WO2018199191A1 - Masterbatch, rubber composition, and production methods for both - Google Patents

Masterbatch, rubber composition, and production methods for both Download PDF

Info

Publication number
WO2018199191A1
WO2018199191A1 PCT/JP2018/016875 JP2018016875W WO2018199191A1 WO 2018199191 A1 WO2018199191 A1 WO 2018199191A1 JP 2018016875 W JP2018016875 W JP 2018016875W WO 2018199191 A1 WO2018199191 A1 WO 2018199191A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
cellulose
rubber
less
cellulose nanofiber
Prior art date
Application number
PCT/JP2018/016875
Other languages
French (fr)
Japanese (ja)
Inventor
昌浩 森田
康太郎 伊藤
雄介 安川
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2018541237A priority Critical patent/JP6473550B1/en
Priority to MYPI2019005858A priority patent/MY191605A/en
Publication of WO2018199191A1 publication Critical patent/WO2018199191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a masterbatch, a rubber composition, and a production method thereof, and more particularly, to a masterbatch containing chemically modified cellulose nanofibers, a rubber composition using the same, and a production method thereof.
  • Patent Document 1 discloses that after mixing rubber latex and an aqueous dispersion of cellulose fibers having a carboxyl group, at least a part of water is removed to obtain a cellulose fiber / rubber composite, and this composite. And a method of producing a rubber composition having excellent hardness and tensile strength.
  • the hardness and tensile strength of the rubber composition obtained by the method of Patent Document 1 are good to some extent, they are not sufficient as expected.
  • the reason why the hardness and tensile strength of the rubber composition are not sufficient as expected is presumed that the cellulose fibers are not uniformly dispersed in the rubber composition for the following reason.
  • the carboxyl group in the cellulose fiber forms a salt such as a sodium salt, and the cellulose fiber is in a highly hydrophilic state. Therefore, when removing the water of a dispersion liquid, it is estimated that a hydrophilic cellulose fiber aggregates strongly mutually and a dispersibility falls.
  • an object of the present invention is to provide a master batch capable of producing a rubber composition containing cellulose nanofibers and having excellent strength such as breaking strength, a rubber composition using the same, and a production method thereof. To do.
  • a method for producing a masterbatch including [2]: The wood from which the pulp A is obtained in which the ratio of the fiber length component of 0.20 mm or less is 20% or less in the fiber length distribution when the wood is pulped under the kraft pulp production conditions. [1] The production method according to [1]. [3]: The production method according to [1] or [2], including a step of anion-modifying the pulp B after the step (1) and before the step (2). [4]: The cellulose nanofiber is an oxidized cellulose nanofiber, and the amount of carboxyl groups and the like is 0.1 to 3.0 mmol / g with respect to the absolute dry weight of the cellulose nanofiber. The manufacturing method as described.
  • [5] The production method according to [3], wherein the cellulose nanofiber is carboxymethylated cellulose nanofiber, and the degree of carboxymethyl substitution per glucose unit of the cellulose nanofiber is 0.01 to 0.50.
  • [6] A master batch produced by the production method according to any one of [1] to [5].
  • [7] A step of producing a master batch by the production method according to any one of [1] to [5], and a step of kneading the obtained master batch and a rubber component to obtain a rubber composition.
  • [8] A rubber composition produced by the production method according to [7].
  • the present invention can provide a master batch capable of producing a rubber composition containing cellulose nanofibers and having excellent strength such as breaking strength, a rubber composition using the same, and a production method thereof.
  • FIG. 1 is a diagram showing the fiber length distribution of pulp B used in Example 1 and Comparative Example 1.
  • FIG. 1 is a diagram showing the fiber length distribution of pulp B used in Example 1 and Comparative Example 1.
  • includes values at both ends thereof. That is, “X to Y” includes X and Y.
  • the cellulose nanofiber refers to a fiber having a length weighted average fiber length of 500 nm or less and a length weighted average fiber diameter of 100 nm or less.
  • the fiber diameter is preferably 20 nm or less, more preferably 2 to 10 nm.
  • the fiber length is preferably 490 nm or less, more preferably 250 to 480 nm.
  • the length-weighted average fiber length and length-weighted average fiber diameter of the cellulose nanofiber can be measured by observing the cellulose nanofiber with a microscope such as an electron microscope or an atomic force microscope.
  • the manufacturing method of the cellulose nanofiber of this invention includes the process (1) of preparing the pulp B prepared from the specific wood, and the process (2) of defibrating the said pulp B.
  • pulp B prepared from specific wood is prepared.
  • specific pulping conditions the ratio of fiber length components of 1.00 mm or more measured according to ISO 16065-2 (2014)
  • the wood from which pulp A having a fiber length distribution of 20% or less (hereinafter also referred to as “long fiber ratio”) is obtained.
  • the fiber length distribution of the pulp can be measured by using a pulp analyzer “FiberLab” manufactured by Metso Automation.
  • the ratio of fiber length components of 0.20 mm or less (hereinafter also referred to as “short fiber ratio”) is preferably 20% or less.
  • the length weight average fiber length of the pulp A is 0.65 mm or less.
  • the lower limit of the long fiber ratio and the short fiber ratio of the pulp A is usually 3% or more.
  • the minimum of the length weighted average fiber length of the pulp A is 0.3 mm or more normally.
  • the specific pulping conditions refer to the conditions for producing kraft pulp using wood chips with an active alkali addition of 15%, a sulfidity of 25%, a liquid ratio of 2.5 L / kg, and an H-factor of 830.
  • An active alkali means the term prescribed
  • the amount of active alkali is represented by NaOH + Na 2 S.
  • the degree of sulfidization is a term defined in JIS P0001 (1998) and is the amount of sulfide in the kraft process cooking liquor.
  • the degree of sulfidation (%) is expressed as Na 2 S / (NaOH + Na 2 S) ⁇ 100.
  • H-factor is a term defined in JIS P0001 (1998), and is a cooking degree that comprehensively represents the effects of cooking temperature and cooking time in a chemical pulping method.
  • the pulping effect when digested for 1 hour at 100 ° C. is defined as H-factor 1.
  • the wood species is not limited as long as it is a wood from which the above fiber length distribution is obtained, but it is preferably a hardwood material.
  • the tree species of the hardwood is not particularly limited, and examples thereof include Eucalyptus (eucalyptus), Fagus (beech), Quercus (nara, oak, etc.), Beluta (hippo), and Acacia (acacia).
  • Eucalyptus eucalyptus
  • Fagus beech
  • Quercus nara, oak, etc.
  • Beluta hippo
  • Acacia Acacia
  • the tree species belonging to the genus Eucalyptus is preferably at least one selected from the group consisting of Eucalyptus globulas, Eucalyptus grandis, Eucalyptus nighttens, Eucalyptus eurofila, Eucalyptus perita, and Eucalyptus camaldrensis. Moreover, these hybrids etc. may be sufficient. It is preferable to use a wood material having a low tree age, more preferably a wood material having a tree age of 1 to 5 years, and even more preferably a wood material having a tree age of 2 to 3 years.
  • Pulp> Examples of the pulping method of hardwood include a mechanical pulp method using a kraft pulp method, a soda pulp method, a sulfite pulp method, a refiner, and the like.
  • pulp obtained by pulverizing these pulps with a high-pressure homogenizer, a cutting mill, or the like, or pulp purified by chemical treatment such as acid hydrolysis can be used.
  • chemical treatment such as acid hydrolysis
  • Pulp preparation conditions for obtaining pulp B prepared in step (1) need not be the same as the above-mentioned “specific pulping conditions”. That is, the pulp preparation conditions in step (1) may be milder conditions or severer conditions than the specific pulping conditions.
  • the “long fiber ratio” of the pulp B prepared in the step (1) is preferably 20% or less.
  • the “short fiber ratio” of the pulp B is preferably 20% or less.
  • the length weight average fiber length of the pulp B is 0.65 mm or less.
  • the minimum of the long fiber ratio of the pulp B and a short fiber ratio is 3% or more normally.
  • the minimum of the length weight average fiber length of the pulp B is 0.3 mm or more normally.
  • the pulp B may be the same as or different from the pulp A as long as it is a pulp having few extreme short fibers and a relatively narrow fiber length distribution.
  • the viscosity of pulp B at a concentration of 1% (w / v) at 20 ° C. and 60 rpm is preferably 1 to 12 mPa ⁇ s, more preferably 3 to 10 mPa ⁇ s.
  • the pulp B is preferably subjected to a known bleaching treatment.
  • the bleaching method is not particularly limited, but chlorine treatment (C), chlorine dioxide bleaching (D), alkali extraction (E), hypochlorite bleaching (H), oxygen treatment (O), hydrogen peroxide bleaching (P ), Alkaline hydrogen peroxide treatment stage (Ep), alkaline hydrogen peroxide / oxygen treatment stage (Eop), ozone treatment (Z), chelate treatment (Q) and the like.
  • C / DE / OHD, ZE / OD, C / DEHD, ZEDP, Z / DEpD, Z / D-Ep-DP, D-Ep-D, D-Ep-DP, D-Ep-PD, ZEop-DD, Z / D-Eop-D, Z / D-Eop- Bleaching can be performed in a sequence such as DED. “/” In the sequence means that the processes before and after “/” are continuously performed without cleaning.
  • the amount of lignin in the pulp B is preferably small, and the pulp B (bleached kraft pulp B, bleached sulfite pulp B) obtained using the pulping treatment and the bleaching treatment has a whiteness (ISO 2470) of 80. % Or more is more preferable.
  • the pulp B is preferably subjected to chemical modification such as anion modification or cation modification.
  • the pulp B is used as a starting material, and a solvent mixture of 3 to 20 times lower alcohol and water is usually used in terms of weight.
  • the lower alcohol include methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butyl alcohol, isobutyl alcohol, tertiary butanol and the like.
  • the lower alcohol may be a single alcohol or a mixture of two or more. In the case of a mixture of two or more, the mixing ratio of the lower alcohol is 60 to 95% by weight in the mixed medium.
  • alkali metal hydroxide specifically sodium hydroxide or potassium hydroxide is used in terms of mole per glucose residue of the starting material.
  • a starting material, a solvent, and a mercerizing agent are mixed and subjected to mercerization treatment under the conditions of a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • a carboxymethylating agent is added 0.05 to 10.0 times in terms of mole per glucose residue, the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is 30 minutes to 10 hours.
  • the etherification reaction is preferably carried out under conditions of 1 hour to 4 hours.
  • the degree of carboxymethyl substitution per glucose unit in the anion-modified cellulose is preferably 0.01 to 0.50.
  • the celluloses repel each other electrically. For this reason, the cellulose which introduce
  • Oxidation Pulp B is oxidized in water with an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromides, iodides and mixtures thereof, thereby converting the carboxyl group into cellulose. Oxidized cellulose introduced in can be obtained.
  • N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • the N-oxyl compound used in the present invention is not limited as long as it is a compound that promotes the target oxidation reaction.
  • the amount of the N-oxyl compound is not particularly limited as long as it is a catalyst amount that can sufficiently oxidize pulp B to such an extent that the resulting oxidized pulp can be made into nanofibers.
  • it is about 0.01 to 10 mmol, preferably about 0.02 to 1 mmol, and more preferably about 0.05 to 0.5 mmol with respect to 1 g of absolutely dry pulp.
  • the bromide used in the oxidation of pulp B refers to a compound containing bromine, and examples thereof include alkali metal bromides that can be dissociated and ionized in water.
  • Iodide refers to a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted.
  • the total amount of bromide and iodide is, for example, about 0.1 to 100 mmol, preferably 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol with respect to 1 g of absolutely dry pulp.
  • oxidizing agent used in the oxidation of the pulp B known oxidizing agents such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, and peroxide can be used.
  • Sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact.
  • the amount of the oxidizing agent used can be selected within a range that can promote the oxidation reaction. The amount is, for example, about 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol with respect to 1 g of absolutely dry pulp.
  • the temperature during the oxidation reaction may be a room temperature of about 15 to 30 ° C.
  • a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced.
  • an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
  • the primary hydroxyl group at the 6-position in the cellulose Pyranose ring of pulp B is oxidized to a carboxyl group or a salt thereof.
  • a pyranose ring is a six-membered ring carbohydrate consisting of five carbon atoms and one oxygen atom.
  • the 6-position primary hydroxyl group means an OH group bonded to a 6-membered ring via a methylene group.
  • this primary hydroxyl group is selectively oxidized.
  • the cellulose thus oxidized is easily nano-defibrated in the next defibrating process. This mechanism is explained as follows.
  • Natural celluloses are nanofibers when they are biosynthesized, but many of them converge by hydrogen bonding to form fiber bundles.
  • the cellulose fiber is oxidized using an N-oxyl compound, the primary hydroxyl group at the C6 position of the pyranose ring is selectively oxidized, and this oxidation reaction remains on the surface of the microfibril, so that the concentration is high only on the surface of the microfibril.
  • a carboxyl group is introduced. Since the carboxyl groups are negatively charged and repel each other, when dispersed in water, the aggregation of the microfibrils is hindered. As a result, the fiber bundle is unraveled in units of microfibrils, and cellulose single microfibrils. It becomes a certain cellulose nanofiber.
  • the carboxyl group introduced at the C6 position of the cellulose may form a salt with an alkali metal or the like.
  • the amount of the carboxyl group and a salt thereof (hereinafter collectively referred to as “carboxyl group and the like”) is 0.10 mmol / g or more with respect to the dry mass of the cellulose nanofiber. Further, the lower limit of this amount is preferably 0.50 mmol / g or more, more preferably 1.20 mmol / g or more, and further preferably 1.40 mmol / g or more.
  • the upper limit of the amount of carboxyl groups and the like is preferably 3.00 mmol / g or less, and more preferably 2.00 mmol / g or less.
  • the amount of carboxyl groups and the like is adjusted by adding 60 ml of a 0.5% by mass slurry of oxidized pulp and adding 0.1 M hydrochloric acid aqueous solution to pH 2.5, then adding 0.05 N sodium hydroxide aqueous solution dropwise to adjust the pH.
  • the electric conductivity is measured until it becomes 11, and the amount can be calculated from the amount (a) of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electric conductivity is slow, using the following formula.
  • the amount of carboxyl groups and the like of cellulose nanofibers and the amount of carboxyl groups and the like of oxidized pulp are usually the same value.
  • a method of oxidizing by contacting a gas containing ozone and pulp can be mentioned.
  • the ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3 , more preferably 50 to 220 g / m 3 .
  • the amount of ozone added to the pulp B is preferably 0.1 to 30 parts by mass and more preferably 5 to 30 parts by mass when the solid content of the pulp B is 100 parts by mass.
  • the ozone treatment temperature is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C.
  • the ozone treatment time is not particularly limited, but is about 1 to 360 minutes, and preferably about 30 to 360 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
  • an additional oxidation treatment may be performed using an oxidizing agent.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
  • these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and the oxidized pulp can be immersed in the solution for additional oxidation treatment.
  • the amount of carboxyl group and the like of oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidizing agent added and the reaction time.
  • the method of phosphorylation is not particularly limited, and examples thereof include a method of reacting compound A with pulp B.
  • Compound A will be described below.
  • Examples of the method of reacting compound A with pulp B include a method of mixing a powder or an aqueous solution of compound A with pulp B, a method of adding an aqueous solution of compound A to a slurry of pulp B, and the like.
  • a method of mixing an aqueous solution of Compound A into Pulp B or a slurry thereof is preferable.
  • Examples of the compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof.
  • Compound A may be in the form of a salt.
  • a phosphoric acid compound is preferable because it is low in cost and easy to handle, and a phosphoric acid group can be introduced into the cellulose of the pulp fiber to improve the fibrillation efficiency.
  • the phosphate compound may be any compound having a phosphate group.
  • phosphoric acid sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, diphosphate
  • examples include potassium hydrogen, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate.
  • the phosphoric acid compound used may be one type or a combination of two or more types.
  • phosphoric acid, phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid from the viewpoint that phosphoric acid group introduction efficiency is high, is easy to be defibrated in the following defibrating process, and is industrially applicable.
  • sodium dihydrogen phosphate and disodium hydrogen phosphate are more preferred.
  • the pH of the aqueous solution of the phosphoric acid compound is preferably 7 or less from the viewpoint of increasing the efficiency of introduction of phosphate groups, and more preferably 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers.
  • esterification method examples include the following methods.
  • Compound A is added to a suspension of pulp B (for example, a solid concentration of 0.1 to 10% by mass) with stirring to introduce phosphate groups into the cellulose.
  • pulp B for example, a solid concentration of 0.1 to 10% by mass
  • the addition amount of the compound A is preferably 0.2 parts by mass or more and more preferably 1 part by mass or more as the mass in terms of phosphorus element. .
  • the upper limit is preferably 500 parts by mass or less, and more preferably 400 parts by mass or less. Thereby, the yield corresponding to the usage-amount of the compound A can be obtained efficiently. Therefore, 0.2 to 500 parts by mass is preferable, and 1 to 400 parts by mass is more preferable.
  • compound B When reacting compound A with pulp B, compound B may be further added to the reaction system.
  • Examples of the method of adding compound B to the reaction system include a method of adding to a slurry of pulp, an aqueous solution of compound A, or a slurry of pulp B and compound A.
  • Compound B is not particularly limited, but preferably exhibits basicity, more preferably a nitrogen-containing compound exhibiting basicity. “Shows basicity” usually means that the aqueous solution of Compound B is pink to red in the presence of a phenolphthalein indicator and / or the pH of the aqueous solution of Compound B is greater than 7.
  • the nitrogen-containing compound showing basicity is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable. Examples include urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, and hexamethylenediamine.
  • urea is preferable because it is easy to handle at low cost.
  • the amount of compound B added is preferably 2 to 1000 parts by mass, and more preferably 100 to 700 parts by mass.
  • the reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C.
  • the reaction time is not particularly limited, but is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are in any of these ranges, it is possible to prevent cellulose from being excessively esterified and easily dissolved, and to improve the yield of phosphorylated esterified cellulose. .
  • an esterified cellulose suspension is usually obtained.
  • the esterified cellulose suspension is dehydrated as necessary.
  • Heat treatment is preferably performed after dehydration. Thereby, hydrolysis of the pulp B can be suppressed.
  • the heating temperature is preferably 100 to 170 ° C. While water is included in the heat treatment, heating is performed at 130 ° C or less (more preferably 110 ° C or less), and after removing water, heating is performed at 100 to 170 ° C. More preferably, it is processed.
  • phosphate groups are introduced into pulp B, and cellulose repels electrically. Therefore, the phosphate esterified cellulose can be easily nano-defibrated.
  • the degree of phosphate group substitution per glucose unit in the phosphate esterified cellulose is preferably 0.001 or more. Thereby, sufficient defibration (for example, nano defibration) can be implemented.
  • the upper limit is preferably 0.40 or less. Thereby, swelling or melt
  • the phosphorylated cellulose is preferably subjected to a washing treatment such as washing with cold water after boiling. Thereby, defibration can be performed efficiently.
  • the above pulp B is used as a starting material, and the above pulp B is mixed with a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydride or a halohydrin type thereof, and an alkali metal as a catalyst.
  • a cation-modified cellulose can be obtained by reacting hydroxide (sodium hydroxide, potassium hydroxide, etc.) in the presence of water or an alcohol having 1 to 4 carbon atoms.
  • the degree of cation substitution per glucose unit in the resulting cation-modified cellulose can be adjusted by controlling the amount of the cationizing agent to be reacted and the composition ratio of water or an alcohol having 1 to 4 carbon atoms.
  • the cation substitution degree per glucose unit of the cation-modified cellulose is preferably 0.02 to 0.50.
  • the celluloses repel each other electrically.
  • transduced the cation substituent can be nano-defibrated easily.
  • the degree of cation substitution per glucose unit is smaller than 0.02, nano-defibration may not be sufficiently performed.
  • the degree of cation substitution per glucose unit is more than 0.50, it may swell or dissolve, and may not be obtained as a nanofiber.
  • the cation-modified cellulose obtained above is preferably washed.
  • Step (2) defibration>
  • the pulp B or the pulp B subjected to chemical modification is defibrated to obtain cellulose nanofibers.
  • Defibration can be performed by mixing or stirring, emulsifying or dispersing devices such as a high-speed shear mixer and a high-pressure homogenizer, singly or in combination of two or more as required.
  • the size of the pulp (fiber diameter) decreases simultaneously with the loosening of the fibers.
  • a process for further cutting the cellulose chain (shortening the cellulose chain) (also referred to as “low viscosity treatment”) is not performed. Is preferred. However, a low viscosity treatment that does not cause coloring or the like may be applied to the chemically modified pulp.
  • Examples of such a viscosity-reducing treatment include, for example, a treatment of irradiating chemically modified pulp with ultraviolet rays, a treatment of oxidizing and decomposing with hydrogen peroxide and ozone, a treatment of hydrolyzing with an acid, a treatment of hydrolyzing with an alkali, Examples thereof include treatment with an enzyme such as cellulase, or a combination thereof.
  • a dispersion of oxidized pulp (preferably an aqueous dispersion) is prepared, and the pH of the dispersion is adjusted to 8 to 14, preferably 9 to 13, and more preferably 10 to 12.
  • the pH of the dispersion is adjusted to 8 to 14, preferably 9 to 13, and more preferably 10 to 12.
  • a temperature of 20 to 120 ° C. preferably 50 to 100 ° C., more preferably 60 to 90 ° C.
  • 0.5 to 24 hours preferably 1 to 10 hours, more preferably 2 to 6 hours.
  • an alkaline aqueous solution such as sodium hydroxide can be used.
  • an oxidizing agent or a reducing agent as an auxiliary agent.
  • oxidizing agent or reducing agent those having activity in an alkaline region of pH 8 to 14 can be used.
  • the oxidizing agent include oxygen, ozone, hydrogen peroxide, and hypochlorite. Of these, oxygen, hydrogen peroxide, hypochlorite, and the like that do not easily generate radicals are preferable. Hydrogen oxide is more preferred.
  • the reducing agent include sodium borohydride, hydrosulfite, and sulfite.
  • Cellulose nanofibers can be used as a dispersion.
  • a dispersion is a liquid in which cellulose nanofibers are dispersed in a dispersion medium.
  • the dispersion medium is a medium, and water is preferable from the viewpoint of handleability.
  • the dispersion is useful from the viewpoint of industrial use of cellulose nanofibers.
  • the upper limit of the B-type viscosity of the cellulose nanofiber dispersion is 2000 mPa ⁇ s or less at a concentration of 1% (w / v).
  • the viscosity was 20 ° C., 60 rpm, rotor No. 4 is measured.
  • the lower limit of the B-type viscosity is not particularly set, but actually, it will be about 10 mPa ⁇ s at a concentration of 1% (w / v).
  • the aqueous dispersion of cellulose nanofibers is a liquid that is visually transparent because cellulose nanofibers are uniformly dispersed in water.
  • the transparency of the cellulose nanofiber dispersion can be determined by measuring the transmittance of light having a wavelength of 660 nm with a spectrophotometer.
  • the light transmittance (wavelength 660 nm) at a concentration of 0.1% (w / v) of the cellulose nanofiber aqueous dispersion is preferably 90% or more, and more preferably 95% or more.
  • the dispersion can be prepared by any method. For example, after preparing oxidized pulp, a dispersion medium such as water is added and dispersed while defibrating using an ultrahigh pressure homogenizer or the like, whereby a dispersion can be prepared.
  • a dispersion medium such as water is added and dispersed while defibrating using an ultrahigh pressure homogenizer or the like, whereby a dispersion can be prepared.
  • the B-type viscosity (60 rpm, 20 ° C.) of the cellulose nanofiber dispersion (1% (w / v)) obtained by the conventional method is about 2000 to 10000 mPa ⁇ s, whereas the dispersion of step (1)
  • the viscosity of the cellulose nanofiber dispersion (1% (w / v)) prepared using the pulp obtained under the pulp preparation conditions is as low as 2000 mPa ⁇ s or less. Therefore, it is possible to increase the concentration of the cellulose nanofiber dispersion.
  • the concentration of the cellulose nanofiber dispersion prepared by the above method is preferably 1.1 to 10% (w / v), and more preferably 2 to 8% (w / v).
  • Cellulose nanofibers are characterized by improving the breaking strength of the rubber composition by being contained in the rubber component.
  • the manufacturing method of the masterbatch of this invention includes the process of mixing the cellulose nanofiber obtained at the said process (2) like the following process (3). After mixing, a kneading step may be further included. It is also possible to provide a drying step after mixing and before the kneading step.
  • Step (3) Mixing> In this step, the cellulose nanofiber and the rubber component are mixed.
  • a rubber component is a raw material of rubber and means a material that is crosslinked to become rubber.
  • the rubber component there are a rubber component for natural rubber and a rubber component for synthetic rubber.
  • the rubber component for natural rubber includes, for example, natural rubber (NR) in a narrow sense without chemical modification; chemically modified natural rubber such as chlorinated natural rubber, chlorosulfonated natural rubber, and epoxidized natural rubber; Rubber; Deproteinized natural rubber.
  • Examples of rubber components for synthetic rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer.
  • BR butadiene rubber
  • SBR styrene-butadiene copolymer rubber
  • IR isoprene rubber
  • NBR acrylonitrile-butadiene rubber
  • chloroprene rubber chloroprene rubber
  • styrene-isoprene copolymer examples include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer.
  • Diene rubbers such as united rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber; butyl rubber (IIR), ethylene-propylene rubber (EPM, EPDM), acrylic rubber (ACM), epichlorohydride
  • Non-diene rubbers such as rubber (CO, ECO), fluoro rubber (FKM), silicone rubber (Q), urethane rubber (U), and chlorosulfonated polyethylene (CSM).
  • a diene rubber is preferable, and a diene natural rubber is more preferable.
  • the rubber component may be a single type or a combination of two or more types.
  • the solid of the rubber component may be used for mixing, but may also be used for mixing in a dispersion solution (latex) in which the rubber component is dispersed in a dispersion medium or a solution dissolved in a solvent.
  • a dispersion solution in which the rubber component is dispersed in a dispersion medium or a solution dissolved in a solvent.
  • the dispersion medium and the solvent include water and organic solvents.
  • the amount of the liquid is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the rubber component (the total amount when two or more rubber components are used).
  • Mixing can be carried out using a known apparatus such as a homomixer, a homogenizer, or a propeller stirrer.
  • the mixing temperature is not limited, but room temperature (20 to 30 ° C.) is preferable. You may adjust mixing time suitably.
  • the cellulose nanofibers used for mixing can be used for mixing in the form of a dispersion dispersed in a dispersion medium, a dry solid of the dispersion, and a wet solid of the dispersion.
  • the concentration of cellulose nanofibers in the dispersion may be 0.1 to 20% (w / v).
  • the dispersion medium contains water and an organic solvent such as alcohol, It may be 0.1 to 20% (w / v).
  • the wet solid is a solid in an intermediate form between the dispersion and the dry solid.
  • the amount of the dispersion medium in the wet solid obtained by dehydrating the dispersion liquid by a usual method is preferably 5 to 15% by mass with respect to the cellulose nanofibers. Can be adjusted as appropriate.
  • the cellulose nanofiber may be a combination of two or more cellulose nanofibers as long as the cellulose nanofiber obtained in the step (2) is used. Moreover, the mixture of a cellulose nanofiber and a water-soluble polymer solution is also good. In the case of such a mixture, a mixed solution, a dry solid of the mixed solution, a wet solid of the mixed solution, or the like can be used for mixing. The amount of liquid in the mixture and its dry solids may be in the above range.
  • Each content of the cellulose nanofiber and the rubber component in the mixture of the step (3) is not particularly limited, but preferable contents are as follows.
  • the content of cellulose nanofibers is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and further preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less. Thereby, the workability in the manufacturing process can be maintained. Accordingly, 1 to 50 parts by mass is preferable, 2 to 40 parts by mass is more preferable, and 3 to 30 parts by mass is further preferable.
  • the mixture is preferably, but not necessarily, dried before the following kneading step.
  • the drying method is not particularly limited, and any of a heating method, a coagulation method, and a combination thereof may be used, but a heat treatment is preferable.
  • the conditions for the heat treatment are not particularly limited, but an example is as follows.
  • the heating temperature is preferably 40 ° C. or higher and lower than 100 ° C.
  • the treatment time is preferably 1 to 24 hours. By setting it as the said conditions, the damage with respect to a rubber component can be suppressed.
  • the mixture after drying may be completely dried or the solvent may remain. Moreover, it does not restrict
  • the mixture may be kneaded in a known manner, for example, an open kneader such as a two-roll or three-roll, a meshing Banbury mixer, a tangential Banbury mixer, a pressure kneader, or the like.
  • a closed kneader can be used.
  • mixing process is also possible, for example, kneading
  • reinforcing agents for example, carbon black, silica, etc.
  • silane coupling agents fillers
  • vulcanizing agents for example, vulcanization accelerators
  • vulcanization accelerators for example, zinc oxide, stearic acid
  • Any additives such as oil, hardened resin, wax, anti-aging agent, colorant, and other compounding agents can be added to the mixture. What is necessary is just to determine suitably content of an additive according to the kind etc. of an additive, and it does not specifically limit.
  • the obtained kneaded material is used as a master batch of the rubber composition of the present invention as shown below.
  • the master batch of the present invention is obtained by the above production method.
  • a pulp having a relatively narrow fiber length distribution with few extreme short fibers, without making wood flour or conventional alkali treatment, etc. Can be prepared. Therefore, when it is made to contain in a rubber component, it is guessed that the cellulose nanofiber excellent in breaking strength can be manufactured. Therefore, it is guessed that it will become a masterbatch which can manufacture a rubber composition containing cellulose nanofibers and having excellent strength such as breaking strength.
  • the manufacturing method of the rubber composition of this invention includes the process of manufacturing a masterbatch by said manufacturing method of a masterbatch, and the process of knead
  • the details of the process for producing the master batch are as described above.
  • Examples of the rubber component used in the step of obtaining the rubber composition include those described in step (3) of the masterbatch production method.
  • mixing method the method described by the above ⁇ kneading
  • the rubber composition of the present invention is a rubber composition produced by the method for producing a rubber composition described above. Therefore, even if it contains a cellulose nanofiber, it can be set as the rubber composition excellent in strength, such as breaking strength.
  • the rubber composition is an unvulcanized rubber composition or a final product
  • a crosslinking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group.
  • sulfur is preferable.
  • 1.0 mass part or more is preferable with respect to 100 mass parts of rubber components, as for content of a crosslinking agent, 1.5 mass parts or more is more preferable, and 1.7 mass parts or more is further more preferable.
  • the upper limit is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and still more preferably 5 parts by mass or less.
  • Examples of the vulcanization accelerator include Nt-butyl-2-benzothiazole sulfenamide and N-oxydiethylene-2-benzothiazolyl sulfenamide.
  • the content of the vulcanization accelerator is preferably 0.1 parts by mass, more preferably 0.3 parts by mass or more, and still more preferably 0.4 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and still more preferably 2 parts by mass or less.
  • B-type viscosity (60 rpm, 20 ° C.) was measured using a TV-10 viscometer (Toki Sangyo Co., Ltd.).
  • ⁇ Length-weighted average fiber length of cellulose nanofiber> The fiber length was measured from the atomic force microscope image (3000 nm ⁇ 3000 nm) of the cellulose nanofiber fixed on the mica section, and the length weighted average fiber length was calculated. The fiber length was measured using image analysis software WinROOF (Mitani Corporation) in the range of 100 nm to 2000 nm in length.
  • ⁇ Length-weighted average fiber diameter of cellulose nanofiber> A cellulose nanofiber aqueous dispersion diluted so that the concentration of the cellulose nanofibers was 0.001% by mass was prepared. The diluted dispersion is thinly spread on a mica sample stage, heated and dried at 50 ° C. to prepare an observation sample, the cross-sectional height of the shape image observed with an atomic force microscope (AFM) is measured, and the length is measured. The weighted average fiber diameter was calculated.
  • a cellulose nanofiber aqueous dispersion diluted so that the concentration of the cellulose nanofibers was 0.001% by mass was prepared.
  • the diluted dispersion is thinly spread on a mica sample stage, heated and dried at 50 ° C. to prepare an observation sample, the cross-sectional height of the shape image observed with an atomic force microscope (AFM) is measured, and the length is measured. The weighted average fiber diameter was calculated.
  • AFM atomic force microscope
  • Specific pulping conditions Kraft pulp using wood chips with active alkali addition of 15%, sulfidity of 25%, liquid ratio of 2.5L / kg, H-factor 830 (maximum temperature is 160 ° C, hold for 90 minutes after maximum temperature is reached)
  • Wood A Eucalyptus maldrensis 2 years old, long fiber ratio 8.8%, short fiber ratio 5.5%
  • Wood B 3 years old Eucalyptus maldrensis, long fiber ratio 17.6%, short fiber ratio 9.6%
  • Wood C 3 years old acacia, long fiber ratio 10.1%, short fiber ratio 8.1%
  • Wood D 8 year old hardwood mixed material, long fiber ratio 28.6%, short fiber ratio 7.1%
  • Example 1 ⁇ Step (1): Preparation of pulp> Wood A (2 years old Eucalyptus maldrensis) was used. Bleached unbeaten kraft pulp (whiteness 85%) (manufactured by Nippon Paper Industries Co., Ltd.) obtained by pulping wood A chips as raw materials under the same conditions as the specific pulping conditions was prepared. FIG. 1 shows the fiber length distribution of this pulp. The long fiber ratio was 8.8%, and the short fiber ratio was 5.5%.
  • the addition was continued until the total amount of sodium hypochlorite added was 22.5 mmol.
  • a 3N aqueous sodium hydroxide solution was successively added to adjust the pH to 10.
  • Addition from the start of the addition of the aqueous sodium hydroxide solution (that is, from the start of the oxidation reaction to decrease the pH), when the decrease in pH stops and the addition of the aqueous sodium hydroxide solution ends
  • the reaction time was defined as the time until completion (that is, until the time when the oxidation reaction was finished and no pH decrease was observed).
  • the pulp aqueous dispersion after the reaction was filtered through a glass filter and washed thoroughly with water to obtain an oxidized pulp having an amount of carboxyl groups per glucose unit of 1.60 mmol / g.
  • ⁇ Manufacture of master batch> A rubber component obtained by mixing 325 g of a 1% solid concentration aqueous dispersion of oxidized cellulose nanofibers obtained in step (2) and 100 g of natural rubber latex (trade name: HA latex, Restex, solid content concentration 65%). And the weight ratio of the modified cellulose nanofibers was 100: 5, and the mixture was stirred for 60 minutes with a TK homomixer (8000 rpm). This aqueous suspension was dried in a heating oven at 70 ° C. for 10 hours to obtain a master batch.
  • This sheet was sandwiched between molds and press vulcanized at 150 ° C. for 10 minutes to obtain a vulcanized rubber composition sheet having a thickness of 2 mm.
  • This was cut into a test piece of a predetermined shape, and the rupture strength was measured according to JIS K6251 “vulcanized rubber and thermoplastic rubber—how to obtain tensile properties”, indicating the tensile strength which is one of the reinforcing properties. .
  • JIS K6251 vulcanized rubber and thermoplastic rubber—how to obtain tensile properties”, indicating the tensile strength which is one of the reinforcing properties. .
  • the larger this value the better the vulcanized rubber composition is reinforced and the better the mechanical strength of the rubber.
  • Example 2 Wood B (3 years old Eucalyptus maldrensis) was used. Pulp obtained by pulping the wood chips under the same conditions as the above specific pulping conditions (long fiber ratio 17.6%, short fiber ratio 9.6%, pulp viscosity 8.8 mPa ⁇ s, carboxyl A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the amount of the group and the like was 1.64 mmol / g (manufactured by Nippon Paper Industries Co., Ltd.).
  • Example 3 Wood C (3-year-old acacia) was used. Pulp obtained by pulping the wood chips under the same conditions as the above specific pulping conditions (long fiber ratio 10.1%, short fiber ratio 8.1%, pulp viscosity 5.0 mPa ⁇ s, carboxyl A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the amount of the group and the like was 1.55 mmol / g (manufactured by Nippon Paper Industries Co., Ltd.).
  • Example 4 Similar to Example 1, bleached unbeaten kraft pulp (whiteness 85%) (long fiber ratio 8.8%, short fiber ratio 5.5%, pulp viscosity 4.6 mPa ⁇ s) (Nippon Paper Industries Co., Ltd.) Prepared).
  • the above bleached unbeaten kraft pulp is 200 g in terms of dry mass and sodium hydroxide is 111 g in dry mass (2.25 times in terms of mol per anhydroglucose residue of the starting material)
  • water was added so that the pulp solid content was 20% (w / v).
  • 216 g of sodium monochloroacetate was added. After stirring for 30 minutes, the temperature was raised to 70 ° C. and stirred for 1 hour.
  • Wood D (8-year-old hardwood mixed material) was used. Pulp obtained by pulping the wood chip under the same conditions as the above specific pulping conditions (long fiber ratio 28.6%, short fiber ratio 7.1%, pulp viscosity 14.5 mPa ⁇ s, carboxyl A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the amount of the group and the like was 1.30 mmol / g, manufactured by Nippon Paper Industries Co., Ltd.
  • oxycellulose nanofibers having a length-weighted average fiber length of 560 nm and a length-weighted average fiber diameter of 5.5 nm were dispersed, the transparency was 78.2%, the B-type viscosity was 1500 mPa ⁇ s, the transparency was low, and the viscosity was high.
  • An oxidized cellulose nanofiber dispersion was obtained. Using this oxidized cellulose nanofiber dispersion, a master batch was prepared in the same manner as in Example 1, and then a vulcanized rubber composition sheet was prepared, and then the breaking strength was measured.
  • Table 1 shows the results of the examples and comparative examples. It can be seen that the breaking strengths of the examples are higher than those of the comparative examples and have excellent strength.

Abstract

In order to provide a rubber composition which contains cellulose nanofibers and is excellent in terms of strength including rupture strength, a method for producing a masterbatch is provided, the method comprising: (1) a step in which a pulp B is prepared, the pulp B having been produced from a raw wood material which, when pulped under the kraft pulp production conditions of an active-alkali addition amount of 15%, a degree of sulfurization of 25%, a liquid ratio of 2.5 L/kg, and an H-factor of 830, gives a pulp A having a fiber length distribution in which the proportion of fibers each having a length of 1.00 mm or longer as measured in accordance with ISO 16065-2 is 20% or less; (2) a step in which the pulp B is fibrillated to obtain cellulose nanofibers having a length-weighted mean fiber length of 500 nm or less and a length-weighted mean fiber diameter of 100 nm or less; and (3) a step in which the cellulose nanofibers are mixed with a rubber ingredient.

Description

マスターバッチ、ゴム組成物及びそれらの製造方法Masterbatch, rubber composition and production method thereof
 本発明は、マスターバッチ、ゴム組成物及びそれらの製造方法に関し、詳しくは化学変性セルロースナノファイバーを含有するマスターバッチ、それを用いたゴム組成物、及びそれらの製造方法に関する。 The present invention relates to a masterbatch, a rubber composition, and a production method thereof, and more particularly, to a masterbatch containing chemically modified cellulose nanofibers, a rubber composition using the same, and a production method thereof.
 近年、セルロースナノファイバーと呼ばれる、植物繊維をナノレベルまで細かくほぐすことによって製造される素材をゴム組成物に含有させることにより、引張強度などゴム組成物における各種強度を向上させる技術が提案されている。
 例えば、特許文献1には、ゴムラテックスとカルボキシル基を有するセルロース繊維の水分散液とを混合した後、少なくとも水の一部を除去してセルロース繊維/ゴム複合体を得ること、及びこの複合体とゴムを混合すること、を含む、硬度及び引張強度に優れたゴム組成物の製造方法が記載されている。
In recent years, a technique for improving various strengths in a rubber composition, such as tensile strength, has been proposed by incorporating into a rubber composition a material called cellulose nanofiber, which is produced by finely loosening plant fibers to the nano level. .
For example, Patent Document 1 discloses that after mixing rubber latex and an aqueous dispersion of cellulose fibers having a carboxyl group, at least a part of water is removed to obtain a cellulose fiber / rubber composite, and this composite. And a method of producing a rubber composition having excellent hardness and tensile strength.
特開2013-018918号公報JP 2013-018918 A
 しかしながら、特許文献1の方法で得られるゴム組成物の硬度及び引張強度は、ある程度良好ではあるものの、期待されるほど十分ではない。ゴム組成物の硬度及び引張強度が期待されるほど十分ではない原因として、ゴム組成物中において、セルロース繊維が以下の理由により均一に分散していないためと推測される。
 ゴム組成物を得るべくゴムラテックスとセルロース繊維の水分散液とを混合する際に、セルロース繊維中のカルボキシル基がナトリウム塩などの塩を形成し、セルロース繊維は親水性が高い状態となる。そのため、分散液の水を除去する際、親水性のセルロース繊維が互いに強く凝集し、分散性が低下すると推測される。すなわち、セルロース繊維は、系内で均一に分散すると本来の補強性を発揮できるが、凝集すると本来の補強性を十分に発揮できないためと推測される。
 そこで、本発明は、セルロースナノファイバーを含み、破断強度等の強度に優れたゴム組成物を製造し得るマスターバッチ、それを用いたゴム組成物、及びそれらの製造方法を提供することを目的とする。
However, although the hardness and tensile strength of the rubber composition obtained by the method of Patent Document 1 are good to some extent, they are not sufficient as expected. The reason why the hardness and tensile strength of the rubber composition are not sufficient as expected is presumed that the cellulose fibers are not uniformly dispersed in the rubber composition for the following reason.
When the rubber latex and the aqueous dispersion of cellulose fiber are mixed to obtain a rubber composition, the carboxyl group in the cellulose fiber forms a salt such as a sodium salt, and the cellulose fiber is in a highly hydrophilic state. Therefore, when removing the water of a dispersion liquid, it is estimated that a hydrophilic cellulose fiber aggregates strongly mutually and a dispersibility falls. That is, it is presumed that cellulose fibers can exhibit their original reinforcing properties when dispersed uniformly in the system, but cannot sufficiently exhibit their original reinforcing properties when aggregated.
Accordingly, an object of the present invention is to provide a master batch capable of producing a rubber composition containing cellulose nanofibers and having excellent strength such as breaking strength, a rubber composition using the same, and a production method thereof. To do.
 前記課題は、以下の〔1〕~〔8〕の本発明により解決される。
〔1〕:(1):活性アルカリ添加量15%、硫化度25%、液比2.5L/kg、H-ファクター830のクラフトパルプ製造条件においてパルプ化した際に、ISO 16065-2に従って測定した1.00mm以上の繊維長成分の割合が20%以下である繊維長分布を有するパルプAが得られる木材を原料としたパルプBを準備する工程、
(2):前記パルプBを解繊して長さ加重平均繊維長が500nm以下、かつ長さ加重平均繊維径が100nm以下のセルロースナノファイバーを得る工程、及び
(3):前記セルロースナノファイバーとゴム成分を混合する工程、
を含むマスターバッチの製造方法。
〔2〕:前記木材が、前記クラフトパルプ製造条件においてパルプ化した際に、前記繊維長分布において、0.20mm以下の繊維長成分の割合が20%以下であるパルプAが得られる木材である、〔1〕に記載の製造方法。
〔3〕:前記工程(1)の後、かつ前記工程(2)の前に、前記パルプBをアニオン変性する工程を含む、〔1〕又は〔2〕に記載の製造方法。
〔4〕:前記セルロースナノファイバーが、酸化セルロースナノファイバーであり、セルロースナノファイバーの絶乾重量に対して、カルボキシル基等の量が0.1~3.0mmol/gである、〔3〕に記載の製造方法。
〔5〕:前記セルロースナノファイバーが、カルボキシメチル化セルロースナノファイバーであり、セルロースナノファイバーのグルコース単位当たりのカルボキシメチル置換度が0.01~0.50である、〔3〕に記載の製造方法。
〔6〕:〔1〕~〔5〕のいずれか1項に記載の製造方法により製造されたマスターバッチ。
〔7〕:〔1〕~〔5〕のいずれか1項に記載の製造方法によりマスターバッチを製造する工程と、得られるマスターバッチとゴム成分を混練してゴム組成物を得る工程と、を含むゴム組成物の製造方法。
〔8〕:〔7〕に記載の製造方法により製造されたゴム組成物。
The above-mentioned problems are solved by the present invention [1] to [8] below.
[1]: (1): Measured according to ISO 16065-2 when pulped under kraft pulp production conditions of 15% active alkali addition, 25% sulfidity, liquid ratio 2.5 L / kg, H-factor 830 A step of preparing a pulp B made of wood from which a pulp A having a fiber length distribution in which the ratio of fiber length components of 1.00 mm or more is 20% or less is obtained;
(2): a step of defibrating the pulp B to obtain cellulose nanofibers having a length weighted average fiber length of 500 nm or less and a length weighted average fiber diameter of 100 nm or less; and (3): the cellulose nanofibers. Mixing rubber components,
A method for producing a masterbatch including
[2]: The wood from which the pulp A is obtained in which the ratio of the fiber length component of 0.20 mm or less is 20% or less in the fiber length distribution when the wood is pulped under the kraft pulp production conditions. [1] The production method according to [1].
[3]: The production method according to [1] or [2], including a step of anion-modifying the pulp B after the step (1) and before the step (2).
[4]: The cellulose nanofiber is an oxidized cellulose nanofiber, and the amount of carboxyl groups and the like is 0.1 to 3.0 mmol / g with respect to the absolute dry weight of the cellulose nanofiber. The manufacturing method as described.
[5]: The production method according to [3], wherein the cellulose nanofiber is carboxymethylated cellulose nanofiber, and the degree of carboxymethyl substitution per glucose unit of the cellulose nanofiber is 0.01 to 0.50. .
[6]: A master batch produced by the production method according to any one of [1] to [5].
[7]: A step of producing a master batch by the production method according to any one of [1] to [5], and a step of kneading the obtained master batch and a rubber component to obtain a rubber composition. The manufacturing method of the rubber composition containing.
[8]: A rubber composition produced by the production method according to [7].
 本発明は、セルロースナノファイバーを含み、破断強度等の強度に優れたゴム組成物を製造し得るマスターバッチ、それを用いたゴム組成物、及びそれらの製造方法を提供することができる。 The present invention can provide a master batch capable of producing a rubber composition containing cellulose nanofibers and having excellent strength such as breaking strength, a rubber composition using the same, and a production method thereof.
図1は、実施例1および比較例1で用いたパルプBの繊維長分布を示す図である。FIG. 1 is a diagram showing the fiber length distribution of pulp B used in Example 1 and Comparative Example 1. FIG.
 以下、本発明を詳細に説明する。本発明において「~」はその両端の値を含む。すなわち「X~Y」はXおよびYを含む。 Hereinafter, the present invention will be described in detail. In the present invention, “˜” includes values at both ends thereof. That is, “X to Y” includes X and Y.
≪セルロースナノファイバーの製造方法≫
 本発明において、セルロースナノファイバーとは、長さ加重平均繊維長が500nm以下であり、かつ長さ加重平均繊維径が100nm以下である繊維をいう。当該繊維径は20nm以下であることが好ましく、2~10nmであることが更に好ましい。また、当該繊維長は490nm以下であることが好ましく、250~480nmであることが更に好ましい。なお、セルロースナノファイバーの長さ加重平均繊維長および長さ加重平均繊維径は、セルロースナノファイバーを電子顕微鏡や原子間力顕微鏡等の顕微鏡で観察して測定できる。本発明のセルロースナノファイバーの製造方法は、特定の木材から調製したパルプBを準備する工程(1)、および当該パルプBを解繊する工程(2)を含む。
≪Method for producing cellulose nanofiber≫
In the present invention, the cellulose nanofiber refers to a fiber having a length weighted average fiber length of 500 nm or less and a length weighted average fiber diameter of 100 nm or less. The fiber diameter is preferably 20 nm or less, more preferably 2 to 10 nm. The fiber length is preferably 490 nm or less, more preferably 250 to 480 nm. The length-weighted average fiber length and length-weighted average fiber diameter of the cellulose nanofiber can be measured by observing the cellulose nanofiber with a microscope such as an electron microscope or an atomic force microscope. The manufacturing method of the cellulose nanofiber of this invention includes the process (1) of preparing the pulp B prepared from the specific wood, and the process (2) of defibrating the said pulp B.
<工程(1)>
 本工程では、特定の木材から調製したパルプBを準備する。具体的に当該木材は、特定のパルプ化条件(以下「特定パルプ化条件」ともいう)においてパルプ化した際に、ISO 16065-2(2014)に従って測定した1.00mm以上の繊維長成分の割合(以下「長繊維割合」ともいう)が20%以下である繊維長分布を有するパルプAが得られる木材である。パルプの繊維長分布は、Metso Automation社製パルプ分析装置「FiberLab」などを用いて測定することができる。当該繊維長分布において、0.20mm以下の繊維長成分の割合(以下「短繊維割合」ともいう)は20%以下であることが好ましい。また、パルプAの長さ加重平均繊維長は、0.65mm以下であることが好ましい。
 なお、パルプAの長繊維割合及び短繊維割合の下限は、通常、3%以上である。また、パルプAの長さ加重平均繊維長の下限は、通常、0.3mm以上である。
<Step (1)>
In this step, pulp B prepared from specific wood is prepared. Specifically, when the wood is pulped under specific pulping conditions (hereinafter also referred to as “specific pulping conditions”), the ratio of fiber length components of 1.00 mm or more measured according to ISO 16065-2 (2014) The wood from which pulp A having a fiber length distribution of 20% or less (hereinafter also referred to as “long fiber ratio”) is obtained. The fiber length distribution of the pulp can be measured by using a pulp analyzer “FiberLab” manufactured by Metso Automation. In the fiber length distribution, the ratio of fiber length components of 0.20 mm or less (hereinafter also referred to as “short fiber ratio”) is preferably 20% or less. Moreover, it is preferable that the length weight average fiber length of the pulp A is 0.65 mm or less.
In addition, the lower limit of the long fiber ratio and the short fiber ratio of the pulp A is usually 3% or more. Moreover, the minimum of the length weighted average fiber length of the pulp A is 0.3 mm or more normally.
 特定パルプ化条件とは、木材チップを用いて活性アルカリ添加量15%、硫化度25%、液比2.5L/kg、H-ファクター830で実施するクラフトパルプの製造条件をいう。 The specific pulping conditions refer to the conditions for producing kraft pulp using wood chips with an active alkali addition of 15%, a sulfidity of 25%, a liquid ratio of 2.5 L / kg, and an H-factor of 830.
 活性アルカリとは、JIS P0001(1998)に規定される用語をいい、クラフト法蒸解液およびソーダ法蒸解液のアルカリ度を示す。活性アルカリの量は、NaOH+NaSで表される。 An active alkali means the term prescribed | regulated to JISP0001 (1998), and shows the alkalinity of a Kraft method cooking solution and a soda method cooking solution. The amount of active alkali is represented by NaOH + Na 2 S.
 硫化度とは、JIS P0001(1998)に規定される用語をいい、クラフト法蒸解液中の硫化物の量である。硫化度(%)はNaS/(NaOH+NaS)×100で表される。 The degree of sulfidization is a term defined in JIS P0001 (1998) and is the amount of sulfide in the kraft process cooking liquor. The degree of sulfidation (%) is expressed as Na 2 S / (NaOH + Na 2 S) × 100.
 H-ファクターは、JIS P0001(1998)に規定される用語をいい、化学パルプ化法において蒸解温度と蒸解時間の効果を総合的に表す蒸解度である。100℃で1時間蒸解した時のパルプ化効果をH-ファクター1とする。 H-factor is a term defined in JIS P0001 (1998), and is a cooking degree that comprehensively represents the effects of cooking temperature and cooking time in a chemical pulping method. The pulping effect when digested for 1 hour at 100 ° C. is defined as H-factor 1.
<工程(1-1):木材の準備>
 上記の繊維長分布が得られる木材であれば樹種に限定は無いが、樹種としては広葉樹材であることが好ましい。広葉樹材の樹種としては特に限定されないが、例えばEucalyptus(ユーカリ類)、Fagus(ブナ類)、Quercus(ナラ、カシ等)、Beluta(カバ類)、Acacia(アカシア類)が挙げられる。これらの中でも、フトモモ科ユーカリ属に属する樹種が好ましい。これらは一般に成長性が良好であり、かつ非常に多くの樹種が属するため、植林地に対して適した樹種を探すことが比較的容易である。フトモモ科ユーカリ属の樹種としては、ユーカリ・グロブラス、ユーカリ・グランディス、ユーカリ・ナイテンス、ユーカリ・ユーロフィラ、ユーカリ・ペリータおよびユーカリ・カマルドレンシスからなる群から選ばれる少なくとも1種が好ましい。また、これらの雑種等であってもよい。
 木材は、樹齢の低い樹材を用いることが好ましく、樹齢1~5年の樹材を用いることがより好ましく、樹齢2~3年の樹材を用いることがさらに好ましい。
<Step (1-1): Preparation of wood>
The wood species is not limited as long as it is a wood from which the above fiber length distribution is obtained, but it is preferably a hardwood material. The tree species of the hardwood is not particularly limited, and examples thereof include Eucalyptus (eucalyptus), Fagus (beech), Quercus (nara, oak, etc.), Beluta (hippo), and Acacia (acacia). Among these, tree species belonging to the genus Eucalyptus are preferred. Since these generally have good growth and a large number of tree species belong to them, it is relatively easy to search for suitable tree species for the plantation. The tree species belonging to the genus Eucalyptus is preferably at least one selected from the group consisting of Eucalyptus globulas, Eucalyptus grandis, Eucalyptus nighttens, Eucalyptus eurofila, Eucalyptus perita, and Eucalyptus camaldrensis. Moreover, these hybrids etc. may be sufficient.
It is preferable to use a wood material having a low tree age, more preferably a wood material having a tree age of 1 to 5 years, and even more preferably a wood material having a tree age of 2 to 3 years.
<工程(1-2):パルプ化>
 広葉樹材のパルプ化法としては、クラフトパルプ法、ソーダパルプ法、サルファイトパルプ法、リファイナーなどによる機械パルプ法が挙げられる。また、これらの方法で得られたパルプ以外に、これらのパルプを高圧ホモジナイザーやカッティングミル等で粉砕したパルプ、あるいは酸加水分解などの化学処理により精製したパルプ等も使用することができる。しかしながら、パルプ原料中にリグニンが多く残留してしまうと次の工程の化学変性を阻害する恐れがあるので、クラフトパルプ法、ソーダパルプ法、サルファイトパルプ法などで製造された化学パルプを用いることが好ましい。
<Process (1-2): Pulp>
Examples of the pulping method of hardwood include a mechanical pulp method using a kraft pulp method, a soda pulp method, a sulfite pulp method, a refiner, and the like. In addition to pulp obtained by these methods, pulp obtained by pulverizing these pulps with a high-pressure homogenizer, a cutting mill, or the like, or pulp purified by chemical treatment such as acid hydrolysis can be used. However, if a large amount of lignin remains in the pulp material, chemical modification in the next step may be hindered. Use chemical pulp produced by the kraft pulp method, soda pulp method, sulfite pulp method, etc. Is preferred.
 工程(1)で準備するパルプBを得るためのパルプ準備条件(「工程(1)のパルプ準備条件」ともいう)は、前述の「特定パルプ化条件」と同じである必要はない。すなわち、工程(1)のパルプ準備条件は、特定パルプ化条件よりも温和な条件または過酷な条件であってよい。しかしながら、工程(1)で準備するパルプBの「長繊維割合」は、20%以下であることが好ましい。また、パルプBの「短繊維割合」は、20%以下であることが好ましい。さらに、パルプBの長さ加重平均繊維長は、0.65mm以下であることが好ましい。
 なお、パルプBの長繊維割合及び短繊維割合の下限は、通常、3%以上である。また、パルプBの長さ加重平均繊維長の下限は、通常、0.3mm以上である。
Pulp preparation conditions for obtaining pulp B prepared in step (1) (also referred to as “pulp preparation conditions in step (1)”) need not be the same as the above-mentioned “specific pulping conditions”. That is, the pulp preparation conditions in step (1) may be milder conditions or severer conditions than the specific pulping conditions. However, the “long fiber ratio” of the pulp B prepared in the step (1) is preferably 20% or less. The “short fiber ratio” of the pulp B is preferably 20% or less. Furthermore, it is preferable that the length weight average fiber length of the pulp B is 0.65 mm or less.
In addition, the minimum of the long fiber ratio of the pulp B and a short fiber ratio is 3% or more normally. Moreover, the minimum of the length weight average fiber length of the pulp B is 0.3 mm or more normally.
 パルプBは、極端な短繊維が少なく、比較的狭い繊維長分布を有するパルプである限り、パルプAと同一であってもよく、異なっていてもよい。また、パルプBの1%(w/v)の濃度における、20℃、60rpmにおける粘度は、1~12mPa・sが好ましく、3~10mPa・sがより好ましい。 The pulp B may be the same as or different from the pulp A as long as it is a pulp having few extreme short fibers and a relatively narrow fiber length distribution. The viscosity of pulp B at a concentration of 1% (w / v) at 20 ° C. and 60 rpm is preferably 1 to 12 mPa · s, more preferably 3 to 10 mPa · s.
<工程(1-3):漂白処理>
 リグニンをさらに除去するために、パルプBには公知の漂白処理を施すことが好ましい。漂白処理方法は特に限定されないが、塩素処理(C)、二酸化塩素漂白(D)、アルカリ抽出(E)、次亜塩素酸塩漂白(H)、酸素処理(O)、過酸化水素漂白(P)、アルカリ性過酸化水素処理段(Ep)、アルカリ性過酸化水素・酸素処理段(Eop)、オゾン処理(Z)、キレート処理(Q)などを組合せて行うことができる。例えば、C/D-E/O-H-D、Z-E/O-D、C/D-E-H-D、Z-E-D-P、Z/D-Ep-D、Z/D-Ep-D-P、D-Ep-D、D-Ep-D-P、D-Ep-P-D、ZEop-D-D、Z/D-Eop-D、Z/D-Eop-D-E-Dなどのシーケンスで漂白処理を実施できる。シーケンス中の「/」は、「/」の前後の処理を洗浄なしで連続して行なうことを意味する。パルプB中のリグニン量は少ないことが好ましく、パルプ化処理および漂白処理を用いて得られたパルプB(漂白済みクラフトパルプB、漂白済みサルファイトパルプB)は、白色度(ISO 2470)が80%以上であることがより好ましい。
<Step (1-3): Bleaching>
In order to further remove lignin, the pulp B is preferably subjected to a known bleaching treatment. The bleaching method is not particularly limited, but chlorine treatment (C), chlorine dioxide bleaching (D), alkali extraction (E), hypochlorite bleaching (H), oxygen treatment (O), hydrogen peroxide bleaching (P ), Alkaline hydrogen peroxide treatment stage (Ep), alkaline hydrogen peroxide / oxygen treatment stage (Eop), ozone treatment (Z), chelate treatment (Q) and the like. For example, C / DE / OHD, ZE / OD, C / DEHD, ZEDP, Z / DEpD, Z / D-Ep-DP, D-Ep-D, D-Ep-DP, D-Ep-PD, ZEop-DD, Z / D-Eop-D, Z / D-Eop- Bleaching can be performed in a sequence such as DED. “/” In the sequence means that the processes before and after “/” are continuously performed without cleaning. The amount of lignin in the pulp B is preferably small, and the pulp B (bleached kraft pulp B, bleached sulfite pulp B) obtained using the pulping treatment and the bleaching treatment has a whiteness (ISO 2470) of 80. % Or more is more preferable.
<工程(1-4):化学変性>
 次工程での解繊を効率よく行うために、パルプBにはアニオン変性やカチオン変性等の化学変性を施すことが好ましい。
<Step (1-4): Chemical modification>
In order to efficiently perform defibration in the next step, the pulp B is preferably subjected to chemical modification such as anion modification or cation modification.
<工程(1-4-1)アニオン変性>
 i)カルボキシメチル化
 パルプBを出発原料とし、溶媒として、通常、重量換算で、3~20倍の低級アルコールと水の混合媒体を使用する。低級アルコールの具体例としては、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブチルアルコール、イソブチルアルコール、第3級ブタノール等が挙げられる。低級アルコールは、単独、または2種以上の混合物であってもよい。2種以上の混合物の場合、低級アルコールの混合割合は、混合媒体中60~95重量%である。マーセル化剤として、出発原料のグルコース残基当たり、モル換算で、0.5~20倍のアルカリ金属の水酸化物、具体的には水酸化ナトリウム、水酸化カリウムを使用する。出発原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、の条件でマーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり、モル換算で、0.05~10.0倍添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、の条件でエーテル化反応を行う。
<Step (1-4-1) Anion Modification>
i) Carboxymethylation The pulp B is used as a starting material, and a solvent mixture of 3 to 20 times lower alcohol and water is usually used in terms of weight. Specific examples of the lower alcohol include methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butyl alcohol, isobutyl alcohol, tertiary butanol and the like. The lower alcohol may be a single alcohol or a mixture of two or more. In the case of a mixture of two or more, the mixing ratio of the lower alcohol is 60 to 95% by weight in the mixed medium. As the mercerizing agent, 0.5 to 20 times alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide is used in terms of mole per glucose residue of the starting material. A starting material, a solvent, and a mercerizing agent are mixed and subjected to mercerization treatment under the conditions of a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Do. Thereafter, a carboxymethylating agent is added 0.05 to 10.0 times in terms of mole per glucose residue, the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is 30 minutes to 10 hours. The etherification reaction is preferably carried out under conditions of 1 hour to 4 hours.
 アニオン変性されたセルロースのグルコース単位当たりのカルボキシメチル置換度は、0.01~0.50であることが好ましい。セルロースにカルボキシメチル基を導入することで、セルロース同士が電気的に反発する。このため、カルボキシメチル基を導入したセルロースは、容易にナノ解繊することができる。グルコース単位当たりのカルボキシメチル置換度が0.01より小さいと、十分にナノ解繊することができない場合がある。一方、グルコース単位当たりのカルボキシメチル置換度が0.50より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。 The degree of carboxymethyl substitution per glucose unit in the anion-modified cellulose is preferably 0.01 to 0.50. By introducing a carboxymethyl group into cellulose, the celluloses repel each other electrically. For this reason, the cellulose which introduce | transduced the carboxymethyl group can be nano-defibrated easily. If the degree of carboxymethyl substitution per glucose unit is less than 0.01, nano-defibration may not be sufficient. On the other hand, if the degree of carboxymethyl substitution per glucose unit is greater than 0.50, it may swell or dissolve, and may not be obtained as a nanofiber.
 ii)酸化
 パルプBを、N-オキシル化合物と、臭化物、ヨウ化物およびこれらの混合物からなる群から選択される化合物との存在下で、酸化剤を用いて水中で酸化することでカルボキシル基をセルロースに導入した酸化セルロースを得ることができる。
ii) Oxidation Pulp B is oxidized in water with an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromides, iodides and mixtures thereof, thereby converting the carboxyl group into cellulose. Oxidized cellulose introduced in can be obtained.
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。本発明で用いるN-オキシル化合物としては、目的の酸化反応を促進する化合物であれば限定されない。 N-oxyl compound refers to a compound capable of generating a nitroxy radical. The N-oxyl compound used in the present invention is not limited as long as it is a compound that promotes the target oxidation reaction.
 N-オキシル化合物の量は、得られる酸化パルプをナノファイバー化できる程度に十分にパルプBを酸化できる触媒量であれば特に限定されない。例えば、絶乾1gのパルプに対して、0.01~10mmol、好ましくは0.02~1mmol、さらに好ましくは0.05~0.5mmol程度である。 The amount of the N-oxyl compound is not particularly limited as long as it is a catalyst amount that can sufficiently oxidize pulp B to such an extent that the resulting oxidized pulp can be made into nanofibers. For example, it is about 0.01 to 10 mmol, preferably about 0.02 to 1 mmol, and more preferably about 0.05 to 0.5 mmol with respect to 1 g of absolutely dry pulp.
 パルプBの酸化の際に用いられる臭化物とは、臭素を含む化合物をいい、その例には、水中で解離してイオン化可能なアルカリ金属の臭化物が含まれる。ヨウ化物とは、ヨウ素を含む化合物をいい、その例には、アルカリ金属のヨウ化物が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのパルプに対して、0.1~100mmol、好ましくは0.1~10mmol、さらに好ましくは0.5~5mmol程度である。 The bromide used in the oxidation of pulp B refers to a compound containing bromine, and examples thereof include alkali metal bromides that can be dissociated and ionized in water. Iodide refers to a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, about 0.1 to 100 mmol, preferably 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol with respect to 1 g of absolutely dry pulp.
 パルプBの酸化の際に用いられる酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物等、公知の酸化剤が使用できる。安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の使用量は、酸化反応を促進できる範囲で選択できる。その量は、例えば、絶乾1gのパルプに対して、0.5~500mmol、好ましくは0.5~50mmol、さらに好ましくは2.5~25mmol程度である。 As the oxidizing agent used in the oxidation of the pulp B, known oxidizing agents such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, and peroxide can be used. Sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact. The amount of the oxidizing agent used can be selected within a range that can promote the oxidation reaction. The amount is, for example, about 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol with respect to 1 g of absolutely dry pulp.
 酸化反応時の温度は、15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを9~12、好ましくは10~11程度に維持する。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。 The temperature during the oxidation reaction may be a room temperature of about 15 to 30 ° C. As the reaction proceeds, a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced. In order to advance the oxidation reaction efficiently, an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11. The reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
 上記の酸化反応によって、パルプBのセルロースのピラノース環における6位の一級水酸基がカルボキシル基またはその塩に酸化される。ピラノース環とは、5つの炭素原子と1つの酸素原子からなる六員環炭水化物である。6位の一級水酸基とは、6員環にメチレン基を介して結合しているOH基をいう。N-オキシル化合物を用いたセルロースの酸化反応の際には、この一級水酸基が選択的に酸化される。このように酸化されたセルロースは次の解繊工程で容易にナノ解繊される。この機構は以下のように説明される。天然セルロースは、生合成された時点ではナノファイバーであるが、これらは水素結合により多数収束して、繊維の束を形成する。N-オキシル化合物を用いてセルロース繊維を酸化すると、ピラノース環のC6位の一級水酸基が選択的に酸化され、かつこの酸化反応はミクロフィブリルの表面にとどまるので、ミクロフィブリルの表面のみに高濃度にカルボキシル基が導入される。カルボキシル基は負の電荷を帯びているので互いに反発しあい、水中に分散させると、ミクロフィブリル同士の凝集が妨げられ、この結果、繊維の束はミクロフィブリル単位で解れて、セルロースのシングルミクロフィブリルであるセルロースナノファイバーとなる。 By the above oxidation reaction, the primary hydroxyl group at the 6-position in the cellulose Pyranose ring of pulp B is oxidized to a carboxyl group or a salt thereof. A pyranose ring is a six-membered ring carbohydrate consisting of five carbon atoms and one oxygen atom. The 6-position primary hydroxyl group means an OH group bonded to a 6-membered ring via a methylene group. In the oxidation reaction of cellulose using an N-oxyl compound, this primary hydroxyl group is selectively oxidized. The cellulose thus oxidized is easily nano-defibrated in the next defibrating process. This mechanism is explained as follows. Natural celluloses are nanofibers when they are biosynthesized, but many of them converge by hydrogen bonding to form fiber bundles. When the cellulose fiber is oxidized using an N-oxyl compound, the primary hydroxyl group at the C6 position of the pyranose ring is selectively oxidized, and this oxidation reaction remains on the surface of the microfibril, so that the concentration is high only on the surface of the microfibril. A carboxyl group is introduced. Since the carboxyl groups are negatively charged and repel each other, when dispersed in water, the aggregation of the microfibrils is hindered. As a result, the fiber bundle is unraveled in units of microfibrils, and cellulose single microfibrils. It becomes a certain cellulose nanofiber.
 前記セルロースのC6位に導入されたカルボキシル基は、アルカリ金属等と塩を形成することもある。本発明における、カルボキシル基およびその塩(以下これらをまとめて「カルボキシル基等」という)の量は、セルロースナノファイバーの乾燥質量に対し0.10mmol/g以上である。また、この量の下限は0.50mmol/g以上が好ましく、1.20mmol/g以上がより好ましく、1.40mmol/g以上がさらに好ましい。カルボキシル基等の量を多く得る条件では、酸化反応時に副反応としてセルロースの切断が起こりやすくなり、収率が低下するため不経済となる。このため、カルボキシル基等の量の上限は、3.00mmol/g以下が好ましく、2.00mmol/g以下がより好ましい。 The carboxyl group introduced at the C6 position of the cellulose may form a salt with an alkali metal or the like. In the present invention, the amount of the carboxyl group and a salt thereof (hereinafter collectively referred to as “carboxyl group and the like”) is 0.10 mmol / g or more with respect to the dry mass of the cellulose nanofiber. Further, the lower limit of this amount is preferably 0.50 mmol / g or more, more preferably 1.20 mmol / g or more, and further preferably 1.40 mmol / g or more. Under conditions where a large amount of carboxyl group or the like is obtained, the cellulose is likely to be cleaved as a side reaction during the oxidation reaction, and the yield decreases, which is uneconomical. For this reason, the upper limit of the amount of carboxyl groups and the like is preferably 3.00 mmol / g or less, and more preferably 2.00 mmol / g or less.
 カルボキシル基等の量は、酸化パルプの0.5質量%スラリーを60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。 The amount of carboxyl groups and the like is adjusted by adding 60 ml of a 0.5% by mass slurry of oxidized pulp and adding 0.1 M hydrochloric acid aqueous solution to pH 2.5, then adding 0.05 N sodium hydroxide aqueous solution dropwise to adjust the pH. The electric conductivity is measured until it becomes 11, and the amount can be calculated from the amount (a) of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electric conductivity is slow, using the following formula.
 カルボキシル基等の量〔mmol/gパルプ〕=a〔ml〕×0.05/酸化パルプ質量〔g〕
 なお、セルロースナノファイバーのカルボキシル基等の量と、酸化パルプのカルボキシル基等の量は、通常、同値である。
Amount of carboxyl group etc. [mmol / g pulp] = a [ml] × 0.05 / oxidized pulp mass [g]
The amount of carboxyl groups and the like of cellulose nanofibers and the amount of carboxyl groups and the like of oxidized pulp are usually the same value.
 酸化方法の別の例として、オゾンを含む気体とパルプとを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50~250g/mであることが好ましく、50~220g/mであることがより好ましい。パルプBに対するオゾン添加量は、パルプBの固形分を100質量部とした際に、0.1~30質量部であることが好ましく、5~30質量部であることがより好ましい。オゾン処理温度は、0~50℃であることが好ましく、20~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を、水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作製し、溶液中に酸化したパルプを浸漬させることにより追酸化処理を行うことができる。酸化セルロースのカルボキシル基等の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。 As another example of the oxidation method, a method of oxidizing by contacting a gas containing ozone and pulp can be mentioned. By this oxidation reaction, at least the 2-position and 6-position hydroxyl groups of the glucopyranose ring are oxidized and the cellulose chain is decomposed. The ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3 , more preferably 50 to 220 g / m 3 . The amount of ozone added to the pulp B is preferably 0.1 to 30 parts by mass and more preferably 5 to 30 parts by mass when the solid content of the pulp B is 100 parts by mass. The ozone treatment temperature is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C. The ozone treatment time is not particularly limited, but is about 1 to 360 minutes, and preferably about 30 to 360 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved. After the ozone treatment, an additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and the oxidized pulp can be immersed in the solution for additional oxidation treatment. The amount of carboxyl group and the like of oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidizing agent added and the reaction time.
 iii)リン酸化
 リン酸化の方法は特に限定されないが、例えば、パルプBに対し化合物Aを反応させる方法が挙げられる。化合物Aについては、以下に説明する。パルプBに対し化合物Aを反応させる方法としては、例えば、パルプBに化合物Aの粉末又は水溶液を混合する方法、パルプBのスラリーに化合物Aの水溶液を添加する方法等が挙げられる。これらのうち、反応の均一性が高まり、且つエステル化効率が高くなることから、パルプB又はそのスラリーに化合物Aの水溶液を混合する方法が好ましい。
iii) Phosphorylation The method of phosphorylation is not particularly limited, and examples thereof include a method of reacting compound A with pulp B. Compound A will be described below. Examples of the method of reacting compound A with pulp B include a method of mixing a powder or an aqueous solution of compound A with pulp B, a method of adding an aqueous solution of compound A to a slurry of pulp B, and the like. Among these, since the uniformity of the reaction is increased and the esterification efficiency is increased, a method of mixing an aqueous solution of Compound A into Pulp B or a slurry thereof is preferable.
 化合物Aとしては、例えば、リン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸、これらのエステルが挙げられる。化合物Aは、塩の形態でもよい。化合物Aとしては、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由から、リン酸系化合物が好ましい。リン酸系化合物は、リン酸基を有する化合物であればよく、例えば、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウムが挙げられる。用いられるリン酸系化合物は、1種、あるいは2種以上の組み合わせでもよい。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがより好ましい。また、反応の均一性が高まり、且つリン酸基導入の効率が高くなることから、エステル化においてはリン酸系化合物の水溶液を用いることが好ましい。リン酸系化合物の水溶液のpHは、リン酸基導入の効率が高くなることから、7以下が好ましく、パルプ繊維の加水分解を抑える観点から、3~7がより好ましい。 Examples of the compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof. Compound A may be in the form of a salt. As the compound A, a phosphoric acid compound is preferable because it is low in cost and easy to handle, and a phosphoric acid group can be introduced into the cellulose of the pulp fiber to improve the fibrillation efficiency. The phosphate compound may be any compound having a phosphate group. For example, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, diphosphate Examples include potassium hydrogen, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate. The phosphoric acid compound used may be one type or a combination of two or more types. Among these, phosphoric acid, phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid, from the viewpoint that phosphoric acid group introduction efficiency is high, is easy to be defibrated in the following defibrating process, and is industrially applicable. Are preferred, and sodium dihydrogen phosphate and disodium hydrogen phosphate are more preferred. In addition, it is preferable to use an aqueous solution of a phosphoric acid compound in the esterification because the uniformity of the reaction is enhanced and the efficiency of introduction of phosphoric acid groups is increased. The pH of the aqueous solution of the phosphoric acid compound is preferably 7 or less from the viewpoint of increasing the efficiency of introduction of phosphate groups, and more preferably 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers.
 エステル化の方法としては例えば、以下の方法が挙げられる。パルプBの懸濁液(例えば、固形分濃度0.1~10質量%)に化合物Aを撹拌しながら添加し、セルロースにリン酸基を導入する。パルプBを100質量部とした際に、化合物Aがリン酸系化合物の場合、化合物Aの添加量はリン元素換算の質量として、0.2質量部以上が好ましく、1質量部以上がより好ましい。これにより、微細繊維状セルロースの収率をより向上させることができる。上限は、500質量部以下が好ましく、400質量部以下がより好ましい。これにより、化合物Aの使用量に見合った収率を効率よく得ることができる。従って、0.2~500質量部が好ましく、1~400質量部がより好ましい。 Examples of the esterification method include the following methods. Compound A is added to a suspension of pulp B (for example, a solid concentration of 0.1 to 10% by mass) with stirring to introduce phosphate groups into the cellulose. When the pulp B is 100 parts by mass, when the compound A is a phosphoric acid compound, the addition amount of the compound A is preferably 0.2 parts by mass or more and more preferably 1 part by mass or more as the mass in terms of phosphorus element. . Thereby, the yield of fine fibrous cellulose can be improved more. The upper limit is preferably 500 parts by mass or less, and more preferably 400 parts by mass or less. Thereby, the yield corresponding to the usage-amount of the compound A can be obtained efficiently. Therefore, 0.2 to 500 parts by mass is preferable, and 1 to 400 parts by mass is more preferable.
 パルプBに対し化合物Aを反応させる際、更に化合物Bを反応系に加えてもよい。化合物Bを反応系に加える方法としては、例えば、パルプのスラリー、化合物Aの水溶液、又はパルプBと化合物Aのスラリーに、添加する方法が挙げられる。 When reacting compound A with pulp B, compound B may be further added to the reaction system. Examples of the method of adding compound B to the reaction system include a method of adding to a slurry of pulp, an aqueous solution of compound A, or a slurry of pulp B and compound A.
 化合物Bは特に限定されないが、塩基性を示すことが好ましく、塩基性を示す窒素含有化合物がより好ましい。「塩基性を示す」とは、通常、フェノールフタレイン指示薬の存在下で化合物Bの水溶液が桃~赤色を呈すること、及び/又は、化合物Bの水溶液のpHが7より大きいことを意味する。塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンが挙げられる。この中でも、低コストで扱いやすい点で、尿素が好ましい。化合物Bの添加量は、2~1000質量部が好ましく、100~700質量部がより好ましい。反応温度は、0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、通常、1~600分程度であり、30~480分が好ましい。エステル化反応の条件がこれらのいずれかの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率を向上させることができる。 Compound B is not particularly limited, but preferably exhibits basicity, more preferably a nitrogen-containing compound exhibiting basicity. “Shows basicity” usually means that the aqueous solution of Compound B is pink to red in the presence of a phenolphthalein indicator and / or the pH of the aqueous solution of Compound B is greater than 7. The nitrogen-containing compound showing basicity is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable. Examples include urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, and hexamethylenediamine. Among these, urea is preferable because it is easy to handle at low cost. The amount of compound B added is preferably 2 to 1000 parts by mass, and more preferably 100 to 700 parts by mass. The reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C. The reaction time is not particularly limited, but is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are in any of these ranges, it is possible to prevent cellulose from being excessively esterified and easily dissolved, and to improve the yield of phosphorylated esterified cellulose. .
 パルプBに化合物Aを反応させた後、通常はエステル化セルロース懸濁液が得られる。エステル化セルロース懸濁液は、必要に応じて脱水される。脱水後には加熱処理を行うことが好ましい。これにより、パルプBの加水分解を抑えることができる。加熱温度は、100~170℃が好ましく、加熱処理の際に水が含まれている間は130℃以下(更に好ましくは110℃以下)で加熱し、水を除いた後100~170℃で加熱処理することがより好ましい。 After reacting compound A with pulp B, an esterified cellulose suspension is usually obtained. The esterified cellulose suspension is dehydrated as necessary. Heat treatment is preferably performed after dehydration. Thereby, hydrolysis of the pulp B can be suppressed. The heating temperature is preferably 100 to 170 ° C. While water is included in the heat treatment, heating is performed at 130 ° C or less (more preferably 110 ° C or less), and after removing water, heating is performed at 100 to 170 ° C. More preferably, it is processed.
 リン酸エステル化セルロースにおいては、パルプBにリン酸基が導入されており、セルロース同士が電気的に反発する。そのため、リン酸エステル化セルロースは、容易にナノ解繊することができる。リン酸エステル化セルロースのグルコース単位当たりのリン酸基置換度は、0.001以上が好ましい。これにより、十分な解繊(例えばナノ解繊)が実施できる。上限は、0.40以下が好ましい。これにより、リン酸エステル化セルロースの膨潤又は溶解を防止し、ナノファイバーが得られない事態を防止することができる。従って、リン酸基置換度は0.001~0.40であることが好ましい。リン酸エステル化セルロースは、煮沸後に冷水で洗浄する等の洗浄処理がなされることが好ましい。これにより解繊を効率よく行うことができる。 In phosphate esterified cellulose, phosphate groups are introduced into pulp B, and cellulose repels electrically. Therefore, the phosphate esterified cellulose can be easily nano-defibrated. The degree of phosphate group substitution per glucose unit in the phosphate esterified cellulose is preferably 0.001 or more. Thereby, sufficient defibration (for example, nano defibration) can be implemented. The upper limit is preferably 0.40 or less. Thereby, swelling or melt | dissolution of phosphate esterified cellulose can be prevented, and the situation where a nanofiber cannot be obtained can be prevented. Therefore, it is preferable that the degree of phosphate group substitution be 0.001 to 0.40. The phosphorylated cellulose is preferably subjected to a washing treatment such as washing with cold water after boiling. Thereby, defibration can be performed efficiently.
<工程(1-4-2)カチオン変性>
 上記のパルプBを出発原料にし、上記のパルプBに、グリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリアルキルアンモニウムハイドライトまたはそのハロヒドリン型などのカチオン化剤と、触媒であるアルカリ金属の水酸化物(水酸化ナトリウム、水酸化カリウムなど)を水または炭素数1~4のアルコールの存在下で反応させることによって、カチオン変性されたセルロースを得ることができる。得られるカチオン変性されたセルロースのグルコース単位当たりのカチオン置換度は、反応させるカチオン化剤の添加量、水または炭素数1~4のアルコールの組成比率をコントロールすることによって、調整することができる。
<Step (1-4-2) Cation Modification>
The above pulp B is used as a starting material, and the above pulp B is mixed with a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydride or a halohydrin type thereof, and an alkali metal as a catalyst. A cation-modified cellulose can be obtained by reacting hydroxide (sodium hydroxide, potassium hydroxide, etc.) in the presence of water or an alcohol having 1 to 4 carbon atoms. The degree of cation substitution per glucose unit in the resulting cation-modified cellulose can be adjusted by controlling the amount of the cationizing agent to be reacted and the composition ratio of water or an alcohol having 1 to 4 carbon atoms.
 本発明において、カチオン変性されたセルロースのグルコース単位当たりのカチオン置換度は0.02~0.50であることが好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのカチオン置換度が0.02より小さいと、十分にナノ解繊することができない場合がある。一方、グルコース単位当たりのカチオン置換度が0.50より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。次の解繊を効率よく行なうために、上記で得たカチオン変性されたセルロースは、洗浄することが好ましい。 In the present invention, the cation substitution degree per glucose unit of the cation-modified cellulose is preferably 0.02 to 0.50. By introducing a cationic substituent into cellulose, the celluloses repel each other electrically. For this reason, the cellulose which introduce | transduced the cation substituent can be nano-defibrated easily. In addition, when the cation substitution degree per glucose unit is smaller than 0.02, nano-defibration may not be sufficiently performed. On the other hand, if the degree of cation substitution per glucose unit is more than 0.50, it may swell or dissolve, and may not be obtained as a nanofiber. In order to efficiently perform the next defibration, the cation-modified cellulose obtained above is preferably washed.
<工程(2):解繊>
 本工程では、パルプB又は化学変性を行ったパルプBを解繊してセルロースナノファイバーを得る。解繊は、例えば、高速せん断ミキサーや高圧ホモジナイザーなどの、混合または攪拌、乳化または分散装置を、必要に応じて単独もしくは2種類以上組合せて行うことができる。この際、繊維がほぐれると同時にパルプの大きさ(繊維径)が小さくなる。特に、100MPa以上、好ましくは120MPa以上、さらに好ましくは140MPa以上の圧力を可能とする超高圧ホモジナイザーを用いると、セルロースナノファイバーの解繊と分散が効率よく進行し、水分散液としたときに、低い粘度を有するセルロースナノファイバーを効率よく製造することができるので好ましい。
<Step (2): defibration>
In this step, the pulp B or the pulp B subjected to chemical modification is defibrated to obtain cellulose nanofibers. Defibration can be performed by mixing or stirring, emulsifying or dispersing devices such as a high-speed shear mixer and a high-pressure homogenizer, singly or in combination of two or more as required. At this time, the size of the pulp (fiber diameter) decreases simultaneously with the loosening of the fibers. In particular, when using an ultra-high pressure homogenizer that enables a pressure of 100 MPa or more, preferably 120 MPa or more, more preferably 140 MPa or more, defibration and dispersion of cellulose nanofibers proceed efficiently, and when an aqueous dispersion is obtained, This is preferable because cellulose nanofibers having a low viscosity can be produced efficiently.
 前述の化学変性を行ったパルプは容易に解繊されるので、本発明においてはさらにセルロース鎖を切断(セルロース鎖を短繊維化)する処理(「低粘度化処理」ともいう)は実施しないことが好ましい。しかしながら、着色などが起こらない程度に軽度な低粘度化処理を、前記化学変性を行ったパルプに施してもよい。このような低粘度化処理としては、例えば、化学変性を行ったパルプに紫外線を照射する処理、過酸化水素およびオゾンで酸化分解する処理、酸で加水分解する処理、アルカリで加水分解する処理、セルラーゼなどの酵素による処理、またはこれらの組み合わせなどが挙げられる。 Since the pulp subjected to the above-mentioned chemical modification is easily defibrated, in the present invention, a process for further cutting the cellulose chain (shortening the cellulose chain) (also referred to as “low viscosity treatment”) is not performed. Is preferred. However, a low viscosity treatment that does not cause coloring or the like may be applied to the chemically modified pulp. Examples of such a viscosity-reducing treatment include, for example, a treatment of irradiating chemically modified pulp with ultraviolet rays, a treatment of oxidizing and decomposing with hydrogen peroxide and ozone, a treatment of hydrolyzing with an acid, a treatment of hydrolyzing with an alkali, Examples thereof include treatment with an enzyme such as cellulase, or a combination thereof.
 例えば、アルカリで加水分解する処理は、酸化パルプの分散液(水分散液が好ましい)を用意し、分散液のpHを8~14、好ましくは9~13、さらに好ましくは10~12に調整して、温度20~120℃、好ましくは50~100℃、さらに好ましくは60~90℃で、0.5~24時間、好ましくは1~10時間、さらに好ましくは2~6時間、反応させることにより行うことができる。分散液のpHの調整には、水酸化ナトリウムなどのアルカリ性の水溶液を用いることができる。また、酸化剤または還元剤を助剤として添加することが好ましい。酸化剤または還元剤としては、pH8~14のアルカリ性領域で活性を有するものを使用することができる。酸化剤の例としては、酸素、オゾン、過酸化水素、次亜塩素酸塩を挙げることができ、このうち、ラジカルを発生しにくい酸素、過酸化水素、次亜塩素酸塩などが好ましく、過酸化水素がより好ましい。また、還元剤の例としては、水素化ホウ素ナトリウム、ハイドロサルファイト、亜硫酸塩を挙げることができる。 For example, for the hydrolysis with alkali, a dispersion of oxidized pulp (preferably an aqueous dispersion) is prepared, and the pH of the dispersion is adjusted to 8 to 14, preferably 9 to 13, and more preferably 10 to 12. By reacting at a temperature of 20 to 120 ° C., preferably 50 to 100 ° C., more preferably 60 to 90 ° C., for 0.5 to 24 hours, preferably 1 to 10 hours, more preferably 2 to 6 hours. It can be carried out. For adjusting the pH of the dispersion, an alkaline aqueous solution such as sodium hydroxide can be used. Moreover, it is preferable to add an oxidizing agent or a reducing agent as an auxiliary agent. As the oxidizing agent or reducing agent, those having activity in an alkaline region of pH 8 to 14 can be used. Examples of the oxidizing agent include oxygen, ozone, hydrogen peroxide, and hypochlorite. Of these, oxygen, hydrogen peroxide, hypochlorite, and the like that do not easily generate radicals are preferable. Hydrogen oxide is more preferred. Examples of the reducing agent include sodium borohydride, hydrosulfite, and sulfite.
<セルロースナノファイバー分散液>
 セルロースナノファイバーは、分散液として使用できる。分散液とは、分散媒にセルロースナノファイバーが分散した液である。分散媒とは媒質であり、取扱い性等の観点から水が好ましい。分散液は、セルロースナノファイバーを工業的に利用する観点から有用である。
<Cellulose nanofiber dispersion>
Cellulose nanofibers can be used as a dispersion. A dispersion is a liquid in which cellulose nanofibers are dispersed in a dispersion medium. The dispersion medium is a medium, and water is preferable from the viewpoint of handleability. The dispersion is useful from the viewpoint of industrial use of cellulose nanofibers.
 セルロースナノファイバー分散液のB型粘度の上限は、1%(w/v)の濃度において、2000mPa・s以下である。粘度は、B型粘度計により、20℃、60rpm、ロータNo.4により測定される。B型粘度の下限は特に設定されないが、実際のところ、1%(w/v)の濃度において10mPa・s程度となるであろう。 The upper limit of the B-type viscosity of the cellulose nanofiber dispersion is 2000 mPa · s or less at a concentration of 1% (w / v). The viscosity was 20 ° C., 60 rpm, rotor No. 4 is measured. The lower limit of the B-type viscosity is not particularly set, but actually, it will be about 10 mPa · s at a concentration of 1% (w / v).
 セルロースナノファイバーの水分散液は、セルロースナノファイバーが水中に均一に分散しており、目視にて透明な液である。セルロースナノファイバー分散液の透明度は、波長660nmの光の透過率を分光光度計で測定することにより求めることができる。セルロースナノファイバー水分散液の濃度0.1%(w/v)における光透過率(波長660nm)は、90%以上が好ましく、95%以上がより好ましい。 The aqueous dispersion of cellulose nanofibers is a liquid that is visually transparent because cellulose nanofibers are uniformly dispersed in water. The transparency of the cellulose nanofiber dispersion can be determined by measuring the transmittance of light having a wavelength of 660 nm with a spectrophotometer. The light transmittance (wavelength 660 nm) at a concentration of 0.1% (w / v) of the cellulose nanofiber aqueous dispersion is preferably 90% or more, and more preferably 95% or more.
 分散液は、任意の方法により調製することができる。例えば、酸化パルプを調製した後、水等の分散媒を添加して超高圧ホモジナイザー等を用いて解繊しながら分散させることにより、分散液を調製することができる。 The dispersion can be prepared by any method. For example, after preparing oxidized pulp, a dispersion medium such as water is added and dispersed while defibrating using an ultrahigh pressure homogenizer or the like, whereby a dispersion can be prepared.
 従来の方法で得たセルロースナノファイバーの分散液(1%(w/v))のB型粘度(60rpm、20℃)は、2000~10000mPa・s程度であるのに対し、工程(1)のパルプ準備条件で得られたパルプを用いて調製したセルロースナノファイバーの分散液(1%(w/v))の粘度は、2000mPa・s以下と低い。このためセルロースナノファイバーの分散液を高濃度化することが可能となる。例えば、上記方法で調製したセルロースナノファイバー分散液の濃度は、1.1~10%(w/v)が好ましく、2~8%(w/v)がより好ましい。また、セルロースナノファイバーは、ゴム成分に含有させることにより、ゴム組成物の破断強度を向上するという特徴を有する。 The B-type viscosity (60 rpm, 20 ° C.) of the cellulose nanofiber dispersion (1% (w / v)) obtained by the conventional method is about 2000 to 10000 mPa · s, whereas the dispersion of step (1) The viscosity of the cellulose nanofiber dispersion (1% (w / v)) prepared using the pulp obtained under the pulp preparation conditions is as low as 2000 mPa · s or less. Therefore, it is possible to increase the concentration of the cellulose nanofiber dispersion. For example, the concentration of the cellulose nanofiber dispersion prepared by the above method is preferably 1.1 to 10% (w / v), and more preferably 2 to 8% (w / v). Cellulose nanofibers are characterized by improving the breaking strength of the rubber composition by being contained in the rubber component.
 特定のパルプを用いることでこのような性能を有するセルロースナノファイバーが製造できる理由は、次のように考えられる。 The reason why cellulose nanofibers having such performance can be produced by using a specific pulp is considered as follows.
 パルプに対して従来のようなアルカリ処理を行うと、一部の繊維を過度に切断してしまい極端に短繊維化されてしまう。また、木粉を原料とすると繊維が機械的に過度に破壊されているため、極端に短繊維化されたセルロースナノファイバーが多く、補強効果を低下させてしまう。これに対して、本発明で使用する前記木材からは、木粉にすることや従来のようなアルカリ処理等をすることなく、極端な短繊維が少なく、比較的狭い繊維長分布を有するパルプBを調製できる。そのため、ゴム成分に含有させた際に、破断強度に優れたセルロースナノファイバーを製造できると推察される。 When a conventional alkali treatment is performed on pulp, some fibers are excessively cut, resulting in extremely short fibers. In addition, if wood flour is used as the raw material, the fibers are mechanically excessively broken, so that there are many cellulose nanofibers that are extremely shortened, which lowers the reinforcing effect. On the other hand, from the wood used in the present invention, pulp B having a relatively narrow fiber length distribution with few extreme short fibers, without making wood powder or conventional alkali treatment, etc. Can be prepared. Therefore, when it is made to contain in a rubber component, it is guessed that the cellulose nanofiber excellent in breaking strength can be manufactured.
≪マスターバッチの製造方法≫
 本発明のマスターバッチの製造方法は、前記工程(2)で得られたセルロースナノファイバーを、下記工程(3)のように混合する工程を含む。混合した後、更に混練工程を含んでもよい。また、混合の後、混練工程の前に、乾燥する工程を設けることも可能である。
≪Masterbatch manufacturing method≫
The manufacturing method of the masterbatch of this invention includes the process of mixing the cellulose nanofiber obtained at the said process (2) like the following process (3). After mixing, a kneading step may be further included. It is also possible to provide a drying step after mixing and before the kneading step.
<工程(3):混合>
 本工程では、上記のセルロースナノファイバーとゴム成分を混合する。
<Step (3): Mixing>
In this step, the cellulose nanofiber and the rubber component are mixed.
<ゴム成分>
 ゴム成分とは、ゴムの原料であり、架橋してゴムとなるものをいう。ゴム成分としては、天然ゴム用のゴム成分と合成ゴム用のゴム成分が存在する。天然ゴム用のゴム成分としては、例えば、化学修飾を施さない狭義の天然ゴム(NR);塩素化天然ゴム、クロロスルホン化天然ゴム、エポキシ化天然ゴム等の化学修飾した天然ゴム;水素化天然ゴム;脱タンパク天然ゴムが挙げられる。合成ゴム用のゴム成分としては、例えば、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム等のジエン系ゴム;ブチルゴム(IIR)、エチレン-プロピレンゴム(EPM、EPDM)、アクリルゴム(ACM)、エピクロロヒドリンゴム(CO、ECO)、フッ素ゴム(FKM)、シリコーンゴム(Q)、ウレタンゴム(U)、クロロスルホン化ポリエチレン(CSM)等の非ジエン系ゴムが挙げられる。これらの中でも、ジエン系のゴムが好ましく、ジエン系の天然ゴムがより好ましい。
<Rubber component>
A rubber component is a raw material of rubber and means a material that is crosslinked to become rubber. As the rubber component, there are a rubber component for natural rubber and a rubber component for synthetic rubber. The rubber component for natural rubber includes, for example, natural rubber (NR) in a narrow sense without chemical modification; chemically modified natural rubber such as chlorinated natural rubber, chlorosulfonated natural rubber, and epoxidized natural rubber; Rubber; Deproteinized natural rubber. Examples of rubber components for synthetic rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, and styrene-isoprene copolymer. Diene rubbers such as united rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber; butyl rubber (IIR), ethylene-propylene rubber (EPM, EPDM), acrylic rubber (ACM), epichlorohydride Non-diene rubbers such as rubber (CO, ECO), fluoro rubber (FKM), silicone rubber (Q), urethane rubber (U), and chlorosulfonated polyethylene (CSM). Among these, a diene rubber is preferable, and a diene natural rubber is more preferable.
 上記ゴム成分は、1種単独でもよいし、2種以上の組み合わせでもよい。 The rubber component may be a single type or a combination of two or more types.
 工程(3)において、ゴム成分の固形物を混合に供してもよいが、ゴム成分を分散媒に分散させた分散液(ラテックス)または溶媒に溶解した溶液にして混合に供してもよい。分散媒および溶媒(以下、まとめて「液体」ともいう)としては、例えば、水、有機溶媒が挙げられる。液体の量は、ゴム成分(2以上のゴム成分を使用する場合、その合計量)100質量部に対して、10~1000質量部が好ましい。 In step (3), the solid of the rubber component may be used for mixing, but may also be used for mixing in a dispersion solution (latex) in which the rubber component is dispersed in a dispersion medium or a solution dissolved in a solvent. Examples of the dispersion medium and the solvent (hereinafter, collectively referred to as “liquid”) include water and organic solvents. The amount of the liquid is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the rubber component (the total amount when two or more rubber components are used).
<混合>
 混合は、ホモミキサー、ホモジナイザー、プロペラ攪拌機等の公知の装置を用いて実施できる。混合する温度は限定されないが、室温(20~30℃)が好ましい。混合時間も適宜調整してよい。
<Mixed>
Mixing can be carried out using a known apparatus such as a homomixer, a homogenizer, or a propeller stirrer. The mixing temperature is not limited, but room temperature (20 to 30 ° C.) is preferable. You may adjust mixing time suitably.
 混合に用いるセルロースナノファイバーは、分散媒に分散した分散液、当該分散液の乾燥固形物、当該分散液の湿潤固形物の形態で混合に供することができる。分散液におけるセルロースナノファイバーの濃度は、分散媒が水である場合、0.1~20%(w/v)であってもよく、分散媒が水とアルコール等の有機溶媒とを含む場合、0.1~20%(w/v)であってもよい。湿潤固形物とは、前記分散液と乾燥固形物との中間の態様の固形物である。前記分散液を通常の方法で脱水して得た湿潤固形物中の分散媒の量は、セルロースナノファイバーに対して5~15質量%が好ましいが、液体の追加またはさらなる乾燥により分散媒の量は適宜調整し得る。 The cellulose nanofibers used for mixing can be used for mixing in the form of a dispersion dispersed in a dispersion medium, a dry solid of the dispersion, and a wet solid of the dispersion. When the dispersion medium is water, the concentration of cellulose nanofibers in the dispersion may be 0.1 to 20% (w / v). When the dispersion medium contains water and an organic solvent such as alcohol, It may be 0.1 to 20% (w / v). The wet solid is a solid in an intermediate form between the dispersion and the dry solid. The amount of the dispersion medium in the wet solid obtained by dehydrating the dispersion liquid by a usual method is preferably 5 to 15% by mass with respect to the cellulose nanofibers. Can be adjusted as appropriate.
 セルロースナノファイバーは、工程(2)で得られたセルロースナノファイバーを用いる限り、2以上のセルロースナノファイバーの組み合わせでもよい。また、セルロースナノファイバーと水溶性高分子溶液との混合物もよい。このような混合物である場合、混合液、混合液の乾燥固形物、混合液の湿潤固形物等を混合に供することができる。混合液およびその乾燥固形物における液体の量は、上記の範囲であってよい。 The cellulose nanofiber may be a combination of two or more cellulose nanofibers as long as the cellulose nanofiber obtained in the step (2) is used. Moreover, the mixture of a cellulose nanofiber and a water-soluble polymer solution is also good. In the case of such a mixture, a mixed solution, a dry solid of the mixed solution, a wet solid of the mixed solution, or the like can be used for mixing. The amount of liquid in the mixture and its dry solids may be in the above range.
<混合物の組成>
 工程(3)の混合物におけるセルロースナノファイバーとゴム成分の各含有量は特に限定されないが、好ましい含有量は以下のとおりである。
<Composition of the mixture>
Each content of the cellulose nanofiber and the rubber component in the mixture of the step (3) is not particularly limited, but preferable contents are as follows.
 セルロースナノファイバーの含有量は、ゴム成分100質量部に対して1質量部以上が好ましく、2質量部以上がより好ましく、3質量部以上がさらに好ましい。これにより引張強度の向上効果が十分に発現し得る。上限は、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましい。これにより、製造工程における加工性を保持することができる。従って、1~50質量部が好ましく、2~40質量部がより好ましく、3~30質量部がさらに好ましい。 The content of cellulose nanofibers is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and further preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. Thereby, the improvement effect of tensile strength can fully express. The upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less. Thereby, the workability in the manufacturing process can be maintained. Accordingly, 1 to 50 parts by mass is preferable, 2 to 40 parts by mass is more preferable, and 3 to 30 parts by mass is further preferable.
<乾燥工程>
 混合物は、下記混練工程の前に、必ずしもではないが、乾燥を行うことが好ましい。乾燥の方法は特に限定されず、加熱法、凝固法、それらの併用のいずれでも良いが、加熱処理によることが好ましい。加熱処理の条件は、特に限定されないが、一例を挙げると以下のとおりである。加熱温度は、40℃以上100℃未満が好ましい。処理時間は、1時間~24時間が好ましい。上記条件とすることにより、ゴム成分に対するダメージが抑えられ得る。乾燥後の混合物は絶乾状態でも、溶媒が残存していてもよい。また、上記以外の溶媒を除去する方法としては、特に制限されず従来公知の方法で行うことができる。
<Drying process>
The mixture is preferably, but not necessarily, dried before the following kneading step. The drying method is not particularly limited, and any of a heating method, a coagulation method, and a combination thereof may be used, but a heat treatment is preferable. The conditions for the heat treatment are not particularly limited, but an example is as follows. The heating temperature is preferably 40 ° C. or higher and lower than 100 ° C. The treatment time is preferably 1 to 24 hours. By setting it as the said conditions, the damage with respect to a rubber component can be suppressed. The mixture after drying may be completely dried or the solvent may remain. Moreover, it does not restrict | limit especially as a method of removing solvents other than the above, It can carry out by a conventionally well-known method.
<混練工程>
 混練工程を行う場合、混合物の混練は、公知の通りに行ってよく、例えば、2本ロール、3本ロールなどの開放式混練機、噛合式バンバリーミキサー、接線式バンバリーミキサー、加圧ニーダーなどの密閉式混練機が使用可能である。また、多段階の混練工程を経る工程も可能で、例えば、第一段階で密閉式混練機による混練を行い、その後開放式混練機で再混練することができる。
<Kneading process>
When performing the kneading step, the mixture may be kneaded in a known manner, for example, an open kneader such as a two-roll or three-roll, a meshing Banbury mixer, a tangential Banbury mixer, a pressure kneader, or the like. A closed kneader can be used. Moreover, the process which passes through a multistage kneading | mixing process is also possible, for example, kneading | mixing with a closed kneading machine can be performed at a 1st stage, and it can re-knead with an open kneading machine after that.
 また、混練の際に、補強剤(例えば、カーボンブラック、シリカ等)、シランカップリング剤、充填剤、加硫剤、加硫促進剤、加硫促進助剤(例えば、酸化亜鉛、ステアリン酸)、オイル、硬化レジン、ワックス、老化防止剤、着色剤、その他配合剤など任意の添加剤を混合物に添加することもできる。添加剤の含有量は、添加剤の種類等に応じて適宜決定すればよく、特に限定されない。 In addition, during kneading, reinforcing agents (for example, carbon black, silica, etc.), silane coupling agents, fillers, vulcanizing agents, vulcanization accelerators, vulcanization accelerators (for example, zinc oxide, stearic acid) Any additives such as oil, hardened resin, wax, anti-aging agent, colorant, and other compounding agents can be added to the mixture. What is necessary is just to determine suitably content of an additive according to the kind etc. of an additive, and it does not specifically limit.
 得られた混練物は、下記に示す如く、本発明のゴム組成物のマスターバッチとして利用される。 The obtained kneaded material is used as a master batch of the rubber composition of the present invention as shown below.
≪マスターバッチ≫
 本発明のマスターバッチは、上記製造方法により得られるものである。本発明の製造方法では、特定の木材を用いることにより、木粉にすることや従来のようなアルカリ処理等をすることなく、極端な短繊維が少なく、比較的狭い繊維長分布を有するパルプを調製できる。そのため、ゴム成分に含有させた際に、破断強度に優れたセルロースナノファイバーを製造できると推察される。そのため、セルロースナノファイバーを含み、破断強度等の強度に優れたゴム組成物を製造し得るマスターバッチとなると推察される。
≪Master batch≫
The master batch of the present invention is obtained by the above production method. In the production method of the present invention, by using a specific wood, a pulp having a relatively narrow fiber length distribution with few extreme short fibers, without making wood flour or conventional alkali treatment, etc. Can be prepared. Therefore, when it is made to contain in a rubber component, it is guessed that the cellulose nanofiber excellent in breaking strength can be manufactured. Therefore, it is guessed that it will become a masterbatch which can manufacture a rubber composition containing cellulose nanofibers and having excellent strength such as breaking strength.
≪ゴム組成物の製造方法≫
 本発明のゴム組成物の製造方法は、上記のマスターバッチの製造方法によりマスターバッチを製造する工程と、得られるマスターバッチとゴム成分を混練してゴム組成物を得る工程と、を含む。
 マスターバッチを製造する工程の詳細は、上記の通りである。ゴム組成物を得る工程で使用されるゴム成分としては、マスターバッチの製造方法の工程(3)で記載したものがあげられる。また、混練方法としては、上記<混練工程>で記載した方法が挙げられる。
≪Method for producing rubber composition≫
The manufacturing method of the rubber composition of this invention includes the process of manufacturing a masterbatch by said manufacturing method of a masterbatch, and the process of knead | mixing the obtained masterbatch and a rubber component and obtaining a rubber composition.
The details of the process for producing the master batch are as described above. Examples of the rubber component used in the step of obtaining the rubber composition include those described in step (3) of the masterbatch production method. Moreover, as a kneading | mixing method, the method described by the above <kneading | mixing process> is mentioned.
≪ゴム組成物≫
 本発明のゴム組成物は、上記のゴム組成物の製造方法により製造されたゴム組成物である。そのため、セルロースナノファイバーを含むものであっても、破断強度等の強度に優れたゴム組成物とし得る。
≪Rubber composition≫
The rubber composition of the present invention is a rubber composition produced by the method for producing a rubber composition described above. Therefore, even if it contains a cellulose nanofiber, it can be set as the rubber composition excellent in strength, such as breaking strength.
 ゴム組成物が未加硫ゴム組成物または最終製品である場合、架橋剤及び加硫促進剤を含むことが好ましい。架橋剤としては、例えば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂が挙げられる。これらの中でも硫黄が好ましい。架橋剤の含有量は、ゴム成分100質量部に対し、1.0質量部以上が好ましく、1.5質量部以上がより好ましく、1.7質量部以上がさらに好ましい。上限は、10質量部以下が好ましく、7質量部以下がより好ましく、5質量部以下がさらに好ましい。 When the rubber composition is an unvulcanized rubber composition or a final product, it is preferable to include a crosslinking agent and a vulcanization accelerator. Examples of the crosslinking agent include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferable. 1.0 mass part or more is preferable with respect to 100 mass parts of rubber components, as for content of a crosslinking agent, 1.5 mass parts or more is more preferable, and 1.7 mass parts or more is further more preferable. The upper limit is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and still more preferably 5 parts by mass or less.
 加硫促進剤としては、例えば、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミドが挙げられる。加硫促進剤の含有量は、ゴム成分100質量部に対し、0.1質量部が好ましく、0.3質量部以上がより好ましく、0.4質量部以上がさらに好ましい。上限は、5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下がさらに好ましい。 Examples of the vulcanization accelerator include Nt-butyl-2-benzothiazole sulfenamide and N-oxydiethylene-2-benzothiazolyl sulfenamide. The content of the vulcanization accelerator is preferably 0.1 parts by mass, more preferably 0.3 parts by mass or more, and still more preferably 0.4 parts by mass or more with respect to 100 parts by mass of the rubber component. The upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and still more preferably 2 parts by mass or less.
 以下に実施例を挙げて、本発明をより具体的に説明するが、本発明はこれらに限定されない。なお、以下に示す物性値は、特に断りがない限り、上記した測定方法による値である。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In addition, the physical-property value shown below is a value by an above-described measuring method unless there is particular notice.
 <B型粘度>
 TV-10型粘度計(東機産業社)を用いてB型粘度(60rpm、20℃)を測定した。
<B-type viscosity>
B-type viscosity (60 rpm, 20 ° C.) was measured using a TV-10 viscometer (Toki Sangyo Co., Ltd.).
 <パルプ粘度>
 パルプ粘度の測定は、J.TAPPI 44に準じて行った。
<Pulp viscosity>
The measurement of pulp viscosity is described in J. Am. It carried out according to TAPPI 44.
 <セルロースナノファイバーの長さ加重平均繊維長>
 マイカ切片上に固定したセルロースナノファイバーの原子間力顕微鏡像(3000nm×3000nm)から、繊維長を測定し、長さ加重平均繊維長を算出した。繊維長測定は、画像解析ソフトWinROOF(三谷商事)を用い、長さ100nm~2000nmの範囲で行った。
<Length-weighted average fiber length of cellulose nanofiber>
The fiber length was measured from the atomic force microscope image (3000 nm × 3000 nm) of the cellulose nanofiber fixed on the mica section, and the length weighted average fiber length was calculated. The fiber length was measured using image analysis software WinROOF (Mitani Corporation) in the range of 100 nm to 2000 nm in length.
 <セルロースナノファイバーの長さ加重平均繊維径>
 セルロースナノファイバーの濃度が0.001質量%となるように希釈したセルロースナノファイバー水分散液を調製した。この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥して観察用試料を作製し、原子間力顕微鏡(AFM)にて観察した形状像の断面高さを計測し、長さ加重平均繊維径を算出した。
<Length-weighted average fiber diameter of cellulose nanofiber>
A cellulose nanofiber aqueous dispersion diluted so that the concentration of the cellulose nanofibers was 0.001% by mass was prepared. The diluted dispersion is thinly spread on a mica sample stage, heated and dried at 50 ° C. to prepare an observation sample, the cross-sectional height of the shape image observed with an atomic force microscope (AFM) is measured, and the length is measured. The weighted average fiber diameter was calculated.
 <パルプの長さ加重平均繊維長および繊維長分布>
 ISO 16065-2(2014)に従って測定した。
<Pulp length weighted average fiber length and fiber length distribution>
It was measured according to ISO 16065-2 (2014).
 <木材の準備>
 以下の木材を準備した。各木材を特定パルプ化条件にてパルプ化したときのISO 16065-2(2014)に従って測定した1.00mm以上の繊維長成分の割合(長繊維割合)は以下のとおりであった。
<Preparation of wood>
The following wood was prepared. The ratio of long fiber components (long fiber ratio) of 1.00 mm or more measured according to ISO 16065-2 (2014) when each wood was pulped under specific pulping conditions was as follows.
 特定パルプ化条件:
 木材チップを用いて活性アルカリ添加量15%、硫化度25%、液比2.5L/kg、H-ファクター830(最高温度は160℃で、最高温度到達後に90分保持)で実施するクラフトパルプ製造条件
  木材A:樹齢2年のユーカリカマルドレンシス、長繊維割合8.8%、短繊維割合5.5%
  木材B:樹齢3年のユーカリカマルドレンシス、長繊維割合17.6%、短繊維割合9.6%
  木材C:樹齢3年のアカシア、長繊維割合10.1%、短繊維割合8.1%
  木材D:樹齢8年の広葉樹混合材、長繊維割合28.6%、短繊維割合7.1%
Specific pulping conditions:
Kraft pulp using wood chips with active alkali addition of 15%, sulfidity of 25%, liquid ratio of 2.5L / kg, H-factor 830 (maximum temperature is 160 ° C, hold for 90 minutes after maximum temperature is reached) Production conditions Wood A: Eucalyptus maldrensis 2 years old, long fiber ratio 8.8%, short fiber ratio 5.5%
Wood B: 3 years old Eucalyptus maldrensis, long fiber ratio 17.6%, short fiber ratio 9.6%
Wood C: 3 years old acacia, long fiber ratio 10.1%, short fiber ratio 8.1%
Wood D: 8 year old hardwood mixed material, long fiber ratio 28.6%, short fiber ratio 7.1%
 [実施例1]
 <工程(1):パルプの準備>
 木材A(樹齢2年のユーカリカマルドレンシス)を用いた。木材Aのチップを原料として前記特定パルプ化条件と同一の条件でパルプ化して得た漂白済み未叩解クラフトパルプ(白色度85%)(日本製紙製)を準備した。図1に、このパルプの繊維長分布を示す。長繊維割合は8.8%、短繊維割合は5.5%であった。
[Example 1]
<Step (1): Preparation of pulp>
Wood A (2 years old Eucalyptus maldrensis) was used. Bleached unbeaten kraft pulp (whiteness 85%) (manufactured by Nippon Paper Industries Co., Ltd.) obtained by pulping wood A chips as raw materials under the same conditions as the specific pulping conditions was prepared. FIG. 1 shows the fiber length distribution of this pulp. The long fiber ratio was 8.8%, and the short fiber ratio was 5.5%.
 当該パルプ5g(絶乾)を、TEMPO(東京化成)78mg(0.5mmol)と臭化ナトリウム(和光純薬)756mg(7.35mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで攪拌した。ここに次亜塩素酸ナトリウム(和光純薬、水溶液)2.3mmolを水溶液の形態で加え、次いで、次亜塩素酸ナトリウムをパルプ1g当たり0.23mmol/分の添加速度となるように送液ポンプを用いて徐々に添加し、パルプの酸化を行った。次亜塩素酸ナトリウムの全添加量が22.5mmolとなるまで添加を継続した。反応中は系内のpHが低下するので3N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。pHの低下が止まり、水酸化ナトリウム水溶液の添加が終了した時点を反応終点とし、水酸化ナトリウム水溶液の添加開始から(すなわち、酸化反応が開始されてpHの低下が見られた時点から)、添加終了まで(すなわち、酸化反応が終了してpHの低下が見られなくなった時点まで)の時間を反応時間とした。反応後のパルプ水分散液をガラスフィルターで濾過し、十分に水洗することでグルコース単位当たりのカルボキシル基等の量が1.60mmol/gの酸化処理したパルプを得た。 5 g (absolutely dry) of the pulp is added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Tokyo Kasei) and 756 mg (7.35 mmol) of sodium bromide (Wako Pure Chemical Industries) are dissolved, until the pulp is uniformly dispersed. Stir. To this, 2.3 mmol of sodium hypochlorite (Wako Pure Chemicals, aqueous solution) was added in the form of an aqueous solution, and then sodium hypochlorite was fed at a rate of 0.23 mmol / min per gram of pulp. Was added gradually to oxidize the pulp. The addition was continued until the total amount of sodium hypochlorite added was 22.5 mmol. During the reaction, since the pH in the system was lowered, a 3N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. Addition from the start of the addition of the aqueous sodium hydroxide solution (that is, from the start of the oxidation reaction to decrease the pH), when the decrease in pH stops and the addition of the aqueous sodium hydroxide solution ends The reaction time was defined as the time until completion (that is, until the time when the oxidation reaction was finished and no pH decrease was observed). The pulp aqueous dispersion after the reaction was filtered through a glass filter and washed thoroughly with water to obtain an oxidized pulp having an amount of carboxyl groups per glucose unit of 1.60 mmol / g.
 <工程(2):酸化パルプの解繊>
 濃度1%(w/v)の酸化パルプのスラリー500mLを超高圧ホモジナイザー(20℃、140MPa)で5回処理したところ、長さ加重平均繊維長290nm、長さ加重平均繊維径2.9nmの酸化セルロースナノファイバーが分散した、透明度99.4%、B型粘度940mPa・sの透明かつ低粘度な酸化セルロースナノファイバー分散液が得られた。
<Process (2): Defibration of oxidized pulp>
When a slurry of 500 mL of oxidized pulp having a concentration of 1% (w / v) was treated five times with an ultrahigh pressure homogenizer (20 ° C., 140 MPa), an oxidation with a length weighted average fiber length of 290 nm and a length weighted average fiber diameter of 2.9 nm was performed. A transparent and low-viscosity oxidized cellulose nanofiber dispersion having a transparency of 99.4% and a B-type viscosity of 940 mPa · s in which cellulose nanofibers were dispersed was obtained.
 <マスターバッチの製造>
 工程(2)で得られた酸化セルロースナノファイバーの固形分濃度1%水分散液325gと、天然ゴムラテックス(商品名:HAラテックス、レヂテックス社、固形分濃度65%)100gを混合してゴム成分と変性セルロースナノファイバーとの重量比が100:5となるようにし、TKホモミキサー(8000rpm)で60分間攪拌した。この水性懸濁液を、70℃の加熱オーブン中で10時間乾燥させることにより、マスターバッチを得た。
<Manufacture of master batch>
A rubber component obtained by mixing 325 g of a 1% solid concentration aqueous dispersion of oxidized cellulose nanofibers obtained in step (2) and 100 g of natural rubber latex (trade name: HA latex, Restex, solid content concentration 65%). And the weight ratio of the modified cellulose nanofibers was 100: 5, and the mixture was stirred for 60 minutes with a TK homomixer (8000 rpm). This aqueous suspension was dried in a heating oven at 70 ° C. for 10 hours to obtain a master batch.
 このマスターバッチ100gに対し、硫黄3.5g、加硫促進剤(BBS、N‐t-ブチル-2-ベンゾチアゾールスルフェンアミド)0.7g、酸化亜鉛6g、ステアリン酸0.5gを加え、オープンロール(関西ロール株式会社製)を用い、30℃で10分間混練して、未加硫のゴム組成物のシートを得た。 To 100 g of this master batch, add 3.5 g of sulfur, 0.7 g of vulcanization accelerator (BBS, Nt-butyl-2-benzothiazolesulfenamide), 6 g of zinc oxide, and 0.5 g of stearic acid. A roll (manufactured by Kansai Roll Co., Ltd.) was used and kneaded at 30 ° C. for 10 minutes to obtain a sheet of an unvulcanized rubber composition.
 このシートを、金型にはさみ、150℃で10分間プレス加硫することにより、厚さ2mmの加硫ゴム組成物のシートを得た。これを所定の形状の試験片に裁断し、JIS K6251「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に従い、補強性の一つである引張強度を示すものとして、破断強度を測定した。この数値が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度に優れることを示す。 This sheet was sandwiched between molds and press vulcanized at 150 ° C. for 10 minutes to obtain a vulcanized rubber composition sheet having a thickness of 2 mm. This was cut into a test piece of a predetermined shape, and the rupture strength was measured according to JIS K6251 “vulcanized rubber and thermoplastic rubber—how to obtain tensile properties”, indicating the tensile strength which is one of the reinforcing properties. . The larger this value, the better the vulcanized rubber composition is reinforced and the better the mechanical strength of the rubber.
[実施例2]
 木材B(樹齢3年のユーカリカマルドレンシス)を用いた。当該木材のチップを前記特定パルプ化条件と同一の条件でパルプ化して得たパルプ(長繊維割合が17.6%、短繊維割合が9.6%、パルプ粘度が8.8mPa・s、カルボキシル基等の量が1.64mmol/g、日本製紙社製)を用いた以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。その結果、長さ加重平均繊維長350nm、長さ加重平均繊維径3.7nmの酸化セルロースナノファイバーが分散した、透明度99.1%、B型粘度1250mPa・sの透明かつ低粘度の酸化セルロースナノファイバー分散液が得られた。この酸化セルロースナノファイバー分散液を用いて、実施例1と同様にマスターバッチを作製した後、加硫ゴム組成物のシートを作製した上で、破断強度を測定した。
[Example 2]
Wood B (3 years old Eucalyptus maldrensis) was used. Pulp obtained by pulping the wood chips under the same conditions as the above specific pulping conditions (long fiber ratio 17.6%, short fiber ratio 9.6%, pulp viscosity 8.8 mPa · s, carboxyl A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the amount of the group and the like was 1.64 mmol / g (manufactured by Nippon Paper Industries Co., Ltd.). As a result, transparent and low-viscosity oxidized cellulose nanos having a transparency of 99.1% and a B-type viscosity of 1250 mPa · s in which oxidized cellulose nanofibers having a length-weighted average fiber length of 350 nm and a length-weighted average fiber diameter of 3.7 nm were dispersed. A fiber dispersion was obtained. Using this oxidized cellulose nanofiber dispersion, a master batch was prepared in the same manner as in Example 1, and then a vulcanized rubber composition sheet was prepared, and then the breaking strength was measured.
 [実施例3]
 木材C(樹齢3年のアカシア)を用いた。当該木材のチップを前記特定パルプ化条件と同一の条件でパルプ化して得たパルプ(長繊維割合が10.1%、短繊維割合が8.1%、パルプ粘度が5.0mPa・s、カルボキシル基等の量が1.55mmol/g、日本製紙社製)を用いた以外は実施例1と同様にしてセルロースナノファイバー分散液を得た。その結果、長さ加重平均繊維長400nm、長さ加重平均繊維径4.0nmの酸化セルロースナノファイバーが分散した、透明度98.7%、B型粘度1300mPa・sの透明かつ低粘度の酸化セルロースナノファイバー分散液が得られた。この酸化セルロースナノファイバー分散液を用いて、実施例1と同様にマスターバッチを作製した後、加硫ゴム組成物のシートを作製した上で、破断強度を測定した。
[Example 3]
Wood C (3-year-old acacia) was used. Pulp obtained by pulping the wood chips under the same conditions as the above specific pulping conditions (long fiber ratio 10.1%, short fiber ratio 8.1%, pulp viscosity 5.0 mPa · s, carboxyl A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the amount of the group and the like was 1.55 mmol / g (manufactured by Nippon Paper Industries Co., Ltd.). As a result, transparent and low-viscosity oxidized cellulose nanos having a transparency of 98.7% and a B-type viscosity of 1300 mPa · s in which oxidized cellulose nanofibers having a length-weighted average fiber length of 400 nm and a length-weighted average fiber diameter of 4.0 nm were dispersed. A fiber dispersion was obtained. Using this oxidized cellulose nanofiber dispersion, a master batch was prepared in the same manner as in Example 1, and then a vulcanized rubber composition sheet was prepared, and then the breaking strength was measured.
 [実施例4]
 実施例1と同様に、漂白済み未叩解クラフトパルプ(白色度85%)(長繊維割合が8.8%、短繊維割合が5.5%、パルプ粘度が4.6mPa・s)(日本製紙社製)を準備した。
[Example 4]
Similar to Example 1, bleached unbeaten kraft pulp (whiteness 85%) (long fiber ratio 8.8%, short fiber ratio 5.5%, pulp viscosity 4.6 mPa · s) (Nippon Paper Industries Co., Ltd.) Prepared).
 パルプを混ぜることができる撹拌機に、上記漂白済み未叩解クラフトパルプを乾燥質量換算で200g、水酸化ナトリウムを乾燥質量で111g(出発原料の無水グルコース残基当たり、モル換算で、2.25倍)加え、パルプ固形分が20%(w/v)になるように水を加えた。その後、30℃で30分攪拌した後にモノクロロ酢酸ナトリウムを216g(有効成分換算、パルプのグルコース残基当たり、モル換算で、1.5倍)添加した。30分撹拌した後に、70℃まで昇温し1時間撹拌した。その後、反応物を取り出して中和、洗浄して、グルコース単位当たりのカルボキシメチル置換度0.26のカルボキシルメチル化したパルプを得た。これを水で固形分1%とし、高圧ホモジナイザーにより20℃、150MPaの圧力で5回処理することにより、長さ加重平均繊維長470nm、長さ加重平均繊維径5.1nmのカルボキシメチル化セルロースナノファイバーが分散した、透明度49.6%、B型粘度1500mPa・sの低粘度のカルボキシメチル化セルロースナノファイバー分散液が得られた。このカルボキシメチル化セルロースナノファイバー分散液を用いて、実施例1と同様にマスターバッチを作製した後、加硫ゴム組成物のシートを作製した上で、破断強度を測定した。 In a stirrer capable of mixing pulp, the above bleached unbeaten kraft pulp is 200 g in terms of dry mass and sodium hydroxide is 111 g in dry mass (2.25 times in terms of mol per anhydroglucose residue of the starting material) In addition, water was added so that the pulp solid content was 20% (w / v). Thereafter, after stirring at 30 ° C. for 30 minutes, 216 g of sodium monochloroacetate (as an active ingredient, 1.5 times in terms of mol per glucose residue of pulp) was added. After stirring for 30 minutes, the temperature was raised to 70 ° C. and stirred for 1 hour. Thereafter, the reaction product was taken out, neutralized and washed to obtain a carboxymethylated pulp having a carboxymethyl substitution degree of 0.26 per glucose unit. This was made into 1% solids with water, and treated with a high-pressure homogenizer at 20 ° C. and a pressure of 150 MPa for 5 times to obtain a carboxymethyl cellulose cellulose having a length weighted average fiber length of 470 nm and a length weighted average fiber diameter of 5.1 nm. A low-viscosity carboxymethylated cellulose nanofiber dispersion having a transparency of 49.6% and a B-type viscosity of 1500 mPa · s was obtained. Using this carboxymethylated cellulose nanofiber dispersion, a master batch was prepared in the same manner as in Example 1, and then a vulcanized rubber composition sheet was prepared, and then the breaking strength was measured.
 [比較例1]
 木材D(樹齢8年の広葉樹混合材)を用いた。当該木材のチップを前記特定パルプ化条件と同一の条件でパルプ化して得たパルプ(長繊維割合が28.6%、短繊維割合が7.1%、パルプ粘度が14.5mPa・s、カルボキシル基等の量が1.30mmol/g、日本製紙社製)を用いた以外は実施例1と同様にしてセルロースナノファイバー分散液を得た。その結果、長さ加重平均繊維長560nm、長さ加重平均繊維径5.5nmの酸化セルロースナノファイバーが分散した、透明度78.2%、B型粘度1500mPa・sの、透明度が低く、高粘度の酸化セルロースナノファイバー分散液が得られた。この酸化セルロースナノファイバー分散液を用いて、実施例1と同様にマスターバッチを作製した後、加硫ゴム組成物のシートを作製した上で、破断強度を測定した。
[Comparative Example 1]
Wood D (8-year-old hardwood mixed material) was used. Pulp obtained by pulping the wood chip under the same conditions as the above specific pulping conditions (long fiber ratio 28.6%, short fiber ratio 7.1%, pulp viscosity 14.5 mPa · s, carboxyl A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the amount of the group and the like was 1.30 mmol / g, manufactured by Nippon Paper Industries Co., Ltd. As a result, oxycellulose nanofibers having a length-weighted average fiber length of 560 nm and a length-weighted average fiber diameter of 5.5 nm were dispersed, the transparency was 78.2%, the B-type viscosity was 1500 mPa · s, the transparency was low, and the viscosity was high. An oxidized cellulose nanofiber dispersion was obtained. Using this oxidized cellulose nanofiber dispersion, a master batch was prepared in the same manner as in Example 1, and then a vulcanized rubber composition sheet was prepared, and then the breaking strength was measured.
 実施例及び比較例の結果一覧を表1に示す。実施例の破断強度は比較例より向上しており、優れた強度を有することがわかる。 Table 1 shows the results of the examples and comparative examples. It can be seen that the breaking strengths of the examples are higher than those of the comparative examples and have excellent strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  (1):活性アルカリ添加量15%、硫化度25%、液比2.5L/kg、H-ファクター830のクラフトパルプ製造条件においてパルプ化した際に、ISO 16065-2に従って測定した1.00mm以上の繊維長成分の割合が20%以下である繊維長分布を有するパルプが得られる木材を原料としたパルプを準備する工程、
     (2):前記パルプを解繊して長さ加重平均繊維長が500nm以下、かつ長さ加重平均繊維径が100nm以下のセルロースナノファイバーを得る工程、及び
     (3):前記セルロースナノファイバーとゴム成分を混合する工程、
    を含むマスターバッチの製造方法。
    (1): 1.00 mm measured according to ISO 16065-2 when pulped under kraft pulp production conditions of 15% active alkali addition, sulfidity 25%, liquid ratio 2.5 L / kg, H-factor 830 A step of preparing a pulp made from wood from which a pulp having a fiber length distribution in which the ratio of the above fiber length components is 20% or less is obtained;
    (2): a step of defibrating the pulp to obtain a cellulose nanofiber having a length weighted average fiber length of 500 nm or less and a length weighted average fiber diameter of 100 nm or less; and (3): the cellulose nanofiber and rubber. Mixing the ingredients,
    A method for producing a masterbatch including
  2.  前記木材が、前記クラフトパルプ製造条件においてパルプ化した際に、前記繊維長分布において、0.20mm以下の繊維長成分の割合が20%以下であるパルプが得られる木材である、請求項1に記載の製造方法。 2. The wood according to claim 1, wherein when the wood is pulped under the kraft pulp production conditions, a pulp having a fiber length component of 0.20 mm or less in a fiber length distribution of 20% or less is obtained. The manufacturing method as described.
  3.  前記工程(1)の後、かつ前記工程(2)の前に、前記パルプをアニオン変性する工程を含む、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, comprising a step of anion-modifying the pulp after the step (1) and before the step (2).
  4.  前記セルロースナノファイバーが、酸化セルロースナノファイバーであり、
     セルロースナノファイバーの絶乾重量に対して、カルボキシル基等の量が0.1~3.0mmol/gである、請求項3に記載の製造方法。
    The cellulose nanofiber is an oxidized cellulose nanofiber,
    The production method according to claim 3, wherein the amount of carboxyl groups and the like is 0.1 to 3.0 mmol / g based on the absolute dry weight of the cellulose nanofiber.
  5.  前記セルロースナノファイバーが、カルボキシメチル化セルロースナノファイバーであり、
     セルロースナノファイバーのグルコース単位当たりのカルボキシメチル置換度が0.01~0.50である、請求項3に記載の製造方法。
    The cellulose nanofiber is a carboxymethylated cellulose nanofiber,
    The production method according to claim 3, wherein the cellulose nanofibers have a degree of carboxymethyl substitution per glucose unit of 0.01 to 0.50.
  6.  請求項1~5のいずれか1項に記載の製造方法により製造されたマスターバッチ。 A master batch produced by the production method according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1項に記載の製造方法によりマスターバッチを製造する工程と、得られるマスターバッチとゴム成分を混練してゴム組成物を得る工程と、を含むゴム組成物の製造方法。 Production of a rubber composition comprising a step of producing a master batch by the production method according to any one of claims 1 to 5, and a step of kneading the obtained master batch and a rubber component to obtain a rubber composition. Method.
  8.  請求項7に記載の製造方法により製造されたゴム組成物。 A rubber composition produced by the production method according to claim 7.
PCT/JP2018/016875 2017-04-27 2018-04-25 Masterbatch, rubber composition, and production methods for both WO2018199191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018541237A JP6473550B1 (en) 2017-04-27 2018-04-25 Masterbatch, rubber composition and production method thereof
MYPI2019005858A MY191605A (en) 2017-04-27 2018-04-25 Masterbatch, rubber composition, and methods for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088344 2017-04-27
JP2017-088344 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018199191A1 true WO2018199191A1 (en) 2018-11-01

Family

ID=63919876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016875 WO2018199191A1 (en) 2017-04-27 2018-04-25 Masterbatch, rubber composition, and production methods for both

Country Status (3)

Country Link
JP (1) JP6473550B1 (en)
MY (1) MY191605A (en)
WO (1) WO2018199191A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100979A1 (en) * 2018-11-16 2020-05-22 日本製紙株式会社 Master batch containing anionically modified cellulose nanofibers and method for producing rubber composition
JP2020132747A (en) * 2019-02-19 2020-08-31 王子ホールディングス株式会社 Solid body-like material, and fibrous cellulose-containing composition
WO2021177128A1 (en) * 2020-03-04 2021-09-10 北川工業株式会社 Method for manufacturing composite material and composite material
WO2022025100A1 (en) * 2020-07-28 2022-02-03 東亞合成株式会社 Nanocellulose and dispersant of same, and method for producing same
WO2024009850A1 (en) * 2022-07-07 2024-01-11 日本製紙株式会社 Method for producing rubber composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118748A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
JP2011236398A (en) * 2010-04-14 2011-11-24 Oji Paper Co Ltd Method of manufacturing fine fibrous cellulose
JP2012046846A (en) * 2010-08-27 2012-03-08 Oji Paper Co Ltd Method for producing microfibrous cellulose
JP2012207133A (en) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2013018918A (en) * 2011-07-13 2013-01-31 Kao Corp Rubber composition, and method of manufacturing the same
JP2014141637A (en) * 2012-12-25 2014-08-07 Mitsubishi Chemicals Corp Rubber masterbatch containing cellulose nanofiber
WO2015068818A1 (en) * 2013-11-08 2015-05-14 Dic株式会社 Cellulose nanofiber manufacturing method, pulp for manufacturing cellulose nanofibers, cellulose nanofibers, resin composition and molded article
WO2016136453A1 (en) * 2015-02-26 2016-09-01 住友ゴム工業株式会社 Method for producing master batch, master batch obtained by said production method, rubber composition for tire, and pneumatic tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118748A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
JP2011236398A (en) * 2010-04-14 2011-11-24 Oji Paper Co Ltd Method of manufacturing fine fibrous cellulose
JP2012046846A (en) * 2010-08-27 2012-03-08 Oji Paper Co Ltd Method for producing microfibrous cellulose
JP2012207133A (en) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2013018918A (en) * 2011-07-13 2013-01-31 Kao Corp Rubber composition, and method of manufacturing the same
JP2014141637A (en) * 2012-12-25 2014-08-07 Mitsubishi Chemicals Corp Rubber masterbatch containing cellulose nanofiber
WO2015068818A1 (en) * 2013-11-08 2015-05-14 Dic株式会社 Cellulose nanofiber manufacturing method, pulp for manufacturing cellulose nanofibers, cellulose nanofibers, resin composition and molded article
WO2016136453A1 (en) * 2015-02-26 2016-09-01 住友ゴム工業株式会社 Method for producing master batch, master batch obtained by said production method, rubber composition for tire, and pneumatic tire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100979A1 (en) * 2018-11-16 2020-05-22 日本製紙株式会社 Master batch containing anionically modified cellulose nanofibers and method for producing rubber composition
JPWO2020100979A1 (en) * 2018-11-16 2021-10-07 日本製紙株式会社 Method for Producing Masterbatch and Rubber Composition Containing Anion-Modified Cellulose Nanofibers
JP7324225B2 (en) 2018-11-16 2023-08-09 日本製紙株式会社 Method for producing masterbatch and rubber composition containing anion-modified cellulose nanofibers
JP2020132747A (en) * 2019-02-19 2020-08-31 王子ホールディングス株式会社 Solid body-like material, and fibrous cellulose-containing composition
WO2021177128A1 (en) * 2020-03-04 2021-09-10 北川工業株式会社 Method for manufacturing composite material and composite material
WO2022025100A1 (en) * 2020-07-28 2022-02-03 東亞合成株式会社 Nanocellulose and dispersant of same, and method for producing same
WO2024009850A1 (en) * 2022-07-07 2024-01-11 日本製紙株式会社 Method for producing rubber composition

Also Published As

Publication number Publication date
MY191605A (en) 2022-07-01
JP6473550B1 (en) 2019-02-20
JPWO2018199191A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6473550B1 (en) Masterbatch, rubber composition and production method thereof
JP5544053B1 (en) Cellulose nanofiber
EP2861799B1 (en) Energy efficient process for preparing nanocellulose fibers
US9139662B2 (en) Method for producing cellulose nanofibers
EP2826792A1 (en) Method for producing anion-modified cellulose nanofiber dispersion liquid
US11118020B2 (en) Masterbatch, rubber composition, and methods for producing the same
JP2018059254A (en) Molded pulp
JP6990190B2 (en) Method for manufacturing rubber composition
JP2013177540A (en) Rubber modifying material, rubber latex-dispersed solution and rubber composition
JP6784709B2 (en) Manufacturing method of cellulose nanofibers
JP6048365B2 (en) Rubber modifier, rubber modifier dispersion, and rubber composition
JP6994345B2 (en) Rubber composition and molded products
JPWO2020100979A1 (en) Method for Producing Masterbatch and Rubber Composition Containing Anion-Modified Cellulose Nanofibers
JP2020100755A (en) Method for producing fine fibrous cellulose dispersion
CN113677756A (en) Latex dipping liquid, rubber composition and preparation method thereof
JP6915170B2 (en) Method for manufacturing rubber composition
JP7015970B2 (en) Rubber composition and its manufacturing method
WO2012132663A1 (en) Method for producing cellulose nanofibers
JP2021098794A (en) Rubber composition and method for producing the same
JP2021098791A (en) Rubber composition and method for producing the same
WO2023136130A1 (en) Rubber composition and method for producing same
JP2024044892A (en) Rubber composition and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541237

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790606

Country of ref document: EP

Kind code of ref document: A1