随机接入第四消息中携带有所述上行路径损耗。
在一种可能的示例中,所述接收单元,具体用于:接收所述终端设备发送的上行数据;所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述发送单元,具体用于:发送下行数据至所述终端设备,所这下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
第九方面,提供一种确定上行信号发射功率的设备,其特征在于,包括存储器和处理器;
所述存储器用于存储指令;所述处理器用于执行所述存储器存储的指令,执行上述任一方面所述的方法。
第十方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任意一方面所述的方法。
由上可见,在本申请实施例中,终端设备首先接收网络设备发送的消息,该消息中携带有第一上行载波相关的第一损耗参数、第二上行载波相关第二损耗参数;所述终端设备在采用第一上行载波发送上行信号时,基于所述第一损耗参数计算上行信号的发射功率,在采用第二上行载波发送上行信号时,基于所述第二损耗参数计算上行信号的发射功率。从而使得上行信号的发射功率与上行载波相匹配,从而可保证终端的上行传输性能,减少对其它基站上行传输的影响。
图1为本申请提供的一种应用场景示意图;
图2为本申请提供的一种应用场景示意图;
图3为本申请提供的确定上行信号发射功率的方法流程图;
图4为本申请提供的随机接入过程的一示意图;
图5为本申请提供的确定上行信号发射功率的方法流程图;
图6a为本申请提供的无线设备的一结构示意图;
图6b为本申请提供的无线设备的一结构示意图;
图7a为本申请提供的无线设备的另一结构示意图;
图7b为本申请提供的无线设备的另一结构示意图;
图8为本申请提供的无线设备的一示意图;
图9为本申请提供的网络设备的一示意图。
为了便于理解,示例的给出了与本申请相关概念的说明以供参考,如下所示:
基站(base station,BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(英文NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在WLAN中,提供基站功能的设备为接入点(access point,AP)。在未来5G网络如新无线(New Radio,NR)或LTE+中,提供基站功能的设备包括继续演进的节点B(gNB),TRP(transmission and reception point,收发点),或TP(transmission point,传输点)。其中,TRP或TP可以不包括基带部分,仅包括射频部分,也可以包括基带部分和射频部分。
长期演进(Long Term Evolution,LTE)基站,是一种部署在无线接入网用以提供无线通信功能的装置。LTE基站为4G中所规定的一种基站,主要布署在2GHz左右的低频频段,比如,band1的LTE FDD载波中的上行载波可以在1920MHz~1980MHz频段,下行载波可以在2110MHz~2170MHz频段;
新空口(New Radio,NR)基站,是一种部署在无线接入网用以提供无线通信功能的装置。NR基站主要布署在5G的高频频段,比如,3.5G频段。
用户设备(user equipment,UE)是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台,车载设备等。该用户设备可以经无线接入网(radio access network,RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
网络设备,是指位于无线通信网络中位于网络侧的设备,可以为接入网网元,如基站或控制器(如有),或者,也可以为核心网网元,还可以为其他网元。
下面结合附图,对本申请的技术方案进行介绍:
图2示出了本申请实施例的一种可能的系统网络示意图。如图1所示,至少包括一个UE与无线接入网(radio access network,RAN)进行通信。所述RAN包括至少第一基站和第二基站,所述第一基站和第二基站可布署在不同的频段,比如,第一基站可布署在高频频段,比如在第五代移动通信系统中,第一基站可为NR基站,第二基站可布署在低频频段,比如在第五代移动通信系统中,第二基站可为LTE基站。为了清楚起见,图中只示出了第一基站和第二基站两个基站,以及一个UE。所述RAN与核心网络(core netwrork,CN)相连。可选的,所述CN可以耦合到一个或者更多的外部网络(external network),例如英特网、公共交换电话网(public switched telephone network,PSTN)等。
应当指出,所述高频频段是指频率大于预设频率的频段,低频频段是指频率小于预设 频率的频率,比如,将大于2.6GHZ的频段作为高频频段,将小于2.6GHZ的频段作为低频频段。
在本申请中,第一基站可包括第一上行载波和第一下行载波,且当所述第一上行载波为第一FDD载波中的上行载波时,第一下行载波为第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波中的上行时隙集合时,所述第一下行载波为第一TDD载波中的下行时隙集合。第二基站可包括第二上行载波和第二下行载波,且当所述第二上行载波为第二FDD载波中的上行载波时,所述第二下行载波为第二FDD载波中的下行载波,当所述第二上行载波为第二TDD载波的上行时隙集合时,所述第二下行载波为第二TDD载波中的下行时隙集合。
在本申请中,所述第一FDD载波、第二FDD载波、第一TDD载波和第二TDD载波可位于不同的载波频段,比如,如表1所示,在4G中,第一FDD载波可为Band1、第二FDD载波可为Band5、第一TDD载波可为Band33、第二TDD载波可为Band34。
表1
应当理解,在本申请中,第一基站和第二基站可布署在不同的频段,比如,所述第一基站可部署在高频频段,比如第一上行载波的频段可为3.4G,第一下行载波的频段可为3.5G,所述第一基站可为5G中的NR基站,或者所述第一上行载波为3.5G TDD载波的上行时隙集合,第一下行载波为3.5G TDD载波的下行时隙;第二基站可部署在低频频段,比如第二上行载波的频段可为1.75G,第二下行载波的频段可为1.85G,所述第二基站可为4G中的LTE基站。
在本申请中,将以第一基站布署在高频频段、第二基站布署在低频频段为例,详细介绍本申请的技术方法。
应当指出,在无线通信系统中,载波的频率载高,路径损耗将越大,因此,对于布署在高频频段的第一基站存在上行覆盖受限的情况(尤其对于第一基站的边缘用户,情况更严重)。因此,相关技术人员提出了,第一基站在第二基站上行载波轻载时,可利用第二 基站的上行载波(比如1.75G)进行上行信号的传输;由于对于第二基站,存在与上行载波相匹配的下行载波(比如1.85G),因此可利用下行载波进行上行路径耗损的估计;但是,对于驻留第一下行载波的终端使用共享的第二上行载波时并不存在相匹配的第二下行载波;因此,出现驻留第一下行载波的终端在利用共享第二的上行载波进行上行信号的传输时,无法准确估计上行路径损耗的情况,相对应的,也就无法准确计算上行信号的发射功率。或者说,驻留在第一下行载波的终端基于第一下行载波进行第二共享上行路径损耗的估计,此时会出现上行路径损耗的估计过大,从而使得驻留在第一下行载波在共享第二上行载波上的上行信号的发射功率过大,从而影响第二共享上行载波上两个系统上行信号的传输性能
基于此,本申请提供了一种确定上行信号发射功率的方法,利用本申请的方法,可利用第一基站现存的下行载波上的下行参考信号做路损估计,从而使得驻留在第一下行载波的终端在共享第二上行载波上发送上信号时,能够比较准确的计算出上行信号的发射功率,从而提高通过第二上行载波发送给第一基站的上行信号的性能,避免影响通过第二上行载波发送给第二基站的上行信号。
应当指出,所述第一基站和第二基站可以共站建设,也可各自独立建站。而本申请描述的第一”、“第二”等词汇,仅用于区分描述,而不用于指示或暗示相对重要性,也不用于指示或暗示顺序。本申请中的上行信号可以是上行信号,也可以是上行信道。
本申请实施例中部分场景以无线通信网络中4G网络场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
需指出的是,本申请实施例中的方法或装置可以应用于无线网络设备和用户设备之间,也可以应用于无线网络设备和无线网络设备(如宏基站和微基站)之间,还可以应用于用户设备和用户设备(如D2D场景)之间,在本申请所有实施例中,以无线网络设备和无线网络设备之间的通信为例进行描述。
图3为本申请提供的一种确定上行信号发射功率的方法的流程,该流程中的网络设备可对应于图2中的第一基站,终端设备对应于图2中的UE,如图3所示,包括:
步骤S31:网络设备生成消息。
其中,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波相关第二损耗参数;
步骤S32:网络设备发送消息至终端设备。
可选的,所述网络设备可在第一下行载波上发送所述消息;且所述所述第一下行载波包括以下至少一种:第一FDD载波中的下行载波和第一TDD载波的下行时隙集合;当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
步骤S33:终端设备接收网络设备发送的消息。
步骤S34:终端设备计算上行信号的发射功率。
其中,所述上行信号采用所述第一上行载波发送,所述上行信号的发射功率基于所述第一损耗参数计算获得,或者,所述上行信号采用所述第二上行载波发送,所述上行信号 的发射功率基于所述第二损耗参数计算获得。
在本申请中,终端设备如何计算上行信号的发射功率,可以下述三种情况为示例,进行说明。应当理解,下述三种情况仅为示例性的说明,并不能作为对本申请保护范围的限制。
第一种:所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同;所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗补偿因子,计算所述上行信号的发射功率;而所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗补偿因子,计算所述上行信号的发射功率。
第二种:所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同;所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一功率攀升因子,计算所述上行信号的发射功率;所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二功率攀升因子,计算所述上行信号的发射功率。
第三种:所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同;所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗调整因子,计算所述上行信号的发射功率;所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗调整因子,计算所述上行信号的发射功率。
在本申请的另一可行实施例中,上述方法可具体应用于终端设备的随机接入过程中上行信号的发射功率计算。如图4所示,随机接入的过程如下:
步骤S41:终端设备发送随机接入第一消息到网络设备,例如,随机接入过程中的Message1(Msg1)。
其中,随机接入第一消息可具体为preamble(随机接入前导码)。
步骤S42:网络设备发送随机接入第二消息至终端设备,例如,随机接入过程中的Message2(Msg2)。
其中,M随机接入第二消息可具体为RAR(Random Access Response,随机接入响应),所述RAR可具体为网络设备在接收到终端设备发送的preamble后发送的。
步骤S43:终端设备发送随机接入第三消息至网络设备,例如,在随机接入过程中的Message3(Msg3)。
所述随机接入第三消息主要为RRC请求。一种情况:如果是初次接入(initial access),Msg3为在CCCH上传输的RRC Connection Request,且至少需要携带NAS UE标志信息。另一种情况,如果是切换(handover),Msg3为在DCCH上传输的经过加密和完整性保护的RRC Handover Confirm,必须包含UE的C-RNTI,且如果可能的话,需要携带BSR。另一种情况如果是RRC连接重建(RRC Connection Re-establishment),Msg3为CCCH上传输的RRC Connection Re-establishment Request,且不携带任何NAS消息。另一种情况对于其它触发事件,则Msg3中至少需要携带C-RNTI。
步骤S44:网络设备发送随机接入第四消息至终端设备,例如,在随机接入过程的Message4(Msg4)。
随机接入第四消息主要用于竞争解决,确定UE的temp CRNTI为CRNTI。
利用图3所提供的方法,可用于计算随机接入前导码的发送功率,具体如下:
第一种:图3所示的方法中的第一损耗参数为第一路径损耗补偿因子,第二损耗参数为第二路径损耗补偿因子,计算preamble发射功率,符合下述公式:
PreambleReceivedTarget Power=preambleInitialReceivedTargetPower+deltaPreamble+(preambleTransmissionConter-1)*powerRampingStep
P_PRACH=min{P_CMAX,PreambleReceivedTargetPower+alpha(cc)*PL};公式(1)
其中,所述P_PRACH代表所述随机接入前导码的发射功率;所述P_CMAX代表所述终端设备的最大发射功率;所述PreambleReceivedTargetPower代表所述网络设备期望接收到所述随机接入前导码的功率;所述PL代表所述终端设备根据第一下行载波上的参考信号测量得到的下行路径损耗;所述preambleInitialReceivedTargetPower代表所述终端设备在当前随机接入过程中,所述网络设备期望所接收到的所述第一个随机接入前导码的功率;所述deltaPreamble代表与所述随机接入前导码的类型相关的调整量;所述preambleTransmissionConter代表所述终端设备在当前随机接入过程中,发送所述随机接入前导码的次数;所述powerRampingStep代表所述终端设备在当前随机接入过程中,相邻两次发送的所述随机接入前导码之间的功率攀升因子;所述alpha(cc)代表所述路径损耗补偿因子。
在本申请中,当终端设备采用第一上行载波,发送随机接入前导码时,所述alpha(cc)取值为第一路径损耗补偿因子,而终端设备采用第二上行载波,发送随机接入前导码时,所述所述alpha(cc)取值第二路径损耗补偿因子。
应当指出,上述公式(1)相对于现有技术中,计算上行信号发射功率的改进,主要在alpha(cc);上述公式(1)中的PL为终端设备基于网络设备现有的第一下行载波(比如3.5G),所述下行路损是基于第一下行载波上的参考信号测量得到,下行参考信号可以为小区参考信号CRS、信道状态参考信号CSI-RS、同步信号块SS-Block等等;比如,终端设备在第一下行载波上接收参考信号,然后基于该参数信号,计算终端设备在第一下行载波上的下行路径损耗。而当终端设备采用第一上行载波发送随机接入前导码时,所述alpha(cc)的值取1;所述第一下行载波与第一上行载波相匹配,比如,第一下行载波与第一上行载波在频域上相匹配,可以像LTE中RAN4定义属于一个band,比如,第一下行载波为3.5G,第一上行载波为3.4G;或者,第一下行载波与第一上行载波在时域上相匹配,比如第一下行载波为第一载波的下行时隙集合,那么第一上行载波为第一载波的上行时隙集合。而当终端采用第二上行载波发送随机接入码时,所述alpha(cc)的值非1,第二上行载波与第一下行载波并不相匹配(所述第二上行载波与第一下行载波不匹配,主要是指第二上行载波与第一下行载波频率间距比较大,基于下行路损估计上行路损不在准确),关于第二上行载波与第一下行载波不相匹配的解释,可参见上述第一上行载波与第一下行载波相匹配的解释。在本申请中,比如,第二上行载波可为1.75G,第一下行载波可为3.5G。在本申请中,当第二上行载波的频率大于第一上行载波的频率时,alpha(cc)大于1,且两者的差值越大,alpha(cc)越大;而当第一上行载波的频率小于第一上行载波的频率时,alpha(cc)小于1,且两者的差值越大,alpha(cc)越小。
第二种:图3所示的方法中的第一损耗参数为第一功率攀升因子,第二损耗参数为第 二功率攀升因子,计算随机接入码的发射功率,符合下述公式:
PreambleReceivedTarget Power=preambleInitialReceivedTargetPower+deltaPreamble+(preambleTransmissionConter-1)*powerRampingStep(cc)
P_PRACH=min{P_CMAX,PreambleReceivedTargetPower+PL};公式(2)
其中,所述P_PRACH代表所述随机接入前导码的发射功率;所述P_CMAX代表所述终端设备的最大发射功率;所述PreambleReceivedTargetPower代表所述网络设备期望接收到所述随机接入前导码的功率;所述PL代表所述终端设备的下行路径损耗,所述下行路损是基于第一下行载波上的参考信号测量得到,下行参考信号可以为小区参考信号CRS、信道状态参考信号CSI-RS、同步信号块SS-Block等等;所述preambleInitialReceivedTargetPower代表所述终端设备在当前随机接入过程中,所述网络设备期望所接收的第一个随机接入前导码的功率;所述deltaPreamble代表与所述随机接入前导码的类型相关的调整量;所述preambleTransmissionConter代表所述终端设备在当前随机接入过程中,发送所述随机接入前导码的次数;所述powerRampingStep(cc)为所述随机接入前导码的功率攀升因子。
在本申请中,当终端设备采用第一上行载波,发送随机接入前导码时,所述powerRampingStep(cc)取值为第一路径损耗补偿因子,而终端设备采用第二上行载波,发送随机接入前导码时,所述所述powerRampingStep(cc)取值第二路径损耗补偿因子。
应当指出,上述公式(2)相对于现有技术中,计算上行信号发射功率的改进,主要在powerRampingStep(cc);上述公式(2)中的PL为终端设备基于网络设备现有的第一下行载波(比如3.5G),所计算的下行路径损耗;在本申请中,当终端设备采用第一上行载波F1发送随机接入前码码时,所述powerRampingStep(cc)的值与现有技术中计算上行路径损耗的值相同,假设该值为powerRampingStep(cc-F1),所述第一上行载波与第一下行载波相匹配;而当终端设备采用第二上行载波F2发送随机接入前导码时,所述第二上行载波与第一下行载波不匹配,如果第二上行载波的频率F2小于第一上行载波的频率F1,那么此时powerRampingStep(cc_F2)的取值小于powerRampingStep(cc-F1);如果第二上行载波的频率F2大于第一上行载波的频率F1,那么powerRampingStep(cc_F2)的取值大于powerRampingStep(cc-F1)。
第三种:图3所示的方法中的第一损耗参数为第一路径损耗调整因子,第二损耗参数为第一路径损耗调整因子,计算随机接入码的发射功率,符合下述公式:
PreambleReceivedTarget Power=preambleInitialReceivedTargetPower+deltaPreamble+(preambleTransmissionConter-1)*powerRampingStep+delta(cc,PL);
P_PRACH=min{P_CMAX,PreambleReceivedTargetPower+PL};公式(3)
其中,所述P_PRACH代表所述随机接入前导码的发射功率;所述P_CMAX代表所述终端设备的最大发射功率;所述PreambleReceivedTargetPower代表所述网络设备期望接收到所述随机接入前导码的功率;所述下行路损是基于第一下行载波上的参考信号测量得到,下行参考信号可以为小区参考信号CRS、信道状态参考信号CSI-RS、同步信号块SS-Block等等;所述preambleInitialReceivedTargetPower代表所述第一终端设备在当前随机接入过程中,所述网络设备期望所接收的第一个随机接入前导码的功率;所述deltaPreamble代表与所述随机接入前导码的类型相关的调整量;所述preambleTransmissionConter代表所述第一 终端设备在当前随机接入过程中,发送所述随机接入前导码的次数;所述powerRampingStep代表所述终端设备在当前随机接入过程中,相邻两次送所述随机接入前导码之间的功率攀升因子;所述delta(cc,PL)代表所述路径损耗调整因子。
在本申请中,当终端设备采用第一上行载波,发送随机接入前导码时,所述delta(cc,PL)取值为第一路径损耗调整因子,而终端设备采用第二上行载波,发送随机接入前导码时,所述所述delta(cc,PL)取值第二路径损耗调整因子。
应当指出,上述公式(3)相对于现有技术中,计算上行信号发射功率的改进,主要在delta(cc,PL);上述公式(3)中的PL为终端设备基于网络设备现有的第一下行载波(比如3.5G),所计算的下行路径损耗;当终端设备采用第一上行载波发送随机接入前导码时,所述delta(cc,PL)的值取0,所述第一上行载波与第一下行载波相匹配;当终端采用第二上行载波发送随机接入前导码时,所述delta(cc,PL)的值非零,所述二上行载波与所述第一下行载波不匹配,若所述第二上行载波的频率大于第一上行载波的频率,所述delta(cc,PL)大于0,且所述第二上行载波与所述第一上行载波频率间的差值越大,所述delta(cc,PL)的值越大;若所述第二上行载波的频率小于第一上行载波的频率,所述delta(cc,PL)小于0,且所述第二上行载波与所述第一上行载波频率间的差值越大,所述delta(cc,PL)的值越小。此外,终端基于第一下行载波测量得到的下行路损值越大,delta(cc,PL)的绝对值越大。比如当第一上行载波小于第二上行载波时,如表2所示,两者的差值越大,delta(cc,PL)的值越小。
基于第一下行载波的下行路损/dB | delta(cc,PL)/dB |
0~10 | -1 |
10~20 | -2 |
表2
应当理解,在上述第一种示例的路径损耗补偿因子alpha(cc)、第二种示例中的功率攀升因子powerRampingStep(cc)以及第三种示例中的路径损耗调整因子delta(cc,PL)针对4G LTE应用场景中的相关名称;在未来的移动通信系统中,比如5G中,上述公式中跟载波相关的变量可有不同的名称,但会体现在相应的功率控制的公式中,因此应该都在本申请的保护范围内。
在本申请的另一可行实施例中,提供了一种确定上行信号发射功率的方法,该方法的主要原理为:终端设备上报一表征上行数据发射功率的参数至网络侧设备,而网络侧设备接收到发射功率的参数后,根据该参数计算上行数据的发射功率;最后根据上行数据的发射功率与接收功率之差,计算终端设备的上行路径损耗,且将该上行路径损耗发送到终端设备,而终端设备将基于该上行路径损耗,确定上行信号的发射功率。所述上行信号可以为上行信号也可以为上行信道。
图5为本申请提供的一种确定上行信号发射功率的流程,该流程中的网络设备可对应 于图2中的UE,网络设备可对应于图2中的第一基站或第二基站,如图5所示:
步骤S51:终端设备发送功率余量信息PHR和最大功率信息P
CMAX中的至少一个至网络设备。
其中,所述息PHR和P
CMAX,用于所述网络设备计算所述终端设备的上行路径损耗;所述PHR为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;
在本申请中,将以终端设备在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上发送上行共享数据为例,详细介绍PHR的计算过程:
PHR=P
CMAX-P
PUSCH;公式(4)
在公式(4)中,PHR代表功率余量,所述P
CMAX为终端设备发射信号的最大功率,所述P
PUSCH为终端设备在PUSCH上发送上行共享数据的理论功率值;
P
PUSCH=10log
10(M
PUSCH)+P
O_PUSCH+α
c*PL+Δ
TF+f(2);公式(5)
在公式(5)中,所述M
PUSCH为PUSCH调度的PRB个数,P
O_PUSCH为小区期望接收到的功率,α
c为路损补偿因子,Δ
TF为PUSCH传输使用的MCS的调整值,f为闭环功控调整值,由DCI来控制;所述PL为终端设备基于第一下行载波上参考信号测量得到的路径损耗。
在本申请中,终端设备将PHR和P
CMAX同时发送至网络设备,可也仅发送PHR至网络设备。
步骤S52:网络设备接收功率余量信息和最大功率信息中的至少一个。
步骤S53:网络设备根据功率余量信息和最大功率信息,计算终端设备的上行路径损耗。
在本申请中,网络设备计算上行路径损耗符合下述公式;
在网络设备接收到的PHR为正值或0时,所述实际发送功率=PCMAX-PHR,所述上行路径损耗=实际发送功率-实际接收功率;
在网络设备接收到的PHR为负值时,所述实际发送功率=PCMAX,所述上行路径损耗=实际发送功率-实际接收功率。
步骤S54:网络设备发送上行路径损耗信息至终端设备。
步骤S55:终端设备接收所述网络设备发送的所述上行路径损耗信息;
步骤S56:终端设备基于所接收的上行路径损耗,计算上行信号的发射功率。
可选的,所述终端设备至少发送功率余量信息和最大功率信息中的至少一个至所述网络设备,包括:所述终端设备发送随机接入第三消息至网络设备,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述随机接入第三消息可为图4中的Msg3。所述终端设备接收网络设备发送的所述上行路径损耗,包括:所述终端设备接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗;所述随机接入第四消息可为图4中的Msg4。
可选的,所述终端设备至少发送功率余量信息至所述网络设备,包括:所述终端设备发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路损值,包括:所述终端设备接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗;所述高层信令可为MAC CE信令或者 RRC信令。
根据前述方法,如图6a所示,本申请还提供一种确定上行信号发射功率的设备,该设备可以是无线设备10。该UE可以对应上述方法中的终端设备。
该设备可以包括处理器110和存储器120,进一步的,该设备还可以包括接收器140和发送器150。进一步的,该装置还可以进一步包括总线系统130,其中,处理器110、存储器120、接收器140和发送器150可以通过总线系统130相连。
该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以控制接收器140接收信号,并控制发送器150发送信号,完成上述方法中终端设备的步骤。其中,接收器140和发送器150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器120可以集成在所述处理器110中,也可以与所述处理器110分开设置。
作为一种实现方式,接收器140和发送器150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线设备。即将实现处理器110,接收器140和发送器150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,接收器140和发送器150的功能。
该设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图6b提供了一种用户设备UE的结构示意图。该UE可适用于图2所示出的系统中和/或如图1所示的场景中。为了便于说明,图6b仅示出了用户设备的主要部件。如图6b所示,终端设备600包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个用户设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持UE执行附图3或附图5部分所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图6b仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个用户设备进行控制, 执行软件程序,处理软件程序的数据。图6b中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,用户设备可以包括多个基带处理器以适应不同的网络制式,用户设备可以包括多个中央处理器以增强其处理能力,用户设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为UE600的收发单元101,将具有处理功能的处理器视为U600的处理单元102。如图6b所示,UE100包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
如图8所示,本申请还提供一种终端设备800:
在一种示例中,终端设备800可包括:接收单元801和处理单元803。
其中,接收单元801,用于接收网络设备发送的消息,其中,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波相关的第二损耗参数;处理单元803,用于计算上行信号的发射功率,其中,所述上行信号采用所述第一上行载波发送,所述上行信号的发射功率基于所述第一上行载波相关的第一损耗参数计算获得,或者,所述上行信号采用所述第二上行载波发送,所述上行信号的发射功率基于所述第二上行载波相关的第二损耗参数计算获得。
应当理解,在本示例中,所述终端设备800还可包括发送单元802。
在另一示例中,所述终端设备800可包括:接收单元801、处理单元803和发送单元802。
其中,发送单元802,用于发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;接收单元801,用于接收所述网络设备发送的所述上行路径损耗;处理单元803,用于基于所接收的所述上行路径损耗,计算上行信号的发射功率。
应当理解,接收单元801的功能可由图6a或图6b的发送器实现,发送单元802的功能可由图6a或图6b的接收器实现,所述处理单元803的功能可由图6a或图6b的处理器实现。
根据前述方法,如图7a所示,本发明实施例还提供另一种用于确定上行信号发射功率的设备,该备可以为无线设备20,该无线设备20对应上述方法中的网络设备。可以理解的是,第二无线设备也可以其他设备,在此不予限定。
该设备可以包括处理器210和存储器220。进一步的,该设备还可以包括接收器 240和发送器250。再进一步的,该设备还可以包括总线系统230。
其中,处理器210、存储器220、接收器240和发送器250通过总线系统230相连,该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以控制接收器240接收信号,并控制发送器250发送信号,完成上述方法中网络设备的步骤。其中,接收器240和发送器250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器240和发送器250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线设备。即将实现处理器210,接收器240和发送器250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,接收器240和发送器250的功能。
所述设备所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,如图7b所示,本发明实施例还提供一种无线网络设备,如基站,的结构示意图。
该基站可应用于如图2所示的系统中。第一基站或第二基站可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)202。所述RRU201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向用户设备发送上述实施例中所述的信令指示和/或参考信号。所述BBU202部分主要用于进行基带处理,对基站进行控制等。所述RRU201与BBU202可以是可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行图3所示的流程。
在一个示例中,所述BBU202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述BBU202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。例如存储器2021存储上述实施例中的传输时延差的信息与传输时延差的对应关系。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站如附图3部分所示的动作。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
如图9所示,本申请还提供一种网络设备900。
在一种示例中,网络设备900包括:发送单元902和处理单元903。
其中,处理单元903,用于生成消息,所述消息中携带有第一上行载波信息相关的第 一损耗参数、第二上行载波信息相关的第二损耗参数;发送单元902,用于发送所述网络设备发送所述消息至终端设备。
应当理解,在本示例中,所述终端设备900还可包括接收单元901。
在另一种示例中,网络设备900可包括:接收单元901、发送单元902和处理单元903。
其中,接收单元901,用于接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;处理单元903,用于根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;发送单元902,用于发送所述上行路径损耗至所述终端设备。
应当理解,在上述两种示例中,接收单元901的功能可由图7a或图7b的发送器实现,发送单元902的功能可由图7a或图7b的接收器实现,所述处理单元903的功能可由图7a或图7b的处理器实现。
根据本发明实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的第一无线网络设备和一个或多于一个用户设备。
本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述提供的确定上行信号发射功率的方法。
应理解,在本发明实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的 先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (53)
- 一种确定上行信号发射功率的方法,其特征在于,包括:终端设备接收网络设备发送的消息,其中,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波相关的第二损耗参数;所述终端设备计算上行信号的发射功率,其中,所述上行信号采用所述第一上行载波发送,所述上行信号的发射功率基于所述第一上行载波相关的第一损耗参数计算获得,或者,所述上行信号采用所述第二上行载波发送,所述上行信号的发射功率基于所述第二上行载波相关的第二损耗参数计算获得。
- 根据权利要求1所述的方法,其特征在于,所述第一上行载波包括以下至少一种:第一频分双工FDD载波中的上行载波、第一时分双工TDD载波的上行时隙集合;所述第二上行载波包括以下至少一种:第二FDD载波中的上行载波、第二TDD载波的上行时隙集合。
- 根据权利要求2所述的方法,其特征在于,所述终端设备接收网络设备发送的消息,包括:所述终端设备接收所述网络设备在第一下行载波上发送的消息,其中,所述第一下行载波包括以下至少一种:第一FDD载波中的下行载波、第一TDD载波的下行时隙集合;当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
- 根据权利要求1至3任一项所述的方法,其特征在于,所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同;所述终端设备计算上行信号的发射功率,包括:所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗补偿因子,计算所述上行信号的发射功率;或者,所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗补偿因子,计算所述上行信号的发射功率。
- 根据权利要求1至3任一项所述的方法,其特征在于,所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同;所述终端设备计算上行信号的发射功率,包括:所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一功率攀升因子,计算所述上行信号的发射功率;或者,所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二功率攀升因子,计算所述上行信号的发射功率。
- 根据权利要求1至3任一项所述的方法,其特征在于,所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同;所述终端设备计算上行信号的发射功率,包括:所述终端设备在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗调整因子,计算所述上行信号的发射功率;或者,所述终端设备在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗调整因子,计算所述上行信号的发射功率。
- 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:所述终端设备发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息和所述最大功率信息,用于所述网络设备计算所述终端设备的上行路径损耗;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述终端设备接收所述网络设备发送的所述上行路径损耗。
- 根据权利要求7所述的方法,其特征在于,所述终端设备至少发送功率余量信息至所述网络设备,包括:所述终端设备发送随机接入第三消息至网络设备,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路径损耗,包括:所述终端设备接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗。
- 根据权利要求7所述的方法,其特征在于,所述终端设备至少发送功率余量信息至所述网络设备,包括:所述终端设备发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路损值,包括:所述终端接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
- 一种确定上行信号发射功率的方法,其特征在于,包括:所述终端设备发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述终端设备接收所述网络设备发送的所述上行路径损耗;所述终端设备基于所接收的所述上行路径损耗,计算上行信号的发射功率。
- 根据权利要求10所述的方法,其特征在于,所述终端设备至少发送功率余量信息和最大功率信息中的至少一个至所述网络设备,包括:所述终端设备发送随机接入第三消息至网络设备,所述随机接入第三消息中可携带功率余量信息和最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路径损耗,包括:所述终端设备接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗。
- 根据权利要求10所述的方法,其特征在于,所述终端设备至少发送功率余量信息和最大功率信息中的至少一个至所述网络设备,包括:所述终端设备发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述终端设备接收网络设备发送的所述上行路径损耗,包括:所述终端设备接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
- 一种确定上行信号发射功率的方法,其特征在于,包括:网络设备确定消息,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波信息相关的第二损耗参数;所述网络设备发送所述消息至终端设备。
- 根据权利要求13所述的方法,其特征在于,所述第一上行载波包括以下至少一种:第一频分双工FDD载波中的上行载波、第一时分双工TDD载波的上行时隙集合;所述第二上行载波包括以下至少一种:第二FDD载波中的上行载波、第二TDD载波的上行时隙集合。
- 根据权利要求13所述的方法,其特征在于,所述网络设备发送所述消息至终端设备,包括:所述网络设备在第一下行载波上发送所述消息,所述第一下行载波包括以下至少一种:第一FDD载波中的下行载波、第一TDD载波的下行时隙集合;当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
- 根据权利要求13至15任一项所述的方法,其特征在于,所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同。
- 根据权利要求13至15所述的方法,其特征在于,所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同。
- 根据权利要求13至15任一项所述的方法,其特征在于,所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同。
- 根据权利要求13至18任一项所述的方法,其特征在于,所述方法还包括:所述网络设备接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述网络设备根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;所述网络设备发送所述上行路径损耗至所述终端设备。
- 根据权利要求19所述的方法,其特征在于,所述网络设备根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗,包括:所述终端设备根据所述功率余量信息和所述最大功率信息,确定一目标消息的发射功率;所述终端设备根据所述目标消息的发射功率与接收功率之差,确定所述终端设备的上行路径损耗。
- 根据权利要求19或20所述的方法,其特征在于,所述网络设备至少接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个,包括:所述网络设备接收终端设备发送的随机接入第三消息,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述网络设备发送所述上行路径损耗至所述终端设备,包括:所述网络设备发送随机接入第四消息至所述终端设备,所述随机接入第四消息中携带有所述上行路径损耗。
- 根据权利要求19或20所述的方法,其特征在于,所述网络设备至少接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个,包括:所述网络设备接收所述终端设备发送的上行数据;所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述网络设备发送所述上行路径损耗至所述网络设备,包括:所述网络设备发送下行数据至所述终端设备,所这下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
- 一种确定上行信号发射功率的方法,其特征在于,包括:网络设备接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述网络设备根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;所述网络设备发送所述上行路径损耗至所述终端设备。
- 根据权利要求23所述的方法,其特征在于,所述网络设备根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗,包括:所述终端设备根据所述功率余量信息和所述最大功率信息,确定一目标消息的发射功率;所述终端设备根据所述目标消息的发射功率与接收功率之差,确定所述终端设备的上行路径损耗。
- 根据权利要求23或24所述的方法,其特征在于,所述网络设备至少接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个,包括:所述网络设备接收终端设备发送的随机接入第三消息,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述网络设备发送所述上行路径损耗至所述终端设备,包括:所述网络设备发送随机接入第四消息至所述终端设备,所述随机接入第四消息中携带有所述上行路径损耗。
- 根据权利要求23或24所述的方法,其特征在于,所述网络设备至少接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个,包括:所述网络设备接收所述终端设备发送的上行数据;所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述网络设备发送所述上行路径损耗至所述网络设备,包括:所述网络设备发送下行数据至所述终端设备,所这下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
- 一种终端设备,其特征在于,包括:接收单元,用于接收网络设备发送的消息,其中,所述消息中携带有第一上行载波相关的第一损耗参数、第二上行载波相关的第二损耗参数;处理单元,用于计算上行信号的发射功率,其中,所述上行信号采用所述第一上行载波发送,所述上行信号的发射功率基于所述第一上行载波相关的第一损耗参数计算获得,或者,所述上行信号采用所述第二上行载波发送,所述上行信号的发射功率基于所述第二上行载波相关的第二损耗参数计算获得。
- 根据权利要求27所述的设备,其特征在于,所述第一上行载波包括以下至少一种:第一频分双工FDD载波中的上行载波、第一时分双工TDD载波的上行时隙集合;所述第二上行载波包括以下至少一种:第二FDD载波中的上行载波、第二TDD载波的上行时隙集合。
- 根据权利要求28所述的设备,其特征在于,所述接收单元在接收网络设备发送的消息时,具体用于:接收所述网络设备在第一下行载波上发送的消息,其中,所述第一下行载波包括以下至少一种:第一频分双工FDD载波中的下行载波、第一时分双工TDD载波的下行时隙集合;当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
- 根据权利要求27至29任一项所述的设备,其特征在于,所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同;所述处理单元在计算上行信号的发射功率时,具体用于:在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗补偿因子,计算所述上行信号的发射功率;或者,在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗补偿因子,计算所述上行信号的发射功率。
- 根据权利要求27至29任一项所述的设备,其特征在于,所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同;所述处理单元在计算上行信号的发射功率时,具体用于:在采用所述第一上行载波发送所述上行信号时,基于所述第一功率攀升因子,计算所述上行信号的发射功率;或者,在采用所述第二上行载波发送所述上行信号时,基于所述第二功率攀升因子,计算所述上行信号的发射功率。
- 根据权利要求27至29任一项所述的设备,其特征在于,所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同;所述处理单元在计算上行信号的发射功率时,具体用于:在采用所述第一上行载波发送所述上行信号时,基于所述第一路径损耗调整因子,计算所述上行信号的发射功率;或者,在采用所述第二上行载波发送所述上行信号时,基于所述第二路径损耗调整因子,计算所述上行信号的发射功率。
- 根据权利要求27至32任一项所述的设备,其特征在于,所述设备还包括:发送单元,用于发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息和所述最大功率信息,用于所述网络设备计算所述终端设备的上行路径损耗;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述接收单元,还用于接收所述网络设备发送的所述上行路径损耗。
- 根据权利要求33所述的设备,其特征在于,所述发送单元,具体用于:发送随机接入第三消息至网络设备,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述接收单元在接收上行路径损耗时,具体用于:接收网络设备发送的所述上行路径损耗,包括:接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗。
- 根据权利要求33所述的设备,其特征在于,所述发送单元,具体用于:发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述接收单元在接收上行路径损耗时,具体用于:接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
- 一种终端设备,其特征在于,包括:发送单元,用于发送功率余量信息和最大功率信息中的至少一个至网络设备,所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;接收单元,用于接收所述网络设备发送的所述上行路径损耗;处理单元,用于基于所接收的所述上行路径损耗,计算上行信号的发射功率。
- 根据权利要求36所述的设备,其特征在于,所述发送单元,具体用于:发送随机接入第三消息至网络设备,所述随机接入第三消息中可携带功率余量信息和 最大功率信息中的至少一个;接收单元,具体用于:接收网络设备发送的随机接入第四消息,所述随机接入第四消息中携带有所述上行路径损耗。
- 根据权利要求36所述的设备,其特征在于,所述发送单元,具体用于:发送上行数据至所述网络设备,所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述接收单元,具体用于:接收网络设备发送的下行数据,所述下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
- 根据权利要求7至9任一项所述的方法、权利要求10至12任一项所述的方法、权利要求34至36任一项所述的设备或者权利要求37至38任一项所述的设备,其特征在于,所述上行路径损耗值为所述网络设备根据目标消息的发射功率以及接收功率之差所确定的;所述目标消息的发射功率为所述网络设备根据所述终端设备所上报的功率余量信息和最大功率信息所确定的。
- 一种网络设备,其特征在于,包括:处理单元,用于生成消息,所述消息中携带有第一上行载波信息相关的第一损耗参数、第二上行载波信息相关的第二损耗参数;发送单元,用于发送所述网络设备发送所述消息至终端设备。
- 根据权利要求40所述的设备,其特征在于,所述第一上行载波包括以下至少一种:第一频分双工FDD载波中的上行载波、第一时分双工TDD载波的上行时隙集合;所述第二上行载波包括以下至少一种:第二FDD载波中的上行载波、第二TDD载波的上行时隙集合。
- 根据权利要求41所述的设备,其特征在于,所述发送单元,具体用于:在第一下行载波上发送所述消息,所述第一下行载波包括以下至少一种:第一FDD载波中的下行载波、第一TDD载波的下行时隙集合;当所述第一上行载波为所述第一FDD载波中的上行载波时,所述第一下行载波为所述第一FDD载波中的下行载波,当所述第一上行载波为第一TDD载波的上行时隙集合时,所述第一下行载波为第一TDD载波的下行时隙集合。
- 根据权利要求40至42任一项所述的设备,其特征在于,所述第一损耗参数为第一路径损耗补偿因子,所述第二损耗参数为第二路径损耗补偿因子,且所述第一路径损耗补偿因子与所述第二路径损耗补偿因子的值不同。
- 根据权利要求40至42任一项所述的设备,其特征在于,所述第一损耗参数为第一功率攀升因子,所述第二损耗参数为第二功率攀升因子,且所述第一功率攀升因子与所述第二功率攀升因子的值不同。
- 根据权利要求40至42任一项所述的设备,其特征在于,所述第一损耗参数为第一路径损耗调整因子,所述第二损耗参数为第二路径损耗调整因子,且所述第一路径损耗调整因子与所述第二路径损耗调整因子的值不同。
- 根据权利要求40至45任一项所述的设备,其特征在于,所述设备还包括:接收单元,用于接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个; 所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;所述处理单元,还用于根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;所述发送单元,还用于发送所述上行路径损耗至所述终端设备。
- 根据权利要求46所述的设备,其特征在于,所述处理单元,具体用于:根据所述功率余量信息和所述最大功率信息,确定一目标消息的发射功率;根据所述目标消息的发射功率与接收功率之差,确定所述终端设备的上行路径损耗。
- 根据权利要求46或47所述的设备,其特征在于,所述接收单元,具体用于:接收终端设备发送的随机接入第三消息,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述发送单元,具体用于:发送随机接入第四消息至所述终端设备,所述随机接入第四消息中携带有所述上行路径损耗。
- 根据权利要求46或47所述的设备,其特征在于,所述接收单元,具体用于:接收所述终端设备发送的上行数据;所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述发送单元,具体用于:发送下行数据至所述终端设备,所这下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
- 一种网络设备,其特征在于,包括:接收单元,用于接收所述终端设备发送的功率余量信息和最大功率信息中的至少一个;所述功率余量信息为根据所述终端设备发送上行信号的最大功率以及所述终端设备发送上行共享数据的理论功率所获得的;所述上行共享数据的理论功率为根据所述终端的下行路径损耗计算获得的;所述最大功率信息为根据所述终端设备发送上行信号的最大功率所获得的;处理单元,用于根据所述功率余量信息和所述最大功率信息,确定所述终端设备的上行路径损耗;发送单元,用于发送所述上行路径损耗至所述终端设备。
- 根据权利要求50所述的设备,其特征在于,所述处理单元,具体用于:根据所述功率余量信息和所述最大功率信息,确定一目标消息的发射功率;根据所述目标消息的发射功率与接收功率之差,确定所述终端设备的上行路径损耗。
- 根据权利要求50或51所述的设备,其特征在于,所述接收单元,具体用于:接收终端设备发送的随机接入第三消息,所述随机接入第三消息中携带有所述功率余量信息和所述最大功率信息中的至少一个;所述发送单元,具体用于:发送随机接入第四消息至所述终端设备,所述随机接入第四消息中携带有所述上行路径损耗。
- 根据权利要求50或51所述的设备,其特征在于,所述接收单元,具体用于:接收所述终端设备发送的上行数据;所述上行数据中承载有高层信令,所述高层信令中包括所述功率余量信息和最大功率信息中的至少一个;所述发送单元,具体用于:发送下行数据至所述终端设备,所这下行数据中承载有高层信令,所述高层信令中包括所述上行路径损耗。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18795190.0A EP3618511B1 (en) | 2017-05-05 | 2018-04-11 | Uplink signal transmit power determination method and device |
US16/673,000 US20200068500A1 (en) | 2017-05-05 | 2019-11-04 | Method and device for determining transmit power of uplink signal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710314124.0 | 2017-05-05 | ||
CN201710314124.0A CN108811063B (zh) | 2017-05-05 | 2017-05-05 | 一种确定上行信号发射功率的方法及设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/673,000 Continuation US20200068500A1 (en) | 2017-05-05 | 2019-11-04 | Method and device for determining transmit power of uplink signal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018201869A1 true WO2018201869A1 (zh) | 2018-11-08 |
Family
ID=64015920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/082709 WO2018201869A1 (zh) | 2017-05-05 | 2018-04-11 | 一种确定上行信号发射功率的方法及设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200068500A1 (zh) |
EP (1) | EP3618511B1 (zh) |
CN (1) | CN108811063B (zh) |
WO (1) | WO2018201869A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11477826B2 (en) * | 2018-07-16 | 2022-10-18 | Qualcomm Incorporated | High band access |
CN115397020A (zh) * | 2018-09-18 | 2022-11-25 | 上海朗帛通信技术有限公司 | 一种被用于无线通信节点中的方法和装置 |
CN111510935B (zh) * | 2019-01-31 | 2022-03-08 | 华为技术有限公司 | 一种上行信号发送方法、接收方法、装置及系统 |
CN111586820B (zh) * | 2019-02-15 | 2022-06-10 | 华为技术有限公司 | 确定上行发送功率的方法和终端设备 |
CN113133099B (zh) * | 2019-12-31 | 2024-04-12 | 西安华为技术有限公司 | 一种ofdma上行链路功率控制方法、装置及系统 |
CN110913427B (zh) * | 2019-12-31 | 2023-03-14 | 展讯通信(上海)有限公司 | 链路路损的测量方法、装置和系统、电子设备、存储介质 |
US11510214B2 (en) * | 2020-03-02 | 2022-11-22 | Electronics And Telecommunications Research Institute | Method and apparatus for generating shared information for joint use of frequencies between radio stations |
WO2021174465A1 (zh) * | 2020-03-04 | 2021-09-10 | 北京小米移动软件有限公司 | 开环功率控制方法、装置及计算机可读存储介质 |
CN111491319B (zh) * | 2020-04-17 | 2023-01-17 | 展讯通信(上海)有限公司 | 路损确定方法及装置、存储介质、终端 |
CN114071680B (zh) * | 2020-07-31 | 2024-06-04 | 华为技术有限公司 | 一种通信方法及装置 |
US11690024B2 (en) * | 2021-01-27 | 2023-06-27 | Qualcomm Incorporated | Configuring client device regulation modes for sidelink communications |
CN115734265A (zh) * | 2021-08-31 | 2023-03-03 | 北京紫光展锐通信技术有限公司 | 通信方法及装置、计算机可读存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103813430A (zh) * | 2012-11-05 | 2014-05-21 | 中兴通讯股份有限公司 | 一种载波聚合系统中的功率上报方法及装置 |
CN104812041A (zh) * | 2014-01-24 | 2015-07-29 | 中国移动通信集团公司 | 一种上行信号发射功率确定方法及装置 |
US20170041028A1 (en) * | 2013-11-18 | 2017-02-09 | Netgear, Inc. | Systems and methods for improving wlan range |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9084206B2 (en) * | 2009-06-23 | 2015-07-14 | Samsung Electronics Co., Ltd | Method and apparatus for controlling uplink transmission power in wireless communication system |
CN102918896B (zh) * | 2010-04-01 | 2016-09-14 | 松下电器(美国)知识产权公司 | 用于物理随机访问信道的发送功率控制 |
CN102271389B (zh) * | 2010-06-04 | 2014-03-19 | 中兴通讯股份有限公司 | 一种上行功率控制方法及系统 |
WO2013129418A1 (ja) * | 2012-02-29 | 2013-09-06 | 京セラ株式会社 | 移動通信システム、移動通信方法及び無線基地局 |
WO2014153745A1 (zh) * | 2013-03-27 | 2014-10-02 | 富士通株式会社 | 发送功率确定方法及其装置、通信系统 |
CN104412673B (zh) * | 2013-04-25 | 2018-05-18 | 华为技术有限公司 | 基站间载波聚合的上行发射功率控制方法、基站和设备 |
CN104349443B (zh) * | 2013-08-09 | 2019-02-12 | 电信科学技术研究院 | 一种上行功率控制方法和装置 |
CN108924919B (zh) * | 2014-09-28 | 2019-08-09 | 华为技术有限公司 | 上行功率配置方法、装置和计算机可读存储介质 |
KR20180035638A (ko) * | 2016-09-29 | 2018-04-06 | 삼성전자주식회사 | RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치 |
CA3052785A1 (en) * | 2017-02-06 | 2018-08-09 | Altiostar Networks, Inc. | Multi-site mimo communications system with hybrid beamforming in l1-split architecture |
CN108632986B (zh) * | 2017-03-24 | 2020-08-14 | 华为技术有限公司 | 一种同步方法及装置 |
US10419197B2 (en) * | 2017-04-27 | 2019-09-17 | Qualcomm Incorporated | Sharing of long-term evolution (LTE) uplink spectrum |
-
2017
- 2017-05-05 CN CN201710314124.0A patent/CN108811063B/zh active Active
-
2018
- 2018-04-11 EP EP18795190.0A patent/EP3618511B1/en active Active
- 2018-04-11 WO PCT/CN2018/082709 patent/WO2018201869A1/zh unknown
-
2019
- 2019-11-04 US US16/673,000 patent/US20200068500A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103813430A (zh) * | 2012-11-05 | 2014-05-21 | 中兴通讯股份有限公司 | 一种载波聚合系统中的功率上报方法及装置 |
US20170041028A1 (en) * | 2013-11-18 | 2017-02-09 | Netgear, Inc. | Systems and methods for improving wlan range |
CN104812041A (zh) * | 2014-01-24 | 2015-07-29 | 中国移动通信集团公司 | 一种上行信号发射功率确定方法及装置 |
Non-Patent Citations (1)
Title |
---|
HUAWEI ET AL.: "Rl-1706905. Overview of NR UL for LTE-NR Coexistence", 3GPPTSG RAN WG1 MEETING #89, 19 May 2017 (2017-05-19), pages 4 - 13, XP051272136 * |
Also Published As
Publication number | Publication date |
---|---|
CN108811063B (zh) | 2023-07-18 |
CN108811063A (zh) | 2018-11-13 |
EP3618511B1 (en) | 2021-04-07 |
EP3618511A1 (en) | 2020-03-04 |
US20200068500A1 (en) | 2020-02-27 |
EP3618511A4 (en) | 2020-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018201869A1 (zh) | 一种确定上行信号发射功率的方法及设备 | |
US11122523B2 (en) | Information transmission method and apparatus | |
US11303343B2 (en) | Method, terminal device, and network device for beam failure management and beam recovery | |
CN110832913B (zh) | 随机接入功率控制方法、装置以及通信系统 | |
US11523347B2 (en) | Message transmissions based on power control parameters | |
US20210289561A1 (en) | Transmission method and apparatus | |
US11902192B2 (en) | Method and apparatus for determining power | |
JP7520883B2 (ja) | ランダムアクセス方法、装置及び通信システム | |
US20200137703A1 (en) | Synchronization method and apparatus | |
US11076422B2 (en) | Random access responding method and device, and random access method and device | |
CN112867129B (zh) | 功率余量上报发送方法和装置 | |
WO2017183309A1 (ja) | 端末装置、基地局装置、および、通信方法 | |
WO2020210964A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2018171666A1 (zh) | 信息收发方法和设备 | |
WO2020164323A1 (zh) | 传输探测参考信号的方法、装置和系统 | |
US12052758B2 (en) | Data transmission method and apparatus and communication system | |
EP3554151B1 (en) | Power control method and device | |
TW202025839A (zh) | 用於隨機存取的方法、網路設備和終端設備 | |
WO2017183312A1 (ja) | 端末装置、および、通信方法 | |
WO2019242382A1 (zh) | 一种指示信道接入类型的方法、终端设备及网络设备 | |
CN111385865B (zh) | 随机接入方法、装置、系统及存储介质 | |
WO2024164964A1 (zh) | 通信方法和通信装置 | |
WO2024098987A1 (zh) | 信号传输方法和装置 | |
WO2020024957A1 (zh) | 一种提升上行性能的方法、装置及用户终端 | |
WO2020199171A1 (zh) | 一种传输参数确定方法及装置、用户设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18795190 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018795190 Country of ref document: EP Effective date: 20191127 |