WO2022092575A1 - Pressure vessel and manufacturing method therefor - Google Patents

Pressure vessel and manufacturing method therefor Download PDF

Info

Publication number
WO2022092575A1
WO2022092575A1 PCT/KR2021/012802 KR2021012802W WO2022092575A1 WO 2022092575 A1 WO2022092575 A1 WO 2022092575A1 KR 2021012802 W KR2021012802 W KR 2021012802W WO 2022092575 A1 WO2022092575 A1 WO 2022092575A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure vessel
winding
fiber composite
dry
manufacturing
Prior art date
Application number
PCT/KR2021/012802
Other languages
French (fr)
Korean (ko)
Inventor
윤수진
김종열
Original Assignee
일진하이솔루스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진하이솔루스 주식회사 filed Critical 일진하이솔루스 주식회사
Publication of WO2022092575A1 publication Critical patent/WO2022092575A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles

Definitions

  • It relates to a pressure vessel and a method for manufacturing the same. More particularly, it relates to a method for manufacturing a pressure vessel comprising the steps of dry winding an outer circumferential surface of a liner with a fiber composite material, and wet winding an outer circumferential surface of the dry-wound liner with a fiber composite material, and a pressure vessel manufactured thereby.
  • a pressure vessel for storing high-pressure gas requires a material having a strong and high-pressure resistance, and in particular, in order to improve fuel efficiency and performance of a vehicle, it is essential to reduce the weight of the structure.
  • the application of light and strong carbon fiber composites is one of the most effective ways to replace metal pressure vessels.
  • Composite material pressure vessels are usually manufactured through a filament winding process.
  • the filament winding process has the advantage of being able to easily manufacture a cylindrical or curvature structure by integral molding, and maximizing the performance of the composite material by intensively reinforcing fibers in the load transfer direction.
  • the filament winding process is a composite molding method in which a resin-impregnated continuous fiber is wound on a cylindrical rotating mandrel and cured to produce a rotationally symmetrical structure.
  • a wet winding process which is impregnated by passing it through a resin bath, is used.
  • the wet winding process is relatively inexpensive and has the advantage of being able to easily impart desired physical properties, for example, heat resistance, chemical resistance, flame retardancy, etc., to the pressure vessel by changing the type of resin or introducing various additives to the resin.
  • desired physical properties for example, heat resistance, chemical resistance, flame retardancy, etc.
  • An object of the present invention is to provide a pressure vessel having excellent mechanical properties and a method for manufacturing the same.
  • a method of manufacturing a pressure vessel includes dry winding an outer circumferential surface of a liner with a fiber composite, and wet winding an outer circumferential surface of the dry wound liner with a fiber composite; may include steps.
  • the fiber composite includes fibers impregnated with a resin composition, in the fiber composite for dry winding, the resin is in a semi-cured state, and in the fiber composite for wet winding, the resin is uncured state may be
  • the dry winding fiber composite material may be a towpreg.
  • the fiber composite for wet winding may be a fiber immediately after passing through a bath containing a resin composition.
  • the fiber may include at least one of carbon fiber and glass fiber.
  • the resin may include an epoxy resin.
  • the hoop layer may be formed by the dry winding, and the hoop layer and the helical layer may be formed by the wet winding.
  • the dry winding forms a hoop layer in which four or more fiber composites are laminated
  • the wet winding forms a hoop layer in which one or more fiber composites are laminated and two or more layers A helical layer laminated above can be formed.
  • the area occupied by the fiber composite for dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is the fiber composite for dry winding and the fiber composite for wet winding It may be 8% or more based on the total area of .
  • Another aspect of the present invention provides a pressure vessel.
  • the pressure vessel may include a liner
  • the number of hoop layers formed by dry winding may be four or more, the number of hoop layers formed by wet winding may be one or more, and the number of helical layers formed by wet winding may be two or more. .
  • the area of the hoop layer formed by the dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is the hoop layer formed by the dry winding and the hoop layer formed by the wet winding and the helical It may be 8% or more based on the total area of the layer.
  • Another aspect of the present invention provides a pressure vessel manufactured by the above manufacturing method.
  • the present invention has the effect of providing a pressure vessel having excellent mechanical properties and a method for manufacturing the same.
  • a method of manufacturing a pressure vessel according to an embodiment of the present invention includes dry winding an outer circumferential surface of a liner with a fiber composite material, and wet winding an outer circumferential surface of the dry-wound liner with a fiber composite material; includes steps.
  • the outer peripheral surface of the liner is dry-winded with a fiber composite material.
  • the resin may not escape due to tension, and as a result, the mechanical properties inside the pressure vessel may be excellent. there is.
  • Table 1 below shows the simulation results using the ABAQUS program for the main stress (unit: MPa) and expected rupture pressure (unit: bar) for a filling pressure of 1575 bar for a pressure vessel wound with a fiber composite on the outer peripheral surface of a cylindrical liner.
  • the fiber composite material for dry winding and the fiber composite material for wet winding were set to include the same fiber and resin composition.
  • the dry winding area ratio (unit: %) was calculated based on the total area of the fiber composite for dry winding and the fiber composite for wet winding in the central section of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel.
  • the liner is not particularly limited in shape, material, etc. as long as it can store high-pressure gas.
  • the liner may have a cylindrical shape and may be made of a plastic material (eg, polyethylene, polyamide, polypropylene, etc.).
  • the fiber composite material may include a fiber and a resin composition, and may be dried in a state suitable for dry winding.
  • the fiber composite material may include a fiber impregnated with a resin composition, and the resin may have a semi-cured state.
  • Examples of such a fiber composite material may include, but are not limited to, towpregs.
  • the type of the fiber is not particularly limited, and various fibers commonly used in the field of manufacturing a pressure vessel may be used without limitation.
  • the fibers may include carbon fibers, glass fibers, or combinations thereof.
  • the fiber may be a carbon fiber, but is not limited thereto.
  • the kind of resin included in the resin composition is not particularly limited, and various resins commonly used in the pressure vessel manufacturing field may be used without limitation.
  • the resin may include an epoxy resin, but is not limited thereto.
  • the resin composition contains at least one of a curing agent, a curing accelerator, a heat stabilizer, a UV stabilizer, an antioxidant, a flame retardant, a lubricant, an impact modifier, a dispersant, and an antioxidant, as necessary to improve process characteristics, stability, etc. in addition to the resin It may further include, and the content thereof may be freely selected by a person skilled in the art within a range that does not impair the purpose of the present invention.
  • the winding may include a hoop winding, a helical winding, or a combination thereof.
  • the outer peripheral surface of the dry-wound liner may be wet-wound with a fiber composite material.
  • Fiber composites in a dry state for example, towpregs are expensive, and due to their large frictional force, it is not easy to correct them after winding, so workability may be low.
  • the usable resin composition is also limited, so it may not be easy to impart desired physical properties to the pressure vessel through the resin composition. For example, if it is necessary to impart a predetermined flame retardancy to the pressure vessel according to the environment in which the pressure vessel is used, this can be achieved by changing, adding, or adding a flame retardant in the resin composition.
  • the usable resin composition has no major restrictions on the type of resin, the type of additive, and their content, so it is easy to impart flame retardancy to the pressure vessel.
  • a pressure vessel after winding the outer circumferential surface of the liner with a fiber composite in a dry state, additional winding with a fiber composite in a wet state can compensate for the above-described disadvantages of dry winding. .
  • a pressure vessel by additionally performing wet winding after dry winding, a pressure vessel that satisfies physical properties suitable for a special environment can be manufactured by lowering the manufacturing cost and improving workability compared to manufacturing a pressure vessel through dry winding alone. It can be manufactured easily.
  • the fiber composite material may include a fiber and a resin composition, and may have a wet state suitable for wet winding.
  • the fiber composite material may include fibers impregnated with a resin composition, and the resin may be in an uncured state.
  • Such a fiber composite material may be, for example, fibers immediately after passing through a bath containing a resin composition.
  • the type of the fiber is not particularly limited, and various fibers commonly used in the field of manufacturing a pressure vessel may be used without limitation.
  • the fibers may include carbon fibers, glass fibers, or combinations thereof.
  • the fiber may be a carbon fiber, but is not limited thereto.
  • the kind of resin included in the resin composition is not particularly limited, and various resins commonly used in the pressure vessel manufacturing field may be used without limitation.
  • the resin may include an epoxy resin, but is not limited thereto.
  • the resin composition contains at least one of a curing agent, a curing accelerator, a heat stabilizer, a UV stabilizer, an antioxidant, a flame retardant, a lubricant, an impact modifier, a dispersant, and an antioxidant, as necessary to improve process characteristics, stability, etc. in addition to the resin It may further include, and the content thereof may be freely selected by a person skilled in the art within a range that does not impair the purpose of the present invention.
  • the winding may include a hoop winding, a helical winding, or a combination thereof.
  • the resin composite material for dry winding and the resin composite material for wet winding may include the same kind of resin and fiber. In this case, there may be an effect of lowering the manufacturing cost of the pressure vessel.
  • the hoop layer may be formed by dry winding, and the hoop layer and the helical layer may be formed by wet winding. Since the mechanical properties inside the pressure vessel are related to the hoop layer, when only the hoop layer is formed by dry winding, the same level of mechanical properties inside the pressure vessel is achieved compared to the case where both the hoop layer and the helical layer are formed. It can be advantageous in terms of manufacturing cost, workability, and ease of imparting physical properties through changing the resin composition by lowering the amount of composite material used.
  • the hoop layer When the hoop layer is formed by dry winding, 4 or more (for example, 4 to 50 layers) of a fiber composite material may be laminated on the hoop layer, and the mechanical properties inside the pressure vessel may be excellent in the above range. , but is not limited thereto.
  • the hoop layer and the helical layer are formed by wet winding, one or more fiber composite layers (for example, 1 to 50 layers) may be laminated on the hoop layer, and two or more layers of the fiber composite material are stacked on the helical layer ( For example, 2 to 50 layers) may be laminated, and the mechanical properties of the entire pressure vessel and predetermined physical properties provided by the resin composition may be excellent in the above range, but the present invention is not limited thereto.
  • Hoop layer/helical layer, helical layer/hoop layer, hoop layer/helical layer/hoop layer, helical layer/hoop layer/helical layer, hoop layer/helical layer/hoop layer/ A helical layer, a helical layer/hoop layer/helical layer/hoop layer, etc. may be formed, and the number of stacked hoop layers and helical layers may be appropriately selected by a person skilled in the art in consideration of desired physical properties.
  • the area occupied by the fiber composite for dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is 8% or more based on the total area of the fiber composite for dry winding and the fiber composite for wet winding. there is.
  • the advantages of dry winding and wet winding can be maximized while the mechanical properties of the inside of the pressure vessel are excellent.
  • the area occupied by the fiber composite for dry winding in the central section of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is 8% to 50% based on the total area of the fiber composite for dry winding and the fiber composite for wet winding,
  • it may be 8 to 45%, for another example, 8 to 25%, and in the above range, the pressure vessel manufacturing cost, winding workability, mechanical properties inside the pressure vessel, and resin composition change to give predetermined physical properties
  • the balance may be excellent in terms of ease, etc., but is not limited thereto.
  • the liner and the fiber composite for dry winding may be in direct contact, and the fiber composite for dry winding and the fiber composite for wet winding may be in direct contact.
  • the method may further include curing after wet and/or dry winding.
  • the curing method a known method may be appropriately selected by a person skilled in the art in consideration of the type of resin and the like.
  • the fiber composite may include a thermosetting resin (eg, an epoxy resin), and may further include thermosetting after wet and/or dry winding.
  • Another aspect of the present invention provides a pressure vessel.
  • the pressure vessel includes a liner, a hoop layer formed on the liner by dry winding, and a hoop layer and a helical layer formed on the hoop layer by wet winding.
  • the number of hoop layers formed by dry winding may be four or more, the number of hoop layers formed by wet winding may be one or more, and the number of helical layers formed by wet winding may be two or more.
  • the area of the hoop layer formed by the dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is 8% or more based on the total area of the hoop layer formed by the dry winding, the hoop layer formed by the wet winding, and the helical layer can
  • Another aspect of the present invention provides a pressure vessel manufactured by the above manufacturing method.
  • the above-described pressure vessel and its manufacturing method can minimize the disadvantages while maximizing the advantages of both processes by applying the dry winding and wet winding processes in combination. Accordingly, the above-described method for manufacturing the pressure vessel may be excellent in balance in terms of manufacturing cost, workability, and physical properties of the pressure vessel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Disclosed is a manufacturing method for a pressure vessel, comprising the steps of: dry winding the outer peripheral surface of a liner with a fiber composite; and wet winding the outer peripheral surface of the dry-wound liner with a fiber composite.

Description

압력용기 및 이의 제조방법Pressure vessel and manufacturing method thereof
압력용기 및 이의 제조방법에 관한 것이다. 보다 상세하게는 라이너의 외주면을 섬유 복합재로 건식 와인딩하고, 그리고 상기 건식 와인딩된 라이너의 외주면을 섬유 복합재로 습식 와인딩하는 단계를 포함한 압력용기 제조방법 및 이에 따라 제조된 압력용기에 관한 것이다.It relates to a pressure vessel and a method for manufacturing the same. More particularly, it relates to a method for manufacturing a pressure vessel comprising the steps of dry winding an outer circumferential surface of a liner with a fiber composite material, and wet winding an outer circumferential surface of the dry-wound liner with a fiber composite material, and a pressure vessel manufactured thereby.
고압 가스를 저장하기 위한 압력용기는 강인하고 고압에 견디는 특성을 갖는 소재를 필요로 하며, 특히 자동차의 연비 및 성능 향상을 위해서 구조물의 경량화가 필수적이다. 가볍고 강한 탄소섬유 복합재료의 적용은 금속재질의 압력용기를 대체하는 가장 효과적인 방법 중 하나이다.A pressure vessel for storing high-pressure gas requires a material having a strong and high-pressure resistance, and in particular, in order to improve fuel efficiency and performance of a vehicle, it is essential to reduce the weight of the structure. The application of light and strong carbon fiber composites is one of the most effective ways to replace metal pressure vessels.
복합재료 압력용기는 통상 필라멘트 와인딩(filament winding) 공정을 통해 제작된다. 필라멘트 와인딩 공정은 원통형이나 곡률을 가진 구조물을 일체 성형으로 용이하게 제작할 수 있고, 하중 전달 방향으로 섬유를 집중적으로 보강함으로써 복합재료가 갖는 성능을 극대화할 수 있는 장점이 있다. 필라멘트 와인딩 공정은 수지가 함침된 연속섬유를 원통 형상의 회전하는 맨드릴(mandrel)에 와인딩한 후 경화시켜 회전 대칭인 구조물을 제조하는 복합재 성형방법으로서, 주로 보강섬유를 맨드릴에 와인딩하기 전에 필라멘트를 수지 배스(resin bath)에 통과시켜 함침시키는 습식 와인딩(wet winding) 공정이 사용되고 있다.Composite material pressure vessels are usually manufactured through a filament winding process. The filament winding process has the advantage of being able to easily manufacture a cylindrical or curvature structure by integral molding, and maximizing the performance of the composite material by intensively reinforcing fibers in the load transfer direction. The filament winding process is a composite molding method in which a resin-impregnated continuous fiber is wound on a cylindrical rotating mandrel and cured to produce a rotationally symmetrical structure. A wet winding process, which is impregnated by passing it through a resin bath, is used.
습식 와인딩 공정은 비교적 저렴하고, 수지 종류를 변경하거나 수지에 다양한 첨가제를 도입하여 압력용기에 원하는 물성, 예를 들면 내열성, 내화학성, 난연성 등을 쉽게 부여할 수 있는 장점이 있다. 그러나, 습식 와인딩 공정은 와인딩하면 할수록 내측에 부과되는 장력이 점점 커지고, 이에 따라 내측의 수지가 외측으로 배출될 수 있다. 이러한 내측 수지의 배출은 압력용기 내측의 기계적 물성을 저하시키는 문제가 있다.The wet winding process is relatively inexpensive and has the advantage of being able to easily impart desired physical properties, for example, heat resistance, chemical resistance, flame retardancy, etc., to the pressure vessel by changing the type of resin or introducing various additives to the resin. However, in the wet winding process, the more the winding is, the greater the tension applied to the inner side, and accordingly, the inner resin may be discharged to the outside. Discharge of the inner resin has a problem of lowering the mechanical properties of the inner side of the pressure vessel.
본 발명의 목적은 기계적 물성이 우수한 압력용기 및 이의 제조방법을 제공하는 것이다.An object of the present invention is to provide a pressure vessel having excellent mechanical properties and a method for manufacturing the same.
1. 일 측면에 따르면, 압력용기의 제조방법이 제공된다. 상기 방법은 라이너의 외주면을 섬유 복합재로 건식 와인딩(dry winding)하고, 그리고 상기 건식 와인딩된 라이너의 외주면을 섬유 복합재로 습식(wet winding) 와인딩하는; 단계를 포함할 수 있다.1. According to one aspect, a method of manufacturing a pressure vessel is provided. The method includes dry winding an outer circumferential surface of a liner with a fiber composite, and wet winding an outer circumferential surface of the dry wound liner with a fiber composite; may include steps.
2. 상기 제1구현예에서, 상기 섬유 복합재는 수지 조성물이 함침된 섬유를 포함하고, 상기 건식 와인딩용 섬유 복합재에서 상기 수지는 반경화 상태이고, 상기 습식 와인딩용 섬유 복합재에서 상기 수지는 미경화 상태일 수 있다.2. In the first embodiment, the fiber composite includes fibers impregnated with a resin composition, in the fiber composite for dry winding, the resin is in a semi-cured state, and in the fiber composite for wet winding, the resin is uncured state may be
3. 상기 제2구현예에서, 상기 건식 와인딩용 섬유 복합재는 토우프레그(towpreg)일 수 있다.3. In the second embodiment, the dry winding fiber composite material may be a towpreg.
4. 상기 제2 또는 제3구현예에서, 상기 습식 와인딩용 섬유 복합재는 수지 조성물 함유 배스(bath)에 통과시킨 직후의 섬유일 수 있다.4. In the second or third embodiment, the fiber composite for wet winding may be a fiber immediately after passing through a bath containing a resin composition.
5. 상기 제2 내지 제4구현예 중 어느 하나에서, 상기 섬유는 탄소섬유 및 유리섬유 중 1종 이상을 포함할 수 있다.5. In any one of the second to fourth embodiments, the fiber may include at least one of carbon fiber and glass fiber.
6. 상기 제2 내지 제5구현예 중 어느 하나에서, 상기 수지는 에폭시 수지를 포함할 수 있다.6. In any one of the second to fifth embodiments, the resin may include an epoxy resin.
7. 상기 제1 내지 제6구현예 중 어느 하나에서, 상기 건식 와인딩으로 후프층을 형성하고, 상기 습식 와인딩으로 후프층 및 헬리컬층을 형성할 수 있다.7. In any one of the first to sixth embodiments, the hoop layer may be formed by the dry winding, and the hoop layer and the helical layer may be formed by the wet winding.
8. 상기 제1 내지 제7구현예 중 어느 하나에서, 상기 건식 와인딩으로 섬유 복합재가 4층 이상 적층된 후프층을 형성하고, 상기 습식 와인딩으로 섬유 복합재가 1층 이상 적층된 후프층 및 2층 이상 적층된 헬리컬층을 형성할 수 있다.8. In any one of the first to seventh embodiments, the dry winding forms a hoop layer in which four or more fiber composites are laminated, and the wet winding forms a hoop layer in which one or more fiber composites are laminated and two or more layers A helical layer laminated above can be formed.
9. 상기 제1 내지 제8구현예 중 어느 하나에서, 압력용기의 길이 방향에 수직한 압력용기 중앙부 단면에서의 상기 건식 와인딩용 섬유 복합재가 차지하는 면적은 건식 와인딩용 섬유 복합재와 습식 와인딩용 섬유 복합재의 총 면적을 기준으로 8% 이상일 수 있다.9. In any one of the first to eighth embodiments, the area occupied by the fiber composite for dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is the fiber composite for dry winding and the fiber composite for wet winding It may be 8% or more based on the total area of .
10. 상기 제1 내지 제9구현예 중 어느 하나에서, 상기 라이너와 상기 건식 와인딩용 섬유 복합재가 직접(directly) 접촉하고, 상기 건식 와인딩용 섬유 복합재와 상기 습식 와인딩용 섬유 복합재가 직접(directly) 접촉할 수 있다. 10. The method according to any one of embodiments 1 to 9, wherein the liner and the fiber composite for dry winding are in direct contact, and the fiber composite for dry winding and the fiber composite for wet winding are directly contacted. can be contacted
11. 본 발명의 다른 측면은 압력용기를 제공한다. 11. Another aspect of the present invention provides a pressure vessel.
상기 압력용기는 라이너; The pressure vessel may include a liner;
상기 라이너 상부에 형성되며, 건식 와인딩으로 형성된 후프층; 및a hoop layer formed on the liner and formed by dry winding; and
상기 후프층 상부에 형성되며, 습식 와인딩으로 형성된 후프층 및 헬리컬층;을 포함한다. and a hoop layer and a helical layer formed on the hoop layer and formed by wet winding.
12. 상기 제11구현예에서, 상기 건식 와인딩으로 형성된 후프층은 4층 이상이고, 상기 습식 와인딩으로 형성되는 후프층은 1층 이상이며, 상기 습식 와인딩으로 형성되는 헬리컬층은 2층 이상일 수 있다. 12. In the 11th embodiment, the number of hoop layers formed by dry winding may be four or more, the number of hoop layers formed by wet winding may be one or more, and the number of helical layers formed by wet winding may be two or more. .
13. 상기 제11 또는 12 구현예에서, 압력용기의 길이 방향에 수직한 압력용기 중앙부 단면에서의 상기 건식 와인딩으로 형성된 후프층의 면적은 건식 와인딩으로 형성된 후프층과 습식 와인딩으로 형성된 후프층 및 헬리컬층의 총 면적을 기준으로 8% 이상일 수 있다. 13. In the 11th or 12th embodiment, the area of the hoop layer formed by the dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is the hoop layer formed by the dry winding and the hoop layer formed by the wet winding and the helical It may be 8% or more based on the total area of the layer.
14. 본 발명의 또 다른 측면은 상기 제조방법으로 제조된 압력용기를 제공한다. 14. Another aspect of the present invention provides a pressure vessel manufactured by the above manufacturing method.
본 발명은 기계적 물성이 우수한 압력용기 및 이의 제조방법을 제공하는 효과를 갖는다.The present invention has the effect of providing a pressure vessel having excellent mechanical properties and a method for manufacturing the same.
본 명세서 중 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the present specification, the singular expression includes the plural expression unless the context clearly dictates otherwise.
'~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.When the positional relationship of two parts is described with ‘on’, ‘on’, ‘on’, ‘beside’, etc., between the two parts unless ‘directly’ or ‘directly’ is used. One or more other parts may be located in
본 명세서 중 포함하다 또는 가지다 등의 용어는 명세서 상에 기재된 특징 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.In this specification, terms such as include or have means that the features or components described in the specification exist, and the possibility that one or more other features or components will be added is not excluded in advance.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.In interpreting the components, it is construed as including an error range even if there is no separate explicit description.
본 명세서에서 수치범위를 나타내는 "a 내지 b"에서 "내지"는 ≥a이고 ≤b으로 정의한다.In the present specification, in "a to b" representing a numerical range, "to" is defined as ≥a and ≤b.
본 발명의 일 구현예에 따른 압력용기의 제조방법은 라이너의 외주면을 섬유 복합재로 건식 와인딩하고, 그리고 상기 건식 와인딩된 라이너의 외주면을 섬유 복합재로 습식 와인딩하는; 단계를 포함한다.A method of manufacturing a pressure vessel according to an embodiment of the present invention includes dry winding an outer circumferential surface of a liner with a fiber composite material, and wet winding an outer circumferential surface of the dry-wound liner with a fiber composite material; includes steps.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
먼저, 라이너의 외주면을 섬유 복합재로 건식 와인딩한다.First, the outer peripheral surface of the liner is dry-winded with a fiber composite material.
본 발명의 일 구현예에 따른 압력용기의 제조방법은 라이너의 외주면을 건조 상태의 섬유 복합재로 와인딩하기 때문에 장력에 의해 수지가 빠져나오지 않을 수 있고, 그 결과 압력용기 내측의 기계적 물성이 우수할 수 있다.In the method for manufacturing a pressure vessel according to an embodiment of the present invention, since the outer peripheral surface of the liner is wound with a dry fiber composite material, the resin may not escape due to tension, and as a result, the mechanical properties inside the pressure vessel may be excellent. there is.
하기 표 1은 원통형 라이너 외주면에 섬유 복합재가 와인딩된 압력용기에 대하여 충전압 1575bar에 대한 주응력(단위: MPa), 예상파열압(단위: bar)을 ABAQUS 프로그램을 사용하여 시뮬레이션한 결과이다. 건식 와인딩용 섬유 복합재와 습식 와인딩용 섬유 복합재는 동일한 섬유 및 수지 조성물을 포함하는 것으로 설정하였다. 건식 와인딩 면적 비율(단위: %)은 압력용기의 길이 방향에 수직한 압력용기 중앙부 단면에서의 건식 와인딩용 섬유 복합재와 습식 와인딩용 섬유 복합재의 총 면적을 기준으로 산정하였다.Table 1 below shows the simulation results using the ABAQUS program for the main stress (unit: MPa) and expected rupture pressure (unit: bar) for a filling pressure of 1575 bar for a pressure vessel wound with a fiber composite on the outer peripheral surface of a cylindrical liner. The fiber composite material for dry winding and the fiber composite material for wet winding were set to include the same fiber and resin composition. The dry winding area ratio (unit: %) was calculated based on the total area of the fiber composite for dry winding and the fiber composite for wet winding in the central section of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel.
건식와인딩
면적 비율(%)
dry winding
Area ratio (%)
0%0% 8%8% 50%50% 100%100%
주응력(MPa)Principal stress (MPa) 2901MPa2901MPa 2872MPa2872MPa 2719MPa2719MPa 2622MPa2622MPa
예상파열압(bar)Expected burst pressure (bar) 1665.5bar1665.5 bar 1762.73bar1762.73 bar 1858.41bar1858.41 bar 1918.39bar1918.39bar
상기 표 1을 통해 확인할 수 있는 바와 같이, 건식 와인딩 면적 비율이 As can be seen from Table 1 above, the dry winding area ratio is
높아질수록 주응력이 낮아지고 예상파열압이 높아지는 것을 알 수 있다. 따라서, 건식 와인딩에 의해 압력용기의 기계적 물성이 우수해짐을 알 수 있다.It can be seen that the higher the value, the lower the principal stress and the higher the expected rupture pressure. Therefore, it can be seen that the mechanical properties of the pressure vessel are improved by dry winding.
상기 라이너로는 고압의 가스를 저장할 수 있는 것이라면 형상, 재질 등이 특별히 제한되지 않는다. 예를 들어, 라이너는 원통 형상을 가질 수 있고, 플라스틱 재질(예를 들면, 폴리에틸렌, 폴리아미드, 폴리프로필렌 등)일 수 있다.The liner is not particularly limited in shape, material, etc. as long as it can store high-pressure gas. For example, the liner may have a cylindrical shape and may be made of a plastic material (eg, polyethylene, polyamide, polypropylene, etc.).
상기 섬유 복합재는 섬유 및 수지 조성물을 포함하고, 건식 와인딩에 적합한 상태로 건조되어 있을 수 있다. 예를 들어, 상기 섬유 복합재는 수지 조성물이 함침된 섬유를 포함하고, 상기 수지는 반경화 상태를 가질 수 있다. 이러한 섬유 복합재의 예로는 토우프레그 등을 들 수 있으나, 이에 한정되는 것은 아니다.The fiber composite material may include a fiber and a resin composition, and may be dried in a state suitable for dry winding. For example, the fiber composite material may include a fiber impregnated with a resin composition, and the resin may have a semi-cured state. Examples of such a fiber composite material may include, but are not limited to, towpregs.
상기 섬유의 종류는 특별히 한정되지 않으며, 압력용기 제조분야에서 통상적으로 사용되는 다양한 섬유가 제한없이 사용될 수 있다. 예를 들어, 섬유는 탄소섬유, 유리섬유 또는 이들의 조합을 포함할 수 있다. 일 구현예에 따르면, 섬유는 탄소섬유일 수 있으나, 이에 한정되는 것은 아니다.The type of the fiber is not particularly limited, and various fibers commonly used in the field of manufacturing a pressure vessel may be used without limitation. For example, the fibers may include carbon fibers, glass fibers, or combinations thereof. According to one embodiment, the fiber may be a carbon fiber, but is not limited thereto.
상기 수지 조성물에 포함되는 수지의 종류는 특별히 한정되지 않으며, 압력용기 제조분야에서 통상적으로 사용되는 다양한 수지가 제한없이 사용될 수 있다. 예를 들어, 수지는 에폭시 수지를 포함할 수 있으나, 이에 한정되는 것은 아니다.The kind of resin included in the resin composition is not particularly limited, and various resins commonly used in the pressure vessel manufacturing field may be used without limitation. For example, the resin may include an epoxy resin, but is not limited thereto.
상기 수지 조성물은 수지 외에 공정 특성, 안정성 등을 향상시키기 위하여 필요에 따라 경화제, 경화촉진제, 열 안정화제, 자외선 안정화제, 산화방지제, 난연제, 윤활제, 충격 개질제, 분산제 및 산화방지제 중 1종 이상을 더 포함할 수 있으며, 그 함량은 본 발명의 목적을 해하지 않는 범위 내에서 통상의 기술자가 자유롭게 선택할 수 있다.The resin composition contains at least one of a curing agent, a curing accelerator, a heat stabilizer, a UV stabilizer, an antioxidant, a flame retardant, a lubricant, an impact modifier, a dispersant, and an antioxidant, as necessary to improve process characteristics, stability, etc. in addition to the resin It may further include, and the content thereof may be freely selected by a person skilled in the art within a range that does not impair the purpose of the present invention.
상기 와인딩은 후프 와인딩, 헬리컬 와인딩, 또는 이들의 조합을 포함할 수 있다.The winding may include a hoop winding, a helical winding, or a combination thereof.
이후, 건식 와인딩된 라이너의 외주면을 섬유 복합재로 습식 와인딩할 수 있다.Thereafter, the outer peripheral surface of the dry-wound liner may be wet-wound with a fiber composite material.
건조 상태의 섬유 복합재, 예를 들면 토우프레그는 고가이고, 그들의 큰 마찰력으로 인해 와인딩 후 이를 수정하는 것이 쉽지 않아 작업성이 낮을 수 있다. 또한, 사용 가능한 수지 조성물도 제한적이어서 수지 조성물을 통해 압력용기에 원하는 물성을 부여하는 것이 쉽지 않을 수 있다. 예를 들어, 압력용기 사용 환경에 따라 압력용기에 소정의 난연성을 부여해야 하는 경우, 이는 수지 조성물 중의 수지 종류 변경, 추가, 난연제 추가 등을 통해 달성할 수 있는데, 습윤 상태의 섬유 복합재 제조를 위해 사용 가능한 수지 조성물은 수지 종류, 첨가제 종류, 이들의 함량 등에 큰 제약이 없어 압력용기에 난연성을 부여하는 것이 쉬운 반면, 건조 상태의 섬유 복합재 제조를 위해 사용 가능한 수지 조성물은 수지 종류, 첨가제 종류, 이들의 함량 등에 제약이 많아 압력용기에 소정의 난연성을 부여하는 것이 어려울 수 있다. 따라서, 본 발명의 일 구현예에 따른 압력용기의 제조방법은 건조 상태의 섬유 복합재로 라이너의 외주면을 와인딩한 후, 습윤 상태의 섬유 복합재로 추가 와인딩함으로써 상술한 건조 와인딩의 단점을 보완할 수 있다. 다시 말해, 건식 와인딩 후 습식 와인딩을 추가 수행하여 압력용기를 제조함으로써, 건식 와인딩 단독 수행을 통한 압력용기 제조시 대비 제조비용을 낮추고, 작업성을 높이며, 특수 환경에 적합한 물성을 만족하는 압력용기를 용이하게 제조할 수 있다. Fiber composites in a dry state, for example, towpregs are expensive, and due to their large frictional force, it is not easy to correct them after winding, so workability may be low. In addition, the usable resin composition is also limited, so it may not be easy to impart desired physical properties to the pressure vessel through the resin composition. For example, if it is necessary to impart a predetermined flame retardancy to the pressure vessel according to the environment in which the pressure vessel is used, this can be achieved by changing, adding, or adding a flame retardant in the resin composition. The usable resin composition has no major restrictions on the type of resin, the type of additive, and their content, so it is easy to impart flame retardancy to the pressure vessel. It may be difficult to provide a predetermined flame retardancy to the pressure vessel because there are many restrictions on the content and the like. Therefore, in the method for manufacturing a pressure vessel according to an embodiment of the present invention, after winding the outer circumferential surface of the liner with a fiber composite in a dry state, additional winding with a fiber composite in a wet state can compensate for the above-described disadvantages of dry winding. . In other words, by manufacturing a pressure vessel by additionally performing wet winding after dry winding, a pressure vessel that satisfies physical properties suitable for a special environment can be manufactured by lowering the manufacturing cost and improving workability compared to manufacturing a pressure vessel through dry winding alone. It can be manufactured easily.
상기 섬유 복합재는 섬유 및 수지 조성물을 포함하고, 습식 와인딩에 적합한 습윤 상태를 가질 수 있다. 예를 들어, 상기 섬유 복합재는 수지 조성물이 함침된 섬유를 포함하고, 상기 수지는 미경화 상태일 수 있다. 이러한 섬유 복합재는, 예를 들어 수지 조성물 함유 배스에 통과시킨 직후의 섬유일 수 있다.The fiber composite material may include a fiber and a resin composition, and may have a wet state suitable for wet winding. For example, the fiber composite material may include fibers impregnated with a resin composition, and the resin may be in an uncured state. Such a fiber composite material may be, for example, fibers immediately after passing through a bath containing a resin composition.
상기 섬유의 종류는 특별히 한정되지 않으며, 압력용기 제조분야에서 통상적으로 사용되는 다양한 섬유가 제한없이 사용될 수 있다. 예를 들어, 섬유는 탄소섬유, 유리섬유 또는 이들의 조합을 포함할 수 있다. 일 구현예에 따르면, 섬유는 탄소섬유일 수 있으나, 이에 한정되는 것은 아니다.The type of the fiber is not particularly limited, and various fibers commonly used in the field of manufacturing a pressure vessel may be used without limitation. For example, the fibers may include carbon fibers, glass fibers, or combinations thereof. According to one embodiment, the fiber may be a carbon fiber, but is not limited thereto.
상기 수지 조성물에 포함되는 수지의 종류는 특별히 한정되지 않으며, 압력용기 제조분야에서 통상적으로 사용되는 다양한 수지가 제한없이 사용될 수 있다. 예를 들어, 수지는 에폭시 수지를 포함할 수 있으나, 이에 한정되는 것은 아니다.The kind of resin included in the resin composition is not particularly limited, and various resins commonly used in the pressure vessel manufacturing field may be used without limitation. For example, the resin may include an epoxy resin, but is not limited thereto.
상기 수지 조성물은 수지 외에 공정 특성, 안정성 등을 향상시키기 위하여 필요에 따라 경화제, 경화촉진제, 열 안정화제, 자외선 안정화제, 산화방지제, 난연제, 윤활제, 충격 개질제, 분산제 및 산화방지제 중 1종 이상을 더 포함할 수 있으며, 그 함량은 본 발명의 목적을 해하지 않는 범위 내에서 통상의 기술자가 자유롭게 선택할 수 있다.The resin composition contains at least one of a curing agent, a curing accelerator, a heat stabilizer, a UV stabilizer, an antioxidant, a flame retardant, a lubricant, an impact modifier, a dispersant, and an antioxidant, as necessary to improve process characteristics, stability, etc. in addition to the resin It may further include, and the content thereof may be freely selected by a person skilled in the art within a range that does not impair the purpose of the present invention.
상기 와인딩은 후프 와인딩, 헬리컬 와인딩, 또는 이들의 조합을 포함할 수 있다.The winding may include a hoop winding, a helical winding, or a combination thereof.
일 구현예에 따르면, 건식 와인딩용 수지 복합재와 습식 와인딩용 수지 복합재는 동종의 수지 및 섬유를 포함할 수 있다. 이러한 경우 압력용기 제조비용을 낮추는 효과가 있을 수 있다.According to one embodiment, the resin composite material for dry winding and the resin composite material for wet winding may include the same kind of resin and fiber. In this case, there may be an effect of lowering the manufacturing cost of the pressure vessel.
일 구현예에 따르면, 건식 와인딩으로 후프층을 형성하고, 습식 와인딩으로 후프층 및 헬리컬층을 형성할 수 있다. 압력용기 내측의 기계적 물성은 후프층과 관련되기 때문에 건식 와인딩으로 후프층만을 형성하는 경우 후프층 및 헬리컬층을 모두 형성하는 경우 대비 동등 수준의 압력용기 내측의 기계적 물성을 달성하면서도, 건조 상태의 섬유 복합재 사용량을 낮춰 제조비용, 작업성, 수지 조성물 변경을 통한 물성 부여 용이성 측면에서 유리할 수 있다. 건식 와인딩으로 후프층을 형성하는 경우, 상기 후프층에는 섬유 복합재가 4층 이상(예를 들면, 4층 내지 50층) 적층될 수 있고, 상기 범위에서 압력용기 내측의 기계적 물성이 우수할 수 있으나, 이에 한정되는 것은 아니다. 습식 와인딩으로 후프층 및 헬리컬층을 형성하는 경우, 상기 후프층에는 섬유 복합재가 1층 이상(예를 들면, 1층 내지 50층) 적층될 수 있고, 상기 헬리컬층에는 섬유 복합재가 2층 이상(예를 들면, 2층 내지 50층) 적층될 수 있으며, 상기 범위에서 압력용기 전체의 기계적 물성, 수지 조성물이 제공하는 소정의 물성 등이 우수할 수 있으나, 이에 한정되는 것은 아니다. 건식 와인딩된 라이너의 외주면에는 습식 와인딩에 의해 후프층/헬리컬층, 헬리컬층/후프층, 후프층/헬리컬층/후프층, 헬리컬층/후프층/헬리컬층, 후프층/헬리컬층/후프층/헬리컬층, 헬리컬층/후프층/헬리컬층/후프층 등이 형성될 수 있고, 후프층 및 헬리컬층의 적층 개수는 목적하는 물성을 고려하여 통상의 기술자가 적절히 선택할 수 있다. According to one embodiment, the hoop layer may be formed by dry winding, and the hoop layer and the helical layer may be formed by wet winding. Since the mechanical properties inside the pressure vessel are related to the hoop layer, when only the hoop layer is formed by dry winding, the same level of mechanical properties inside the pressure vessel is achieved compared to the case where both the hoop layer and the helical layer are formed. It can be advantageous in terms of manufacturing cost, workability, and ease of imparting physical properties through changing the resin composition by lowering the amount of composite material used. When the hoop layer is formed by dry winding, 4 or more (for example, 4 to 50 layers) of a fiber composite material may be laminated on the hoop layer, and the mechanical properties inside the pressure vessel may be excellent in the above range. , but is not limited thereto. When the hoop layer and the helical layer are formed by wet winding, one or more fiber composite layers (for example, 1 to 50 layers) may be laminated on the hoop layer, and two or more layers of the fiber composite material are stacked on the helical layer ( For example, 2 to 50 layers) may be laminated, and the mechanical properties of the entire pressure vessel and predetermined physical properties provided by the resin composition may be excellent in the above range, but the present invention is not limited thereto. Hoop layer/helical layer, helical layer/hoop layer, hoop layer/helical layer/hoop layer, helical layer/hoop layer/helical layer, hoop layer/helical layer/hoop layer/ A helical layer, a helical layer/hoop layer/helical layer/hoop layer, etc. may be formed, and the number of stacked hoop layers and helical layers may be appropriately selected by a person skilled in the art in consideration of desired physical properties.
일 구현예에 따르면, 압력용기의 길이 방향에 수직한 압력용기 중앙부 단면에서의 건식 와인딩용 섬유 복합재가 차지하는 면적은 건식 와인딩용 섬유 복합재와 습식 와인딩용 섬유 복합재의 총 면적을 기준으로 8% 이상일 수 있다. 상기 범위에서 압력용기 내측의 기계적 물성이 우수하면서, 건식 와인딩 및 습식 와인딩 각각의 장점을 극대화할 수 있다. 예를 들어, 압력용기의 길이 방향에 수직한 압력용기 중앙부 단면에서의 건식 와인딩용 섬유 복합재가 차지하는 면적은 건식 와인딩용 섬유 복합재와 습식 와인딩용 섬유 복합재의 총 면적을 기준으로 8% 내지 50%, 다른 예를 들면 8 내지 45%, 또 다른 예를 들면 8 내지 25%일 수 있으며, 상기 범위에서 압력용기 제조비용, 와인딩 작업성, 압력용기 내측의 기계적 물성, 수지 조성물 변경을 통한 소정의 물성 부여 용이성 등의 측면에서 밸런스가 우수할 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment, the area occupied by the fiber composite for dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is 8% or more based on the total area of the fiber composite for dry winding and the fiber composite for wet winding. there is. In the above range, the advantages of dry winding and wet winding can be maximized while the mechanical properties of the inside of the pressure vessel are excellent. For example, the area occupied by the fiber composite for dry winding in the central section of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is 8% to 50% based on the total area of the fiber composite for dry winding and the fiber composite for wet winding, For another example, it may be 8 to 45%, for another example, 8 to 25%, and in the above range, the pressure vessel manufacturing cost, winding workability, mechanical properties inside the pressure vessel, and resin composition change to give predetermined physical properties The balance may be excellent in terms of ease, etc., but is not limited thereto.
일 구현예에 따르면, 라이너와 건식 와인딩용 섬유 복합재는 직접 접촉하고, 상기 건식 와인딩용 섬유 복합재와 상기 습식 와인딩용 섬유 복합재가 직접 접촉할 수 있다.According to one embodiment, the liner and the fiber composite for dry winding may be in direct contact, and the fiber composite for dry winding and the fiber composite for wet winding may be in direct contact.
일 구현예에 따르면, 습식 및/또는 건식 와인딩 후, 경화하는 단계를 더 포함할 수 있다. 경화 방법은 수지의 종류 등을 고려하여 통상의 기술자가 공지의 방법을 적절히 선택할 수 있다. 예를 들어, 섬유 복합재는 열경화성 수지(예를 들면, 에폭시 수지)를 포함하고, 습식 및/또는 건식 와인딩 후 열경화하는 단계를 더 포함할 수 있다.According to an embodiment, the method may further include curing after wet and/or dry winding. As the curing method, a known method may be appropriately selected by a person skilled in the art in consideration of the type of resin and the like. For example, the fiber composite may include a thermosetting resin (eg, an epoxy resin), and may further include thermosetting after wet and/or dry winding.
본 발명의 다른 측면은 압력용기를 제공한다. Another aspect of the present invention provides a pressure vessel.
상기 압력용기는 라이너, 상기 라이너 상부에 형성되며, 건식 와인딩으로 형성된 후프층 및 상기 후프층 상부에 형성되며 습식 와인딩으로 형성된 후프층 및 헬리컬층을 포함한다. The pressure vessel includes a liner, a hoop layer formed on the liner by dry winding, and a hoop layer and a helical layer formed on the hoop layer by wet winding.
상기 건식 와인딩으로 형성된 후프층은 4층 이상이고, 상기 습식 와인딩으로 형성되는 흐프층은 1층 이상이며, 상기 습식 와인딩으로 형성되는 헬리컬층은 2층 이상일 수 있다. The number of hoop layers formed by dry winding may be four or more, the number of hoop layers formed by wet winding may be one or more, and the number of helical layers formed by wet winding may be two or more.
상기 압력용기의 길이 방향에 수직한 압력용기 중앙부 단면에서의 상기 건식 와인딩으로 형성된 후프층의 면적은 건식 와인딩으로 형성된 후프층과 습식 와인딩으로 형성된 후프층 및 헬리컬층의 총 면적을 기준으로 8% 이상일 수 있다. The area of the hoop layer formed by the dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is 8% or more based on the total area of the hoop layer formed by the dry winding, the hoop layer formed by the wet winding, and the helical layer can
본 발명의 또 다른 측면은 상기 제조방법으로 제조된 압력용기를 제공한다. Another aspect of the present invention provides a pressure vessel manufactured by the above manufacturing method.
상술한 압력용기 및 이의 제조방법은 건식 와인딩 및 습식 와인딩 공정을 복합 적용함으로써 양 공정의 이점을 극대화하면서 단점을 최소화할 수 있다. 따라서, 상술한 압력용기의 제조방법은 압력용기 제조비용, 작업성, 압력용기의 물성 등의 측면에서 밸런스가 우수할 수 있다.The above-described pressure vessel and its manufacturing method can minimize the disadvantages while maximizing the advantages of both processes by applying the dry winding and wet winding processes in combination. Accordingly, the above-described method for manufacturing the pressure vessel may be excellent in balance in terms of manufacturing cost, workability, and physical properties of the pressure vessel.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Up to now, the present invention has been looked at focusing on examples. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in modified forms without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (14)

  1. 라이너의 외주면을 섬유 복합재로 건식 와인딩(dry winding)하고, 그리고dry winding the outer peripheral surface of the liner with a fiber composite, and
    상기 건식 와인딩된 라이너의 외주면을 섬유 복합재로 습식 와인딩(wet winding)하는; 단계를 포함한, 압력용기의 제조방법.wet winding the outer peripheral surface of the dry wound liner with a fiber composite; A method for manufacturing a pressure vessel, including the steps.
  2. 제1항에 있어서,According to claim 1,
    상기 섬유 복합재는 수지 조성물이 함침된 섬유를 포함하고,The fiber composite includes a fiber impregnated with a resin composition,
    상기 건식 와인딩용 섬유 복합재에서 상기 수지는 반경화 상태이고,In the fiber composite for dry winding, the resin is in a semi-cured state,
    상기 습식 와인딩용 섬유 복합재에서 상기 수지는 미경화 상태인, 압력용기의 제조방법.In the fiber composite material for wet winding, the resin is in an uncured state, a method of manufacturing a pressure vessel.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 건식 와인딩용 섬유 복합재는 토우프레그(towpreg)인, 압력용기의 제조방법.The fiber composite material for dry winding is a towpreg (towpreg), a method of manufacturing a pressure vessel.
  4. 제2항에 있어서,3. The method of claim 2,
    상기 습식 와인딩용 섬유 복합재는 수지 조성물 함유 배스(bath)에 통과시킨 직후의 섬유인, 압력용기의 제조방법.The fiber composite material for wet winding is a fiber immediately after passing through a bath containing a resin composition, a method of manufacturing a pressure vessel.
  5. 제2항에 있어서,3. The method of claim 2,
    상기 섬유는 탄소섬유 및 유리섬유 중 1종 이상을 포함하는 것인, 압력용기의 제조방법.The method for manufacturing a pressure vessel, wherein the fiber comprises at least one of carbon fiber and glass fiber.
  6. 제2항에 있어서,3. The method of claim 2,
    상기 수지는 에폭시 수지를 포함하는 것인, 압력용기의 제조방법.The resin is a method of manufacturing a pressure vessel comprising an epoxy resin.
  7. 제1항에 있어서,According to claim 1,
    상기 건식 와인딩으로 후프층을 형성하고,forming a hoop layer by the dry winding,
    상기 습식 와인딩으로 후프층 및 헬리컬층을 형성하는 것인, 압력용기의 제조방법.The method of manufacturing a pressure vessel, to form a hoop layer and a helical layer by the wet winding.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 건식 와인딩으로 섬유 복합재가 4층 이상 적층된 후프층을 형성하고,Forming a hoop layer in which four or more layers of fiber composite are laminated by the dry winding,
    상기 습식 와인딩으로 섬유 복합재가 1층 이상 적층된 후프층 및 2층 이상 적층된 헬리컬층을 형성하는 것인, 압력용기의 제조방법.The method for manufacturing a pressure vessel, wherein the wet winding forms a hoop layer in which one or more layers of the fiber composite are stacked and a helical layer in which two or more layers are stacked.
  9. 제1항에 있어서,According to claim 1,
    압력용기의 길이 방향에 수직한 압력용기 중앙부 단면에서의 상기 건식 와인딩용 섬유 복합재가 차지하는 면적은 건식 와인딩용 섬유 복합재와 습식 와인딩용 섬유 복합재의 총 면적을 기준으로 8% 이상인, 압력용기의 제조방법.The area occupied by the fiber composite for dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is 8% or more based on the total area of the fiber composite for dry winding and the fiber composite for wet winding, Method of manufacturing a pressure vessel .
  10. 제1항에 있어서,According to claim 1,
    상기 라이너와 상기 건식 와인딩용 섬유 복합재가 직접(directly) 접촉하고,The liner and the fiber composite for dry winding are in direct contact with each other,
    상기 건식 와인딩용 섬유 복합재와 상기 습식 와인딩용 섬유 복합재가 직접(directly) 접촉하는, 압력용기의 제조방법. The method for manufacturing a pressure vessel, wherein the fiber composite material for dry winding and the fiber composite material for wet winding are in direct contact.
  11. 라이너; liner;
    상기 라이너 상부에 형성되며, 건식 와인딩으로 형성된 후프층; 및a hoop layer formed on the liner and formed by dry winding; and
    상기 후프층 상부에 형성되며, 습식 와인딩으로 형성된 후프층 및 헬리컬층;을 포함하는 압력용기.A pressure vessel comprising a; a hoop layer and a helical layer formed on the hoop layer, formed by wet winding.
  12. 제11항에 있어서, 12. The method of claim 11,
    상기 건식 와인딩으로 형성된 후프층은 4층 이상이고, The hoop layer formed by the dry winding is four or more,
    상기 습식 와인딩으로 형성되는 후프층은 1층 이상이며, 상기 습식 와인딩으로 형성되는 헬리컬층은 2층 이상인 것인, 압력용기. The hoop layer formed by the wet winding is one or more layers, and the helical layer formed by the wet winding is two or more layers, the pressure vessel.
  13. 제11항에 있어서, 12. The method of claim 11,
    압력용기의 길이 방향에 수직한 압력용기 중앙부 단면에서의 상기 건식 와인딩으로 형성된 후프층의 면적은 건식 와인딩으로 형성된 후프층과 습식 와인딩으로 형성된 후프층 및 헬리컬층의 총 면적을 기준으로 8% 이상인 것인, 압력용기.The area of the hoop layer formed by the dry winding in the cross section of the central portion of the pressure vessel perpendicular to the longitudinal direction of the pressure vessel is 8% or more based on the total area of the hoop layer formed by the dry winding, the hoop layer formed by the wet winding, and the helical layer phosphorus, pressure vessel.
  14. 제1항 내지 제10항 중 어느 한 항에 따른 압력용기 제조방법으로 제조된 압력용기. A pressure vessel manufactured by the method for manufacturing a pressure vessel according to any one of claims 1 to 10.
PCT/KR2021/012802 2020-10-29 2021-09-17 Pressure vessel and manufacturing method therefor WO2022092575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200141758A KR102318066B1 (en) 2020-10-29 2020-10-29 Method for manufacturing pressure vessel
KR10-2020-0141758 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022092575A1 true WO2022092575A1 (en) 2022-05-05

Family

ID=78232428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012802 WO2022092575A1 (en) 2020-10-29 2021-09-17 Pressure vessel and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102318066B1 (en)
WO (1) WO2022092575A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557543B1 (en) 2021-12-15 2023-07-20 주식회사 한국카본 Unvulcanized rubber preform and method for manufacturing a pressure vessel using the same and having an airtight layer made of rubber
KR102616990B1 (en) 2021-12-15 2023-12-27 주식회사 한국카본 Thermal deformation prevention device that can prevent distortion and absorb deformation caused by thermal expansion
KR102590749B1 (en) 2021-12-15 2023-10-19 주식회사 한국카본 Manufacturing method of unvulcanized rubber preform for pressure vessel, method of mounting unvulcanized rubber preform to dome part of mandrel using vacuum jig and vacuum jig for mounting unvulcanized rubber preform to dome part of mandrel
KR102629780B1 (en) 2021-12-15 2024-01-29 주식회사 한국카본 Pressure vessel manufacturing method using rubber and composite materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150018540A (en) * 2012-06-05 2015-02-23 미쯔비시 레이온 가부시끼가이샤 Epoxy resin composition
JP5993341B2 (en) * 2013-05-09 2016-09-14 Jxエネルギー株式会社 Composite container manufacturing method and composite container manufacturing system
JP2019043080A (en) * 2017-09-05 2019-03-22 昭和電工株式会社 Manufacturing apparatus of resin molded product and light irradiation device
KR20200024659A (en) * 2018-08-28 2020-03-09 손승희 Filament winding apparatus
JP2020131658A (en) * 2019-02-25 2020-08-31 八千代工業株式会社 Pressure vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150018540A (en) * 2012-06-05 2015-02-23 미쯔비시 레이온 가부시끼가이샤 Epoxy resin composition
JP5993341B2 (en) * 2013-05-09 2016-09-14 Jxエネルギー株式会社 Composite container manufacturing method and composite container manufacturing system
JP2019043080A (en) * 2017-09-05 2019-03-22 昭和電工株式会社 Manufacturing apparatus of resin molded product and light irradiation device
KR20200024659A (en) * 2018-08-28 2020-03-09 손승희 Filament winding apparatus
JP2020131658A (en) * 2019-02-25 2020-08-31 八千代工業株式会社 Pressure vessel

Also Published As

Publication number Publication date
KR102318066B1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2022092575A1 (en) Pressure vessel and manufacturing method therefor
WO2014035073A1 (en) Core material for sandwich panel and method for manufacturing same, and sandwich panel comprising core material
KR20150016279A (en) Curable epoxy resin compositions and composites made therefrom
US6968106B2 (en) Air blown fiber (ABF) cable with low composite coefficient of thermal expansion
FI107612B (en) Epoxy resin mixtures
CN101469112A (en) High tenacity halogen-free flame-retardant glass fiber reinforced polycarbonate composition
WO2019088617A1 (en) Epoxy resin composition and towpreg including same
US11193630B2 (en) High pressure tank and method for manufacturing the same
EP0507220A2 (en) CFRP-made optical cylinder
WO2017200133A1 (en) Flexible secondary gas barrier for liquefied gas storage tank, having improved fatigue resistance performance by having reinforcing material thereof replaced
US20030091800A1 (en) Manufacture of prepregs and laminates with relatively low dielectric constant for printed circuit boards
WO2013125838A1 (en) Outstandingly impact resistant and incombustible vacuum-insulation-material sealing member
DE1719241B2 (en) Process for the production of an electrical insulating material that is resistant to nuclear radiation and mechanically resistant
CA2267006C (en) Fuse tube and method of manufacture thereof
KR20100121670A (en) Thermosetting compositions comprising silicone polyethers, their manufacture, and uses
JP2018187775A (en) Method of producing pressure tank
WO2018199365A1 (en) Method for manufacturing carbon fiber-reinforced composite material spring, and carbon fiber-reinforced composite material spring manufactured thereby
EP2976456A1 (en) High strength fiber composite material, manufacturing method thereof and helmet using the same
WO2017104891A1 (en) Low-viscosity liquid epoxy resin composition and pressure container manufactured from same
WO2018044007A1 (en) Fiber-reinforced composite material and automobile interior/exterior material employing same
KR101895551B1 (en) Aramid Paper Having Excellent Withstand Voltage
CN106065161B (en) A kind of composition epoxy resin of good insulating and application thereof
RU2304599C2 (en) Composite material and the method of its production
WO2015178662A1 (en) Continuous fiber reinforced composite and manufacturing method therefor
WO2019132213A1 (en) Composition for heat-shrinkable tube and heat-shrinkable tube manufactured therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886569

Country of ref document: EP

Kind code of ref document: A1