WO2018199651A1 - Vehicular antenna device - Google Patents

Vehicular antenna device Download PDF

Info

Publication number
WO2018199651A1
WO2018199651A1 PCT/KR2018/004859 KR2018004859W WO2018199651A1 WO 2018199651 A1 WO2018199651 A1 WO 2018199651A1 KR 2018004859 W KR2018004859 W KR 2018004859W WO 2018199651 A1 WO2018199651 A1 WO 2018199651A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
directional antenna
vehicle
propagation
diffusion structure
Prior art date
Application number
PCT/KR2018/004859
Other languages
French (fr)
Korean (ko)
Inventor
최승호
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180046168A external-priority patent/KR20180121372A/en
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to JP2019554513A priority Critical patent/JP6896883B2/en
Priority to US16/606,498 priority patent/US11688933B2/en
Priority to EP18791503.8A priority patent/EP3618183B1/en
Publication of WO2018199651A1 publication Critical patent/WO2018199651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the present invention relates to an antenna device for a vehicle, and more particularly, to an omnidirectional vehicle antenna device applicable to 5G mobile communication.
  • a vehicle antenna refers to various kinds of antennas mounted inside and outside the vehicle for communication of wireless communication devices used in the vehicle.
  • 5G generation mobile communications (5G) technology has been proposed as the traffic of the existing mobile communication infrastructure reaches its limit, and interest and research on the vehicle antenna technology applicable to the 5G mobile communication have increased rapidly.
  • the conventional antenna is capable of transmitting and receiving a high frequency band signal and beam tracking of a predetermined range, since it is basically high-directional, omnidirectional is required for a vehicle antenna. There is a problem that can not be secured.
  • the present invention has been made in an effort to provide a vehicle antenna device that is applicable to 5G mobile communication and has a non-directionality required for a vehicle antenna, while miniaturizing and simplifying the antenna structure.
  • Vehicle antenna apparatus a directional antenna for radiating radio waves in a predetermined direction; And a propagation diffusion structure installed above the directional antenna and reflecting the radio wave radiated upwardly from the directional antenna laterally and spreading it omnidirectionally.
  • the directional antenna may be configured as an array antenna having a plurality of unit antenna elements are arranged upward to have an upward directivity.
  • the propagation diffusion structure may have an inverted cone shape with a bottom facing upward and a vertex pointing towards the directional antenna.
  • the propagation diffusion structure may have a side surface curved inward in a vertical section.
  • the side surface of the propagation diffusion structure has a constant radius of curvature R in the vertical cross-section is curved inward, the magnitude of the radius of curvature R, when the magnitude of the wavelength of the radio wave propagation is Equation 1 is satisfied.
  • the magnitude of the vertical distance h between the vertex of the propagation diffusion structure and the directional antenna satisfies Equation 2 below when the magnitude of the wavelength of the radiation propagation is ⁇ .
  • the apparatus may further include a dome structure covering the upper space of the directional antenna and the radio wave diffusion structure is installed on the inner surface.
  • the apparatus may further include a base plate coupled to the bottom surface of the directional antenna to support the directional antenna.
  • the base plate may be configured to support the dome structure in combination with the bottom edge of the dome structure.
  • the base plate may include a coupling portion coupled to the roof exterior panel of the vehicle.
  • an omni-directional vehicle antenna using a directional antenna capable of transmitting and receiving ultra-high frequency band signals of 28GHz or more, it is possible to apply 5G mobile communication technology to vehicle communication and improve the speed and quality of vehicle communication. Can be.
  • the vehicle antenna device in the form of a dome and installed in the roof exterior panel of the vehicle, it is possible to prevent damage to the directional antenna and ensure antenna performance.
  • FIG. 1 is a perspective view showing a vehicle antenna device according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating the vehicle antenna device shown in FIG. 1.
  • FIG. 3 is a vertical cross-sectional view showing the vehicle antenna device shown in FIG.
  • FIG. 4 is a perspective view showing an example of a radio wave diffusion structure applied to the present invention.
  • FIG. 5 is a view showing a wave reflection direction by a wave diffusion structure having a flat side surface in a vertical section.
  • FIG. 6 is a diagram showing a wave reflection direction by a wave diffusion structure having a side curved outward on a vertical cross section.
  • FIG. 7 is a view showing a wave reflection direction by a wave diffusion structure having a side curved inward on a vertical cross section.
  • FIG. 8 is a view showing the operating principle of the vehicle antenna device according to the present invention.
  • FIG 9 is a graph illustrating electric field distribution in the 28 GHz frequency band of the vehicular antenna device according to the present invention.
  • FIG. 10 is a graph showing a radiation pattern of a vehicle antenna device according to the present invention.
  • FIG. 11 is a view showing an application example of a vehicle antenna device according to the present invention.
  • FIG. 1 is a perspective view of a vehicle antenna device 100 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the vehicular antenna device 100 shown in FIG. 1.
  • the vehicular antenna device 100 may include a directional antenna 110 and a propagation spreading structure 120. 130, the base plate 140 may be further included.
  • the directional antenna 110 is an antenna that radiates radio waves in a predetermined direction.
  • the directional antenna 110 shown in FIG. 1 is an antenna having upward directivity that radiates radio waves vertically upward.
  • the directional antenna 110 may be configured as an array antenna having a plurality of unit antenna elements 112 arranged upward, having an upward direction.
  • each of the plurality of unit antenna elements 112 may be configured as a small antenna patch to transmit and receive a high frequency band signal of 28 GHz or more, and may be arranged in a matrix structure on the dielectric block.
  • each of the plurality of unit antenna elements 112 may be electrically connected to a power supply circuit and the like through a conductive pattern.
  • the directional antenna 110 may be designed to have a vertical upward direction by adjusting the arrangement direction of each unit antenna element 112 and the phase of the excitation current. According to an embodiment, the directional antenna 110 may be configured of various types of antennas having directivity of radiation propagation in addition to the above-described array antenna.
  • the propagation spreading structure 120 may be installed in the vertical air of the directional antenna 110 and may reflect the radio wave radiated upward from the directional antenna 110 laterally to diffuse omnidirectionally.
  • FIG. 3 the vehicle antenna apparatus 100 illustrated in FIG. 1 is illustrated in a vertical cross-sectional view.
  • the propagation spreading structure 120 may be coupled to an inner surface of the dome structure 130 covering the upper space of the directional antenna 110 and installed above the directional antenna 110.
  • the propagation diffusion structure 120 may have a reciprocal cone shape in which the bottom face is upward and the vertex points toward the directional antenna 110.
  • FIG. 4 shows an example of the propagation diffusion structure 120 in a perspective view.
  • the propagation diffusion structure 120 is configured such that the bottom surface 122 faces upward and the vertex 126 has an inverted cone shape facing the directional antenna 110.
  • the radiation propagation radiated vertically upwards at) may be reflected laterally and spread omnidirectionally.
  • the propagation diffusion structure 120 may be configured to have the side surface 124 curved inward in a vertical cross section. Radiation propagation radiated from each antenna element 112 of the directional antenna 110 has a strong wave unlike a ray having particulate matter, and the position of each antenna element 112 and the adjacent antenna element 112 are different. ), The direction of travel may be determined by various factors such as a distance to the phase, a phase difference, interference between radio waves, a patch shape, and the like. As a result, the side surface 124 of the wave diffusion structure 120 has a different curvature depending on a constant curvature or position than the case where the wave diffusion structure 120 has a perfect inverted triangular shape in a vertical cross section like a general inverse cone. In the case of having a curved shape, it is possible to more easily implement the required non-directionality of the vehicle antenna device 100.
  • FIG. 5 shows the direction of propagation reflection by the propagation diffusion structure 120a having the flat side surface 124a in the vertical section.
  • the propagation spreading structure 120a having the flat side surface 124a on the vertical cross section is applied to the present invention
  • the radiation propagation (incident wave) radiated vertically upward from the directional antenna 110 is Although reflected by the propagation diffusion structure 120a, the reflected wave does not proceed horizontally with the ground as a whole but proceeds downward with a constant inclination with the ground.
  • the radio waves radiated from each antenna element 112 of the directional antenna 110 have a strong wave unlike a ray having particulate matter, so that each antenna element 112 This is because the propagation direction is determined by various factors such as the position of, the distance to the adjacent antenna element 112, the phase difference, and the interference between radio waves. That is, when the propagation diffusion structure 120a having the flat side surface 124a on the vertical cross section is applied to the present invention, it is difficult to realize the omnidirectionality of the radiation pattern required for the vehicle antenna.
  • FIG. 6 shows the direction of propagation reflection by the propagation diffusion structure 120b with the side surface 124b curved outward in a vertical section.
  • the radio wave propagated vertically upward in the directional antenna 110 (although the incident wave) is reflected by the propagation diffusion structure 120b, the reflected wave does not proceed horizontally with the ground as a whole, but rather goes downward with an inclined slope with the ground than in the case of FIG. That is, when the propagation diffusion structure 120b having the side surface 124b curved outward in the vertical section is applied to the present invention, the omnidirectionality of the radiation pattern required for the vehicle antenna may not be realized.
  • FIG. 7 shows the direction of propagation reflection by the propagation diffusion structure 120c with the side surface 124c curved inward in a vertical section.
  • the radio wave propagated vertically upward from the directional antenna 110 ( Incident wave) is reflected by the propagation diffusion structure 120c, and the reflected wave travels parallel to the ground as a whole. That is, when the propagation diffusion structure 120c having the side surface 124c curved inward in the vertical section is applied to the present invention, the omnidirectionality of the radiation pattern required for the vehicle antenna may be easily implemented.
  • the propagation diffusion structure 120 when manufacturing the propagation diffusion structure 120, by adjusting the side angle, the side curvature, and the like of the propagation diffusion structure 120, a reflection angle of the desired radiation propagation may be realized.
  • at least the side surface 124 corresponding to the reflective surface may be made of a metal material.
  • the side surface of the propagation diffusion structure 120 may be configured to be curved inwardly with a constant radius of curvature R in a vertical section.
  • the propagation spreading structure 120 may be installed above the center of the directional antenna 110 at a predetermined distance h from the directional antenna 110.
  • the size of the radius of curvature R is configured to satisfy Equation 1 below when the wavelength of the radiation wave emitted from the directional antenna 110 is ⁇ .
  • pi represents the circumference
  • the side curvature radius R of the propagation diffusion structure 120 is less than or equal to ⁇ or greater than or equal to 20 ⁇ , the radio wave propagation of the directional antenna 110 radiated upward does not diffuse smoothly laterally, thereby ensuring the omnidirectionalness required for the vehicle antenna. It becomes impossible to do so, and antenna performance is drastically reduced. That is, when the side curvature radius R of the propagation diffusion structure 120 becomes ⁇ or less, the side surface of the propagation diffusion structure 120 becomes a substantially convex surface, and the side curvature radius R of the propagation diffusion structure 120 is 20 lambda or more. 5, the side surface of the propagation diffusion structure 120 becomes a substantially flat plane, and thus the radio wave propagation of the directional antenna 110 cannot be reflected laterally horizontally to the ground. As a result, it is impossible to realize the omnidirectionality of the radiation pattern required for the vehicle antenna.
  • the magnitude of the shortest distance between the propagation spreading structure 120 and the directional antenna 110 that is, the vertical distance h between the vertex of the propagation spreading structure 120 and the directional antenna 110 is radiated from the directional antenna 110.
  • the wavelength size of the radiation propagation is ⁇ , it is configured to satisfy the following equation (2).
  • the propagation diffusion structure 120 does not operate as a reflector due to the characteristics of the antenna whose spacing from the source is important. Rather, it operates as a director, resulting in the radio wave of the directional antenna 110 is radiated only in the vertical direction and not in the lateral direction. That is, the propagation spreading structure 120 cannot reflect the radio wave of the directional antenna 110 to the horizontal side with respect to the ground as shown in FIG. 7, and cannot realize the omni-directionalness of the radiation pattern required for the vehicle antenna.
  • the vertical distance h between the vertex of the propagation spreading structure 120 and the directional antenna 110 may be calculated as in Equation 3 below.
  • d is the length of one side of the directional antenna 110
  • is the wavelength of the radio wave radiated from the directional antenna 110
  • R is the side curvature radius of the propagation diffusion structure 120
  • is the circumference.
  • the vehicle antenna device 100 may further include a dome structure 130 and the base plate 140.
  • the dome structure 130 may cover an upper space of the directional antenna 110, and a radio wave diffusion structure 120 may be installed on an inner surface thereof.
  • the dome structure 130 is a polycarbonate (PC: Polycarbonate), polyamide (PA: Polyamide), polyacetal (POM: Polyacetal, polyoxymethylene (POM: Poly Oxy Methylene), polyethylene terephthalate (PET: polyethylene terephthalate ), ABS (Acrylonitrile-Butadiene-Styrene), or a material having a specific dielectric constant or a material having a specific dielectric constant in combination of two or more.
  • the dielectric constant of the preferred dome structure 130 is 1 ⁇ 10 [F / m]
  • the size and thickness of the dome structure 130 may vary depending on the dielectric constant of the constituent material.
  • the base plate 140 may be coupled to the bottom surface of the directional antenna 110 to support the directional antenna 110.
  • the base plate 140 may be coupled to the lower edge of the dome structure 130 to support the dome structure 130.
  • FIG 8 is a view illustrating an operation principle of the vehicular antenna device 100 according to the present invention.
  • the vehicular antenna device 100 when power supply is started to the directional antenna 110 having high directivity upward, the directional antenna 110 radiates radio waves vertically upward. Radiation propagation is reflected laterally by the propagation diffusion structure 120 installed in the vertical air and is spread in all directions. As such, since the directional antenna 110 of the vehicle antenna apparatus 100 only needs to radiate radio waves vertically upward, there is no need to perform beam tracking unlike conventional directional antennas. As a result, the vehicular antenna device 100 according to the present invention omits the configuration of a phase shifter for beam tracking and secures the omnidirectionalness required for the vehicular antenna, while miniaturizing the vehicular antenna and providing a vehicle communication system. The overall configuration can be simplified.
  • FIG 9 is a graph showing electric field distribution in the 28 GHz frequency band of the vehicular antenna device 100 according to the present invention.
  • the radiated radio waves radiated vertically upward from the directional antenna 110 are laterally reflected by the radio wave spreading structure 120 installed on the directional antenna 110 to be diffused in all directions. Able to know.
  • FIG 10 is a graph showing a radiation pattern of the vehicular antenna device 100 according to the present invention.
  • the vehicle antenna apparatus 100 exhibits a uniform radiation pattern in all directions, so that the omnidirectionalness required for the vehicle antenna may be secured in actual implementation of the present invention. Able to know.
  • FIG 11 shows an application example of the vehicular antenna device 100 according to the present invention.
  • the vehicular antenna device 100 may be installed in a roof of the vehicle 10.
  • the base plate 140 of the vehicle antenna device 100 may be installed and fixed to the roof exterior panel of the vehicle 10.
  • the base plate 140 may include a roof exterior panel and a coupling part (not shown) of the vehicle 10.
  • the coupling portion of the base plate 140 is composed of a coupling protrusion which is inserted into and fixed to the installation groove provided in the roof exterior panel of the vehicle 10 or is bonded to the roof exterior panel of the vehicle 10 through an adhesive member. It may be composed of an adhesive surface or a coupling groove such as a screw is inserted into the coupling groove and the like bonded to the roof exterior panel of the vehicle 10 through the coupling member.
  • the vehicle antenna device 100 having an omnidirectional radiation pattern is installed in the loop of the vehicle 10 to radiate radio waves and transmit and receive signals, thereby enabling vehicle communication regardless of the driving direction of the vehicle 10. This can be performed stably.
  • 5G mobile communication technology can be applied to vehicle communication and the speed of vehicle communication And the quality can be improved.
  • the vehicle antenna device in the form of a dome and installed in the roof exterior panel of the vehicle, it is possible to prevent damage to the directional antenna and ensure antenna performance.
  • the embodiments according to the present invention can solve various technical problems other than the contents mentioned in the related art as well as the related art.

Abstract

A technology regarding a vehicular antenna device is disclosed. A vehicular antenna device according to an embodiment of the present invention comprises: a directional antenna having a plurality of unit antenna elements arranged in a predetermined direction and thereby having upward directionality; and a radio wave diffusion structure installed vertically above the directional antenna so as to reflect radiated radio waves, which are radiated upward from the directional antenna, in the lateral direction such that the same are diffused omnidirectionally. The vehicular antenna device is applicable to 5G mobile communication, the same has omnidirectionality that a vehicular antenna is required to have, and the antenna structure can be made compact and simple.

Description

차량용 안테나 장치Car Antenna Unit
본 출원은 2017년 04월 28일에 출원된 한국 특허출원 제10-2017-0055432호, 및 2018년 04월 20일에 출원된 한국 특허출원 제10-2018-0046168호를 기초로 한 우선권 주장을 수반하며, 해당 특허출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2017-0055432, filed April 28, 2017, and Korean Patent Application No. 10-2018-0046168, filed April 20, 2018. Accompanying, all the contents disclosed in the specification and drawings of the patent application are incorporated in this application.
본 발명은 차량용 안테나 장치에 관한 것으로서, 더욱 상세하게는, 5G 이동 통신에 적용 가능한 무지향성 차량용 안테나 장치에 관한 것이다.The present invention relates to an antenna device for a vehicle, and more particularly, to an omnidirectional vehicle antenna device applicable to 5G mobile communication.
일반적으로, 차량용 안테나는 차량에서 사용되는 무선 통신 기기들의 통신을 위해 차량의 내·외부에 장착되는 다양한 종류의 안테나를 말한다. 최근, 기존 이동 통신 인프라의 트래픽이 한계에 도달함에 따라 5G(5th generation mobile communications) 기술이 제안된 바 있으며, 이러한 5G 이동 통신에 적용할 수 있는 차량용 안테나 기술에 대한 관심과 연구가 급증하고 있다.In general, a vehicle antenna refers to various kinds of antennas mounted inside and outside the vehicle for communication of wireless communication devices used in the vehicle. Recently, 5G generation mobile communications (5G) technology has been proposed as the traffic of the existing mobile communication infrastructure reaches its limit, and interest and research on the vehicle antenna technology applicable to the 5G mobile communication have increased rapidly.
그러나, 한국 공개특허공보 제10-2012-0107664호에 개시된 바와 같이, 소위 헬리컬 안테나(helical antenna)를 사용하는 기존 기술들은, 송·수신 면적이 협소하여 공급 전력에 대한 방사 전파 전력의 비율인 방사 효율이 떨어지며, 특히 28GHz 이상의 초고주파 대역 신호를 송수신하는 5G 이동 통신에 적용하기 곤란한 문제가 있다.However, as disclosed in Korean Patent Laid-Open Publication No. 10-2012-0107664, existing technologies using a so-called helical antenna have a narrow transmission and reception area, so that radiation is a ratio of radiation propagation power to power supply. The efficiency is inferior, and there is a problem that it is particularly difficult to apply to 5G mobile communication that transmits and receives an ultrahigh frequency band signal of 28 GHz or more.
또한, 기존의 지향성 안테나(array antenna)는, 고주파 대역 신호의 송수신과 소정 범위의 빔 트랙킹(beam tracking)이 가능하기는 하지만, 기본적으로 고 지향성을 가지기 때문에 차량용 안테나에 요구되는 무지향성(omnidirectional)을 확보할 수 없다는 문제가 있다.In addition, although the conventional antenna is capable of transmitting and receiving a high frequency band signal and beam tracking of a predetermined range, since it is basically high-directional, omnidirectional is required for a vehicle antenna. There is a problem that can not be secured.
본 발명이 해결하고자 하는 기술적 과제는, 5G 이동 통신에 적용 가능하고 차량용 안테나에 요구되는 무지향성을 가지면서도 안테나 구조를 소형화 및 단순화하는 차량용 안테나 장치를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a vehicle antenna device that is applicable to 5G mobile communication and has a non-directionality required for a vehicle antenna, while miniaturizing and simplifying the antenna structure.
본 발명의 일 실시예에 따른 차량용 안테나 장치는, 일정 방향으로 전파를 방사하는 지향성 안테나; 및 상기 지향성 안테나의 수직 상공에 설치되며, 상기 지향성 안테나에서 상방으로 방사되는 방사 전파를 측방으로 반사하여 전 방위적으로 확산시키는 전파 확산 구조체를 포함한다.Vehicle antenna apparatus according to an embodiment of the present invention, a directional antenna for radiating radio waves in a predetermined direction; And a propagation diffusion structure installed above the directional antenna and reflecting the radio wave radiated upwardly from the directional antenna laterally and spreading it omnidirectionally.
일 실시예에 있어서, 상기 지향성 안테나는, 복수의 단위 안테나 소자가 상방을 향해 배열되어 상방 지향성을 가지는 어레이 안테나로 구성될 수 있다.In one embodiment, the directional antenna may be configured as an array antenna having a plurality of unit antenna elements are arranged upward to have an upward directivity.
일 실시예에 있어서, 상기 전파 확산 구조체는, 밑면이 상방을 향하고 꼭짓점이 상기 지향성 안테나를 향하는 역 원뿔 형상을 가질 수 있다.In one embodiment, the propagation diffusion structure may have an inverted cone shape with a bottom facing upward and a vertex pointing towards the directional antenna.
일 실시예에 있어서, 상기 전파 확산 구조체는, 수직 단면상 내측으로 만곡된 측면을 가질 수 있다.In one embodiment, the propagation diffusion structure may have a side surface curved inward in a vertical section.
일 실시예에 있어서, 상기 전파 확산 구조체의 측면은, 수직 단면상 일정한 곡률반경 R을 가지며 내측으로 만곡되고, 상기 곡률반경 R의 크기는, 상기 방사 전파의 파장의 크기가 λ일 때, 아래의 수학식 1을 만족한다.In one embodiment, the side surface of the propagation diffusion structure has a constant radius of curvature R in the vertical cross-section is curved inward, the magnitude of the radius of curvature R, when the magnitude of the wavelength of the radio wave propagation is Equation 1 is satisfied.
[수학식 1][Equation 1]
πλ < R < 20λπλ <R <20λ
일 실시예에 있어서, 상기 전파 확산 구조체의 꼭짓점과 상기 지향성 안테나 간의 수직 방향 거리 h의 크기는, 상기 방사 전파의 파장의 크기가 λ일 때, 아래의 수학식 2를 만족한다.In one embodiment, the magnitude of the vertical distance h between the vertex of the propagation diffusion structure and the directional antenna satisfies Equation 2 below when the magnitude of the wavelength of the radiation propagation is λ.
[수학식 2][Equation 2]
0 < h ≤ 2λ0 <h ≤ 2λ
일 실시예에 있어서, 상기 장치는, 상기 지향성 안테나의 상부 공간을 커버하며 내부면에 상기 전파 확산 구조체가 설치되는 돔 구조체를 더 포함할 수 있다.In one embodiment, the apparatus may further include a dome structure covering the upper space of the directional antenna and the radio wave diffusion structure is installed on the inner surface.
일 실시예에 있어서, 상기 장치는, 상기 지향성 안테나의 하부면에 결합되어 상기 지향성 안테나를 지지하는 베이스 플레이트를 더 포함할 수 있다.In one embodiment, the apparatus may further include a base plate coupled to the bottom surface of the directional antenna to support the directional antenna.
일 실시예에 있어서, 상기 베이스 플레이트는, 상기 돔 구조체의 하단 테두리와 결합하여 상기 돔 구조체를 지지하도록 구성될 수 있다.In one embodiment, the base plate may be configured to support the dome structure in combination with the bottom edge of the dome structure.
일 실시예에 있어서, 상기 베이스 플레이트는, 차량의 루프 외장 패널과 결합되는 결합부를 포함할 수 있다.In one embodiment, the base plate may include a coupling portion coupled to the roof exterior panel of the vehicle.
본 발명에 따르면, 28GHz 이상의 초고주파 대역 신호를 송수신할 수 있는 지향성 안테나를 이용하여 무지향성의 차량용 안테나를 구현함으로써, 5G 이동 통신 기술을 차량 통신에 적용할 수 있으며 차량 통신의 속도와 품질을 개선할 수 있다.According to the present invention, by implementing an omni-directional vehicle antenna using a directional antenna capable of transmitting and receiving ultra-high frequency band signals of 28GHz or more, it is possible to apply 5G mobile communication technology to vehicle communication and improve the speed and quality of vehicle communication. Can be.
또한, 빔 트랙킹을 위한 구성을 사용하지 않고, 고 지향성을 가지는 지향성 안테나의 수직 상공에 전파 확산 구조체를 설치하여 수직 상방으로 진행하는 지향성 안테나의 방사 전파를 전 방위적으로 확산시킴으로써, 차량용 안테나에 요구되는 무지향성을 확보하면서도 차량용 안테나를 소형화하고 차량 통신 시스템의 전체 구성을 단순화할 수 있다.In addition, by using a propagation diffusion structure in the vertical air of the directional antenna having a high directivity without using a configuration for beam tracking, it is required to the vehicle antenna by omnidirectionally spreading the radio wave of the directional antenna going vertically It is possible to miniaturize the vehicle antenna and simplify the overall configuration of the vehicle communication system while ensuring the omnidirectionality.
또한, 차량용 안테나 장치를 돔 형태로 구성하여 차량의 루프 외장 패널에 설치함으로써, 지향성 안테나의 손상을 방지하고 안테나 성능을 보장할 수 있다.In addition, by configuring the vehicle antenna device in the form of a dome and installed in the roof exterior panel of the vehicle, it is possible to prevent damage to the directional antenna and ensure antenna performance.
나아가, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자라면, 본 발명에 따른 여러 실시예들이 상기 언급되지 않은 여러 기술적 과제들을 해결할 수 있음을 이하의 설명으로부터 자명하게 이해할 수 있을 것이다.Furthermore, it will be apparent to those skilled in the art from the following description that various embodiments in accordance with the present invention can solve various technical problems not mentioned above.
도 1은 본 발명의 일 실시예에 따른 차량용 안테나 장치를 나타낸 사시도이다.1 is a perspective view showing a vehicle antenna device according to an embodiment of the present invention.
도 2는 도 1에 도시된 차량용 안테나 장치를 나타낸 분해 사시도이다.FIG. 2 is an exploded perspective view illustrating the vehicle antenna device shown in FIG. 1.
도 3은 도 1에 도시된 차량용 안테나 장치를 나타낸 수직 단면도이다.3 is a vertical cross-sectional view showing the vehicle antenna device shown in FIG.
도 4는 본 발명에 적용되는 전파 확산 구조체의 일례를 나타낸 사시도이다.4 is a perspective view showing an example of a radio wave diffusion structure applied to the present invention.
도 5는 수직 단면상 플랫한 측면을 가진 전파 확산 구조체에 의한 전파 반사 방향을 나타낸 도면이다.FIG. 5 is a view showing a wave reflection direction by a wave diffusion structure having a flat side surface in a vertical section. FIG.
도 6은 수직 단면상 외측으로 만곡된 측면을 가진 전파 확산 구조체에 의한 전파 반사 방향을 나타낸 도면이다.FIG. 6 is a diagram showing a wave reflection direction by a wave diffusion structure having a side curved outward on a vertical cross section. FIG.
도 7은 수직 단면상 내측으로 만곡된 측면을 가진 전파 확산 구조체에 의한 전파 반사 방향을 나타낸 도면이다.FIG. 7 is a view showing a wave reflection direction by a wave diffusion structure having a side curved inward on a vertical cross section. FIG.
도 8은 본 발명에 따른 차량용 안테나 장치의 동작 원리를 나타낸 도면이다.8 is a view showing the operating principle of the vehicle antenna device according to the present invention.
도 9는 본 발명에 따른 차량용 안테나 장치의 28GHz 주파수 대역에서의 전계 분포를 나타낸 그래프이다.9 is a graph illustrating electric field distribution in the 28 GHz frequency band of the vehicular antenna device according to the present invention.
도 10은 본 발명에 따른 차량용 안테나 장치의 방사 패턴을 나타낸 그래프이다.10 is a graph showing a radiation pattern of a vehicle antenna device according to the present invention.
도 11은 본 발명에 따른 차량용 안테나 장치의 적용례를 나타낸 도면이다.11 is a view showing an application example of a vehicle antenna device according to the present invention.
이하, 본 발명의 기술적 과제에 대한 해결 방안을 명확화하기 위해 첨부도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다. 다만, 본 발명을 설명함에 있어서 관련 공지기술에 관한 설명이 오히려 본 발명의 요지를 불명료하게 하는 경우 그에 관한 설명은 생략하기로 한다. 또한, 후술하는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 설계자, 제조자 등의 의도 또는 관례 등에 따라 달라질 수 있을 것이다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to clarify a solution to the technical problem of the present invention. However, in the description of the present invention, if the description of the related known technology makes the gist of the present invention clear, the description thereof will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a designer, a manufacturer, or the like. Therefore, the definition should be made based on the contents throughout the specification.
도 1에는 본 발명의 일 실시예에 따른 차량용 안테나 장치(100)가 사시도로 도시되어 있다.1 is a perspective view of a vehicle antenna device 100 according to an embodiment of the present invention.
도 2에는 도 1에 도시된 차량용 안테나 장치(100)가 분해 사시도로 도시되어 있다.FIG. 2 is an exploded perspective view of the vehicular antenna device 100 shown in FIG. 1.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 차량용 안테나 장치(100)는 지향성 안테나(110) 및 전파 확산 구조체(120)를 포함할 수 있으며, 실시예에 따라 돔 구조체(130), 베이스 플레이트(140) 등을 더 포함할 수 있다.As shown in FIG. 1 and FIG. 2, the vehicular antenna device 100 according to an embodiment of the present invention may include a directional antenna 110 and a propagation spreading structure 120. 130, the base plate 140 may be further included.
상기 지향성 안테나(110)는, 일정 방향으로 전파를 방사하는 안테나이다. 도 1에 도시된 지향성 안테나(110)는 수직 상방으로 전파를 방사하는 상방 지향성을 가지는 안테나이다. 일 실시예에 있어서, 지향성 안테나(110)는 복수의 단위 안테나 소자(112)가 상방을 향해 배열되어, 상방 지향성을 가지는 어레이 안테나로 구성될 수 있다. 이 경우, 복수의 단위 안테나 소자(112)는 각각 28GHz 이상의 초고주파 대역 신호를 송수신할 수 있도록 소형의 안테나 패치로 구성되어, 유전체 블록 상에 매트릭스 구조로 배열될 수 있다. 또한, 복수의 단위 안테나 소자(112)는 각각 도전성 패턴을 통해 급전 회로 등과 전기적으로 연결될 수 있다. 이러한 지향성 안테나(110)는 각각의 단위 안테나 소자(112)의 배열 방향과 여진 전류의 위상 조절에 의해 수직 상방의 지향성을 가지도록 설계될 수 있다. 실시예에 따라, 지향성 안테나(110)는 상술한 어레이 안테나 이외에도 방사 전파의 지향성을 가지는 다양한 형태의 안테나로 구성될 수 있다.The directional antenna 110 is an antenna that radiates radio waves in a predetermined direction. The directional antenna 110 shown in FIG. 1 is an antenna having upward directivity that radiates radio waves vertically upward. In one embodiment, the directional antenna 110 may be configured as an array antenna having a plurality of unit antenna elements 112 arranged upward, having an upward direction. In this case, each of the plurality of unit antenna elements 112 may be configured as a small antenna patch to transmit and receive a high frequency band signal of 28 GHz or more, and may be arranged in a matrix structure on the dielectric block. In addition, each of the plurality of unit antenna elements 112 may be electrically connected to a power supply circuit and the like through a conductive pattern. The directional antenna 110 may be designed to have a vertical upward direction by adjusting the arrangement direction of each unit antenna element 112 and the phase of the excitation current. According to an embodiment, the directional antenna 110 may be configured of various types of antennas having directivity of radiation propagation in addition to the above-described array antenna.
상기 전파 확산 구조체(120)는, 지향성 안테나(110)의 수직 상공에 설치되며 상기 지향성 안테나(110)에서 상방으로 방사되는 방사 전파를 측방으로 반사하여 전 방위적(omnidirectional)으로 확산시킬 수 있다.The propagation spreading structure 120 may be installed in the vertical air of the directional antenna 110 and may reflect the radio wave radiated upward from the directional antenna 110 laterally to diffuse omnidirectionally.
도 3에는 도 1에 도시된 차량용 안테나 장치(100)가 수직 단면도로 도시되어 있다.In FIG. 3, the vehicle antenna apparatus 100 illustrated in FIG. 1 is illustrated in a vertical cross-sectional view.
도 3에 도시된 바와 같이, 전파 확산 구조체(120)는 지향성 안테나(110)의 상부 공간을 커버하는 돔 구조체(130)의 내부면에 결합되어 지향성 안테나(110)의 수직 상공에 설치될 수 있다. 또한, 전파 확산 구조체(120)는 밑면이 상방을 향하고 꼭짓점이 지향성 안테나(110)를 향하는 역 원뿔(reciprocal cone) 형상을 가질 수 있다.As shown in FIG. 3, the propagation spreading structure 120 may be coupled to an inner surface of the dome structure 130 covering the upper space of the directional antenna 110 and installed above the directional antenna 110. . In addition, the propagation diffusion structure 120 may have a reciprocal cone shape in which the bottom face is upward and the vertex points toward the directional antenna 110.
도 4에는 전파 확산 구조체(120)의 일례가 사시도로 도시되어 있다.4 shows an example of the propagation diffusion structure 120 in a perspective view.
도 4에 도시된 바와 같이, 상기 전파 확산 구조체(120)는, 밑면(122)이 상방을 향하고 꼭짓점(126)이 지향성 안테나(110)를 향하는 역 원뿔 형상을 가지도록 구성되어, 지향성 안테나(110)에서 수직 상방으로 방사되는 방사 전파를, 측방으로 반사하여 전 방위적(omnidirectional)으로 확산시킬 수 있다.As shown in FIG. 4, the propagation diffusion structure 120 is configured such that the bottom surface 122 faces upward and the vertex 126 has an inverted cone shape facing the directional antenna 110. The radiation propagation radiated vertically upwards at) may be reflected laterally and spread omnidirectionally.
이 경우, 전파 확산 구조체(120)는, 수직 단면상 내측으로 만곡된 측면(124)을 가지도록 구성될 수 있다. 지향성 안테나(110)의 각 안테나 소자(112)에서 방사되는 방사 전파는, 입자성을 가지는 광선(ray)과는 달리 파동성이 강하며, 각 안테나 소자(112)의 위치나 인접 안테나 소자(112)와의 거리, 위상 차, 전파들 간의 간섭, 패치 형상 등과 같은 다양한 요인에 의해 진행 방향이 결정될 수 있다. 그 결과, 전파 확산 구조체(120)가 일반적인 역 원뿔과 같이 수직 단면상 완전한 역삼각형 형상을 가지는 경우보다, 전파 확산 구조체(120)의 측면(124)이 일정한 곡률 또는 위치에 따라 상이한 곡률을 가지며 내측으로 만곡된 형상을 가지는 경우에, 차량용 안테나 장치(100)의 요구되는 무지향성을 더욱 용이하게 구현할 수 있다.In this case, the propagation diffusion structure 120 may be configured to have the side surface 124 curved inward in a vertical cross section. Radiation propagation radiated from each antenna element 112 of the directional antenna 110 has a strong wave unlike a ray having particulate matter, and the position of each antenna element 112 and the adjacent antenna element 112 are different. ), The direction of travel may be determined by various factors such as a distance to the phase, a phase difference, interference between radio waves, a patch shape, and the like. As a result, the side surface 124 of the wave diffusion structure 120 has a different curvature depending on a constant curvature or position than the case where the wave diffusion structure 120 has a perfect inverted triangular shape in a vertical cross section like a general inverse cone. In the case of having a curved shape, it is possible to more easily implement the required non-directionality of the vehicle antenna device 100.
도 5에는 수직 단면상 플랫한 측면(124a)을 가진 전파 확산 구조체(120a)에 의한 전파 반사 방향이 도시되어 있다.FIG. 5 shows the direction of propagation reflection by the propagation diffusion structure 120a having the flat side surface 124a in the vertical section.
도 5에 도시된 바와 같이, 수직 단면상 플랫한 측면(124a)을 가진 전파 확산 구조체(120a)가 본 발명에 적용되는 경우, 지향성 안테나(110)에서 수직 상방으로 방사된 방사 전파(입사파)는 전파 확산 구조체(120a)에 의해 반사되기는 하지만, 그 반사파는 전체적으로 지면과 수평하게 진행되는 것이 아니라 지면과 일정한 기울기를 이루며 하방으로 진행된다. 그 이유는, 앞서 언급한 바와 같이, 지향성 안테나(110)의 각 안테나 소자(112)에서 방사되는 방사 전파들은 입자성을 가지는 광선(ray)과는 달리 파동성이 강하여, 각 안테나 소자(112)의 위치나 인접 안테나 소자(112)와의 거리, 위상 차, 전파들 간의 간섭 등과 같은 다양한 요인에 의해 진행 방향이 결정되기 때문이다. 즉, 수직 단면상 플랫한 측면(124a)을 가진 전파 확산 구조체(120a)가 본 발명에 적용되는 경우, 차량용 안테나에 요구되는 방사 패턴의 무지향성을 구현하기 어렵다.As shown in FIG. 5, when the propagation spreading structure 120a having the flat side surface 124a on the vertical cross section is applied to the present invention, the radiation propagation (incident wave) radiated vertically upward from the directional antenna 110 is Although reflected by the propagation diffusion structure 120a, the reflected wave does not proceed horizontally with the ground as a whole but proceeds downward with a constant inclination with the ground. The reason for this is that, as mentioned above, the radio waves radiated from each antenna element 112 of the directional antenna 110 have a strong wave unlike a ray having particulate matter, so that each antenna element 112 This is because the propagation direction is determined by various factors such as the position of, the distance to the adjacent antenna element 112, the phase difference, and the interference between radio waves. That is, when the propagation diffusion structure 120a having the flat side surface 124a on the vertical cross section is applied to the present invention, it is difficult to realize the omnidirectionality of the radiation pattern required for the vehicle antenna.
도 6에는 수직 단면상 외측으로 만곡된 측면(124b)을 가진 전파 확산 구조체(120b)에 의한 전파 반사 방향이 도시되어 있다.FIG. 6 shows the direction of propagation reflection by the propagation diffusion structure 120b with the side surface 124b curved outward in a vertical section.
도 6에 도시된 바와 같이, 수직 단면상 볼록하게 외측으로 만곡된 측면(124b)을 가진 전파 확산 구조체(120b)가 본 발명에 적용되는 경우, 지향성 안테나(110)에서 수직 상방으로 방사된 방사 전파(입사파)는 전파 확산 구조체(120b)에 의해 반사되기는 하지만, 그 반사파는 전체적으로 지면과 수평하게 진행되는 것이 아니라 오히려 도 5의 경우보다 지면과 급격한 기울기를 이루며 하방으로 진행된다. 즉, 수직 단면상 외측으로 만곡된 측면(124b)을 가진 전파 확산 구조체(120b)가 본 발명에 적용되는 경우, 차량용 안테나에 요구되는 방사 패턴의 무지향성을 구현할 수 없다.As shown in FIG. 6, when the propagation diffusion structure 120b having the side surface 124b curved convexly outward in the vertical section is applied to the present invention, the radio wave propagated vertically upward in the directional antenna 110 ( Although the incident wave) is reflected by the propagation diffusion structure 120b, the reflected wave does not proceed horizontally with the ground as a whole, but rather goes downward with an inclined slope with the ground than in the case of FIG. That is, when the propagation diffusion structure 120b having the side surface 124b curved outward in the vertical section is applied to the present invention, the omnidirectionality of the radiation pattern required for the vehicle antenna may not be realized.
도 7에는 수직 단면상 내측으로 만곡된 측면(124c)을 가진 전파 확산 구조체(120c)에 의한 전파 반사 방향이 도시되어 있다.7 shows the direction of propagation reflection by the propagation diffusion structure 120c with the side surface 124c curved inward in a vertical section.
도 7에 도시된 바와 같이, 수직 단면상 오목하게 내측으로 만곡된 측면(124c)을 가진 전파 확산 구조체(120b)가 본 발명에 적용되는 경우, 지향성 안테나(110)에서 수직 상방으로 방사된 방사 전파(입사파)는 전파 확산 구조체(120c)에 의해 반사되며, 그 반사파는 전체적으로 지면과 수평하게 진행된다. 즉, 수직 단면상 내측으로 만곡된 측면(124c)을 가진 전파 확산 구조체(120c)가 본 발명에 적용되는 경우, 차량용 안테나에 요구되는 방사 패턴의 무지향성을 용이하게 구현할 수 있다.As shown in FIG. 7, when the propagation diffusion structure 120b having the concave inwardly curved side surface 124c in the vertical cross section is applied to the present invention, the radio wave propagated vertically upward from the directional antenna 110 ( Incident wave) is reflected by the propagation diffusion structure 120c, and the reflected wave travels parallel to the ground as a whole. That is, when the propagation diffusion structure 120c having the side surface 124c curved inward in the vertical section is applied to the present invention, the omnidirectionality of the radiation pattern required for the vehicle antenna may be easily implemented.
한편, 전파 확산 구조체(120)의 제조시, 전파 확산 구조체(120)의 측면 각도, 측면 곡률 등을 조정하면 원하는 방사 전파의 반사 각도를 구현할 수 있다. 이 경우, 전파 확산 구조체(120)는 적어도 반사면에 해당하는 측면(124)이 메탈 소재로 구성될 수 있다.Meanwhile, when manufacturing the propagation diffusion structure 120, by adjusting the side angle, the side curvature, and the like of the propagation diffusion structure 120, a reflection angle of the desired radiation propagation may be realized. In this case, at least the side surface 124 corresponding to the reflective surface may be made of a metal material.
다시 도 3을 참조하면, 상술한 바와 같이 전파 확산 구조체(120)의 측면은 수직 단면상 일정한 곡률반경 R을 가지며 내측으로 만곡되도록 구성될 수 있다. 또한, 이러한 전파 확산 구조체(120)는 지향성 안테나(110)와 일정 거리 h를 두고 지향성 안테나(110)의 중심부의 수직 상방에 설치될 수 있다.Referring to FIG. 3 again, as described above, the side surface of the propagation diffusion structure 120 may be configured to be curved inwardly with a constant radius of curvature R in a vertical section. In addition, the propagation spreading structure 120 may be installed above the center of the directional antenna 110 at a predetermined distance h from the directional antenna 110.
이 경우, 상기 곡률반경 R의 크기는, 지향성 안테나(110)에서 방사되는 방사 전파의 파장 크기가 λ일 때, 아래의 수학식 1을 만족하도록 구성된다.In this case, the size of the radius of curvature R is configured to satisfy Equation 1 below when the wavelength of the radiation wave emitted from the directional antenna 110 is λ.
[수학식 1][Equation 1]
πλ < R < 20λπλ <R <20λ
여기서, π는 원주율을 나타내는 것이다.Here, pi represents the circumference.
전파 확산 구조체(120)의 측면 곡률반경 R이, πλ 이하이거나 20λ 이상이면, 상방으로 방사된 지향성 안테나(110)의 방사 전파가 측방으로 원활히 확산되지 않기 때문에, 차량용 안테나에 요구되는 무지향성을 확보할 수 없게 되고 안테나 성능이 급격히 저하된다. 즉, 전파 확산 구조체(120)의 측면 곡률반경 R이 πλ 이하가 되면, 전파 확산 구조체(120)의 측면은 실질적으로 볼록한 면이 되고, 전파 확산 구조체(120)의 측면 곡률반경 R이 20λ 이상이 되면, 도 5의 경우와 유사하게 전파 확산 구조체(120)의 측면은 실질적으로 플랫한 평면이 되어, 지향성 안테나(110)의 방사 전파를 지면과 수평한 측방으로 반사할 수 없게 된다. 그 결과, 차량용 안테나에 요구되는 방사 패턴의 무지향성을 구현할 수 없게 된다.If the side curvature radius R of the propagation diffusion structure 120 is less than or equal to πλ or greater than or equal to 20λ, the radio wave propagation of the directional antenna 110 radiated upward does not diffuse smoothly laterally, thereby ensuring the omnidirectionalness required for the vehicle antenna. It becomes impossible to do so, and antenna performance is drastically reduced. That is, when the side curvature radius R of the propagation diffusion structure 120 becomes πλ or less, the side surface of the propagation diffusion structure 120 becomes a substantially convex surface, and the side curvature radius R of the propagation diffusion structure 120 is 20 lambda or more. 5, the side surface of the propagation diffusion structure 120 becomes a substantially flat plane, and thus the radio wave propagation of the directional antenna 110 cannot be reflected laterally horizontally to the ground. As a result, it is impossible to realize the omnidirectionality of the radiation pattern required for the vehicle antenna.
또한, 전파 확산 구조체(120)와 지향성 안테나(110) 간의 최단 거리, 즉 전파 확산 구조체(120)의 꼭짓점과 지향성 안테나(110) 간의 수직 방향 거리 h의 크기는, 지향성 안테나(110)에서 방사되는 방사 전파의 파장 크기가 λ일 때, 아래의 수학식 2를 만족하도록 구성된다.Further, the magnitude of the shortest distance between the propagation spreading structure 120 and the directional antenna 110, that is, the vertical distance h between the vertex of the propagation spreading structure 120 and the directional antenna 110 is radiated from the directional antenna 110. When the wavelength size of the radiation propagation is λ, it is configured to satisfy the following equation (2).
[수학식 2][Equation 2]
0 < h ≤ 2λ0 <h ≤ 2λ
전파 확산 구조체(120)의 꼭짓점과 지향성 안테나(110) 간의 수직 방향 거리 h가 2λ보다 커지면, 소스와의 간격이 중요한 안테나의 특성상, 전파 확산 구조체(120)는 리플렉터(Reflector)로 동작하는 것이 아니라 오히려 디렉터(Director)로 동작하게 되어, 지향성 안테나(110)의 전파가 측면 방향이 아닌 수직 방향으로만 방사되는 결과를 초래한다. 즉, 전파 확산 구조체(120)는 지향성 안테나(110)의 방사 전파를 도 7과 같이 지면과 수평한 측방으로 반사할 수 없게 되고, 차량용 안테나에 요구되는 방사 패턴의 무지향성을 구현할 수 없게 된다.If the vertical distance h between the vertex of the propagation diffusion structure 120 and the directional antenna 110 is greater than 2λ, the propagation diffusion structure 120 does not operate as a reflector due to the characteristics of the antenna whose spacing from the source is important. Rather, it operates as a director, resulting in the radio wave of the directional antenna 110 is radiated only in the vertical direction and not in the lateral direction. That is, the propagation spreading structure 120 cannot reflect the radio wave of the directional antenna 110 to the horizontal side with respect to the ground as shown in FIG. 7, and cannot realize the omni-directionalness of the radiation pattern required for the vehicle antenna.
한편, 지향성 안테나(110)가 정방형의 패널 형태로 구성되는 경우, 전파 확산 구조체(120)의 꼭짓점과 지향성 안테나(110) 간의 수직 방향 거리 h는 아래의 수학식 3과 같이 산출될 수 있다.Meanwhile, when the directional antenna 110 is configured in the form of a square panel, the vertical distance h between the vertex of the propagation spreading structure 120 and the directional antenna 110 may be calculated as in Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2018004859-appb-I000001
Figure PCTKR2018004859-appb-I000001
여기서, d는 지향성 안테나(110)의 한 변의 길이, λ는 지향성 안테나(110)에서 방사되는 방사 전파의 파장 크기, R은 전파 확산 구조체(120)의 측면 곡률반경, π는 원주율을 나타내는 것이다.Here, d is the length of one side of the directional antenna 110, λ is the wavelength of the radio wave radiated from the directional antenna 110, R is the side curvature radius of the propagation diffusion structure 120, π is the circumference.
한편, 위에서 언급한 바와 같이, 차량용 안테나 장치(100)는 돔 구조체(130) 및 베이스 플레이트(140)를 더 포함할 수 있다.On the other hand, as mentioned above, the vehicle antenna device 100 may further include a dome structure 130 and the base plate 140.
상기 돔 구조체(130)는, 지향성 안테나(110)의 상부 공간을 커버하며, 그 내부면에 전파 확산 구조체(120)가 설치될 수 있다. 이러한 돔 구조체(130)는, 폴리카보네이트(PC: Polycarbonate), 폴리아미드(PA: Polyamide), 폴리아세탈(POM: Polyacetal, 폴리옥시메틸렌(POM:Poly Oxy Methylene), 폴리에틸렌 테레프탈레이트(PET: Polyethylene terephthalate), ABS(Acrylonitrile-Butadiene-Styrene) 등과 같이 특정 유전율을 나타내는 소재 또는 특정 유전율을 나타내는 소재를 2 이상 조합한 소재로 구성될 수 있다. 이 경우, 바람직한 돔구조체(130)의 유전율은 1~10 [F/m]이다. 또한, 돔 구조체(130)는, 구성 소재의 유전율에 따라 그 크기나 두께가 달라질 수 있다.The dome structure 130 may cover an upper space of the directional antenna 110, and a radio wave diffusion structure 120 may be installed on an inner surface thereof. The dome structure 130 is a polycarbonate (PC: Polycarbonate), polyamide (PA: Polyamide), polyacetal (POM: Polyacetal, polyoxymethylene (POM: Poly Oxy Methylene), polyethylene terephthalate (PET: polyethylene terephthalate ), ABS (Acrylonitrile-Butadiene-Styrene), or a material having a specific dielectric constant or a material having a specific dielectric constant in combination of two or more. In this case, the dielectric constant of the preferred dome structure 130 is 1 ~ 10 [F / m] The size and thickness of the dome structure 130 may vary depending on the dielectric constant of the constituent material.
상기 베이스 플레이트(140)는, 지향성 안테나(110)의 하부면에 결합되어 상기 지향성 안테나(110)를 지지할 수 있다. 이 경우, 베이스 플레이트(140)는 돔 구조체(130)의 하단 테두리와 결합하여 상기 돔 구조체(130)를 지지할 수 있다.The base plate 140 may be coupled to the bottom surface of the directional antenna 110 to support the directional antenna 110. In this case, the base plate 140 may be coupled to the lower edge of the dome structure 130 to support the dome structure 130.
도 8에는 본 발명에 따른 차량용 안테나 장치(100)의 동작 원리가 도시되어 있다.8 is a view illustrating an operation principle of the vehicular antenna device 100 according to the present invention.
도 8에 도시된 바와 같이, 상방으로의 고 지향성을 가지는 지향성 안테나(110)에 급전이 개시되면, 지향성 안테나(110)는 수직 상방으로 전파를 방사한다. 방사 전파는 수직 상공에 설치된 전파 확산 구조체(120)에 의해 측방으로 반사되어 전 방위적으로 확산된다. 이와 같이, 상기 차량용 안테나 장치(100)의 지향성 안테나(110)는 전파를 수직 상방으로만 방사하면 되므로, 기존의 지향성 안테나들과는 달리 빔 트랙킹(beam tracking)을 수행할 필요가 없다. 그 결과, 본 발명에 따른 차량용 안테나 장치(100)는 빔 트랙킹을 위한 페이저 시프터(phase shifter) 등의 구성을 생략하고 차량용 안테나에 요구되는 무지향성을 확보하면서도, 차량용 안테나를 소형화하고 차량 통신 시스템의 전체 구성을 단순화할 수 있다.As shown in FIG. 8, when power supply is started to the directional antenna 110 having high directivity upward, the directional antenna 110 radiates radio waves vertically upward. Radiation propagation is reflected laterally by the propagation diffusion structure 120 installed in the vertical air and is spread in all directions. As such, since the directional antenna 110 of the vehicle antenna apparatus 100 only needs to radiate radio waves vertically upward, there is no need to perform beam tracking unlike conventional directional antennas. As a result, the vehicular antenna device 100 according to the present invention omits the configuration of a phase shifter for beam tracking and secures the omnidirectionalness required for the vehicular antenna, while miniaturizing the vehicular antenna and providing a vehicle communication system. The overall configuration can be simplified.
도 9에는 본 발명에 따른 차량용 안테나 장치(100)의 28GHz 주파수 대역에서의 전계 분포가 그래프로 도시되어 있다.9 is a graph showing electric field distribution in the 28 GHz frequency band of the vehicular antenna device 100 according to the present invention.
도 9에 도시된 바와 같이, 지향성 안테나(110)에서 수직 상방으로 방사된 방사 전파는 지향성 안테나(110)의 상부에 설치된 전파 확산 구조체(120)에 의해 측방으로 반사되어, 전 방위적으로 확산됨을 알 수 있다.As shown in FIG. 9, the radiated radio waves radiated vertically upward from the directional antenna 110 are laterally reflected by the radio wave spreading structure 120 installed on the directional antenna 110 to be diffused in all directions. Able to know.
도 10에는 본 발명에 따른 차량용 안테나 장치(100)의 방사 패턴이 그래프로 도시되어 있다.10 is a graph showing a radiation pattern of the vehicular antenna device 100 according to the present invention.
도 10에 도시된 바와 같이, 본 발명에 따른 차량용 안테나 장치(100)는 전방위적으로 균일한 방사 패턴이 나타내는 점에서, 본 발명의 실제 구현 시 차량용 안테나에 요구되는 무지향성을 확보할 수 있음을 알 수 있다.As shown in FIG. 10, the vehicle antenna apparatus 100 according to the present invention exhibits a uniform radiation pattern in all directions, so that the omnidirectionalness required for the vehicle antenna may be secured in actual implementation of the present invention. Able to know.
도 11에는 본 발명에 따른 차량용 안테나 장치(100)의 적용례가 도시되어 있다.11 shows an application example of the vehicular antenna device 100 according to the present invention.
도 11에 도시된 바와 같이, 상기 차량용 안테나 장치(100)는 차량(10)의 루프(roof)에 설치될 수 있다. 이 경우, 차량용 안테나 장치(100)의 베이스 플레이트(140)는, 차량(10)의 루프 외장 패널에 설치되어 고정될 수 있다. 이를 위해, 베이스 플레이트(140)는 차량(10)의 루프 외장 패널과 결합부(미도시)를 포함할 수 있다. 이 경우, 베이스 플레이트(140)의 결합부는, 차량(10)의 루프 외장 패널에 마련된 설치 홈에 삽입되어 고정되는 결합 돌기로 구성되거나, 접착 부재를 통해 차량(10)의 루프 외장 패널에 접착되는 접착 면으로 구성되거나, 나사 등의 결합 부재가 삽입되어 상기 결합 부재를 통해 차량(10)의 루프 외장 패널에 접착되는 결합 홈 등으로 구성될 수 있다.As shown in FIG. 11, the vehicular antenna device 100 may be installed in a roof of the vehicle 10. In this case, the base plate 140 of the vehicle antenna device 100 may be installed and fixed to the roof exterior panel of the vehicle 10. To this end, the base plate 140 may include a roof exterior panel and a coupling part (not shown) of the vehicle 10. In this case, the coupling portion of the base plate 140 is composed of a coupling protrusion which is inserted into and fixed to the installation groove provided in the roof exterior panel of the vehicle 10 or is bonded to the roof exterior panel of the vehicle 10 through an adhesive member. It may be composed of an adhesive surface or a coupling groove such as a screw is inserted into the coupling groove and the like bonded to the roof exterior panel of the vehicle 10 through the coupling member.
이와 같이, 방사 패턴의 무지향성(omnidirectional)을 가지는 차량용 안테나 장치(100)가 차량(10)의 루프에 설치되어 전파를 방사하고 신호를 송수신함으로써, 차량(10)의 주행 방향과 무관하게 차량 통신이 안정적으로 수행될 수 있다.In this way, the vehicle antenna device 100 having an omnidirectional radiation pattern is installed in the loop of the vehicle 10 to radiate radio waves and transmit and receive signals, thereby enabling vehicle communication regardless of the driving direction of the vehicle 10. This can be performed stably.
상술한 바와 같이, 본 발명에 따르면, 28GHz 이상의 초고주파 대역 신호를 송수신할 수 있는 지향성 안테나를 이용하여 무지향성의 차량용 안테나를 구현함으로써, 5G 이동 통신 기술을 차량 통신에 적용할 수 있으며 차량 통신의 속도와 품질을 개선할 수 있다.As described above, according to the present invention, by implementing an omni-directional vehicle antenna using a directional antenna capable of transmitting and receiving ultra-high frequency band signals of 28 GHz or more, 5G mobile communication technology can be applied to vehicle communication and the speed of vehicle communication And the quality can be improved.
또한, 빔 트랙킹을 위한 구성을 사용하지 않고, 고 지향성을 가지는 지향성 안테나의 수직 상공에 전파 확산 구조체를 설치하여 수직 상방으로 진행하는 지향성 안테나의 방사 전파를 전 방위적으로 확산시킴으로써, 차량용 안테나에 요구되는 무지향성을 확보하면서도 차량용 안테나를 소형화하고 차량 통신 시스템의 전체 구성을 단순화할 수 있다.In addition, by using a propagation diffusion structure in the vertical air of the directional antenna having a high directivity without using a configuration for beam tracking, it is required to the vehicle antenna by omnidirectionally spreading the radio wave of the directional antenna going vertically It is possible to miniaturize the vehicle antenna and simplify the overall configuration of the vehicle communication system while ensuring the omnidirectionality.
또한, 차량용 안테나 장치를 돔 형태로 구성하여 차량의 루프 외장 패널에 설치함으로써, 지향성 안테나의 손상을 방지하고 안테나 성능을 보장할 수 있다.In addition, by configuring the vehicle antenna device in the form of a dome and installed in the roof exterior panel of the vehicle, it is possible to prevent damage to the directional antenna and ensure antenna performance.
나아가, 본 발명에 따른 실시예들은, 당해 기술 분야는 물론 관련 기술 분야에서 본 명세서에 언급된 내용 이외의 다른 여러 기술적 과제들을 해결할 수 있음은 물론이다.Furthermore, the embodiments according to the present invention can solve various technical problems other than the contents mentioned in the related art as well as the related art.
지금까지 본 발명에 대해 구체적인 실시예들을 참고하여 설명하였다. 그러나 당업자라면 본 발명의 기술적 범위에서 다양한 변형 실시예들이 구현될 수 있음을 명확하게 이해할 수 있을 것이다. 그러므로 앞서 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 할 것이다. 즉, 본 발명의 진정한 기술적 사상의 범위는 청구범위에 나타나 있으며, 그와 균등범위 내에 있는 모든 차이점은 본 발명에 포함되는 것으로 해석되어야 할 것이다.So far, the present invention has been described with reference to specific embodiments. However, it will be apparent to those skilled in the art that various modifications may be implemented in the technical scope of the present invention. Therefore, the above-described embodiments should be considered in descriptive sense only and not for purposes of limitation. That is, the true technical scope of the present invention is shown in the claims, and all differences within the equivalent range will be construed as being included in the present invention.

Claims (9)

  1. 차량용 안테나 장치에 있어서,In the vehicle antenna device,
    일정 방향으로 전파를 방사하는 지향성 안테나; 및A directional antenna for radiating radio waves in a predetermined direction; And
    상기 지향성 안테나의 수직 상공에 설치되며, 상기 지향성 안테나에서 상방으로 방사되는 방사 전파를 측방으로 반사하여 전 방위적으로 확산시키는 전파 확산 구조체를 포함하고,It is installed in the vertical air above the directional antenna, and includes a radio wave spreading structure for reflecting the radio wave radiated upwards from the directional antenna to the side to diffuse in all directions,
    상기 전파 확산 구조체는, 밑면이 상방을 향하고 꼭짓점이 상기 지향성 안테나를 향하는 역 원뿔 형상을 가지는 차량용 안테나 장치.The propagation diffusion structure has an inverted cone shape for a vehicle having a bottom surface facing upward and a vertex pointing toward the directional antenna.
  2. 제1항에 있어서,The method of claim 1,
    상기 지향성 안테나는, 복수의 단위 안테나 소자가 상방을 향해 배열되어 상방 지향성을 가지는 어레이 안테나인 것을 특징으로 하는 차량용 안테나 장치.The directional antenna is a vehicle antenna device, characterized in that the plurality of unit antenna elements are arranged in an upward direction, an array antenna having an upward directivity.
  3. 제1항에 있어서,The method of claim 1,
    상기 전파 확산 구조체는, 수직 단면상 내측으로 만곡된 측면을 가지는 것을 특징으로 하는 차량용 안테나 장치.The propagation diffusion structure has a vehicle antenna device, characterized in that it has a side surface curved inward in the vertical section.
  4. 제1항에 있어서,The method of claim 1,
    상기 전파 확산 구조체의 측면은, 수직 단면상 일정한 곡률반경 R을 가지며 내측으로 만곡되고,The side surface of the propagation diffusion structure is curved inward with a constant radius of curvature R in the vertical section,
    상기 곡률반경 R의 크기는, 상기 방사 전파의 파장의 크기가 λ일 때, 아래의 수학식 1을 만족하는 것을 특징으로 하는 차량용 안테나 장치.The magnitude of the radius of curvature R, the vehicle antenna apparatus, characterized in that the following formula (1) when the magnitude of the wavelength of the radiation wave is λ.
    [수학식 1][Equation 1]
    πλ < R < 20λπλ <R <20λ
  5. 제1항에 있어서,The method of claim 1,
    상기 전파 확산 구조체의 꼭짓점과 상기 지향성 안테나 간의 수직 방향 거리 h의 크기는, 상기 방사 전파의 파장의 크기가 λ일 때, 아래의 수학식 2를 만족하는 것을 특징으로 하는 차량용 안테나 장치.And the vertical distance h between the vertex of the propagation diffusion structure and the directional antenna satisfies Equation 2 below when the magnitude of the wavelength of the radio wave is λ.
    [수학식 2][Equation 2]
    0 < h ≤ 2λ0 <h ≤ 2λ
  6. 제1항에 있어서,The method of claim 1,
    상기 장치는, 상기 지향성 안테나의 상부 공간을 커버하며 내부면에 상기 전파 확산 구조체가 설치되는 돔 구조체를 더 포함하는 것을 특징으로 하는 차량용 안테나 장치.The apparatus may further include a dome structure covering the upper space of the directional antenna and having the propagation diffusion structure installed on an inner surface thereof.
  7. 제6항에 있어서,The method of claim 6,
    상기 장치는, 상기 지향성 안테나의 하부면에 결합되어 상기 지향성 안테나를 지지하는 베이스 플레이트를 더 포함하는 것을 특징으로 하는 차량용 안테나 장치.The apparatus further comprises a base plate coupled to the lower surface of the directional antenna to support the directional antenna.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 베이스 플레이트는, 상기 돔 구조체의 하단 테두리와 결합하여 상기 돔 구조체를 지지하는 것을 특징으로 하는 차량용 안테나 장치.The base plate is coupled to the lower edge of the dome structure vehicle antenna device, characterized in that for supporting the dome structure.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 베이스 플레이트는, 차량의 루프 외장 패널과 결합되는 결합부를 포함하는 것을 특징으로 하는 차량용 안테나 장치.The base plate is a vehicle antenna device, characterized in that it comprises a coupling portion coupled to the roof exterior panel of the vehicle.
PCT/KR2018/004859 2017-04-28 2018-04-26 Vehicular antenna device WO2018199651A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019554513A JP6896883B2 (en) 2017-04-28 2018-04-26 Vehicle antenna device
US16/606,498 US11688933B2 (en) 2017-04-28 2018-04-26 Vehicular antenna device
EP18791503.8A EP3618183B1 (en) 2017-04-28 2018-04-26 Vehicular antenna device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0055432 2017-04-28
KR20170055432 2017-04-28
KR10-2018-0046168 2018-04-20
KR1020180046168A KR20180121372A (en) 2017-04-28 2018-04-20 Antenna device for vehicle

Publications (1)

Publication Number Publication Date
WO2018199651A1 true WO2018199651A1 (en) 2018-11-01

Family

ID=63918664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004859 WO2018199651A1 (en) 2017-04-28 2018-04-26 Vehicular antenna device

Country Status (1)

Country Link
WO (1) WO2018199651A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048754A (en) * 2019-03-20 2019-07-23 北京交通大学 Discrete vehicle-mounted antenna system and method for transmitting signals based on the system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114816A (en) * 1991-07-26 1993-05-07 Fujitsu Ltd Antenna system
KR100835897B1 (en) * 2006-12-29 2008-06-09 포스데이타 주식회사 Antenna device
JP2011160339A (en) * 2010-02-03 2011-08-18 Denso Corp In-vehicle radio communication system
KR20120107664A (en) 2011-03-22 2012-10-04 장애인표준사업장비클시스템 주식회사 Outdoor receiver for vehicles
KR20150090077A (en) * 2012-10-25 2015-08-05 캠비움 네트웍스 리미티드 Reflector arrangement for attachment to a wireless communications terminal
KR20170044504A (en) * 2015-10-15 2017-04-25 현대자동차주식회사 Antenna apparatus, vehicle having the same and control method for the antenna apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114816A (en) * 1991-07-26 1993-05-07 Fujitsu Ltd Antenna system
KR100835897B1 (en) * 2006-12-29 2008-06-09 포스데이타 주식회사 Antenna device
JP2011160339A (en) * 2010-02-03 2011-08-18 Denso Corp In-vehicle radio communication system
KR20120107664A (en) 2011-03-22 2012-10-04 장애인표준사업장비클시스템 주식회사 Outdoor receiver for vehicles
KR20150090077A (en) * 2012-10-25 2015-08-05 캠비움 네트웍스 리미티드 Reflector arrangement for attachment to a wireless communications terminal
KR20170044504A (en) * 2015-10-15 2017-04-25 현대자동차주식회사 Antenna apparatus, vehicle having the same and control method for the antenna apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618183A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048754A (en) * 2019-03-20 2019-07-23 北京交通大学 Discrete vehicle-mounted antenna system and method for transmitting signals based on the system
CN110048754B (en) * 2019-03-20 2020-08-14 北京交通大学 Discrete vehicle-mounted antenna system and signal transmission method based on system

Similar Documents

Publication Publication Date Title
EP3618183B1 (en) Vehicular antenna device
KR101177599B1 (en) An improved repeater antenna for use in point-to-point applications
WO2016027997A1 (en) Omnidirectional antenna for mobile communication service
EP0892461A1 (en) An antenna assembly
WO2015041422A1 (en) Antenna apparatus and electronic device having same
KR100957548B1 (en) Antenna system having electromagnetic bandgap
EP3210256A1 (en) Antenna apparatus for use in wireless devices
KR20020012240A (en) Transreflector antenna for wireless communication system
WO2021088572A1 (en) Antenna array and electronic device
JPWO2020071390A1 (en) Antenna system
WO2018159988A1 (en) Dual polarized omni-directional antenna and base station including same
US7006053B2 (en) Adjustable reflector system for fixed dipole antenna
WO2018236174A1 (en) High gain antenna
US20230170621A1 (en) Base station antenna
US9520652B2 (en) Wideband high gain antenna for multiband employment
WO2017222114A1 (en) Vehicular antenna
WO2018199651A1 (en) Vehicular antenna device
KR100529709B1 (en) Beam variable antenna
JP2006166404A (en) Antenna device
CN109301447B (en) Terminal
CN102474003A (en) Antenna device
WO2017043946A1 (en) Reflective cell-array antenna having miniaturised structure
CN112768886A (en) Omnidirectional dual-polarized antenna and wireless device
JP2001036340A (en) Antenna system
CN112821068B (en) Antenna module and customer premises equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018791503

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018791503

Country of ref document: EP

Effective date: 20191128