WO2018199373A1 - Harmful gas processing facility using microwave plasma - Google Patents

Harmful gas processing facility using microwave plasma Download PDF

Info

Publication number
WO2018199373A1
WO2018199373A1 PCT/KR2017/004869 KR2017004869W WO2018199373A1 WO 2018199373 A1 WO2018199373 A1 WO 2018199373A1 KR 2017004869 W KR2017004869 W KR 2017004869W WO 2018199373 A1 WO2018199373 A1 WO 2018199373A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma discharge
microwave
plasma
unit
harmful gas
Prior art date
Application number
PCT/KR2017/004869
Other languages
French (fr)
Korean (ko)
Inventor
강경두
구민
이성룡
Original Assignee
주식회사 클린팩터스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170057985A external-priority patent/KR101913721B1/en
Application filed by 주식회사 클린팩터스 filed Critical 주식회사 클린팩터스
Publication of WO2018199373A1 publication Critical patent/WO2018199373A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to a noxious gas treatment facility using microwave plasma, and more particularly, by inducing a uniform plasma discharge in the plasma discharge space, it is possible to improve the removal rate of noxious substances in the noxious gas discharged from the process chamber and reduce costs. It relates to a harmful gas treatment facility using a microwave plasma that can be reduced.
  • gases called PFCs perfluorocarbons
  • CF4 perfluorocarbons
  • SF6 perfluorocarbons
  • C3F8 perfluorocarbons
  • a vacuum pump is installed to make the process chambers in a vacuum state, and to generate plasma discharge using microwaves, and to process the harmful gas using the same.
  • the technology to purify the harmful gas through the harmful gas treatment facility and release it to the atmosphere has been developed.
  • the conventional harmful gas treatment facility using the microwave plasma has a problem that the plasma is not uniformly and efficiently supplied to the plasma discharge space, the plasma discharge efficiency is lowered and the removal rate of the harmful substances is lowered.
  • the present invention is to provide a uniform and efficient microwave supply in the plasma discharge space to achieve a uniform plasma discharge to increase the removal rate of harmful substances in the harmful gas discharged from the process chamber, the microwave plasma can reduce the cost
  • An object of the present invention is to provide a hazardous gas treatment facility.
  • the present invention is a harmful gas treatment facility using a microwave plasma for processing harmful gas discharged from the process chamber, the microwave generating unit for generating a microwave, the microwave for transmitting and supplying the microwave generated in the microwave generating unit
  • Plasma discharge is installed in a pipe through which the harmful gas discharged from the transmission unit and the process chamber flows, and receives the microwaves from the microwave transmission unit to generate plasma discharge therein to decompose harmful substances in the harmful gas.
  • the plasma discharge unit is installed between the first pipe through which the harmful gas discharged from the process chamber flows and the second pipe through which the harmful gas flows toward the vacuum pump, In communication with one pipe and the second pipe
  • a plasma discharge chamber having a cylindrical plasma discharge space through which the noxious gas passes, and an inner space installed in the plasma discharge chamber to surround the outside of the plasma discharge space, and into which the microwave is introduced, are formed.
  • An antenna unit having a plurality of slots formed to be spaced apart from each other toward the plasma discharge space to release the microwaves introduced into the plasma discharge space, and installed in the plasma discharge chamber inside the antenna unit for the plasma discharge; It provides a harmful gas treatment facility using a microwave plasma including a shielding member for preventing the leakage of ions or electrons to the outside.
  • the harmful gas treatment facility using the microwave plasma according to the present invention has the following effects.
  • the antenna unit is formed to surround the plasma discharge space, and microwaves are supplied to the plasma discharge space through a plurality of slots, thereby achieving uniform and efficient plasma discharge in the plasma discharge space, thereby improving the treatment efficiency of harmful gases. Not only can it reduce costs, it is economical.
  • an optimal uniform distribution of incidence in the plasma discharge space can be obtained through the position adjusting unit which can adjust the position of the slot.
  • plasma discharge is started by reinforcing interference according to the direction of harmful gas flow
  • plasma discharge is spread by the fine particles in which harmful substances are decomposed, so that the decomposition power of harmful substances in harmful gases may be further improved.
  • FIG. 1 is a block diagram showing the configuration of a noxious gas treatment facility using a microwave plasma according to an embodiment of the present invention.
  • FIG. 2 is a front sectional view showing the configuration of the plasma discharge unit of FIG.
  • FIG. 3 is a plan sectional view taken along line III-III of FIG. 2.
  • FIG. 4 is a diagram illustrating an energy field with respect to a slot position when plasma discharge is generated by the antenna unit of FIG. 2.
  • FIG. 5 is a plan sectional view taken along the line VV of FIG. 2.
  • FIG. 6 is a front sectional view showing another embodiment of the antenna unit in the plasma discharge unit of FIG.
  • FIG. 7 is a perspective view illustrating the antenna unit of FIG. 2.
  • FIG. 8 is a perspective view illustrating another embodiment of the antenna unit of FIG. 7.
  • a noxious gas treatment facility (hereinafter referred to as a “hazardous gas treatment facility”) using microwave plasma according to an embodiment of the present invention is to treat noxious gas discharged from the process chamber 10.
  • the process chamber 10 is a process in which a variety of work processes of a semiconductor or a display is performed, and a process in which ashing, deposition, etching, photography, cleaning, and nitriding is performed, and various process gases and reaction gases
  • This process gas contains harmful substances such as carbon tetrafluoride (CF4) and nitrogen trifluoride (NF3).
  • Reference numeral 30 denotes a scrubbing facility.
  • the microwave generating unit 100 may include a configuration of a known magnetron as generating microwaves, and a detailed description thereof will be omitted.
  • the microwave transmitter 200 serves to transfer and supply microwaves generated by the microwave generator 100, and is connected to the plasma discharge unit 300 to connect the microwaves to the plasma discharge unit ( 300 feed to feed.
  • the microwave transmitter 200 may apply a coaxial cable or a waveguide.
  • the plasma discharge unit 300 is installed in a pipe through which the noxious gas discharged from the process chamber 10 flows, and receives the microwaves from the microwave transmitter 200 to generate plasma discharge therein. It serves to decompose harmful substances in the harmful gas.
  • the plasma discharge unit 300 is coupled to a vacuum chamber or a foreline, and includes a plasma discharge chamber 310, an antenna unit 320, and a shielding member 330. .
  • the plasma discharge chamber 310 has a first pipe 41 through which the harmful gas discharged from the process chamber 10 flows and a second pipe 42 through which the harmful gas flows toward the vacuum pump 20. It is installed between the first pipe 41 and the second pipe 42 in communication with the noxious gas passes through the plasma discharge space (1) is formed by the reinforcement interference is formed therein It is.
  • the plasma discharge space 1 may be formed in a cylindrical shape as shown in the drawing, but this may be in various forms such as a rectangular shape in one embodiment, the shape of the plasma discharge chamber 310 and the first Of course, it can be selected in various ways in consideration of the connection structure, the discharge characteristics of the pipe 41 and the second pipe (42).
  • the antenna unit 320 is installed in the plasma discharge chamber 310, and when microwaves are introduced from the microwave transmitter 200, the antenna unit 320 emits microwaves into the plasma discharge space 1 so that the plasma discharge space ( Plasma discharge is performed in 1).
  • the antenna unit 320 includes a tubular antenna unit body 321.
  • the antenna unit body 321 is disposed to surround the outside of the plasma discharge space 1 to correspond to a flow path of harmful gas when coupled to a foreline or a vacuum chamber. It is formed in an annular shape so as to enclose it so that microwaves are uniformly transferred to the plasma discharge space 1 therein.
  • the antenna unit body 321 has an internal space 322 into which the microwave is introduced, and an inlet 324 for introducing the microwave into the outer wall.
  • the antenna unit body 321 is formed with a plurality of slots 323 in which the microwaves of the internal space 322 are emitted on the inner wall facing the plasma discharge space 1.
  • the plurality of slots 323 are formed to be spaced apart from each other toward the plasma discharge space 1 to uniformly discharge the microwaves introduced into the plasma discharge space 1. Descriptions including various details of the slots 323 and various embodiments will be described later.
  • the shielding member 330 is installed in the plasma discharge chamber 310 so that the outer circumferential surface is spaced apart from the inner surface of the antenna unit 320 in a tubular shape, and ions or electrons for the plasma discharge leak to the outside. It prevents it from becoming.
  • the shielding member 330 is formed to correspond to the plasma discharge space 1, and should be able to transmit the microwave, so that various materials can be applied if it can achieve the above purpose, such as quartz (quartz) or ceramic material Do.
  • a lower end of the shielding member 330 may be fixed to a fitting portion 311 formed in the plasma discharge chamber 310 to fix its position.
  • the shielding member 330 is positioned in the plasma discharge chamber 310 such that the upper and lower ends of the shielding member 330 are tightly fitted to the inner surface of the plasma discharge chamber 310.
  • you can fix a variety of configurations are possible.
  • the plasma discharge unit 300 may include a tuner (not shown) installed in the plasma discharge chamber 310 to induce an optimal uniform distribution of incidence.
  • the tuner may be applied to various types such as inserting another dielectric material into the microwave or changing impedance by adjusting a space.
  • FIG. 4 illustrates an internal energy field (E-field) through which microwaves are transmitted through the slot 323.
  • E-field an internal energy field
  • the optimum uniform incidence distribution can be induced through the above-described tuner.
  • this has a problem in that manufacturing hassle and manufacturing cost increase to install a separate tuner, there is also a difficulty in the operation for the tuner control.
  • the plasma discharge unit 300 may allow the user to directly and intuitively adjust the position of the slot 323 through the position adjusting unit 340, thereby replacing the role of the tuner.
  • the antenna unit body 321 is coupled to rotate in the circumferential direction with respect to the plasma discharge chamber (310).
  • the position adjusting unit 340 is fixedly coupled to the antenna unit body 321 may rotate the antenna unit body 321 along the circumferential direction according to the operator's operation.
  • the user may change the positions of the slots 323 by rotating the antenna unit 320 along the circumferential direction through the position adjusting unit 340.
  • the position adjusting unit 340 includes a rotation lever 342 coupled to the antenna unit body 321.
  • One end of the rotary lever 342 is coupled to the antenna unit 320, and the other end of the rotary lever 342 passes through an arc-shaped positioning hole 344 formed in the plasma discharge chamber 310, and can be operated by an operator from the outside. It is exposed to the outside so that the user can rotate the antenna unit 320 by holding the other end.
  • the positioning hole 344 is preferably formed in consideration of this, since the microwave does not leak to the outside when the size is 1/4 or less of the microwave wavelength.
  • the noxious gas treatment facility may obtain an optimal uniform incident distribution in the plasma discharge space 1 by adjusting the position of the slot 323 through the position adjusting unit 340.
  • FIG. 6 is a view showing another embodiment of the antenna unit 320b.
  • the antenna unit 320b is not an antenna unit body 321 is formed as an integral tube, as shown in Figure 2, the antenna is located inside and outside the plasma discharge chamber 310, respectively separated from the inside The sub body 321a is included.
  • the antenna unit body 321a is located in the plasma discharge chamber 310 but has an inner wall 3212 located inward with respect to the plasma discharge space 1, and the inner wall 322 is formed. And an outer wall 3211 positioned on the outside to be spaced apart from the 3212.
  • the inner wall 3212 is erected in the plasma discharge chamber 310 in a cylindrical tube shape so as to surround the cylindrical plasma discharge space (1), the top and bottom are in close contact with the inner surface of the plasma discharge chamber (310). It is fitted.
  • the inner wall 3212 has a plurality of slots 323 formed therethrough to allow the introduced microwaves to be discharged into the plasma discharge space.
  • the outer wall 3211 is a cylindrical tube shape having a diameter larger than that of the inner wall 3212, and is spaced apart from the inner wall 3212 so as to stand in the plasma discharge chamber 310. 310 is in close contact with the inner surface.
  • the outer wall 3211 has an inlet 324 through which the microwave is supplied from the microwave transmitter 200.
  • the inlet 324 may be formed in one or a plurality, and may be formed in the middle of the outer wall 3211 or at the top or the bottom thereof as shown in the drawing, and the shape, number, and position thereof may effectively introduce microwaves. This can be done in various ways.
  • one end of the rotary lever 342a of the position adjusting unit 340a is fixedly coupled to the inner wall 3212 and the middle part of the rotary lever 342a is exposed from the plasma discharge chamber 310.
  • the slots 323 and 323a of the antenna units 320 and 320a will be described.
  • the antenna portions 320 and 320a of FIGS. 7 and 8 are shown in a straight tubular shape, but the antenna portions 320 and 320a are partially enlarged to show a straight line and the shape of the slots 323 and 323a. It is intended to make the diagram easier to understand.
  • the slots 323 are spaced apart from each other at equal intervals along the circumferential direction (lengthwise in the drawing) on the inner inner circumferential surface of the antenna unit body 321.
  • the slots 323 are formed to the inner upper end and the lower end of the antenna unit body 321, and are formed in a direction inclined with respect to the flow direction of the harmful gas.
  • the inclination angle of the slot 323 may be varied in consideration of the plasma discharge space 1 and the energy field.
  • the slots 323a are formed in a direction perpendicular to the flow direction of the noxious gas.
  • the slots 323a have a set length and are positioned in a zigzag manner different in height with respect to the flow direction of the noxious gas.
  • the length of the slot 323a may be varied in consideration of the plasma discharge space 1 and the energy field.
  • the slots 323 may be formed in a direction parallel to the flow direction of the harmful gas may be spaced apart along the circumferential direction of the antenna unit body 321.
  • the noxious gas treatment facility forms antenna units 320, 320a, and 320b to surround the plasma discharge space 1, and a plurality of slots 323, 323a are formed therein so that the microwave is discharged from the plasma discharge space 1.
  • According to the present invention can be used in the treatment facilities of harmful gases generated during the manufacture of semiconductors or displays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Plasma Technology (AREA)

Abstract

The present invention provides a harmful gas processing facility using microwave plasma, comprising: a microwave generation unit; a microwave transmission unit for transmitting and supplying microwaves generated in the microwave generation unit; and a plasma discharge unit which is provided in a pipe through which a harmful gas discharged from a process chamber flows, and which receives the microwaves from the microwave transmission unit so as to generate a plasma discharge therein, thereby decomposing harmful materials within the harmful gas, wherein the plasma discharge unit comprises: a plasma discharge chamber having a cylindrical plasma discharge space through which the harmful gas passes; an antenna unit which is provided in the plasma discharge chamber and arranged to encompass the outside of the plasma discharge space, and which has a plurality of slots for discharging, to the plasma discharge space, a microwave introduced therein; and a shielding member provided in the inner plasma discharge chamber of the antenna unit. Therefore, an antenna unit is formed to encompass a plasma discharge space and microwaves are supplied to the plasma discharge space through a plurality of slots, such that a uniform and efficient plasma discharge is formed inside the plasma discharge space, thereby enabling processing efficiency of harmful gas to be improved and costs to be reduced so as to be economical.

Description

마이크로웨이브 플라즈마를 이용한 유해가스 처리설비Hazardous Gas Treatment Facility Using Microwave Plasma
본 발명은 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비에 관한 것으로서, 보다 상세하게는 플라즈마 방전공간 내에 균일한 플라즈마 방전을 유도함으로써 공정챔버로부터 배출되는 유해가스 내 유해물질의 제거율을 향상시킬 수 있고 비용을 저감시킬 수 있는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비에 관한 것이다. The present invention relates to a noxious gas treatment facility using microwave plasma, and more particularly, by inducing a uniform plasma discharge in the plasma discharge space, it is possible to improve the removal rate of noxious substances in the noxious gas discharged from the process chamber and reduce costs. It relates to a harmful gas treatment facility using a microwave plasma that can be reduced.
일반적으로 반도체나 디스플레이 제조를 위해서는 저압의 공정챔버 내에 다양한 원료들을 주입하고, 애싱(ashing), 증착, 식각, 사진, 세정 및 질화 등의 공정들을 수행한다. 이러한 공정들에서는 각종 휘발성 유기화합물, 산, 악취 유발 기체, 발화성 물질, 온실가스나 PFCs와 같은 환경규제 물질에 해당하는 물질들이 포함된 유해가스가 생성되거나 이용된다. In general, for the manufacture of semiconductors or displays, various raw materials are injected into a low pressure process chamber, and processes such as ashing, deposition, etching, photography, cleaning, and nitriding are performed. These processes produce or utilize hazardous gases that contain substances that correspond to various volatile organic compounds, acids, odor-causing gases, pyrophoric substances, greenhouse gases, or environmental regulatory substances such as PFCs.
특히, CF4, SF6, C2F6, C3F8 등 PFCs(perfluorocarbon; 과불화탄소)로 지칭되는 가스들은 식각 공정, 박막 증착 및 반응기 세척 단계 등에서 광범위하게 사용되고 있으며, 이러한 PFCs는 대부분 비활성 기체로 대기 중 자연 분해 시간이 매우 길고 오존층 파괴의 주범으로 인식되고 있어서 반도체 공정에서의 사용에 강력한 규제가 진행되고 있다.In particular, gases called PFCs (perfluorocarbons) such as CF4, SF6, C2F6, and C3F8 are widely used in etching processes, thin film deposition, and reactor washing steps. It is very long and recognized as a major culprit of ozone depletion, and there are strong regulations for use in semiconductor processes.
이에, 종래에는 상기한 공정에서 배출되는 유해가스 내 오염 물질들을 제거하기 위하여, 진공펌프를 설치하여 공정챔버들을 진공 상태로 만들고 이에 마이크로웨이브를 이용하여 플라즈마 방전을 발생시키고 이를 이용하여 유해가스를 처리하는 유해가스 처리설비를 통하여 유해가스를 정화시킨 후 대기로 방출하는 기술이 개발되고 있다.Therefore, in order to remove contaminants in the harmful gas discharged in the above process, a vacuum pump is installed to make the process chambers in a vacuum state, and to generate plasma discharge using microwaves, and to process the harmful gas using the same. The technology to purify the harmful gas through the harmful gas treatment facility and release it to the atmosphere has been developed.
그런데, 상기한 종래의 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비는 플라즈마가 방전공간 내 마이크로웨이브가 균일하고 효율적으로 공급되지 않아 플라즈마 방전효율이 낮아지면서 유해물질의 제거율이 저하되는 문제점이 있었다. However, the conventional harmful gas treatment facility using the microwave plasma has a problem that the plasma is not uniformly and efficiently supplied to the plasma discharge space, the plasma discharge efficiency is lowered and the removal rate of the harmful substances is lowered.
본 발명은 플라즈마 방전공간 내 마이크로웨이브가 균일하고 효율적으로 공급되도록 하여 균일한 플라즈마 방전이 이루어질 수 있도록 하여 공정챔버로부터 배출되는 유해가스 내 유해물질의 제거율을 높이고, 비용을 절감시킬 수 있는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비를 제공하는 것을 목적으로 한다.The present invention is to provide a uniform and efficient microwave supply in the plasma discharge space to achieve a uniform plasma discharge to increase the removal rate of harmful substances in the harmful gas discharged from the process chamber, the microwave plasma can reduce the cost An object of the present invention is to provide a hazardous gas treatment facility.
본 발명은 공정챔버에서 배출되는 유해가스를 처리하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비로서, 마이크로웨이브를 생성하는 마이크로웨이브 발생유닛, 상기 마이크로웨이브 발생유닛에서 생성된 마이크로웨이브를 전송 공급하는 마이크로웨이브 전송부 및 상기 공정챔버로부터 배출되는 상기 유해가스가 유동하는 배관에 설치되며, 상기 마이크로웨이브 전송부로부터 상기 마이크로웨이브를 공급받아 내부에서 플라즈마 방전을 발생하여 상기 유해가스 내 유해물질을 분해하는 플라즈마 방전 유닛을 포함하되, 상기 플라즈마 방전 유닛은, 상기 공정챔버로부터 배출되는 상기 유해가스가 유동하는 제1배관과 상기 진공펌프를 향해 상기 유해가스가 유동되는 제2배관 사이에 설치되며, 내부에 상기 제1배관과 상기 제2배관과 연통되어 상기 유해가스가 통과하는 원통형의 플라즈마 방전공간이 형성된 플라즈마 방전챔버와, 상기 플라즈마 방전챔버에 설치되며 상기 플라즈마 방전공간의 외측을 둘러싸도록 배치되고, 상기 마이크로웨이브가 도입되는 내부공간이 형성되며 상기 플라즈마 방전공간을 향하여 서로 이격되게 형성되어 내부로 도입된 상기 마이크로웨이브를 상기 플라즈마 방전공간으로 방출시키는 복수개의 슬롯들이 형성된 안테나부와, 상기 안테나부의 내측 상기 플라즈마 방전챔버에 설치되어 상기 플라즈마 방전을 위한 이온 또는 전자가 외부로 누설되는 것을 방지하는 차폐부재를 포함하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비를 제공한다. The present invention is a harmful gas treatment facility using a microwave plasma for processing harmful gas discharged from the process chamber, the microwave generating unit for generating a microwave, the microwave for transmitting and supplying the microwave generated in the microwave generating unit Plasma discharge is installed in a pipe through which the harmful gas discharged from the transmission unit and the process chamber flows, and receives the microwaves from the microwave transmission unit to generate plasma discharge therein to decompose harmful substances in the harmful gas. Including a unit, The plasma discharge unit is installed between the first pipe through which the harmful gas discharged from the process chamber flows and the second pipe through which the harmful gas flows toward the vacuum pump, In communication with one pipe and the second pipe For example, a plasma discharge chamber having a cylindrical plasma discharge space through which the noxious gas passes, and an inner space installed in the plasma discharge chamber to surround the outside of the plasma discharge space, and into which the microwave is introduced, are formed. An antenna unit having a plurality of slots formed to be spaced apart from each other toward the plasma discharge space to release the microwaves introduced into the plasma discharge space, and installed in the plasma discharge chamber inside the antenna unit for the plasma discharge; It provides a harmful gas treatment facility using a microwave plasma including a shielding member for preventing the leakage of ions or electrons to the outside.
본 발명에 따른 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비는 다음과 같은 효과가 있다. The harmful gas treatment facility using the microwave plasma according to the present invention has the following effects.
첫째, 플라즈마 방전공간을 둘러싸도록 안테나부를 형성하고, 이에 복수개의 슬롯들을 통하여 마이크로웨이브가 플라즈마 방전공간으로 공급되게 함으로써 플라즈마 방전공간 내 균일하고 효율적인 플라즈마 방전을 이루고 이를 통해 유해가스의 처리효율을 향상시킬 수 있을 뿐만 아니라 비용을 저감시킬 수 있어 경제적이다.First, the antenna unit is formed to surround the plasma discharge space, and microwaves are supplied to the plasma discharge space through a plurality of slots, thereby achieving uniform and efficient plasma discharge in the plasma discharge space, thereby improving the treatment efficiency of harmful gases. Not only can it reduce costs, it is economical.
둘째, 슬롯의 위치를 조정할 수 있는 위치조정부를 통하여 플라즈마 방전공간 내 최적의 균일한 입사분포를 얻을 수 있다.Second, an optimal uniform distribution of incidence in the plasma discharge space can be obtained through the position adjusting unit which can adjust the position of the slot.
셋째, 유해가스가 유동하는 방향에 따라 먼저 보강간섭에 의한 플라즈마 방전이 개시된 후, 유해물질이 분해된 미세입자들에 의해 플라즈마 방전이 확산되므로 유해가스 내 유해물질의 분해력이 더욱 향상되는 효과를 가질 수 있다.Third, after plasma discharge is started by reinforcing interference according to the direction of harmful gas flow, plasma discharge is spread by the fine particles in which harmful substances are decomposed, so that the decomposition power of harmful substances in harmful gases may be further improved. Can be.
도 1은 본 발명의 실시예에 따른 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비의 구성을 나타내는 블록도이다.1 is a block diagram showing the configuration of a noxious gas treatment facility using a microwave plasma according to an embodiment of the present invention.
도 2는 도 1의 플라즈마 방전유닛의 구성을 나타내는 정단면도이다.FIG. 2 is a front sectional view showing the configuration of the plasma discharge unit of FIG.
도 3은 도 2의 Ⅲ-Ⅲ선에 따른 평단면도이다. 3 is a plan sectional view taken along line III-III of FIG. 2.
도 4는 도 2의 안테나부에 의하여 플라즈마 방전을 발생할 시의 슬롯 위치에 대한 에너지장을 나타내는 도면이다.4 is a diagram illustrating an energy field with respect to a slot position when plasma discharge is generated by the antenna unit of FIG. 2.
도 5는 도 2의 Ⅴ-Ⅴ선에 따른 평단면도이다.FIG. 5 is a plan sectional view taken along the line VV of FIG. 2.
도 6은 도 2의 플라즈마 방전유닛에서 안테나부의 다른 실시예를 나타내는 정단면도이다. 6 is a front sectional view showing another embodiment of the antenna unit in the plasma discharge unit of FIG.
도 7은 도 2의 안테나부를 나타내는 사시도이다.FIG. 7 is a perspective view illustrating the antenna unit of FIG. 2. FIG.
도 8은 도 7의 안테나부의 다른 실시예를 나타내는 사시도이다.8 is a perspective view illustrating another embodiment of the antenna unit of FIG. 7.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 도 1을 참조하면 본 발명의 실시예에 따른 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비(이하 '유해가스 처리설비'라 한다)는, 공정챔버(10)에서 배출되는 유해가스를 처리하는 것으로서, 마이크로웨이브 발생유닛(100)과, 마이크로웨이브 전송부(200)와, 플라즈마 방전유닛(300)을 포함한다. 여기서, 상기 공정챔버(10)는 반도체 또는 디스플레이의 다양한 작업 공정이 이루어지는 것으로서, 애싱(ashing), 증착, 식각, 사진, 세정 및 질화 등의 공정이 수행되는 챔버로서, 다양한 공정가스 및 반응가스가 공급이 되며, 이러한 공정가스는 사불화탄소(CF4), 삼불화질소(NF3) 등의 유해물질이 포함되어 있다. 미설명부호 30은 스크러빙 설비를 나타낸다.First, referring to FIG. 1, a noxious gas treatment facility (hereinafter referred to as a “hazardous gas treatment facility”) using microwave plasma according to an embodiment of the present invention is to treat noxious gas discharged from the process chamber 10. , A microwave generating unit 100, a microwave transmitting unit 200, and a plasma discharge unit 300. Here, the process chamber 10 is a process in which a variety of work processes of a semiconductor or a display is performed, and a process in which ashing, deposition, etching, photography, cleaning, and nitriding is performed, and various process gases and reaction gases This process gas contains harmful substances such as carbon tetrafluoride (CF4) and nitrogen trifluoride (NF3). Reference numeral 30 denotes a scrubbing facility.
상기 마이크로웨이브 발생유닛(100)은, 마이크로웨이브를 생성하는 것으로서 공지의 마그네트론 등의 구성을 포함할 수 있으며, 이에 대한 상세한 설명은 생략하기로 한다. The microwave generating unit 100 may include a configuration of a known magnetron as generating microwaves, and a detailed description thereof will be omitted.
상기 마이크로웨이브 전송부(200)는, 상기 마이크로웨이브 발생유닛(100)에서 생성된 마이크로웨이브를 전송 공급하는 역할을 하며, 상기 플라즈마 방전유닛(300)과 연결되어 상기 마이크로웨이브를 상기 플라즈마 방전유닛(300)으로 전송 공급한다. The microwave transmitter 200 serves to transfer and supply microwaves generated by the microwave generator 100, and is connected to the plasma discharge unit 300 to connect the microwaves to the plasma discharge unit ( 300 feed to feed.
상기 마이크로웨이브 전송부(200)는, 동축케이블 또는 웨이브가이드(Waveguide)를 적용할 수 있다.The microwave transmitter 200 may apply a coaxial cable or a waveguide.
상기 플라즈마 방전유닛(300)은, 상기 공정챔버(10)로부터 배출되는 상기 유해가스가 유동하는 배관에 설치되며, 상기 마이크로웨이브 전송부(200)로부터 상기 마이크로웨이브를 공급받아 내부에서 플라즈마 방전을 발생하여 상기 유해가스 내 유해물질을 분해하는 역할을 한다.The plasma discharge unit 300 is installed in a pipe through which the noxious gas discharged from the process chamber 10 flows, and receives the microwaves from the microwave transmitter 200 to generate plasma discharge therein. It serves to decompose harmful substances in the harmful gas.
도 2를 참조하면, 상기 플라즈마 방전유닛(300)은, 진공챔버 또는 포어라인(Foreline)에 결합하며, 플라즈마 방전챔버(310)와, 안테나부(320)와, 차폐부재(330)를 포함한다. Referring to FIG. 2, the plasma discharge unit 300 is coupled to a vacuum chamber or a foreline, and includes a plasma discharge chamber 310, an antenna unit 320, and a shielding member 330. .
상기 플라즈마 방전챔버(310)는 상기 공정챔버(10)로부터 배출되는 상기 유해가스가 유동하는 제1배관(41)과 상기 진공펌프(20)를 향해 상기 유해가스가 유동되는 제2배관(42) 사이에 설치되며, 내부에 상기 제1배관(41)과 상기 제2배관(42)과 연통되어 상기 유해가스가 통과하고 보강간섭에 의해 플라즈마 방전이 개시되는 원통형의 플라즈마 방전공간(1)이 형성되어 있다. 여기서, 상기 플라즈마 방전공간(1)은 도면에서와 같이 원통형으로 형성될 수 있지만, 이는 일 실시예로 직사각형 등의 다양한 형태로도 가능하며, 이에 상기 플라즈마 방전챔버(310)의 형상과, 제1배관(41)과 제2배관(42)의 연결구조, 방전 특성을 고려하여 다양하게 선택할 수 있음은 물론이다. The plasma discharge chamber 310 has a first pipe 41 through which the harmful gas discharged from the process chamber 10 flows and a second pipe 42 through which the harmful gas flows toward the vacuum pump 20. It is installed between the first pipe 41 and the second pipe 42 in communication with the noxious gas passes through the plasma discharge space (1) is formed by the reinforcement interference is formed therein It is. Here, the plasma discharge space 1 may be formed in a cylindrical shape as shown in the drawing, but this may be in various forms such as a rectangular shape in one embodiment, the shape of the plasma discharge chamber 310 and the first Of course, it can be selected in various ways in consideration of the connection structure, the discharge characteristics of the pipe 41 and the second pipe (42).
상기 안테나부(320)는, 상기 플라즈마 방전챔버(310)에 설치되며, 상기 마이크로웨이브 전송부(200)로부터 마이크로웨이브가 도입되면 상기 플라즈마 방전공간(1)으로 마이크로웨이브를 방출하여 플라즈마 방전공간(1)으로 플라즈마 방전이 이루지도록 한다.The antenna unit 320 is installed in the plasma discharge chamber 310, and when microwaves are introduced from the microwave transmitter 200, the antenna unit 320 emits microwaves into the plasma discharge space 1 so that the plasma discharge space ( Plasma discharge is performed in 1).
상기 안테나부(320)는, 관 형상의 안테나부 몸체(321)를 포함한다. 도 3을 참조하면, 상기 안테나부 몸체(321)는 상기 플라즈마 방전공간(1)의 외측을 둘러싸도록 배치되어 포어라인(Foreline) 또는 진공챔버에 결합하여 적용할 시 유해가스의 유동통로에 대응하여 이를 에워쌀 수 있도록 환형으로 형성되어 내부의 플라즈마 방전공간(1)으로 균일(Uniform)하게 마이크로웨이브가 전달되도록 한다. The antenna unit 320 includes a tubular antenna unit body 321. Referring to FIG. 3, the antenna unit body 321 is disposed to surround the outside of the plasma discharge space 1 to correspond to a flow path of harmful gas when coupled to a foreline or a vacuum chamber. It is formed in an annular shape so as to enclose it so that microwaves are uniformly transferred to the plasma discharge space 1 therein.
상기 안테나부 몸체(321)는 내부에 상기 마이크로웨이브가 도입되는 내부공간(322)이 형성되어 있으며 외측벽에 마이크로웨이브가 도입되기 위한 도입구(324)가 형성되어 있다. The antenna unit body 321 has an internal space 322 into which the microwave is introduced, and an inlet 324 for introducing the microwave into the outer wall.
상기 안테나부 몸체(321)는 상기 플라즈마 방전공간(1)과 대면하는 방향의 내측벽에 상기 내부공간(322)의 마이크로웨이브가 방출되는 복수개의 슬롯(323)들이 형성되어 있다. 여기에서 상기 슬롯(323)들은 복수개로 상기 플라즈마 방전공간(1)을 향하여 서로 이격되게 형성되어 내부로 도입된 상기 마이크로웨이브를 상기 플라즈마 방전공간(1)으로 균일하게 방출시키도록 되어 있다. 상기한 슬롯(323)들의 세부형상을 비롯한 설명과 다양한 실시예에 대해서는 후술하기로 한다. The antenna unit body 321 is formed with a plurality of slots 323 in which the microwaves of the internal space 322 are emitted on the inner wall facing the plasma discharge space 1. The plurality of slots 323 are formed to be spaced apart from each other toward the plasma discharge space 1 to uniformly discharge the microwaves introduced into the plasma discharge space 1. Descriptions including various details of the slots 323 and various embodiments will be described later.
상기 차폐부재(330)는 관 형상으로 외주면이 상기 안테나부(320)의 내측면으로부터 이격되게 위치하도록 상기 플라즈마 방전챔버(310)에 설치되어 있으며, 상기 플라즈마 방전을 위한 이온 또는 전자가 외부로 누설되는 것을 방지하는 역할을 한다. 상기 차폐부재(330)는 상기 플라즈마 방전공간(1)에 대응되도록 형성되며, 상기 마이크로웨이브를 투과시킬 수 있어야 하므로 석영(Quartz) 또는 세라믹 소재 등 상기한 목적을 달성할 수 있다면 다양한 소재가 적용 가능하다. The shielding member 330 is installed in the plasma discharge chamber 310 so that the outer circumferential surface is spaced apart from the inner surface of the antenna unit 320 in a tubular shape, and ions or electrons for the plasma discharge leak to the outside. It prevents it from becoming. The shielding member 330 is formed to correspond to the plasma discharge space 1, and should be able to transmit the microwave, so that various materials can be applied if it can achieve the above purpose, such as quartz (quartz) or ceramic material Do.
상기 차폐부재(330)는 도시된 바와 같이 상기 플라즈마 방전챔버(310)에 형성된 끼움부(311)에 하단이 끼워져 그 위치가 고정될 수 있다. 하지만, 이는 일 실시예로 상기 차폐부재(330)는 상단과 하단이 상기 플라즈마 방전챔버(310)의 내측면에 밀착되게 끼워져 그 위치가 고정될 수 있는 등 상기 플라즈마 방전챔버(310) 내에 그 위치를 고정할 수 있다면 다양한 구성이 가능함은 물론이다. As shown in the drawing, a lower end of the shielding member 330 may be fixed to a fitting portion 311 formed in the plasma discharge chamber 310 to fix its position. However, in one embodiment, the shielding member 330 is positioned in the plasma discharge chamber 310 such that the upper and lower ends of the shielding member 330 are tightly fitted to the inner surface of the plasma discharge chamber 310. Of course, if you can fix a variety of configurations are possible.
상기 플라즈마 방전유닛(300)은, 상기 플라즈마 방전챔버(310)에 설치되어 최적의 균일한 입사분포를 유도하도록 튜너(미도시)를 포함할 수 있다. 상기 튜너는 마이크로웨이브 내에 다른 유전물질을 삽입하는 경우 또는 공간을 조절하여 임피던스를 바꾸는 경우 등 다양한 타입을 적용할 수 있다. The plasma discharge unit 300 may include a tuner (not shown) installed in the plasma discharge chamber 310 to induce an optimal uniform distribution of incidence. The tuner may be applied to various types such as inserting another dielectric material into the microwave or changing impedance by adjusting a space.
한편, 도 4는 상기한 슬롯(323)을 통하여 마이크로웨이브가 전달되는 내부 에너지장(E-field)을 나타낸 것이다. 도면을 참조하면 내부 에너지장(A)은 슬롯(323)부위의 전기장 분포를 살펴보았을 때 전기장 분포가 다소 일정하지 않은 것을 확인할 수 있다. 이는 상기 안테나부(320)는 직선형태가 아닌 환형으로 형성된 만큼 곡률(curvature)의 영향으로 전기장이 약간씩 이동되어 지기 때문이다.Meanwhile, FIG. 4 illustrates an internal energy field (E-field) through which microwaves are transmitted through the slot 323. Referring to the drawing, when the internal energy field A looks at the electric field distribution in the slot 323, it can be seen that the electric field distribution is not uniform. This is because the antenna unit 320 is formed in an annular shape rather than a straight line, and thus the electric field is slightly moved due to the influence of curvature.
이에, 전기장 분포를 일정하게 하기 위하여 전술한 튜너를 통하여 최적의 균일한 입사분포를 유도할 수 있다. 하지만, 이는 별도의 튜너를 설치해야 하는 제작상의 번거로움 및 제조비용이 증가하는 문제점이 있고 튜너 제어를 위한 작업상의 어려움도 있다. Thus, in order to make the electric field distribution constant, the optimum uniform incidence distribution can be induced through the above-described tuner. However, this has a problem in that manufacturing hassle and manufacturing cost increase to install a separate tuner, there is also a difficulty in the operation for the tuner control.
때문에 상기 플라즈마 방전유닛(300)은 위치조정부(340)를 통하여 슬롯(323)의 위치를 사용자가 직접적이고 직관적으로 조정할 수 있도록 함으로써, 튜너의 역할을 대체할 수 있도록 할 수 있다.Therefore, the plasma discharge unit 300 may allow the user to directly and intuitively adjust the position of the slot 323 through the position adjusting unit 340, thereby replacing the role of the tuner.
상기한 위치조정부(340)를 통한 슬롯(323)의 위치 조정에 대하여 살펴보면, 먼저 상기 안테나부 몸체(321)는 상기 플라즈마 방전챔버(310)에 대하여 원주방향을 따라 회전할 수 있도록 결합되어 있다. 또한, 상기 위치조정부(340)는 상기 안테나부 몸체(321)와 고정 결합되어 작업자의 조작에 따라 상기 안테나부 몸체(321)를 원주방향을 따라 회전할 수 있다. 이에, 사용자는 상기 위치조정부(340)를 통하여 상기 안테나부(320)를 상기 원주방향을 따라 회전시켜 상기 슬롯(323)들의 위치를 변경할 수 있다. Looking at the position adjustment of the slot 323 through the position adjustment unit 340, first, the antenna unit body 321 is coupled to rotate in the circumferential direction with respect to the plasma discharge chamber (310). In addition, the position adjusting unit 340 is fixedly coupled to the antenna unit body 321 may rotate the antenna unit body 321 along the circumferential direction according to the operator's operation. Thus, the user may change the positions of the slots 323 by rotating the antenna unit 320 along the circumferential direction through the position adjusting unit 340.
도 5를 참조하면, 상기 위치조정부(340)는, 상기 안테나부 몸체(321)와 결합된 회전레버(342)를 포함한다. 상기 회전레버(342)는 일단부가 상기 안테나부(320)와 결합하고, 타단부는 상기 플라즈마 방전챔버(310)에 형성된 호형상의 위치조정홀(344)을 관통하여 외부에서 작업자가 조작할 수 있도록 외부에 노출되어 사용자가 타단부를 파지하여 상기 안테나부(320)를 회전시킬 수 있도록 한다. 여기서, 상기 위치조정홀(344)은 그 크기가 마이크로웨이브 파장의 1/4 이하가 되면, 마이크로웨이브가 외부로 누설되지 않으므로, 이를 고려하여 형성되는 것이 바람직하다.Referring to FIG. 5, the position adjusting unit 340 includes a rotation lever 342 coupled to the antenna unit body 321. One end of the rotary lever 342 is coupled to the antenna unit 320, and the other end of the rotary lever 342 passes through an arc-shaped positioning hole 344 formed in the plasma discharge chamber 310, and can be operated by an operator from the outside. It is exposed to the outside so that the user can rotate the antenna unit 320 by holding the other end. Here, the positioning hole 344 is preferably formed in consideration of this, since the microwave does not leak to the outside when the size is 1/4 or less of the microwave wavelength.
상기한 바와 같이 상기 유해가스 처리설비는 상기한 위치조정부(340)를 통하여 슬롯(323)의 위치를 조정함으로써 플라즈마 방전공간(1) 내 최적의 균일한 입사분포를 얻을 수 있다.As described above, the noxious gas treatment facility may obtain an optimal uniform incident distribution in the plasma discharge space 1 by adjusting the position of the slot 323 through the position adjusting unit 340.
도 6은 상기 안테나부(320b)의 다른 실시예를 나타내는 도면이다. 도면을 참조하면, 상기 안테나부(320b)는 도 2와 같이 안테나부 몸체(321)가 일체의 관으로 형성되어 있지 않고, 내측과 외측에 각각 분리되어 상기 플라즈마 방전챔버(310) 내에 위치하는 안테나부 몸체(321a)를 포함하고 있다.6 is a view showing another embodiment of the antenna unit 320b. Referring to the drawings, the antenna unit 320b is not an antenna unit body 321 is formed as an integral tube, as shown in Figure 2, the antenna is located inside and outside the plasma discharge chamber 310, respectively separated from the inside The sub body 321a is included.
상세하게, 상기 안테나부 몸체(321a)는 상기 플라즈마 방전챔버(310) 내에 위치하되 상기 플라즈마 방전공간(1)에 대하여 내측에 위치하는 내벽(3212)과, 내부공간(322)이 형성되도록 상기 내벽(3212)과 이격되게 외측에 위치하는 외벽(3211)을 포함한다. In detail, the antenna unit body 321a is located in the plasma discharge chamber 310 but has an inner wall 3212 located inward with respect to the plasma discharge space 1, and the inner wall 322 is formed. And an outer wall 3211 positioned on the outside to be spaced apart from the 3212.
여기서, 상기 내벽(3212)은 원통형의 플라즈마 방전공간(1)을 둘러싸도록 원통관 형상으로 상기 플라즈마 방전챔버(310) 내에 세워져 있으며, 상단과 하단이 상기 플라즈마 방전챔버(310)의 내측면에 밀착되게 끼워져 있다. 상기 내벽(3212)은 도입된 마이크로웨이브가 상기 플라즈마 방전공간으로 방출될 수 있도록 복수개의 슬롯(323)들이 관통 형성되어 있다. Here, the inner wall 3212 is erected in the plasma discharge chamber 310 in a cylindrical tube shape so as to surround the cylindrical plasma discharge space (1), the top and bottom are in close contact with the inner surface of the plasma discharge chamber (310). It is fitted. The inner wall 3212 has a plurality of slots 323 formed therethrough to allow the introduced microwaves to be discharged into the plasma discharge space.
상기 외벽(3211)은 상기 내벽(3212)보다 직경이 큰 원통관 형상으로 상기 내벽(3212)의 외측에 이격되게 위치하여 플라즈마 방전챔버(310) 내에 세워져 있으며, 상단과 하단이 상기 플라즈마 방전챔버(310)의 내측면에 밀착되게 끼워져 있다. The outer wall 3211 is a cylindrical tube shape having a diameter larger than that of the inner wall 3212, and is spaced apart from the inner wall 3212 so as to stand in the plasma discharge chamber 310. 310 is in close contact with the inner surface.
상기 외벽(3211)은 마이크로웨이브 전송부(200)로부터 마이크로웨이브를 공급받기 위한 도입구(324)가 관통 형성되어 있다. 상기 도입구(324)는 하나 또는 복수개 형성할 수 있으며, 도시된 바와 같이 외벽(3211)의 중간에 형성되거나 또는 상단 또는 하단에 형성될 수 있으며, 그 형상과 개수 및 위치는 마이크로웨이브의 효과적인 도입을 고려하여 다양하게 할 수 있다. The outer wall 3211 has an inlet 324 through which the microwave is supplied from the microwave transmitter 200. The inlet 324 may be formed in one or a plurality, and may be formed in the middle of the outer wall 3211 or at the top or the bottom thereof as shown in the drawing, and the shape, number, and position thereof may effectively introduce microwaves. This can be done in various ways.
한편, 상기한 실시예에서 상기 위치조정부(340a)의 회전레버(342a)는 일단부가 상기 내벽(3212)에 고정 결합되고 중간부가 절곡되어 타단부가 플라즈마 방전챔버(310)로부터 노출되어 있다.Meanwhile, in the above embodiment, one end of the rotary lever 342a of the position adjusting unit 340a is fixedly coupled to the inner wall 3212 and the middle part of the rotary lever 342a is exposed from the plasma discharge chamber 310.
이하에서는, 상기 안테나부(320,320a)의 슬롯(323,323a)에 대하여 살펴보기로 한다. 이에 앞서 도 7 및 도 8의 안테나부(320,320a)는 직선의 관 형상으로 도시되어 있으나, 이는 환형의 안테나부(320,320a) 일부분을 확대하여 직선형으로 나타낸 것으로서 상기한 슬롯(323,323a)의 형상을 알기 쉽게 도식화하기 위한 것임을 밝힌다.Hereinafter, the slots 323 and 323a of the antenna units 320 and 320a will be described. Prior to this, the antenna portions 320 and 320a of FIGS. 7 and 8 are shown in a straight tubular shape, but the antenna portions 320 and 320a are partially enlarged to show a straight line and the shape of the slots 323 and 323a. It is intended to make the diagram easier to understand.
먼저 도 7을 참조하면, 상기 슬롯(323)들은, 안테나부 몸체(321)의 내측 내주면에 원주방향(도면에서 길이방향)을 따라 동일한 간격으로 서로 이격되게 배치되어 있다.First, referring to FIG. 7, the slots 323 are spaced apart from each other at equal intervals along the circumferential direction (lengthwise in the drawing) on the inner inner circumferential surface of the antenna unit body 321.
상기 슬롯(323)들은, 안테나부 몸체(321)의 내측 상단과 하단까지 형성되어 있으며, 상기 유해가스의 유동방향에 대하여 경사진 방향으로 형성되어 있다. 이때 상기 슬롯(323)의 경사각도는 플라즈마 방전공간(1)과 에너지장을 고려하여 다양하게 할 수 있다.The slots 323 are formed to the inner upper end and the lower end of the antenna unit body 321, and are formed in a direction inclined with respect to the flow direction of the harmful gas. In this case, the inclination angle of the slot 323 may be varied in consideration of the plasma discharge space 1 and the energy field.
도 8을 참조하면, 상기 슬롯(323a)들은, 상기 유해가스의 유동방향에 대하여 수직한 방향으로 형성되어 있다. 또한, 상기 슬롯(323a)들은, 설정된 길이를 갖고 상기 유해가스의 유동방향에 대하여 높이가 서로 다르게 지그재그 방식으로 위치하고 있다. 여기서 상기 슬롯(323a)의 길이는 플라즈마 방전공간(1)과 에너지장을 고려하여 다양하게 할 수 있다.Referring to FIG. 8, the slots 323a are formed in a direction perpendicular to the flow direction of the noxious gas. In addition, the slots 323a have a set length and are positioned in a zigzag manner different in height with respect to the flow direction of the noxious gas. The length of the slot 323a may be varied in consideration of the plasma discharge space 1 and the energy field.
한편, 도시하지 않았지만 상기 슬롯(323)들은, 상기 유해가스의 유동방향과 평행한 방향으로 형성되어 안테나부 몸체(321)의 원주방향을 따라 이격되게 형성될 수 있다. On the other hand, although not shown, the slots 323 may be formed in a direction parallel to the flow direction of the harmful gas may be spaced apart along the circumferential direction of the antenna unit body 321.
상기한 바에 따라 상기 유해가스 처리설비는 플라즈마 방전공간(1)을 둘러싸도록 안테나부(320,320a,320b)를 형성하고 이에 복수개의 슬롯(323,323a)들을 형성하여 마이크로웨이브가 플라즈마 방전공간(1)으로 공급되게 함으로써 플라즈마 방전공간(1) 내 균일하고 효율적인 플라즈마 방전을 이루고 이를 통해 유해가스의 처리효율을 향상시킬 수 있을 뿐만 아니라 비용을 저감시킬 수 있어 경제적인 효과를 제공할 수 있다.As described above, the noxious gas treatment facility forms antenna units 320, 320a, and 320b to surround the plasma discharge space 1, and a plurality of slots 323, 323a are formed therein so that the microwave is discharged from the plasma discharge space 1. By supplying to the plasma discharge space (1) to achieve a uniform and efficient plasma discharge through this can not only improve the treatment efficiency of harmful gases, but also can reduce the cost can provide an economical effect.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명에 따르면 반도체나 디스플레이 제조시 발생되는 유해가스의 처리시설에 이용될 수 있다.According to the present invention can be used in the treatment facilities of harmful gases generated during the manufacture of semiconductors or displays.

Claims (12)

  1. 공정챔버에서 배출되는 유해가스를 처리하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비에 있어서,In the noxious gas treatment facility using the microwave plasma to treat the noxious gas discharged from the process chamber,
    마이크로웨이브를 생성하는 마이크로웨이브 발생유닛;A microwave generating unit for generating a microwave;
    상기 마이크로웨이브 발생유닛에서 생성된 마이크로웨이브를 전송 공급하는 마이크로웨이브 전송부; 및A microwave transmitter for transmitting and supplying microwaves generated by the microwave generating unit; And
    상기 공정챔버로부터 배출되는 상기 유해가스가 유동하는 배관에 설치되며, 상기 마이크로웨이브 전송부로부터 상기 마이크로웨이브를 공급받아 내부에서 플라즈마 방전을 발생하여 상기 유해가스 내 유해물질을 분해하는 플라즈마 방전유닛을 포함하되,A plasma discharge unit installed in a pipe through which the noxious gas discharged from the process chamber flows and receiving the microwaves from the microwave transmission unit to generate a plasma discharge therein to decompose noxious substances in the noxious gas; But
    상기 플라즈마 방전유닛은, The plasma discharge unit,
    상기 공정챔버로부터 배출되는 상기 유해가스가 유동하는 제1배관과 진공펌프를 향해 상기 유해가스가 유동되는 제2배관 사이에 설치되며, 내부에 상기 제1배관과 상기 제2배관과 연통되어 상기 유해가스가 통과하는 원통형의 플라즈마 방전공간이 형성된 플라즈마 방전챔버와, It is installed between the first pipe through which the harmful gas discharged from the process chamber flows and the second pipe through which the harmful gas flows toward the vacuum pump, and communicate with the first pipe and the second pipe therein. A plasma discharge chamber having a cylindrical plasma discharge space through which gas passes;
    상기 플라즈마 방전챔버에 설치되며 상기 플라즈마 방전공간의 외측을 둘러싸도록 배치되고, 상기 마이크로웨이브가 도입되는 내부공간이 형성되며 상기 플라즈마 방전공간을 향하여 서로 이격되게 형성되어 내부로 도입된 상기 마이크로웨이브를 상기 플라즈마 방전공간으로 방출시키는 복수개의 슬롯들이 형성된 안테나부와, The microwave is installed in the plasma discharge chamber and is disposed to surround the outside of the plasma discharge space, and an inner space into which the microwave is introduced is formed and spaced apart from each other toward the plasma discharge space. An antenna unit having a plurality of slots configured to discharge into the plasma discharge space;
    상기 안테나부의 내측 상기 플라즈마 방전챔버에 설치되어 상기 플라즈마 방전을 위한 이온 또는 전자가 외부로 누설되는 것을 방지하는 차폐부재를 포함하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비.And a shielding member installed in the plasma discharge chamber inside the antenna unit to prevent leakage of ions or electrons for the plasma discharge to the outside.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 플라즈마 방전유닛은,The plasma discharge unit,
    상기 플라즈마 방전챔버에 설치되는 튜너를 더 포함하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비.Toxic gas treatment facility using a microwave plasma further comprising a tuner installed in the plasma discharge chamber.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 플라즈마 방전유닛은, The plasma discharge unit,
    진공챔버 또는 포어라인(Foreline)에 결합하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비.Harmful gas treatment facility using microwave plasma coupled to vacuum chamber or foreline.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 마이크로웨이브 전송부는,The microwave transmission unit,
    동축케이블 또는 웨이브가이드(Waveguide)를 포함하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비.Harmful gas treatment facility using microwave plasma including coaxial cable or waveguide.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 안테나부는,The antenna unit,
    원통형의 상기 플라즈마 방전공간을 둘러싸도록 환형으로 형성되는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비.Toxic gas treatment facility using a microwave plasma is formed in an annular shape to surround the plasma discharge space of the cylinder.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 슬롯들은, The slots,
    내주면에 원주방향을 따라 동일한 간격으로 서로 이격되게 배치되는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비. Noxious gas treatment facility using microwave plasma disposed on the inner circumferential surface spaced apart from each other at equal intervals.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 슬롯들은, The slots,
    상기 유해가스의 유동방향에 대하여 수직한 방향으로 형성되는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비. Toxic gas treatment facility using a microwave plasma is formed in a direction perpendicular to the flow direction of the harmful gas.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 슬롯들은, The slots,
    상기 유해가스의 유동방향에 대하여 높이가 서로 다르게 지그재그 방식으로 위치하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비. Hazardous gas treatment facility using a microwave plasma located in a zigzag manner different in height with respect to the flow direction of the harmful gas.
  9. 청구항 6에 있어서,The method according to claim 6,
    상기 슬롯들은,The slots,
    상기 유해가스의 유동방향에 대하여 경사진 방향으로 형성되는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비. Toxic gas treatment facility using a microwave plasma is formed in a direction inclined with respect to the flow direction of the harmful gas.
  10. 청구항 6에 있어서,The method according to claim 6,
    상기 슬롯들은,The slots,
    상기 유해가스의 유동방향과 평행한 방향으로 형성되는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비. Toxic gas treatment facility using a microwave plasma formed in a direction parallel to the flow direction of the harmful gas.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 안테나부는, 상기 플라즈마 방전챔버에 대하여 원주방향을 따라 회전 가능하게 설치되며,The antenna unit is rotatably installed in the circumferential direction with respect to the plasma discharge chamber,
    상기 플라즈마 방전유닛은, 상기 안테나부와 연결되어 사용자가 상기 안테나부를 상기 원주방향을 따라 회전시켜 상기 슬롯들의 위치를 변경할 수 있도록 하는 위치조정부를 더 포함하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비.The plasma discharge unit further comprises a position adjusting unit connected to the antenna unit to allow a user to rotate the antenna unit along the circumferential direction to change the positions of the slots.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 위치조정부는,The position adjusting unit,
    일단부는 상기 안테나부와 결합하고, 타단부는 상기 플라즈마 방전챔버에 형성된 호형상의 위치조정홀을 관통하여 외부로 노출되게 형성되어, 사용자가 타단부를 파지하여 상기 안테나부를 회전시킬 수 있도록 하는 회전레버를 포함하는 마이크로웨이브 플라즈마를 이용한 유해가스 처리설비. One end is coupled to the antenna portion, the other end is formed to be exposed to the outside through the arc-shaped positioning hole formed in the plasma discharge chamber, the user rotates to hold the other end to rotate the antenna unit Harmful gas treatment facility using microwave plasma including a lever.
PCT/KR2017/004869 2017-04-26 2017-05-11 Harmful gas processing facility using microwave plasma WO2018199373A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0053348 2017-04-26
KR20170053348 2017-04-26
KR1020170057985A KR101913721B1 (en) 2017-04-26 2017-05-10 Facility for purifying harmful gas using microwave plasma
KR10-2017-0057985 2017-05-10

Publications (1)

Publication Number Publication Date
WO2018199373A1 true WO2018199373A1 (en) 2018-11-01

Family

ID=63918577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004869 WO2018199373A1 (en) 2017-04-26 2017-05-11 Harmful gas processing facility using microwave plasma

Country Status (1)

Country Link
WO (1) WO2018199373A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537004A (en) * 1993-03-06 1996-07-16 Tokyo Electron Limited Low frequency electron cyclotron resonance plasma processor
JP2000299199A (en) * 1999-04-13 2000-10-24 Plasma System Corp Plasma generating device and plasma processing device
KR100579760B1 (en) * 2004-07-30 2006-05-15 전북대학교산학협력단 An adsorptim-detachment device using microwave
KR20130048577A (en) * 2011-11-02 2013-05-10 (주)트리플코어스코리아 Plasma reactor and and gas scrubber using the same
KR101611255B1 (en) * 2015-11-24 2016-04-11 코어 플라즈마 테크놀로지 아이엔씨 Facility for purifying harmful gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537004A (en) * 1993-03-06 1996-07-16 Tokyo Electron Limited Low frequency electron cyclotron resonance plasma processor
JP2000299199A (en) * 1999-04-13 2000-10-24 Plasma System Corp Plasma generating device and plasma processing device
KR100579760B1 (en) * 2004-07-30 2006-05-15 전북대학교산학협력단 An adsorptim-detachment device using microwave
KR20130048577A (en) * 2011-11-02 2013-05-10 (주)트리플코어스코리아 Plasma reactor and and gas scrubber using the same
KR101611255B1 (en) * 2015-11-24 2016-04-11 코어 플라즈마 테크놀로지 아이엔씨 Facility for purifying harmful gas

Similar Documents

Publication Publication Date Title
KR20220009485A (en) Hall effect enhanced capacitively coupled plasma source, an abatement system, and vacuum processing system
US6499425B1 (en) Quasi-remote plasma processing method and apparatus
EP0821995B1 (en) Processes and apparatus for the scrubbing of exhaust gas streams
WO2012091406A2 (en) Apparatus for processing exhaust fluid
WO2013109037A1 (en) Multiple-mode plasma generation apparatus
CN111755308B (en) Process chamber and semiconductor processing equipment
CN110993479B (en) Remote plasma source generating device and semiconductor processing equipment
WO2022114721A1 (en) Static electricity eliminating apparatus using excimer lamp
WO2018199373A1 (en) Harmful gas processing facility using microwave plasma
KR101913721B1 (en) Facility for purifying harmful gas using microwave plasma
KR101611255B1 (en) Facility for purifying harmful gas
CN111883410A (en) Batch type substrate processing apparatus
WO2013176408A1 (en) Nozzle unit and substrate-processing system including the nozzle unit
WO2017057871A1 (en) Atomic layer deposition device and atomic layer deposition method
KR20120074878A (en) Baffle, apparatus for treating substrate and method for treating thereof
US20060112879A1 (en) Plasma processing apparatus
WO2014123280A1 (en) Microwave plasma sterilization device
US20040007247A1 (en) Plasma film-forming apparatus and cleaning method for the same
WO2019194540A1 (en) Plasma dry cleaning device using complex rf frequencies
WO2017111535A1 (en) High density microwave plasma apparatus
KR101946935B1 (en) Microwave plasma reactor for treating harmful gas and apparatus for treating harmful gas with the same
KR20200046335A (en) Facility for purifying harmful gas using microwave plasma
KR20200046334A (en) Facility for purifying harmful gas using microwave plasma
KR101946936B1 (en) Microwave plasma reactor for treating harmful gas and apparatus for treating harmful gas with the same
KR20040107983A (en) Aperture for manufacturing a semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17907707

Country of ref document: EP

Kind code of ref document: A1