WO2018199365A1 - Method for manufacturing carbon fiber-reinforced composite material spring, and carbon fiber-reinforced composite material spring manufactured thereby - Google Patents

Method for manufacturing carbon fiber-reinforced composite material spring, and carbon fiber-reinforced composite material spring manufactured thereby Download PDF

Info

Publication number
WO2018199365A1
WO2018199365A1 PCT/KR2017/004581 KR2017004581W WO2018199365A1 WO 2018199365 A1 WO2018199365 A1 WO 2018199365A1 KR 2017004581 W KR2017004581 W KR 2017004581W WO 2018199365 A1 WO2018199365 A1 WO 2018199365A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
spring
resin
reinforced composite
spring material
Prior art date
Application number
PCT/KR2017/004581
Other languages
French (fr)
Korean (ko)
Inventor
박경래
박동원
김영근
김형민
Original Assignee
윈엔윈(주)
위아위스 주식회사
(주)크린앤사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윈엔윈(주), 위아위스 주식회사, (주)크린앤사이언스 filed Critical 윈엔윈(주)
Priority to PCT/KR2017/004581 priority Critical patent/WO2018199365A1/en
Publication of WO2018199365A1 publication Critical patent/WO2018199365A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles

Definitions

  • the present invention relates to a carbon fiber-reinforced composite spring, and more particularly, to manufacture a spring material using a gelled prepreg and a knitted prepreg produced by impregnating the carbon fiber with a resin, and then mold it. It relates to a carbon fiber-reinforced composite spring production method and a carbon fiber-reinforced composite spring produced by the manufacturing method thereof can be molded into a helical spring material to be added to.
  • nanoparticles including carbon nanotubes have excellent electrical conductivity, thermal conductivity, and strength, so that even if a small amount is added to the polymer, a nanocomposite material having much improved characteristics than the structure / functional properties of the original polymer can be obtained.
  • CNT carbon nanotubes
  • the CNT-containing composite material described above has a mechanical property of about 10 to 20% compared to the conventional micro fiber reinforced composite material, microfibers and CNTs are used to use the nanocomposite for structural and multifunctional use. Is inevitably bound to hybridize or significantly increase the amount of CNT added.
  • Patent Document 1 a composite material containing CNTs is a lightweight high strength material, and many studies have been conducted for wide application in the aerospace and defense industries.
  • the thickness direction is weak, which hinders the wide application of the composite material, and the material properties database is insufficient, resulting in poor reliability and stability. Accordingly, many studies have been conducted to produce a structural composite material requiring high strength and high rigidity by impregnating a resin mixed with CNTs in carbon fiber.
  • the present invention is to solve the above-mentioned problems of the prior art, carbon fiber reinforced composite material spring that can improve the mechanical, thermal, electrical / electronic, chemical / physical and chemical properties of the spring produced by the carbon fiber reinforced composite material It is an object of the present invention to provide a carbon fiber-reinforced composite spring prepared by the manufacturing method and the manufacturing method thereof.
  • the present invention configured to achieve the above object is as follows. That is, the carbon fiber reinforced composite spring manufacturing method according to the present invention (a) carbon fiber impregnated with a CNT resin mixed in a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) with respect to 100 parts by weight of resin (gel) The first carbon fiber prepreg is wound around the mandrel, and the first carbon fiber prepreg is wound in a plurality of layers so as to have a thickness of 7/10 to 9/10 with respect to the diameter of the spring material to be manufactured.
  • a carbon fiber impregnated with a CNT resin mixed in a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) with respect to 100 parts by weight of resin
  • the first carbon fiber prepreg is wound around the mandrel, and the first carbon fiber prepreg is wound in a plurality of layers so as to have a thickness of 7/10 to 9/10 with respect to the diameter of the spring material to be manufactured.
  • step (a), step (b) and step (c) of the configuration according to the present invention as described above may be made of one selected from the epoxy resin, phenol resin, unsaturated polyester resin and vinyl ester resin as the thermosetting resin. have.
  • the first carbon fiber prepreg may be made of UD tape (Uni-Direction tape) in the step (a) of the configuration according to the present invention.
  • UD tape Uni-Direction tape
  • the carbon fiber is one carbon fiber selected from 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber and 24K carbon fiber Can be configured.
  • Carbon fiber reinforced composite spring according to the present invention is produced through the carbon fiber reinforced composite spring manufacturing method as described above.
  • the carbon fiber reinforced composite spring manufacturing method (A) carbon fiber impregnated CNT resin mixed in a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) to 100 parts by weight of resin
  • the gel-formed first carbon fiber prepreg is wound around the mandrel, and the first carbon fiber prepreg is wound in a plurality of layers so as to have a thickness of 7/10 to 9/10 with respect to the diameter of the spring material to be manufactured.
  • Winding the layer to form a third carbon fiber layer (D) removing the mandrel during curing of the first to third carbon fiber layers formed through steps (A) to (C) to obtain a tubular first spring material; (E) inserting the first spring material obtained in step (D) into a mold having a rod-shaped molding space; (F) While injecting high pressure air into the hollow of the first spring material introduced into the mold through the step (E), the first spring material is tubular by expanding and integrating three first to third carbon fiber layers.
  • the resin may be one selected from epoxy resins, phenol resins, unsaturated polyester resins and vinyl ester resins as thermosetting resins. have.
  • the first carbon fiber prepreg may be made of a UD tape (Uni-Direction tape) in the step (A) of the configuration according to the present invention.
  • UD tape Uni-Direction tape
  • the carbon fiber in the step (B) and step (C) of the configuration according to the present invention will be composed of one carbon fiber selected from 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber and 24K carbon fiber Can be.
  • Carbon fiber reinforced composite spring according to another embodiment of the present invention is manufactured through the carbon fiber reinforced composite spring manufacturing method according to another embodiment as described above.
  • the spring of the carbon fiber-reinforced composite material is molded into the mold after the spring material is formed by using the carbonized carbon fiber prepreg and the knitted carbon fiber prepreg manufactured by impregnating the resin into the carbon fiber. It is formed into a helical spring material to form a carbon fiber-reinforced composite spring, which has low density, high tensile strength and tensile elasticity, strong resistance to fatigue / strength, and excellent mechanical and wear characteristics. .
  • the spring of the carbon fiber reinforced composite material has a small linear expansion coefficient, good dimensional stability, strong mechanical properties by heat, and strong resistance to fracture / deterioration, that is, mechanical properties are destroyed by heat. It has a thermal property of low thermal conductivity at extremely low temperatures.
  • the technology according to the present invention has the electrical and electronic properties that the spring of the carbon fiber reinforced composite material is also excellent in electrical conductivity (rate), electromagnetic wave prevention, X-ray transmittance.
  • the technique according to the present invention has a chemical physicochemical property that the spring of the carbon fiber reinforced composite material is chemically stable and excellent in resistance to various solvents such as acid and alkali.
  • FIG. 1 is a block diagram showing the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
  • Figure 2 is a perspective configuration showing the state before the winding of the first carbon fiber prepreg on the mandrel in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
  • Figure 3 is a perspective configuration showing the state before the winding of the second carbon fiber prepreg on the first carbon fiber layer on the mandrel in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
  • Figure 4 is a perspective configuration showing the state before the winding of the third carbon fiber prepreg to the second carbon fiber layer in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
  • Figure 5 is a perspective configuration showing the separation of the mandrel from the first spring material consisting of the first to third carbon fiber layer in the process of manufacturing the carbon fiber reinforced composite material spring according to the first embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing a cross-section of the first spring material in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing a state in which the first spring material is injected into the mold of the helical shape in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
  • FIG. 8 is a view illustrating a third spring material in a state of being hardened in a spring shape through a helical mold in a process of manufacturing a carbon fiber reinforced composite spring according to a first embodiment of the present invention.
  • Figure 9 is a block diagram showing the manufacturing process of the carbon fiber reinforced composite spring according to the second embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a process of molding by injecting a high-pressure air into the hollow of the spring material in which the mandrel is removed in the process of the carbon fiber reinforced composite material spring according to the second embodiment of the present invention.
  • the best method for producing a carbon fiber reinforced composite spring according to the present invention is to impregnate the carbon fiber resin to the carbon fiber in a state in which the first carbon fiber layer is formed by winding the gelled first carbon fiber prepreg on the mandrel Impregnated to form a second carbon fiber layer and a third carbon fiber layer by winding the second carbon fiber prepreg and the third carbon fiber prepreg of the knitted shape on the first carbon fiber layer in order to cure the first to third carbon fiber layers.
  • the first spring material is put into a mold having a helical shape space, and high pressure air is injected into the hollow of the first spring material.
  • the helical third spring material is cut to a set length to complete the carbon fiber reinforced composite spring.
  • the carbon fiber reinforced composite spring according to the present invention can be manufactured by two methods, most of the manufacturing process is the same and the process of molding the shape of the carbon fiber reinforced composite spring in the mold and the helical shape Different embodiments of the present invention show a difference in the process of forming the helical shape of the spring material formed in a separate molding process.
  • the two carbon fiber reinforced composite spring manufacturing method as described above will be described in detail.
  • FIG. 1 is a block diagram showing the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention
  • Figure 2 is a mandrel in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention
  • 3 is a perspective view showing a pre-wound state of the first carbon fiber prepreg
  • FIG. 3 is a second carbon fiber prep on the first carbon fiber layer on the mandrel during the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention
  • 4 is a perspective view showing the pre-winding state of the leg
  • Figure 4 shows the pre-winding state of the third carbon fiber prepreg to the second carbon fiber layer in the process of manufacturing the carbon fiber reinforced composite spring according to the first embodiment of the present invention
  • 5 is a perspective view of the mandrel from the first spring material consisting of the first to third carbon fiber layer in the manufacturing process of the carbon fiber reinforced composite material spring according to the first embodiment of the present invention
  • 6 is a cross-sectional configuration view showing a cross-section of the first spring material in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention
  • Figure 7 is a first embodiment of the present invention
  • the technique of manufacturing a carbon fiber reinforced composite spring according to the first embodiment of the present invention configured as described above first, as shown in Figs.
  • the first carbon fiber prepreg 21 is wound around the mandrel 11 to form a first carbon fiber layer 21a (S100).
  • the resin impregnated in the carbon fiber refers to the CNT resin mixed in a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin.
  • the carbon fiber is impregnated with CNT resin mixed in a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) to 100 parts by weight of resin to mandrel the first carbonized fiber prepreg 21,
  • CNT carbon nanotubes
  • the first carbon fiber prep is formed to have a diameter of 7/10 to 9/10 of the diameter of the spring material 20a to be manufactured.
  • the leg 21 is wound up and formed in several layers.
  • the resin impregnated in the carbon fiber refers to the CNT resin mixed in a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin.
  • the second carbon fiber prepreg 22 having a gelled knit shape is impregnated by impregnating CNT resin mixed in carbon fiber at a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin.
  • CNT carbon nanotubes
  • the third carbon fiber layer 23a is formed by winding the gelled knitted third carbon fiber prepreg 23 on the second carbon fiber layer 22a by impregnating the resin (S120).
  • the resin impregnated in the carbon fiber refers to the CNT resin mixed in a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin.
  • the third carbon fiber prepreg 23 having a gelled knit shape is impregnated by impregnating CNT resin mixed in carbon fiber at a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin.
  • CNT carbon nanotubes
  • the mandrel 11 when the mandrel 11 is removed from the first carbon fiber layer 21a when the first carbon fiber layer 21a, the second carbon fiber layer 22a, and the third carbon fiber layer 23a are cured, the first When the carbon fiber layer 21a is completely cured, it is difficult to separate the mandrel 11 from the first carbon fiber layer 21a. Therefore, when the carbon fiber layer 21a is hardened to some extent and the tubular shape is maintained, the mandrel (mandrel) is removed from the first carbon fiber layer 21a. It would be better to remove 11).
  • the mandrel 11 is removed to form a tubular first spring material 20a.
  • the first spring material 20a as shown in Figures 1 and 7 is injected into the mold (31, 32) having a helical shape of the molding space (S140).
  • the molds 31 and 32 having a helical shape space have a helical groove on the inner mold 31 and an inner circumferential surface in which the helical groove 31a is formed on the outer circumferential surface corresponding to the first spring material 20a.
  • the outer mold 32 having the 32a) formed thereon is assembled to form a shape having a helical shape molding space.
  • the first spring material 20a is a helical third spring material 20 by expanding and integrating the first to third carbon fiber layers 21a, 22a, and 23a while injecting high pressure air into the hollow 20c. To be cured to (S150).
  • the first spring material 20a When the high-pressure air is injected into the hollow 20c of the first spring material 20a fixed and inserted into the molds 31 and 32 having the helical shape space in the above-described process, the first spring material 20a While there is no change in the outer diameter, the hollow 20c of the first spring material 20a is expanded while the first to third carbon fiber layers 21a, 22a, and 23a are integrated together.
  • the process as described above is the second carbon line oil layer (22a) and the third carbon fiber layer to the inner diameter surface of the first carbon fiber layer (21a) of the hollow 20c of the first spring material (20a) is a high pressure air pressure Since the pressure is applied in the (23a) direction, the first to third carbon fiber layers 21a, 22a, and 23a are mutually integrated through the resin.
  • the first spring material 20a is introduced into the molds 31 and 32 so that high-pressure air is blown out of the first spring material 20a.
  • 20c) is hardened in the middle of forming in the form of a spring.
  • the high-pressure air is injected into the hollow 20c of the first spring material 20a to harden the third spring material 20 having a helical shape, and then shown in FIGS. 1 and 8.
  • the hardened helical third spring material 20 is separated from the molds 31 and 32 (S160).
  • the first spring material 20 a is completely helical in the molds 31 and 32. It may be more preferable to separate in the state of being molded into a third spring material 20 and cured.
  • the helical shape of the third spring material 20 which has been cured as described above, is separated from the molds 31 and 32, and then the helical shape of the third spring material, as shown in FIGS.
  • the carbon fiber reinforced composite material spring to be manufactured in the present invention is completed.
  • the carbon fiber-reinforced composite spring produced through the process as described above has a lower density than the metal, high tensile strength and tensile elasticity, strong resistance to fatigue strength, and excellent mechanical and wear characteristics. There is this.
  • a gelled first carbon fiber prepreg 21 by impregnating a resin (thermosetting resin or thermoplastic resin) to the carbon fiber for a predetermined time through step (a) process (S100) and This is wound around the rod-shaped mandrel 11 to a uniform thickness to form a first carbon fiber layer 21a.
  • the length of the first carbon fiber layer 21a formed by the first carbon fiber prepreg 21 may vary depending on the length of the carbon fiber reinforced composite material spring to be manufactured.
  • the first carbon fiber prepreg 21 wound around the mandrel 11 to form the first carbon fiber layer 21 a as in step (a) (S100) is a UD tape (Uni-Direction tape).
  • the first carbon fiber prepreg 21 is wound in a plurality of layers to form a first carbon fiber layer 21a until it is 7/10 to 9/10 diameter with respect to the diameter of the first spring material 20a.
  • the yarn (filament) is the initial product of the carbon fiber as in the step (a) step (S100) described above, one strand of carbon fiber is 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber and 24K carbon fiber One of the selected carbon fibers is used.
  • the second carbon fiber layer was wound by winding the second carbon fiber prepreg 22 having a gelled knit shape by impregnating carbon fibers with a thermosetting resin or a thermoplastic resin on the first carbon fiber layer 21a through step (b). 22a).
  • the length of the second carbon fiber prepreg 22 forming the second carbon fiber layer 22a in the step (b) process (S110) as described above is shown in FIG. 3 of the first carbon fiber layer 21a.
  • the second carbon fiber layer 22a is formed of a single layer when the second carbon fiber prepreg 22 is wound on the first carbon fiber layer 21a and formed to have a length corresponding to the circumference.
  • the third carbon of the knitted carbon shape is formed by impregnating the carbon fiber with the thermosetting or thermosetting resin on the second carbon fiber layer 22a through the step (c) (S120).
  • the fiber prepreg 23 is wound to form a third carbon fiber layer 23a.
  • the length of the third carbon fiber prepreg 23 is the length corresponding to the circumference of the second carbon fiber layer 22a as shown in FIG. 6, the third carbon fiber layer 23a is formed of a single layer as shown in FIG. 6.
  • each of the second carbon fiber prepreg 22 forming the second carbon fiber layer 22a and the third carbon fiber prepreg 23 forming the third carbon fiber layer 23a may be the first carbon fiber.
  • the prepreg 21 is formed by winding several layers, the prepreg 21 is formed in a single layer structure formed by winding in one layer.
  • the second carbon fiber prepreg 22 and the third carbon fiber prepreg 23 may be different depending on the characteristics of the carbon fiber-reinforced composite spring to be manufactured or the like.
  • the gelled first carbon fiber prepreg 21, the knitted second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 wound on the mandrel 11 in the above-described process are used.
  • the constituent resin any one selected from an epoxy resin, a phenol resin, an unsaturated polyester resin, and a vinyl ester resin may be used among thermosetting resins.
  • the resin constituting the first carbon fiber prepreg 21, the second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 is 1 to 5 parts by weight of CNT (Carbon) based on 100 parts by weight of the resin.
  • CNT Carbon
  • the resin constituting the first carbon fiber prepreg 21, the second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 is in the ratio of 1 to 5 parts by weight of CNTs relative to 100 parts by weight of the resin. It may be referred to as a mixed composition CNT resin.
  • the first carbon fiber prepreg 21 gelled on the mandrel 11, the second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 are sequentially wound to form the first to third carbons.
  • a predetermined time has elapsed to form the first carbon fiber prepreg 21 and the second carbon fiber prepreg constituting the first to third carbon fiber layers 21a, 22a, and 23a.
  • the mandrel 11 is removed as shown in FIGS. 1, 5 and 6 through the step (d) (S130) of the present invention.
  • the tubular first spring material 20a for molding the carbon fiber reinforced composite material spring is obtained.
  • the first spring material 20a obtained through the steps (a) to (d) as described above is formed in the helical shape through the step (e) process S140 as shown in FIG. 1.
  • the injection into the mold (31, 32) having a high pressure air is injected into the hollow (20c) of the first spring material (20a) through the step (f) process (S150) as shown in Figure 1 and 7
  • the first to third carbon fiber layers 21a, 22a, and 23a of the three layers are expanded to be in close contact with the molding spaces of the molds 31 and 32, respectively, and are integrated with each other so that the first spring material 20a is a helical third spring.
  • the material 20 is to be cured.
  • the present invention is not limited thereto, and two or more molds may be separated and coupled in a vertical or horizontal direction.
  • the third spring material 20 formed in the inner mold 31 and the outer mold 32 may be deformed to fit the use of the spring to be manufactured other than the circle or square.
  • a helical groove 31a is formed on the outer circumferential surface of the inner mold 31, and a helical groove 32a is formed on the inner circumferential surface of the outer mold 32 so that the inner mold 31 and the outer mold 32 are mutually assembled. In this state, a helical space is provided inside the mold.
  • the molds 31 and 32 may be separately heated or cooled. It may be provided.
  • the helical third spring material 20 cured through the step (f) process (S150) as described above with respect to the mold (31) through the step (g) process (S160) as shown in FIGS. 1 and 8. , 32) and then cut the helical shape of the third spring material 20 to the length set according to the purpose through the step (h) process (S170) as shown in Figure 1 to complete the carbon fiber reinforced composite material spring do.
  • Figure 9 is a block diagram showing the manufacturing process of the carbon fiber reinforced composite spring according to the second embodiment of the present invention
  • Figure 10 is a mandrel removed in the process of the carbon fiber reinforced composite spring according to the second embodiment of the present invention It is a schematic diagram showing the process of molding by injecting a high pressure air into the hollow of the spring material.
  • FIGS. 9 and 10 the same process as the embodiment of FIGS. 1 to 8 will be described with reference to FIGS. 1 to 6 and 8, and FIGS. 1 to 8 will be described. Processes different from those of the embodiment will be described with reference to FIGS. 9 and 10.
  • the first carbon fiber layer 21 a is wound around the rod-shaped mandrel 11 with a uniform thickness.
  • the length of the first carbon fiber layer 21a formed by the first carbon fiber prepreg 21 may vary depending on the length of the carbon fiber reinforced composite material spring to be manufactured.
  • the first carbon fiber prepreg 21 wound around the mandrel 11 to form the first carbon fiber layer 21a is made of UD tape and has a diameter of the carbon fiber reinforced composite spring material to be manufactured. It is desirable to have a thickness of 7/10 to 9/10.
  • the initial product of the above-described carbon fiber (filament) of the fiber (filament) one strand of carbon fiber is one carbon fiber selected from 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber, 24K carbon fiber.
  • step (B) as shown in FIGS. 9 and 3.
  • the second carbon fiber layer 22a is formed by winding the gelled knit second carbon fiber prepreg 22.
  • the length of the second carbon fiber prepreg 22 wound on the first carbon fiber layer 21a is formed to have a length corresponding to the circumference of the first carbon fiber layer 21a as shown in FIG.
  • the first carbon fiber layer 22a is made of a single layer.
  • the legs 23 are wound to form a third carbon fiber layer 23a, and the length of the third carbon fiber prepreg 23 is formed to a length corresponding to the circumference of the second carbon fiber layer 22a as shown in FIG.
  • the third carbon fiber layer 23a is formed as a single layer.
  • each of the second carbon fiber prepreg 22 forming the second carbon fiber layer 22a and the third carbon fiber prepreg 23 forming the third carbon fiber layer 23a may be the first carbon fiber.
  • the prepreg 21 is formed by winding several layers, the prepreg 21 is formed of a single layer wound and formed in one layer.
  • the second carbon fiber prepreg 22 and the third carbon fiber prepreg 23 may vary depending on the characteristics of the carbon fiber-reinforced composite spring to be manufactured or the like.
  • the resin constituting the gelled first carbon fiber prepreg 21 wound on the mandrel 11, the second carbon fiber prepreg 22 and the third carbon fiber prepreg 23 having a knitted shape are thermosetting. It is preferable that resin is used. In this case, any one selected from an epoxy resin, a phenol resin, an unsaturated polyester resin, and a vinyl ester resin may be used as the thermosetting resin.
  • the resin constituting the above-described first carbon fiber prepreg 21, second carbon fiber prepreg 22, and third carbon fiber prepreg 23 is 1 to 5 parts by weight of CNTs based on 100 parts by weight of the resin.
  • the adhesive strength is improved by 30% or more than the general epoxy resin, and the elastic modulus of the spring is increased by 20% or more. That is, the resin constituting the first carbon fiber prepreg 21 and the second and third carbon fiber prepregs 22 and 23 is the number of CNTs mixed and mixed at a ratio of 1 to 5 parts by weight of CNTs relative to 100 parts by weight of the resin. It can be called.
  • the first carbon fiber prepreg 21 gelled on the mandrel 11, the second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 are sequentially wound to form the first to third carbons.
  • the first carbon fiber prepreg 21 and the second carbon fiber prepreg constituting each of the first to third carbon fiber layers 21a, 22a, and 23a after a predetermined time has elapsed after the fiber layers 21a, 22a and 23a are formed.
  • the carbon according to the present invention is removed by removing the mandrel 11 through the step S230 as shown in FIGS. 9, 5, and 6.
  • a tubular first spring material 20a for molding the fiber reinforced composite spring can be obtained.
  • the high-pressure air is injected into the hollow 20c of the first spring material 20a through the step (F) process (S250) to form the first to third carbon fiber layers 21a, 22a, and 23a.
  • the upper mold 33 and the lower mold 34 have been described as an example of separating up and down, but the present invention is not limited thereto, and two or more molds may be separated and combined up, down, front, rear, left, and right.
  • the second spring material 20b formed in the molds 33 and 34 may be deformed to fit the use of a spring to be manufactured in addition to a circle or a square.
  • the molds 33 and 34 are provided with a separate heating device or a cooling device. Or the like.
  • the tubular second spring material 20b is separated from the mold 31. 32 through step G), step S260, and then, step H, step S270).
  • the helical third spring is formed through step (I) (S280). The material 20 is cut to a length set according to the use to complete the carbon fiber reinforced composite material spring to be manufactured in the present invention.
  • the carbon fiber as the fiber impregnated with the thermosetting resin has been described as an example, but the present invention is not limited thereto and at least one selected from carbon fiber, glass fiber, aramid fiber, high toughness PE fiber, acrylic fiber and nylon fiber. Can be used.
  • the amount of CNT added to the carbon fiber impregnated in the thermosetting resin also uses carbon fibers, glass fibers, aramid fibers, high toughness PE fibers, acrylic fibers, and nylon fibers in place of the carbon fibers as described above. can be changed.
  • the carbon fiber-reinforced composite spring produced by the manufacturing method according to the present invention has a low density, high tensile strength and high tensile elasticity, as well as strong resistance to fatigue strength, mechanical properties excellent in wear and lubricity compared to metals. It can be used as a spring to absorb the shock generated when driving a train or car.
  • the technique according to the present invention as described above is a mechanical element through a feature that prevents the mechanical properties are destroyed by heat because the linear expansion coefficient is small, the dimensional stability is good, and the mechanical properties due to heat and the resistance to fracture deterioration is strong Field, electrical conductivity (rate) and excellent in the electromagnetic wave prevention and X-ray transmittance, it can be used in various fields in the electric and electronic fields.
  • the technology according to the present invention can be utilized in a variety of chemical fields through the chemical physicochemical properties that the spring of the carbon fiber reinforced composite material is chemically stable and excellent resistance to various solvents such as acid and alkali.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Springs (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

A method for manufacturing a carbon fiber-reinforced composite material spring, according to the present invention, may comprise the steps of: forming a first carbon fiber layer by winding, around a mandrel, a carbon fiber prepreg that is gelled by impregnating a carbon fiber with a resin; forming a second carbon fiber layer by winding, on the first carbon fiber layer, a second carbon fiber prepreg of a knitted fabric shape that is gelled by impregnating a carbon fiber with a resin; forming a third carbon fiber layer by winding, on the second carbon fiber layer, a third carbon fiber prepreg of a knitted fabric shape that is gelled by impregnating a carbon fiber with a resin; obtaining a first spring material of a tubular shape by removing the mandrel when the first to third carbon fiber layers are partially cured; injecting the first spring material into a mold having a forming space of a helical shape; curing the first spring material into a third spring material of a helical shape by injecting high pressure air into a hollow of the first spring material inserted into the mold so that the first to third carbon fiber layers are expanded and integrated with each other; separating the cured third spring material of a helical shape from the mold; and producing a finished product of a carbon fiber-reinforced composite material spring by cutting the third spring material of a helical shape by a predetermined length.

Description

카본섬유 강화 복합소재 스프링 제조방법 및 이의 제조방법에 의해 제조된 카본섬유 강화 복합소재 스프링Carbon fiber reinforced composite spring production method and carbon fiber reinforced composite spring produced by the method
본 발명은 카본섬유 강화 복합소재 스프링에 관한 것으로, 더욱 상세하게는 카본섬유에 수지를 함침시켜서 제작되는 겔(gel)화된 프리프레그와 편직 형상의 프리프레그를 이용하여 스프링소재를 제조한 후 이를 금형에 투입하여 헬리컬 형상의 스프링소재로 성형할 수 있는 카본섬유 강화 복합소재 스프링 제조방법 및 이의 제조방법에 의해 제조된 카본섬유 강화 복합소재 스프링에 관한 것이다.The present invention relates to a carbon fiber-reinforced composite spring, and more particularly, to manufacture a spring material using a gelled prepreg and a knitted prepreg produced by impregnating the carbon fiber with a resin, and then mold it. It relates to a carbon fiber-reinforced composite spring production method and a carbon fiber-reinforced composite spring produced by the manufacturing method thereof can be molded into a helical spring material to be added to.
일반적으로, CNT(Carbon Nano Tube)를 비롯한 나노입자는 전기전도도와 열전도도 및 강도가 우수하여 고분자에 소량 첨가되더라도 원래 고분자의 구조/기능적 특성보다 매우 향상된 특성이 있는 나노복합재료를 얻을 수 있다. 특히 최근에는 CNT를 다양한 재료에 첨가하여 요구되는 향상된 물성을 갖도록 한 복합재료 개발에 대한 연구가 활발하게 진행되고 있다.In general, nanoparticles including carbon nanotubes (CNT) have excellent electrical conductivity, thermal conductivity, and strength, so that even if a small amount is added to the polymer, a nanocomposite material having much improved characteristics than the structure / functional properties of the original polymer can be obtained. In particular, research into the development of composite materials that have the improved physical properties required by adding CNT to various materials has been actively conducted in recent years.
그러나, 전술한 바와 같은 CNT가 함유된 복합재료는 기존의 마이크로 섬유 보강 복합재료에 비해 기계적 특성이 10∼20% 수준에 머무르고 있기 때문에 나노복합재료를 구조용 및 다기능용으로 사용하기 위해서는 마이크로섬유와 CNT를 하이브리드화하거나 CNT의 첨가량을 획기적으로 증가시킬 수밖에 없는 실정이다.However, since the CNT-containing composite material described above has a mechanical property of about 10 to 20% compared to the conventional micro fiber reinforced composite material, microfibers and CNTs are used to use the nanocomposite for structural and multifunctional use. Is inevitably bound to hybridize or significantly increase the amount of CNT added.
그리고, 특허문헌 1에 개시된 바와 같이 CNT가 함유된 복합재료는 경량의 고강도 소재로서 특히 항공우주 및 방위산업 분야에서 폭넓게 적용하기 위해 많은 연구가 진행되고 있다.Further, as disclosed in Patent Document 1, a composite material containing CNTs is a lightweight high strength material, and many studies have been conducted for wide application in the aerospace and defense industries.
그러나, 고분자 재료의 낮은 구조/기능 특성으로 인해 두께 방향의 특성이 취약하여 복합재료의 광범위한 적용을 저해하며 재료 특성 데이터 베이스가 충분치 못하여 신뢰성과 안정성이 취약하다. 이에 따라, CNT가 혼합된 수지를 카본섬유에 함침하여 고강도 및 고강성이 요구되는 구조용 복합재료를 제조하는데 많은 연구가 진행되고 있다.However, due to the low structural / functional properties of the polymer material, the thickness direction is weak, which hinders the wide application of the composite material, and the material properties database is insufficient, resulting in poor reliability and stability. Accordingly, many studies have been conducted to produce a structural composite material requiring high strength and high rigidity by impregnating a resin mixed with CNTs in carbon fiber.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 카본섬유 강화 복합소재에 의해 제조되는 스프링의 기계적, 열적, 전기적/전자적, 화학적/물리화학적 특성을 향상시킬 수 있는 카본섬유 강화 복합소재 스프링 제조방법 및 이의 제조방법에 의해 제조된 카본섬유 강화 복합소재 스프링을 제공하는데 그 목적이 있다.The present invention is to solve the above-mentioned problems of the prior art, carbon fiber reinforced composite material spring that can improve the mechanical, thermal, electrical / electronic, chemical / physical and chemical properties of the spring produced by the carbon fiber reinforced composite material It is an object of the present invention to provide a carbon fiber-reinforced composite spring prepared by the manufacturing method and the manufacturing method thereof.
전술한 목적을 달성하기 위해 구성되는 본 발명은 다음과 같다. 즉, 본 발명에 따른 카본섬유 강화 복합소재 스프링 제조방법은 (a) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔(gel)화된 제1카본섬유 프리프레그를 맨드릴에 감아 형성하되 제조하고자 하는 스프링소재의 직경에 대하여 7/10∼9/10의 두께가 되도록 제1카본섬유 프리프레그를 복수의 겹으로 감아 제1카본섬유층을 형성하는 단계; (b) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그를 제1카본섬유층 위에 단일층으로 감아 제2카본섬유층을 형성하는 단계; (c) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제3카본섬유 프리프레그를 제2카본섬유층 위에 단일층으로 감아 제3카본섬유층을 형성하는 단계; (d) 단계(a) 과정 내지 단계(c) 과정을 통해 형성되는 제1 내지 제3카본섬유층의 경화시 맨드릴을 제거하여 관 형상의 제1스프링소재를 수득하는 단계; (e) 단계(d) 과정에서 수득된 제1스프링소재에 대응하여 외주면에 헬리컬요홈이 형성된 내부금형과 내주면에 헬리컬요홈이 형성된 외부금형이 상호 조립되어 헬리컬 형상의 성형공간을 가지는 금형에 투입하는 단계; (f) 단계(e) 과정을 통해 금형에 투입된 제1스프링소재의 중공에 고압의 공기를 주입하는 가운데 3층의 제1 내지 제3카본섬유층을 확장시켜 서로 일체화시킴으로써 제1스프링소재가 헬리컬 형상의 제3스프링소재로 경화되도록 하는 단계; (g) 단계(f) 과정을 통해 경화된 헬리컬 형상의 제3스프링소재를 금형으로부터 분리하는 단계; 및 (h) 단계(g) 과정에서 금형으로부터 분리된 헬리컬 형상의 제3스프링소재를 설정된 길이로 절단하여 카본섬유 강화 복합소재 스프링을 완성하는 단계의 구성으로 이루어진다.The present invention configured to achieve the above object is as follows. That is, the carbon fiber reinforced composite spring manufacturing method according to the present invention (a) carbon fiber impregnated with a CNT resin mixed in a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) with respect to 100 parts by weight of resin (gel) The first carbon fiber prepreg is wound around the mandrel, and the first carbon fiber prepreg is wound in a plurality of layers so as to have a thickness of 7/10 to 9/10 with respect to the diameter of the spring material to be manufactured. Forming a; (b) Impregnating a carbonized knitted second carbon fiber prepreg on the first carbon fiber layer by impregnating CNT resin mixed in carbon fiber at a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) to 100 parts by weight of resin. Winding the layer to form a second carbon fiber layer; (c) Carbon fiber knitted CNT resin impregnated with CNT resin mixed at a ratio of 1 to 5 parts by weight with respect to 100 parts by weight of resin, and a gelled knitted third carbon fiber prepreg on the second carbon fiber layer Winding the layer to form a third carbon fiber layer; (d) removing the mandrel during curing of the first to third carbon fiber layers formed through steps (a) to (c) to obtain a tubular first spring material; (e) Inner molds with helical grooves formed on the outer circumference and outer molds with helical grooves formed on the inner circumference corresponding to the first spring material obtained in step (d) are assembled into a mold having a helical shape space. step; (f) Injecting high-pressure air into the hollow of the first spring material introduced into the mold through the step (e), the first spring material is helical shape by expanding and integrating three first to third carbon fiber layers. Hardening to a third spring material; (g) separating the hardened helical third spring material from the mold through the step (f); And (h) cutting the helical shape of the third spring material separated from the mold in the step (g) to a predetermined length to complete the carbon fiber reinforced composite material spring.
전술한 바와 같은 본 발명에 따른 구성의 단계(a), 단계(b) 및 단계(c) 과정에서 수지는 열경화성 수지로써 에폭시 수지, 페놀 수지, 불포화 폴리에스테르 수지 및 비닐에스테르 수지 중 선택된 하나로 이루어질 수 있다.In the step (a), step (b) and step (c) of the configuration according to the present invention as described above may be made of one selected from the epoxy resin, phenol resin, unsaturated polyester resin and vinyl ester resin as the thermosetting resin. have.
그리고, 본 발명에 따른 구성의 단계(a) 과정에서 제1카본섬유 프리프레그가 UD테이프(Uni-Direction tape)로 이루어질 수 있다.In addition, the first carbon fiber prepreg may be made of UD tape (Uni-Direction tape) in the step (a) of the configuration according to the present invention.
전술한 바와 같은 본 발명에 따른 구성의 단계(b)와 단계(c) 과정에서 카본섬유는 1K 카본섬유, 3K 카본섬유, 6K 카본섬유, 12K 카본섬유 및 24K 카본섬유 중 선택된 하나의 카본섬유로 구성될 수 있다.In the steps (b) and (c) of the configuration according to the present invention as described above, the carbon fiber is one carbon fiber selected from 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber and 24K carbon fiber Can be configured.
본 발명에 따른 카본섬유 강화 복합소재 스프링은 앞서 기술한 바와 같은 카본섬유 강화 복합소재 스프링 제조방법을 통해 제조된다.Carbon fiber reinforced composite spring according to the present invention is produced through the carbon fiber reinforced composite spring manufacturing method as described above.
한편, 본 발명의 다른 실시예에 따른 카본섬유 강화 복합소재 스프링 제조방법은 (A) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔(gel)화된 제1카본섬유 프리프레그를 맨드릴에 감아 형성하되 제조하고자 하는 스프링소재의 직경에 대하여 7/10∼9/10의 두께가 되도록 제1카본섬유 프리프레그를 복수의 겹으로 감아 제1카본섬유층을 형성하는 제1카본섬유층을 형성하는 단계; (B) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그를 제1카본섬유층 위에 단일층으로 감아 제2카본섬유층을 형성하는 단계; (C) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제3카본섬유 프리프레그를 제2카본섬유층 위에 단일층으로 감아 제3카본섬유층을 형성하는 단계; (D) 단계(A) 과정 내지 단계(C) 과정을 통해 형성되는 제1 내지 제3카본섬유층의 경화시 맨드릴을 제거하여 관 형상의 제1스프링소재를 수득하는 단계; (E) 단계(D) 과정에서 수득된 제1스프링소재를 봉 형상의 성형공간을 가지는 금형에 투입하는 단계; (F) 단계(E) 과정을 통해 금형에 투입된 제1스프링소재의 중공에 고압의 공기를 주입하는 가운데 3층의 제1 내지 제3카본섬유층을 확장시켜 서로 일체화시킴으로써 제1스프링소재가 관 형상의 제2스프링소재로 경화되도록 하는 단계; (G) 단계(F) 과정을 통해 경화된 관 형상의 제2스프링소재를 금형으로부터 분리하는 단계; (H) 단계(G) 과정을 통해 금형으로부터 분리된 관 형상의 제2스프링소재를 헬리컬 형상의 제3스프링소재로 성형하는 단계; 및 (I) 단계(H) 과정을 통해 헬리컬 형상으로 성형된 제3스프링소재를 설정된 길이로 절단하여 카본섬유 강화 복합소재 스프링으로 완성하는 단계를 포함한 구성으로 이루어진다.On the other hand, the carbon fiber reinforced composite spring manufacturing method according to another embodiment of the present invention (A) carbon fiber impregnated CNT resin mixed in a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) to 100 parts by weight of resin The gel-formed first carbon fiber prepreg is wound around the mandrel, and the first carbon fiber prepreg is wound in a plurality of layers so as to have a thickness of 7/10 to 9/10 with respect to the diameter of the spring material to be manufactured. Forming a first carbon fiber layer forming a first carbon fiber layer; (B) Impregnating CNT resin mixed with carbon fiber at a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) to 100 parts by weight of resin, and gelling the second carbon fiber prepreg of a knitted shape onto a first carbon fiber layer. Winding the layer to form a second carbon fiber layer; (C) The carbon fiber knitted third carbon fiber prepreg was impregnated onto the second carbon fiber layer by impregnating CNT resin mixed with carbon fiber at a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) based on 100 parts by weight of the resin. Winding the layer to form a third carbon fiber layer; (D) removing the mandrel during curing of the first to third carbon fiber layers formed through steps (A) to (C) to obtain a tubular first spring material; (E) inserting the first spring material obtained in step (D) into a mold having a rod-shaped molding space; (F) While injecting high pressure air into the hollow of the first spring material introduced into the mold through the step (E), the first spring material is tubular by expanding and integrating three first to third carbon fiber layers. Hardening to a second spring material; (G) separating the tubular second spring material cured through the step (F) from the mold; (H) forming a tubular second spring material separated from the mold through the step (G) into a helical third spring material; And (I) cutting the third spring material formed into a helical shape through the step (H) to a predetermined length and completing the carbon fiber reinforced composite material spring.
전술한 바와 같은 본 발명에 따른 구성의 단계(A), 단계(B) 및 단계(C) 과정에서 수지는 열경화성 수지로써 에폭시 수지, 페놀 수지, 불포화 폴리에스테르 수지 및 비닐에스테르 수지 중 선택된 하나로 이루어질 수 있다.In the steps (A), (B) and (C) of the configuration according to the present invention as described above, the resin may be one selected from epoxy resins, phenol resins, unsaturated polyester resins and vinyl ester resins as thermosetting resins. have.
그리고, 본 발명에 따른 구성의 단계(A) 과정에서 제1카본섬유 프리프레그가 UD테이프(Uni-Direction tape)로 이루어질 수 있다.In addition, the first carbon fiber prepreg may be made of a UD tape (Uni-Direction tape) in the step (A) of the configuration according to the present invention.
아울러, 본 발명에 따른 구성의 단계(B)와 단계(C) 과정에서 카본섬유는 1K 카본섬유, 3K 카본섬유, 6K 카본섬유, 12K 카본섬유 및 24K 카본섬유 중 선택된 하나의 카본섬유로 구성될 수 있다.In addition, the carbon fiber in the step (B) and step (C) of the configuration according to the present invention will be composed of one carbon fiber selected from 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber and 24K carbon fiber Can be.
본 발명의 다른 실시예에 따른 카본섬유 강화 복합소재 스프링은 앞서 기술한 바와 같은 다른 실시예에 따른 카본섬유 강화 복합소재 스프링 제조방법을 통해 제조된다.Carbon fiber reinforced composite spring according to another embodiment of the present invention is manufactured through the carbon fiber reinforced composite spring manufacturing method according to another embodiment as described above.
본 발명의 기술에 따르면 카본섬유 강화 복합소재의 스프링은 카본섬유에 수지를 함침시켜서 제작되는 겔화된 카본섬유 프리프레그와 편직 형상의 카본섬유 프리프레그를 이용하여 스프링소재를 성형한 후 이를 금형에 투입하여 헬리컬 형상의 스프링소재로 성형하여 카본섬유 강화 복합소재 스프링을 성형함으로써 금속에 비해 밀도가 낮고 인장 강도와 인장 탄성이 높으며 피로/강도에 대한 저항성이 강하며 마모 특성과 윤활성이 뛰어난 기계적 특성이 있다.According to the technique of the present invention, the spring of the carbon fiber-reinforced composite material is molded into the mold after the spring material is formed by using the carbonized carbon fiber prepreg and the knitted carbon fiber prepreg manufactured by impregnating the resin into the carbon fiber. It is formed into a helical spring material to form a carbon fiber-reinforced composite spring, which has low density, high tensile strength and tensile elasticity, strong resistance to fatigue / strength, and excellent mechanical and wear characteristics. .
또한, 본 발명의 기술에 따르면 카본섬유 강화 복합소재의 스프링은 직선상의 팽창계수가 작고 차원 안정성이 좋으며 열에 의한 기계적 특성, 파괴/악화에 대한 저항력이 강하며, 즉 열에 의해 기계적 특성이 파괴되는 것을 막아주며, 극도의 저온에서 열전도성이 낮다는 열적 특성이 있다.In addition, according to the technique of the present invention, the spring of the carbon fiber reinforced composite material has a small linear expansion coefficient, good dimensional stability, strong mechanical properties by heat, and strong resistance to fracture / deterioration, that is, mechanical properties are destroyed by heat. It has a thermal property of low thermal conductivity at extremely low temperatures.
아울러, 본 발명에 따른 기술은 카본섬유 강화 복합소재의 스프링은 전기전도성(율), 전자파 방지, X-선 투과성에도 뛰어나다는 전기적 전자적 특성이 있다.In addition, the technology according to the present invention has the electrical and electronic properties that the spring of the carbon fiber reinforced composite material is also excellent in electrical conductivity (rate), electromagnetic wave prevention, X-ray transmittance.
나아가, 본 발명에 따른 기술은 카본섬유 강화 복합소재의 스프링은 화학적으로 안정성이 있고 산·알칼리 등과 같은 각종 용제에 대한 저항성이 탁월하다는 화학적 물리화학적 특성이 있다.In addition, the technique according to the present invention has a chemical physicochemical property that the spring of the carbon fiber reinforced composite material is chemically stable and excellent in resistance to various solvents such as acid and alkali.
도 1 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정을 보인 블록도.1 is a block diagram showing the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
도 2 는 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 맨드릴에 제1카본섬유 프리프레그의 감기 전 상태를 보인 사시 구성도.Figure 2 is a perspective configuration showing the state before the winding of the first carbon fiber prepreg on the mandrel in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
도 3 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 맨드릴 상의 제1카본섬유층에 제2카본섬유 프리프레그의 감기 전 상태를 보인 사시 구성도.Figure 3 is a perspective configuration showing the state before the winding of the second carbon fiber prepreg on the first carbon fiber layer on the mandrel in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
도 4 는 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 제2카본섬유층에 제3카본섬유 프리프레그의 감기 전 상태를 보인 사시 구성도. Figure 4 is a perspective configuration showing the state before the winding of the third carbon fiber prepreg to the second carbon fiber layer in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
도 5 는 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 제1 내지 제3카본섬유층으로 이루어진 제1스프링소재로부터 맨드릴의 분리를 보인 사시 구성도. Figure 5 is a perspective configuration showing the separation of the mandrel from the first spring material consisting of the first to third carbon fiber layer in the process of manufacturing the carbon fiber reinforced composite material spring according to the first embodiment of the present invention.
도 6 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 제1스프링소재의 단면을 보인 단면 구성도.Figure 6 is a cross-sectional view showing a cross-section of the first spring material in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
도 7 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 제1스프링소재를 헬리컬 형상의 금형에 투입한 상태를 보인 단면 구성도.Figure 7 is a cross-sectional view showing a state in which the first spring material is injected into the mold of the helical shape in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention.
도 8 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 헬리컬 형상의 금형을 통해 스프링 형상으로 경화된 상태의 제3스프링소재를 보인 구성도.FIG. 8 is a view illustrating a third spring material in a state of being hardened in a spring shape through a helical mold in a process of manufacturing a carbon fiber reinforced composite spring according to a first embodiment of the present invention. FIG.
도 9 는 본 발명의 제2실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정을 보인 블록도.Figure 9 is a block diagram showing the manufacturing process of the carbon fiber reinforced composite spring according to the second embodiment of the present invention.
도 10 은 본 발명의 제2실시예에 따른 카본섬유 강화 복합소재 스프링의 과정에서 맨드릴이 제거된 스프링소재의 중공에 고압의 공기를 주입하여 성형하는 과정을 보인 개략 구성도.10 is a schematic diagram showing a process of molding by injecting a high-pressure air into the hollow of the spring material in which the mandrel is removed in the process of the carbon fiber reinforced composite material spring according to the second embodiment of the present invention.
본 발명에 따른 카본섬유 강화 복합소재 스프링을 제조하기 위한 최선의 방법은 카본섬유에 수지를 함침시켜 겔화된 제1카본섬유 프리프레그를 맨드릴에 감아 제1카본섬유층을 형성한 상태에서 카본섬유에 수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그와 제3카본섬유 프리프레그를 제1카본섬유층 위에 차례로 감아 제2카본섬유층과 제3카본섬유층을 형성하되 제1 내지 제3카본섬유층의 경화시 맨드릴을 제거하여 관 형상의 제1스프링소재를 수득한 다음, 제1스프링소재를 헬리컬 형상의 성형공간을 가지는 금형에 투입하여 제1스프링소재의 중공에 고압의 공기를 주입하는 가운데 제1 내지 제3카본섬유층을 확장시켜 서로 일체화시킴으로써 제1스프링소재가 헬리컬 형상의 제3스프링소재로 경화되도록 하고, 경화된 헬리컬 형상의 제3스프링소재를 금형으로부터 분리한 다음, 헬리컬 형상의 제3스프링소재를 설정된 길이로 절단하여 카본섬유 강화 복합소재 스프링을 완성하게 된다.The best method for producing a carbon fiber reinforced composite spring according to the present invention is to impregnate the carbon fiber resin to the carbon fiber in a state in which the first carbon fiber layer is formed by winding the gelled first carbon fiber prepreg on the mandrel Impregnated to form a second carbon fiber layer and a third carbon fiber layer by winding the second carbon fiber prepreg and the third carbon fiber prepreg of the knitted shape on the first carbon fiber layer in order to cure the first to third carbon fiber layers. After removing the mandrel to obtain a tubular first spring material, the first spring material is put into a mold having a helical shape space, and high pressure air is injected into the hollow of the first spring material. Expanding and integrating the third carbon fiber layer so that the first spring material is cured into a helical third spring material, and the cured helical third thread After separating the spring material from the mold, the helical third spring material is cut to a set length to complete the carbon fiber reinforced composite spring.
이하에서는 본 발명에 따른 카본섬유 강화 복합소재 스프링 제조방법 및 이의 제조방법에 의해 제조된 카본섬유 강화 복합소재 스프링의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명하기로 한다.Hereinafter, a preferred embodiment of a carbon fiber reinforced composite spring prepared by the method and a method of manufacturing the carbon fiber reinforced composite spring according to the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명에 따른 카본섬유 강화 복합소재 스프링은 2가지 방법에 의해 제조할 수 있는데, 대부분의 제조과정은 동일하고 금형 내에서 카본섬유 강화 복합소재 스프링의 형상을 헬리컬 형상으로 성형하는 과정과 금형 내에서 성형된 스프링소재를 별도의 성형과정을 거쳐 헬리컬 형상으로 성형하는 과정에서 차이를 보이는 것이 서로 다른 실시예다. 위와 같은 2가지의 카본섬유 강화 복합소재 스프링 제조방법에 대해 구체적으로 설명한다.First, the carbon fiber reinforced composite spring according to the present invention can be manufactured by two methods, most of the manufacturing process is the same and the process of molding the shape of the carbon fiber reinforced composite spring in the mold and the helical shape Different embodiments of the present invention show a difference in the process of forming the helical shape of the spring material formed in a separate molding process. The two carbon fiber reinforced composite spring manufacturing method as described above will be described in detail.
도 1 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정을 보인 블록도, 도 2 는 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 맨드릴에 제1카본섬유 프리프레그의 감기 전 상태를 보인 사시 구성도, 도 3 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 맨드릴 상의 제1카본섬유층에 제2카본섬유 프리프레그의 감기 전 상태를 보인 사시 구성도, 도 4 는 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 제2카본섬유층에 제3카본섬유 프리프레그의 감기 전 상태를 보인 사시 구성도, 도 5 는 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 제1 내지 제3카본섬유층으로 이루어진 제1스프링소재로부터 맨드릴의 분리를 보인 사시 구성도, 도 6 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 제1스프링소재의 단면을 보인 단면 구성도, 도 7 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 제1스프링소재를 헬리컬 형상의 금형에 투입한 상태를 보인 단면 구성도, 도 8 은 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정에서 헬리컬 형상의 금형을 통해 스프링 형상으로 경화된 상태의 제3스프링소재를 보인 구성도이다.1 is a block diagram showing the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention, Figure 2 is a mandrel in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention 3 is a perspective view showing a pre-wound state of the first carbon fiber prepreg, FIG. 3 is a second carbon fiber prep on the first carbon fiber layer on the mandrel during the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention; 4 is a perspective view showing the pre-winding state of the leg, Figure 4 shows the pre-winding state of the third carbon fiber prepreg to the second carbon fiber layer in the process of manufacturing the carbon fiber reinforced composite spring according to the first embodiment of the present invention 5 is a perspective view of the mandrel from the first spring material consisting of the first to third carbon fiber layer in the manufacturing process of the carbon fiber reinforced composite material spring according to the first embodiment of the present invention 6 is a cross-sectional configuration view showing a cross-section of the first spring material in the manufacturing process of the carbon fiber reinforced composite spring according to the first embodiment of the present invention, Figure 7 is a first embodiment of the present invention Sectional view showing a state in which the first spring material is injected into the helical shape mold in the manufacturing process of the carbon fiber reinforced composite material spring according to FIG. 8 is a cross-sectional view of the carbon fiber reinforced composite material spring according to the first embodiment In the manufacturing process is a configuration diagram showing a third spring material in the state of the spring hardened through the helical mold.
도 1 내지 도 8 에 도시된 바와 같이 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링을 제조하는 과정을 설명하면 (a) 카본섬유에 수지를 함침시켜 겔(gel)화된 제1카본섬유 프리프레그(21)를 맨드릴(11)에 감아 제1카본섬유층(21a)을 형성하는 과정(S100), (b) 카본섬유에 수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그(22)를 제1카본섬유층(21a) 위에 감아 제2카본섬유층(22a)을 형성하는 과정(S110), (c) 카본섬유에 수지를 함침시켜 겔화된 편직 형상의 제3카본섬유 프리프레그(23)를 제2카본섬유층(22a) 위에 감아 제3카본섬유층(23a)을 형성하는 과정(S120), (d) 단계(a) 과정 내지 단계(c) 과정을 통해 형성되는 제1 내지 제3카본섬유층(21a, 22a, 23a)의 경화시 맨드릴(11)을 제거하여 관 형상의 제1스프링소재(20a)를 수득하는 과정(S130), (e) 단계(d) 과정에서 수득된 제1스프링소재(20a)를 외주면에 헬리컬요홈(31a)이 형성된 내부금형(31)과 내주면에 헬리컬요홈(32a)이 형성된 외부금형(32)이 상호 조립되어 헬리컬 형상의 성형공간을 가지는 금형(31, 32)에 투입하는 과정(S140), (f) 단계(e) 과정을 통해 금형(31, 32)에 투입된 제1스프링소재(20a)의 중공(20ㅊ)에 고압의 공기를 주입하는 가운데 3층의 제1 내지 제3카본섬유층(21a, 22a, 23a)을 확장시켜 서로 일체화시킴으로써 제1스프링소재(20a)가 헬리컬 형상의 제3스프링소재(20)로 경화되도록 하는 과정(S150), (g) 단계(f) 과정을 통해 경화된 헬리컬 형상의 제3스프링소재(20)를 금형(31, 32)으로부터 분리하는 과정(S160) 및 (h) 단계(g) 과정에서 금형(31, 32)으로부터 분리된 헬리컬 형상의 제3스프링소재(20)를 설정된 길이로 절단하여 카본섬유 강화 복합소재 스프링을 완성하는 과정(S170)의 구성으로 이루어진다.1 to 8, the process of manufacturing the carbon fiber-reinforced composite spring according to the first embodiment of the present invention will be described as shown in (a) the first carbonized gel (gel) by impregnating the resin to the carbon fiber The process of forming the first carbon fiber layer 21a by winding the fiber prepreg 21 on the mandrel 11 (S100), (b) impregnating a carbon fiber with a resin to form a gelled knit second carbon fiber prepreg ( The process of forming a second carbon fiber layer 22a by winding 22) on the first carbon fiber layer 21a (S110), and (c) a third carbon fiber prepreg of a knitted shape, gelled by impregnating carbon fiber with resin ) Is wound on the second carbon fiber layer 22a to form a third carbon fiber layer 23a (S120), and the first to third carbons formed through (d) step (a) to step (c) Removing the mandrel 11 during curing of the fibrous layers 21a, 22a, and 23a to obtain a tubular first spring material 20a (S130), (e) step (d) The inner spring 31 of which the helical groove 31a is formed on the outer circumferential surface of the first spring material 20a obtained therefrom and the outer mold 32 having the helical groove 32a formed on the inner circumferential surface are assembled to form a helical shape space. High pressure air in the hollow (20) of the first spring material 20a introduced into the mold (31, 32) through the process (S140), (f) step (e) of the branch (31, 32) Process to expand the first to third carbon fiber layers (21a, 22a, 23a) of the three layers while integrating with each other to integrate the first spring material (20a) into a helical third spring material (20) (S150), (g) in the process (S160) and (h) step (g) of separating the third spring material 20 of the helical shape cured through the step (f) process from the mold (31, 32) Cutting the helical shape third spring material 20 separated from the mold (31, 32) to a set length to complete the carbon fiber reinforced composite material spring It consists of a structure of a forward (S170).
다시 설명하면, 전술한 바와 같이 구성된 본 발명의 제1실시예에 따른 카본섬유 강화 복합소재 스프링을 제조하는 기술은 먼저, 도 1 및 도 2 에서와 같이 카본섬유에 수지를 함침시켜 겔(gel)화된 제1카본섬유 프리프레그(21)를 맨드릴(11)에 감아 제1카본섬유층(21a)을 형성한다(S100). 이때, 카본섬유에 함침되는 수지는 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 말한다.In other words, the technique of manufacturing a carbon fiber reinforced composite spring according to the first embodiment of the present invention configured as described above, first, as shown in Figs. The first carbon fiber prepreg 21 is wound around the mandrel 11 to form a first carbon fiber layer 21a (S100). At this time, the resin impregnated in the carbon fiber refers to the CNT resin mixed in a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin.
한편, 전술한 바와 같이 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 켈화된 제1카본섬유 프리프레그(21)를 맨드릴(11)에 감아 제1카본섬유층(21a)을 형성하는 경우 제1카본섬유층(21a)은 제조하고자 하는 스프링소재(20a)의 직경에 대하여 7/10∼9/10의 직경이 되도록 제1카본섬유 프리프레그(21)를 복수의 겹으로 감아 형성한다. On the other hand, as described above, the carbon fiber is impregnated with CNT resin mixed in a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) to 100 parts by weight of resin to mandrel the first carbonized fiber prepreg 21, When the first carbon fiber layer 21a is wound around the first carbon fiber layer 21a, the first carbon fiber prep is formed to have a diameter of 7/10 to 9/10 of the diameter of the spring material 20a to be manufactured. The leg 21 is wound up and formed in several layers.
다음으로, 전술한 바와 같이 제1카본섬유 프리프레그(21)를 맨드릴(11)에 감아 제1카본섬유층(21a)을 형성한 다음에는 도 1 및 도 3 에 도시된 바와 같이 카본섬유에 수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그(22)를 제1카본섬유층(21a) 위에 감아 제2카본섬유층(22a)을 형성한다(S110). 이때, 카본섬유에 함침되는 수지는 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 말한다.Next, as described above, after the first carbon fiber prepreg 21 is wound around the mandrel 11 to form the first carbon fiber layer 21a, a resin is added to the carbon fiber as shown in FIGS. 1 and 3. The impregnated gel-like knitted second carbon fiber prepreg 22 is wound on the first carbon fiber layer 21a to form a second carbon fiber layer 22a (S110). At this time, the resin impregnated in the carbon fiber refers to the CNT resin mixed in a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin.
전술한 바와 같이 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그(22)를 제1카본섬유층(21a) 위에 감아 제2카본섬유층(22a)을 형성하는 경우 제2카본섬유 프리프레그(22)는 단일층으로 감아 제2카본섬유층(22a)을 형성한다. As described above, the second carbon fiber prepreg 22 having a gelled knit shape is impregnated by impregnating CNT resin mixed in carbon fiber at a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin. When the second carbon fiber layer 22a is formed on the carbon fiber layer 21a, the second carbon fiber prepreg 22 is wound in a single layer to form the second carbon fiber layer 22a.
다음으로, 전술한 바와 같이 제2카본섬유 프리프레그(22)를 제1카본섬유층(21a) 위에 감아 제2카본섬유층(22a)을 형성한 다음에는 도 1 및 도 4 에 도시된 바와 같이 카본섬유에 수지를 함침시켜 겔화된 편직 형상의 제3카본섬유 프리프레그(23)를 제2카본섬유층(22a) 위에 감아 제3카본섬유층(23a)을 형성한다(S120). 이때, 카본섬유에 함침되는 수지는 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 말한다.Next, as described above, after the second carbon fiber prepreg 22 is wound on the first carbon fiber layer 21a to form the second carbon fiber layer 22a, the carbon fiber is shown in FIGS. 1 and 4. The third carbon fiber layer 23a is formed by winding the gelled knitted third carbon fiber prepreg 23 on the second carbon fiber layer 22a by impregnating the resin (S120). At this time, the resin impregnated in the carbon fiber refers to the CNT resin mixed in a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin.
전술한 바와 같이 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제3카본섬유 프리프레그(23)를 제2카본섬유층(22a) 위에 감아 제3카본섬유층(23a)을 형성하는 경우 제3카본섬유 프리프레그(23)는 단일층으로 감아 제3카본섬유층(23a)을 형성하게 된다. As described above, the third carbon fiber prepreg 23 having a gelled knit shape is impregnated by impregnating CNT resin mixed in carbon fiber at a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) with respect to 100 parts by weight of the resin. When the third carbon fiber layer 23a is formed on the carbon fiber layer 22a, the third carbon fiber prepreg 23 is wound in a single layer to form the third carbon fiber layer 23a.
다음으로, 전술한 바와 같이 제3카본섬유 프리프레그(23)를 제2카본섬유층(22a) 위에 감아 제3카본섬유층(23a)을 형성한 다음에는 도 1, 도 5 및 도 6 에 도시된 바와 같이 제1카본섬유층(21a)과 제2카본섬유층(22a) 및 제3카본섬유층(23a)의 경화시 맨드릴(11)을 제거하여 관 형상의 제1스프링소재(20a)를 수득한다(S130). Next, as described above, after the third carbon fiber prepreg 23 is wound on the second carbon fiber layer 22a to form the third carbon fiber layer 23a, as shown in FIGS. 1, 5, and 6. As described above, when the first carbon fiber layer 21a, the second carbon fiber layer 22a, and the third carbon fiber layer 23a are hardened, the mandrel 11 is removed to obtain a tubular first spring material 20a (S130). .
한편, 전술한 바와 같이 제1카본섬유층(21a)과 제2카본섬유층(22a) 및 제3카본섬유층(23a)의 경화시 제1카본섬유층(21a)으로부터 맨드릴(11)을 제거하는 경우 제1카본섬유층(21a)이 완전히 경화되면 맨드릴(11)을 제1카본섬유층(21a)으로부터 분리하기가 어렵게 때문에 어느 정도 경화가 이루어져 관 형상이 유지되는 상태일 때 제1카본섬유층(21a)으로부터 맨드릴(11)을 제거하는 것이 보다 양호하다 할 것이다. Meanwhile, as described above, when the mandrel 11 is removed from the first carbon fiber layer 21a when the first carbon fiber layer 21a, the second carbon fiber layer 22a, and the third carbon fiber layer 23a are cured, the first When the carbon fiber layer 21a is completely cured, it is difficult to separate the mandrel 11 from the first carbon fiber layer 21a. Therefore, when the carbon fiber layer 21a is hardened to some extent and the tubular shape is maintained, the mandrel (mandrel) is removed from the first carbon fiber layer 21a. It would be better to remove 11).
다음으로, 전술한 바와 같이 제1카본섬유층(21a)과 제2카본섬유층(22a) 및 제3카본섬유층(23a)의 경화시 맨드릴(11)을 제거하여 관 형상의 제1스프링소재(20a)를 수득한 다음에는 도 1 및 도 7 에 도시된 바와 같이 제1스프링소재(20a)를 헬리컬 형상의 성형공간을 가지는 금형(31, 32)에 투입한다(S140). Next, as described above, when the first carbon fiber layer 21a, the second carbon fiber layer 22a, and the third carbon fiber layer 23a are hardened, the mandrel 11 is removed to form a tubular first spring material 20a. After obtaining the first spring material 20a as shown in Figures 1 and 7 is injected into the mold (31, 32) having a helical shape of the molding space (S140).
전술한 바와 같은 과정에서 헬리컬 형상의 성형공간을 가지는 금형(31, 32)은 제1스프링소재(20a)에 대응하여 외주면에 헬리컬요홈(31a)이 형성된 내부금형(31)과 내주면에 헬리컬요홈(32a)이 형성된 외부금형(32)이 상호 조립되어 헬리컬 형상의 성형공간을 가지는 형태로 형성된다. In the process as described above, the molds 31 and 32 having a helical shape space have a helical groove on the inner mold 31 and an inner circumferential surface in which the helical groove 31a is formed on the outer circumferential surface corresponding to the first spring material 20a. The outer mold 32 having the 32a) formed thereon is assembled to form a shape having a helical shape molding space.
다음으로, 전술한 바와 같이 제1스프링소재(20a)를 헬리컬 형상의 성형공간을 가지는 금형(31, 32)에 투입한 다음에는 도 1 및 도 7 에 도시된 바와 같이 제1스프링소재(20a)의 중공(20c)에 고압의 공기를 주입하는 가운데 제1 내지 제3카본섬유층(21a, 22a, 23a)을 확장시켜 서로 일체화시킴으로써 제1스프링소재(20a)가 헬리컬 형상의 제3스프링소재(20)로 경화되도록 한다(S150). Next, as described above, after the first spring material 20a is introduced into the molds 31 and 32 having the helical shape space, the first spring material 20a is illustrated in FIGS. 1 and 7. The first spring material 20a is a helical third spring material 20 by expanding and integrating the first to third carbon fiber layers 21a, 22a, and 23a while injecting high pressure air into the hollow 20c. To be cured to (S150).
전술한 바와 같은 과정에서 헬리컬 형상의 성형공간을 가지는 금형(31, 32)에 투입되어 고정된 제1스프링소재(20a)의 중공(20c)에 고압의 공기를 주입하게 되면 제1스프링소재(20a)의 외경에는 변화가 없는 반면, 제1스프링소재(20a)의 중공(20c)은 확장이 이루어지는 가운데 제1 내지 제3카본섬유층(21a, 22a, 23a)은 상호 일체화가 이루어지게 된다.When the high-pressure air is injected into the hollow 20c of the first spring material 20a fixed and inserted into the molds 31 and 32 having the helical shape space in the above-described process, the first spring material 20a While there is no change in the outer diameter, the hollow 20c of the first spring material 20a is expanded while the first to third carbon fiber layers 21a, 22a, and 23a are integrated together.
다시 말해서, 전술한 바와 같은 과정은 고압의 공기압이 제1스프링소재(20a)의 중공(20c)인 제1카본섬유층(21a)의 내경면을 제2카본선유층(22a)과 제3카본섬유층(23a) 방향으로 가압하기 때문에 제1 내지 제3카본섬유층(21a, 22a, 23a)은 수지를 통해 상호 일체화가 이루어지게 된다.In other words, the process as described above is the second carbon line oil layer (22a) and the third carbon fiber layer to the inner diameter surface of the first carbon fiber layer (21a) of the hollow 20c of the first spring material (20a) is a high pressure air pressure Since the pressure is applied in the (23a) direction, the first to third carbon fiber layers 21a, 22a, and 23a are mutually integrated through the resin.
한편, 전술한 바와 같이 함침된 CNT수지가 완전히 경화가 이루어지지 않은 상태에서 제1스프링소재(20a)를 금형(31, 32)에 투입하여 고압의 공기를 제1스프링소재(20a)의 중공(20c)에 주입하게 되면 스프링의 형태로 성형이 이루어지는 가운데 경화가 이루어지게 된다. On the other hand, in the state that the impregnated CNT resin is not completely cured as described above, the first spring material 20a is introduced into the molds 31 and 32 so that high-pressure air is blown out of the first spring material 20a. 20c) is hardened in the middle of forming in the form of a spring.
다음으로, 전술한 바와 같이 제1스프링소재(20a)의 중공(20c)에 고압의 공기를 주입하여 헬리컬 형상의 제3스프링소재(20)로 경화되도록 한 다음에는 도 1 및 도 8 에 도시된 바와 같이 경화된 헬리컬 형상의 제3스프링소재(20)를 금형(31, 32)으로부터 분리한다(S160).Next, as described above, the high-pressure air is injected into the hollow 20c of the first spring material 20a to harden the third spring material 20 having a helical shape, and then shown in FIGS. 1 and 8. As described above, the hardened helical third spring material 20 is separated from the molds 31 and 32 (S160).
전술한 바와 같은 과정에서와 같이 헬리컬 형상의 제3스프링소재(20)를 금형(31, 32)으로부터 분리하는 경우에는 금형(31, 32) 내부에서 제1스프링소재(20a)가 완전한 헬리컬 형상의 제3스프링소재(20)로 성형되어 경화된 상태에서 분리하는 것이 보다 바람직하다 할 수 있다. When the helical third spring material 20 is separated from the molds 31 and 32, as in the above-described process, the first spring material 20 a is completely helical in the molds 31 and 32. It may be more preferable to separate in the state of being molded into a third spring material 20 and cured.
다음으로, 전술한 바와 같이 경화된 헬리컬 형상의 제3스프링소재(20)를 금형(31, 32)으로부터 분리한 다음에는 도 1 및 도 8 에 도시된 바와 같이 헬리컬 형상의 성형된 제3스프링소재(20)를 설정된 길이로 절단함으로써 본 발명에서 제조하고자 하는 카본섬유 강화 복합소재 스프링을 완성하게 된다.Next, the helical shape of the third spring material 20, which has been cured as described above, is separated from the molds 31 and 32, and then the helical shape of the third spring material, as shown in FIGS. By cutting 20 to a set length, the carbon fiber reinforced composite material spring to be manufactured in the present invention is completed.
전술한 바와 같은 과정을 통해 제조된 카본섬유 강화 복합소재 스프링은 금속에 비해 밀도가 낮음은 물론, 인장 강도와 인장 탄성이 높고, 피로 강도에 대한 저항성이 강하며, 마모 특성과 윤활성이 뛰어난 기계적 특성이 있다.The carbon fiber-reinforced composite spring produced through the process as described above has a lower density than the metal, high tensile strength and tensile elasticity, strong resistance to fatigue strength, and excellent mechanical and wear characteristics. There is this.
본 발명에 따른 제1실시예에 따른 카본섬유 강화 복합소재 스프링의 제조방법을 보다 상세하게 설명하면 다음과 같다. Hereinafter, the carbon fiber reinforced composite spring according to the first embodiment of the present invention will be described in detail.
도 1 및 도 2 에 도시된 바와 같이 단계(a) 과정(S100)을 통해 카본섬유에 수지(열경화성 수지 또는 열가소성 수지)를 일정시간 함침시켜 겔화된 제1카본섬유 프리프레그(21)를 제조하고, 이를 봉 형상의 맨드릴(11)에 균일한 두께로 감아 제1카본섬유층(21a)을 형성한다. 이때, 제1카본섬유 프리프레그(21)에 의해 형성되는 제1카본섬유층(21a)의 길이는 제조하고자 하는 카본섬유 강화 복합소재 스프링의 길이에 따라 달리할 수 있다.As shown in Figure 1 and 2 to prepare a gelled first carbon fiber prepreg 21 by impregnating a resin (thermosetting resin or thermoplastic resin) to the carbon fiber for a predetermined time through step (a) process (S100) and This is wound around the rod-shaped mandrel 11 to a uniform thickness to form a first carbon fiber layer 21a. In this case, the length of the first carbon fiber layer 21a formed by the first carbon fiber prepreg 21 may vary depending on the length of the carbon fiber reinforced composite material spring to be manufactured.
전술한 단계(a) 과정(S100)에서와 같이 맨드릴(11)에 감겨 제1카본섬유층(21a)을 형성하는 제1카본섬유 프리프레그(21)는 UD 테이프(Uni-Direction tape)로, 이러한 제1카본섬유 프리프레그(21)는 제1스프링소재(20a)의 직경에 대하여 7/10∼9/10의 직경될 때까지 복수의 겹으로 감아 제1카본섬유층(21a)을 형성하게 된다. The first carbon fiber prepreg 21 wound around the mandrel 11 to form the first carbon fiber layer 21 a as in step (a) (S100) is a UD tape (Uni-Direction tape). The first carbon fiber prepreg 21 is wound in a plurality of layers to form a first carbon fiber layer 21a until it is 7/10 to 9/10 diameter with respect to the diameter of the first spring material 20a.
그리고, 전술한 단계(a) 과정(S100)에서와 같이 카본섬유의 초기 제품인 원사(filament)는 카본섬유의 한 가닥이 1K 카본섬유, 3K 카본섬유, 6K 카본섬유, 12K 카본섬유 및 24K 카본섬유 중 선택된 하나의 카본섬유가 사용되어진다.And, the yarn (filament) is the initial product of the carbon fiber as in the step (a) step (S100) described above, one strand of carbon fiber is 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber and 24K carbon fiber One of the selected carbon fibers is used.
한편, 전술한 바와 같이 맨드릴(11)에 겔화된 제1카본섬유 프리프레그(21)를 균일한 두께로 감아 제1카본섬유층(21a)을 형성한 다음에는 도 1 및 도 3 에 도시된 바와 같이 단계(b) 과정(S110)을 통해 제1카본섬유층(21a) 위에 카본섬유에 열경화성 수지 또는 열가소성 수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그(22)를 감아 제2카본섬유층(22a)을 형성한다. Meanwhile, as described above, after forming the first carbon fiber layer 21a by winding the first carbon fiber prepreg 21 gelled on the mandrel 11 to a uniform thickness, as shown in FIGS. 1 and 3. The second carbon fiber layer was wound by winding the second carbon fiber prepreg 22 having a gelled knit shape by impregnating carbon fibers with a thermosetting resin or a thermoplastic resin on the first carbon fiber layer 21a through step (b). 22a).
전술한 바와 같은 단계(b) 과정(S110)에서 제2카본섬유층(22a)을 형성하는 제2카본섬유 프리프레그(22)의 길이는 도 3 에서 도시된 바와 같이 제1카본섬유층(21a)의 원주에 대응하는 길이로 형성되어 제1카본섬유층(21a) 위에 제2카본섬유 프리프레그(22)를 감을 경우 제2카본섬유층(22a)은 단일층으로 이루어지게 된다. The length of the second carbon fiber prepreg 22 forming the second carbon fiber layer 22a in the step (b) process (S110) as described above is shown in FIG. 3 of the first carbon fiber layer 21a. The second carbon fiber layer 22a is formed of a single layer when the second carbon fiber prepreg 22 is wound on the first carbon fiber layer 21a and formed to have a length corresponding to the circumference.
이어서, 도 1 및 도 4 에 도시된 바와 같이 단계(c) 과정(S120)을 통해 다시 한번 제2카본섬유층(22a) 위에 카본섬유에 열경화성 또는 열경화성 수지를 함침시켜서 겔화된 편직 형상의 제3카본섬유 프리프레그(23)를 감아 제3카본섬유층(23a)을 형성하는데, 제3카본섬유 프리프레그(23)의 길이는 도 4 에서 보이는 바와 같이 제2카본섬유층(22a)의 원주에 대응하는 길이로 형성됨으로써 도 6 에서와 같이 제3카본섬유층(23a)은 단일층으로 이루어지게 된다.Subsequently, as illustrated in FIGS. 1 and 4, the third carbon of the knitted carbon shape is formed by impregnating the carbon fiber with the thermosetting or thermosetting resin on the second carbon fiber layer 22a through the step (c) (S120). The fiber prepreg 23 is wound to form a third carbon fiber layer 23a. The length of the third carbon fiber prepreg 23 is the length corresponding to the circumference of the second carbon fiber layer 22a as shown in FIG. 6, the third carbon fiber layer 23a is formed of a single layer as shown in FIG. 6.
다시 말해서, 전술한 제2카본섬유층(22a)을 형성하는 제2카본섬유 프리프레그(22)와 제3카본섬유층(23a)을 형성하는 제3카본섬유 프리프레그(23) 각각은 제1카본섬유 프리프레그(21)가 여러 겹으로 감겨 형성되는 제1카본섬유층(21a)과는 달리 한 겹으로 감겨 형성되는 단일층의 구조로 이루어진다. 이때, 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)의 특성이나 제조하고자 하는 카본섬유 강화 복합소재 스프링의 용도 등에 따라 달리할 수 있음은 물론이다.In other words, each of the second carbon fiber prepreg 22 forming the second carbon fiber layer 22a and the third carbon fiber prepreg 23 forming the third carbon fiber layer 23a may be the first carbon fiber. Unlike the first carbon fiber layer 21a, in which the prepreg 21 is formed by winding several layers, the prepreg 21 is formed in a single layer structure formed by winding in one layer. At this time, the second carbon fiber prepreg 22 and the third carbon fiber prepreg 23 may be different depending on the characteristics of the carbon fiber-reinforced composite spring to be manufactured or the like.
한편, 전술한 바와 같은 과정에서 맨드릴(11)에 감기는 겔화된 제1카본섬유 프리프레그(21)와 편직 형상의 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)를 구성하는 수지로는 열경화성 수지들 중에서 에폭시 수지, 페놀 수지, 불포화 폴리에스테르 수지 및 비닐에스테르 수지 중 선택된 어느 하나가 사용될 수 있다.Meanwhile, the gelled first carbon fiber prepreg 21, the knitted second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 wound on the mandrel 11 in the above-described process are used. As the constituent resin, any one selected from an epoxy resin, a phenol resin, an unsaturated polyester resin, and a vinyl ester resin may be used among thermosetting resins.
그리고, 제1카본섬유 프리프레그(21)와 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)를 구성하는 수지는 수지 100중량부에 대하여 1∼5중량부의 CNT(Carbon Nano Tube)가 첨가됨으로써 접착강도가 일반 에폭시수지보다 30% 이상 향상되고, 스프링의 탄성율이 20% 이상 상승된다. 즉, 제1카본섬유 프리프레그(21)와 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)를 구성하는 수지는 수지 100중량부에 대하여 CNT 1∼5중량부의 비율로 혼합 조성된 CNT수지라 할 수 있다.The resin constituting the first carbon fiber prepreg 21, the second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 is 1 to 5 parts by weight of CNT (Carbon) based on 100 parts by weight of the resin. By adding Nano Tube, adhesive strength is improved by 30% or more than general epoxy resin, and spring elasticity is increased by 20% or more. That is, the resin constituting the first carbon fiber prepreg 21, the second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 is in the ratio of 1 to 5 parts by weight of CNTs relative to 100 parts by weight of the resin. It may be referred to as a mixed composition CNT resin.
전술한 바와 같이 맨드릴(11)에 겔화된 제1카본섬유 프리프레그(21)와 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)가 순차적으로 감겨 제1 내지 제3카본섬유층(21a, 22a, 23a)이 형성된 후, 일정 시간이 경과되어 제1 내지 제3카본섬유층(21a, 22a, 23a)을 구성하는 제1카본섬유 프리프레그(21)와 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)가 어느 정도 경화되면 단계(d) 과정(S130)을 통해 도 1, 도 5 및 도 6 에 도시된 바와 같이 맨드릴(11)을 제거하여 본 발명에 의한 카본섬유 강화 복합소재 스프링을 성형하기 위한 관 형상의 제1스프링소재(20a)를 수득하게 된다.As described above, the first carbon fiber prepreg 21 gelled on the mandrel 11, the second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 are sequentially wound to form the first to third carbons. After the fiber layers 21a, 22a, and 23a are formed, a predetermined time has elapsed to form the first carbon fiber prepreg 21 and the second carbon fiber prepreg constituting the first to third carbon fiber layers 21a, 22a, and 23a. When the 22 and the third carbon fiber prepreg 23 is hardened to some extent, the mandrel 11 is removed as shown in FIGS. 1, 5 and 6 through the step (d) (S130) of the present invention. The tubular first spring material 20a for molding the carbon fiber reinforced composite material spring is obtained.
그리고, 전술한 바와 같은 단계(a) 내지 단계(d) 과정을 거쳐 수득된 제1스프링소재(20a)를 도 1 에 도시된 바와 같이 단계(e) 과정(S140)을 통해 헬리컬 형상의 성형공간을 가지는 금형(31, 32)에 투입한 다음에는 도 1 및 도 7 에서와 같이 단계(f) 과정(S150)을 통해 제1스프링소재(20a)의 중공(20c)에 고압의 공기를 주입하여 3층의 제1 내지 제3카본섬유층(21a, 22a, 23a)이 금형(31, 32)의 성형공간에 밀착되도록 각각 확장되면서 상호 일체화되어 제1스프링소재(20a)가 헬리컬 형상의 제3스프링소재(20)로 경화되도록 한다. In addition, the first spring material 20a obtained through the steps (a) to (d) as described above is formed in the helical shape through the step (e) process S140 as shown in FIG. 1. After the injection into the mold (31, 32) having a high pressure air is injected into the hollow (20c) of the first spring material (20a) through the step (f) process (S150) as shown in Figure 1 and 7 The first to third carbon fiber layers 21a, 22a, and 23a of the three layers are expanded to be in close contact with the molding spaces of the molds 31 and 32, respectively, and are integrated with each other so that the first spring material 20a is a helical third spring. The material 20 is to be cured.
위에서는 내부금형(31)과 외부금형(32)이 수직으로 분리되는 것을 예로 설명하였으나, 본 발명은 이에 한정되지 않고 2개 이상의 금형이 수직 또는 수평방향으로 분리 결합될 수 있다. 또한, 내부금형(31) 및 외부금형(32) 내에서 성형되는 제3스프링소재(20)는 단면이 원이나 사각 그 외에 제조하고자 하는 스프링의 용도에 맞게 변형할 수 있다. 이를 위해, 내부금형(31)의 외주면에 헬리컬요홈(31a)이 형성되며, 외부금형(32)의 내주면에 헬리컬요홈(32a)이 형성되어 내부금형(31) 및 외부금형(32)이 상호 조립된 상태에서 금형의 내부에는 헬리컬 형상의 공간이 마련된다.In the above description that the inner mold 31 and the outer mold 32 are vertically separated as an example, the present invention is not limited thereto, and two or more molds may be separated and coupled in a vertical or horizontal direction. In addition, the third spring material 20 formed in the inner mold 31 and the outer mold 32 may be deformed to fit the use of the spring to be manufactured other than the circle or square. To this end, a helical groove 31a is formed on the outer circumferential surface of the inner mold 31, and a helical groove 32a is formed on the inner circumferential surface of the outer mold 32 so that the inner mold 31 and the outer mold 32 are mutually assembled. In this state, a helical space is provided inside the mold.
또한, 전술한 바와 같이 제1스프링소재(20a)가 헬리컬 형상의 제3스프링소재(20)로 성형될 때 필요한 시간 등을 확보하기 위해 금형(31, 32)은 별도의 가열장치나 냉각장치 등을 구비할 수도 있다.In addition, as described above, in order to secure the time required when the first spring material 20a is molded into the helical shape of the third spring material 20, the molds 31 and 32 may be separately heated or cooled. It may be provided.
그리고, 전술한 바와 같이 단계(f) 과정(S150)을 통해 경화된 헬리컬 형상의 제3스프링소재(20)를 도 1 및 도 8 에서와 같이 단계(g) 과정(S160)을 통해 금형(31, 32)으로부터 분리한 다음에는 도 1 에서와 같이 단계(h) 과정(S170)을 통해 헬리컬 형상의 제3스프링소재(20)를 용도에 따라 설정된 길이로 절단하여 카본섬유 강화 복합소재 스프링을 완성한다. As described above, the helical third spring material 20 cured through the step (f) process (S150) as described above with respect to the mold (31) through the step (g) process (S160) as shown in FIGS. 1 and 8. , 32) and then cut the helical shape of the third spring material 20 to the length set according to the purpose through the step (h) process (S170) as shown in Figure 1 to complete the carbon fiber reinforced composite material spring do.
도 9 는 본 발명의 제2실시예에 따른 카본섬유 강화 복합소재 스프링의 제조과정을 보인 블록도, 도 10 은 본 발명의 제2실시예에 따른 카본섬유 강화 복합소재 스프링의 과정에서 맨드릴이 제거된 스프링소재의 중공에 고압의 공기를 주입하여 성형하는 과정을 보인 개략 구성도이다.Figure 9 is a block diagram showing the manufacturing process of the carbon fiber reinforced composite spring according to the second embodiment of the present invention, Figure 10 is a mandrel removed in the process of the carbon fiber reinforced composite spring according to the second embodiment of the present invention It is a schematic diagram showing the process of molding by injecting a high pressure air into the hollow of the spring material.
도 9 및 도 10 에 도시된 바와 같이 본 발명의 다른 실시예의 설명에서는 도 1 내지 도 8 의 실시예와 동일한 과정에 대해서는 도 1 내지 도 6 및 도 8 에 의해 설명하고, 도 1 내지 도 8 의 실시예와 다른 과정에서 대해서는 도 9 및 도 10 에 의해 설명한다.9 and 10, the same process as the embodiment of FIGS. 1 to 8 will be described with reference to FIGS. 1 to 6 and 8, and FIGS. 1 to 8 will be described. Processes different from those of the embodiment will be described with reference to FIGS. 9 and 10.
도 9 및 도 2 에 도시된 바와 같이 먼저, 단계(A) 과정(S200)을 통해 카본섬유에 열경화성 또는 열가소성 수지를 일정시간 함침시켜서 겔화된 제1카본섬유 프리프레그(11)를 제조하고, 이를 봉 형상의 맨드릴(11)에 균일한 두께로 감아 제1카본섬유층(21a)을 형성한다. 이때, 제1카본섬유 프리프레그(21)에 의해 형성되는 제1카본섬유층(21a)의 길이는 제조하고자 하는 카본섬유 강화 복합소재 스프링의 길이에 따라 달리할 수 있다.9 and 2, first, impregnated carbon fibers with a thermosetting or thermoplastic resin for a predetermined time through step (A) (S200) to prepare a gelled first carbon fiber prepreg 11, and The first carbon fiber layer 21 a is wound around the rod-shaped mandrel 11 with a uniform thickness. In this case, the length of the first carbon fiber layer 21a formed by the first carbon fiber prepreg 21 may vary depending on the length of the carbon fiber reinforced composite material spring to be manufactured.
그리고, 전술한 바와 같이 맨드릴(11)에 감겨 제1카본섬유층(21a)을 형성하는 제1카본섬유 프리프레그(21)는 UD 테이프로, 제조하고자 하는 카본섬유 강화 복합소재 스프링소재의 직경에 대하여 7/10∼9/10의 두께를 가지는 것이 바람직하다.As described above, the first carbon fiber prepreg 21 wound around the mandrel 11 to form the first carbon fiber layer 21a is made of UD tape and has a diameter of the carbon fiber reinforced composite spring material to be manufactured. It is desirable to have a thickness of 7/10 to 9/10.
여기서, 전술한 카본섬유의 초기 제품인 원사(filament)는 카본섬유의 한 가닥이 1K 카본섬유, 3K 카본섬유, 6K 카본섬유, 12K 카본섬유, 24K 카본섬유 중 선택된 하나의 카본섬유가 사용된다.Here, the initial product of the above-described carbon fiber (filament) of the fiber (filament) one strand of carbon fiber is one carbon fiber selected from 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber, 24K carbon fiber.
전술한 바와 같이 맨드릴(11)에 겔화된 제1카본섬유 프리프레그(21)를 균일한 두께로 감아 제1카본섬유층(21a)을 형성한 후, 도 9 및 도 3 에서와 같이 단계(B) 과정(S210)을 통해 제1카본섬유층(21a) 위에 카본섬유에 열경화성 또는 열가소성 수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그(22)를 감아 제2카본섬유층(22a)을 형성하는데, 제1카본섬유층(21a)에 감기는 제2카본섬유 프리프레그(22)의 길이는 도 3 에서 보이는 바와 같이 제1카본섬유층(21a)의 원주에 대응하는 길이로 형성됨으로써 도 6 에서와 같이 제1카본섬유층(22a)은 단일층으로 이루어지게 된다. As described above, after the first carbon fiber prepreg 21 gelled on the mandrel 11 is wound to a uniform thickness to form the first carbon fiber layer 21a, step (B) as shown in FIGS. 9 and 3. By impregnating carbon fibers with a thermosetting or thermoplastic resin on the first carbon fiber layer 21a through the process (S210), the second carbon fiber layer 22a is formed by winding the gelled knit second carbon fiber prepreg 22. The length of the second carbon fiber prepreg 22 wound on the first carbon fiber layer 21a is formed to have a length corresponding to the circumference of the first carbon fiber layer 21a as shown in FIG. The first carbon fiber layer 22a is made of a single layer.
이어서, 다시 한번 도 9 및 도 4 에 도시된 바와 같이 단계(C) 과정(S120)을 통해 제2카본섬유층(22a) 위에 카본섬유에 열경화성 수지를 함침시켜서 겔화된 편직 형상의 제3카본섬유 프리프레그(23)를 감아 제3카본섬유층(23a)을 형성하는데, 제3카본섬유 프리프레그(23)의 길이는 도 4 에서 보이는 바와 같이 제2카본섬유층(22a)의 원주에 대응하는 길이로 형성됨으로써 도 6 에서와 같이 제3카본섬유층(23a)은 단일층으로 이루어지게 된다.Subsequently, once again, as illustrated in FIGS. 9 and 4, the third carbon fiber prepreg of the knitted shape gelled by impregnating a thermosetting resin to the carbon fiber on the second carbon fiber layer 22a through the step (C) process S120. The legs 23 are wound to form a third carbon fiber layer 23a, and the length of the third carbon fiber prepreg 23 is formed to a length corresponding to the circumference of the second carbon fiber layer 22a as shown in FIG. As a result, as shown in FIG. 6, the third carbon fiber layer 23a is formed as a single layer.
다시 말해서, 전술한 제2카본섬유층(22a)을 형성하는 제2카본섬유 프리프레그(22)와 제3카본섬유층(23a)을 형성하는 제3카본섬유 프리프레그(23) 각각은 제1카본섬유 프리프레그(21)가 여러 겹으로 감겨 형성되는 제1카본섬유층(21a)과는 달리 한 겹으로 감겨 형성되는 단일층으로 이루어지게 된다. 이외에도 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)의 특성이나 제조하고자 하는 카본섬유 강화 복합소재 스프링의 용도 등에 따라 달리할 수 있음은 물론이다.In other words, each of the second carbon fiber prepreg 22 forming the second carbon fiber layer 22a and the third carbon fiber prepreg 23 forming the third carbon fiber layer 23a may be the first carbon fiber. Unlike the first carbon fiber layer 21a, in which the prepreg 21 is formed by winding several layers, the prepreg 21 is formed of a single layer wound and formed in one layer. In addition, the second carbon fiber prepreg 22 and the third carbon fiber prepreg 23 may vary depending on the characteristics of the carbon fiber-reinforced composite spring to be manufactured or the like.
여기서, 맨드릴(11)에 감기는 겔화된 제1카본섬유 프리프레그(21)와 편직 형상의 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)를 구성하는 수지로는 열경화성 수지가 사용되는 것이 바람직하다. 이때, 열경화성 수지로서는 에폭시 수지, 페놀 수지, 불포화 폴리에스테르 수지 및 비닐에스테르 수지 중 선택된 어느 하나가 사용될 수 있다.Here, the resin constituting the gelled first carbon fiber prepreg 21 wound on the mandrel 11, the second carbon fiber prepreg 22 and the third carbon fiber prepreg 23 having a knitted shape are thermosetting. It is preferable that resin is used. In this case, any one selected from an epoxy resin, a phenol resin, an unsaturated polyester resin, and a vinyl ester resin may be used as the thermosetting resin.
그리고, 전술한 제1카본섬유 프리프레그(21), 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)를 구성하는 수지에는 수지 100중량부에 대하여 1∼5중량부의 CNT가 첨가됨으로써 접착강도가 일반 에폭시수지보다 30% 이상 향상되고, 스프링의 탄성율의 20% 이상 상승된다. 즉, 제1카본섬유 프리프레그(21) 및 제2, 제3카본섬유 프리프레그(22, 23)를 구성하는 수지는 수지 100중량부에 대하여 CNT 1∼5중량부의 비율로 혼합 조성된 CNT수지라 할 수 있다.In addition, the resin constituting the above-described first carbon fiber prepreg 21, second carbon fiber prepreg 22, and third carbon fiber prepreg 23 is 1 to 5 parts by weight of CNTs based on 100 parts by weight of the resin. By adding, the adhesive strength is improved by 30% or more than the general epoxy resin, and the elastic modulus of the spring is increased by 20% or more. That is, the resin constituting the first carbon fiber prepreg 21 and the second and third carbon fiber prepregs 22 and 23 is the number of CNTs mixed and mixed at a ratio of 1 to 5 parts by weight of CNTs relative to 100 parts by weight of the resin. It can be called.
전술한 바와 같이 맨드릴(11)에 겔화된 제1카본섬유 프리프레그(21)와 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)가 순차적으로 감겨 제1 내지 제3카본섬유층(21a, 22a, 23a)이 형성된 후 일정 시간이 경과되어 각 제1 내지 제3카본섬유층(21a, 22a, 23a)을 구성하는 제1카본섬유 프리프레그(21)와 제2카본섬유 프리프레그(22) 및 제3카본섬유 프리프레그(23)가 일부 경화되면 도 9, 도 5 및 도 6 에서와 같이 단계(D) 과정(S230)을 통해 맨드릴(11)을 제거하여 본 발명에 따른 카본섬유 강화 복합소재 스프링을 성형하기 위한 관 형상의 제1스프링소재(20a)를 수득할 수 있다. As described above, the first carbon fiber prepreg 21 gelled on the mandrel 11, the second carbon fiber prepreg 22, and the third carbon fiber prepreg 23 are sequentially wound to form the first to third carbons. The first carbon fiber prepreg 21 and the second carbon fiber prepreg constituting each of the first to third carbon fiber layers 21a, 22a, and 23a after a predetermined time has elapsed after the fiber layers 21a, 22a and 23a are formed. When the 22 and the third carbon fiber prepreg 23 is partially cured, the carbon according to the present invention is removed by removing the mandrel 11 through the step S230 as shown in FIGS. 9, 5, and 6. A tubular first spring material 20a for molding the fiber reinforced composite spring can be obtained.
그리고, 위와 같은 과정을 거쳐 수득된 제1스프링소재(20a)를 도 9 및 도 10 에 도시된 바와 같이 단계(E) 과정(S240)을 통해 봉 형상의 성형공간을 가지는 금형(33, 34)에 투입한 후, 단계(F) 과정(S250)을 통해 제1스프링소재(20a)의 중공(20c)에 고압의 공기를 주입하여 3층의 제1 내지 제3카본섬유층(21a, 22a, 23a)이 금형(33, 34)의 성형공간에 밀착되도록 각각 확장되면서 서로 일체화되어 제1스프링소재(20a)가 관 형상의 제2스프링소재(20b)로 경화되도록 한다. .Then, the first spring material (20a) obtained through the above process as shown in Figure 9 and Figure 10 and the mold (33, 34) having a rod-shaped forming space through the step (E) step (S240). After the addition, the high-pressure air is injected into the hollow 20c of the first spring material 20a through the step (F) process (S250) to form the first to third carbon fiber layers 21a, 22a, and 23a. ) Are expanded so as to be in close contact with the molding spaces of the molds 33 and 34, and are integrated with each other so that the first spring material 20a is cured into a tubular second spring material 20b. .
위에서는 상부금형(33)과 하부 금형(34)이 상하로 분리되는 것을 예로 설명하였으나, 본 발명은 이에 한정되지 않고 2개 이상의 금형이 상하 또는 전후좌우로 분리 결합될 수 있다. 또한, 금형(33, 34) 내에서 성형되는 제2스프링소재(20b)는 단면이 원이나 사각 그 외에 제조하고자 하는 스프링의 용도에 맞게 변형할 수 있다.In the above, the upper mold 33 and the lower mold 34 have been described as an example of separating up and down, but the present invention is not limited thereto, and two or more molds may be separated and combined up, down, front, rear, left, and right. In addition, the second spring material 20b formed in the molds 33 and 34 may be deformed to fit the use of a spring to be manufactured in addition to a circle or a square.
또한, 전술한 바와 같은 제1스프링소재(20a)가 관 형상의 제2스프링소재(20b)로 성형될 때 필요한 시간 등을 확보하기 위해 금형(33)(34)은 별도의 가열장치나 냉각장치 등을 구비할 수도 있다.In addition, in order to secure a time required when the first spring material 20a as described above is molded into the tubular second spring material 20b, the molds 33 and 34 are provided with a separate heating device or a cooling device. Or the like.
그리고, 도 9 에 도시된 바와 같이 단계G) 과정(S260)을 통해 관 형상의 제2스프링소재(20b)를 금형(31. 32)으로부터 분리한 다음, 단계(H) 과정(S270))을 통해 경화된 관 형상의 제2스프링소재(20b)를 별도의 과정을 거쳐 헬리컬 형상의 제3스프링소재(20)로 성형한 후, 단계(I) 과정(S280)을 통해 헬리컬 형상의 제3스프링소재(20)를 용도에 따라 설정된 길이로 절단하여 본 발명에서 제조하고자 하는 카본섬유 강화 복합소재 스프링을 완성한다.Then, as shown in FIG. 9, the tubular second spring material 20b is separated from the mold 31. 32 through step G), step S260, and then, step H, step S270). After the cured tubular second spring material 20b is formed into a helical third spring material 20 through a separate process, the helical third spring is formed through step (I) (S280). The material 20 is cut to a length set according to the use to complete the carbon fiber reinforced composite material spring to be manufactured in the present invention.
위의 실시예에서는 열경화성 수지가 함침되는 섬유로서 카본섬유만을 예로 설명하였으나, 본 발명은 이에 한정되지 않고 탄소 섬유, 유리섬유, 아라미드 섬유, 고인성 PE 섬유, 아크릴 섬유 및 나이론 섬유 중 선택된 어느 하나 이상을 사용할 수 있다.In the above embodiment, only the carbon fiber as the fiber impregnated with the thermosetting resin has been described as an example, but the present invention is not limited thereto and at least one selected from carbon fiber, glass fiber, aramid fiber, high toughness PE fiber, acrylic fiber and nylon fiber. Can be used.
또한, 열경화성 수지에 함침되는 카본섬유에 부가되는 CNT 역시 위와 같이 카본섬유를 대신하여 탄소 섬유, 유리섬유, 아라미드 섬유, 고인성 PE 섬유, 아크릴 섬유, 나이론 섬유를 사용함에 따라 이에 대응해서 그의 양이 변경될 수 있다.In addition, the amount of CNT added to the carbon fiber impregnated in the thermosetting resin also uses carbon fibers, glass fibers, aramid fibers, high toughness PE fibers, acrylic fibers, and nylon fibers in place of the carbon fibers as described above. can be changed.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above-described embodiments, which can be variously modified and modified by those skilled in the art to which the present invention pertains. Modifications are possible. Accordingly, the spirit of the present invention should be understood only by the claims set forth below, and all equivalent or equivalent modifications thereof will belong to the scope of the present invention.
본 발명에 따른 제조방법을 통해 제조되는 카본섬유 강화 복합소재 스프링은 금속에 비해 밀도가 낮고 인장 강도와 인장 탄성이 높음은 물론, 피로강도에 대한 저항성이 강하고, 마모 특성과 윤활성이 뛰어난 기계적 특성이 있어 열차나 자동차 운행시 발생되는 충격을 흡수하기 스프링으로 사용할 수 있다.The carbon fiber-reinforced composite spring produced by the manufacturing method according to the present invention has a low density, high tensile strength and high tensile elasticity, as well as strong resistance to fatigue strength, mechanical properties excellent in wear and lubricity compared to metals. It can be used as a spring to absorb the shock generated when driving a train or car.
한편, 전술한 바와 같은 본 발명에 따른 기술은 직선상의 팽창계수가 작고 차원 안정성이 좋으며 열에 의한 기계적 특성과 파괴 악화에 대한 저항력이 강하기 때문에 열에 의해 기계적 특성이 파괴되는 것을 막아주는 특징을 통해 기계요소 분야, 전기전도성(율)와 전자파 방지 및 X-선 투과성에도 뛰어나다는 특성을 통해 전기·전자분야에서 다각적으로 활용될 수 있다.On the other hand, the technique according to the present invention as described above is a mechanical element through a feature that prevents the mechanical properties are destroyed by heat because the linear expansion coefficient is small, the dimensional stability is good, and the mechanical properties due to heat and the resistance to fracture deterioration is strong Field, electrical conductivity (rate) and excellent in the electromagnetic wave prevention and X-ray transmittance, it can be used in various fields in the electric and electronic fields.
아울러, 본 발명에 따른 기술은 카본섬유 강화 복합소재의 스프링은 화학적으로 안정성이 있고 산·알칼리 등과 같은 각종 용제에 대한 저항성이 탁월하다는 화학적 물리화학적 특성을 통해 화학분야에서도 다각적으로 활용될 수 있다.In addition, the technology according to the present invention can be utilized in a variety of chemical fields through the chemical physicochemical properties that the spring of the carbon fiber reinforced composite material is chemically stable and excellent resistance to various solvents such as acid and alkali.

Claims (10)

  1. (a) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔(gel)화된 제1카본섬유 프리프레그를 맨드릴에 감아 형성하되 제조하고자 하는 스프링소재의 직경에 대하여 7/10∼9/10의 두께가 되도록 상기 제1카본섬유 프리프레그를 복수의 겹으로 감아 제1카본섬유층을 형성하는 단계; (a) Impregnating CNT resin mixed in carbon fiber at a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) with respect to 100 parts by weight of resin to form a gelled first carbon fiber prepreg wound on a mandrel Forming a first carbon fiber layer by winding the first carbon fiber prepreg in a plurality of layers so as to have a thickness of 7/10 to 9/10 with respect to the diameter of the spring material to be formed;
    (b) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그를 제1카본섬유층 위에 단일층으로 감아 제2카본섬유층을 형성하는 단계;(b) Impregnating a carbonized knitted second carbon fiber prepreg on the first carbon fiber layer by impregnating CNT resin mixed in carbon fiber at a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) to 100 parts by weight of resin. Winding the layer to form a second carbon fiber layer;
    (c) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제3카본섬유 프리프레그를 제2카본섬유층 위에 단일층으로 감아 제3카본섬유층을 형성하는 단계;(c) Carbon fiber knitted CNT resin impregnated with CNT resin mixed at a ratio of 1 to 5 parts by weight with respect to 100 parts by weight of resin, and a gelled knitted third carbon fiber prepreg on the second carbon fiber layer Winding the layer to form a third carbon fiber layer;
    (d) 단계(a) 과정 내지 단계(c) 과정을 통해 형성되는 제1 내지 제3카본섬유층의 경화시 맨드릴을 제거하여 관 형상의 제1스프링소재를 수득하는 단계;(d) removing the mandrel during curing of the first to third carbon fiber layers formed through steps (a) to (c) to obtain a tubular first spring material;
    (e) 단계(d) 과정에서 수득된 제1스프링소재에 대응하여 외주면에 헬리컬요홈이 형성된 내부금형과 내주면에 헬리컬요홈이 형성된 외부금형이 상호 조립되어 헬리컬 형상의 성형공간을 가지는 금형에 투입하는 단계;(e) Inner molds with helical grooves formed on the outer circumference and outer molds with helical grooves formed on the inner circumference corresponding to the first spring material obtained in step (d) are assembled into a mold having a helical shape space. step;
    (f) 단계(e) 과정을 통해 금형에 투입된 제1스프링소재의 중공에 고압의 공기를 주입하는 가운데 3층의 제1 내지 제3카본섬유층을 확장시켜 서로 일체화시킴으로써 제1스프링소재가 헬리컬 형상의 제3스프링소재로 경화되도록 하는 단계; (f) Injecting high-pressure air into the hollow of the first spring material introduced into the mold through the step (e), the first spring material is helical shape by expanding and integrating three first to third carbon fiber layers. Hardening to a third spring material;
    (g) 단계(f) 과정을 통해 경화된 헬리컬 형상의 제3스프링소재를 금형으로부터 분리하는 단계; 및(g) separating the hardened helical third spring material from the mold through the step (f); And
    (h) 단계(g) 과정에서 금형으로부터 분리된 헬리컬 형상의 제3스프링소재를 설정된 길이로 절단하여 카본섬유 강화 복합소재 스프링을 완성하는 단계를 포함한 구성으로 이루어진 카본섬유 강화 복합소재 스프링 제조방법.(h) cutting the helical shape of the third spring material separated from the mold in the step (g) to a predetermined length, the carbon fiber reinforced composite spring manufacturing method comprising the step of completing the carbon fiber reinforced composite material spring.
  2. 제1 항에 있어서, 상기 단계(a), 단계(b) 및 단계(c) 과정에서 상기 수지는 열경화성 수지로써 에폭시 수지, 페놀 수지, 불포화 폴리에스테르 수지 및 비닐에스테르 수지 중 선택된 하나인 것을 특징으로 하는 카본섬유 강화 복합소재 스프링 제조방법.According to claim 1, wherein the resin in the step (a), step (b) and step (c) is a thermosetting resin, characterized in that selected from one of the epoxy resin, phenol resin, unsaturated polyester resin and vinyl ester resin. Carbon fiber reinforced composite spring manufacturing method.
  3. 제1 항에 있어서, 상기 단계(a) 과정에서 상기 제1카본섬유 프리프레그가 UD테이프(Uni-Direction tape)인 것을 특징으로 하는 카본섬유 강화 복합소재 스프링 제조방법.The method of claim 1, wherein the first carbon fiber prepreg is a UD tape (Uni-Direction tape) in the step (a).
  4. 제1 항에 있어서, 상기 단계(b)와 단계(c) 과정에서 상기 카본섬유는 1K 카본섬유, 3K 카본섬유, 6K 카본섬유, 12K 카본섬유 및 24K 카본섬유 중 선택된 하나의 카본섬유로 구성된 것을 특징으로 하는 카본섬유 강화 복합소재 스프링 제조방법.According to claim 1, wherein the carbon fibers in the step (b) and step (c) is composed of one carbon fiber selected from 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber and 24K carbon fiber Carbon fiber reinforced composite material spring manufacturing method characterized in that.
  5. 제1 항 내지 제 4 항 중 어느 한 항의 카본섬유 강화 복합소재 스프링 제조방법을 통해 제조된 카본섬유 강화 복합소재 스프링.Carbon fiber reinforced composite spring prepared by the carbon fiber reinforced composite spring manufacturing method of any one of claims 1 to 4.
  6. (A) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔(gel)화된 제1카본섬유 프리프레그를 맨드릴에 감아 형성하되 제조하고자 하는 스프링소재의 직경에 대하여 7/10∼9/10의 두께가 되도록 상기 제1카본섬유 프리프레그를 복수의 겹으로 감아 제1카본섬유층을 형성하는 제1카본섬유층을 형성하는 단계; (A) Impregnating CNT resin mixed in carbon fiber at a ratio of 1 to 5 parts by weight of CNT (Carbon Nano Tube) to 100 parts by weight of resin to form a gelled first carbon fiber prepreg wound on a mandrel Forming a first carbon fiber layer forming a first carbon fiber layer by winding the first carbon fiber prepreg in a plurality of layers so as to have a thickness of 7/10 to 9/10 with respect to a diameter of a spring material to be formed;
    (B) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제2카본섬유 프리프레그를 제1카본섬유층 위에 단일층으로 감아 제2카본섬유층을 형성하는 단계; (B) Impregnating CNT resin mixed with carbon fiber at a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) to 100 parts by weight of resin, and gelling the second carbon fiber prepreg of a knitted shape onto a first carbon fiber layer. Winding the layer to form a second carbon fiber layer;
    (C) 카본섬유에 수지 100 중량부에 대하여 CNT(Carbon Nano Tube) 1∼5중량부의 비율로 혼합된 CNT수지를 함침시켜 겔화된 편직 형상의 제3카본섬유 프리프레그를 제2카본섬유층 위에 단일층으로 감아 제3카본섬유층을 형성하는 단계;(C) The carbon fiber knitted third carbon fiber prepreg was impregnated onto the second carbon fiber layer by impregnating CNT resin mixed with carbon fiber at a ratio of 1 to 5 parts by weight of carbon nanotubes (CNT) based on 100 parts by weight of the resin. Winding the layer to form a third carbon fiber layer;
    (D) 단계(A) 과정 내지 단계(C) 과정을 통해 형성되는 제1 내지 제3카본섬유층의 경화시 맨드릴을 제거하여 관 형상의 제1스프링소재를 수득하는 단계;(D) removing the mandrel during curing of the first to third carbon fiber layers formed through steps (A) to (C) to obtain a tubular first spring material;
    (E) 단계(D) 과정에서 수득된 제1스프링소재를 봉 형상의 성형공간을 가지는 금형에 투입하는 단계;(E) inserting the first spring material obtained in step (D) into a mold having a rod-shaped molding space;
    (F) 단계(E) 과정을 통해 금형에 투입된 제1스프링소재의 중공에 고압의 공기를 주입하는 가운데 3층의 제1 내지 제3카본섬유층을 확장시켜 서로 일체화시킴으로써 제1스프링소재가 관 형상의 제2스프링소재로 경화되도록 하는 단계;(F) While injecting high pressure air into the hollow of the first spring material introduced into the mold through the step (E), the first spring material is tubular by expanding and integrating three first to third carbon fiber layers. Hardening to a second spring material;
    (G) 단계(F) 과정을 통해 경화된 관 형상의 제2스프링소재를 금형으로부터 분리하는 단계;(G) separating the tubular second spring material cured through the step (F) from the mold;
    (H) 단계(G) 과정을 통해 금형으로부터 분리된 관 형상의 제2스프링소재를 헬리컬 형상의 제3스프링소재로 성형하는 단계; 및(H) forming a tubular second spring material separated from the mold through the step (G) into a helical third spring material; And
    (I) 단계(H) 과정을 통해 헬리컬 형상으로 성형된 제3스프링소재를 설정된 길이로 절단하여 카본섬유 강화 복합소재 스프링으로 완성하는 단계를 포함한 구성으로 이루어진 카본섬유 강화 복합소재 스프링 제조방법.(I) a method of manufacturing a carbon fiber reinforced composite spring comprising a step of cutting the third spring material formed into a helical shape through the step (H) to a predetermined length and completing the carbon fiber reinforced composite material spring.
  7. 제 6 항에 있어서, 상기 단계(A), 단계(B) 및 단계(C) 과정에서 상기 수지는 열경화성 수지로써 에폭시 수지, 페놀 수지, 불포화 폴리에스테르 수지 및 비닐에스테르 수지 중 선택된 하나인 것을 특징으로 하는 카본섬유 강화 복합소재 스프링 제조방법.The method of claim 6, wherein the resin in the step (A), step (B) and step (C) is a thermosetting resin, characterized in that selected from the epoxy resin, phenol resin, unsaturated polyester resin and vinyl ester resin Carbon fiber reinforced composite spring manufacturing method.
  8. 제 6 항에 있어서, 상기 단계(A) 과정에서 상기 제1카본섬유 프리프레그가 UD테이프(Uni-Direction tape)인 것을 특징으로 하는 카본섬유 강화 복합소재 스프링 제조방법.The method of claim 6, wherein the first carbon fiber prepreg is a UD tape (Uni-Direction tape) in the step (A).
  9. 제 6 항에 있어서, 상기 단계(B)와 단계(C) 과정에서 상기 카본섬유는 1K 카본섬유, 3K 카본섬유, 6K 카본섬유, 12K 카본섬유 및 24K 카본섬유 중 선택된 하나의 카본섬유로 구성된 것을 특징으로 하는 카본섬유 강화 복합소재 스프링 제조방법.According to claim 6, wherein the carbon fiber in the step (B) and step (C) is composed of one carbon fiber selected from 1K carbon fiber, 3K carbon fiber, 6K carbon fiber, 12K carbon fiber and 24K carbon fiber Carbon fiber reinforced composite material spring manufacturing method characterized in that.
  10. 제 6 항 내지 제 9 항 중 어느 한 항의 카본섬유 강화 복합소재 스프링 제조방법을 통해 제조된 카본섬유 강화 복합소재 스프링.Carbon fiber reinforced composite spring prepared by the method of any one of claims 6 to 9 carbon fiber reinforced composite spring.
PCT/KR2017/004581 2017-04-28 2017-04-28 Method for manufacturing carbon fiber-reinforced composite material spring, and carbon fiber-reinforced composite material spring manufactured thereby WO2018199365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/004581 WO2018199365A1 (en) 2017-04-28 2017-04-28 Method for manufacturing carbon fiber-reinforced composite material spring, and carbon fiber-reinforced composite material spring manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/004581 WO2018199365A1 (en) 2017-04-28 2017-04-28 Method for manufacturing carbon fiber-reinforced composite material spring, and carbon fiber-reinforced composite material spring manufactured thereby

Publications (1)

Publication Number Publication Date
WO2018199365A1 true WO2018199365A1 (en) 2018-11-01

Family

ID=63919898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004581 WO2018199365A1 (en) 2017-04-28 2017-04-28 Method for manufacturing carbon fiber-reinforced composite material spring, and carbon fiber-reinforced composite material spring manufactured thereby

Country Status (1)

Country Link
WO (1) WO2018199365A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912292A (en) * 2020-07-31 2020-11-10 西安方元明科技股份有限公司 Bulletproof and composite structure integrated launch canister and preparation method thereof
CN112902762A (en) * 2021-03-10 2021-06-04 宁波曙翔新材料股份有限公司 Tail wing stable unshelling armor-piercing bullet holder and preparation method thereof
CN113524717A (en) * 2020-04-20 2021-10-22 徐涛 Manufacturing process method of hollow light fiber reinforced composite material helical spring
CN114407448A (en) * 2022-01-25 2022-04-29 浙江德鸿碳纤维复合材料有限公司 Protective disc pressing sheet and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637700A2 (en) * 1993-08-04 1995-02-08 Toho Rayon Co., Ltd. Carbon fiber reinforced resin coil spring and method for manufacturing the same
JPH07108620A (en) * 1993-10-09 1995-04-25 Toho Rayon Co Ltd Coiled spring molds
JPH09277388A (en) * 1996-04-12 1997-10-28 Asics Corp Manufacture of frp made pipe
KR20130091496A (en) * 2012-02-08 2013-08-19 도레이첨단소재 주식회사 Carbon fiber prepreg and manufacturing method thereof
KR101564660B1 (en) * 2013-12-26 2015-10-30 윈엔윈(주) Method for producing bicycle frame using carbon nano tube
KR101756678B1 (en) * 2015-10-28 2017-07-12 윈엔윈(주) Carbon fiber reinforced composite spring manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637700A2 (en) * 1993-08-04 1995-02-08 Toho Rayon Co., Ltd. Carbon fiber reinforced resin coil spring and method for manufacturing the same
JPH07108620A (en) * 1993-10-09 1995-04-25 Toho Rayon Co Ltd Coiled spring molds
JPH09277388A (en) * 1996-04-12 1997-10-28 Asics Corp Manufacture of frp made pipe
KR20130091496A (en) * 2012-02-08 2013-08-19 도레이첨단소재 주식회사 Carbon fiber prepreg and manufacturing method thereof
KR101564660B1 (en) * 2013-12-26 2015-10-30 윈엔윈(주) Method for producing bicycle frame using carbon nano tube
KR101756678B1 (en) * 2015-10-28 2017-07-12 윈엔윈(주) Carbon fiber reinforced composite spring manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113524717A (en) * 2020-04-20 2021-10-22 徐涛 Manufacturing process method of hollow light fiber reinforced composite material helical spring
CN111912292A (en) * 2020-07-31 2020-11-10 西安方元明科技股份有限公司 Bulletproof and composite structure integrated launch canister and preparation method thereof
CN112902762A (en) * 2021-03-10 2021-06-04 宁波曙翔新材料股份有限公司 Tail wing stable unshelling armor-piercing bullet holder and preparation method thereof
CN112902762B (en) * 2021-03-10 2022-08-19 宁波曙翔新材料股份有限公司 Tail wing stable unshelling armor-piercing bullet holder and preparation method thereof
CN114407448A (en) * 2022-01-25 2022-04-29 浙江德鸿碳纤维复合材料有限公司 Protective disc pressing sheet and preparation method thereof
CN114407448B (en) * 2022-01-25 2022-11-01 浙江德鸿碳纤维复合材料有限公司 Protective disc pressing sheet and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2018199365A1 (en) Method for manufacturing carbon fiber-reinforced composite material spring, and carbon fiber-reinforced composite material spring manufactured thereby
KR101756678B1 (en) Carbon fiber reinforced composite spring manufacturing method
WO2014061384A1 (en) Reinforcing fiber/resin fiber composite for production of continuous-fiber-reinforced thermoplastic resin composite material and process for manufacturing same
WO2018080045A1 (en) Carbon fiber prepreg or carbon fiber-reinforced plastic, and interior and exterior material comprising same
DE60330082D1 (en) Molding compounds and process for their preparation
GB2127771A (en) Fiber composite
US3674581A (en) Production of fiber reinforced composites
WO2014054868A1 (en) Functional film for improving impregnation properties of composite material and method for manufacturing composite material using same
WO2018080251A1 (en) Woven article for carbon fiber reinforced plastic and molded product formed therefrom
CN110114393B (en) Carbon fiber prepreg or carbon fiber reinforced plastic, and interior and exterior materials containing same
CN110312613A (en) By fibrous composite manufacture hollow beam method, be configured to ducted body core and its application and the hollow beam made of fibrous composite application
WO2017204558A1 (en) Reinforced composite and product including same
WO2022092575A1 (en) Pressure vessel and manufacturing method therefor
CN106867252B (en) Benzoxazine resin system for pultrusion and method for producing pultruded body therefrom
WO2015178662A1 (en) Continuous fiber reinforced composite and manufacturing method therefor
KR102100953B1 (en) A method of preparing thermoplastic prepreg
WO2017111441A1 (en) Composition for fiber-reinforced composite, fiber-reinforced composite, and method of manufacturing fiber-reinforced composite
US5383062A (en) CFRP-made optical cylinder
WO2021230608A1 (en) Method for preparing composite heating material by means of metal-coated carbon fibers, and composite heating material prepared by said method
CN113115489A (en) Conductive heating element and preparation method thereof
JP2009173027A (en) Manufacturing method of composite molded product
CN113646556B (en) Composite coil spring with carbon fiber and glass fiber layers
KR20160085384A (en) Fiber reinforced composite material and method of manufacturing the same
WO2016175538A1 (en) Fiber-reinforced composite and method for preparing same
JP3734230B2 (en) Manufacturing method of FRP structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906908

Country of ref document: EP

Kind code of ref document: A1