WO2018201728A1 - 触控基板和触摸屏 - Google Patents

触控基板和触摸屏 Download PDF

Info

Publication number
WO2018201728A1
WO2018201728A1 PCT/CN2017/116072 CN2017116072W WO2018201728A1 WO 2018201728 A1 WO2018201728 A1 WO 2018201728A1 CN 2017116072 W CN2017116072 W CN 2017116072W WO 2018201728 A1 WO2018201728 A1 WO 2018201728A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
touch signal
substrate
signal line
insulating layer
Prior art date
Application number
PCT/CN2017/116072
Other languages
English (en)
French (fr)
Inventor
白璐
王世君
包智颖
米磊
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/078,039 priority Critical patent/US11360617B2/en
Publication of WO2018201728A1 publication Critical patent/WO2018201728A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads

Definitions

  • the present disclosure generally relates to the field of display technology. More specifically, the present disclosure relates to a touch substrate and a touch screen including the touch substrate.
  • touch screens greatly enriches the functionality of display devices and brings a number of novel applications.
  • sensing methods for touch screens such as optical, microwave, resistor, capacitor, etc.
  • capacitive touch screens are widely used in the field of touch display because of their advantages of precise positioning, good touch and long service life. application.
  • Capacitive touch screens can be roughly classified into two types according to the touch structure they include: mutual capacitance and self capacitance.
  • Self-capacitive touch screens are widely used in the art due to their accuracy of touch sensing and high signal-to-noise ratio.
  • the self-capacitive touch screen uses the self-capacitance principle to detect the touch position of the finger. Specifically, a plurality of touch electrodes disposed in the same layer and independent of each other are disposed in the touch substrate. When the human body does not touch the touch screen, the capacitance value of each touch electrode is fixed; when the human body touches the touch screen, the capacitance value of the touch electrode corresponding to the touch position is superimposed on the body capacitance value. The change of the capacitance value of the touch electrode is transmitted to the touch detection chip through the touch signal line, and the latter further determines the touch position by analyzing the change of the capacitance value of each touch electrode during the touch period.
  • a worse situation occurs in the context of using an input tool such as a stylus that has a small contact area with the touch screen, wherein the contact area of the stylus with the touch screen can be less than 1 mm 2 and the area of the touch electrode can be 10 mm 2 .
  • the touch signal needs to be transmitted through the touch electrode and the via located at the edge of the touch electrode. To the touch signal line. The intensity of the touch signal may be greatly lost in the process, so that the touch detection chip cannot detect the touch signal, which will result in degraded performance of the touch screen and a poor user experience.
  • embodiments of the present disclosure are directed to an improved touch substrate and touch screen.
  • a touch substrate includes a plurality of touch electrodes disposed in the same layer and insulated from each other, and the touch electrodes are configured to sense a touch signal and a plurality of first touch signal lines configured to transmit the touch signals, each touch The control electrode is connected to the corresponding first touch signal line through the first via.
  • the touch substrate further includes a plurality of second touch signal lines, wherein the extending direction of the second touch signal lines is different from the extending direction of the first touch signal lines, and each of the touch electrodes passes through the second via and the corresponding Two touch signal lines are connected.
  • the second touch signal lines corresponding to the different touch electrodes are disconnected from each other to prevent mutual interference between the touch electrodes.
  • the plurality of first touch signal lines are parallel to each other.
  • the first touch signal lines corresponding to each of the touch electrodes in each column are arranged along the row direction of the touch electrodes, and respectively pass through the first vias and the corresponding touches. Control electrode connection.
  • each touch electrode corresponds to a plurality of second touch signal lines.
  • the touch substrate further includes a plurality of mutually parallel gate lines and a plurality of mutually parallel data lines.
  • the extending direction of the first touch signal line is parallel to the data line, and the extending direction of the second touch signal line is parallel to the gate line.
  • the first touch signal line is disposed in the same layer as the data line, and the second touch signal line is disposed in the same layer as the gate line.
  • the first touch signal line may be formed by the same patterning process as the data line, and the second touch signal line may be formed by the same patterning process as the gate line.
  • the touch substrate further includes: a first insulating layer disposed between the touch electrode and the second touch signal line; and a first between the first touch signal line and the second touch signal line Two insulation layers.
  • the first via penetrates through both the first insulating layer and the second insulating layer, and the second via penetrates through the first insulating layer.
  • a touch screen including the touch substrate of any of the above is provided.
  • FIG. 1 schematically illustrates a top view of a conventional touch substrate.
  • FIG. 2 schematically illustrates a top view of a touch substrate in accordance with an embodiment of the present disclosure.
  • FIG. 3 schematically illustrates a touch signal transmission path in a touch substrate according to a conventional touch substrate and an embodiment according to the present disclosure.
  • FIG. 4 schematically illustrates a top view of a portion of a touch substrate in accordance with an embodiment of the present disclosure.
  • FIG. 1 schematically illustrates a top view of a conventional touch substrate.
  • a plurality of touch electrodes 100 are arranged in an M x N matrix.
  • the touch signal lines 102 corresponding to each of the touch electrodes 100 in each column are arranged along the row direction of the touch electrodes 100, and are respectively connected to the corresponding touch electrodes 100 through the via holes 104.
  • the touch detection chip is located under the touch substrate, and the via 104 of the touch electrode 100 is located at the right edge of the touch electrode 100 near the DP side of the touch detection chip, and On the DO side away from the touch detection chip, the via 104 of the touch electrode 100 is located at the left edge of the touch electrode 100, as shown by the dashed box in FIG.
  • the touch signal needs to be transmitted to the via 104 through the touch electrode 100 itself, and transmitted to the touch signal line 102 via the via 104. Since the conductive material of the touch electrode 100 is weak in conductivity, the touch signal will be lost during the transmission, so that the sensitivity of the touch substrate is lowered.
  • the touch substrate includes a plurality of touch electrodes 200 disposed in the same layer and insulated from each other, and the touch electrodes 200 are configured to sense touch signals.
  • the plurality of touch electrodes 200 are arranged in an M ⁇ N matrix.
  • the plurality of first touch signal lines 202 configured to transmit the touch signals are arranged along the row direction of the touch electrodes 200 and are respectively connected to the corresponding touch electrodes 200 through the first via holes 204.
  • the touch substrate further includes a plurality of second touch signal lines 206.
  • the extending direction of the second touch signal lines 206 is different from the extending direction of the first touch signal lines 202, and each of the touch electrodes 200 passes through the second via.
  • 208 is connected to the corresponding second touch signal line 206.
  • the second touch signal lines 206 corresponding to the different touch electrodes 200 are disconnected from each other to prevent mutual interference between the touch electrodes 200.
  • a plurality of second touch signal lines 206 extending in a different direction from the first touch signal line 202 are added.
  • the touch signal is transmitted to the second via 208 closest to the first touch signal line 202 through the nearest second touch signal line 206, and then Passing through the second via 208 and the touch electrode 200 itself
  • the first via 204 is then transmitted to the first touch signal line 202 through the first via 204 and finally transmitted to the touch detection chip (not shown) through the first touch signal line 202.
  • the touch signal is The loss on the transmission path is greatly reduced, thereby ensuring that the touch sensitivity at different positions is approximately the same throughout the touch substrate. Moreover, when such a touch substrate is used together with an input tool having a small contact area such as a stylus pen, the touch detection chip can be prevented from detecting the touch signal, thereby improving the touch substrate. Sensitivity.
  • FIG. 2 illustrates that each touch electrode 200 corresponds to one first touch signal line 202 and two second touch signal lines 206, and each of the first touch signal lines 202 passes through two
  • the first vias 204 are connected to the corresponding touch electrodes 200
  • each of the second touch signal lines 206 is connected to the corresponding touch electrodes 200 through the three second vias 208
  • these numbers are exemplary. It is not intended to limit the disclosure.
  • Different touch substrates can be designed by those skilled in the art in accordance with the teachings of the present disclosure. For example, those skilled in the art can make a tradeoff between fabrication cost and complexity and conductivity to design a touch substrate having an appropriate number of first vias and second vias.
  • first via 204 is illustrated as being rectangular in FIG. 2 and the second via 208 is illustrated as being circular, this is merely for ease of distinction. In fact, the first via 204 and the second via 208 can have any shape that is technically achievable.
  • first touch signal line 202 and the second touch signal line 206 are disposed in different layers and insulated from each other by an insulating layer.
  • the line 206 is transmitted to the second via 208 closest to the first touch signal line 202, and then transmitted to the first via 204 through the second via 208 and the touch electrode 200 itself, and then transmitted to the first via 204 through the first via 204.
  • the first touch signal line 202 Since the touch signal is transmitted through the touch electrode 200 itself, the distance is relatively short. Therefore, the intensity of the touch signal Itx is hardly lowered.
  • the plurality of first touch signal lines 202 are parallel to each other.
  • the first touch signal lines 202 corresponding to each of the touch electrodes 200 are arranged along the row direction of the touch electrodes 200, and respectively pass through the first vias 204 and corresponding The touch electrodes 200 are connected.
  • each touch electrode 200 corresponds to a plurality of second touch signal lines 206 .
  • the second touch signal lines 206 corresponding to each of the touch electrodes 200 are relatively densely distributed, so that the touch signals can be transmitted through the second touch signal lines 206 as much as possible, thereby further The distance that the touch signal must be transmitted through the poorly-conductive touch electrode 200 is shortened, the loss of the touch signal is reduced, and the sensitivity of the touch substrate is improved.
  • FIG. 4 schematically illustrates a top view of a portion of a touch substrate in accordance with an embodiment of the present disclosure.
  • the touch electrode 400 corresponds to a plurality of pixel units 410.
  • the pixel unit 410 is disposed in the array setting.
  • the first touch signal line 402 extends between the adjacent two columns of pixel units 410
  • the second touch signal line 406 extends between the rows of the pixel unit 410
  • the first via 404 and the second via 408 are located differently.
  • the aperture ratio of the touch screen can be improved.
  • the aperture ratio of the touch screen can be improved by locating the first via and the second via between different adjacent rows of pixel units.
  • the touch electrodes 400 are multiplexed into the common electrodes of the corresponding plurality of pixel units 410.
  • the touch electrode 400 senses the touch signal; and in the display phase of the touch screen, the touch electrode 400 functions as a common electrode of the pixel unit.
  • the touch substrate further includes a plurality of mutually parallel gate lines 412 and a plurality of parallel data lines 414.
  • the extending direction of the first touch signal line 402 is parallel to the data line 414, and the extending direction of the second touch signal line 406 is parallel to the gate line 412.
  • the first touch signal line 402 is disposed in the same layer as the data line 414, and the second touch signal line 406 is disposed in the same layer as the gate line 412.
  • the first touch signal line 402 can be formed by the same patterning process as the data line 414, and the second touch The control signal line 406 can be formed by the same patterning process as the gate line 412, thereby simplifying the manufacturing process of the touch substrate.
  • the touch substrate may further include: a first insulating layer disposed between the touch electrode and the first touch signal line; disposed between the first touch signal line and the second touch signal line The second insulating layer.
  • the first via penetrates through the first insulating layer
  • the second via penetrates both the first insulating layer and the second insulating layer.
  • the touch substrate when the first touch signal line is disposed in the same layer as the data line, and the second touch signal line is disposed in the same layer as the gate line, the touch substrate corresponds to the bottom gate structure.
  • the touch substrate may further include: a first insulating layer disposed between the touch electrode and the second touch signal line; and a first between the first touch signal line and the second touch signal line Two insulation layers.
  • the first via penetrates through both the first insulating layer and the second insulating layer, and the second via penetrates through the first insulating layer.
  • the touch substrate corresponds to the top gate structure.
  • the touch electrode comprises a transparent conductive material
  • the first insulating layer and the second insulating layer comprise a transparent insulating material
  • the first touch signal line, the second touch signal line, the gate line and the data line comprise a conductive metal material.
  • the materials of the touch electrodes include transparent metals, transparent metal alloys, transparent metal oxides, carbon nanotubes, and graphene.
  • Materials of the first insulating layer and the second insulating layer include inorganic materials such as silicon oxide (SiO 2 ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and organic materials such as resins. material.
  • the materials of the first touch signal line, the second touch signal line, the gate line, and the data line include conductive metal materials such as aluminum and molybdenum.
  • An embodiment of the present disclosure further provides a touch screen including any of the above touch substrates.
  • a touch screen can be applied to any display device, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, an electronic paper, and the like, or any product or component having a display function.
  • Embodiments of the present disclosure provide a touch substrate and a touch screen.
  • a touch substrate and a touch screen by providing a plurality of second touch signal lines, when the user touches a central position of the touch detection chip and the touch electrode that is farther away from the touch detection chip, the touch The signal is transmitted to the second via hole closest to the first touch signal line through the nearest second touch signal line, and then transmitted to the first via hole through the second via hole and the touch electrode, and then transmitted through the first via hole
  • the first touch signal line is transmitted to the touch detection chip through the first touch signal line.
  • the material of the second touch signal line is made The resistivity is smaller than the resistivity of the touch electrode, so the loss of the touch signal on the transmission path is greatly reduced, thereby ensuring that the touch sensitivity of different positions is approximately the same in the entire touch substrate.
  • the touch detection chip can be prevented from detecting the touch signal, thereby improving the touch substrate. Sensitivity.

Abstract

一种触控基板,包括多个同层设置且相互绝缘的触控电极(200),所述触控电极(200)配置成感测触控信号,以及配置成传输触控信号的多条第一触控信号线(202),每一个触控电极(200)通过第一过孔(204)与对应的第一触控信号线(202)连接。触控基板还包括多条第二触控信号线(206),第二触控信号线(206)的延伸方向与第一触控信号线(202)的延伸方向不同,并且每一个触控电极(200)通过第二过孔(208)与对应的第二触控信号线(206)连接。特别地,对应于不同的触控电极(200)的第二触控信号线(206)彼此断开。还提供了一种包括触控基板的触摸屏。

Description

触控基板和触摸屏 技术领域
本公开一般涉及显示技术领域。更具体地,本公开涉及一种触控基板和包括该触控基板的触摸屏。
背景技术
触摸屏的出现大大地丰富了显示装置的功能,并且带来了众多新颖的应用。触摸屏的感应方式有很多种,如通过光学、微波、电阻、电容等方式,其中电容式触摸屏由于其具有定位精确灵敏、触摸手感良好和使用寿命长等优点,在触控显示领域中得到广泛的应用。
电容式触摸屏根据其所包括的触摸结构而可以被大致分为两种类型:互电容式和自电容式。对于自电容式触摸屏,由于其触控感应的准确度和信噪比高等优点而在本领域中被广泛采用。
发明内容
自电容式触摸屏利用自电容原理来检测手指的触摸位置。具体地,在触控基板中设置多个同层设置且相互独立的触控电极。当人体未触碰触摸屏时,每一个触控电极所承受的电容值固定;当人体触碰触摸屏时,与触碰位置对应的触控电极所承受的电容值为上述固定值叠加人体电容值。触控电极所承受的电容值的变化通过触控信号线传输至触控侦测芯片,后者进而在触控时段内通过分析每一个触控电极的电容值变化来判断触碰位置。
在典型的触控基板中,触控电极布置在矩阵中,与每一列中的每一个触控电极对应的触控信号线沿触控电极的行方向排列,并且分别通过过孔与对应的触控电极连接。发明人发现,对于触控信号线的这样的布置方式,对应于较靠近触控侦测芯片的触控电极的过孔和对应于较远离触控侦测芯片的触控电极的过孔将位于触控电极的边缘处。由于制作触控电极的导电材料(透明导电材料,例如氧化铟锡(ITO))的电阻率相比于制作栅线和数据线的导电材料(典型地,金属材料,例如铝和钼)而言通常较大,使得触控电极传输触控信号的能力较弱,因此较靠近触控侦测芯片和较远离触控侦测芯片的触控电极感测触控 信号的能力不及触控基板中的其它触控电极,这表现为在整个触控基板中,不同位置的触控灵敏度是不同的。
更差的情况发生在使用诸如触笔之类的与触摸屏的接触面积较小的输入工具的情境中,其中触笔与触摸屏的接触面积可以小于1mm2,而触控电极的面积可以为10mm2。当触笔接触较靠近触控侦测芯片和较远离触控侦测芯片的触控电极的中央位置时,该触控信号需要经由触控电极和位于该触控电极边缘处的过孔来传输至触控信号线。触控信号的强度在该过程中可能大幅损失,以至于触控侦测芯片无法检测到该触控信号,这将导致触摸屏的性能下降和欠佳的用户体验。
因此,本公开实施例旨在提供一种改进的触控基板和触摸屏。
根据本公开的一方面,提供了一种触控基板。触控基板包括多个同层设置且相互绝缘的触控电极,所述触控电极配置成感测触控信号,以及配置成传输触控信号的多条第一触控信号线,每一个触控电极通过第一过孔与对应的第一触控信号线连接。触控基板还包括多条第二触控信号线,第二触控信号线的延伸方向与第一触控信号线的延伸方向不同,并且每一个触控电极通过第二过孔与对应的第二触控信号线连接。特别地,对应于不同的触控电极的第二触控信号线彼此断开,以防止触控电极之间的相互干扰。
根据一些实施例,多条第一触控信号线相互平行。例如,当触控电极布置在矩阵中时,与每一列中的每一个触控电极对应的第一触控信号线沿触控电极的行方向排列,并且分别通过第一过孔与对应的触控电极连接。
根据一些实施例,每一个触控电极对应于多条第二触控信号线。
根据一些实施例,触控基板包括阵列设置的像素单元,第一触控信号线在相邻两列像素单元之间延伸,第二触控信号线在像素单元行之间延伸,并且第一过孔和第二过孔位于不同的相邻行像素单元之间。
根据一些实施例,每一个触控电极对应于多个像素单元,并且触控电极复用为对应的多个像素单元的公共电极。例如,在典型的5.5寸触摸屏中,每一个触控电极对应于40×40个像素。
根据一些实施例,触控基板还包括多条相互平行的栅线和多条相互平行的数据线。第一触控信号线的延伸方向与数据线平行,并且第二触控信号线的延伸方向与栅线平行。
根据一些实施例,第一触控信号线与数据线同层设置,并且第二触控信号线与栅线同层设置。特别地,第一触控信号线可以与数据线通过同一个图案化过程形成,并且第二触控信号线可以与栅线通过同一个图案化过程形成。
根据一些实施例,触控基板还包括:设置在触控电极与第一触控信号线之间的第一绝缘层;设置在第一触控信号线与第二触控信号线之间的第二绝缘层。第一过孔贯穿第一绝缘层,并且第二过孔贯穿第一绝缘层和第二绝缘层二者。
根据一些实施例,触控基板还包括:设置在触控电极与第二触控信号线之间的第一绝缘层;设置在第一触控信号线与第二触控信号线之间的第二绝缘层。第一过孔贯穿第一绝缘层和第二绝缘层二者,并且第二过孔贯穿第一绝缘层。
根据一些实施例,触控电极包括透明导电材料,并且第一绝缘层和第二绝缘层包括透明绝缘材料。
根据本公开的另一方面,提供了一种触摸屏,包括上述任一种的触控基板。
应理解,以上的一般描述和下文的细节描述仅是示例性和解释性的,并非旨在以任何方式限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例。
图1示意性地图示了常规的触控基板的顶视图。
图2示意性地图示了根据本公开的实施例的触控基板的顶视图。
图3示意性地图示了在根据常规的触控基板和根据本公开的实施例的触控基板中的触控信号传输路径。
图4示意性地图示了根据本公开的实施例的触控基板的一部分的顶视图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域普通技术人员说明本公 开的概念。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施例的技术方案作进一步地详细描述。
图1示意性地图示了常规的触控基板的顶视图。如图1所示,多个触控电极100布置在M×N矩阵中。与每一列中的每一个触控电极100对应的触控信号线102沿触控电极100的行方向排列,并且分别通过过孔104与对应的触控电极100连接。在该触控基板中,假设触控侦测芯片在触控基板下方,则在靠近触控侦测芯片的DP侧,触控电极100的过孔104位于触控电极100的右边缘处,并且在远离触控侦测芯片的DO侧,触控电极100的过孔104位于触控电极100的左边缘处,如图1中的虚线框所示。当手指或触笔触碰DP侧或DO侧的触控电极100的中央时,触控信号需要通过触控电极100本身传输至过孔104,并且经由过孔104传输至触控信号线102。由于制作触控电极100的导电材料的导电性较弱,因此触控信号在该传输过程中将被损失,使得触控基板的灵敏度下降。
有鉴于此,本公开实施例提供了一种改进的触控基板。如图2所示,触控基板包括多个同层设置且相互绝缘的触控电极200,所述触控电极200配置成感测触控信号。多个触控电极200布置在M×N矩阵中。配置成传输触控信号的多条第一触控信号线202沿触控电极200的行方向排列,并且分别通过第一过孔204与对应的触控电极200连接。触控基板还包括多条第二触控信号线206,第二触控信号线206的延伸方向与第一触控信号线202的延伸方向不同,并且每一个触控电极200通过第二过孔208与对应的第二触控信号线206连接。对应于不同的触控电极200的第二触控信号线206彼此断开,以防止触控电极200之间的相互干扰。
在本公开实施例提供的触控基板中,除了第一触控信号线202之外,还增加了延伸方向与第一触控信号线202不同的多条第二触控信号线206。当用户接触DP侧和DO侧的触控电极200的中央位置时,触控信号通过最近的第二触控信号线206传输至最靠近第一触控信号线202的第二过孔208,然后通过第二过孔208和触控电极200本身传 输至第一过孔204,接着通过第一过孔204传输至第一触控信号线202,并且最终通过第一触控信号线202传输至触控侦测芯片(未示出)。与图1的触控基板相比,在图2中所示的触控基板中,由于制作第二触控信号线206的材料的电阻率小于触控电极200的电阻率,因此触控信号在传输路径上的损失大幅减小,从而保证在整个触控基板中,不同位置的触控灵敏度近似相同。而且,当这样的触控基板与诸如触笔之类的接触面积较小的输入工具一起使用时,可以避免出现触控侦测芯片未能检测到触控信号的情况,从而提高触控基板的灵敏度。
应当指出的是,尽管图2图示了每一个触控电极200对应于一条第一触控信号线202和两条第二触控信号线206,并且每一条第一触控信号线202通过两个第一过孔204与对应的触控电极200连接,每一条第二触控信号线206通过三个第二过孔208与对应的触控电极200连接,但是这些数目都是示例性的,并且不意图限制本公开。本领域技术人员可以根据本公开的教导而设计出不同的触控基板。例如,本领域技术人员可以在制作成本和复杂度与导电性之间做出折衷,以设计出具有适当数目的第一过孔和第二过孔的触控基板。
还应当指出的是,尽管在图2中将第一过孔204图示为矩形,并且将第二过孔208图示为圆形,但是这仅仅是为了便于区分。事实上,第一过孔204和第二过孔208可以具有工艺上可实现的任何形状。另外,第一触控信号线202和第二触控信号线206布置在不同层中,并且通过绝缘层与彼此绝缘。
图3图示了图1中所示的触控基板和图2中所示的触控基板的触控信号的传输路径。在图3(a)中,示意性地图示了图1中所示的触控基板的一个触控电极100,其中触控信号通过触控电极100本身传输到过孔104,并且通过过孔104传输到触控信号线102。如图3(a)中所示,触控信号强度Itx在通过触控电极100进行传输的过程中,由于触控电极100的电阻率较大而逐渐降低。相比之下,在图3(b)中,示意性地图示了图2中所述的触控基板的一个触控电极200,其中触控信号首先通过距离触摸位置最近的第二触控信号线206传输至最靠近第一触控信号线202的第二过孔208,然后通过第二过孔208和触控电极200本身传输至第一过孔204,接着通过第一过孔204传输至第一触控信号线202。由于触控信号通过触控电极200本身传输的距离相对短, 因此触控信号的强度Itx几乎没有降低。
返回到图2,在示例实施例中,多条第一触控信号线202相互平行。例如,当触控电极200布置在矩阵中时,与每一个触控电极200对应的第一触控信号线202沿触控电极200的行方向排列,并且分别通过第一过孔204与对应的触控电极200连接。
在示例实施例中,如图2所示,每一个触控电极200对应于多条第二触控信号线206。在这样的触控基板中,对应于每一个触控电极200的第二触控信号线206相对密集地分布,使得触控信号能够尽可能多地通过第二触控信号线206传输,从而进一步缩短触控信号必须通过导电性较差的触控电极200传输的距离,降低触控信号的损失,提高触控基板的灵敏度。
图4示意性地图示了根据本公开的实施例的触控基板的一部分的顶视图。具体地,在图4中示意性地图示了触控基板的一个触控电极400。触控电极400对应于多个像素单元410。像素单元410设置在阵列设置中。第一触控信号线402在相邻两列像素单元410之间延伸,第二触控信号线406在像素单元410的行之间延伸,并且第一过孔404和第二过孔408位于不同的相邻行像素单元410之间。在该触控基板中,通过使第一过孔404和第二过孔408位于不同的相邻行像素单元410之间,可以改进触摸屏的开口率。在触控基板中,当第一过孔和第二过孔过于接近时,将损失触摸屏的开口率。因此,通过使第一过孔和第二过孔位于不同的相邻行像素单元之间,可以改进触摸屏的开口率。
在如图4所示的触控基板中,触控电极400复用为对应的多个像素单元410的公共电极。在触摸屏的触控阶段,触控电极400感测触控信号;而触摸屏的显示阶段,触控电极400作为像素单元的公共电极起作用。
进一步地,如图4所示,触控基板还包括多条相互平行的栅线412和多条相互平行的数据线414。第一触控信号线402的延伸方向与数据线414平行,并且第二触控信号线406的延伸方向与栅线412平行。
在示例实施例中,第一触控信号线402与数据线414同层设置,并且第二触控信号线406与栅线412同层设置。特别地,第一触控信号线402可以与数据线414通过同一个图案化过程形成,并且第二触 控信号线406可以与栅线412通过同一个图案化过程形成,从而简化触控基板的制造过程。
在示例实施例中,触控基板还可以包括:设置在触控电极与第一触控信号线之间的第一绝缘层;设置在第一触控信号线与第二触控信号线之间的第二绝缘层。第一过孔贯穿第一绝缘层,并且第二过孔贯穿第一绝缘层和第二绝缘层二者。在这样的触控基板中,当第一触控信号线与数据线同层设置,并且第二触控信号线与栅线同层设置时,该触控基板对应于底栅结构。可替换地,触控基板还可以包括:设置在触控电极与第二触控信号线之间的第一绝缘层;设置在第一触控信号线与第二触控信号线之间的第二绝缘层。第一过孔贯穿第一绝缘层和第二绝缘层二者,并且第二过孔贯穿第一绝缘层。在这样的触控基板中,当第一触控信号线与数据线同层设置,并且第二触控信号线与栅线同层设置时,该触控基板对应于顶栅结构。
有利地,触控电极包括透明导电材料,第一绝缘层和第二绝缘层包括透明绝缘材料,并且第一触控信号线、第二触控信号线、栅线和数据线包括导电金属材料。触控电极的材料包括透明金属、透明金属合金、透明金属氧化物、碳纳米管和石墨烯等。第一绝缘层和第二绝缘层的材料包括诸如氧化硅(SiO2)、氮化硅(SiNx)、氮氧化硅(SiOxNy)之类的无机材料,以及诸如树脂之类的有机材料。第一触控信号线、第二触控信号线、栅线和数据线的材料包括诸如铝和钼之类的导电金属材料。
本公开的实施例还提供了一种触摸屏,包括上述任一种触控基板。这样的触摸屏可以应用于各种显示装置,例如手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子纸等任何具有显示功能的产品或部件。
本公开实施例提供了一种触控基板和触摸屏。在这样的触控基板和触摸屏中,通过设置多条第二触控信号线,当用户接触较靠近触控侦测芯片和较远离触控侦测芯片的触控电极的中央位置时,触控信号通过最近的第二触控信号线传输至最靠近第一触控信号线的第二过孔,然后通过第二过孔和触控电极传输至第一过孔,接着通过第一过孔传输至第一触控信号线,并且最终通过第一触控信号线传输至触控侦测芯片。与常规的触控基板相比,由于制作第二触控信号线的材料的电 阻率小于触控电极的电阻率,因此触控信号在传输路径上的损失大幅减小,从而保证在整个触控基板中,不同位置的触控灵敏度近似相同。而且,当这样的触控基板与诸如触笔之类的接触面积较小的输入工具一起使用时,可以避免出现触控侦测芯片未能检测到触控信号的情况,从而提高触控基板的灵敏度。
除非另外定义,否则本公开使用的技术术语或者科学术语应当为本公开所属领域普通技术人员所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。需要注意的是,在不冲突的前提下,上述实施例中的特征可以任意组合使用。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何本领域普通技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求的保护范围为准。

Claims (11)

  1. 一种触控基板,包括:
    多个同层设置且相互绝缘的触控电极,所述触控电极配置成感测触控信号;
    配置成传输触控信号的多条第一触控信号线,每一个触控电极通过第一过孔与对应的第一触控信号线连接;以及
    多条第二触控信号线,所述第二触控信号线的延伸方向与第一触控信号线的延伸方向不同,并且每一个触控电极通过第二过孔与对应的第二触控信号线连接,
    其中,对应于不同的触控电极的第二触控信号线彼此断开。
  2. 根据权利要求1所述的触控基板,其中,所述多条第一触控信号线相互平行。
  3. 根据权利要求1所述的触控基板,其中,每一个触控电极对应于多条第二触控信号线。
  4. 根据权利要求1所述的触控基板,包括设置在阵列设置的像素单元,第一触控信号线在相邻两列像素单元之间延伸,第二触控信号线在像素单元行之间延伸,并且第一过孔和第二过孔位于不同的相邻行像素单元之间。
  5. 根据权利要求4所述的触控基板,其中,每一个触控电极对应于多个像素单元,并且触控电极复用为对应的多个像素单元的公共电极。
  6. 根据权利要求1所述的触控基板,还包括多条相互平行的栅线和多条相互平行的数据线,第一触控信号线的延伸方向与数据线平行,并且第二触控信号线的延伸方向与栅线平行。
  7. 根据权利要求6所述的触控基板,其中,第一触控信号线与数据线同层设置,并且第二触控信号线与栅线同层设置。
  8. 根据权利要求1所述的触控基板,还包括:
    设置在触控电极与第一触控信号线之间的第一绝缘层;
    设置在第一触控信号线与第二触控信号线之间的第二绝缘层;
    其中,第一过孔贯穿第一绝缘层,并且第二过孔贯穿第一绝缘层和第二绝缘层二者。
  9. 根据权利要求1所述的触控基板,还包括:
    设置在触控电极与第二触控信号线之间的第一绝缘层;
    设置在第一触控信号线与第二触控信号线之间的第二绝缘层;
    其中,第一过孔贯穿第一绝缘层和第二绝缘层二者,并且第二过孔贯穿第一绝缘层。
  10. 根据权利要求8或9所述的触控基板,其中,
    所述触控电极包括透明导电材料;并且
    所述第一绝缘层和第二绝缘层包括透明绝缘材料。
  11. 一种触摸屏,包括根据权利要求1-10中任一项所述的触控基板。
PCT/CN2017/116072 2017-05-02 2017-12-14 触控基板和触摸屏 WO2018201728A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/078,039 US11360617B2 (en) 2017-05-02 2017-12-14 Touch substrate and touch screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710300962.2 2017-05-02
CN201710300962.2A CN107422930B (zh) 2017-05-02 2017-05-02 触控基板和触摸屏

Publications (1)

Publication Number Publication Date
WO2018201728A1 true WO2018201728A1 (zh) 2018-11-08

Family

ID=60425822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116072 WO2018201728A1 (zh) 2017-05-02 2017-12-14 触控基板和触摸屏

Country Status (3)

Country Link
US (1) US11360617B2 (zh)
CN (1) CN107422930B (zh)
WO (1) WO2018201728A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422930B (zh) 2017-05-02 2019-10-11 京东方科技集团股份有限公司 触控基板和触摸屏
CN109976047B (zh) * 2018-01-02 2021-03-16 京东方科技集团股份有限公司 触控电极结构、触控基板及制备方法、显示面板及装置
CN108446053B (zh) * 2018-03-27 2021-03-26 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN113535013A (zh) * 2021-08-12 2021-10-22 京东方科技集团股份有限公司 一种触控基板和显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808858A (zh) * 2015-05-08 2015-07-29 厦门天马微电子有限公司 一种触控面板和触控显示装置
CN205375439U (zh) * 2015-12-22 2016-07-06 上海天马微电子有限公司 一种内嵌式自容触控屏及显示装置
US20160349895A1 (en) * 2014-11-24 2016-12-01 Shenzhen China Star Optoelectronics Technology Co., Ltd. Touch panel and touch display device
CN107422930A (zh) * 2017-05-02 2017-12-01 京东方科技集团股份有限公司 触控基板和触摸屏

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757675B1 (ko) * 2014-12-31 2017-07-17 엘지디스플레이 주식회사 인셀 터치 액정 디스플레이 장치와 이의 제조방법
CN104731412B (zh) * 2015-04-01 2018-03-13 上海天马微电子有限公司 阵列基板、显示面板及显示装置
CN104699357B (zh) * 2015-04-01 2018-01-09 上海天马微电子有限公司 一种电子设备、触摸显示面板以及触控显示基板
CN104699353B (zh) * 2015-04-01 2018-02-06 上海天马微电子有限公司 阵列基板、驱动方法、显示面板及显示装置
KR102563261B1 (ko) * 2015-12-31 2023-08-07 엘지디스플레이 주식회사 전도성 코팅액 조성물, 이를 이용한 정전기 방지막 및 표시장치
CN105739790B (zh) * 2016-04-25 2018-10-19 上海天马微电子有限公司 一种触控显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160349895A1 (en) * 2014-11-24 2016-12-01 Shenzhen China Star Optoelectronics Technology Co., Ltd. Touch panel and touch display device
CN104808858A (zh) * 2015-05-08 2015-07-29 厦门天马微电子有限公司 一种触控面板和触控显示装置
CN205375439U (zh) * 2015-12-22 2016-07-06 上海天马微电子有限公司 一种内嵌式自容触控屏及显示装置
CN107422930A (zh) * 2017-05-02 2017-12-01 京东方科技集团股份有限公司 触控基板和触摸屏

Also Published As

Publication number Publication date
US11360617B2 (en) 2022-06-14
CN107422930A (zh) 2017-12-01
CN107422930B (zh) 2019-10-11
US20210191593A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US9207720B2 (en) Flexible touch screen panel and fabrication method thereof
US20180210575A1 (en) Touch screen, method for manufacturing touch screen, and touch display device
US10254904B2 (en) Conductive sheet, capacitive touch panel, and display device
US8847906B2 (en) Touch device and method for manufacturing the same
US8593413B2 (en) Sensory structure of capacitive touch panel and capacitive touch panel having the same
US8803823B2 (en) Capacitive touch sensor, touch detection device and touch terminal
US9329737B2 (en) Touch panel comprising sensing electrodes with protrusions
US10394404B2 (en) Touch display panel
EP2613235B1 (en) Touch panel and a manufacturing method thereof
WO2018201728A1 (zh) 触控基板和触摸屏
US20130201348A1 (en) Capacitive touch panel
US20150060120A1 (en) Touch panel
US8692788B2 (en) Flat panel display device with touch screen
CN103513825A (zh) 触控装置
US20130201116A1 (en) Touch panel
US11144168B1 (en) Touch panel and manufacturing method thereof
TW201642100A (zh) 觸控感測器
JP2015167007A (ja) タッチパネル
KR20130045801A (ko) 터치 패널 및 그것의 제조 방법
CN113010042B (zh) 一种触控显示面板
US11573668B2 (en) Touch-sensing panel
WO2020010881A1 (zh) 触控模组、其制备方法及触控显示装置
WO2014015618A1 (zh) 触控面板及其制造方法、触控设备
KR102281616B1 (ko) 터치 스크린 패널 및 터치 스크린 패널 제조 방법
US20170017338A1 (en) Touch display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908554

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 03/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17908554

Country of ref document: EP

Kind code of ref document: A1