WO2018199610A1 - 귀금속 나노입자가 도금된 침술용 다공성 침 및 이의 제조방법 - Google Patents

귀금속 나노입자가 도금된 침술용 다공성 침 및 이의 제조방법 Download PDF

Info

Publication number
WO2018199610A1
WO2018199610A1 PCT/KR2018/004775 KR2018004775W WO2018199610A1 WO 2018199610 A1 WO2018199610 A1 WO 2018199610A1 KR 2018004775 W KR2018004775 W KR 2018004775W WO 2018199610 A1 WO2018199610 A1 WO 2018199610A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
acupuncture
porous
precious metal
nanoparticles
Prior art date
Application number
PCT/KR2018/004775
Other languages
English (en)
French (fr)
Inventor
인수일
최한샘
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Publication of WO2018199610A1 publication Critical patent/WO2018199610A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/08Devices for applying needles to such points, i.e. for acupuncture ; Acupuncture needles or accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/08Devices for applying needles to such points, i.e. for acupuncture ; Acupuncture needles or accessories therefor
    • A61H39/086Acupuncture needles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • Another technique is the use of powerful lasers to process the surface (laser ablation), which injects a powerful laser pulse beam into the metal to instantaneously ablate the surface material to form a pattern. At this time, the depth of the pattern can be adjusted by adjusting the output of the laser.
  • the technology is currently used for marking not only metals but also silicon wafers for semiconductor manufacturing.
  • the most widely used method for surface treatment of resin needles has been developed in the direction of forming needle tip and reducing surface roughness by mechanical grinding. However, this technique is difficult to form directional surfaces.
  • the present invention relates to acupuncture porous needle plated with precious metal nanoparticles, 100 ⁇ 150 holes per 100 ⁇ m 2 (horizontal ⁇ vertical, 10 ⁇ m ⁇ 10 ⁇ m) of the surface area of the needle It may include, and at least one selected from gold (Au) nanoparticles, silver (Ag) nanoparticles and platinum (Pt) nanoparticles in the hole may be characterized in that it comprises a noble metal nanoparticles.
  • the porous needle for acupuncture of the present invention may be integrated with the needle by fixing the precious metal nanoparticles to the porous needle.
  • the acupuncture porous needle of the present invention may be characterized in that the drug is supported in the hole.
  • the acupuncture porous needle is not plated with precious metal nanoparticles iron (Fe) 24% ⁇ 28%, chromium (Cr) 6% ⁇ 10%, carbon (C) 61.5% ⁇ 66% , 1.5% to 3.5% of nickel (Ni) and 0.1% to 0.5% of silicon (Si), preferably 25% to 27% of iron (Fe), 7% to 9% of chromium (Cr), and carbon (C) 62 %
  • nickel (Ni) 2% to 3% and silicon (Si) may be characterized in that it comprises 0.2% to 0.3%.
  • the acupuncture porous needle of the present invention is a general (or sterile intradermal needle, Sterile Intradermal Acupuncture Needle), Hand Acupuncture Needle, long needle (long needle), acupuncture (or needle), Big needle, T type needle, microneedle roller, Thread Embedding Acupuncture Needle and / or Filpform needle including round-sharp needle.
  • the acupuncture porous needle of the present invention may be a shear needle, a lance needle, a needle and / or a stiletto needle.
  • Another object of the present invention relates to a method for manufacturing acupuncture porous needle plated with the precious metal nanoparticles of the present invention described above, by performing an anodizing process for acupuncture needles to form a porous structure on the surface of the needle hole Step 1 to prepare the formed acupuncture porous saliva; 2 steps of washing the porous needle for acupuncture; And plating the precious metal nanoparticles on the inside of the hole and the porous needle surface of the porous needle surface with a plating solution containing the precious metal precursor by washing the porous needle for acupuncture.
  • Porous saliva can be prepared.
  • the acupuncture needles before the first step of anodizing treatment is a cold (or sterile intradermal needle, Sterile Intradermal Acupuncture Needle), Hand Acupuncture Needle, long needle, long needle (Or a needle, including a large needle, a T needle, a T needle, a microneedle roller, a thread-embedding acupuncture needle, and / or a round-sharp needle) Can be.
  • the acupuncture needles before the first step of anodizing may be a shear needle, a lance needle, a needle and / or a stiletto needle. .
  • the electrolyte solution used in the one-step anodizing process may include one or more selected from ethylene glycol aqueous solution and glycerol aqueous solution.
  • the electrolyte solution used in the one-step anodizing process is 0.1 to 0.5% by weight of ammonium fluoride and 1 to 5% by volume of water, preferably Ethylene glycol aqueous solution containing 0.1 to 0.3% by weight of ammonium fluoride and 1 to 3% by volume of water.
  • the acupuncture needles before the anodizing process is 37% to 42.5% of iron (Fe) and chromium (Cr) when measuring EDS (Energy Dispersive Spectometer). 9.5% to 15%, carbon (C) 39% to 45%, nickel (Ni) 2.5% to 6% and silicon (Si) 0.3% to 0.8%, preferably 38% to 42% iron (Fe), 10% to 14% of chromium (Cr), 40% to 44% of carbon (C), 3% to 5% of nickel (Ni), and 0.3% to 0.6% of silicon (Si).
  • the porous needle for acupuncture after the anodizing process is 24% to 28% of iron (Fe) and chromium (Cr) when measuring EDS (Energy Dispersive Spectometer).
  • iron (Fe) and chromium (Cr) when measuring EDS (Energy Dispersive Spectometer).
  • ) 6% to 10%, carbon (C) 61.5% to 66%, nickel (Ni) 1.5% to 3.5% and silicon (Si) 0.1% to 0.5%, preferably iron (Fe) 25% to 27% , 7% to 9% of chromium (Cr), 62% to 64% of carbon (C), 2% to 3% of nickel (Ni), and 0.2% to 0.3% of silicon (Si).
  • the plating solution used in the electrochemical plating process is a precious metal precursor and water 1 to 1 or more selected from silver (Ag) precursor, gold (Au) precursor and platinum (Pt) precursor Ethylene glycol aqueous solution containing 5% by volume.
  • the acupuncture porous needle plated with noble metal nanoparticles of three steps may have a specific surface area of 0.95 m 2 / g to 1.65 m 2 / g.
  • FIG. 1 is a schematic diagram of a method for manufacturing the acupuncture porous needle of the present invention by an anodizing method.
  • FIG. 3 is an SEM measurement photograph obtained by enlarging and measuring the surface of the resin needle after the anodizing treatment of Example 1 performed in Experimental Example 1.
  • FIG. 3 is an SEM measurement photograph obtained by enlarging and measuring the surface of the resin needle after the anodizing treatment of Example 1 performed in Experimental Example 1.
  • FIG. 4 is an SEM measurement photograph obtained by enlarging and measuring the surface of the resin needle after anodizing prepared in Example 2.
  • FIG. 4 is an SEM measurement photograph obtained by enlarging and measuring the surface of the resin needle after anodizing prepared in Example 2.
  • FIG. 7 is an SEM measurement photograph obtained by enlarging and measuring the surface of the resin needle after anodizing prepared in Comparative Example 1.
  • FIG. 7 is an SEM measurement photograph obtained by enlarging and measuring the surface of the resin needle after anodizing prepared in Comparative Example 1.
  • FIG. 8 is an SEM measurement photograph obtained by enlarging and measuring the surface of the resin needle after anodizing prepared in Comparative Example 2.
  • FIG. 8 is an SEM measurement photograph obtained by enlarging and measuring the surface of the resin needle after anodizing prepared in Comparative Example 2.
  • hole used in the present invention means a hole formed in a concave shape in the direction of the needle in the surface direction of the needle.
  • Precious metal plated acupuncture porous needle of the present invention is a step of producing an acupuncture porous needle formed a hole by forming a porous structure on the surface of the acupuncture needle by performing anodizing process for acupuncture needles; 2 steps of washing the porous needle for acupuncture; And plating the washed acupuncture porous needle with a plating solution containing a noble metal precursor to plate the noble metal nanoparticles in the hole and the porous needle surface of the porous needle surface.
  • the acupuncture needles before the anodizing process may use acupuncture needles that are generally sold, and the acupuncture needles may be used in general (or sterile intradermal needle, Sterile Intradermal Acupuncture Needle), or resin needle (Hand Acupuncture Needle). ), Long needle, acupuncture needle (or big needle), T needle (T type needle), microneedle roller, Thread Embedding Acupuncture Needle and / or round-sharp needle ), And may be a fine needle including a needle, preferably a needle, a needle, a needle, a needle, a T needle and / or a needle, more preferably a needle, a needle And / or an acupuncture needle.
  • the voltage is less than 12V, there may be a problem that the hole does not occur on the surface of the acupuncture needles, if it exceeds 30V there may be a problem that the acupuncture needles are oxidized and broken, it is preferable to apply a voltage within the above range .
  • the electrolyte solution used in the one-step anodizing process may be used an electrolyte solution used in the anodizing process in the art, preferably selected from an aqueous solution of ethylene glycol and an aqueous solution of glycerol It is good to use the electrolyte solution containing 1 or more types. Specific examples include fluorinated ethylene glycol aqueous solutions containing 0.1 to 0.5% by weight of ammonium fluoride (NH 4 F), 1 to 5% by volume of water and the remaining amount of ethylene glycol.
  • NH 4 F ammonium fluoride
  • the ammonium fluoride (NH 4 F) is combined with the oxidized components of the acupuncture needles to dissolve the components toward the aqueous solution, 0.1 to 0.5% by weight, preferably 0.1 ⁇ 0.3% by weight, more preferably 0.2 to 0.25% by weight is preferably used, when the content is less than 0.1% by weight, the number of holes formed on the surface of the acupuncture needle is reduced, the average depth and size There may be a problem, and if the content is more than 0.5% by weight, there may be a problem that holes are not formed on the surface of the acupuncture needles and may be cracked.
  • the acupuncture porous needle of the present invention manufactured through the anodization process has 15 to 200 concave-shaped holes per surface area of 100 ⁇ m 2 (width ⁇ length, 10 ⁇ m ⁇ 10 ⁇ m), preferably It may have 100 to 180 holes, more preferably 100 to 150 holes.
  • the acupuncture porous needle of the present invention measures the amount of methylene blue solution buried on the surface of such a needle, and when measured based on a method of calculating the specific surface area, the specific surface area of 0.50 m 2 / g ⁇ 1.05 m 2 / g Very high specific surface area, preferably from 0.51 m 2 / g to 1.03 m 2 / g, more preferably from 0.66 m 2 / g to 1.03 m 2 / g, even more preferably from 0.89 m 2 / g to 1.03 m 2 / g Can have
  • the electroplating process is a process for forming a precious metal in the form of nanoparticles in the hole of the acupuncture porous needle and / or acupuncture porous needle surface, unlike the one-step anodizing process, the electroplating process is for acupuncture It is carried out in a plating solution containing a porous needle and a carbon electrode. In addition, unlike the one-step anodizing process, acupuncture porous needle is used as the negative electrode and the carbon electrode is used as the positive electrode.
  • the electroplating process may be performed by applying a DC of 0.5 to 4V for 20 seconds to 150 seconds, preferably 0.5 to 3V of DC for 20 seconds to 100 seconds, more preferably 20 to 100 seconds 1 This can be done by applying a direct current of ⁇ 3V.
  • the DC strength is less than 0.5V, there may be a problem that plating is not well or the plating is not evenly distributed as a whole, and if it exceeds 4V, the plating layer is distributed too thick as a whole, and the specific surface area is reduced by plating in a bulk form in the nanostructure. There may be a problem.
  • the time to apply the direct current of the electrochemical plating process is relatively variable according to the DC strength.
  • the plating solution is preferably an ethylene glycol aqueous solution containing 1 to 5% by volume of a noble metal precursor containing at least one selected from a silver (Ag) precursor, a gold (Au) precursor and a platinum (Pt) precursor and water.
  • a noble metal precursor containing at least one selected from a silver (Ag) precursor, a gold (Au) precursor and a platinum (Pt) precursor and water.
  • it may include an aqueous solution of ethylene glycol containing 1.5 to 3% by volume of the noble metal precursor and water.
  • the plating liquid may include 0.01 to 0.1% by weight of the noble metal precursor and the remaining amount of the aqueous solution of ethylene glycol, and preferably may include 0.015 to 0.05% by weight of the noble metal precursor. And it may include a residual amount of the ethylene glycol aqueous solution.
  • the noble metal precursor content in the plating solution is less than 0.01% by weight, the noble metal nanoparticles may not be formed.
  • the noble metal precursor content is more than 0.1% by weight, the nanoparticles may be aggregated with each other, or the plating may be performed in the form of some film that is not in the form of nanoparticles.
  • the noble metal precursor in the plating solution there is a problem that is formed, and also, there may be a problem of blocking the hole of the acupuncture porous needle surface, it is preferable to include the noble metal precursor in the plating solution within the above weight% range.
  • the acupuncture porous needle plated with the precious metal nanoparticles thus prepared has 15 to 200 concave-shaped holes, preferably 100, per 100 ⁇ m 2 (width ⁇ length, 10 ⁇ m ⁇ 10 ⁇ m) of the needle. It may have from 180 to 180 holes, more preferably from 100 to 150 holes. Precious metal nanoparticles are included in and / or around the hole.
  • the noble metal nanoparticles may have an average particle diameter of 20 nm to 80 nm, preferably in the case of the silver nanoparticles, the average particle diameter of 20 to 80 nm, in the case of gold nanoparticles, the average particle diameter of 50 to 70 nm, platinum nanoparticles
  • the average particle diameter may be 40 to 60 nm, more preferably in the case of the silver nanoparticles, the average particle diameter of 20 to 80 nm, in the case of gold nanoparticles, the average particle diameter of 60 to 70 nm, the average particle diameter of 50 to 50 60 nm.
  • the acupuncture porous needle plated with the precious metal nanoparticles of the present invention may have an impedance of 70,000 ⁇ or less, preferably 8,000 ⁇ to 63,000 ⁇ , more preferably 10,000 ⁇ to 58,000 ⁇ . have.
  • the acupuncture porous needle plated with the precious metal nanoparticles of the present invention prepared as described above may be used in general (or sterile intradermal needle, Sterile Intradermal Acupuncture Needle), hand acupuncture needle, long needle, long needle (or needle needle) Big needle, T type needle, microneedle roller, Thread Embedding Acupuncture Needle and / or Filpform needle including round-sharp needle, Preferably it may be a hot needle, including a general needle, a resin needle, a long needle, a fire needle, a T needle and / or a needle, more preferably a general needle, a resin needle and / or a needle.
  • the acupuncture porous needle may also be a shear needle, a lance needle, a needle and / or a stiletto needle.
  • Example 1 Preparation of porous needles for acupuncture
  • the resin needles were washed with acetone, ethanol, and purified water for 10 minutes each by ultrasonication at an intensity of 40 kHz, and the washed resin needles are on the left side of the photograph of FIG.
  • the EDS measurement was measured by detecting and analyzing a specific X-ray obtained by emitting a high energy beam of 20K on the needle surface.
  • a porous resin needle was prepared in the same manner as in Example 1, but a voltage was applied at DC 15V for 30 minutes to prepare a porous resin needle, and the SEM measurement thereof was measured in the same manner as in Example 1, and the results are shown in FIG. 4. Indicated.
  • a porous resin needle was prepared in the same manner as in Example 1, and a porous resin needle was prepared by applying a voltage at 30V for 30 minutes. And, the SEM measurement thereof was measured in the same manner as in Example 1, the results are shown in Figure 6, it can be seen that the hole is well formed. However, compared with Example 1, the hole size was small and the thickness of the needle tended to decrease.
  • a porous resin needle was prepared in the same manner as in Example 1, but a porous resin needle was prepared by applying a voltage at DC 10V for 30 minutes. And, the SEM measurement thereof was measured in the same manner as in Example 1, the results are shown in Figure 7, it was confirmed that the hole is hardly formed, which results in a low voltage, insufficient to form the hole It is judged by the result of applying the voltage.
  • a porous resin needle was prepared in the same manner as in Example 1, but a porous resin needle was prepared by applying a voltage at DC 40V for 30 minutes.
  • the SEM measurement thereof was measured in the same manner as in Example 1, and the results are shown in FIG. 8, and the resin needles were mostly melted, and it was confirmed that there was a problem that the needle was broken in the middle.
  • the method for obtaining the specific surface area is based on Equation 1 below, by measuring the absorbance of the aqueous methylene blue solution supported on the resin needle before and after anodization to determine the concentration of methylene blue (Concentration), using the following proportional formula 1
  • the specific surface area was measured by substitution.
  • Equation 1 1.667e - 5 (M / Abs) is a conversion factor obtained through an absorbance experiment with a methylene blue aqueous solution having a known concentration.
  • Concentration 1 is the concentration of methylene blue supported on the resin needle before anodization
  • Concentration 2 is the concentration of methylene blue supported on the resin needle after anodization.
  • the specific surface area before anodization is 0.04488 (m 2 / g), which is calculated from the thickness, length, and weight of the needle.
  • Example 4 in which the voltage intensity was performed at DC 30V, the number of holes was formed the most, but when compared with Examples 1 to 3, the specific surface area was less than 0.66 m 2 / g.
  • Production Example 1 Preparation of a porous resin needle (acupuncture porous needle) plated with silver nanoparticles
  • the porous resin needle prepared in Example 1 was washed with acetone, ethanol, and distilled water for 5 minutes.
  • the electrochemical plating process is performed under the plating solution, and the porous resin needle of Example 1, which is washed to the (-) pole, the carbon electrode is connected to the (+) pole, and then DC 2V is applied for 75 seconds. An electrochemical plating process was performed.
  • the silver nanoparticles are formed in the hole and the surface of the resin needle is integrated with the resin needle, the average particle diameter of the silver nanoparticles was 29.3 nm.
  • the porous resin needle prepared in Example 1 was washed for 5 minutes in acetone, ethanol and distilled water.
  • the electrochemical plating process is performed under the plating solution, and the porous resin needle of Example 1, which is washed to the (-) pole, the carbon electrode is connected to the (+) pole, and then DC 2V is applied for 75 seconds. An electrochemical plating process was performed.
  • the gold nanoparticles are formed in the hole and the surface of the resin needle is integrated with the resin needle, wherein the average particle diameter of the gold nanoparticles was 64.1 nm.
  • H 2 PtCl 6 ethylene glycol (Ethlylene Glycole, C 2 H 4 (OH) 2 ) containing 2% by volume of purified water, followed by stirring to prepare a plating solution.
  • ethylene glycol Ethlylene Glycole, C 2 H 4 (OH) 2
  • the platinum nanoparticles are formed inside the hole of the resin needle is integrated with the resin needle, wherein the average particle diameter of the platinum nanoparticles was 58.4 nm.
  • the EDS measurement was performed by detecting and analyzing a specific X-ray obtained by emitting 15 kV high energy beam to the needle surface after treating Pt sputtering coating for 15 mA and 30 seconds for the precious metal silver and gold. .
  • the specific X-ray obtained by emitting a 15 kV high energy beam on the needle surface was measured and measured.
  • Impedance is conducted by using a potentiometer, using a 0.9% NaCl aqueous solution as an electrolyte, and applying two electrodes (precious metal plating needles to working electrodes and Pt wires to reference electrodes / counter electrodes).
  • PEIS Patentiostatic Electrochemical Impedance Spectroscopy
  • the resin needles of Preparation Examples 1 to 7 it was confirmed that the resin needles had a high specific surface area of 1.03 m 2 / g or more and a low impedance value of 70,000 ⁇ or less.
  • Comparative Preparation Example 1 in which the noble metal precursor content was less than 0.01% by weight, the specific surface area was high, but compared with Preparation Example 1, the impedance was very high as 210,000 ⁇ or more, which was too small. It is because of this.
  • Comparative Preparation Example 2 having a noble metal precursor content of more than 0.1% by weight, it had a high impedance of 120,000 ⁇ or higher in comparison with Example 1, despite the high specific surface area. Since the particles tend to be large between the nanoparticles at about 138nm, the smallest impedance value of 29nm is larger because of their larger internal resistance than the nanoparticles.
  • Production Example 10 the drug has Supported Preparation of Porous Acupuncture Needles
  • the weight of the resin needle was 0.11200 mg before the dye support, the weight was 0.11256 mg, 0.5% increased after the dye was loaded, through which the drug effectively It could be confirmed that it is supported.
  • the porous resin needle prepared in Preparation Example 1 was immersed in the porous resin needle in the hole of the porous resin ⁇ by immersing the porous resin needle in cyan hawk-titanium, which is a tattoo dye.
  • the weight was 0.10800 mg before the tattoo dye was loaded. After the dye was loaded, the weight was 0.10878 mg, and the weight was increased by 0.7%. I could confirm that it is supported.
  • the hole is well formed on the surface of the acupuncture porous needle of the present invention, and has a high specific surface area, and also, precious metal in the hole and / or surface of the acupuncture porous needle It was confirmed that the nanoparticles are well formed, and furthermore, the drug and / or tattoo dye was well supported in the holes formed on the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Finger-Pressure Massage (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

본 발명은 침술용 다공성 침 및 이의 제조방법에 관한 것으로서, 좀 더 구체적으로 설명하면, 침술용 침의 표면에 마이크로 크기 내지 나노 크기의 홀을 형성시킨 비표면적을 극대화시킨 침술용 다공성 침을 제조한 후, 상기 침술용 다공성 침의 홀 내 및/또는 홀 주변 등의 침 표면에 귀금속 나노입자를 형성시켜서 다공성 침과 일체화된 귀금속 나노입자가 도금된 침술용 다공성 침 및 이를 제조하는 방법에 관한 것이다.

Description

귀금속 나노입자가 도금된 침술용 다공성 침 및 이의 제조방법
본 발명은 표면에 마이크로 내지 나노크기의 홀이 다량으로 형성되어 있으며, 상기 홀의 내부 및/또는 수지침 외부 표면에 귀금속 나노입자를 포함하는 침술용 다공성 침 및 이를 제조하는 방법에 관한 것이다.
침은 피부를 투과하도록 만든 장치로서, 일반적으로 강도와 생물학적 안전성이 확인된 금속으로 제작되며, 전통적인 수지침은 도 1에서 도시된 바와 같이, 침첨, 침체 및 침병으로 구성되며, 돌, 금, 은, 구리, 철, 뼈 및 가시와 같은 재질을 사용하여 제조하였다. 최근 기술이 발달함에 따라 침 재질로서 견고하여 잘 부러지지 않고, 부식에 강하며 인체에 해롭지 않은 스테인레스 강 304 또는 316 L 등을 사용하고 있다.
일반적으로 많이 사용되는 주사침의 굵기와 표면 상태에 따라 자침 시 환자가 느끼는 고통이 달라지므로, 기존의 많은 기술들은 환자의 고통 정도를 감소시키는 방향으로 발전하였다. 예를 들어, 자침 시 침과 인체 조직 사이의 마찰을 줄이는 방법으로 침 표면에 규소(Silicone) 막을 도포하기도 하였고, 침 표면을 매끄럽게 가공하여 표면 거칠기를 줄여줌으로써 침이 조직으로 침투할 때 생기는 저항을 감소시켜 환자가 느끼는 고통을 감소시켰다. 또한, 침의 굵기가 가늘수록 침 삽입 시 환자의 고통이 줄어들기 때문에 점점 더 가는 침이 제조 및 사용되고 있다.
주사침(주사용 침, a injection syringe 또는 a needle)의 사용 목적은 주사침을 통해 혈관 및 근육 등의 신체 조직에 특정 약물을 주입하는 것이며, 주사침을 삽입함으로써 직접적인 치료 효과를 기대하지는 않는다. 그러나, 침술용 침(a acupuncture-needle, a acupunctural needle)은 약물의 주입을 목적으로 하지 않고, 침을 경락, 경혈과 같은 특정 부위에 삽입함으로써 치료 효과를 도모한다. 따라서, 조직에 침을 삽입하는 목적에 양자간 근본적인 차이가 존재한다.
즉, 주사침과는 달리 침술용 침은 자침 시 침의 신체 조직에 대한 물리적인 자극이 중요하게 여겨진다. 그러나, 침 치료 효과와는 상관없이 자침 시 환자가 느끼는 고통을 줄이려는 목적으로 침 표면을 매끄럽게 하는 일반 주사침의 제조 방법과 유사하게 침을 만들고 있다. 또한 침술용 침 표면의 상태에 따라 환자가 느끼는 고통은 줄일 수 있으나, 침 치료 효과가 동일하다는 어떠한 실험결과도 없다.
이와는 대조적으로 침과 조직에 관한 연구에 의하면(H. Langevin, 2002, Faseb) 자침 후, 침을 좌우로 돌림으로써 연결조직(connective tissue)이 침 표면에 감기게 되어, 그 자극으로 인하여 침 치료 효과가 나타난다는 결과가 발표되었다. 이 연구결과는 침 표면과 연결조직 사이의 결합력이 침 치료 효과에 중요하다는 것을 의미한다. 즉, 침 표면의 물성에 변화를 주어 양자 사이의 결합력을 증가시키면 침 치료 효과를 증진시킬 수 있음을 뜻한다. 그러나 지금까지는 침술용 침 제조 시 침 표면의 거칠기를 줄이는 기술이 적용되어 왔으며, 이는 양자 사이의 결합력을 감소시키는 방향으로만 연구가 진행되었음을 의미한다.
한편, 일반적으로 침 제조에 사용되고 있는 침 표면 물성을 변화시키는 기술은 화학물질을 침 표면에 도포하는 것이었다. 이 기술의 목적은 도포 물질에 따라 크게 두 가지로 나눌 수 있는데, 윤활 목적으로 규소(silicone) 등과 같은 물질을 도포하는 경우와 항균 및 치료 목적으로 살리실산 같은 물질을 도포하는 경우가 있으나, 이러한 기술들에 의해 제조된 침은 침 표면과 연결조직 사이의 결합력이 감소하게 되는 문제가 있다.
한편, 일반 주사침과 침술용 침의 소재로 주로 사용되는 것은 스테인레스 강 (stainless steel)이며, 그 중에서도ss304 (STS304) 가 많이 사용되는데, 이들은 모두 오스테나이트 계열에 속한다. 이러한 스테인레스강의 표면 거칠기를 줄이는 방법 중에 하나는 전해연마 (electropolishing)이며, 특히 ss304 (STS304)에 잘 적용되는 기술이다. 전해연마는 전해액 내에서 연마하고자 하는 금속에 전기를 가하면 전기분해에 의해 그 금속 표면에 점성이 있는 초기 산화층이 생성되면서 금속산화물의 부동태 피막이 형성되어 상대적으로 굴곡이 있어 튀어나온 면이 더 많이 깎이게 되어 전체적으로 그 금속 표면이 평탄해지는 기술이다. 이 기술을 적용하여 상기의 스테인레스 강의 표면 거칠기를 조정한다.
또 다른 기술은 강력한 레이저를 사용하여 표면을 가공하는 기술(laser ablation)로서 강력한 레이저 펄스 빔(pulse beam)을 금속에 입사시켜 표면물질을 순간적으로 융발(ablation)시켜 무늬를 만드는 방법이다. 이때 레이저의 출력을 조절하여 무늬의 깊이를 조절할 수 있다. 현재 이 기술은 금속뿐만 아니라 반도체 제조용 규소 기판(wafer)에 마킹(marking)용으로도 사용되고 있다. 한편, 수지침의 표면 처리 방법으로 가장 많이 사용되는 것은 기계적 연마 (grinding)로 침 첨단부를 형성하고 표면 거칠기를 감소시키는 방향으로 개발되어 왔다. 그러나, 이러한 기술은 방향성을 가지는 표면을 형성하기가 힘들다.
이에 침술용 침 표면에 물리적 형태변화를 주어 결합조직과 접하는 침 표면의 유효 면적(effective area)을 확장하여 양자간의 결합력을 향상시킨 수지침을 제조하는 기술(대한민국 공개특허 2008-0112759호)이 있으나, 침 표면의 거칠기로 인하여 피부에 손상을 가할 수 있는 문제가 있다.
본 발명은 기존 침술용 침의 표면 거칠기로 인한 피부 손상 문제를 방지할 뿐만 아니라, 침술용 침을 통해 약물을 효과적으로 인체 내에 전달할 수 있으며, 기존 침술용 침 보다 전기전도도를 증가시켜 전기생리학적 자극 또는 경혈 자극을 향상시킬 수 있는 새로운 침술용 침 및 이와 같이 침술용 침을 효과적으로 제조할 수 있는 방법을 제공하고자 한다.
상술한 과제를 해결하기 위하여 본 발명은 귀금속 나노입자가 도금된 침술용 다공성 침에 관한 것으로서, 침의 표면 넓이 100㎛2(가로Х세로, 10 ㎛Х10 ㎛)당 100 ~ 150개의 홀(hole)을 포함하며, 홀 내부에 금(Au) 나노입자, 은(Ag) 나노입자 및 백금(Pt) 나노입자 중에서 선택된 1종 이상을 귀금속 나노입자를 포함하는 것을 특징으로 할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 침술용 다공성 침은 상기 귀금속 나노입자가 다공성 침에 고정되어 침과 일체화 되어 있을 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 침술용 다공성 침은 침의 홀 내부 외에 홀 외부의 침 표면에도 귀금속 나노입자가 침과 고정되어 일체화되어 있을 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 침술용 다공성 침에 있어서, 상기 홀은 평균 지름이0.3㎛ ~ 3.0㎛ 이고, 상기 홀은 평균 깊이가 0.2㎛ ~ 1㎛인 것을 특징으로 할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 침술용 다공성 침과 일체화된 상기 귀금속 나노입자는 평균입경 20 nm ~ 80 nm일 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 침술용 다공성 침과 일체화된 상기 귀금속 나노입자 중 상기 은 나노입자는 평균입경 20 ~ 80 nm, 금 나노입자는 평균입경 50 ~ 70 nm, 백금 나노입자는 평균입경 40 ~ 60 nm 일 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 침술용 다공성 침은 상기 홀에 약물이 담지된 것을 특징으로 할 수 있다.
본 발명의 바람직한 일실시예로서, 귀금속 나노입자가 도금되지 않은 침술용 다공성 침은 철(Fe) 24% ~ 28%, 크롬(Cr) 6% ~ 10%, 탄소(C) 61.5% ~ 66%, 니켈(Ni) 1.5% ~ 3.5% 및 규소(Si) 0.1% ~ 0.5%를, 바람직하게는 철(Fe) 25% ~ 27%, 크롬(Cr) 7% ~ 9%, 탄소(C) 62% ~ 64%, 니켈(Ni) 2% ~ 3% 및 규소(Si) 0.2% ~ 0.3%를 포함하는 것을 특징으로 할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 침술용 다공성 침은 일반 한방침(또는 멸균 피내침, Sterile Intradermal Acupuncture Needle), 수지침(Hand Acupuncture Needle), 장침(long needle), 화침(또는 대침, Big needle), T침(T type needle), 롤러침(microneedle roller), 매선침(Thread Embedding Acupuncture Needle) 및/또는 원리침(round-sharp needle)을 포함하는 호침(Filiform needle)일 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 침술용 다공성 침은 참침(shear needle), 봉침(lance needle), 시침(spoon needle) 및/또는 피침(stiletto needle)일 수도 있다.
본 발명의 다른 목적은 앞서 설명한 본 발명의 귀금속 나노입자가 도금된 침술용 다공성 침을 제조하는 방법에 관한 것으로서, 침술용 침을 양극산화처리 공정을 수행하여 침의 표면에 다공성 구조를 형성시켜서 홀이 형성된 침술용 다공성 침을 제조하는 1단계; 침술용 다공성 침을 세척하는 2단계; 및 세척한 침술용 다공성 침을 귀금속 전구체를 포함하는 도금액으로 다공성 침 표면의 홀 내부 및 다공성 침 표면에 귀금속 나노입자를 도금시키는 3단계;를 포함하는 공정을 수행하여 귀금속 나노입자가 도금된 침술용 다공성 침을 제조할 수 있다.
본 발명의 바람직한 일실시예로서, 1단계의 양극산화처리 공정 전에 침술용 침을 세척하는 공정을 수행할 수 있으며, 상기 세척하는 공정은 양극산화처리 공정 전의 침술용 침을 아세톤에서 초음파 처리(sonication)한 후, 에탄올에서 초음파 처리한 다음, 정제수 내에서 다시 초음파 처리하여 수행할 수 있다.
본 발명의 바람직한 일실시예로서, 1단계의 양극산화처리 공정 전의 상기 침술용 침은 한방침(또는 멸균 피내침, Sterile Intradermal Acupuncture Needle), 수지침(Hand Acupuncture Needle), 장침(long needle), 화침(또는 대침, Big needle), T침(T type needle), 롤러침(microneedle roller), 매선침(Thread Embedding Acupuncture Needle) 및/또는 원리침(round-sharp needle)을 포함하는 호침(Filiform needle)일 수 있다.
본 발명의 바람직한 일실시예로서, 1단계의 양극산화처리 공정 전의 상기 침술용 침은 참침(shear needle), 봉침(lance needle), 시침(spoon needle) 및/또는 피침(stiletto needle)일 수도 있다.
본 발명의 바람직한 일실시예로서, 1단계의 양극산화처리 공정은 상기 침술용 침 및 탄소전극을 포함하는 전해액 내에 수행하고, 상기 침술용 침을 (+)극으로서 사용하고, 상기 탄소전극은 (-)극으로서 사용하며, 10분 ~ 1시간 동안 12V ~ 30V 의 직류를 가하여 수행할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 1단계의 양극산화처리 공정시 사용하는 상기 전해액은 에틸렌 글라이콜 수용액, 및 글리세롤 수용액 중에서 선택된 1종 이상을 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 1단계의 양극산화처리 공정 시 사용하는 상기 전해액은 플루오린화 암모늄 0.1 ~ 0.5 중량% 및 물 1 ~ 5부피%를, 바람직하게는 플루오린화 암모늄 0.1 ~ 0.3 중량% 및 물 1 ~ 3부피%를 함유한 에틸렌 글라이콜 수용액을 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 상기 양극산화처리 공정 전의 침술용 침은 EDS(Energy Dispersive Spectometer) 측정시, 철(Fe) 37% ~ 42.5%, 크롬(Cr) 9.5% ~ 15%, 탄소(C) 39% ~ 45%, 니켈(Ni) 2.5% ~ 6% 및 규소(Si) 0.3% ~ 0.8%를, 바람직하게는 철(Fe) 38% ~ 42%, 크롬(Cr) 10% ~ 14%, 탄소(C) 40% ~ 44%, 니켈(Ni) 3% ~ 5% 및 규소(Si) 0.3% ~ 0.6%를 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 상기 양극산화처리 공정 후의 침술용 다공성 침은 EDS(Energy Dispersive Spectometer) 측정시, 철(Fe) 24% ~ 28%, 크롬(Cr) 6% ~ 10%, 탄소(C) 61.5% ~ 66%, 니켈(Ni) 1.5% ~ 3.5% 및 규소(Si) 0.1% ~ 0.5%를, 바람직하게는 철(Fe) 25% ~ 27%, 크롬(Cr) 7% ~ 9%, 탄소(C) 62% ~ 64%, 니켈(Ni) 2% ~ 3% 및 규소(Si) 0.2% ~ 0.3%를 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 2단계의 세척은 양극산화처리 공정을 수행하여 제조한 침술용 다공성 침을 아세톤 세척한 다음, 에탄올로 세척한 후, 증류수로 세척할 수 있다.
본 발명의 바람직한 일실시예로서, 도금처리시, 전기도금처리 공정은 침술용 다공성 침 및 탄소전극을 포함하는 도금액 내에 수행하고, 침술용 다공성 침을 (-)극으로 사용하고, 탄소전극은 (+)극으로 사용하며, 전기도금처리는 20초 ~ 120초간 0.5 ~ 4V의 직류를 가하여 수행할 수 있다.
본 발명의 바람직한 일실시예로서, 전기화학도금 공정 시 사용하는 상기 도금액은 은(Ag) 전구체, 금(Au) 전구체 및 백금(Pt) 전구체 중에서 선택된 1종 이상을 포함하는 귀금속 전구체 및 물 1 ~ 5 부피%를 함유한 에틸렌 글라이콜 수용액을 포함할 수 있다.
본 발명의 바람직한 일실시예로서, 1단계의 다공성 침은 침의 표면에 묻어난 메틸렌 블루 용액의 양을 측정한 뒤, 비표면적을 계산해 내는 방법에 의거하여 측정시, 비표면적 0.50 ㎡/g ~ 1.05 ㎡/g일 수 있다.
본 발명의 바람직한 일실시예로서, 3단계의 귀금속 나노입자가 도금된 침술용 다공성 침은 비표면적이 0.95 ㎡/g ~ 1.65 ㎡/g일 수 있다.
본 발명의 침술용 다공성 침은 기존 개량된 침술용 침과 같이 침의 표면 중 일부가 외부로 도출되는 도트(dot) 형태가 아닌 침 표면 내부로 함몰된 형태의 홀이 형성되어 있는 바, 피부 손상 문제가 없을 뿐만 아니라, 침의 표면에 다수의 마이크로 크기 내지 나노 크기를 갖는 홀이 균일하게 형성되어 있어서, 표면적이 획기적으로 증가시킬 수 있다. 또한, 침 표면에 형성된 홀 내부 및/또는 침 표면에 귀금속 나노입자를 포함하는 바, 침의 전기 전도도를 크게 향상시켜서 침술에 의한 생리학적 치료 효과를 증대시킬 수 있다. 나아가, 침술용 다공성 침의 표면에 형성된 홀에 약물을 담지시켜서 인체 내에 투입할 수 있기 때문에 침에 의한 침술 효과를 극대화시킬 수 있다.
도 1은 본 발명의 침술용 다공성 침을 양극산화법에 의해 제조하는 일례로서, 제조하는 방법에 대한 개략도이다.
도 2는 양극산화처리 전후의 수지침의 표면에 대한 SEM 측정사진으로서, 도 2의(a)의 왼쪽 수지침은 양극산화처리 전의 수지침 사진이고, 도 2의(a)의 오른쪽 수지침은 양극산화처리 후의 다공성 수지침이다. 그리고, 도 2의(b)는 양극산화처리 전의 수지침의 표면에 대한 SEM 측정 사진이고, 도 2의 (c) 및 도2의 (d)는 양극산화처리 후의 수지침의 표면에 대한 SEM 측정 사진이다.
도 3은 실험예 1에서 실시한 실시예 1의 양극산화처리 후의 수지침의 표면을 확대하여 측정한 SEM 측정 사진이다.
도 4는 실시예 2에서 제조한 양극산화처리 후의 수지침의 표면을 확대하여 측정한 SEM 측정 사진이다.
도 5는 실시예 3에서 제조한 양극산화처리 후의 수지침의 표면을 확대하여 측정한 SEM 측정 사진이다.
도 6은 실시예 4에서 제조한 양극산화처리 후의 수지침의 표면을 확대하여 측정한 SEM 측정 사진이다.
도 7은 비교예 1에서 제조한 양극산화처리 후의 수지침의 표면을 확대하여 측정한 SEM 측정 사진이다.
도 8은 비교예 2에서 제조한 양극산화처리 후의 수지침의 표면을 확대하여 측정한 SEM 측정 사진이다.
도 9는 실험예 3에서 측정한 흡광도 측정 결과이다.
도 10는 제조예 1에서 제조한 은 나노입자가 도금된 다공성 수지침의 SEM 측정사진이다.
도 11은 제조예 2에서 제조한 금 나노입자가 도금된 다공성 수지침의 SEM 측정사진이다.
도 12는 제조예 3에서 제조한 백금 나노입자가 도금된 다공성 수지침의 SEM 측정사진이다.
도 13 내지 도 15 각각은 제조예 1 ~ 3에서 제조한 귀금속 나노입자가 도금된 다공성 수지침의 EDS(energy dispersive spectroscopy) 정성분석 측정 결과이다.
본 발명에서 사용하는 용어인 홀(hole)은 침의 표면 방향에서 침의 내부 방향으로 오목한 형상으로 형성된 구멍을 의미한다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명은 귀금속이 나노입자 형태로 도금되어 침술용 침과 결합 및 일체화된 침술용 다공성 침에 관한 것으로서, 양극산화처리 공정을 수행하여 침의 표면에 미세크기의, 나노크기의 홀을 형성시켜서 제조한 후, 이를 특정 조건 하에서 귀금속 나노입자를 도금시켜서 침술용 다공성 침의 홀 내부 및/또는 침의 표면에 귀금속 나노입자를 도금시켜서 제조한다.
이러한 본 발명의 귀금속이 도금된 침술용 다공성 침을 제조하는 방법을 구체적으로 설명하면 다음과 같다.
본 발명의 귀금속이 도금된 침술용 다공성 침은 침술용 침을 양극산화처리 공정을 수행하여 침술용 침의 표면에 다공성 구조를 형성시켜서 홀이 형성된 침술용 다공성 침을 제조하는 1단계; 침술용 다공성 침을 세척하는 2단계; 및 세척한 침술용 다공성 침을 귀금속 전구체를 포함하는 도금액으로 도금처리하여 다공성 침 표면의 홀 내부 및 다공성 침 표면에 귀금속 나노입자를 도금시키는 3단계;를 포함하는 공정을 수행하여 제조할 수 있다.
1단계의 양극산화처리 공정 전의 침술용 침은 세척공정을 수행한 후에 사용할 수 있으며, 이때, 세척공정은 침의 표면에 이물질 등을 제거하기 위한 것으로서, 당업계에서 일반적인 방법을 사용할 수 있으며, 바람직하게는 침을 아세톤에서 초음파 처리(sonication)한 후, 에탄올에서 초음파 처리한 다음, 이를 다시 정제수 내에서 다시 초음파 처리하여 수행할 수 있다. 이때, 각각의 상기 초음파 처리 시간은 특별히 한정하지는 않으나, 5분 ~ 20분 정도가 적절하다.
그리고, 상기 양극산화처리 공정 전의 침술용 침은 일반적으로 판매되고 있는 침술용 침을 사용할 수 있으며, 상기 침술용 침은 일반 한방침(또는 멸균 피내침, Sterile Intradermal Acupuncture Needle), 수지침(Hand Acupuncture Needle), 장침(long needle), 화침(또는 대침, Big needle), T침(T type needle), 롤러침(microneedle roller), 매선침(Thread Embedding Acupuncture Needle) 및/또는 원리침(round-sharp needle)을 포함하는 호침(Filiform needle)일 수 있고, 바람직하게는 일반 한방침, 수지침, 장침, 화침, T침 및/또는 매선침을 포함하는 호침일 수 있으며, 더욱 바람직하게는 일반 한방침, 수지침 및/또는 매선침일 수 있다.
또한, 상기 침술용 침은 참침(shear needle), 봉침(lance needle), 시침(spoon needle) 및/또는 피침(stiletto needle)일 수도 있다.
그리고, 상기 양극산화처리 공정 전의 침술용 침은 일반적인 침술용 침 소재로 구성된 침일 수 있고, 바람직하게는 EDS(Energy Dispersive Spectometer) 측정시, 철(Fe) 37% ~ 42.5%, 크롬(Cr) 9.5% ~ 15%, 탄소(C) 39% ~ 45%, 니켈(Ni) 2.5% ~ 6% 및 규소(Si) 0.3% ~ 0.8%를 포함하는 침을, 더욱 바람직하게는 철(Fe) 38% ~ 42%, 크롬(Cr) 10% ~ 14%, 탄소(C) 40% ~ 44%, 니켈(Ni) 3% ~ 5% 및 규소(Si) 0.3% ~ 0.6%를 포함하는 침술용 침을 사용할 수 있다.
다음으로, 1단계의 양극산화처리 공정은 도 1에 개략도로 나타난 바와 같이, 침술용 침을 (+)극에, 그리고 탄소전극을 (-)극에 연결한 후에 침술용 침과 탄소전극을 전해액에 담근 후, 직류(DC) 12V ~ 30V의 전압을, 바람직하게는 12V ~ 28V의 전압을, 더욱 바람직하게는 15V ~ 26V의 전압을 10분 ~ 1시간 동안, 바람직하게는 20분 ~ 40분 동안 가하여 침술용 침의 표면에 도 2와 같은 표면에 마이크로 크기 ~ 나노 크기의 홀을 형성시킬 수 있다. 상기 전압이 12V 미만이면, 침술용 침의 표면에 홀이 생기지 못하는 문제가 있을 수 있고, 30V를 초과하면 침술용 침이 산화되어 끊어지는 문제가 있을 수 있으므로, 상기 범위 내의 전압을 가하는 것이 바람직하다.
본 발명에 있어서, 1단계의 양극산화처리 공정시 사용하는 상기 전해액은 당업계에서 양극산화공정에 사용되는 전해액을 사용할 수 있으나, 바람직하게는 에틸렌 글라이콜(Ethylene glycol) 수용액 및 글리세롤 수용액 중에서 선택된 1종 이상을 포함하는 전해액을 사용하는 것이 좋다. 구체적인 예를 들면, 플루오린화 암모늄(Ammonium Fluoride, NH4F) 0.1 ~ 0.5 중량%, 물 1 ~ 5 부피% 및 잔량의 에틸렌 글라이콜을 함유한 에틸렌 글라이콜 수용액을,람직하게는 플루오린화 암모늄 0.1 ~ 0.3 중량%, 물 1 ~ 3부피% 및 잔량의 에틸렌 글라이콜을 함유한 에틸렌 글라이콜 수용액을, 더욱 바람직하게는 플루오린화 암모늄 0.15 ~ 0.25 중량%, 물 1.5 ~ 2.5부피% 및 잔량의 에틸렌 글라이콜을 함유한 에틸렌 글라이콜 수용액을 사용할 수 있다.
상기 에틸렌 글라이콜 수용액에 있어서, 상기 플루오린화 암모늄(NH4F)은 침술용 침의 산화된 성분과 결합하여 성분이 수용액 쪽으로 녹아내는 역할을 하는 것으로서, 0.1 ~ 0.5 중량%, 바람직하게는 0.1 ~ 0.3 중량%, 더욱 바람직하게는 0.2 ~ 0.25 중량%를 함유하도록 사용하는 것이 좋은데, 이때, 그 함유량이 0.1 중량% 미만이면 침술용 침 표면에 생성되는 홀의 수가 줄어들고, 평균 깊이와 크기가 작아지는 문제가 있을 수 있고, 함유량이 0.5 중량%를 초과하면 침술용 침의 표면에 홀이 생성되지 못하고 갈라지는 문제가 있을 수 있으므로, 상기 범위 내로 사용하는 것이 좋다.
앞서 설명한 전압세기, 양극산화처리 시간, NH4F 농도 등의 양극산화처리 조건을 조절하여 홀의 평균 지름 및 평균 깊이를 조절할 수 있는데, 전압이 높이거나, 양극산화처리 시간 길거나 또는 NH4F의 농도를 증가시키면 홀의 평균 지름이 커지고, 평균 깊이가 깊어지는 경향이 있다. 바람직한 일실시예를 들면, 전압 세기 20V, 양극산화처리 시간은 30분, NH4F 농도 0.2 중량%의 조건 하에서 양극산화처리를 수행할 수 있으며, 이때, 전압세기, 양극산화처리 시간, NH4F 농도를 각각 감소시키거나, 증가시켜서 홀의 깊이 및/또는 홀의 크기를 조절할 수 있다.
이와 같이 양극산화처리 공정을 수행한 침에 형성된 홀의 평균 지름은 0.3 ~ 3.0㎛ 이하, 바람직하게는 0.5㎛ ~ 2.5㎛, 더욱 바람직하게는 0.5㎛ ~ 2.0㎛일 수 있다. 그리고, 형성된 홀의 평균 깊이는 0.2㎛ ~ 1㎛, 바람직하게는 0.3㎛ ~ 0.8㎛일 수 있다.
1단계의 양극산화처리 공정 후의 침술용 침은 양극산화처리 공정 전의 침술용 침과 성분이 변화될 수 있으며, 예를 들면 양극산화처리 공정 전의 앞서 설명한 성분을 갖는 침을 양극산화처리 공정 처리를 하면, EDS(Energy Dispersive Spectrometer) 측정 시, 침의 성분이 철(Fe) 24% ~ 28%, 크롬(Cr) 6% ~ 10%, 탄소(C) 61.5% ~ 66%, 니켈(Ni) 1.5% ~ 3.5% 및 규소(Si) 0.1% ~ 0.5%으로, 바람직하게는 철(Fe) 25% ~ 27%, 크롬(Cr) 7% ~ 9%, 탄소(C) 62% ~ 64%, 니켈(Ni) 2% ~ 3% 및 규소(Si) 0.2% ~ 0.3%으로 침술용 침의 성분에 변화가 있음을 확인할 수 있다.
다음으로, 2단계는 1단계의 양극산화처리 공정을 수행하여 제조한 침술용 다공성 침을 세척하는 공정으로서, 당업계에서 사용하는 일반적인 방법으로 수행할 수 있으며, 구체적인 일례를 들면, 정수된 물에 세척한 뒤, 아세톤 함유 용액에서 초음파 처리(sonication)하여 세척을 할 수 있고 또는 아세톤 세척, 에탄올로 세척 및 증류수로 세척을 차례대로 수행할 수도 있다.
이와 같이 양극산화공정을 통해 제조한 본 발명의 침술용 다공성 침은 표면 넓이 100㎛2(가로×세로, 10 ㎛×10 ㎛)당 15 ~ 200개의 오목한 형태의 홀(hole)을, 바람직하게는 100 ~ 180개의 홀을, 더욱 바람직하게는 100 ~ 150 개의 홀을 가질 수 있다. 그리고, 본 발명의 침술용 다공성 침은 이와 같은 침의 표면에 묻어난 메틸렌 블루 용액의 양을 측정한 뒤, 비표면적을 계산해 내는 방법에 의거하여 측정시, 비표면적 0.50 ㎡/g ~ 1.05 ㎡/g을, 바람직하게는 0.51 ㎡/g ~ 1.03 ㎡/g을, 더 바람직하게는 0.66 ㎡/g ~ 1.03 ㎡/g을, 더 더욱 바람직하게는 0.89 ㎡/g ~ 1.03 ㎡/g의 매우 높은 비표면적을 가질 수 있다.
다음으로, 3단계의 도금처리는 세척한 침술용 다공성 침을 귀금속 전구체를 포함하는 도금액으로 도금처리하여 침술용 다공성 침 표면의 홀 내부 및 표면에 귀금속 나노입자를 도금시키는 공정으로서, 상기 도금처리는 전기도금처리 공정을 추가적으로 재수행할 수도 있다.
상기 전기도금처리 공정은 침술용 다공성 침의 홀 내부 및/또는 침술용 다공성 침 표면에 나노입자 형태의 귀금속을 형성시키기 위한 공정으로서, 1단계의 양극산화처리 공정과 달리 전기도금처리 공정은 침술용 다공성 침및 탄소전극을 포함하는 도금액 내에 수행한다. 또한, 1단계의 양극산화처리 공정과는 다르게 침술용 다공성 침을 (-)극으로 사용하고, 탄소전극은 (+)극으로 사용한다.
그리고, 상기 전기도금처리 공정은 20초 ~ 150초간 0.5 ~ 4V의 직류를 가하여 수행할 수 있으며, 바람직하게는 20초 ~ 100초간 0.5 ~ 3V의 직류를, 더욱 바람직하게는 20초 ~ 100초간 1 ~ 3V의 직류를 가하여 수행할 수 있다. 이때, 직류세기가 0.5V 미만이면 도금이 잘 안되거나 도금이 전체적으로 골고루 분포되지 못하는 문제가 있을 수 있고, 4V를 초과하면 전체적으로 도금층이 너무 두껍게 분포되어 나노 구조에서 벌크 형태로 도금되어 비표면적이 감소되는 문제가 있을 수 있다. 그리고, 전기화학도금 공정의 직류를 가하는 시간은 직류 세기에 따라 상대적으로 가변적이다.
또한, 상기 도금액은 은(Ag) 전구체, 금(Au) 전구체 및 백금(Pt) 전구체 중에서 선택된 1종 이상을 포함하는 귀금속 전구체 및 물 1 ~ 5 부피%를 함유한 에틸렌 글라이콜 수용액을, 바람직하게는 상기 귀금속 전구체 및 물 1.5 ~ 3 부피%를 함유한 에틸렌 글라이콜 수용액을 포함할 수 있다.
이때, 도금액은 상기 귀금속 전구체 0.01 ~ 0.1 중량% 및 잔량의 상기 에틸렌 글라이콜 수용액을 포함할 수 있으며, 바람직하게는 귀금속 전구체 0.015 ~ 0.05 중량%를 포함할 수 있다. 및 잔량의 상기 에틸렌 글라이콜 수용액을 포함할 수 있다. 이때, 도금액 내 귀금속 전구체 함량이 0.01 중량% 미만이면 귀금속 나노입자 형성이 안될 수 있으며, 귀금속 전구체 함량이 0.1 중량%를 초과하면 나노입자가 서로 뭉치거나 또는 나노입자 형태가 아닌 일부 피막 형태로 도금이 형성되는 문제가 있으며, 또한, 침술용 다공성 침 표면의 홀을 막는 문제가 있을 수 있으므로, 도금액 내 귀금속 전구체를 상기 중량% 범위 내로 포함하는 것이 좋다.
또한, 상기 은 전구체는 AgNO3, CH3COOAg 및 CH3CH(OH)COOAg 중에서 선택된 1종 이상을 사용할 수 있으며, 바람직하게는 AgNO3 를 사용할 수 있다.
또한, 상기 금 전구체는 Na(AuCl4), HAuCl4 및 AuCl3 중에서 선택된 1종 이상을 사용할 수 있으며, 바람직하게는 Na(AuCl4)를 사용할 수 있다.
또한, 상기 백금 전구체는 H2PtCl6, PtCl4 및 Pt(NH3)2(NO2) 중에서 선택된 1종 이상을 사용할 수 있으며, 바람직하게는 H2PtCl6를 사용할 수 있다.
이렇게 제조한 귀금속 나노입자가 도금된 침술용 다공성 침은 침의 표면 넓이 100㎛2(가로×세로, 10 ㎛×10 ㎛)당 15 ~ 200개의 오목한 형태의 홀(hole)을, 바람직하게는 100 ~ 180개의 홀을, 더욱 바람직하게는 100 ~ 150 개의 홀을 가질 수 있다. 상기 홀의 내부 및/또는 홀 주변에 귀금속 나노입자를 포함한다. 이때, 귀금속 나노입자가 평균입경 20 nm ~ 80 nm일 수 있으며, 바람직하게는 상기 은 나노입자인 경우, 평균입경 20 ~ 80 nm, 금 나노입자인 경우에는 평균입경 50 ~ 70 nm, 백금 나노입자에는 평균입경 40 ~ 60 nm일 수 있으며, 더욱 바람직하게는 상기 은 나노입자인 경우, 평균입경 20 ~ 80 nm, 금 나노입자인 경우에는 평균입경 60 ~ 70 nm, 백금 나노입자에는 평균입경 50 ~ 60 nm일 수 있다.
그리고, 본 발명의 귀금속 나노입자가 도금된 침술용 다공성 침은 이와 같은 침의 표면에 묻어난 메틸렌 블루 용액의 양을 측정한 뒤, 비표면적을 계산해 내는 방법에 의거하여 측정시, 은 도금 다공성 수지침의 경우, 비표면적 1.05 ㎡/g ~ 1.64 ㎡/g, 바람직하게는 1.47 ㎡/g ~ 1.64 ㎡/g, 더욱 바람직하게는 1.57 ㎡/g ~ 1.64 ㎡/g 의 매우 높은 비표면적을 가질 수 있다.
금 도금 침술용 다공성 침의 경우, 비표면적 0.98 ㎡/g ~ 1.22 ㎡/g, 바람직하게는 1.03 ㎡/g ~ 1.22 ㎡/g, 더욱 바람직하게는 1.13 ㎡/g ~ 1.22 ㎡/g 의 매우 높은 비표면적을 가질 수 있다.
백금 도금 침술용 다공성 침의 경우, 비표면적 0.98 ㎡/g ~ 1.34 ㎡/g, 바람직하게는 1.18 ㎡/g ~ 1.34 ㎡/g, 더욱 바람직하게는 1.28 ㎡/g ~ 1.34 ㎡/g 의 매우 높은 비표면적을 가질 수 있다.
또한, 본 발명의 귀금속 나노입자가 도금된 침술용 다공성 침은 임피던스(impedence)가 70,000Ω 이하, 바람직하게는 8,000 Ω ~ 63,000 Ω, 더욱 바람직하게는 10,000 Ω ~ 58,000 Ω의 매우 낮은 임피던스를 가질 수 있다.
이렇게 제조된 본 발명의 귀금속 나노입자가 도금된 침술용 다공성 침은 일반 한방침(또는 멸균 피내침, Sterile Intradermal Acupuncture Needle), 수지침(Hand Acupuncture Needle), 장침(long needle), 화침(또는 대침, Big needle), T침(T type needle), 롤러침(microneedle roller), 매선침(Thread Embedding Acupuncture Needle) 및/또는 원리침(round-sharp needle)을 포함하는 호침(Filiform needle)일 수 있고, 바람직하게는 일반 한방침, 수지침, 장침, 화침, T침 및/또는 매선침을 포함하는 호침일 수 있으며, 더욱 바람직하게는 일반 한방침, 수지침 및/또는 매선침일 수 있다.
또한 상기 침술용 다공성 침은 참침(shear needle), 봉침(lance needle), 시침(spoon needle) 및/또는 피침(stiletto needle)일 수도 있다.
본 발명의 침술용 다공성 침은 다공성에 의해 비표면적이 높고, 귀금속 나노입자 도입을 통해 임피던스를 크게 낮출 수 있고, 이를 통해 본 발명의 침술용 다공성 침은 높은 전기전도도를 가지기 때문에, 경락에 위치한 신경계에 전자 전달 기능을 배가시켜서 침 시술에 의한 치료 효능을 크게 증가시킬 수 있다.
또한, 침술용 다공성 침의 홀 내부에 약물을 담지시켜서 침술을 수행하여, 인체 내에 약물을 직접적으로 전달함으로써, 침 시술에 의한 치료 효능을 배가시킬 수도 있다.
이하에서는 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
[ 실시예 ]
실시예 1 : 침술용 다공성 침의 제조
동방침구제작소에서 시판 중인 수지침을 침술용 침으로서 준비하였다.
다음으로, 상기 수지침을 아세톤, 에탄올, 정제수에 각각 10분씩, 40kHz의 세기로 초음파 처리하여 세척을 하였으며, 세척한 수지침은 도 2의 (a)의 사진 왼쪽에 있는 것이다.
다음으로, 도 1에 나타낸 것과 같이, 상기 세척한 수지침을 (+)극에, 탄소 전극을 (-)극에 연결한 후에, 수지침과 탄소전극을 전해액에 넣은 후, DC 20V를 30분 동안 가하는 양극산화처리하여 다공성 수지침을 제조하였으며, 이의 사진을 도 2의 (a)에 나타내었고, 도 2의 (a)의 오른쪽 수지침이 양극산화처리 후의 다공성 수지침이다.
이때, 양극산화처리시, 사용된 전해액은 플루오린화 암모늄(Ammonium Fluoride, NH4F) 0.2 중량% 및 정제수 2 부피%를 함유한 에틸렌 글라이콜(Etlylene Glycole, C2H4(OH)2) 용액 50 ㎖를 사용하였다.
실험예 1 : SEM (scanning electron microscope)측정
상기 실시예 1에서 사용한 양극산화처리 전의 수지침의 SEM(상품명 S-4800, 제조사 Hitachi) 측정 사진을 도 2의 (b)에 나타내었고, 실시예 1에서 제조한 다공성 수지침의 표면에 대한 SEM 측정 사진을 도 2의 (c), 도 2의 (d), 및 도 3에 나타내었다.
도 2의 (b)와 (c), (d)의 SEM 측정 사진을 비교해보면, 양극산화처리 전의 수지침(도 2의 (b))은 매끈한 표면을 갖고 있었으나, 이를 양극산화처리한 후에는 3,000 nm 크기 이하의 홀이 다량 형성되어 있는 것을 확인할 수 있었다.
그리고, 도 2의 (d)을 살펴보면, 표면 넓이 100㎛2(가로 Х세로, 10 ㎛Х10 ㎛)당 100 개 이상의 홀이 형성된 것을 확인할 수 있었다.
또한, 도 3을 살펴보면, 홀의 깊이가 0.35㎛ 정도로 형성된 것을 확인할 수 있었다.
실험예 2 : EDS(Energy Dispersive Spectrometer) 측정
상기 실시예 1에서 사용한 양극산화처리 전후의 수지침에 대한 EDS 측정을 통해 수지침의 성분 변화를 측정하였고 그 결과를 하기 표 1에 나타내었다.
이때, EDS 측정은 20K의 고에너지 빔을 침 표면에 방출하여 얻어진 특정 X-ray를 검출·분석하여 측정하였다.
구분 양극산화 처리 전의 수지침 양극산화 처리 후의 수지침
성분 Atom. C (at. %) Error(%) Atom. C (at. %) Error(%)
Fe 40.46 1.69 26.03 1.39
Cr 12.00 0.51 8.01 0.44
C 42.71 3.06 63.24 4.70
Ni 4.32 0.28 2.46 0.22
Si 0.51 0.06 0.25 0.05
상기 표 1의 EDS 측정 결과를 살펴보면, 양극산화처리 공정 전, 후로 수지침의 성분에 변화가 있는 것을 확인할 수 있는데, 특히 탄소(C)의 성분이 많아진 걸 볼 수 있다. 이는 다공성 수지침 세척 시 사용하는 용매의 성분이 대부분 유기 용매로 탄소를 많이 포함하는데 성분에서 탄소를 제외하고 성분비교를 해보면 철, 크롬, 니켈, 규소의 경우 EDS 특성상 발생하는 오차범위를 감안했을 때 양극산화 전과 후의 수지침 내 성분들 간의 성분비 변화가 거의 없음을 확인할 수 있었다.
실시예 2
상기 실시예 1과 동일한 방법으로 다공성 수지침을 제조하되, 전압을 DC 15V로 30분 동안 가하여 다공성 수지침을 제조하였으며, 이의 SEM 측정을 상기 실시예 1과 동일한 방법으로 측정하였고, 그 결과를 도 4에 나타내었다.
도 4를 살펴보면, 홀이 잘 형성되어 있는 것을 확인할 수 있는데, 다만, 실시예 1과 비교할 때, 홀의 크기가 큰 경향이 있었다.
실시예 3
상기 실시예 1과 동일한 방법으로 다공성 수지침을 제조하되, 전압을 DC 25V로 30분 동안 가하여 다공성 수지침을 제조하였으며, 이의 SEM 측정을 상기 실시예 1과 동일한 방법으로 측정하였고, 그 결과를 도 5에 나타내었다. 도 5를 살펴보면, 잘 형성되어 있는 것을 확인할 수 있는데, 다만, 실시예 1과 비교할 때, 홀의 크기가 작고 침의 두께가 줄어드는 경향이 있었다.
실시예 4
상기 실시예 1과 동일한 방법으로 다공성 수지침을 제조하였으며, 전압을 30V로 30분 동안 가하여 다공성 수지침을 제조하였다. 그리고, 이의 SEM 측정을 상기 실시예 1과 동일한 방법으로 측정하였고, 그 결과를 도 6에 나타내었으며, 홀이 잘 형성되어 있는 것을 확인할 수 있다. 다만, 실시예 1과 비교할 때, 홀의 크기가 작고 침의 두께가 줄어드는 경향이 있었다.
비교예 1
상기 실시예 1과 동일한 방법으로 다공성 수지침을 제조하되, 전압을 DC 10V로 30분 동안 가하여 다공성 수지침을 제조하였다. 그리고, 이의 SEM 측정을 상기 실시예 1과 동일한 방법으로 측정하였고, 그 결과를 도 7에 나타내었으며, 홀이 거의 형성되지 않는 것을 확인할 수 있었으며, 이는 전압이 낮은 결과, 홀을 형성시키기에 불충분한 전압을 가한 결과로 판단된다.
비교예 2
상기 실시예 1과 동일한 방법으로 다공성 수지침을 제조하되, 전압을 DC 40V로 30분 동안 가하여 다공성 수지침을 제조하였다. 그리고, 이의 SEM 측정을 상기 실시예 1과 동일한 방법으로 측정하였고, 그 결과를 도 8에 나타내었으며, 수지침이 대부분 녹아 내리고 특히 중가에서 침이 끊어지는 문제가 있음을 확인할 수 있었다.
실험예 3 : 비표면적 측정 실험
상기 실시예 1 ~ 실시예 6에서 제조한 다공성 수지침에 대한 비표면적 측정실험을 수행하였으며, 그 결과를 하기 표 2에 나타내었다. 그리고, 비표면적실험은 수지침을 메틸렌 블루 용액에 한침시킨 후, 이를 꺼내서 증류수가 담긴 비이커에 담지 및 흔들어서 수지침 내부에 담지된 메틸렌 블루 용액이 증류수에 모두 용해되도록 하였다. 다음으로, 메틸렌 블루 용액이 용해된 증류수의 흡광도를 측정하여 다공성 수지침에 담지된 메틸렌 블루의 양을 확인하였다. 이를 통해서 수지침의 표면에 묻어난 메틸렌 블루 용액의 양을 측정한 뒤 비표면적을 계산해 내는 방법에 의거하여 측정하였다. 이때, 비표면적을 구하는 방법은 하기 수학식 1에 의거하여, 양극산화 전후의 수지침에 담지된 메틸렌블루 수용액의 흡광도를 측정하여 메틸렌블루의 농도(Concentration)를 구한 후, 이를 이용하여 하기 비례식 1에 대입하여 비표면적을 측정하였다.
[수학식 1]
Concentration (M) = 1.667e-5(M/Abs)×Absorption(Abs)
상기 수학식 1에 있어서, 1.667e- 5(M/Abs)은 농도를 알고 있는 메틸렌블루 수용액을 흡광도 실험을 통해서 얻어낸 conversion factor이다.
[비례식 1]
Concentration 1 : 0.04488 (m2/g) = Concentration 2 : 양극산화 후에 수지침의 비표면적
상기 비례식 1에서, Concentration 1은 양극산화 전의 수지침에 담지된 메틸렌블루의 농도이고, Concentration 2는 양극산화 후의 수지침에 담지된 메틸렌블루의 농도이다. 그리고, 상기 양극산화 전의 비표면적은 0.04488 (m2/g)로 바늘의 두께와 길이, 무게를 통해 계산한 것이다.
구분 전압세기(V) 비표면적(m2/g) 표면 넓이 100㎛2 당 홀 개수 비고
실시예 1 20 1.03 100 ~ 150 -
실시예 2 15 0.58 15 ~ 20 -
실시예 3 25 0.89 140 ~ 180 -
실시예 4 30 0.66 160 ~ 200 -
비교예 1 10 0.51 1 홀이 거의 없음.
비교예 2 40 측정불가 0 수지침 끊어짐.
상기 표 2를 살펴보면, 양극산화처리 공정을 전압세기 DC 10 ~ 25V에서 수행한 실시예 1 ~ 실시예 4의 경우, 0.58 m2/g 이상으로 형성된 것을 확인할 수 있으며, 도한, 홀 개수가 15 개 이상, 바람직하게는 100 개 이상으로 형성된 것을 확인할 수 있다.
그러나, 전압세기가 DC 40V 였던, 비교예 2의 경우, 수지침이 끊어지고 홀이 거의 형성되지 않아서, 비표면적을 측정할 수 없었다.
또한, 전압세기가 DC 30V에서 실시하였던 실시예 4의 경우, 홀 개수는 가장 많이 형성되었으나, 실시예 1 ~ 3과 비교할 때, 비표면적이 0.66 m2/g 미만으로 낮은 결과를 보였다.
도 9을 살펴보면, 20V 전압세기에서 양극산화반응을 수행한 실시예 1이 흡광도가 가장 높았으며, 25V 전압세기에서 양극산화반응을 수행한 실시예 3의 다공성 수지침 또한, 높은 흡광도를 보였다. 그리고, 15V 전압세기로 실시하였던 실시예 2의 경우, 실시예 1, 실시예 3 및 실시예 4 보다는 낮은 흡광도 결과를 보였다.
제조예 1 : 은 나노입자가 도금된 다공성 수지침(침술용 다공성 침)의 제조
침술용 다공성 침으로서 상기 실시예 1에서 제조한 다공성 수지침을 아세톤, 에탄올, 증류수에 5분씩 세척하였다.
다음으로, 질산은(Silver Nitrate, AgNO3) 0.02 중량%를 정제수 2 부피%를 함유한 에틸렌 글라이콜(Ethlylene Glycole, C2H4(OH)2)에 투입한 후, 교반시켜서 도금액을 준비하였다.
다음으로 상기 도금액 하에서 전기화학도금 공정을 수행하되, (-)극에 상기 세척한 실시예 1의 다공성 수지침을 연결하고, (+)극에 탄소 전극을 연결한 후, DC 2V를 75초 동안 가하여 전기화학도금 공정을 수행하였다.
그리고, 제조한 다공성 수지침의 SEM 측정 사진을 도 10에 나타내었다.
도 10을 살펴보면, 수지침의 홀 내부 및 표면에 은 나노입자가 형성되어 수지침과 일체화되어 있는 것을 확인할 수 있으며, 이때, 은 나노입자의 평균입경은 29.3 nm였다.
제조예 2 : 금 나노입자가 도금된 다공성 수지침의 제조
상기 실시예 1에서 제조한 다공성 수지침을 아세톤, 에탄올, 증류수에 5분씩 세척하였다.
다음으로, Na(AuCl4) 0.02 중량%를 정제수 2 부피%를 함유한 에틸렌 글라이콜(Ethlylene Glycole, C2H4(OH)2)에 투입한 후, 교반시켜서 도금액을 준비하였다.
다음으로 상기 도금액 하에서 전기화학도금 공정을 수행하되, (-)극에 상기 세척한 실시예 1의 다공성 수지침을 연결하고, (+)극에 탄소 전극을 연결한 후, DC 2V를 75초 동안 가하여 전기화학도금 공정을 수행하였다.
그리고, 제조한 다공성 수지침의 SEM 측정 사진을 도 11에 나타내었다.
도 11을 살펴보면, 수지침의 홀 내부 및 표면에 금 나노입자가 형성되어 수지침과 일체화 되어 있는 것을 확인할 수 있으며, 이때, 금 나노입자의 평균입경은 64.1 nm 였다.
제조예 3 : 백금 나노입자가 도금된 다공성 수지침의 제조
상기 실시예 1에서 제조한 다공성 수지침을 아세톤, 에탄올, 증류수에 5분씩 세척하였다.
다음으로, H2PtCl6 0.02 중량%를 정제수 2 부피%를 함유한 에틸렌 글라이콜(Ethlylene Glycole, C2H4(OH)2)에 투입한 후, 교반시켜서 도금액을 준비하였다.
다음으로 상기 도금액 하에서 전기화학도금 공정을 수행하되, (-)극에 상기 세척한 실시예 1의 다공성 수지침을 연결하고, (+)극에 탄소 전극을 연결한 후, DC 2V를 75초 동안 가하여 전기화학도금 공정을 수행하였다.
그리고, 제조한 다공성 수지침의 SEM 측정 사진을 도 12에 나타내었다.
도 12를 살펴보면, 수지침의 홀 내부에 백금 나노입자가 형성되어 수지침과 일체화 되어 있는 것을 확인할 수 있으며, 이때, 백금 나노입자의 평균입경은 58.4 nm 였다.
제조예 4 ~ 제조예 7 및 비교제조예 1 ~ 4
상기 제조예 3과 동일한 방법으로 은 나노입자가 도금된 다공성 수지침을 제조하되, 하기 표 3과 같이 조건을 달리하여 다공성 수지침을 각각 제조하였다.
구분 도금액 내귀금속 전구체 함량 도금처리-양극산화공정전압세기(V) 귀금속 나노입자평균입경
제조예 1 0.02 중량% 2 29.3 nm
제조예 2 0.02 중량% 2 64.1 nm
제조예 3 0.02 중량% 2 58.4 nm
제조예 4 0.05 중량% 2 78.8 nm
제조예 5 0.015 중량% 2 28.7 nm
제조예 6 0.02 중량% 2.7 31.7 nm
제조예 7 0.02 중량% 1.8 28.7 nm
제조예 8 0.02 중량% 1 27.4 nm
제조예 9 0.02 중량% 0.6 26.3 nm
비교제조예 1 0.008 중량% 2 19.8 nm
비교제조예 2 0.2 중량% 2 138.6 nm
비교제조예 3 0.02 중량% 5 143.2 nm
비교제조예 4 0.02 중량% 0.4 23.1 nm
실험예 4 : EDS(Energy Dispersive Spectrometer) 측정
상기 제조예 1 ~ 3에서 제조한 귀금속 나노입자가 도금된 다공성 수지침에 대한 EDS 측정을 수행하였으며, 그 결과를 도 13 ~ 도 15에 차례대로 나타내었다.
이때, EDS 측정은 귀금속 은과 금의 경우, Pt 스퍼터링 코팅(sputtering coating)을 15mA 및 30초간 처리한 후 15kV의 고에너지 빔을 침 표면에 방출하여 얻어진 특정 X-ray를 검출 및 분석하여 측정하였다.
귀금속 백금의 경우, Os 스퍼터링 코팅(sputtering coating)을 15mA 및 30초간 처리한 후, 15kV의 고에너지 빔을 침 표면에 방출하여 얻어진 특정 X-ray를 검출·분석하여 측정하였다.
실험예 5 : 비표면적 측정 및 전기 전도도 측정 실험
(1) 상기 제조예 1 ~ 제조예 8 및 비교제조예 1 ~ 4에서 제조한 귀금속 나노입자가 도금된 다공성 수지침 각각의 비표면적 측정실험을 수행하였으며, 그 결과를 하기 표 4에 나타내었다. 이때 비표면적 측정은 상기 실험예 3과 동일한 방법으로 비표면적을 측정하였다.
(2) 또한, 제조예 1 ~ 제조예 9및 비교제조예 1 ~ 4에서 제조한 귀금속 나노입자가 도금된 다공성 수지침의 임피던스(impedance, Ω)를 측정하였으며, 그 결과를 하기 표 4에 나타내었다.
(3) 임피던스는 전위가변기(Potentiostat)를 사용하여, 0.9%의 NaCl 수용액을 전해질로 하여, 2전극 (Working Electrode 에 귀금속 도금침을 적용, Reference Electrode/Counter Electrode 에 Pt 와이어를 적용) 방식으로 PEIS(Potentiostatic Electrochemical Impedance Spectroscopy)를 측정하였으며, 측정 주파수 범위는 100kHz ~ 20Hz 였다.
구분 비표면적(m2/g) 임피던스(Ω)
제조예 1 1.47 19,248
제조예 2 1.03 56,784
제조예 3 1.18 22,320
제조예 4 1.51 45,212
제조예 5 1.42 20,142
제조예 6 1.49 32,105
제조예 7 1.45 25,877
제조예 8 1.33 27,426
제조예 9 1.29 28,983
비교제조예 1 1.26 210,255
비교제조예 2 1.58 125,334
비교제조예 3 1.14 95,487
비교제조예 4 1.12 35,547
실시예 1 0.94 564,216
상기 표 4의 실험결과를 살펴보면, 제조예 및 비교제조예 모두 실시예 1과 비교할 때, 비표면적이 증가한 것을 확인할 수 있었다.
그리고, 제조예 1 ~ 7의 수지침의 경우, 1.03 m2/g 이상의 높은 비표면적을 가지면서도, 70,000 Ω 이하의 낮은 임피던스 값을 가지는 것을 확인할 수 있었다.
그러나, 귀금속 전구체 함량이 0.01 중량% 미만이었던 비교제조예 1의 경우, 비표면적은 높은 편이나 제조예 1과 비교할 때, 임피던스가 210,000 Ω 이상으로 매우 높은 결과를 보였으며, 이는 귀금속 도금량이 너무 적기 때문으로 판단된다. 또한, 귀금속 전구체 함량이 0.1 중량% 를 초과한 비교제조예 2의 경우, 실시예 1과 비교할 때, 비표면적이 높은데도 불구하고, 120,000 Ω 이상의 높은 임피던스를 가졌는데, 이는 비교제조에 2의 경우 138nm 정도로 나노 입자 사이에서도 입자가 큰 편이므로 가장 작은 임피던스 값인 29nm은 나노 입자에 비해 크기가 큰 만큼 그 내부 저항 값이 크기 때문으로 판단된다.
또한, 귀금속 도금처리시 4 V 초과한 조건에서 수행한 비교제조예 3의 경우, 도금을 2.7V에서 수행한 제조예 6과 비교할 때, 오히려 낮은 비표면적 및 임피던스가 증가하는 결과를 보였으며, 귀금속 도금처리시 1.2 V 미만의 조건에서 수행한 비교제조예 4의 경우, 제조예 7과 비교할 때, 임피던스는 적절하나, 비표면적이 크게 감소하는 문제가 있음을 확인할 수 있었다.
제조예 10 : 약물이 담지된 침술용 다공성 침의 제조
상기 제조예 1에서 제조한 다공성 수지침을 메틸렌블루 용액에 담그는 방법으로 다공성 수지침의 홀에 약물을 담지시켰다.
그리고, 염료가 담지된 다공성 수지침의 무게를 측정한 결과, 수지침의 무게가 염료 담지 전에는 0.11200 ㎎ 이었는데, 염료를 담지시킨 후, 무게가 0.11256㎎이었고, 0.5% 증가하였으며, 이를 통하여 효과적으로 약물이 홀에 담지되는 것을 확인할 수 있었다.
제조예 11 : 문신용 염료가 담지된 다공성 침의 제조
상기 제조예 1에서 제조한 다공성 수지침을 문신용 염색인 사이언 호크 - 타이탄에 다공성 수지침을 담궈서 다공성 수지츰의 홀에 약물을 담지되도록 하였다.
그리고, 문신용 염료가 담지된 다공성 수지침의 무게를 측정한 결과, 문신용 염료 담지 전에는 0.10800 ㎎이었는데, 염료를 담지시킨 후, 무게가 0.10878㎎이었고, 무게가 0.7% 증가하였으며, 이를 통하여 효과적으로 문신용 약물이 홀에 담지되는 것을 확인할 수 있었다.
상기 실시예 및 실험예를 통하여 본 발명의 침술용 다공성 침의 표면에 홀이 잘 형성되어, 높은 비표면적을 갖는 것을 확인할 수 있었으며, 또한, 상기 침술용 다공성 침의 홀 내부 및/또는 표면에 귀금속 나노입자가 잘 형성되어 있는 것을 확인할 수 있었으며, 나아가, 표면에 형성된 홀에 약물 및/또는 문신용 염료가 잘 담지되는 것을 확인할 수 있었다. 본 발명의 침술용 다공성 침을 이용하여 침술을 수행함으로써, 획기적인 치료 효과 증대 및 용이한 문신 시술을 꾀할 수 있을 것으로 기대된다.

Claims (11)

  1. 침술용 침을 양극산화처리 공정을 수행하여 침술용 침의 표면에 다공성 구조를 형성시켜서 홀이 형성된 침술용 다공성 침을 제조하는 1단계;
    침술용 다공성 침을 세척하는 2단계; 및
    세척한 침술용 다공성 침을 귀금속 전구체를 포함하는 도금액으로 도금처리하여 침술용 다공성 침 표면의 홀 내부 및 침술용 다공성 침 표면에 귀금속 나노입자를 도금시키는 3단계;
    를 포함하는 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침의 제조방법.
  2. 제1항에 있어서, 1단계의 양극산화처리 공정은 상기 침술용 침 및 탄소전극을 포함하는 전해액 내에 수행하고, 상기 침은 (+)극으로서 사용하고, 상기 탄소전극은 (-)극으로서 사용하며, 양극산화처리는 10분 ~ 1시간 동안 12V ~ 30V의 직류를 가하여 수행하는 것을 특징으로 하는 침술용 다공성 침의 제조방법.
  3. 제1항에 있어서, 3단계의 도금처리는 전기도금처리 공정을 수행한 후, 열처리 공정을 수행하는 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침의 제조방법.
  4. 제3항에 있어서, 상기 도금처리시, 전기도금처리 공정은 침술용 다공성 침 및 탄소전극을 포함하는 도금액 내에 수행하고, 침술용 다공성 침은 (-)극으로 사용하고, 탄소전극은 (+)극으로 사용하며, 전기도금처리는 20초 ~ 120초간 0.5 ~ 4V의 직류를 가하여 수행하는 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침의 제조방법.
  5. 제1항에 있어서, 상기 도금액은 은(Ag) 전구체, 금(Au) 전구체 및 백금(Pt) 전구체 중에서 선택된 1종 이상을 포함하는 귀금속 전구체 및 물 1 ~ 5 부피%를 함유한 에틸렌 글라이콜 수용액을 포함하는 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침의 제조방법.
  6. 제1항에 있어서, 1단계의 침술용 다공성 침은 침의 표면에 묻어난 메틸렌 블루 용액의 양을 측정한 뒤, 비표면적을 계산해 내는 방법에 의거하여 측정시, 비표면적 0.50 ㎡/g ~ 1.05 ㎡/g인 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침의 제조방법.
  7. 제1항에 있어서, 3단계의 귀금속 나노입자가 도금된 침술용 다공성 침은 비표면적이 0.95 ㎡/g ~ 1.65 ㎡/g인 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침의 제조방법.
  8. 표면 넓이 100㎛2당 15 ~ 200개의 홀(hole)을 표면에 포함하며,
    상기 홀 내부에 금(Au) 나노입자, 은(Ag) 나노입자 및 백금(Pt) 나노입자 중에서 선택된 1종 이상의 귀금속 나노입자를 포함하고,
    상기 귀금속 나노입자는 다공성 침에 고정되어 침과 일체화 되어 있는 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침.
  9. 제8항에 있어서, 상기 귀금속 나노입자는 홀 외부의 다공성 침 표면에도 고정되어 일체화 되어 있는 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침.
  10. 제8항에 있어서, 상기 은 나노입자는 평균입경 20 ~ 80 nm, 금 나노입자는 평균입경 50 ~ 70 nm, 백금 나노입자는 평균입경 40 ~ 60 nm인 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침.
  11. 제8항에 있어서, 침술용 다공성 침은 한방침(또는 멸균 피내침, Sterile Intradermal Acupuncture Needle), 수지침(Hand Acupuncture Needle), 장침(long needle), 화침(또는 대침, Big needle), T침(T type needle), 롤러침(microneedle roller), 매선침(Thread Embedding Acupuncture Needle) 및/또는 원리침(round-sharp needle)을 포함하는 호침(Filiform needle)인 것을 특징으로 하는 귀금속 나노입자가 도금된 침술용 다공성 침.
PCT/KR2018/004775 2017-04-26 2018-04-25 귀금속 나노입자가 도금된 침술용 다공성 침 및 이의 제조방법 WO2018199610A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170053570A KR101913568B1 (ko) 2017-04-26 2017-04-26 귀금속 나노입자가 도금된 다공성 수지침 및 이의 제조방법
KR10-2017-0053570 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018199610A1 true WO2018199610A1 (ko) 2018-11-01

Family

ID=63919869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004775 WO2018199610A1 (ko) 2017-04-26 2018-04-25 귀금속 나노입자가 도금된 침술용 다공성 침 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101913568B1 (ko)
WO (1) WO2018199610A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525562A (zh) * 2022-04-06 2022-05-24 内蒙古民族大学 一种蒙医针灸针及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060043659A (ko) * 2004-09-23 2006-05-15 양원동 나노 실버가 함유된 침
JP2008079919A (ja) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd 針状体および針状体の製造方法
KR20080112759A (ko) * 2007-06-22 2008-12-26 이승호 표면 형태와 물성에 변화를 준 한방 침
JP2014526615A (ja) * 2011-09-14 2014-10-06 エクスタリック コーポレイション 被覆された製品、電着浴、及び関連するシステム
KR101615749B1 (ko) * 2016-03-17 2016-04-27 재단법인대구경북과학기술원 다공성 수지침의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060043659A (ko) * 2004-09-23 2006-05-15 양원동 나노 실버가 함유된 침
JP2008079919A (ja) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd 針状体および針状体の製造方法
KR20080112759A (ko) * 2007-06-22 2008-12-26 이승호 표면 형태와 물성에 변화를 준 한방 침
JP2014526615A (ja) * 2011-09-14 2014-10-06 エクスタリック コーポレイション 被覆された製品、電着浴、及び関連するシステム
KR101615749B1 (ko) * 2016-03-17 2016-04-27 재단법인대구경북과학기술원 다공성 수지침의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525562A (zh) * 2022-04-06 2022-05-24 内蒙古民族大学 一种蒙医针灸针及其制备方法

Also Published As

Publication number Publication date
KR101913568B1 (ko) 2018-10-31

Similar Documents

Publication Publication Date Title
Williamson et al. Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes
Loeb et al. Parylene as a chronically stable, reproducible microelectrode insulator
Chung et al. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity
WO2013111985A1 (ko) 나노 와이어와 지지층을 포함하는 신경소자
EP2755617B1 (en) Method for fabrication biocompatible electrode component
WO2015129967A1 (ko) 다공성 한방침 및 이의 제조방법
WO2018199610A1 (ko) 귀금속 나노입자가 도금된 침술용 다공성 침 및 이의 제조방법
Shin et al. High Charge Storage Capacity Electrodeposited Iridium Oxide Film on Liquid Crystal Polymer-Based Neural Electrodes.
Márton et al. Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings
Xu et al. Design, fabrication, and evaluation of a parylene thin-film electrode array for cochlear implants
Kim et al. A cortical recording platform utilizing μECoG electrode arrays
KR101939822B1 (ko) 신경전극의 제조방법
EP2991798A1 (en) Surface structuring of metals
KR101615749B1 (ko) 다공성 수지침의 제조방법
CN105671601B (zh) 微电极的表面修饰方法
WO2016068405A1 (ko) 다공성 수지침 및 이의 제조방법
Sha et al. The effect of the impedance of a thin hydrogel electrode on sensation during functional electrical stimulation
Wang et al. Design and Fabrication of MRI-Compatible and Flexible Neural Microprobes for Deep Brain Stimulation and Neurological Treatment Applications
Watanabe et al. Evaluation of platinum-black stimulus electrode array for electrical stimulation of retinal cells in retinal prosthesis system
Terasawa et al. Porosification of Surface of Platinum Electrode by Anisotropic Etching.
Zeng et al. Iridium oxide-platinum nanocomposite coating for neural electrode
Yamagiwa et al. Ultra high-aspect-ratio neuroprobe: 5-μm-diameter and 400-μm-length needle detects action potentials in VIVO
RU2034577C1 (ru) Устройство для гальванизации
Seufert et al. Stretchable Tissue‐Like Gold Nanowire Composites with Long‐Term Stability for Neural Interfaces
KR100559131B1 (ko) 신경 신호 측정용 금속 미세 전극의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790858

Country of ref document: EP

Kind code of ref document: A1