WO2018201687A1 - 一种信令传输方法及设备、计算机可读存储介质 - Google Patents

一种信令传输方法及设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2018201687A1
WO2018201687A1 PCT/CN2017/110754 CN2017110754W WO2018201687A1 WO 2018201687 A1 WO2018201687 A1 WO 2018201687A1 CN 2017110754 W CN2017110754 W CN 2017110754W WO 2018201687 A1 WO2018201687 A1 WO 2018201687A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
forwarding
user equipment
base station
relay
Prior art date
Application number
PCT/CN2017/110754
Other languages
English (en)
French (fr)
Inventor
许辉
谢芳
纪中伟
丁剑锋
王亚英
华孝泉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/611,071 priority Critical patent/US11399411B2/en
Publication of WO2018201687A1 publication Critical patent/WO2018201687A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a signaling transmission method and device, and a computer readable storage medium.
  • D2D technology can reduce the burden of cellular networks, reduce the battery power consumption of user equipment, increase the data rate, and improve the robustness of the network infrastructure, which satisfies the requirements of the above high data rate services and proximity services.
  • D2D technology is also called Proximity Services (ProSe), and one-side link (Sidelink, SL).
  • the D2D technology generally includes a D2D discovery technology and a D2D communication technology, where the D2D discovery technology refers to a technology for determining or determining whether a first user equipment is adjacent to a second user equipment. Pass Often, D2D user equipment can discover each other by sending or receiving discovery signals or information, and D2D communication technology refers to a technology in which some or all of the communication data between D2D user equipments can communicate directly without going through the network infrastructure.
  • the embodiment of the present application provides a signaling transmission method and device, and a computer readable storage medium.
  • the relay user equipment receives signaling sent by the base station or the remote user equipment;
  • the relay user equipment determines that the signaling forwarding condition is met, or the relay user equipment receives the signaling forwarding indication message sent by the base station, the signaling between the remote user equipment and the base station is forwarded.
  • the signaling transmission device provided by the embodiment of the present application includes a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection communication between the processor and the memory
  • the processor is configured to execute a signaling transmission program stored in the memory to implement the following steps:
  • the signaling between the remote user equipment and the base station is forwarded.
  • the computer readable storage medium stores one or more programs, and the one or more programs may be executed by one or more processors to implement the following steps:
  • the signaling between the remote user equipment and the base station is forwarded.
  • the remote user equipment communicates with the network through the relay user equipment or communicates directly with the network, when the remote user equipment is located outside the network coverage.
  • the remote user equipment can be guaranteed to receive network signaling to ensure network-related operations.
  • FIG. 1 is a schematic diagram of a UE-to-network relay (User Equipment to Network Relay) communication architecture.
  • UE-to-network relay User Equipment to Network Relay
  • FIG. 2 is a schematic structural diagram of a system applied to a signaling transmission method according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a signaling transmission method according to an embodiment of the present application.
  • Figure 4-1 is a schematic diagram of partial signaling transmission by a relay user equipment (Relay-UE) by using the signaling transmission method of the embodiment of the present application.
  • Relay-UE relay user equipment
  • FIG. 4-2 is a schematic diagram of the U-port signaling between the base station and the remote user equipment (Remote-UE) being forwarded by the Relay-UE by using the signaling transmission method in the embodiment of the present application.
  • Remote-UE remote user equipment
  • FIG. 5 is a schematic diagram of a signaling forwarding process according to application example 1 of the present application.
  • FIG. 6 is a schematic diagram of a signaling forwarding process according to application example 2 of the present application.
  • FIG. 7 is a schematic diagram of a signaling forwarding process according to application example 3 of the present application.
  • FIG. 8 is a schematic diagram of a signaling forwarding process according to application example 4 of the present application.
  • FIG. 9 is a schematic diagram of a signaling forwarding process according to application example 5 of the present application.
  • FIG. 10 is a schematic structural diagram of a signaling forwarding system according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a signaling transmission device according to an embodiment of the present application.
  • NB-IoT Narrow Band-Internet of Things Standardization work is still in progress.
  • R13eMTC adds coverage enhancement support and bandwidth limited support on the basis of low cost.
  • the radio frequency capability of the eMTC user equipment (UE) is limited to 1.4 MHz, while the radio frequency transceiver bandwidth of the NB-IoT device is limited to 180 kHz.
  • the coverage enhancement is usually achieved by multiple repetitions of data transmission between an eNB (evolved Node B) and an eMTC/NB-IoT UE.
  • wearable devices have similar application requirements such as low cost, limited bandwidth, and low power consumption.
  • wearable devices mainly for wearable devices (Wearables) and Internet of Things (IOT)/Machine Type Communication (MTC) applications
  • wearable devices through UE-to -network relay (user equipment to network relay) to achieve communication with the network, wherein the Wearables UE can communicate through the PC5 or Uu port within the eNB coverage, and at least the uplink data adopts the PC5.
  • the UE-to-network relay communication architecture is shown in Figure 1.
  • the Relay-UE communicates with the network or directly with the network.
  • the Remote-UE device is outside the network coverage, the Remote-UE cannot directly receive the network signaling, which may cause network-related operations to fail.
  • FIG. 2 a schematic diagram of a system architecture applied by the signaling transmission method in the embodiment of the present application.
  • the system architecture of the embodiment of the present application includes a Remote-UE device, a Relay-UE device, and an access network device.
  • the Remote-UE in FIG. 2 can communicate with the access network device through interface 1 or interface 3 (and interface 2).
  • the interface 1 and the interface 3 may be the same frequency or the different frequency, and the interface 3 adopts the licensed spectrum or the unlicensed spectrum.
  • the communication technology adopted by the interface 3 includes one of the following: 3GPP technology, non-3GPP technology.
  • 3GPP technologies include: sidelink communication; non-3GPP technologies include one of the following: bluetooth, WLAN (wireless local area network), IrDA (infrared point-to-point communication technology), ZigBee (Zigbee protocol).
  • the Relay-UE is at least one of the following: a UE-to-network relay (user equipment to network relay).
  • the signaling transmission method includes:
  • Step 301 The relay user equipment receives signaling sent by the base station or the remote user equipment.
  • Step 302 The Relay-UE determines whether the signaling forwarding condition is met. If yes, the process moves to step 303. Otherwise, the process proceeds to step 305.
  • the relay user equipment may also perform step 303.
  • the signaling forwarding indication message is sent by the base station through dedicated RRC (Radio Resource Control) signaling, the Relay-UE is associated with multiple Remote-UEs in advance, and the base station is known as Relay-UE and a remote-UE association relationship; if the base station sends the signaling forwarding indication message, the Relay-UE is in an RRC-connected state; if the Remote-UE sends the signaling forwarding indication message, the Remote-UE and the The Relay-UE has established a connection.
  • RRC Radio Resource Control
  • the signaling forwarding indication message includes at least: a Remote-UE identifier.
  • the signaling forwarding indication message further includes one of the following information or Any combination of more than one: remote user equipment identifier, signaling type to be forwarded, signaling time, signaling forwarding mode, forwarding resource, and signaling content.
  • the relay user equipment determines signaling content for forwarding, where the signaling used for forwarding is one of: relaying all signaling received by the user equipment, and relaying part of the signaling received by the user equipment; ,
  • the relay user equipment converts the signaling received from the Uu interface into signaling suitable for transmission by the edge interface, or converts the signaling received from the edge interface into signaling suitable for transmission by the Uu interface.
  • the signaling type includes: a system message, a paging message, a response message, a synchronization signal, a request message, and the like; the signaling sending time is: a sending time of the signaling to be forwarded, that is, a Relay-UE receiving is required.
  • the signaling forwarding mode includes one of the following: layer 1 signaling, layer 2 signaling, layer 3 signaling, periodic forwarding, aperiodic forwarding, merge forwarding, split forwarding, etc.; forwarding resource refers to forwarding information
  • the base station indicates the location of the forwarding resource
  • the forwarding resource may be determined by one of the following methods: The resource is configured by the relay-UE, and the resource is configured by the base station. For example, if the Remote-UE is located outside the coverage of the base station, the resource is configured by the pre-configuration or Relay-UE. The Remote-UE is located in the coverage of the base station, and the resource may be configured by the Relay-UE.
  • the base station configures resources.
  • the Relay-UE determines whether the forwarding signaling condition is met according to one or a combination of two or more of the following information: whether the network parameter satisfies the preset condition, and whether the content is satisfied. Pre-configured rules or receiving access network indication information;
  • the network parameters include: link quality, service QoS requirements.
  • the Relay-UE may determine the forwarding signaling, otherwise the Relay-UE may reject the forwarding signaling.
  • the access network indication means that the access network device sends information for indicating a communication path and/or a communication technology to the UE by using a system message or dedicated signaling, where the dedicated signaling includes at least one of the following: layer 1 letter Let, layer 2 signaling, layer 3 signaling. Further, the access network indication further includes one of the following: a communication using a Uu interface and/or a side interface, a service type communicated on the Uu interface and the edge interface, and a priority of the Uu interface 1 and the edge interface.
  • the edge interface adopts 3GPP or non-3GPP technology; wherein the service type includes one of the following: QoS (service quality) of the service, control plane service, user plane service, uplink or Downstream business.
  • QoS service quality
  • the Relay-UE determines whether to forward signaling according to one or a combination of two or more of the following information: whether the network parameter meets a preset condition, and the pre-configuration rule.
  • the network parameters include: link quality, service QoS requirements.
  • the Relay-UE can directly receive the request message of the base station, that is, the Relay-UE does not perform the judgment, directly sends an acknowledgement message to the base station, and forwards the signaling between the Remote-UE and the base station.
  • the Relay-UE may be associated with multiple Remote-UEs, and the Remote-UE may also be associated with multiple Relay-UEs; wherein the association relationship between the Remote-UE and the Relay-UE may be configured by a higher layer.
  • the relevant Remote-UE, Relay-UE and base station are notified in advance.
  • the Relay-UE for signaling forwarding can be selected from a plurality of Relay-UEs.
  • one Relay-UE may also implement forwarding of signaling of multiple associated Remote-UEs.
  • Step 303 The Relay-UE sends an acknowledgement.
  • the acknowledgement message includes one of the following contents: a forwarding mode, a forwarding resource, and a Remote-UE identifier; wherein the forwarding mode refers to one of the following: forwarding signaling (such as layer 1, layer 2, or layer 3 signaling) , forwarding period, merge forwarding (multiple signaling is combined into one), split forwarding (one signaling is divided into multiple), all forwarding (for forwarding all received signaling), partial forwarding (for forwarding) Partial signaling to); forwarding resource refers to: a location for forwarding signaling; and a Remote-UE identifier is used to indicate a Remote-UE involved in forwarding signaling.
  • forwarding signaling such as layer 1, layer 2, or layer 3 signaling
  • Step 304 The Relay-UE forwards the signaling between the base station and the Remote-UE, and ends.
  • the Relay-UE receives Remote-UE signaling from the edge, and then forwards to the base station through the Uu interface; and/or the Relay-UE receives the base station signaling from the Uu interface, and then forwards the signal to the Remote-UE.
  • the Relay-UE first determines the signaling that needs to be forwarded, and when the destination address of the received signaling is not local, then forwards the signaling.
  • the Relay-UE needs to notify the Remote-UE to forward the related information of the signaling, such as the forwarding time and the forwarding resource, before forwarding the signaling.
  • the Relay-UE Part of the signaling may also be forwarded (the forwarded part of the signaling may be indicated by the base station, or the relay-UE itself determines), and the remaining signaling is directly transmitted by the Remote-UE and the base station.
  • Step 305 Relay-UE sends a negative response.
  • a negative acknowledgement message is sent to the base station or the Remote-UE; the negative response includes: a reason for rejection.
  • Step 306 Select another mode to transmit signaling.
  • the remote-UE or the base station selects another Relay-UE to perform signaling forwarding, or the Remote-UE directly performs signaling interaction with the base station, or pauses signaling interaction between the Remote-UE and the base station.
  • the Relay-UE receives the signaling forwarding request message of the Remote-UE or the base station, directly sends the response message, or sends a response message when it is determined that the forwarding condition is satisfied; after the Relay-UE sends the response message, The base station and/or the Remote-UE are monitored and received, and the corresponding processing is performed according to a preset rule, and then forwarded to the target node.
  • the Remote-UE is located within the coverage of the access network or outside the coverage, or the Remote-UE is located within the enhanced coverage.
  • the Remote-UE receives the system information, the synchronization signal, the paging message, the measurement configuration and other control signaling sent by the access network through the edge, and sends a request message, a response message, a measurement report, etc. for the access network through the edge.
  • Control signaling in the embodiment of the present application, in order to save power consumption, the uplink user plane data of the Remote-UE may be transmitted through the Relay-UE.
  • the Remote-UE may autonomously select interface 1 or interface 3 (and interface 2) in FIG. 2 to communicate with the access network according to pre-configured rules.
  • the pre-configured rule is stored in a UICC (Universal Integrated Circuit Card) or ME (Mobility Equipment) of the UE.
  • UICC Universal Integrated Circuit Card
  • ME Mobility Equipment
  • FIGS. 4-1 and 4-2 are schematic diagrams showing the results of signaling transmission using the signaling transmission method in the embodiment of the present application.
  • the Remote-UE is located in the coverage of the access network base station, and part of the control signaling is transmitted through the Uu interface between the access network and the Remote-UE, such as system messages, and other control signaling is forwarded through the Relay-UE.
  • the paging message, etc. the Remote-UE is located in or outside the coverage of the access network base station, and the Uu interface signaling between the base station and the Remote-UE is forwarded through the Relay-UE, such as a system message, a paging message. , synchronization signals, etc.
  • the Remote-UE performs a determination according to one of the following: network parameters, pre-configured rules, and access network indication information to determine a required communication path.
  • the network parameters include: link quality, service quality of service QoS requirements.
  • the pre-configuration rule includes at least one of the following: a priority, a threshold; wherein the priority refers to a priority between the interface 1 and the interface 3, and if the interface 1 has a high priority, the interface 1 is preferentially selected; the threshold refers to the interface 1 and / or the link quality requirement of interface 3, if the link quality of the current interface is lower than the specified threshold, the UE selects other interfaces or other communication technologies to continue communication, and if the UE selects other interfaces or other communication technologies, the UE notifies the access network. device.
  • the pre- Configuration rules also include resource configuration.
  • FIG. 5 it is a schematic diagram of a signaling forwarding process according to application example 1 of the present application.
  • the Relay-UE receives the signaling forwarding request message of the base station or the Remote-UE, and the signaling forwarding request message requests to forward the signaling of the base station to the Remote-UE, and then the Relay-UE performs the request according to the request. Processing, specifically including:
  • Step 501 The Relay-UE confirms that the signaling between the base station and the Remote-UE is forwarded;
  • the Relay-UE receives, by the Relay-UE, a request message of a base station or a Remote-UE, the Relay-UE agrees to forward the signaling from the base station to the Remote-UE, and sends an acknowledgement message to the base station or the Remote-UE; wherein the acknowledge message uses the RRC letter Order bearing.
  • the signaling includes one of the following: system message, paging message, synchronization signal, measurement configuration, resource scheduling, and the like.
  • Step 502 The Relay-UE monitors signaling related to the Remote-UE.
  • the Relay-UE monitors the Remote-UE related signaling on the Uu interface, and the Relay-UE monitors according to the identifier of the Remote-UE, where the Relay-UE and the Remote-UE are related, that is, the The Remote-UE can send and receive base station signaling through the Relay-UE; for example, for the paging message, the Relay-UE not only listens to its own paging message, but also listens to the paging message of the Remote-UE, that is, in the Remote-UE. The corresponding paging moment reads the paging message to determine whether there is a paging record for the Remote-UE.
  • Step 503 The base station sends a signaling related to the Remote-UE to the Relay-UE.
  • the base station sends a signal related to the Remote-UE through the Uu interface, and the Relay-UE receives the signaling.
  • the relay-UE receives the signaling, and determines a forwarding manner of the signaling according to one or a combination of two or more of the signaling type, the signaling content, and the base station indication.
  • Step 504 the Relay-UE establishes a connection with the Remote-UE.
  • the connection refers to a signaling connection between the Relay-UE and the Remote-UE.
  • the Relay-UE may establish a connection with the Remote-UE by discovering a discovery process, such as the Relay-UE sending an advertisement message, and indicating a Remote-UE that needs to be connected in the notification message, and the Remote-UE receives the connection. After the message is initiated, a connection establishment process with the Relay-UE is initiated.
  • step 505 the Relay-UE forwards the signaling to the Remote-UE.
  • the Relay-UE forwards the signaling received at Uu to the Remote-UE through side channel signaling. Further, after receiving the forwarding signaling, the Remote-UE sends a response message to the base station through the Relay-UE, for example, the Relay-UE forwards the paging message to the Remote-UE, and the Remote-UE receives the paging message.
  • the Remote-UE After the RRC connection setup request is initiated to the base station by the Relay-UE, the Remote-UE first establishes a side-to-side user plane connection with the Relay-UE, and the Relay-UE establishes a corresponding Uu interface user plane connection with the base station; Further, a network side connection, such as a PDN (Packet Data Network) connection, may correspond to multiple side-path connections (for multiple Remote-UEs). In a PDN connection, different side-to-side connections are different. Identification distinction.
  • PDN Packet Data Network
  • FIG. 6 is a schematic diagram of a signaling forwarding process according to application example 2 of the present application.
  • the Relay-UE receives the signaling forwarding request message of the base station or the Remote-UE, and the signaling forwarding request message requests to forward the signaling of the Remote-UE to the base station, and then the Relay-UE performs the request according to the request. Processing, specifically including:
  • Step 601 The Relay-UE confirms the signaling of forwarding the Remote-UE to the base station.
  • the Relay-UE Receiving, by the Relay-UE, a request message of a base station or a Remote-UE, the Relay-UE agrees to forward signaling from the Remote-UE to the base station, and sends an acknowledgement message to the base station or the Remote-UE; wherein the acknowledgement message adopts an RRC letter.
  • the signaling includes at least one of: a measurement report, a connection or resource request message, a response message, and the like.
  • Step 602 The Relay-UE monitors the signaling of the Remote-UE.
  • the Relay-UE monitors the signaling of the Remote-UE to the base station on the side of the side, and the Relay-UE has established a signaling connection with the Remote-UE.
  • Step 603 The Remote-UE sends signaling related to the base station to the Relay-UE.
  • the Remote-UE sends signaling to the base station by using the Relay-UE, where the Relay-UE determines that the signaling is for the base station according to the signaling content, and the Relay-UE determines the forwarding signal according to one or more of the following information: The mode of the command: signaling type, signaling content, and base station indication.
  • step 604 the Relay-UE establishes a connection with the base station.
  • the request reason may be set as: remote MO (Mobile Originated, Mobile Calling) signaling, or relaying MO signaling.
  • step 605 the Relay-UE forwards the signaling.
  • the Relay-UE forwards signaling to the base station through the Uu interface.
  • FIG. 7 is a schematic diagram of a signaling forwarding process according to application example 3 of the present application.
  • the Relay-UE receives a signaling forwarding request message of the Remote-UE, and the signaling forwarding request message requests to forward the signaling of the Remote-UE to the base station and/or the signaling of the base station to the Remote-UE. Then, the Relay-UE performs processing according to the request, and specifically includes:
  • Step 701 The Remote-UE establishes a connection with the Relay-UE.
  • the Remote-UE establishes a signaling connection with the Relay-UE, and the Remote-UE may establish a signaling connection with the Relay-UE through a discovery process, when the Remote-UE sends a request message, and indicates in the request message.
  • the Relay-UE identifies that the Relay-UE that received the request establishes a connection with the Remote-UE.
  • Step 702 The Remote-UE sends a request message to the Relay-UE.
  • the Remote-UE sends a request message to the Relay-UE through a side channel, where the request message includes one or more of the following combinations: a signaling type to be forwarded, a signaling content to be forwarded, and signaling Forwarding mode, the location of the signaling resource that needs to be forwarded.
  • the signaling includes: signaling from the Remote-UE to the base station, and/or signaling from the base station to the Remote-UE.
  • Step 703 The Relay-UE sends an acknowledgement response message to the Remote-UE.
  • the Relay-UE sends an acknowledgment response message to the Remote-UE through the side channel signaling, where the response message includes at least one of the following: a forwarding mode, and a forwarding resource.
  • Step 704 the Relay-UE forwards the signaling.
  • the Relay-UE listens to and receives signaling from the Remote-UE and forwards it to the base station, or the Relay-UE listens to and receives signaling from the base station and forwards it to the Remote-UE.
  • the source of the signaling such as a Remote-UE or a base station, needs to be indicated to implement correct processing of the signaling by the receiver.
  • FIG. 8 it is a schematic diagram of a signaling forwarding process according to application example 4 of the present application.
  • the Relay-UE receives a signaling forwarding request message of the base station, and the signaling forwarding request message requests to forward the signaling of the Remote-UE to the base station and/or the signaling of the base station to the Remote-UE, and then the Relay -
  • the UE processes according to the request, and specifically includes:
  • Step 801 The Relay-UE establishes a connection with the base station.
  • the Relay-UE establishes an RRC connection with the base station.
  • Step 802 The base station requests the Relay-UE to forward the signaling.
  • the base station requests the Relay-UE to forward the signaling by using the RRC signaling, where the request message includes one or more of the following information: the type of the signaling to be forwarded, the signaling content to be forwarded, and the The forwarding mode, the location of the signaling resource to be forwarded, the resource used to forward the signaling, and so on.
  • the signaling includes: signaling from the Remote-UE to the base station, and/or signaling from the base station to the Remote-UE.
  • Step 803 The Relay-UE sends an acknowledgement message to the base station.
  • the Relay-UE sends an acknowledgment response message to the base station by using the Uu interface RRC signaling, where the response message includes one of the following: a forwarding mode, and a forwarding resource.
  • step 804 the Relay-UE forwards the signaling.
  • the Relay-UE listens to and receives signaling from the Remote-UE and forwards it to the base station, or the Relay-UE listens to and receives signaling from the base station and forwards it to the Remote-UE.
  • FIG. 9 it is a schematic diagram of a signaling forwarding process according to application example 5 of the present application.
  • the Remote-UE or the base station selects a new Relay-UE, and the new Relay-UE performs the signaling forwarding process, which specifically includes:
  • Step 901 The Relay-UE rejects forwarding signaling.
  • the Relay-UE Receiving, by the Relay-UE, a request message of a base station or a Remote-UE, the Relay-UE rejects forwarding signaling, and sends a reject response message to the base station or the Remote-UE, indicating a reason for rejection in the message, where the reason for the rejection includes But it is not limited to one of the following: insufficient memory, failure, unidentified destination identification, inability to connect to the target, line congestion, etc.
  • Step 902 Select a new Relay-UE
  • the new Relay-UE is selected by a Remote-UE or a base station; wherein the Remote-UE selects a Relay-UE according to one of the following: a pre-configuration rule, a base station or other network element indication; and the base station selects a Relay-UE according to one of the following: Configure rules and other network elements indicate.
  • the other network elements include one of the following: an access network element and a core network element.
  • Step 903 The new Relay-UE confirms forwarding signaling.
  • step 902 may be repeated.
  • step 904 the new Relay-UE forwards the signaling.
  • the Relay-UE forwards the received signaling to the destination node.
  • FIG. 10 is a schematic structural diagram of a signaling forwarding system according to an embodiment of the present application.
  • This embodiment discloses a system for implementing signaling forwarding, including: a radio access network device, a remote user equipment (Remote-UE) and a relay user equipment (Relay-UE);
  • the radio access network device includes a base station 5011;
  • the remote user equipment includes a terminal first receiving module 5021, a first processing module 5022, and a first sending module 5023.
  • the relay user equipment includes: a second receiving module 5031, a second processing module 5032, and a second sending module 5033;
  • the first receiving module 5021 of the remote user equipment is configured to receive the control signaling sent by the second sending module 5033 of the relay user equipment by using the air interface; the first processing module 5022 is configured to independently select the communication path and the relay user equipment; The sending module 5023 is configured to send the request information to the second receiving module 5031.
  • the second sending module 5033 is configured to send signaling to the base station 5011 or the first receiving module 5021, the second receiving module 5031 is configured to receive signaling sent by the base station 5011 or the first sending module 5023, and the second processing module 5032 is configured to determine the signal.
  • the base station 5011 is configured to receive signaling of the second sending module 5033 and send signaling to the second receiving module 5031, and also configure signaling resources.
  • the Remote-UE device includes at least one of the following: a user equipment UE, a Wearables, an IOT/MTC terminal (such as a category M1/category NB-IOT device), if no special
  • a user equipment UE such as a user equipment UE
  • a Wearables such as a wearables
  • an IOT/MTC terminal such as a category M1/category NB-IOT device
  • the Remote-UE appearing in the present application represents one or more of the foregoing terminal devices, and it should be noted that the solution of the present application is applicable to various types of UEs.
  • the Remote-UE according to the indication information sent by the access network device or the autonomously selected signaling transmission path (the air interface link between the Remote-UE and the Relay-UE or the Uu link between the Remote-UE and the access network device),
  • control signaling hereinafter referred to as control signaling between the Remote-UE and the access network device
  • the Remote-UE shown establishes a connection with the Relay-UE and passes
  • the relay-UE transmits and receives the required signaling, wherein the link between the Remote-UE and the Relay-UE may adopt a 3GPP LTE-based transmission technology (such as sidelink) or a non-3GPP-based transmission technology (such as Bluetooth bluetooth, wireless local area network WLAN). , infrared, etc.).
  • the Relay-UE device includes at least one of the following: a relay, the Relay-UE device is responsible for forwarding control plane signaling between the access network device and the Remote-UE device, and the Relay-UE is in accordance with the indication information of the access network device.
  • the path forwards the Remote-UE related signaling, and the Relay-UE does not change the signaling (the following signaling refers to the air interface signaling between the Remote-UE and the access network device unless otherwise specified), but
  • the form of signaling may be changed, such as combining multiple signaling into a single signaling, or splitting a single signaling into multiple signaling, or changing periodic signaling to aperiodic signaling, or changing aperiodic signaling to a periodicity. Signaling, etc.;
  • the signaling is one of the following: layer 3 signaling, layer 2 signaling, and layer 1 signaling;
  • the Relay-UE is a layer 2 relay, and the Relay-UE and the Remote-UE communicate with each other by using at least one of: sidelink, bluetooth, WLAN/WiFi, IrDA (Infrared Data Association), and ZigBee (wireless). Personal area network);
  • the access network device at least includes: a base station.
  • the base station is mainly responsible for: sending signaling to the Remote-UE device through the Relay-UE, and receiving signaling sent by the Remote-UE device through the Relay-UE.
  • the wearable Wearables device/MTC/NB-IOT device establishes a connection with the relay (Relay-UE), and the Relay-UE receives the base station signaling through the Uu interface:
  • Relay-UE listens to Remote- UE-related paging message;
  • the base station sends a paging message for the Remote-UE to the Relay-UE;
  • the Relay-UE forwards the received paging message to the Remote-UE;
  • the Remote-UE establishes a side-to-side connection with the Relay-UE, Relay -
  • the UE establishes a corresponding RRC connection with the base station; thus, the Remote-UE communicates with the base station through the Relay-UE.
  • the embodiment of the present application further provides a signaling transmission device, as shown in FIG. 11, including a processor 1101, a memory 1102, and a communication bus 1103;
  • the communication bus 1103 is configured to implement a connection between the processor 1101 and the memory 1102 Receiving communication
  • the processor 1101 is configured to execute a signaling transmission program stored in the memory 1102 to implement the following steps:
  • the signaling between the remote user equipment and the base station is forwarded.
  • the processor is further configured to execute a signaling transmission program stored in the memory to implement other steps in the method of the embodiment of the present application, and details are not described herein again.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores one or more programs, and the one or more programs may be executed by one or more processors to implement the following steps. :
  • the signaling between the remote user equipment and the base station is forwarded.
  • the one or more programs may be executed by one or more processors to implement other steps in the method of the embodiment of the present application, and details are not described herein.
  • the computer readable storage medium described above includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform part of the steps of the methods described in various embodiments of the present application.
  • the computer readable storage medium includes: a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. medium.
  • the technical solution of the embodiments of the present application may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, magnetic
  • a storage medium such as ROM/RAM, magnetic
  • the disc, the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method described in the various embodiments of the present application.
  • the remote user equipment communicates with the network through the relay user equipment or directly communicates with the network.
  • the remote user equipment can ensure that the network signaling is received and the network is related. Operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信令传输方法及设备、计算机可读存储介,所述方法包括:中继用户设备接收由基站或远程用户设备发送的信令;当中继用户设备判断到满足信令转发条件,或者,中继用户设备接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。

Description

一种信令传输方法及设备、计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为201710313707.1、申请日为2017年05月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,具体而言,涉及一种信令传输方法及设备、计算机可读存储介质。
背景技术
随着无线多媒体业务的发展,人们对高数据速率和用户体验的需求日益增长,从而对传统蜂窝网络的系统容量和覆盖提出了较高要求。另一方面公共安全、社交网络、近距离数据共享、本地广告等应用场景使得人们对了解附近人或事物并与之通信(Proximity Services,邻近服务)的需求逐渐增加。传统的以基站为中心的蜂窝网络在高数据速率以及邻近服务的支持方面存在明显的局限性,在这种需求背景下,代表未来通信技术发展新方向的D2D(Device-to-Device,设备到设备)技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少用户设备的电池功耗、提高数据速率,并改善网络基础设施的鲁棒性,很好地满足上述高数据速率业务和邻近服务的要求。目前D2D技术又称之为邻近服务(Proximity Services,ProSe),单边链路(Sidelink,SL)。
D2D技术通常包括D2D发现技术和D2D通信技术,其中,D2D发现技术是指用于判断或确定第一用户设备是否邻近第二用户设备的技术。通 常,D2D用户设备间可通过发送或接收发现信号或信息来发现对方,而D2D通信技术是指D2D用户设备之间部分或全部通信数据可以不通过网络基础设施而直接进行通信的技术。
而对于如何实现D2D用户设备之间的信令传输,成为技术人员需要考虑的问题。
申请内容
为解决上述技术问题,本申请实施例提供了一种信令传输方法及设备、计算机可读存储介质。
本申请实施例提供的信令传输方法,包括:
中继用户设备接收由基站或远程用户设备发送的信令;
当中继用户设备判断到满足信令转发条件,或者,中继用户设备接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。
本申请实施例提供的信令传输设备,包括处理器、存储器及通信总线;
所述通信总线,配置为实现处理器和存储器之间的连接通信;
所述处理器,配置为执行存储器中存储的信令传输程序,以实现以下步骤:
接收由基站或远程用户设备发送的信令;
当判断到满足信令转发条件,或者,当接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。
本申请实施例提供的计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:
接收由基站或远程用户设备发送的信令;
当判断到满足信令转发条件,或者,当接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。
上述方案提供了一种信令传输方法及设备、计算机可读存储介质,通过本申请实施例,远程用户设备通过中继用户设备与网络通信或者直接与网络通信,当远程用户设备位于网络覆盖外时,可以保证远程用户设备接收到网络信令,保证与网络相关的操作。
附图说明
图1为采用UE-to-network relay(用户设备到网络中继)通信架构示意图。
图2为本申请实施例的信令传输方法所应用的系统架构示意图。
图3为本申请实施例的信令传输方法流程图。
图4-1为采用本申请实施例的信令传输方法由中继用户设备(Relay-UE)进行部分信令传输的示意图。
图4-2为采用本申请实施例的信令传输方法实现基站和远程用户设备(Remote-UE)之间Uu口信令都通过Relay-UE转发的示意图。
图5为本申请应用实例一的信令转发流程示意图。
图6为本申请应用实例二的信令转发流程示意图。
图7为本申请应用实例三的信令转发流程示意图。
图8为本申请应用实例四的信令转发流程示意图。
图9为本申请应用实例五的信令转发流程示意图。
图10为本申请实施例信令转发系统结构示意图;
图11为本申请实施例信令传输设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
随着万物互联需求的发展,3GPP对机器类型通信(MTC,Machine Type communication)进行了标准化,R12和R13的eMTC工作基本已经完成,NB-IoT(Narrow Band-Internet of Things,窄带物联网)的标准化工作目前尚在进行。其中R13eMTC在支持低成本的基础上,增加了覆盖增强的支持以及带宽受限的支持。一般来说,eMTC用户设备(UE)的收发射频能力限制在1.4MHz,而NB-IoT设备的射频收发带宽限制在180kHz。eNB(evolved Node B,演进型基站)和eMTC/NB-IoT UE之间通常通过数据传输的多次重复达到覆盖增强的目的。考虑到eMTC/NB-IoT设备低成本特性,通常希望尽可能延长eMTC/NB-IoT设备的使用寿命,而覆盖增强会导致数据包的多次重复传输,从而快速耗费掉UE的电量。除了eMTC以及NB-IoT设备,可穿戴式设备也具备类似的应用需求,如低成本,带宽受限,低功率消耗等。
在3GPP新立项的课题中包括增强的D2D,主要针对可穿戴设备(Wearables)和物联网(IOT,Internet Of Thing)/机器类型通信(MTC,Machine Type Communication)应用,可穿戴设备通过UE-to-network relay(用户设备到网络中继)实现与网络的通信,其中Wearables UE在eNB覆盖内可以通过PC5或Uu口通信,至少上行数据采用PC5。采用UE-to-network relay通信架构如图1所示。
在对现有技术的研究和实践过程中,申请人发现存在以下问题:可穿戴Wearables/物联网IOT/机器类型设备MTC(以下简称Remote-UE,远程用户设备)通过中继用户设备(以下简称Relay-UE)与网络通信或者直接与网络通信,当Remote-UE设备位于网络覆盖外时,Remote-UE无法直接接收网络信令,可能导致与网络相关的操作失败。
为了保障Remote-UE的业务,需要解决Remote-UE和Relay-UE之间信令传输的问题。
参照图2所示,本申请实施例的信令传输方法所应用的系统架构示意图。本申请实施例的系统架构,包括Remote-UE装置、Relay-UE装置和接入网装置。由图2可知,图2中的Remote-UE可以通过接口1或接口3(及接口2)与接入网装置进行通信。所述接口1和接口3可以为同频或异频,接口3采用授权频谱或非授权频谱。所述接口3采用的通信技术,包括以下之一:3GPP技术,非3GPP技术。其中3GPP技术包括:sidelink通信;非3GPP技术包括以下之一:bluetooth(蓝牙),WLAN(无线局域网),IrDA(红外线点到点通信技术),ZigBee(紫蜂协议)。所述Relay-UE为以下至少之一:UE-to-network relay(用户设备到网络中继)。
下面对本申请实施例中基于图2所示的系统架构进行信令传输的方法进行详细说明。
参照图3所示,为本申请实施例的信令传输方法流程图。所述信令传输方法,包括:
步骤301:中继用户设备接收由基站或远程用户设备发送的信令;
步骤302:Relay-UE判断是否满足信令转发条件,如果是,则转向步骤303,否则,转向步骤305。
此外,中继用户设备接收到基站发送的信令转发指示消息后,也可以执行步骤303。
所述信令转发指示消息,由基站通过专用RRC(Radio Resource Control,无线资源控制)信令发送,所述Relay-UE事先与多个Remote-UE关联,且所述基站已知Relay-UE和Remote-UE的关联关系;如果基站发送所述信令转发指示消息,则所述Relay-UE为RRC-connected态;如果Remote-UE发送所述信令转发指示消息,则Remote-UE与所述Relay-UE已建立连接。
所述信令转发指示消息至少包含:Remote-UE标识。
在本实施例中,所述信令转发指示消息还包含以下信息中的一种或者 一种以上的任意组合:远程用户设备标识、需要转发的信令类型,信令发送时间,信令转发方式,转发资源、信令内容。
所述中继用户设备确定用于转发的信令内容,其中用于转发的信令为以下之一:中继用户设备收到的全部信令,中继用户设备收到的部分信令;并且,
所述中继用户设备将从Uu接口收到的信令转变为适合边路接口传输的信令,或者将从边路接口收到的信令转变为适合Uu接口传输的信令。
其中:所述信令类型包括:系统消息,寻呼消息,响应消息,同步信号,请求消息等;所述信令发送时间是指:需要转发的信令的发送时间,即需要Relay-UE接收信令的时间;信令转发方式包括以下之一:层1信令,层2信令,层3信令,周期性转发,非周期转发,合并转发,分割转发等;转发资源是指转发信令所在的位置,如果所述信令转发请求消息来自基站,则由基站指示转发资源的位置;如果所述信令转发请求消息来自Remote-UE,则转发资源可以由以下方式之一确定:预配置资源,Relay-UE配置资源,基站配置资源;例如:Remote-UE位于基站覆盖外,则采用预配置或Relay-UE配置资源;Remote-UE位于基站覆盖内,可采用Relay-UE配置资源或基站配置资源。
当所述信令转发请求消息来自Remote-UE,所述Relay-UE根据以下信息中的一种或者两种以上的任意组合判断是否满足转发信令条件:网络参数是否满足预设条件,是否满足预配置规则或者接收到接入网指示信息;
所述网络参数包括:链路质量,业务QoS需求。
例如:当Uu链路(Remote-UE与基站之间)质量低于预配门限,或者链路(Remote-UE与基站之间)不满足业务所需的QoS,或者满足预配置规则指示的转发条件,或者接入网指示Relay-UE进行转发,则Relay-UE可以确定转发信令,否则Relay-UE可拒绝转发信令。
所述接入网指示是指:接入网设备通过系统消息或专用信令向UE发送用于指示通信路径和/或通信技术的信息,所述专用信令包括以下至少一种:层1信令,层2信令,层3信令。进一步的,所述接入网指示还包括以下之一:采用Uu接口和/或边路接口进行通信,Uu接口和边路接口上通信的业务类型,Uu接口1和边路接口的优先级,边路接口的发现、和/或通信资源,边路接口采用3GPP或非3GPP技术;其中所述业务类型包括以下之一:业务的QoS(服务质量),控制面业务,用户面业务,上行或下行业务。
当所述信令来自基站,所述Relay-UE根据以下信息中的一种或者两种以上的任意组合判断是否转发信令:网络参数是否满足预设条件,预配置规则。
所述网络参数包括:链路质量,业务QoS需求。
需要指出的是:所述Relay-UE可直接接收基站的请求消息,即所述Relay-UE不进行判断,直接向基站发送确认消息并转发Remote-UE和基站之间的信令。
作为一种实施方式,所述Relay-UE可关联到多个Remote-UE,Remote-UE也可以关联到多个Relay-UE;其中Remote-UE和Relay-UE之间的关联关系可由高层配置,并事先通知相关的Remote-UE,Relay-UE和基站。从而,可以从多个Relay-UE中选择进行信令转发的Relay-UE。或者,也可以实现一个Relay-UE对关联的多个Remote-UE的信令进行转发。
步骤303:Relay-UE发送肯定应答;
当所述Relay-UE确定可转发信令,则向基站或Remote-UE发送肯定应答消息。在所述肯定应答消息中包含以下内容之一:转发方式,转发资源,Remote-UE标识;其中,转发方式是指以下之一:转发信令(如层1,层2或层3信令),转发周期,合并转发(多条信令合并为一条),分割转发(一条信令分为多条),全部转发(转发收到的全部信令),部分转发(转发收 到的部分信令);转发资源是指:用于转发信令的位置;Remote-UE标识用于指示转发信令中涉及的Remote-UE。
步骤304:Relay-UE转发基站与Remote-UE之间的信令,结束;
具体来说,所述Relay-UE从边路接收Remote-UE信令,然后通过Uu口转发给基站;和/或所述Relay-UE从Uu口接收基站信令,然后转发给Remote-UE。所述Relay-UE首先确定需要转发的信令,当收到信令的目的地址不是本地,然后转发上述信令。
需要指出的是:如果Relay-UE收到基站的信令转发请求消息,则Relay-UE在转发信令之前,还需要通知Remote-UE转发信令的相关信息,如转发时间、转发资源等。
作为一种实施方式,当Remote-UE位于基站覆盖内,(在转发前,relay-UE和remote-UE需要进行配对链接linked,通过交互可确定remote-UE的位置。)则所述Relay-UE也可转发部分信令(转发的部分信令可由基站指示,或者relay-UE自己确定),剩余的信令由Remote-UE和基站直接传输。
步骤305:Relay-UE发送否定应答;
当所述Relay-UE拒绝进行信令转发,则向基站或Remote-UE发送否定应答消息;所述否定应答包含:拒绝原因。
步骤306:选择其他方式传输信令。
Remote-UE或基站选择其他Relay-UE进行信令转发,或者Remote-UE与基站直接进行信令交互,或者Remote-UE与基站之间暂停信令交互。
可见,在本申请实施例中,Relay-UE接收Remote-UE或基站的信令转发请求消息,直接发送响应消息或者当判断满足转发条件时发送响应消息;所述Relay-UE发送响应消息后,监听并接收基站和/或Remote-UE发送信令,按照预设规则进行相应的处理后转发给目标节点。
所述Remote-UE位于接入网覆盖范围内或覆盖范围外,或者Remote-UE位于增强的覆盖范围内。所述Remote-UE通过边路接收接入网发送的系统消息,同步信号,寻呼消息,测量配置等控制信令,并通过边路发送针对接入网的请求消息、响应消息、测量报告等控制信令;在本申请实施例中,为了节省功耗,Remote-UE的上行用户面数据可通过Relay-UE进行传输。
所述Remote-UE可以根据预配置的规则自主选择图2中的接口1或接口3(及接口2)与接入网进行通信。其中,预配置规则存储在UE的UICC(Universal Integrated Circuit Card,通用集成电路卡)或ME(Mobility Equipment,移动设备)中;自主选择,是指如果两个接口都可以通信且基站没有指示,则根据规则和目前链路条件选择其中一个进行通信。
图4-1及图4-2为采用本申请实施例的信令传输方法进行信令传输的结果示意图。其中图4-1中Remote-UE位于接入网基站覆盖内,部分控制信令通过接入网和Remote-UE之间的Uu口传输,如系统消息,其他控制信令通过Relay-UE转发,如寻呼消息等;图4-2中Remote-UE位于接入网基站覆盖内或覆盖外,基站和Remote-UE之间Uu口信令都通过Relay-UE转发,如系统消息,寻呼消息,同步信号等。
所述Remote-UE根据以下之一:网络参数、预配置的规则、接入网指示信息进行判断,以确定所需的通信路径。所述网络参数包括:链路质量、业务服务质量QoS需求。
所述预配置规则包括以下至少之一:优先级,门限;其中优先级是指接口1和接口3之间优先级,如接口1优先级高,则优先选择接口1;门限是指接口1和/或接口3的链路质量要求,如果当前接口的链路质量低于指定门限,则UE选择其他接口或其他通信技术继续通信,如果UE选择其他接口或其他通信技术,则UE通知接入网设备。作为一种实施方式,所述预 配置规则还包括资源配置。
下面通过具体应用中的实例对本申请实施例技术方案进行示例性说明。
应用实例一:
参照图5所示,为本申请应用实例一的信令转发流程示意图。在本应用实例中,Relay-UE收到基站或Remote-UE的信令转发请求消息,所述信令转发请求消息请求转发基站到Remote-UE的信令,则Relay-UE根据所述请求进行处理,具体包括:
步骤501:Relay-UE确认转发基站到Remote-UE之间的信令;
所述Relay-UE收到基站或Remote-UE的请求消息,所述Relay-UE同意转发从基站到Remote-UE的信令,并向基站或Remote-UE发送确认消息;其中确认消息采用RRC信令承载。所述信令包括以下之一:系统消息,寻呼消息,同步信号,测量配置,资源调度等。
步骤502:Relay-UE监听与Remote-UE相关的信令;
所述Relay-UE在Uu口监听与Remote-UE相关的信令,所述Relay-UE根据所述Remote-UE的标识进行监听,所述Relay-UE和Remote-UE具有关联性,即所述Remote-UE可通过Relay-UE收发基站信令;例如,针对寻呼消息,所述Relay-UE除了监听自身的寻呼消息外,还要监听Remote-UE的寻呼消息,即在Remote-UE对应的寻呼时刻读取寻呼消息,判断是否有针对所述Remote-UE的寻呼记录。
步骤503:基站向Relay-UE发送与Remote-UE相关的信令;
所述基站通过Uu口发送与Remote-UE相关的信令,所述Relay-UE接收所述信令。所述Relay-UE接收到所述信令,跟据所述信令类型、信令内容、基站指示中的一种或者两种以上的组合,确定信令的转发方式。
步骤504,Relay-UE与Remote-UE建立连接;
如果所述Relay-UE与Remote-UE未建立连接,则建立边路连接,否则直接进入步骤505;所述连接是指所述Relay-UE和Remote-UE之间的信令连接。所述Relay-UE可通过发现discovery过程与所述Remote-UE建立连接,如所述Relay-UE发送通告消息,并在通告消息中指示需要连接的Remote-UE,所述Remote-UE收到通过消息后发起与Relay-UE的连接建立过程。
步骤505,Relay-UE向Remote-UE转发信令。
所述Relay-UE通过边路信令向所述Remote-UE转发在Uu收到的信令。进一步,所述Remote-UE收到转发信令后,通过Relay-UE向基站发送响应消息,例如:所述Relay-UE向Remote-UE转发寻呼消息,所述Remote-UE收到寻呼消息后,通过所述Relay-UE向基站发起RRC连接建立请求,所述Remote-UE首先与Relay-UE建立边路用户面连接,所述Relay-UE再与基站建立相应的Uu口用户面连接;进一步的,一个网络侧连接,如PDN(分组数据网,Packet Data Network)连接可对应多条边路连接(针对多个Remote-UE),在一条PDN连接中,不同的边路连接通过不同的标识区分。
应用实例二:
参照图6所示,为本申请应用实例二的信令转发流程示意图。在本应用实例中,Relay-UE收到基站或Remote-UE的信令转发请求消息,所述信令转发请求消息请求转发Remote-UE到基站的信令,则Relay-UE根据所述请求进行处理,具体包括:
步骤601:Relay-UE确认转发Remote-UE到基站的信令。
所述Relay-UE收到基站或Remote-UE的请求消息,所述Relay-UE同意转发从Remote-UE到基站的信令,并向基站或Remote-UE发送确认消息;其中确认消息采用RRC信令承载。所述信令包括以下至少之一:测量报告,连接或资源请求消息,响应消息等。
步骤602:Relay-UE监听Remote-UE的信令。
所述Relay-UE在边路监听所述Remote-UE到基站的信令,所述Relay-UE与Remote-UE已建立信令连接。
步骤603:Remote-UE向Relay-UE发送与基站相关的信令。
所述Remote-UE通过Relay-UE向基站发送信令,所述Relay-UE根据信令内容确定所述信令针对基站,所述Relay-UE根据以下信息中的一种或者多种确定转发信令的方式:信令类型、信令内容、基站指示。
步骤604,Relay-UE与基站建立连接。
如果所述Relay-UE为RRC-Idle空闲态,则与基站建立RRC连接,否则,直接进入步骤605;进一步,所述Relay-UE在请求建立RRC连接时,可将请求原因设为:远程MO(Mobile Originated,移动主叫)信令,或中继MO信令。
步骤605,Relay-UE转发信令。
所述Relay-UE通过Uu口向基站转发信令。
应用实例三:
参照图7所示,为本申请应用实例三的信令转发流程示意图。在本应用实例中,Relay-UE收到Remote-UE的信令转发请求消息,所述信令转发请求消息请求转发Remote-UE到基站的信令和/或基站到Remote-UE的信令,则Relay-UE根据所述请求进行处理,具体包括:
步骤701:Remote-UE与Relay-UE建立连接;
所述Remote-UE与所述Relay-UE建立信令连接,所述Remote-UE可通过发现过程与Relay-UE建立信令连接,当所述Remote-UE发送请求消息,并在请求消息中指示Relay-UE标识,收到请求的所述Relay-UE与Remote-UE建立连接。
步骤702:Remote-UE向Relay-UE发送请求消息;
所述Remote-UE通过边路向Relay-UE发送请求消息,所述请求消息包括以下信息中的一种或者两种以上的任意组合:需要转发的信令类型,需要转发的信令内容,信令转发方式,需要转发的信令资源位置。其中的信令包括:从Remote-UE到基站的信令,和/或从基站到Remote-UE的信令。
步骤703:Relay-UE向Remote-UE发送确认响应消息;
所述Relay-UE通过边路信令向所述Remote-UE发送确认响应消息,所述响应消息至少包括以下之一:转发方式,转发资源。
步骤704,Relay-UE转发信令;
所述Relay-UE监听并接收来自Remote-UE的信令,转发到基站,或者,所述Relay-UE监听并接收来自基站的信令,转发到Remote-UE。
在转发的信令中,需要指示该信令的来源,如Remote-UE或基站,以实现接收方对信令的正确处理。
应用实例四:
参照图8所示,为本申请应用实例四的信令转发流程示意图。在本应用实例中,Relay-UE收到基站的信令转发请求消息,所述信令转发请求消息请求转发Remote-UE到基站的信令和/或基站到Remote-UE的信令,则Relay-UE根据所述请求进行处理,具体包括:
步骤801:Relay-UE与基站建立连接。
所述Relay-UE与基站建立RRC连接。
步骤802:基站请求Relay-UE转发信令。
所述基站通过RRC信令请求Relay-UE转发信令,所述请求消息中包括以下信息中的一种或者两种以上的任意组合:需要转发的信令类型,需要转发的信令内容,信令转发方式,需要转发的信令资源位置,用于转发信令的资源等。其中的信令包括:从Remote-UE到基站的信令,和/或从基站到Remote-UE的信令。
步骤803:Relay-UE向基站发送确认消息。
所述Relay-UE通过Uu口RRC信令向所述基站发送确认响应消息,所述响应消息包括以下之一:转发方式,转发资源。
步骤804,Relay-UE转发信令。
所述Relay-UE监听并接收来自Remote-UE的信令,转发到基站,或者,所述Relay-UE监听并接收来自基站的信令,转发到Remote-UE。
应用实例五:
参照图9所示,为本申请应用实例五的信令转发流程示意图。在本应用实例中,当Relay-UE拒绝转发信令,则Remote-UE或基站选择新的Relay-UE,由新的Relay-UE进行信令转发处理,具体包括:
步骤901:Relay-UE拒绝转发信令;
所述Relay-UE收到基站或Remote-UE的请求消息,所述Relay-UE拒绝转发信令,并向上述基站或Remote-UE发送拒绝响应消息,在消息中指示拒绝原因,其中拒绝原因包括但不限于以下之一:内存不足,故障,不认识的目的标识,无法连接到目标,线路拥塞等。
步骤902:选择新的Relay-UE;
所述新的Relay-UE由Remote-UE或基站选择;其中Remote-UE根据以下之一选择Relay-UE:预配置规则,基站或其他网元指示;基站根据以下之一选择Relay-UE:预配置规则,其他网元指示。其中其他网元包括以下之一:接入网网元,核心网网元。
步骤903:新的Relay-UE确认转发信令;
当选择了新的Relay-UE,Remote-UE或基站向所述Relay-UE发送请求消息:请求转发信令;当所述Relay-UE同意转发,则向Remote-UE或基站发送确认信令。当所述Relay-UE拒绝转发,则可以重复步骤902。
步骤904,新的Relay-UE转发信令。
所述Relay-UE转发收到的信令到目的节点。
参照图10所示,为本申请实施例信令转发系统结构示意图。本实施例公开了一种实现信令转发的系统,包括:无线接入网装置,远程用户设备(Remote-UE)和中继用户设备(Relay-UE);无线接入网装置包括基站5011;远程用户设备包括终端第一接收模块5021、第一处理模块5022和第一发送模块5023;中继用户设备包括:第二接收模块5031、第二处理模块5032和第二发送模块5033;
远程用户设备包括的第一接收模块5021用于通过空口接收中继用户设备的第二发送模块5033发送的控制信令;第一处理模块5022用于自主选择通信路径和中继用户设备;第一发送模块5023用于向第二接收模块5031发送请求信息。第二发送模块5033用于向基站5011或第一接收模块5021发送信令,第二接收模块5031用于接收基站5011或第一发送模块5023发送的信令,第二处理模块5032用于确定信令转发方式,基站5011用于接收第二发送模块5033的信令和向第二接收模块5031发送信令,还用配置信令资源。
本申请实施例的信令传输方法所应用的系统中,Remote-UE装置包括以下至少一种:用户设备UE、Wearables、IOT/MTC终端(如category M1/category NB-IOT设备),如无特殊说明,本申请中出现的Remote-UE代表上述终端装置的一种或几种,需要指出的是:本申请的方案可适用于各种类型的UE。
Remote-UE根据接入网装置发送的指示信息或者自主选择信令传输路径(Remote-UE和Relay-UE之间的空口链路或者Remote-UE与接入网装置之间的Uu链路),当所述Remote-UE通过Remote-UE和Relay-UE之间链路(以下简称为边路-sidelink)传输控制信令(这里指Remote-UE与接入网装置之间的控制信令)时,所示Remote-UE与Relay-UE建立连接并通过 Relay-UE收发所需的信令,其中Remote-UE和Relay-UE之间链路可采用基于3GPP LTE的传输技术(如sidelink),或者基于非3GPP的传输技术(如蓝牙bluetooth,无线局域网WLAN,红外等)。
Relay-UE装置包括以下至少一种:relay,Relay-UE装置负责在接入网装置和Remote-UE装置之间转发控制面信令,所述Relay-UE根据接入网装置的指示信息在边路转发与Remote-UE相关的信令,所述Relay-UE不改变信令(如无特殊说明,以下信令是指Remote-UE与接入网装置之间的空口信令)的内容,但可以改变信令的形式,如组合多个信令为单个信令,或分割单个信令为多个信令,或将周期信令改为非周期信令,或将非周期信令改为周期信令,等等;
所述信令为以下之一:层3信令,层2信令,层1信令;
所述Relay-UE为层2relay,所述Relay-UE和Remote-UE之间采用以下至少之一进行通信:sidelink,bluetooth,WLAN/WiFi,IrDA(Infrared Data Association,红外数据通信),ZigBee(无线个域网);
接入网装置至少包括:基站。其中基站主要负责:通过Relay-UE向Remote-UE装置发送信令,通过Relay-UE接收Remote-UE装置发送的信令。
在本申请实施例中,可穿戴Wearables设备/MTC/NB-IOT设备(Remote-UE)与relay(Relay-UE)建立连接,Relay-UE通过Uu口接收基站信令:Relay-UE监听Remote-UE相关的寻呼消息;基站向Relay-UE发送针对Remote-UE的寻呼消息;Relay-UE向Remote-UE转发收到的寻呼消息;Remote-UE与Relay-UE建立边路连接,Relay-UE与基站建立相应的RRC连接;从而实现Remote-UE通过Relay-UE与基站通信。
此外,本申请实施例还提供一种信令传输设备,如图11所示,包括处理器1101、存储器1102及通信总线1103;
所述通信总线1103,配置为实现处理器1101和存储器1102之间的连 接通信;
所述处理器1101,配置为执行存储器1102中存储的信令传输程序,以实现以下步骤:
接收由基站或远程用户设备发送的信令;
当判断到满足转发信令条件,或者,当接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。
并且,所述处理器还用于执行存储器中存储的信令传输程序,以实现本申请实施例方法中的其他步骤,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:
接收由基站或远程用户设备发送的信令;
当判断到满足转发信令条件,或者,当接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。
并且,所述一个或者多个程序还可被一个或者多个处理器执行,以实现本申请实施例方法中的其他步骤,在此不再赘述。
上述计算机可读存储介质,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而所述计算机可读存储介质包括:U盘、移动硬盘、只读存储器(ReadOnly Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本发明实施例的技术方案,远程用户设备通过中继用户设备与网络通信或者直接与网络通信,当远程用户设备位于网络覆盖外时,可以保证远程用户设备接收到网络信令,保证与网络相关的操作。

Claims (17)

  1. 一种信令传输方法,包括:
    中继用户设备接收由基站或远程用户设备发送的信令;
    当中继用户设备判断到满足信令转发条件,或者,中继用户设备接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。
  2. 如权利要求1所述的方法,其中,
    所述信令转发指示消息,通过专用无线资源控制信令发送;
    所述远程用户设备位于基站覆盖范围内,或基站的覆盖范围外。
  3. 如权利要求2所述的方法,其中,当所述远程用户设备位于基站覆盖范围内时,所述基站指示所述远程用户设备通过Uu口从基站接收信令,或者通过边路接口从中继用户设备接收基站发送的信令。
  4. 如权利要求1所述的方法,其中,所述信令转发指示消息至少包含以下之一:远程用户设备标识、需要转发的信令类型、信令发送时间、信令转发方式、转发资源、信令内容。
  5. 如权利要求1所述的方法,其中,所述方法还包括:
    所述中继用户设备确定用于转发的信令内容,其中用于转发的信令为以下之一:中继用户设备收到的全部信令,中继用户设备收到的部分信令;并且,
    所述中继用户设备将从Uu接口收到的信令转变为适合边路接口传输的信令,或者将从边路接口收到的信令转变为适合Uu接口传输的信令。
  6. 如权利要求4所述的方法,其中,
    所述信令类型,包括以下至少一种:系统消息、寻呼消息、响应消息、同步信号、请求消息;
    所述信令发送时间,为需要转发的信令的发送时间;
    所述信令转发方式,包括以下至少之一:层1信令,层2信令,层3信令,周期性转发,非周期转发,合并转发,分割转发;
    所述转发资源,为转发信令所在的位置,当所述信令转发请求消息来自基站,则由基站指示转发资源的位置;当所述信令转发请求消息来自远程用户设备,则转发资源可以由以下方式之一确定:预配置资源,中继用户设备配置资源,基站配置资源。
  7. 如权利要求1所述的方法,其中,
    所述中继用户设备判断到满足信令转发条件,包括:当所述信令来自远程用户设备,所述中继用户设备根据以下信息中的一种或者两种以上的任意组合判断到满足信令转发条件:远程用户设备请求消息,网络参数满足预设条件,满足预配置规则或者接收到接入网指示信息。
  8. 如权利要求7所述的方法,其中,
    所述网络参数包括:链路质量,业务服务质量需求;
    所述接入网指示信息包括:接入网设备通过系统消息或专用信令向远程用户设备发送的用于指示通信路径和/或通信技术的信息,所述专用信令包括以下至少一种:层1信令,层2信令,层3信令;所述接入网指示信息还包括以下之一或者两种以上的任意组合:采用Uu接口和/或边路接口进行通信,Uu接口和边路接口上通信的业务类型,Uu接口和边路接口的优先级,边路接口的发现、通信资源,边路接口采用3GPP或非3GPP技术;其中所述业务类型包括以下之一:业务的服务质量,控制面业务,用户面业务,上行或下行业务。
  9. 如权利要求1所述的方法,其中,所述中继用户设备判断到满足信令转发条件,包括:
    当所述信令来自基站,所述中继用户设备根据以下信息中的一种或 者两种以上的任意组合判断满足信令转发条件:网络参数满足预设条件,预配置规则;
    所述网络参数包括:链路质量,业务服务质量需求。
  10. 如权利要求1所述的方法,其中,所述中继用户设备关联到多个远程用户设备,和/或远程用户设备关联到多个中继用户设备;所述远程用户设备和中继用户设备之间的关联关系由高层配置,并事先通知相关的远程用户设备、中继用户设备和基站。
  11. 如权利要求1所述的方法,其中,所述方法还包括:
    所述中继用户设备判断到满足信令转发条件,则向远程用户设备或基站发送肯定应答消息,
    所述肯定应答消息,包括以下至少之一:转发方式、转发资源、远程用户设备标识;
    其中,转发方式是指以下之一或者两种以上的任意组合:转发信令、转发周期、合并转发、分割转发、全部转发、部分转发;转发资源是指:用于转发信令的位置;远程用户设备标识用于指示转发信令中涉及的远程用户设备。
  12. 如权利要求1所述的方法,其中,所述中继用户设备转发基站与远程用户设备之间的信令,包括:
    所述中继用户设备从边路接收远程用户设备信令,通过Uu口转发给基站;和/或,所述中继用户设备从Uu口接收基站信令,转发给远程用户设备。
  13. 如权利要求12所述的方法,其中,
    当中继用户设备收到基站的信令,则所述中继用户设备在转发信令之前,还包括:通知远程用户设备转发信令的相关信息,包括转发时间、转发资源。
  14. 如权利要求1所述的方法,其中,所述方法还包括:
    当所述中继用户设备拒绝进行信令转发,则向基站或远程用户设备发送否定应答消息;所述否定应答消息包括:拒绝原因。
  15. 如权利要求14所述的方法,其中,所述方法还包括:
    远程用户设备或基站选择其他中继用户设备进行信令转发,或者远程用户设备与基站直接进行信令交互,或者远程用户设备与基站之间暂停信令交互。
  16. 一种信令传输设备,包括处理器、存储器及通信总线;
    所述通信总线,配置为实现处理器和存储器之间的连接通信;
    所述处理器,配置为执行存储器中存储的信令传输程序,以实现以下步骤:
    接收由基站或远程用户设备发送的信令;
    当判断到满足信令转发条件,或者,当接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。
  17. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:
    接收由基站或远程用户设备发送的信令;
    当判断到满足信令转发条件,或者,当接收到基站发送的信令转发指示消息,转发远程用户设备和基站之间的信令。
PCT/CN2017/110754 2017-05-05 2017-11-13 一种信令传输方法及设备、计算机可读存储介质 WO2018201687A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/611,071 US11399411B2 (en) 2017-05-05 2017-11-13 Signaling transmission method and device, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313707.1 2017-05-05
CN201710313707.1A CN109245845B (zh) 2017-05-05 2017-05-05 一种信令传输方法及设备

Publications (1)

Publication Number Publication Date
WO2018201687A1 true WO2018201687A1 (zh) 2018-11-08

Family

ID=64015929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110754 WO2018201687A1 (zh) 2017-05-05 2017-11-13 一种信令传输方法及设备、计算机可读存储介质

Country Status (3)

Country Link
US (1) US11399411B2 (zh)
CN (1) CN109245845B (zh)
WO (1) WO2018201687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022020981A1 (en) * 2020-07-25 2022-02-03 Qualcomm Incorporated State transition in sidelink layer 2 relay systems

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456920B2 (en) * 2018-02-23 2022-09-27 Ricoh Company, Ltd. Mechanisms for cloud-based configuration and management of network devices using network mediators implemented in the network devices
US11444830B2 (en) * 2018-02-23 2022-09-13 Ricoh Company, Ltd. Mechanisms for cloud-based configuration and management of network devices using network mediators implemented separately from the network devices
CN113424654B (zh) * 2019-04-01 2022-08-26 华为技术有限公司 数据传输的方法及通信设备
CN112867027A (zh) * 2019-11-28 2021-05-28 苹果公司 用于已连接用户设备的链路管理
US11849503B2 (en) * 2020-02-07 2023-12-19 Qualcomm Incorporated Proximity service multi-hop relay configuration
US11622409B2 (en) * 2020-03-10 2023-04-04 Qualcomm Incorporated User equipment relay procedure
CN113518406A (zh) * 2020-04-09 2021-10-19 展讯通信(上海)有限公司 直连链路的路径选择方法及装置、存储介质、ue、中继
CN113543267A (zh) * 2020-04-20 2021-10-22 维沃移动通信有限公司 边链路sl中继节点的确定方法、sl中继节点及终端
CN113573422B (zh) * 2020-04-28 2023-10-20 维沃移动通信有限公司 远端终端的连接管理方法、终端及网络侧设备
EP4152888A4 (en) * 2020-08-07 2023-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR OBTAINING A SYSTEM MESSAGE AND TERMINAL DEVICE AND NETWORK DEVICE
WO2022067861A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Direct link and sidelink-relayed dual connectivity for sidelink service continuity in mode 1 sidelink networks
CN114390674A (zh) * 2020-10-16 2022-04-22 夏普株式会社 中继ue的处理方法及用户设备
CN114390482B (zh) * 2020-10-22 2024-04-05 维沃移动通信有限公司 中继的配置方法、装置及用户设备
WO2022155313A1 (en) * 2021-01-14 2022-07-21 Kyocera Corporation Transmission of coverage indicator by remote user equipment (ue) device
CN115150973A (zh) * 2021-03-31 2022-10-04 展讯通信(上海)有限公司 中继通信方法及装置、存储介质、中继设备
EP4335194A1 (en) * 2021-05-07 2024-03-13 InterDigital Patent Holdings, Inc. Method and wireless transmit/receive unit directed to low-power proximity-based service paging for multi-carrier side-link communications
US11894973B2 (en) 2022-03-10 2024-02-06 Ricoh Company, Ltd. Assigning and prioritizing mediation servers for monitoring legacy devices
US11606242B1 (en) 2022-03-10 2023-03-14 Ricoh Company, Ltd. Coordinated monitoring of legacy output devices
CN116939535A (zh) * 2022-03-31 2023-10-24 索尼集团公司 用于无线通信的电子设备、方法和存储介质
WO2024077606A1 (en) * 2022-10-14 2024-04-18 Nokia Shanghai Bell Co., Ltd. Fast indirect path establishment for sidelink user equipment to network relay

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820680A (zh) * 2009-02-26 2010-09-01 普天信息技术研究院有限公司 一种中继网络中的调度方法
CN102469410A (zh) * 2010-11-02 2012-05-23 中国移动通信集团公司 一种数据传输方法、设备及系统
US20130016649A1 (en) * 2011-07-12 2013-01-17 Qualcomm Incorporated System design for user equipment relays
CN105657838A (zh) * 2015-04-30 2016-06-08 宇龙计算机通信科技(深圳)有限公司 一种数据中转传输方法、系统和具备中继功能的ue

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819872A (en) * 1972-07-10 1974-06-25 Bell Telephone Labor Inc Mobile telephone cellular switching system
US20030196105A1 (en) * 2002-04-12 2003-10-16 Victoria Fineberg Remote access VPN extranets
KR100746501B1 (ko) * 2002-05-27 2007-08-07 가부시키가이샤 엔티티 도코모 이동 통신 시스템, 송신국, 수신국, 중계국, 통신 경로결정 방법 및 통신 경로 결정 프로그램
KR100479865B1 (ko) * 2002-11-27 2005-03-31 한국전자통신연구원 경쟁 기반 매체 접근 제어를 이용하는 통신 시스템에서의충돌 완화 방법
GB2396775B (en) * 2002-12-23 2005-04-13 Motorola Inc Method and apparatus for establishing direct communication for mobiles in a radio communication system
US20070133455A1 (en) * 2005-12-13 2007-06-14 Ravi Kuchibhotla System and method for multicasting through short range mobile-to-mobile communication
KR101277954B1 (ko) * 2006-06-20 2013-06-27 삼성전자주식회사 이동 통신 시스템에서 신호 릴레이 방법 및 시스템
US7873338B2 (en) * 2006-11-06 2011-01-18 Motorola Mobility, Inc. Method and apparatus for determining an appropriate link path in a multi-hop communication system
GB2447883A (en) * 2007-03-02 2008-10-01 Fujitsu Ltd Bandwidth allocation in multi-hop wireless communication systems
US8902805B2 (en) * 2008-10-24 2014-12-02 Qualcomm Incorporated Cell relay packet routing
JP4647001B2 (ja) * 2008-11-07 2011-03-09 株式会社エヌ・ティ・ティ・ドコモ 移動端末及び通信制御方法
CN102265530B (zh) * 2008-12-24 2016-06-01 Lg电子株式会社 向中继器分配资源的方法
US9160566B2 (en) * 2009-04-10 2015-10-13 Qualcomm Incorporated QOS mapping for relay nodes
EP2282575A1 (en) * 2009-08-04 2011-02-09 Panasonic Corporation Channel quality reporting in a mobile communications system
US9210622B2 (en) * 2009-08-12 2015-12-08 Qualcomm Incorporated Method and apparatus for relay backhaul design in a wireless communication system
JP2011091783A (ja) * 2009-09-25 2011-05-06 Sony Corp 通信システム、基地局、中継装置、および通信端末
JP5504970B2 (ja) * 2009-09-25 2014-05-28 ソニー株式会社 管理サーバ、通信システム、通信端末、および中継装置
WO2011111229A1 (ja) * 2010-03-12 2011-09-15 富士通株式会社 移動通信システム、中継制御方法、中継局装置及び基地局装置
EP2922335B1 (en) * 2010-11-05 2018-03-07 Interdigital Patent Holdings, Inc. Methods for handing over a relay node from a source enb to a target enb and corresponding relay node
BR112013013477A2 (pt) * 2010-12-01 2016-10-11 Nec Corp estação radiobase, método de controle de operação, estação base relé, terminal móvel, sistema de comunicação móvel e método de distribuição de carga
EP2693785B1 (en) * 2011-03-31 2019-12-25 Nec Corporation Mobile communication system and relay station control method
GB2491856B (en) * 2011-06-14 2015-06-17 Sca Ipla Holdings Inc Wireless communications system and method
JP5742532B2 (ja) * 2011-07-19 2015-07-01 富士通株式会社 基地局及び通信方法並びに無線通信システム
KR101977775B1 (ko) * 2012-06-07 2019-08-28 한국전자통신연구원 멀티모드 단말 및 이를 이용한 통신 중계 방법
WO2014051126A1 (ja) * 2012-09-27 2014-04-03 京セラ株式会社 移動通信システム、ユーザ端末、プロセッサ及び基地局
US8948006B2 (en) * 2013-01-07 2015-02-03 Freescale Semiconductor, Inc. System for managing uplink quality of service (QoS) in cellular network
JP6102386B2 (ja) * 2013-03-19 2017-03-29 富士通株式会社 通信制御装置、移動通信端末、及び、無線基地局
EP2833694A3 (en) * 2013-07-29 2015-04-01 HTC Corporation Method of relay discovery and communication in a wireless communications system
US9584985B2 (en) * 2013-07-30 2017-02-28 Qualcomm Incorporated Managing a multimedia broadcast multicast service using an MBMS relay device
US9319127B2 (en) * 2013-08-09 2016-04-19 Electronics And Telecommunications Research Institute Method of relay between devices
KR102083322B1 (ko) * 2013-08-22 2020-03-03 삼성전자주식회사 이동 통신 시스템에서 고립 사용자 단말기에 대한 디바이스-투-디바이스 통신 기반 서비스 제공 장치 및 방법
US9532396B2 (en) * 2013-09-20 2016-12-27 Broadcom Corporation Relay architectures for mobile wireless networks
WO2015052548A1 (en) * 2013-10-11 2015-04-16 Sony Corporation Operating a base station of a radio access network
CN105766038B (zh) * 2013-12-10 2019-05-17 英特尔Ip公司 异构网络中的移动设备寻呼和小小区连接建立
CN104811946B (zh) * 2014-01-29 2020-03-20 北京三星通信技术研究有限公司 处理干扰信号的方法及设备
GB2523328A (en) * 2014-02-19 2015-08-26 Nec Corp Communication system
US9942944B2 (en) * 2014-12-29 2018-04-10 Intel IP Corporation Network-initiated discovery and path selection procedures for multi-hop underlay networks
CN105846882A (zh) * 2015-01-14 2016-08-10 北京三星通信技术研究有限公司 一种d2d通信的中继方法和设备
WO2016115670A1 (zh) * 2015-01-19 2016-07-28 华为技术有限公司 一种数据流传输方法、设备及系统
US11284337B2 (en) * 2015-03-27 2022-03-22 Qualcomm Incorporated Selection of proximity services relay
CN113507308A (zh) * 2015-04-08 2021-10-15 交互数字专利控股公司 实现用于设备到设备(d2d)通信的移动中继
CN106211024A (zh) * 2015-04-10 2016-12-07 中兴通讯股份有限公司 信息处理方法及通信节点
CN106211261B (zh) * 2015-04-10 2020-10-16 中兴通讯股份有限公司 信息处理方法及通信节点
WO2016182375A1 (ko) * 2015-05-12 2016-11-17 삼성전자 주식회사 D2d 통신을 지원하는 무선 통신 시스템에서 자원 할당 방법 및 장치
US10064212B2 (en) * 2015-05-14 2018-08-28 Blackberry Limited Transmitting a scheduling request for a device-to-device transmission
US9942917B2 (en) * 2015-05-14 2018-04-10 Blackberry Limited Allocating resources for a device-to-device transmission
EP3307011B1 (en) * 2015-05-26 2022-04-06 LG Electronics Inc. Delinking method implemented by ue in wireless communication system, and ue using said method
CN105657783A (zh) * 2015-05-29 2016-06-08 宇龙计算机通信科技(深圳)有限公司 一种终端直连通信方法及装置
CN106255227A (zh) * 2015-06-11 2016-12-21 阿尔卡特朗讯 一种用于d2d中继的方法、设备与系统
CN106454752A (zh) * 2015-08-06 2017-02-22 北京信威通信技术股份有限公司 一种3gpp v2x通信中的广播消息传输方法
US10448441B2 (en) * 2015-08-06 2019-10-15 Lg Electronics Inc. Method for receiving a priority for relay data in a D2D communication system and device therefor
US20170055282A1 (en) * 2015-08-21 2017-02-23 Qualcomm Incorporated Connection setup in "device-to-device relayed uplink, direct downlink" architecture for cellular networks
US10205507B2 (en) * 2015-08-28 2019-02-12 Tejas Networks, Ltd. Relay architecture, relay node, and relay method thereof
EP3142453B1 (en) * 2015-09-08 2018-05-16 ASUSTek Computer Inc. Method and apparatus for triggering radio bearer release by a relay ue (user equipment) in a wireless communication system
US10542414B2 (en) * 2015-09-25 2020-01-21 Lg Electronics Inc. Method for performing device-to-device direct communication in wireless communication system and device therefor
US10257677B2 (en) * 2015-10-16 2019-04-09 Qualcomm Incorporated System and method for device-to-device communication with evolved machine type communication
US10075217B1 (en) * 2015-12-16 2018-09-11 Sprint Spectrum L.P. Wireless user equipment RF relay management
EP3422797B1 (en) * 2016-02-26 2020-09-09 LG Electronics Inc. -1- Method and user equipment for requesting connection to network
US10542570B2 (en) * 2016-03-15 2020-01-21 Huawei Technologies Co., Ltd. System and method for relaying data over a communication network
US10149207B1 (en) * 2016-03-24 2018-12-04 Sprint Spectrum L.P. Management of carrier usage by replays and CSFB capable UEs
CN107295669B (zh) * 2016-04-11 2022-12-02 中兴通讯股份有限公司 通信间隔的配置方法及装置
US20170325270A1 (en) * 2016-05-06 2017-11-09 Futurewei Technologies, Inc. System and Method for Device Identification and Authentication
US10009142B1 (en) * 2016-08-23 2018-06-26 Sprint Communications Company L.P. Control over modulation and coding schemes used by wireless relay user equipment
US10477608B2 (en) * 2016-09-29 2019-11-12 Futurewei Technologies, Inc. System and method for network access using a relay
US11071092B2 (en) * 2016-09-30 2021-07-20 Huawei Technologies Co., Ltd. Response message transmission method and apparatus
JP2018191130A (ja) * 2017-05-02 2018-11-29 ソニー株式会社 通信装置及び通信方法
US20210289529A1 (en) * 2020-03-16 2021-09-16 Qualcomm Incorporated Resource allocation for sidelink-assisted uplink transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820680A (zh) * 2009-02-26 2010-09-01 普天信息技术研究院有限公司 一种中继网络中的调度方法
CN102469410A (zh) * 2010-11-02 2012-05-23 中国移动通信集团公司 一种数据传输方法、设备及系统
US20130016649A1 (en) * 2011-07-12 2013-01-17 Qualcomm Incorporated System design for user equipment relays
CN105657838A (zh) * 2015-04-30 2016-06-08 宇龙计算机通信科技(深圳)有限公司 一种数据中转传输方法、系统和具备中继功能的ue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022020981A1 (en) * 2020-07-25 2022-02-03 Qualcomm Incorporated State transition in sidelink layer 2 relay systems

Also Published As

Publication number Publication date
US20200170075A1 (en) 2020-05-28
CN109245845B (zh) 2022-05-13
US11399411B2 (en) 2022-07-26
CN109245845A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2018201687A1 (zh) 一种信令传输方法及设备、计算机可读存储介质
TWI681687B (zh) 處理尋呼的方法和裝置
JP6733746B2 (ja) モバイル通信システムにおけるデバイスツーデバイス中継サービスに基づく通信を提供する装置
JP6846435B2 (ja) ウェアラブルデバイスをlteマスターueと共にグループ化する手順
WO2020030165A1 (zh) 数据传输方法及装置,业务切换方法及装置
WO2016161867A1 (zh) 终端直通中继节点的确定、使用方法及装置
WO2018129875A1 (zh) 一种通信路径转换方法及设备
WO2017028743A1 (zh) 中继用户设备控制方法、装置及用户设备
WO2016184273A1 (zh) 中继选择及发现的方法、装置及系统
WO2017215275A1 (zh) 实现业务连续性的通信方法及装置
CN106162930B (zh) 在设备直通系统中承载的管理方法和装置
CN111901847A (zh) sidelink中继通信方法、装置、设备及介质
EP3104629B1 (en) Device-to-device broadcast communication method and user equipment
WO2016202227A1 (zh) 一种层2链路标识的选择、通知方法及装置
WO2017193943A1 (zh) 一种带宽受限设备及其通信方法、计算机存储介质
JPWO2018084199A1 (ja) 通信方法
WO2014161383A1 (zh) 接收设备发现信息、发送设备发现信息的方法和用户设备
WO2017117926A1 (zh) D2d中继通信中的连接管理方法及装置、终端和基站
JP6392249B2 (ja) 無線リンクの確立
WO2019063001A1 (zh) 一种半持久调度的方法及装置
US20240080730A1 (en) Method and apparatus for relay selection
US10425881B2 (en) User terminal, network apparatus, and processor
CN116210338A (zh) 侧向链路中继系统中的rrc重新建立和无线电链路故障报告
WO2022083635A1 (zh) Drx确定方法、装置、终端及可读存储介质
JP7301140B2 (ja) サイドリンクレポートを処理する方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908511

Country of ref document: EP

Kind code of ref document: A1