WO2018199092A1 - 透明スクリーンおよび映像投影システム - Google Patents

透明スクリーンおよび映像投影システム Download PDF

Info

Publication number
WO2018199092A1
WO2018199092A1 PCT/JP2018/016613 JP2018016613W WO2018199092A1 WO 2018199092 A1 WO2018199092 A1 WO 2018199092A1 JP 2018016613 W JP2018016613 W JP 2018016613W WO 2018199092 A1 WO2018199092 A1 WO 2018199092A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
cholesteric liquid
group
crystal layer
wave
Prior art date
Application number
PCT/JP2018/016613
Other languages
English (en)
French (fr)
Inventor
理恵 ▲高▼砂
峻也 加藤
市橋 光芳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019514533A priority Critical patent/JP6815491B2/ja
Publication of WO2018199092A1 publication Critical patent/WO2018199092A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/606Projection screens characterised by the nature of the surface for relief projection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a transparent screen and a video projection system.
  • a layer formed by fixing a cholesteric liquid crystal phase is known as a layer having a property of selectively reflecting either right circularly polarized light or left circularly polarized light in a specific wavelength range. Therefore, it has been developed for various uses, and as an example, various uses as a projection screen have been proposed.
  • a projection image display member such as a projection screen using a layer formed by fixing a cholesteric liquid crystal phase is required to have a wide viewing angle. More specifically, normally, when light is incident from the normal direction of the surface of the layer formed by fixing the cholesteric liquid crystal phase, either right circularly polarized light or left circularly polarized light is selectively reflected. . At this time, if reflection is performed not only in the normal direction but also in an oblique direction, the visibility from the oblique direction is improved.
  • the cholesteric liquid crystal layer when used in applications such as screens in which a layer formed by fixing a cholesteric liquid crystal phase is a cholesteric liquid crystal layer, the cholesteric liquid crystal layer has a characteristic that reflects incident light in various directions (so-called diffuse reflection). It is required to be excellent. Further, when a layer formed by fixing a cholesteric liquid crystal phase is applied to a transparent screen or the like, it is required to have high transparency, that is, low haze.
  • Patent Document 1 includes a polarization-selective cholesteric liquid crystal layer that diffusely reflects a specific polarization component as a reflective projection screen, and the polarization-selective cholesteric liquid crystal layer includes at least two or more partially selected cholesteric liquid crystal layers stacked on each other.
  • a first partially selected cholesteric liquid crystal layer that diffuses and reflects light having a wavelength range that exhibits a color that is most easily absorbed by the polarized light selected cholesteric liquid crystal layer.
  • a projection screen arranged in the above is described.
  • the partially selected cholesteric liquid crystal layer has a cholesteric liquid crystal structure (a layer formed by fixing a cholesteric liquid crystal phase), and due to structural nonuniformity (defects) of the cholesteric liquid crystal structure.
  • the light of a specific polarization component is diffusely reflected.
  • Patent Document 2 discloses a transparent resin layer provided on one surface of the first transparent base material and having a plurality of convex portions on the surface, and a specific wavelength incident on the surface of the convex portions.
  • a selective cholesteric liquid crystal layer having a cholesteric liquid crystal structure that selectively reflects right circularly polarized light or left circularly polarized laser light, and a transparent coating layer that covers the surface of the selective cholesteric liquid crystal layer, and the surface of the transparent coating layer is A reflective screen is described that is flat and has the same or nearly the same refractive index of the first transparent substrate, the refractive index of the transparent resin layer, and the refractive index of the transparent coating layer.
  • An object of the present invention is to solve such problems of the prior art, and to provide a transparent screen and a video projection system that have good diffuse reflectance, low haze, and excellent transparency. It is in.
  • the present inventors have a support and a plurality of cholesteric liquid crystal layers formed on the support and fixed with a cholesteric liquid crystal phase.
  • the liquid crystal layers at least one layer is a wave type cholesteric liquid crystal layer having a wavy structure in a bright part and a dark part derived from a cholesteric liquid crystal phase in a cross section, and at least one other layer of the plurality of cholesteric liquid crystal layers is:
  • a support A plurality of cholesteric liquid crystal layers formed by fixing a cholesteric liquid crystal phase and laminated on a support;
  • at least one layer is a wave type cholesteric liquid crystal layer in which a bright part and a dark part derived from a cholesteric liquid crystal phase in a cross section have a wave-like structure,
  • at least one other layer is a flat cholesteric liquid crystal layer having a flat structure in which a bright portion and a dark portion derived from a cholesteric liquid crystal phase are parallel to the main surface of the support in cross section screen.
  • [5] having two or more flat cholesteric liquid crystal layers having the same selective reflection wavelength and the same rotation direction of the circularly polarized light to be reflected;
  • [6] having two or more wave-shaped cholesteric liquid crystal layers having the same selective reflection wavelength and the same rotation direction of the circularly polarized light to be reflected;
  • the transparent screen according to any one of [1] to [9], wherein the surface on which the cholesteric liquid crystal layer of the support is formed is a flat surface.
  • the present invention it is possible to provide a transparent screen and a video projection system that have good diffuse reflectivity, low haze, and excellent transparency.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • “orthogonal” and “parallel” include a range of errors allowed in the technical field to which the present invention belongs.
  • “orthogonal” and “parallel” mean that the angle is within ⁇ 10 ° with respect to strict orthogonality or parallelism, and an error with respect to strict orthogonality or parallelism is 5 ° or less. Preferably, it is 3 ° or less.
  • an angle represented by other than “orthogonal” and “parallel”, for example, a specific angle such as 15 ° or 45 °, includes a range of errors allowed in the technical field to which the present invention belongs.
  • the angle means less than ⁇ 5 ° with respect to the exact angle shown specifically, and the error with respect to the exact angle shown is ⁇ 3 ° or less. It is preferable that it is ⁇ 1 ° or less.
  • (meth) acrylate is a notation representing both acrylate and methacrylate
  • (meth) acryloyl group is a notation representing both an acryloyl group and a methacryloyl group
  • (Meth) acryl is a notation representing both acrylic and methacrylic.
  • “same” includes an error range generally allowed in the technical field.
  • “all”, “any” or “entire surface” it includes an error range generally allowed in the technical field in addition to the case of 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
  • visible light is light having a wavelength that can be seen by human eyes among electromagnetic waves, and indicates light having a wavelength range of more than 400 nm and less than 700 nm.
  • Invisible light is light having a wavelength range of 400 nm or less or 700 nm or more.
  • light in a wavelength region of 420 nm or more and less than 500 nm is blue light (B light)
  • light in a wavelength region of 500 nm or more and less than 600 nm is green light (G light).
  • the light in the wavelength region of 600 nm or more and less than 700 nm is red light (R light).
  • light in the wavelength region of 200 to 400 nm is ultraviolet light
  • light in the wavelength region of 700 to 1000 nm is infrared light.
  • the selective reflection wavelength is a half-value transmittance represented by the following formula: T1 / 2 (%), where Tmin (%) is the minimum value of the transmittance of a target object (member). Is the average value of two wavelengths.
  • T1 / 2 100 ⁇ (100 ⁇ Tmin) ⁇ 2
  • haze means a value measured using a haze meter NDH-4000 manufactured by Nippon Denshoku Industries Co., Ltd. Theoretically, haze means a value represented by the following equation. (Scattering transmittance of natural light of 380 to 780 nm) / (scattering transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) ⁇ 100%
  • the scattering transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit.
  • the direct transmittance is a transmittance at 0 ° based on a value measured using an integrating sphere unit. That is, the low haze means that the direct transmitted light amount is large in the total transmitted light amount.
  • the refractive index is a refractive index for light having a wavelength of 589.3 nm.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at the wavelength ⁇ , respectively.
  • the wavelength ⁇ is 550 nm.
  • Re ( ⁇ ) and Rth ( ⁇ ) are values measured at a wavelength ⁇ in an AxoScan Mueller Matrix Polarimeter (manufactured by AXOMETRICS).
  • AXOMETRICS Average refractive index
  • R0 ( ⁇ ) Rth ( ⁇ ) ((Nx + Ny) / 2 ⁇ Nz) ⁇ d Is calculated. Note that R0 ( ⁇ ) is displayed as a numerical value calculated by AxoScan, and means Re ( ⁇ ).
  • the average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • the transparent screen of the present invention is A support; A plurality of cholesteric liquid crystal layers formed by fixing a cholesteric liquid crystal phase and laminated on a support; Among the plurality of cholesteric liquid crystal layers, at least one layer is a wave type cholesteric liquid crystal layer in which a bright part and a dark part derived from a cholesteric liquid crystal phase in a cross section have a wave-like structure, Among the plurality of cholesteric liquid crystal layers, at least one other layer is a flat cholesteric liquid crystal layer having a flat structure in which a bright portion and a dark portion derived from a cholesteric liquid crystal phase are parallel to the main surface of the support in cross section It is a screen.
  • FIG. 1 typical sectional drawing of an example of the transparent screen of this invention is shown. Note that the drawings in this specification are schematic diagrams, and the thickness relationship and positional relationship of each layer do not necessarily match the actual ones. The same applies to the following figures.
  • the transparent screen 10a includes a support 12, a flat cholesteric liquid crystal layer 16Rr formed on one main surface of the support 12, and a wave formed on the flat cholesteric liquid crystal layer 16Rr.
  • Each of the flat cholesteric liquid crystal layer 16Rr and the wave-type cholesteric liquid crystal layer 14Rr is a layer formed by fixing a cholesteric liquid crystal phase.
  • cholesteric liquid crystal layer when it is not necessary to distinguish between the flat cholesteric liquid crystal layer and the wave-type cholesteric liquid crystal layer, these are collectively referred to as “cholesteric liquid crystal layer”.
  • a layer formed by fixing a cholesteric liquid crystal has wavelength selectivity for reflection, reflects only right polarized light or left polarized light in a predetermined wavelength region, and transmits other light. .
  • the flat cholesteric liquid crystal layer 16Rr has a selective reflection wavelength in a red light region (for example, 650 nm) and reflects right-handed circularly polarized light having this wavelength.
  • the wave-type cholesteric liquid crystal layer 14Rr has a selective reflection wavelength in a red light region (for example, 650 nm), and reflects right-handed circularly polarized light having this wavelength. That is, the flat cholesteric liquid crystal layer 16Rr and the wave-type cholesteric liquid crystal layer 14Rr have the same selective reflection wavelength and the same rotation direction of the reflected circularly polarized light.
  • the cholesteric liquid crystal layer transmits light in a wavelength region other than the selective reflection wavelength and circularly polarized light having a reverse rotation direction. Therefore, the cholesteric liquid crystal layer has transparency.
  • that the selective reflection wavelengths of the cholesteric liquid crystal layers are the same means that the difference in selective reflection wavelengths of the cholesteric liquid crystal layers is 20 nm or less.
  • the cholesteric liquid crystal layer of the transparent screen of the present invention is not limited to one having a selective reflection wavelength in the red light region, but has a selective reflection wavelength in the green light region (for example, 550 nm). It may be one having a selective reflection wavelength in a blue light region (for example, 450 nm). Alternatively, another wavelength region (infrared region, ultraviolet region, etc.) may be used as the selective reflection wavelength.
  • the cholesteric liquid crystal layer included in the transparent screen of the present invention is not limited to the one that reflects right circularly polarized light, and may be one that reflects left circularly polarized light.
  • flat cholesteric liquid crystal layer 16 flat cholesteric liquid crystal layer 16
  • wave-type cholesteric liquid crystal layer 14 wave-type cholesteric liquid crystal layer 14
  • FIG. 2 conceptually shows a cross section of the flat cholesteric liquid crystal layer 16.
  • FIG. 2 is a diagram conceptually showing, for example, a state where the cross section of the flat cholesteric liquid crystal layer 16 is observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the flat cholesteric liquid crystal layer 16 is a layer formed by fixing a cholesteric liquid crystal phase.
  • a stripe pattern of a bright part and a dark part is usually observed. Therefore, as shown in FIG. 2, the flat cholesteric liquid crystal layer 16 has light sections B and dark sections D alternately in the thickness direction (vertical direction in FIG.
  • One bright portion B in FIG. 2 and two dark portions D arranged above and below the one bright portion B correspond to a spiral 1 ⁇ 2 pitch of the cholesteric liquid crystal phase.
  • the bright part B and the dark part D in the cross section of the flat cholesteric liquid crystal layer 16 have a flat structure substantially parallel to the main surface of the support 12.
  • the stripe pattern (layered structure) of the bright part B and the dark part D is formed to be parallel to the surface of the support 12 that is a flat surface, as shown in FIG. That is, in the present invention, the flat cholesteric liquid crystal layer 16 is a layer having a cholesteric liquid crystal structure and a structure in which the angle formed between the helical axis and the surface of the support 12 is constant.
  • the flat cholesteric liquid crystal layer 16 gives a bright and dark stripe pattern in a cross-sectional view of the flat cholesteric liquid crystal layer 16 observed with a scanning electron microscope.
  • the angle formed between the normal line of the line and the surface of the support 12 satisfies 90 ° ⁇ 5 °.
  • the flat cholesteric liquid crystal layer 16 in which such a cholesteric liquid crystal phase is fixed in a flat structure exhibits specular reflectivity. That is, when light is incident from the normal direction of the flat cholesteric liquid crystal layer 16 in which the cholesteric liquid crystal phase is fixed in a flat structure, the light is reflected in the normal direction but is not easily reflected in the oblique direction. Moreover, haze is lowered and transparency is increased.
  • FIG. 3 conceptually shows a cross section of the wave-type cholesteric liquid crystal layer 14.
  • FIG. 3 is a diagram conceptually showing, for example, a state in which a cross section of the wave-type cholesteric liquid crystal layer 14 is observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the wave-type cholesteric liquid crystal layer 14 is a layer formed by fixing a cholesteric liquid crystal phase.
  • a stripe pattern of a bright part and a dark part is usually observed. Therefore, as shown in FIG.
  • the wave-shaped cholesteric liquid crystal layer 14 has a bright portion B and a dark portion D alternately in the thickness direction (up and down direction in FIG. 3) in the cross section thereof due to the cholesteric liquid crystal phase. Stacked stripes are observed.
  • One bright portion B in FIG. 3 and two dark portions D arranged above and below the one bright portion B correspond to a spiral 1 ⁇ 2 pitch of the cholesteric liquid crystal phase.
  • the bright part B and the dark part D in the cross section of the wave-type cholesteric liquid crystal layer 14 have a periodic wave-like structure (undulation structure).
  • the wave-type cholesteric liquid crystal layer 14 is a layer having a cholesteric liquid crystal structure and a structure in which the angle formed by the spiral axis and the surface of the wave-type cholesteric liquid crystal layer 14 is periodically changed.
  • the wave-type cholesteric liquid crystal layer 14 has a cholesteric liquid crystal structure, and the cholesteric liquid crystal structure gives a stripe pattern of a bright part and a dark part in a cross-sectional view of the cholesteric liquid crystal layer observed with a scanning electron microscope.
  • the angle formed between the normal line of the line and the surface of the wave-type cholesteric liquid crystal layer 14 changes periodically.
  • the wave-type cholesteric liquid crystal layer 14 formed by fixing such a cholesteric liquid crystal phase with a wave-like structure exhibits diffuse reflectivity.
  • the light portion B and the dark portion D of the cholesteric liquid crystal layer have a wavy structure (undulation structure)
  • when light is incident on the layer having a wavy structure (uneven structure) from the normal direction of the layer As shown in FIG. 3, since there is a region where the helical axis of the liquid crystal compound is inclined, a part of the incident light is reflected in an oblique direction.
  • the bright portion B and the dark portion D have the wave-like structure, so that a layer having high diffuse reflectivity can be realized. Further, the diffuse reflectance becomes better as the unevenness of the wave-like structure of the bright part B and the dark part D increases.
  • the wave-shaped cholesteric liquid crystal layer having a wavy structure is prepared by applying a composition containing a liquid crystal compound and a chiral agent to the surface to be formed, and heating the composition to convert the liquid crystal compound into a cholesteric liquid crystal phase. It can be formed by aligning and then cooling the composition and fixing the cholesteric liquid crystal phase by ultraviolet irradiation or the like.
  • the diffuse reflectivity of the wave-type cholesteric liquid crystal layer becomes higher as the corrugation of the wave-like structure is larger.
  • the corrugated cholesteric liquid crystal layer has a certain thickness or more.
  • the wave-type cholesteric liquid crystal layer is thickened, naturally the light transmittance is lowered and the transparency of the transparent screen is lowered. That is, the high light diffusibility due to the size of the corrugated structure of the wave-shaped cholesteric liquid crystal layer and the transparency of the wave-shaped cholesteric liquid crystal layer are in a trade-off relationship.
  • the wave-like structure in the cross section of the wave-type cholesteric liquid crystal layer has a substantially uniform wave pitch, but the wave height may vary.
  • the wave height may be the highest in the central region in the thickness direction of the wave-type cholesteric liquid crystal layer, and gradually lower as it goes upward (surface side) in the thickness direction and toward the support 12 side.
  • the amplitude of the wave-like structure in the cross section of the wave-type cholesteric liquid crystal layer may be such that the central region in the thickness direction is the largest and gradually decreases toward the surface side and the support 12 side.
  • each wave-type cholesteric liquid crystal layer (an interface with the upper cholesteric liquid crystal layer or air) may be planar or may have a concavo-convex structure.
  • this concavo-convex structure is generally periodic (substantially periodic).
  • Such a corrugated cholesteric liquid crystal layer having a concavo-convex structure on the upper surface thereof is selected at least in the selection of the chiral agent and / or the alignment control agent and the selection of the heat treatment or cooling treatment conditions in the production method of the present invention described later. It can be formed by doing one.
  • the wave-shaped cholesteric liquid crystal layer having irregularities on the surface has a wave height of the wave-like structure in the cross section of the wave-shaped cholesteric liquid crystal layer larger than that of the wave-shaped cholesteric liquid crystal layer having a flat surface. Therefore, a wave-type cholesteric liquid crystal layer having irregularities on the surface can obtain higher diffuse reflectance. On the other hand, a wave-type cholesteric liquid crystal layer having a flat surface is preferable from the viewpoint of transparency.
  • the wave-like structure in the cross-section of the wave-type cholesteric liquid crystal layer (wave-like structure of the bright part and the dark part) is not limited to the horizontal direction in FIG. Is formed. That is, the wave-like structure of the wave-shaped cholesteric liquid crystal layer is two-dimensionally formed in the plane direction of the cholesteric liquid crystal layer, and the wave-shaped cholesteric liquid crystal layer has a wave-like structure in cross sections in all directions.
  • the present invention is not limited to this, and the wave-type cholesteric liquid crystal layer may have a wave-like structure formed such that continuous waves travel only in one direction in the cross section.
  • the wave-shaped cholesteric liquid crystal layer has a wave-like structure in cross sections in all directions as described above.
  • the pitch of the wave-like structure between the bright part and the dark part in the cross section of the wave-type cholesteric liquid crystal layer is preferably 0.5 to 5 ⁇ m, and more preferably 1 to 4 ⁇ m.
  • the pitch of the wavy structure and the height of the unevenness usually tend to increase as the pitch increases.
  • the concavo-convex structure is too large, the diffusion of light in a direction unnecessary for the screen increases, and the visibility from the front of the screen deteriorates.
  • the transparent screen of the present invention has a flat cholesteric liquid crystal layer with low haze and high transparency and a wave-type cholesteric liquid crystal layer with high diffuse reflection, both transparency and diffusivity are achieved. be able to. That is, for example, when used as a projection screen, it is possible to display an image with a wide viewing angle while having high transparency.
  • the flat cholesteric liquid crystal layer 16Rr and the wave-type cholesteric liquid crystal layer 14Rr are regions of red light having the same selective reflection wavelength.
  • both transparency and diffusivity are compatible with light having a wavelength region substantially the same as the selective reflection wavelength. can do.
  • the flat cholesteric liquid crystal layer 16Rr and the wave-type cholesteric liquid crystal layer 14Rr are right-handed circularly polarized light having the same turning direction of the reflected circularly-polarized light.
  • the circularly polarized light in the other turning direction is improved while improving the reflectivity of the circularly polarized light in the turning direction.
  • Polarized light can be transmitted to enhance transparency.
  • the transparent screen of the present invention and the projector that irradiates light (projects an image) to the transparent screen are combined, it is preferable to use a laser projector as the projector. Since the laser beam has a narrow spectral line width, by combining a laser projector and a transparent screen having a cholesteric liquid crystal layer having wavelength selectivity for reflection, it is possible to suitably reflect the light irradiated by the laser projector, The amount of light that escapes to the back side can be reduced. Thereby, the brightness
  • the light irradiated by the laser projector can be reflected more suitably by making the light irradiated by the laser projector circularly polarized and making the turning direction the same as the turning direction of the circularly polarized light reflected by the cholesteric liquid crystal layer.
  • the amount of light that passes through to the back side can be reduced.
  • the center wavelength of the light source of the laser projector 102 and the transparent screen is ⁇ 20 nm or less, and the cholesteric liquid crystal layer reflects the light irradiated by the laser projector 102. It is assumed that the right circularly polarized light has the same turning direction as that of the circularly polarized light.
  • the transparent screen 10 a is configured to have one flat cholesteric liquid crystal layer and one wave cholesteric liquid crystal layer, but the present invention is not limited to this. It is good also as a structure which has two or more type
  • FIG. 5 shows a schematic cross-sectional view of another example of the transparent screen of the present invention.
  • the transparent screen 10b shown in FIG. 5 has a support 12, a flat cholesteric liquid crystal layer 16Br having a selective reflection wavelength in the blue light region and reflecting right circularly polarized light, and a selective reflection wavelength in the green light region.
  • a flat cholesteric liquid crystal layer 16Gr that reflects right circularly polarized light, a selective reflection wavelength in the red light region
  • a flat cholesteric liquid crystal layer 16Rr that reflects right circularly polarized light, and a selective reflection wavelength in the blue light region.
  • Wave-type cholesteric liquid crystal layer 14Br that reflects right-handed circularly polarized light
  • a wave-shaped cholesteric liquid crystal layer 14Gr that has a selective reflection wavelength in the green light region and reflects right-handed circularly-polarized light
  • red light
  • a wave-type cholesteric liquid crystal layer 14Rr having a reflection wavelength and reflecting right circularly polarized light.
  • the transparent screen 10 b includes three flat cholesteric liquid crystal layers 16 and three corrugated cholesteric liquid crystal layers 14.
  • the three flat cholesteric liquid crystal layers 16 have different selective reflection wavelengths.
  • the three wave-shaped cholesteric liquid crystal layers 14 have different selective reflection wavelengths, and the three wave-shaped cholesteric liquid crystal layers 14 each have a selective reflection wavelength of any one of the three flat cholesteric liquid crystal layers 16. It is the same as the selective reflection wavelength.
  • the laser projector combined with the transparent screen 10b shown in FIG. 5 includes a red light source having red light as a central wavelength, a green light source having green light as a central wavelength, and a blue light source having blue light as a central wavelength. It is preferable.
  • the difference between the center wavelength of the red light source and the selective reflection wavelength of the flat cholesteric liquid crystal layer 16Rr and the wave-type cholesteric liquid crystal layer 14Rr is preferably ⁇ 20 nm or less.
  • the difference between the center wavelength of the green light source and the selective reflection wavelength of the flat cholesteric liquid crystal layer 16Gr and the wave-type cholesteric liquid crystal layer 14Gr is preferably ⁇ 20 nm or less.
  • the difference between the center wavelength of the blue light source and the selective reflection wavelength of the flat cholesteric liquid crystal layer 16Br and the wave-type cholesteric liquid crystal layer 14Br is preferably ⁇ 20 nm or less.
  • the light emitted from each light source of the laser projector is preferably circularly polarized light, and the turning direction is preferably right circularly polarized light that is the same as the turning direction of the circularly polarized light reflected by the cholesteric liquid crystal layer.
  • the light irradiated by the laser projector can be reflected more suitably, and the amount of light passing through to the back side can be reduced.
  • the transparent screen of the present invention includes two or more flat-type cholesteric liquid crystal layers 16 having the same selective reflection wavelength and different reflection directions of the circularly polarized light to be reflected, and the circularly polarized light having the same selective reflection wavelength and the reflected direction of rotation. May have two or more wave-type cholesteric liquid crystal layers 14 different from each other.
  • FIG. 6 is a cross-sectional view schematically showing another example of the transparent screen of the present invention.
  • the transparent screen 10c shown in FIG. 6 has a support 12, a flat cholesteric liquid crystal layer 16B1 having a selective reflection wavelength in the blue light region and reflecting left circularly polarized light, and a selective reflection wavelength in the green light region.
  • the flat cholesteric liquid crystal layer 16Gl that reflects left circularly polarized light, the selective reflection wavelength in the red light region, and the flat cholesteric liquid crystal layer 16Rl that reflects left circularly polarized light, and the selective reflection wavelength in the blue light region.
  • the transparent screen 10 c has six flat cholesteric liquid crystal layers 16 and three corrugated cholesteric liquid crystal layers 14. Of the six flat cholesteric liquid crystal layers 16, three are flat cholesteric liquid crystal layers 16 that reflect left circularly polarized light, and the other three layers are flat cholesteric liquid crystal layers 16 that reflect right circularly polarized light.
  • the three selective reflection wavelengths of the flat cholesteric liquid crystal layer 16 that reflects the three layers of left circularly polarized light are the same as the three selective reflection wavelengths of the flat cholesteric liquid crystal layer 16 that reflects the three layers of right circularly polarized light. is there.
  • the laser projector combined with the transparent screen 10c emits non-polarized light by including the flat cholesteric liquid crystal layer 16 having the same selective reflection wavelength and different turning directions of the circularly polarized light to be reflected. Even so, almost all of the light irradiated by the laser projector can be reflected by the cholesteric liquid crystal layer, and the amount of light passing through to the back side of the transparent screen 10c can be reduced.
  • the selective reflection wavelength is the same
  • it may be configured to have a wave-type cholesteric liquid crystal layer 14 in which the turning direction of the reflected circularly polarized light is different, or the circularly polarized light that is reflected with the same selective reflection wavelength as in the transparent screen 10d shown in FIG.
  • a configuration may be adopted in which the flat cholesteric liquid crystal layer 16 having different directions and the wave-type cholesteric liquid crystal layer 14 having the same selective reflection wavelength and different turning directions of the circularly polarized light to be reflected may be used.
  • a transparent screen 10d shown in FIG. 7 has a support 12, a flat cholesteric liquid crystal layer 16B1 having a selective reflection wavelength in the blue light region and reflecting left circularly polarized light, and a selective reflection wavelength in the green light region.
  • the flat cholesteric liquid crystal layer 16Gl that reflects left circularly polarized light, the selective reflection wavelength in the red light region, and the flat cholesteric liquid crystal layer 16Rl that reflects left circularly polarized light, and the selective reflection wavelength in the blue light region.
  • the transparent screen of the present invention has two or more flat cholesteric liquid crystal layers 16 having the same selective reflection wavelength and the same rotational direction of the circularly polarized light to be reflected, and between these two or more flat cholesteric liquid crystal layers 16. It is good also as a structure which has (lambda) / 2 board arrange
  • FIG. 8 is a cross-sectional view schematically showing another example of the transparent screen of the present invention.
  • a transparent screen 10e shown in FIG. 8 has a support 12, a flat cholesteric liquid crystal layer 16Br having a selective reflection wavelength in the blue light region and reflecting right circularly polarized light, and a selective reflection wavelength in the green light region.
  • a flat cholesteric liquid crystal layer 16Gr having a selective reflection wavelength in the green light region and reflecting right circularly polarized light
  • a wave-type cholesteric liquid crystal having a selective reflection wavelength in the blue light region and reflecting right circularly polarized light.
  • the transparent screen 10 e has six flat cholesteric liquid crystal layers 16 and three corrugated cholesteric liquid crystal layers 14.
  • the six flat cholesteric liquid crystal layers 16 have three pairs of the same type of flat cholesteric liquid crystal layers 16 having the same selective reflection wavelength and the same direction of rotation of the reflected circularly polarized light.
  • a ⁇ / 2 plate 18 is disposed between the same type of flat cholesteric liquid crystal layer 16.
  • the laser combined with the transparent screen 10c has the flat cholesteric liquid crystal layer 16 having the same selective reflection wavelength and the same circular turning direction of the reflected circularly polarized light and the ⁇ / 2 plate 18 therebetween.
  • the right circularly polarized light is reflected by the flat cholesteric liquid crystal layer 16 disposed in front of the ⁇ / 2 plate 18, and the left circularly polarized light is transmitted. Since the transmitted left circularly polarized light is converted into right circularly polarized light by the ⁇ / 2 plate 18, the converted right circularly polarized light is reflected by the flat cholesteric liquid crystal layer 16 disposed after the ⁇ / 2 plate 18.
  • almost all of the light irradiated by the laser projector can be reflected by the cholesteric liquid crystal layer, and the amount of light passing through to the back side of the transparent screen 10c can be reduced.
  • the configuration includes two or more flat cholesteric liquid crystal layers 16 having the same selective reflection wavelength and the same turning direction of the circularly polarized light to be reflected, and a ⁇ / 2 plate 18 therebetween.
  • the present invention is not limited to this, and a configuration may be adopted in which two or more wave-type cholesteric liquid crystal layers 14 having the same selective reflection wavelength and the same direction of rotation of the circularly polarized light to be reflected are provided, and a ⁇ / 2 plate 18 is provided therebetween.
  • a wave-type cholesteric liquid crystal layer having two or more flat-type cholesteric liquid crystal layers 16 having the same selective reflection wavelength and the same circular turning direction of the reflected circularly polarized light, and having the same selective reflection wavelength and same circular turning direction of the circularly polarized light to be reflected. 14 may be used, and a ⁇ / 2 plate 18 may be provided between cholesteric liquid crystal layers of the same type.
  • the ⁇ / 2 plate 18 is not limited and a known ⁇ / 2 plate can be used as appropriate.
  • the thickness of the wave-type cholesteric liquid crystal layer 14 is preferably 0.1 ⁇ m to 30 ⁇ m, more preferably 0.5 ⁇ m to 20 ⁇ m, from the viewpoint of diffusibility and transparency.
  • the thickness of the flat cholesteric liquid crystal layer 16 is preferably 0.5 ⁇ m to 50 ⁇ m, and more preferably 1 ⁇ m to 30 ⁇ m, from the viewpoint of diffusibility and transparency. Further, the ratio between the thickness of the wave-type cholesteric liquid crystal layer 14 and the thickness of the flat cholesteric liquid crystal layer 16 may be appropriately adjusted from the viewpoint of achieving both diffusibility and transparency.
  • the total light transmittance of the transparent screen is preferably 50% or more.
  • the total light transmittance may be measured according to JIS K 7361 using a commercially available measuring device such as NDH4000 or SH-7000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • a configuration in which a plurality of cholesteric liquid crystal layers are formed on one support is not limited to this, but one or more cholesteric liquid crystals are formed on different supports. It is good also as a structure which forms a liquid-crystal layer and bonds together the support body in which the cholesteric liquid-crystal layer was formed with an adhesive. That is, the transparent screen may have two or more supports.
  • the support 12 is a plate-like material for supporting the cholesteric liquid crystal layer.
  • the support 12 preferably has no color (color) (that is, an achromatic color) and has a total light transmittance of 80% or more. That is, the support 12 is preferably colorless and transparent. Further, the total light transmittance of the support 12 is more preferably 85% or more, and further preferably 90% or more. In the present invention, the total light transmittance may be measured according to JIS K 7361 using a commercially available measuring apparatus such as NDH5000 or SH-7000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the material constituting the support 12 is not particularly limited.
  • the support 12 may contain various additives such as UV (ultraviolet) absorbers, matting agent fine particles, plasticizers, deterioration inhibitors, and release agents.
  • the support 12 may have a layer such as an alignment layer on the surface.
  • the support 12 is preferably low birefringence in the visible light region.
  • the retardation of the support 12 at a wavelength of 550 nm is preferably 50 nm or less, and more preferably 20 nm or less.
  • the thickness of the support 12 is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m, from the viewpoints of thinning and handling.
  • the above thickness is intended to be an average thickness, and is obtained by measuring the thickness of any five points of the support 12 and arithmetically averaging them.
  • the surface on which the cholesteric liquid crystal layer of the support 12 is formed does not have an uneven structure or a wave structure, and is preferably a flat surface. As a result, the haze can be further reduced and the transparency can be increased.
  • the cholesteric liquid crystal layer (wave type cholesteric liquid crystal layer and flat cholesteric liquid crystal layer) will be described.
  • the wave type cholesteric liquid crystal layer and the flat type cholesteric liquid crystal layer have the same configuration except that the layer structure of the bright part and the dark part in the cross section is different. Therefore, when there is no need to distinguish between the wave type cholesteric liquid crystal layer and the flat type cholesteric liquid crystal layer, it will be described as a “cholesteric liquid crystal layer”.
  • the liquid crystal composition constituting the wave-type cholesteric liquid crystal layer and the liquid crystal composition constituting the flat cholesteric liquid crystal layer may be the same or different.
  • the combination of the liquid crystal composition and the chiral agent that can be used for the production of the wave-type cholesteric liquid crystal layer is limited, while the flat cholesteric liquid crystal layer can be selected from many types of liquid crystal materials.
  • the central wavelength ⁇ of selective reflection of the cholesteric liquid crystal layer means a wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
  • the center wavelength of selective reflection can be adjusted by adjusting the pitch of the helical structure. That is, by adjusting the n value and the P value, for example, to selectively reflect either the right circularly polarized light or the left circularly polarized light with respect to the blue light, the center wavelength ⁇ is adjusted, and an apparent selection is made.
  • the central wavelength of reflection can be in the wavelength range of 420 nm or more and less than 500 nm.
  • the apparent selective reflection center wavelength is the wavelength at the center of gravity of the reflection peak of the circularly polarized reflection spectrum of the cholesteric liquid crystal layer measured from the observation direction in practical use (when used as a projection image display member). means. Since the pitch of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these.
  • the reflected light of the cholesteric liquid crystal layer formed by fixing the cholesteric liquid crystal phase is circularly polarized light. That is, the transparent screen of the present invention reflects circularly polarized light. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the cholesteric liquid crystal phase.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the twist direction of the spiral of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer or the type of chiral agent added.
  • the circularly polarized light reflected by the cholesteric liquid crystal layer is not particularly limited, and may be right circularly polarized light or left circularly polarized light.
  • the selective reflection wavelength gradually becomes shorter from the support 12 upward (separating direction), or the selective reflection wavelength gradually becomes longer. It is preferable.
  • the structure and characteristics of adjacent cholesteric liquid crystal layers such as the pitch of the helical structure in adjacent cholesteric liquid crystal layers can be reduced. This is preferable in that a large difference is prevented and a cholesteric liquid crystal layer with few defects can be formed.
  • the cholesteric liquid crystal layer is a layer formed by fixing a cholesteric liquid crystal phase.
  • a cholesteric liquid crystal layer is prepared by preparing a composition containing a liquid crystal compound and a chiral agent (a non-visible light cholesteric liquid crystal layer composition and an upper layer composition), and applying and drying the composition. Accordingly, it can be formed by curing the composition and fixing the cholesteric liquid crystal phase.
  • liquid crystal compound The kind of liquid crystal compound is not particularly limited.
  • liquid crystal compounds can be classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disk-shaped type (discotic liquid crystal compound, disk-shaped liquid crystal compound) according to their shapes.
  • the rod-shaped type and the disk-shaped type include a low molecular type and a high molecular type, respectively.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used. Two or more liquid crystal compounds may be used in combination.
  • the liquid crystal compound may have a polymerizable group.
  • the kind of the polymerizable group is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is more preferable.
  • the polymerizable group is preferably a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, an epoxy group, or an oxetane group, and more preferably a (meth) acryloyl group.
  • a liquid crystal compound represented by the following formula (I) is preferable in that the diffuse reflectance of the cholesteric liquid crystal layer is more excellent.
  • mc represents the number obtained by dividing the number of trans-1,4-cyclohexylene groups optionally having a substituent represented by A by m in that the diffuse reflectance of the cholesteric liquid crystal layer is more excellent.
  • a liquid crystal compound satisfying mc> 0.1 is preferable, and a liquid crystal compound satisfying 0.4 ⁇ mc ⁇ 0.8 is more preferable.
  • A represents a phenylene group which may have a substituent or a trans-1,4-cyclohexylene group which may have a substituent, and at least one of A has a substituent.
  • a linking group selected from the group consisting of m represents an integer of 3 to 12
  • Sp 1 and Sp 2 are each independently one or two in a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • Two or more —CH 2 — are —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O )
  • A is a phenylene group which may have a substituent, or a trans-1,4-cyclohexylene group which may have a substituent.
  • the phenylene group is preferably a 1,4-phenylene group.
  • at least one of A is a trans-1,4-cyclohexylene group which may have a substituent.
  • the m A's may be the same as or different from each other.
  • M represents an integer of 3 to 12, preferably an integer of 3 to 9, more preferably an integer of 3 to 7, and still more preferably an integer of 3 to 5.
  • the phenylene group and trans-1,4-cyclohexylene group may have 1 to 4 substituents. When it has two or more substituents, the two or more substituents may be the same or different from each other.
  • the alkyl group may be linear or branched.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 6 carbon atoms.
  • Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, Examples include 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, and dodecyl group.
  • alkyl group in the alkoxy group is the same as the description regarding the alkyl group.
  • specific examples of the alkylene group referred to as an alkylene group include a divalent group obtained by removing one arbitrary hydrogen atom in each of the above examples of the alkyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the cycloalkyl group preferably has 3 or more carbon atoms, more preferably 5 or more, more preferably 20 or less, still more preferably 10 or less, still more preferably 8 or less, and particularly preferably 6 or less.
  • the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the substituent that the phenylene group and trans-1,4-cyclohexylene group may have include an alkyl group, an alkoxy group, and a group consisting of —C ( ⁇ O) —X 3 —Sp 3 —Q 3. Substituents selected from are preferred.
  • X 3 represents a single bond, —O—, —S—, or —N (Sp 4 -Q 4 ) —, or represents a nitrogen atom that forms a ring structure with Q 3 and Sp 3. Show.
  • Sp 3 and Sp 4 are each independently one or two in a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • Two or more —CH 2 — are —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O )
  • Q 3 and Q 4 are each independently a hydrogen atom, a cycloalkyl group, or a cycloalkyl group, wherein one or more —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or a group substituted with —C ( ⁇ O) O—, or a group represented by formula (Q-1) to formula (Q-5) Any polymerizable group selected from the group consisting of:
  • —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O).
  • a linking group selected from the group consisting of CH ⁇ CH— is shown.
  • L is preferably —C ( ⁇ O) O— or —OC ( ⁇ O) —.
  • the m Ls may be the same as or different from each other.
  • Sp 1 and Sp 2 are each independently one or two in a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • Sp 1 and Sp 2 are each independently the number of carbon atoms to which a linking group selected from the group consisting of —O—, —OC ( ⁇ O) —, and —C ( ⁇ O) O— is bonded to both ends. Selected from the group consisting of 1 to 10 linear alkylene groups, —OC ( ⁇ O) —, —C ( ⁇ O) O—, —O—, and linear alkylene groups having 1 to 10 carbon atoms.
  • the linking group is preferably a combination of one or two or more groups, more preferably a linear alkylene group having 1 to 10 carbon atoms having —O— bonded to both ends.
  • Q 1 and Q 2 each independently represent a hydrogen atom or a polymerizable group selected from the group consisting of groups represented by the following formulas (Q-1) to (Q-5). However, one of Q 1 and Q 2 represents a polymerizable group.
  • an acryloyl group (formula (Q-1)) or a methacryloyl group (formula (Q-2)) is preferable.
  • liquid crystal compound examples include a liquid crystal compound represented by the following formula (I-11), a liquid crystal compound represented by the formula (I-21), and a liquid crystal compound represented by the formula (I-31). Can be mentioned.
  • a compound represented by formula (I) in JP2013-112231A, a compound represented by formula (I) in JP2010-70543A, a formula represented by JP2008-291218A A compound represented by formula (I), a compound represented by formula (I) in Japanese Patent No.
  • Liquid crystal compound represented by formula (I-11) Liquid crystal compound represented by formula (I-11)
  • R 11 represents a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or —Z 12 —Sp 12 —Q 12
  • L 11 represents a single bond, —C ( ⁇ O) O—, or —O (C ⁇ O) —
  • L 12 represents —C ( ⁇ O) O—, —OC ( ⁇ O) —, or —CONR 2 —
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • Z 11 and Z 12 are each independently a single bond, —O—, —NH—, —N (CH 3 ) —, —S—, —C ( ⁇ O) O—, —OC ( ⁇ O) —, —OC ( ⁇ O) O— or —C ( ⁇ O) NR 12 —
  • R 12 represents a hydrogen atom or —Sp 12 —Q 12
  • Sp 11 and Sp 12 are each independently a single bond, a linear or
  • the liquid crystal compound represented by the formula (I-11) has a polymerizable property in which R 12 is selected from the group consisting of groups represented by the formulas (Q-1) to (Q-5) as R 11 It contains at least one group —Z 12 —Sp 12 —Q 12 .
  • Z 11 is —C ( ⁇ O) O— or —C ( ⁇ O) NR 12 —
  • Q 11 is a compound represented by the formula (Q-1) to It is preferably —Z 11 —Sp 11 —Q 11 which is a polymerizable group selected from the group consisting of groups represented by formula (Q-5).
  • Z 12 is —C ( ⁇ O) O— or —C ( ⁇ O) NR 12 —
  • Q 12 is the formula (Q -1) to -Z 12 -Sp 12 -Q 12 which is a polymerizable group selected from the group consisting of groups represented by formula (Q-5).
  • any 1,4-cyclohexylene group contained in the liquid crystal compound represented by the formula (I-11) is a trans-1,4-cyclohexylene group.
  • L 11 is a single bond
  • l 11 is 1 (dicyclohexyl group)
  • Q 11 is Formula (Q-1) to Formula (Q-5).
  • m 11 is 2
  • l 11 is 0, and both R 11 are —Z 12 —Sp 12 —Q 12 .
  • Q 12 is a polymerizable group selected from the group consisting of groups represented by formulas (Q-1) to (Q-5).
  • Liquid crystal compound represented by formula (I-21) Liquid crystal compound represented by formula (I-21)
  • Z 21 and Z 22 each independently represent a trans-1,4-cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent
  • Each of the above substituents is independently 1 to 4 substituents selected from the group consisting of —CO—X 21 —Sp 23 —Q 23 , an alkyl group, and an alkoxy group
  • m21 represents an integer of 1 or 2
  • n21 represents an integer of 0 or 1
  • At least one of Z 21 and Z 22 is an optionally substituted phenylene group
  • L 21 , L 22 , L 23 and L 24 are each independently a single bond, or —CH 2 O—, —OCH 2 —, — (CH 2 ) 2 OC ( ⁇ O) —, —C ( ⁇ O ) O (CH 2 ) 2 —, —C ( ⁇ O)
  • —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, Or a linking group selected from the group consisting of groups substituted with —C ( ⁇ O) O—
  • Q 21 and Q 22 each independently represent any polymerizable group selected from the group consisting of groups represented by formulas (Q-1) to (Q-5)
  • the liquid crystal compound represented by the formula (I-21) also preferably has a structure in which 1,4-phenylene groups and trans-1,4-cyclohexylene groups are present alternately, for example, m21 is 2.
  • n21 is 0, and Z 21 is a trans-1,4-cyclohexylene group which may have a substituent from the Q 21 side, an arylene group which may have a substituent,
  • m21 is 1, n21 is 1, Z 21 is an arylene group which may have a substituent, and Z 22 is an arylene group which may have a substituent. Is preferred.
  • a liquid crystal compound represented by formula (I-31) is A liquid crystal compound represented by formula (I-31);
  • R 31 and R 32 are each independently a group selected from the group consisting of an alkyl group, an alkoxy group, and —C ( ⁇ O) —X 31 —Sp 33 —Q 33 ; n31 and n32 each independently represents an integer of 0 to 4, X 31 represents a single bond, —O—, —S—, or —N (Sp 34 —Q 34 ) —, or represents a nitrogen atom that forms a ring structure with Q 33 and Sp 33 , Z 31 represents a phenylene group which may have a substituent, Z 32 represents a trans-1,4-cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent, Each of the substituents is independently an alkyl group, an alkoxy group, and 1 to 4 substituents selected from the group consisting of —C ( ⁇ O) —X 31 —Sp 33 —Q 33 ; m31 represents an integer of 1
  • a linking group selected from the group consisting of CH ⁇ CH—, Sp 31 , Sp 32 , Sp 33 and Sp 34 are each independently a single bond, or a linear or branched alkylene group having 1 to 20 carbon atoms, and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • Q 31 and Q 32 each independently represent any polymerizable group selected from the group consisting of groups represented by formulas (Q-1) to (Q-5), Q 33 and Q 34 are each independently a hydrogen atom, a cycloalkyl group, or a cycloalkyl group in which one or more —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or a group substituted with —C ( ⁇ O) O—, or Formula (Q-1) to Formula (Q-5) in the case represented indicates one polymerizable group selected from the group consist
  • the compound represented by the formula (I) preferably has a partial structure represented by the following formula (II).
  • formula (II) the black circles indicate the position of bonding with other parts of formula (I).
  • the partial structure represented by the formula (II) may be included as a part of the partial structure represented by the following formula (III) in the formula (I).
  • R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxy group, and a group represented by —C ( ⁇ O) —X 3 —Sp 3 —Q 3. It is a group.
  • X 3 represents a single bond, —O—, —S—, or —N (Sp 4 -Q 4 ) —, or represents a nitrogen atom that forms a ring structure with Q 3 and Sp 3.
  • X 3 is preferably a single bond or —O—.
  • R 1 and R 2 are preferably —C ( ⁇ O) —X 3 —Sp 3 —Q 3 .
  • R 1 and R 2 are preferably the same as each other.
  • the bonding position of R 1 and R 2 to each phenylene group is not particularly limited.
  • Sp 3 and Sp 4 are each independently one or two in a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms and a linear or branched alkylene group having 1 to 20 carbon atoms.
  • the above —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O).
  • a linking group selected from the group consisting of groups substituted with O- is shown.
  • Sp 3 and Sp 4 are each independently preferably a linear or branched alkylene group having 1 to 10 carbon atoms, more preferably a linear alkylene group having 1 to 5 carbon atoms, and a straight chain having 1 to 3 carbon atoms. Even more preferred are chain alkylene groups.
  • Q 3 and Q 4 are each independently a hydrogen atom, a cycloalkyl group, or a cycloalkyl group, wherein one or more —CH 2 — is —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) — or —C ( ⁇ O) O—, or a group represented by formula (Q-1) to formula (Q-5) Any polymerizable group selected from the group consisting of:
  • the compound represented by the formula (I) preferably has, for example, a structure represented by the following formula (II-2).
  • a 1 and A 2 each independently represent a phenylene group which may have a substituent or a trans-1,4-cyclohexylene group which may have a substituent.
  • Each independently is an alkyl group, an alkoxy group, and 1 to 4 substituents selected from the group consisting of —C ( ⁇ O) —X 3 —Sp 3 —Q 3 ;
  • a linking group selected from the group consisting of CH ⁇ CH—, n1 and n2 each independently represent
  • liquid crystal compound represented by the formula (I) and satisfying 0.4 ⁇ mc ⁇ 0.8 are described in paragraphs [0051] to [0054] of International Publication No. 2016/047648, for example. Are exemplified.
  • Two or more liquid crystal compounds may be used in combination.
  • two or more liquid crystal compounds represented by the formula (I) may be used in combination.
  • the liquid crystal compound represented by the above formula (I) which is a liquid crystal compound represented by the formula (I) together with the liquid crystal compound satisfying 0.4 ⁇ mc ⁇ 0.8, It is preferable to use a liquid crystal compound satisfying ⁇ mc ⁇ 0.3.
  • liquid crystal compound represented by the formula (I) and satisfying 0.1 ⁇ mc ⁇ 0.3 are described in, for example, paragraphs [0055] to [0058] of International Publication No. 2016/047648. Are exemplified.
  • liquid crystal compound used in the present invention a compound represented by the following formula (IV) described in JP-A-2014-198814, particularly, one (meth) acrylate group represented by formula (IV)
  • a polymerizable liquid crystal compound having the following is also preferably used.
  • a 1 represents an alkylene group having 2 to 18 carbon atoms, two or more CH 2 that is not one of the CH 2 or adjacent in the alkylene group is substituted by -O- May be;
  • Z 1 represents —C ( ⁇ O) —, —O—C ( ⁇ O) — or a single bond;
  • Z 2 represents —C ( ⁇ O) — or —C ( ⁇ O) —CH ⁇ CH—;
  • R 1 represents a hydrogen atom or a methyl group;
  • R 2 represents a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 4 carbon atoms, a methoxy group, an ethoxy group, an optionally substituted phenyl group, a vinyl group, a formyl group, a nitro group, or a cyano group.
  • L 1 , L 2 , L 3 and L 4 are each independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkoxycarbonyl group having 2 to 5 carbon atoms, or 2 to 4 carbon atoms.
  • P represents an acryl group, a methacryl group or a hydrogen atom
  • Z 5 represents a single bond, —C ( ⁇ O) O—, —OC ( ⁇ O) —, —C ( ⁇ O) NR 1 —
  • R 1 represents a hydrogen atom or a methyl group
  • T is 1
  • Sp represents a divalent aliphatic group having 1 to 12 carbon atoms which may have a substituent
  • one CH 2 in the aliphatic group or two or more non-adjacent ones CH 2 may be substituted with —O—, —S—, —OC ( ⁇ O) —, —C ( ⁇ O) O— or —OCOO—. ).
  • the compound represented by the formula (IV) is preferably a compound represented by the following formula (V).
  • Formula (V) In the formula (V), n1 represents an integer of 3 to 6; R 11 represents a hydrogen atom or a methyl group; Z 12 represents —C ( ⁇ O) — or —C ( ⁇ O) —CH ⁇ CH—; R 12 is represented by a hydrogen atom, a linear alkyl group having 1 to 4 carbon atoms, a methoxy group, an ethoxy group, a phenyl group, an acryloylamino group, a methacryloylamino group, an allyloxy group, or the following formula (IV-3): Represents the structure.
  • P represents an acryl group or a methacryl group
  • Z 51 represents —C ( ⁇ O) O— or —OC ( ⁇ O) —
  • T represents 1,4-phenylene
  • Sp represents a divalent aliphatic group having 2 to 6 carbon atoms which may have a substituent.
  • N1 represents an integer of 3 to 6, and is preferably 3 or 4.
  • Z 12 represents —C ( ⁇ O) — or —C ( ⁇ O) —CH ⁇ CH—, and preferably represents —C ( ⁇ O) —.
  • R 12 is a hydrogen atom, a linear alkyl group having 1 to 4 carbon atoms, a methoxy group, an ethoxy group, a phenyl group, an acryloylamino group, a methacryloylamino group, an allyloxy group, or the above formula (IV-3).
  • Examples of the compound represented by the formula (IV) include compounds described in paragraphs [0020] to [0036] of JP-A-2014-198814.
  • liquid crystal compound used in the present invention a compound represented by the following formula (VI), which is also described in JP-A-2014-198814, particularly, a (meth) acrylate represented by the following formula (VI):
  • a liquid crystal compound having no group is also preferably used.
  • Z 3 represents —C ( ⁇ O) — or —CH ⁇ CH—C ( ⁇ O) —;
  • Z 4 represents —C ( ⁇ O) — or —C ( ⁇ O) —CH ⁇ CH—;
  • R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 4 carbon atoms, a methoxy group, an ethoxy group, an optionally substituted aromatic ring, a cyclohexyl group, Carbon number of vinyl group, formyl group, nitro group, cyano group, acetyl group, acetoxy group, acryloylamino group, N, N-dimethylamino group, maleimide group, methacryloylamino group, allyloxy group, allyloxycarbamoyl group, alkyl group Is an N-alkyloxycarbamoyl group, N- (2-methacryloyloxye
  • P represents an acryl group, a methacryl group or a hydrogen atom
  • Z 5 represents —C ( ⁇ O) O—, —OC ( ⁇ O) —, —C ( ⁇ O) NR 1 —.
  • R 1 represents a hydrogen atom or a methyl group
  • T represents 1,4-phenylene.
  • Sp represents a divalent aliphatic group having 1 to 12 carbon atoms which may have a substituent.
  • the compound represented by the above formula (VI) is preferably a compound represented by the following formula (VII).
  • Formula (VII) In formula (VII), Z 13 represents —C ( ⁇ O) — or —C ( ⁇ O) —CH ⁇ CH—; Z 14 represents —C ( ⁇ O) — or —CH ⁇ CH—C ( ⁇ O) —; R 13 and R 14 are each independently a hydrogen atom, a linear alkyl group having 1 to 4 carbon atoms, a methoxy group, an ethoxy group, a phenyl group, an acryloylamino group, a methacryloylamino group, an allyloxy group, or the above formula (IV -3).
  • Z 13 represents —C ( ⁇ O) — or —C ( ⁇ O) —CH ⁇ CH—, and preferably represents —C ( ⁇ O) —.
  • R 13 and R 14 are each independently a hydrogen atom, a linear alkyl group having 1 to 4 carbon atoms, a methoxy group, an ethoxy group, a phenyl group, an acryloylamino group, a methacryloylamino group, an allyloxy group, or the above formula (IV- 3), a methyl group, an ethyl group, a propyl group, a methoxy group, an ethoxy group, a phenyl group, an acryloylamino group, a methacryloylamino group, or a structure represented by the above formula (IV-3).
  • it represents a methyl group, an ethyl group, a methoxy group, an ethoxy group, a phenyl group, an acryloylamino group, a methacryloylamino group, or a structure represented by the above formula (IV-3).
  • Examples of the compound represented by the formula (VI) include compounds described in paragraphs [0042] to [0049] of JP-A-2014-198814.
  • liquid crystal compound used in the present invention the compound represented by the following formula (VIII) described in JP-A-2014-198814, particularly, the two compounds represented by the following formula (VIII) ( A polymerizable liquid crystal compound having a (meth) acrylate group is also preferably used.
  • a 2 and A 3 each independently represent an alkylene group having 2 to 18 carbon atoms, two or more CH 2 not one CH 2 or adjacent in the alkylene group, - Optionally substituted with O-;
  • Z 5 represents —C ( ⁇ O) —, —OC ( ⁇ O) — or a single bond;
  • Z 6 represents —C ( ⁇ O) —, —C ( ⁇ O) O— or a single bond;
  • R 5 and R 6 each independently represents a hydrogen atom or a methyl group;
  • L 9 , L 10 , L 11 and L 12 are each independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkoxycarbonyl group having 2 to 5 carbon atoms, or 2 to 4 carbon atoms.
  • An acyl group, a halogen atom or a hydrogen atom, and at least one of L 9 , L 10 , L 11 and L 12 represents a group other than a hydrogen
  • the compound represented by the formula (VIII) is preferably a compound represented by the following formula (IX).
  • Formula (IX) In formula (IX), n2 and n3 each independently represents an integer of 3 to 6; R 15 and R 16 each independently represents a hydrogen atom or a methyl group.
  • n2 and n3 each independently represent an integer of 3 to 6, and n2 and n3 are preferably 4.
  • R 15 and R 16 each independently represent a hydrogen atom or a methyl group, and it is preferable that R 15 and R 16 represent a hydrogen atom.
  • Examples of the compound represented by the formula (VIII) include compounds described in paragraphs [0056] and [0057] of JP-A-2014-198814.
  • liquid crystal compounds can be produced by a known method.
  • the composition includes a chiral agent.
  • the kind of chiral agent is not particularly limited.
  • the chiral agent may be liquid crystalline or non-liquid crystalline.
  • the chiral agent includes various known chiral agents (for example, liquid crystal device handbook, chapter 3-4-3, chiral agent for TN (Twisted Nematic), STN (Super Twisted Nematic), page 199, Japan Society for the Promotion of Science, 142nd. From the Committee, 1989).
  • Chiral agents generally contain asymmetric carbon atoms.
  • an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as a chiral agent.
  • Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • the content of the chiral agent is preferably 0.5 to 30% by mass with respect to the total mass of the liquid crystal compound.
  • a smaller amount of chiral agent is preferred because it tends not to affect liquid crystallinity. Therefore, as the chiral agent, a compound having a strong twisting power is preferable so that a twisted orientation with a desired helical pitch can be achieved even with a small amount.
  • the chiral agent exhibiting such a strong twisting force include, for example, JP 2002-302487, JP 2002-80478, JP 2002-80851, JP 2002-179668, and JP 2002.
  • composition may contain components other than the liquid crystal compound and the chiral agent.
  • the composition may contain a polymerization initiator.
  • the composition when the liquid crystal compound has a polymerizable group, the composition preferably contains a polymerization initiator.
  • the polymerization initiator is preferably a photopolymerization initiator capable of initiating a polymerization reaction by ultraviolet irradiation. Examples of the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatic acyloin. Compound (described in US Pat. No.
  • the content of the polymerization initiator in the composition is not particularly limited, but is preferably 0.1 to 20% by mass and more preferably 1 to 8% by mass with respect to the total mass of the liquid crystal compound.
  • the composition may contain an alignment control agent.
  • an alignment control agent By including an alignment control agent in the composition, it becomes possible to form a stable or rapid cholesteric liquid crystal phase.
  • the orientation control agent include fluorine-containing (meth) acrylate polymers, compounds represented by general formulas (X1) to (X3) described in WO2011 / 162291, and paragraphs [0007] of JP2012-211306.
  • An orientation having an inclination angle of less than 20 ° is meant.
  • An orientation control agent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the alignment control agent in the composition is not particularly limited, but is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and more preferably 0.01 to 5% by mass with respect to the total mass of the liquid crystal compound. 1% by mass is more preferable.
  • the composition may contain a solvent.
  • the solvent include water or an organic solvent.
  • the organic solvent include amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; heterocyclic compounds such as pyridine; hydrocarbons such as benzene and hexane; alkyl halides such as chloroform and dichloromethane; Esters such as methyl, butyl acetate and propylene glycol monoethyl ether acetate; Ketones such as acetone, methyl ethyl ketone, cyclohexanone and cyclopentanone; Ethers such as tetrahydrofuran and 1,2-dimethoxyethane; 1,4-butanediol di Acetate; and the like. These may be used alone or in combination of two or more.
  • Composition is one or more kinds of antioxidants, ultraviolet absorbers, sensitizers, stabilizers, plasticizers, chain transfer agents, polymerization inhibitors, antifoaming agents, leveling agents, thickeners.
  • Other additives such as flame retardants, surfactants, dispersants, and colorants such as dyes and pigments.
  • the transparent screen of the present invention forms a cholesteric liquid crystal layer on the support 12 by a coating method using the above-described composition containing the liquid crystal compound and the chiral agent (upper layer composition).
  • the cholesteric liquid crystal layer can be produced by sequentially forming a cholesteric liquid crystal layer on the prepared cholesteric liquid crystal layer by a coating method using the above-described composition containing the liquid crystal compound and the chiral agent (upper layer composition).
  • a composition (non-visible cholesteric liquid crystal layer composition) containing the liquid crystal compound and chiral agent as described above is prepared, and the prepared composition is applied to the support 12.
  • the application method is not particularly limited, and examples thereof include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
  • the cholesteric liquid crystal layer composition (composition layer (coating film)) applied on the support 12 is heated to align the liquid crystal compound in the composition to a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal phase is in a state where a bright part and a dark part parallel to the support 12 are laminated.
  • the liquid crystal phase transition temperature of the cholesteric liquid crystal layer composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability.
  • the liquid crystal compound When the liquid crystal compound has a polymerizable group, the liquid crystal compound is aligned to form a cholesteric liquid crystal phase, and then the cholesteric liquid crystal layer composition on the support 12 is cured to fix the cholesteric liquid crystal phase. Also good.
  • the state in which the cholesteric liquid crystal phase is “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • the layer is not fluid in a temperature range of usually 0 to 50 ° C., and in a temperature range of ⁇ 30 to 70 ° C. under harsher conditions, and it is in an oriented form by an external field or an external force.
  • the method for the curing treatment is not particularly limited, and examples thereof include photocuring treatment and thermosetting treatment. Of these, light irradiation treatment is preferable, and ultraviolet irradiation treatment is more preferable.
  • a light source such as an ultraviolet lamp is used.
  • the amount of ultraviolet irradiation energy is not particularly limited, but generally it is preferably about 0.1 to 0.8 J / cm 2 .
  • the time for irradiation with ultraviolet rays is not particularly limited, but may be appropriately determined from the viewpoints of both the sufficient strength and productivity of the resulting layer.
  • the wave-shaped cholesteric liquid crystal layer 14 is formed on the flat cholesteric liquid crystal layer 16.
  • an upper layer composition for forming the wave-type cholesteric liquid crystal layer 14 containing the liquid crystal compound and the chiral agent as described above is prepared.
  • the upper layer composition is applied on the surface (surface) of the flat cholesteric liquid crystal layer 16.
  • the coating method the same method as in the case of the flat cholesteric liquid crystal layer 16 is used.
  • the composition is heated to align the liquid crystal compound in the composition layer formed on the flat cholesteric liquid crystal layer 16 to obtain a cholesteric liquid crystal phase.
  • the heating conditions are the same as above.
  • the wave-shaped cholesteric liquid crystal layer 14 when the wave-shaped cholesteric liquid crystal layer 14 is formed, when the cholesteric liquid crystal layer composition is heated to bring the liquid crystal compound into a cholesteric liquid crystal phase, spiral induction of the chiral agent contained in the cholesteric liquid crystal layer composition is performed.
  • the composition is cooled or heated to improve the strength to form a cholesteric liquid crystal layer. That is, the coating is performed so that the helical induction power (HTP) of the chiral agent contained in the cholesteric liquid crystal layer composition constituting the coating layer (composition layer) formed on the flat cholesteric liquid crystal layer 16 is increased.
  • the layer is subjected to cooling treatment or heat treatment.
  • the coating layer By subjecting the coating layer to cooling treatment and heat treatment, the helical induction force of the chiral agent is increased and the twist of the liquid crystal compound is increased. As a result, the orientation of the cholesteric liquid crystal phase (inclination of the helical axis) is changed. Thereby, the bright part and the dark part parallel to the support 12 are changed, and the wave-like cholesteric liquid crystal layer 14 (the cholesteric liquid crystal phase state of the cholesteric liquid crystal phase state) having the bright part and the dark part of the wavy structure (uneven structure) as shown in FIG. A layer of the composition is formed.
  • the composition When cooling the cholesteric liquid crystal layer composition, it is preferable to cool the composition so that the temperature of the composition is lowered by 30 ° C. or more from the viewpoint that the diffuse reflectance of the wave-type cholesteric liquid crystal layer 14 is more excellent. Especially, it is preferable to cool a composition so that it may be 40 degreeC or more at the point which the said effect is more excellent, and it is more preferable to cool a composition so that it may fall 50 degreeC or more.
  • the upper limit value of the reduced temperature range of the cooling treatment is not particularly limited, but is usually about 70 ° C. In other words, the cooling treatment is intended to cool the composition so that it is T-30 ° C.
  • the cooling method is not particularly limited, and examples thereof include a method in which the support 12 on which the composition is disposed is left in an atmosphere having a predetermined temperature.
  • the cooling rate in the cooling process is set to a certain degree. It is preferable to set the speed.
  • the maximum value of the cooling rate in the cooling process is preferably 1 ° C. or more per second, and more preferably 2 ° C. or more per second.
  • the cholesteric liquid crystal phase may be fixed by subjecting the cholesteric liquid crystal layer composition to a curing treatment after cooling or heat treatment.
  • This curing treatment may be performed simultaneously with the cooling treatment or the heat treatment, or may be performed after the cooling treatment or the heat treatment is performed.
  • the method for the curing treatment is the same as that for the flat type cholesteric liquid crystal layer.
  • the wave-shaped cholesteric liquid crystal layer 14 having a wave-like structure can be formed, and the transparent screen 10a having the flat cholesteric liquid crystal layer 16Rr and the wave-shaped cholesteric liquid crystal layer 14Rr on the support 12 is produced. be able to.
  • the upper cholesteric liquid crystal layer when the lower cholesteric liquid crystal layer has a wavy structure in the cross section, the upper cholesteric liquid crystal layer also follows the wavy structure of the lower cholesteric liquid crystal layer, and the bright and dark portions in the cross section are wavy. May be a structure. Therefore, when a plurality of wave-shaped cholesteric liquid crystal layers 14 are formed, after forming the lower wave-shaped cholesteric liquid crystal layer 14 by the above method, the upper cholesteric liquid crystal layer 14 is formed on the lower wave-shaped cholesteric liquid crystal layer 14. When the cholesteric liquid crystal layer is formed, the bright and dark portions in the cross section are also wave-shaped cholesteric liquid crystal layers having a wavy structure.
  • Such a transparent screen of the present invention can be used as a screen for projecting image display and a half mirror. Further, it can also be used as a color filter or a filter that improves the color purity of display light of a display (see, for example, Japanese Patent Application Laid-Open No. 2003-294948) by controlling the reflection band.
  • the transparent screen can be used for various applications such as a polarizing element, a reflection film, an antireflection film, a viewing angle compensation film, a holography, and an alignment film, which are components of the optical element.
  • the transparent screen of the present invention is particularly preferably used as a projection image display member such as a projection image display screen. Specifically, it is suitably used as a transparent screen of a video projection system. That is, by the function of the cholesteric liquid crystal layer as described above, a projected image can be formed by reflecting the circularly polarized light of one of the senses at a wavelength showing selective reflection in the projection light.
  • the projected image may be displayed on the surface of the transparent screen and viewed as such, or may be a virtual image that appears above the transparent screen when viewed from the observer.
  • the transparent screen of the present invention when configured to be transmissive to light in the visible light region, it can be a projection display half mirror that can be used as a combiner for a head-up display.
  • the projected image display half mirror can display the image projected from the projector so that it can be seen, and when the projected image display half mirror is observed from the same surface on which the image is displayed, the opposite surface is displayed. You can observe information or landscape on the side at the same time.
  • Liquid crystal compositions 1 to 3 were prepared by mixing the components shown in Table 1 below. In addition, all the quantity of each component is a mass part.
  • Example 1 As the support 12, a rubbing-treated PET film (manufactured by FUJIFILM Corporation) was prepared. The liquid crystal composition 1 was applied to the rubbing surface of the support 12 using a # 8 wire bar. The coating layer of the liquid crystal composition 1 was dried at room temperature for 10 seconds and then heated in an atmosphere at 95 ° C. for 1 minute to align the liquid crystal compound. Thereafter, the liquid crystal composition was cooled to 30 ° C. within 1 minute. Thereafter, UV light (ultraviolet light) is irradiated for 8 seconds at an output of 80% using a fusion D bulb (lamp 90 mW / cm 2 ) at 30 ° C. with respect to the coating layer, and a wave-shaped cholesteric liquid crystal is applied on the support 12. Layer 14Rr was formed.
  • the transmission spectrum of the wave-type cholesteric liquid crystal layer 14Rr was measured using a spectrophotometer UV-3100PC (manufactured by Shimadzu Corporation), it had a selective reflection peak centered at a wavelength of 640 nm. A part of the formed wave-shaped cholesteric liquid crystal layer 14Rr is peeled off, and the film thickness of the wave-shaped cholesteric liquid crystal layer 14Rr is 4 ⁇ m using a 10 ⁇ objective lens with a shape measurement laser microscope VK-X200 (manufactured by Keyence). Met.
  • the PET substrate having a cholesteric liquid crystal layer was set on a polarizing microscope so that the slow axis of the PET substrate coincided with the direction of the polarizer of the polarizing microscope, the cholesteric liquid crystal layer was observed. I confirmed it clearly. Moreover, it was confirmed by cross-sectional SEM observation of the corrugated cholesteric liquid crystal layer that the layered structure of the cholesteric liquid crystal phase was corrugated (undulation structure).
  • the liquid crystal composition 1 is applied onto the wave-shaped cholesteric liquid crystal layer 14Rr using a # 6 wire bar, and dried, heated, cooled, and cured in the same manner as described above, and then the wave-shaped cholesteric liquid crystal layer 14Gr. Formed.
  • the wave-type cholesteric liquid crystal layer 14Gr had a selective reflection peak centered at a wavelength of 530 nm.
  • the film thickness of the wave-type cholesteric liquid crystal layer 14Gr was 3 ⁇ m. Further, when the layered structure of the cholesteric liquid crystal phase was confirmed in the same manner as described above, a wave-like structure was confirmed.
  • the liquid crystal composition 1 is applied onto the wave-shaped cholesteric liquid crystal layer 14Gr using a # 4 wire bar, and dried, heated, cooled and cured in the same manner as described above to form the wave-shaped cholesteric liquid crystal layer 14Br. Formed.
  • the wave type cholesteric liquid crystal layer 14Br had a selective reflection peak centered at a wavelength of 445 nm.
  • the film thickness of the wave-type cholesteric liquid crystal layer 14Br was 2 ⁇ m. Further, when the layered structure of the cholesteric liquid crystal phase was confirmed in the same manner as described above, a wave-like structure was confirmed.
  • the laminate having the three wave-shaped cholesteric liquid crystal layers thus obtained is referred to as “wave-shaped laminate A”.
  • the flat cholesteric liquid crystal layer 16Rr is formed in the same manner as the wave-type cholesteric liquid crystal layer 14Rr except that the liquid crystal composition is cooled from 95 ° C. to 30 ° C. over 5 minutes on a hot plate.
  • the cross-sectional SEM observation of the same laminate observed that the layered structure of the cholesteric liquid crystal layer was horizontal with the support.
  • a wave-shaped cholesteric liquid crystal is used except that a liquid crystal compound is aligned at 95 ° C. on the flat cholesteric liquid crystal layer 16Rr and then the liquid crystal composition is cooled from 95 ° C. to 30 ° C. over 5 minutes on a hot plate.
  • a flat cholesteric liquid crystal layer 16Gr was produced in the same manner as the layer 14Gr.
  • the wave-shaped cholesteric liquid crystal layer is formed except that the liquid crystal compound is aligned at 95 ° C. on the flat cholesteric liquid crystal layer 16Gr and then cooled from 95 ° C. to 30 ° C. over 5 minutes on a hot plate.
  • a flat cholesteric liquid crystal layer 16Br was produced in the same manner as 14Br.
  • a laminate having three flat cholesteric liquid crystal layers thus obtained is referred to as “flat laminate A”.
  • the film thickness of the flat cholesteric liquid crystal layer 16Rr was 5 ⁇ m
  • the film thickness of the flat cholesteric liquid crystal layer 16Gr was 4 ⁇ m
  • the film thickness of the flat cholesteric liquid crystal layer 16Br was 3 ⁇ m. Further, when the layered structure of the cholesteric liquid crystal phase was confirmed in the same manner as described above, no wavelike structure was confirmed in any of the layers.
  • An optical adhesive (Optical adhesive SK Dyne, manufactured by Soken Chemical Co., Ltd.) was pasted on the PET sheet, and “flat laminate A” was transferred thereon, and the PET substrate on the flat laminate A side was peeled off. Further, an optical adhesive layer (Optical Adhesive SK Dyne, manufactured by Soken Chemical Co., Ltd.) is applied on the flat laminate A, and after transferring the “wave laminate A”, the PET substrate on the wave laminate A side is peeled off. As a result, “transparent screen A” was obtained.
  • Example 1-1 A combination of this “transparent screen A” and a laser projector (PicoPro manufactured by Celluon) was taken as Example 1-1.
  • a circularly polarizing plate was placed in front of the laser projector so that the light irradiated on the transparent screen A became right circularly polarized light.
  • the center wavelength of the light source is 640 nm for the red light source, 530 nm for the green light source, and 445 nm for the blue light source.
  • a combination of “transparent screen A” and a liquid crystal projector (EB-W28 manufactured by Seiko Epson Corporation) was taken as Example 1-2.
  • a circularly polarizing plate was placed in front of the laser projector so that the light irradiated on the transparent screen A became right circularly polarized light.
  • Example 2 An optical adhesive was pasted on the PET sheet, and the “flat laminate A” was transferred thereon to peel off the PET substrate on the flat laminate A side. Furthermore, an optical adhesive layer (optical adhesive SK Dyne, manufactured by Soken Chemical Co., Ltd.) is pasted on the flat laminate A, and a commercially available ⁇ / 2 plate (1/2 wavelength plate manufactured by Biei Imaging Co., Ltd.) is bonded. did. Further, OCA was pasted on the ⁇ / 2 plate, and “flat laminate A” was transferred thereon to peel off the PET substrate on the flat laminate A side. Subsequently, OCA was pasted on the flat laminate A, and after transferring the “wave laminate A”, the PET substrate on the wave laminate A side was peeled off to obtain “transparent screen B”. .
  • optical adhesive SK Dyne manufactured by Soken Chemical Co., Ltd.
  • Comparative Example 1 An optical adhesive (Optical Adhesive SK Dyne, manufactured by Soken Chemical Co., Ltd.) is pasted on the PET sheet, the “flat laminate A” is transferred thereon, and the PET substrate on the flat laminate A side is peeled off. A transparent screen C "was obtained. A combination of this “transparent screen C” and a laser projector (PicoPro manufactured by Celluon) was defined as Comparative Example 1-1. A circularly polarizing plate was placed in front of the laser projector so that the light irradiated to the transparent screen C was right circularly polarized light. Further, a combination of “transparent screen C” and a liquid crystal projector (EB-W28 manufactured by Seiko Epson Corporation) was defined as Comparative Example 1-2.
  • EB-W28 liquid crystal projector
  • ⁇ Diffusion reflectivity evaluation> The relative reflectance of the cholesteric liquid crystal layer with respect to the reference (white plate) was measured using the double beam measurement mode of GCMS-3B manufactured by Murakami Color Co., Ltd.
  • the reflection spectrum at 10 ° and 45 ° with respect to light incident from the normal direction (0 °) to the sample was measured at 380 nm to 780 nm, and the Y value at this time was calculated.
  • incident light from a light source is irradiated from the normal direction of the surface of the sample (transparent screen or white plate), and polar angles ⁇ are 10 ° and 45 ° with respect to the normal direction of the sample surface.
  • the reflected light was measured by a detector arranged at a position, the relative reflectance of the cholesteric liquid crystal layer with respect to the reference was measured, and evaluated according to the following criteria.
  • each of the transparent screens of the present invention has a low haze and a high total light transmittance, and further has a 45 ° relative reflection amount of 5 or more and good diffuse reflectance. That is, the laminate of the present invention has both good transparency and diffuse reflectivity. Further, it can be seen from the comparison between Example 1-1 and Example 1-2 that the reflection on the opaque screen arranged on the back side of the transparent screen can be suppressed by combining the laser projector with the transparent screen of the present invention. From the above results, the effects of the present invention are clear.
  • Wave type cholesteric liquid crystal layer 14Rr Wave type cholesteric liquid crystal layer 14Gr having a selective reflection wavelength in the red light region and reflecting right circularly polarized light 14Gr has a selective reflection wavelength in the green light region Wave-type cholesteric liquid crystal layer 14Br that reflects right circularly polarized light 14Br Wave-shaped cholesteric liquid crystal layer 14Rl that has a selective reflection wavelength in the blue light region and reflects right circularly polarized light Left circularly polarized light that has a selective reflection wavelength in the red light region Wave-type cholesteric liquid crystal layer 14Gl that reflects light and has a selective reflection wavelength in the green light region and wave-like cholesteric liquid crystal layer 14Bl that reflects left-handed circularly polarized light Type cholesteric liquid crystal layer 16 flat type cholesteric liquid crystal layer 16Rr has a selective reflection wavelength in the red light region and reflects right circularly polarized light Flat cholesteric liquid crystal layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Polarising Elements (AREA)

Abstract

良好な拡散反射性を有し、しかも、低ヘイズで透明性にも優れる透明スクリーンおよび映像投影システムの提供を、課題とする。支持体と、支持体上に積層される、コレステリック液晶相を固定してなる複数のコレステリック液晶層とを有し、複数のコレステリック液晶層のうち、少なくとも1層は、断面においてコレステリック液晶相に由来する明部および暗部が波状構造を有する波型コレステリック液晶層であり、複数のコレステリック液晶層のうち、他の少なくとも1層は、断面においてコレステリック液晶相に由来する明部および暗部が支持体の主面に対して平行な平坦構造を有する平型コレステリック液晶層である。

Description

透明スクリーンおよび映像投影システム
 本発明は、透明スクリーン、および、映像投影システムに関する。
 コレステリック液晶相を固定してなる層は、特定の波長域において右円偏光および左円偏光のいずれか一方を選択的に反射させる性質を有する層として知られている。そのため、種々の用途へ展開されており、一例として、投影用のスクリーンとしての用途が、各種、提案されている。
 コレステリック液晶相を固定してなる層を用いた投影スクリーンなどの投映像表示用部材には、視野角の拡大が求められる。
 より具体的には、通常、コレステリック液晶相を固定してなる層の表面の法線方向から光が入射した際には、右円偏光および左円偏光のいずれか一方が選択的に反射される。その際、反射が法線方向のみならず、斜め方向へもなされると、斜め方向からの視認性の向上に繋がる。つまり、コレステリック液晶相を固定してなる層をコレステリック液晶層とするスクリーン等の用途に用いる場合には、コレステリック液晶層は、入射光が様々な方向に反射する特性(いわゆる、拡散反射性)に優れることが求められる。
 また、コレステリック液晶相を固定してなる層を透明スクリーン等に応用する場合には、透明性が高い、すなわち、低ヘイズであることも要求される。
 例えば、特許文献1には、反射型の投影スクリーンとして、特定の偏光成分を拡散反射する偏光選択コレステリック液晶層を備え、偏光選択コレステリック液晶層は互いに積層された少なくとも2層以上の部分選択コレステリック液晶層を有し、各部分選択コレステリック液晶層の内、偏光選択コレステリック液晶層に最も吸収されやすい色を示す波長域を有する光を拡散反射する第1部分選択コレステリック液晶層を、観察側の最表面に配置した、投影スクリーンが記載されている。
 特許文献1に記載されている投影スクリーンでは、部分選択コレステリック液晶層がコレステリック液晶構造(コレステリック液晶相を固定してなる層)を有し、コレステリック液晶構造の構造的な不均一性(欠陥)により、特定の偏光成分の光を拡散反射している。
 また、特許文献2には、第1の透明基材の一方の面に設けられ、かつ表面に複数の凸部を有する透明樹脂層と、凸部の表面に設けられ、かつ入射する特定波長を有する右円偏光または左円偏光のレーザ光を選択的に反射するコレステリック液晶構造からなる選択コレステリック液晶層と、選択コレステリック液晶層の表面を被覆する透明被覆層とを備え、透明被覆層の表面が平坦であり、第1の透明基材の屈折率、透明樹脂層の屈折率および透明被覆層の屈折率が、同一またはほぼ同一である、反射型スクリーンが記載されている。
 特許文献2に記載される反射型スクリーンでは、コレステリック液晶構造からなる選択コレステリック液晶層を凸部の表面に形成することで光を拡散させている。また、透明被覆層の表面を平坦に形成し、各層の屈折率を同じにすることで透明性を得られるとしている。
特開2005-107508号公報 特開2014-071250号公報
 しかしながら、例えば特許文献1に記載される投影スクリーンであれば、コレステリック液晶構造に欠陥を導入することで拡散反射性を得ているため、拡散反射性および透明性が近年の要求レベルを満たしていないなど、従来のコレステリック液晶相を固定してなる層を用いる透明スクリーンには、さらなる拡散反射性および透明性の向上が要求されている。
 本発明の課題は、このような従来技術の問題点を解決することにあり、良好な拡散反射性を有し、しかも、低ヘイズで透明性にも優れる透明スクリーンおよび映像投影システムを提供することにある。
 本発明者らは、従来技術の問題点について鋭意検討した結果、支持体と、支持体上に積層される、コレステリック液晶相を固定してなる複数のコレステリック液晶層とを有し、複数のコレステリック液晶層のうち、少なくとも1層は、断面においてコレステリック液晶相に由来する明部および暗部が波状構造を有する波型コレステリック液晶層であり、複数のコレステリック液晶層のうち、他の少なくとも1層は、断面においてコレステリック液晶相に由来する明部および暗部が支持体の主面に対して平行な平坦構造を有する平型コレステリック液晶層であることにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 [1] 支持体と、
 支持体上に積層される、コレステリック液晶相を固定してなる複数のコレステリック液晶層とを有し、
 複数のコレステリック液晶層のうち、少なくとも1層は、断面においてコレステリック液晶相に由来する明部および暗部が波状構造を有する波型コレステリック液晶層であり、
 複数のコレステリック液晶層のうち、他の少なくとも1層は、断面においてコレステリック液晶相に由来する明部および暗部が支持体の主面に対して平行な平坦構造を有する平型コレステリック液晶層である透明スクリーン。
 [2] 波型コレステリック液晶層の少なくとも1層の選択反射波長と、平型コレステリック液晶層の少なくとも1層の選択反射波長とが同じである[1]に記載の透明スクリーン。
 [3] 互いに異なる選択反射波長を有する、2以上の波型コレステリック液晶層と、
 各波型コレステリック液晶層の選択反射波長と同じ選択反射波長を有する2以上の平型コレステリック液晶層を有する[1]または[2]に記載の透明スクリーン。
 [4] 複数のコレステリック液晶層が反射する円偏光の旋回方向が全てのコレステリック液晶層で同じである[1]~[3]のいずれかに記載の透明スクリーン。
 [5] 選択反射波長が同じで、反射する円偏光の旋回方向が同じである平型コレステリック液晶層を2以上有し、
 2以上の平型コレステリック液晶層の間に配置されるλ/2板を有する[1]~[4]のいずれかに記載の透明スクリーン。
 [6] 選択反射波長が同じで、反射する円偏光の旋回方向が同じである波型コレステリック液晶層を2以上有し、
 2以上の波型コレステリック液晶層の間に配置されるλ/2板を有する[1]~[5]のいずれかに記載の透明スクリーン。
 [7] 選択反射波長が同じで、反射する円偏光の旋回方向が互いに異なる2以上の平型コレステリック液晶層を有する[1]~[3]のいずれかに記載の透明スクリーン。
 [8] 選択反射波長が同じで、反射する円偏光の旋回方向が互いに異なる2以上の波型コレステリック液晶層を有する[1]~[3]および[7]のいずれかに記載の透明スクリーン。
 [9] 支持体の全光線透過率が80%以上である[1]~[8]のいずれかに記載の透明スクリーン。
 [10] 支持体のコレステリック液晶層の形成面が平坦面である[1]~[9]のいずれかに記載の透明スクリーン。
 [11] 透明スクリーンの全光線透過率が50%以上である[1]~[10]のいずれかに記載の透明スクリーン。
 [12] [1]~[11]のいずれかに記載の透明スクリーンと、
 透明スクリーンに光を照射するレーザープロジェクターとを有する映像投影システム。
 [13] 透明スクリーンが有するコレステリック液晶層の少なくとも1層の選択反射波長が、レーザープロジェクターの光源の中心波長の±20nmの範囲にある[12]に記載の映像投影システム。
 [14] レーザープロジェクターが照射する光が円偏光である[12]または[13]に記載の映像投影システム。
 [15] 透明スクリーンが有するコレステリック液晶層の少なくとも1層が反射する円偏光の旋回方向が、レーザープロジェクターが照射する円偏光の旋回方向と一致する[14]に記載の映像投影システム。
 本発明によれば、良好な拡散反射性を有し、しかも、低ヘイズで透明性にも優れる透明スクリーンおよび映像投影システムを提供することができる。
本発明の透明スクリーンの一例を概念的に示す断面図である。 平型コレステリック液晶層の平坦構造を説明するための概念図である。 波型コレステリック液晶層の波状構造を説明するための概念図である。 本発明の映像投影システムの一例を概念的に示す図である。 本発明の透明スクリーンの他の一例を概念的に示す断面図である。 本発明の透明スクリーンの他の一例を概念的に示す断面図である。 本発明の透明スクリーンの他の一例を概念的に示す断面図である。 本発明の透明スクリーンの他の一例を概念的に示す断面図である。 実施例における評価方法を説明するための概念図である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、「直交」および「平行」とは、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、「直交」および「平行」とは、厳密な直交あるいは平行に対して±10°未満の範囲内であることなどを意味し、厳密な直交あるいは平行に対しての誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 また、「直交」および「平行」以外で表される角度、例えば、15°や45°等の具体的な角度についても、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、本発明においては、角度は、具体的に示された厳密な角度に対して、±5°未満であることなどを意味し、示された厳密な角度に対する誤差は、±3°以下であるのが好ましく、±1°以下であるのが好ましい。
 また、本明細書において、「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの両方を表す表記であり、「(メタ)アクリロイル基」とは、アクリロイル基およびメタクリロイル基の両方を表す表記であり、「(メタ)アクリル」とは、アクリルおよびメタクリルの両方を表す表記である。
 本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
 本明細書において、可視光は、電磁波のうち、ヒトの目で見える波長の光であり、400nm超700nm未満の波長域の光を示す。非可視光は、400nm以下の波長域または700nm以上の波長域の光である。また、これに制限はされないが、可視光のうち、420nm以上500nm未満の波長域の光は青色光(B光)であり、500nm以上600nm未満の波長域の光は緑色光(G光)であり、600nm以上700nm未満の波長域の光は赤色光(R光)である。さらに、これに制限はされないが、非可視光のうち、200~400nmの波長域の光は紫外光であり、700~1000nmの波長域の光は赤外光である。
 本明細書において、選択反射波長とは、対象となる物(部材)における透過率の極小値をTmin(%)とした場合、下記の式で表される半値透過率:T1/2(%)を示す2つの波長の平均値のことを言う。
 半値透過率を求める式: T1/2=100-(100-Tmin)÷2
 本明細書において、「ヘイズ」は、日本電色工業株式会社製のヘーズメーターNDH-4000を用いて測定される値を意味する。
 理論上は、ヘイズは、以下式で表される値を意味する。
(380~780nmの自然光の散乱透過率)/(380~780nmの自然光の散乱透過率+自然光の直透過率)×100%
 散乱透過率は分光光度計と積分球ユニットを用いて、得られる全方位透過率から直透過率を差し引いて算出することができる値である。直透過率は、積分球ユニットを用いて測定した値に基づく場合、0°での透過率である。つまり、ヘイズが低いということは、全透過光量のうち、直透過光量が多いことを意味する。
 本明細書において、屈折率は、波長589.3nmの光に対する屈折率である。
 本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、および、厚さ方向のレターデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本明細書において、Re(λ)、Rth(λ)は、AxoScan ミューラマトリクスポラリメーター(AXOMETRICS社製)において、波長λで測定した値である。AxoScanにて平均屈折率((Nx+Ny+Nz)/3)と膜厚(d(μm))を入力することにより、
遅相軸方向(°)
Re(λ)=R0(λ)
Rth(λ)=((Nx+Ny)/2-Nz)×d
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
 本明細書において、屈折率Nx、Ny、Nzは、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルタとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することもできる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
 本発明の透明スクリーンは、
 支持体と、
 支持体上に積層される、コレステリック液晶相を固定してなる複数のコレステリック液晶層とを有し、
 複数のコレステリック液晶層のうち、少なくとも1層は、断面においてコレステリック液晶相に由来する明部および暗部が波状構造を有する波型コレステリック液晶層であり、
 複数のコレステリック液晶層のうち、他の少なくとも1層は、断面においてコレステリック液晶相に由来する明部および暗部が支持体の主面に対して平行な平坦構造を有する平型コレステリック液晶層である透明スクリーンである。
 以下に、本発明の透明スクリーンの好適な実施態様の一例について図面を参照して説明する。
 図1に、本発明の透明スクリーンの一例の模式的な断面図を示す。
 なお、本明細書における図は模式図であり、各層の厚みの関係や位置関係などは必ずしも実際のものとは一致しない。以下の図も同様である。
 図1に示すように、透明スクリーン10aは、支持体12と、支持体12の一方の主面上に形成された平型コレステリック液晶層16Rrと、平型コレステリック液晶層16Rr上に形成された波型コレステリック液晶層14Rrとを有する。
 平型コレステリック液晶層16Rr、および、波型コレステリック液晶層14Rrは、いずれも、コレステリック液晶相を固定してなる層である。
 以下の説明では、平型コレステリック液晶層および波型コレステリック液晶層を区別する必要がない場合には、これらをまとめて『コレステリック液晶層』とも言う。
 周知のように、コレステリック液晶を固定してなる層は、反射に波長選択性を有し、所定の波長領域の右偏光のみ、または、左偏光のみを反射し、それ以外の光は、透過する。
 図1に示す例においては、平型コレステリック液晶層16Rrは、赤色光の領域(例えば、650nm)に選択反射波長を有し、この波長の右円偏光を反射する。また、波型コレステリック液晶層14Rrは、赤色光の領域(例えば、650nm)に選択反射波長を有し、この波長の右円偏光を反射する。すなわち、平型コレステリック液晶層16Rrと波型コレステリック液晶層14Rrとは、選択反射波長が同じで、反射する円偏光の旋回方向が同じである。また、コレステリック液晶層は、選択反射波長以外の波長域の光、および、旋回方向が逆の円偏光は透過する。従って、コレステリック液晶層は透明性を有する。
 なお、本明細書において、コレステリック液晶層の選択反射波長が同じであるとは、各コレステリック液晶層の選択反射波長の差が20nm以下であることを意味する。
 なお、後述するように、本発明の透明スクリーンが有するコレステリック液晶層は、赤色光の領域に選択反射波長を有するものに限定はされず、緑色光の領域(例えば、550nm)に選択反射波長を有するものであってもよいし、青色光の領域(例えば、450nm)に選択反射波長を有するものであってもよい。あるいは、他の波長域(赤外線の領域、紫外線の領域等)を選択反射波長とするものであってもよい。
 また、本発明の透明スクリーンが有するコレステリック液晶層は、右円偏光を反射するものに限定されず、左円偏光を反射するものであってもよい。
 また、以下の説明では、選択反射波長あるいは反射する円偏光の旋回方向が異なる平型コレステリック液晶層を区別する必要がない場合には、これらをまとめて『平型コレステリック液晶層16』とも言う。同様に、選択反射波長あるいは反射する円偏光の旋回方向が異なる波型コレステリック液晶層を区別する必要がない場合には、これらをまとめて『波型コレステリック液晶層14』とも言う。
 ここで、図2に平型コレステリック液晶層16の断面を概念的に示す。図2は、例えば、平型コレステリック液晶層16の断面を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察した状態を概念的に示す図である。
 前述のように、平型コレステリック液晶層16は、コレステリック液晶相を固定してなる層である。支持体上に配置されたコレステリック液晶相を固定した層の断面では、通常、明部と暗部との縞模様が観察される。従って、図2に示すように、平型コレステリック液晶層16は、その断面において、コレステリック液晶相に由来して、厚さ方向(図2中上下方向)に、明部Bおよび暗部Dを交互に積層した縞模様が観察される。
 図2中の1つの明部Bとその1つの明部Bの上下に配置される2つの暗部Dとで、コレステリック液晶相の螺旋1/2ピッチ分に相当する。
 図2に示すように、平型コレステリック液晶層16の断面における明部Bと暗部Dとは、支持体12の主面に対して略平行な平坦構造を有する。
 一般的に、明部Bおよび暗部Dの縞模様(層状構造)は、図2に示すように、平坦面である支持体12の表面と平行となるように形成される。
 すなわち、本発明において、平型コレステリック液晶層16は、コレステリック液晶構造を有し、螺旋軸と支持体12の表面とのなす角が一定の構造を有する層である。具体的には、平型コレステリック液晶層16は、走査型電子顕微鏡にて観測される平型コレステリック液晶層16の断面図において明部と暗部との縞模様を与え、任意の10点において、暗部がなす線の法線と支持体12の表面となす角が90°±5°を満たす。
 このようなコレステリック液晶相を平坦構造で固定した平型コレステリック液晶層16は、鏡面反射性を示す。すなわち、コレステリック液晶相を平坦構造で固定した平型コレステリック液晶層16の法線方向から光が入射される場合、法線方向に光は反射されるが、斜め方向には光は反射されにくい。また、ヘイズは低くなり透明性は高くなる。
 図3に波型コレステリック液晶層14の断面を概念的に示す。図3は、例えば、波型コレステリック液晶層14の断面を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察した状態を概念的に示す図である。
 前述のように、波型コレステリック液晶層14は、コレステリック液晶相を固定してなる層である。支持体上に配置されたコレステリック液晶相を固定した層の断面では、通常、明部と暗部との縞模様が観察される。従って、図3に示すように、波型コレステリック液晶層14は、その断面において、コレステリック液晶相に由来して、厚さ方向(図3中上下方向)に、明部Bおよび暗部Dを交互に積層した縞模様が観察される。
 図3中の1つの明部Bとその1つの明部Bの上下に配置される2つの暗部Dとで、コレステリック液晶相の螺旋1/2ピッチ分に相当する。
 図3に示すように、波型コレステリック液晶層14の断面における明部Bと暗部Dとは、周期的な波状構造(アンジュレーション構造)を有する。
 すなわち、本発明において、波型コレステリック液晶層14は、コレステリック液晶構造を有し、螺旋軸と波型コレステリック液晶層14の表面とのなす角が周期的に変化する構造を有する層である。言い換えれば、波型コレステリック液晶層14は、コレステリック液晶構造を有し、コレステリック液晶構造は走査型電子顕微鏡にて観測されるコレステリック液晶層の断面図において明部と暗部との縞模様を与え、暗部がなす線の法線と波型コレステリック液晶層14の表面となす角が周期的に変化する構成を有する。
 このようなコレステリック液晶相を波状構造で固定してなる波型コレステリック液晶層14は、拡散反射性を示す。
 コレステリック液晶層の明部Bおよび暗部Dが波状構造(アンジュレーション構造)を有する場合には、波状構造(凹凸構造)を有する層に対して、層の法線方向から光が入射されると、図3に示すように、液晶化合物の螺旋軸が傾いている領域があるため、入射光の一部が斜め方向に反射される。
 つまり、コレステリック液晶相を波状構造で固定してなる波型コレステリック液晶層においては、明部Bと暗部Dとが波状構造を有することにより、拡散反射性の高い層が実現できる。また、拡散反射性は、明部Bと暗部Dとの波状構造の凹凸が大きいほど、良好になる。
 後述するが、波状構造を有する波型コレステリック液晶層は、一例として、液晶化合物とキラル剤とを含む組成物を被形成面に塗布し、組成物を加熱することによって液晶化合物をコレステリック液晶相に配向し、その後、組成物を冷却して紫外線照射等によってコレステリック液晶相を固定することで、形成できる。
 波型コレステリック液晶層の拡散反射性は、波状構造の凹凸が大きいほど、高くなる。
 しかしながら、波型コレステリック液晶層の波状構造を、高い拡散反射性が得られる十分な大きさの凹凸を有する波状構造とするためには、波型コレステリック液晶層を、或る程度以上の厚さにする必要がある。
 波型コレステリック液晶層を厚くすると、当然、光透過率は低下し、透明スクリーンの透明性は低くなる。すなわち、波型コレステリック液晶層の波状構造の凹凸の大きさによる光拡散性の高さと、波型コレステリック液晶層の透明性とは、トレードオフの関係にある。
 また、波型コレステリック液晶層の断面における波状構造は、波のピッチは略均一であるが、波の高さは、変動してもよい。
 例えば、波の高さが、波型コレステリック液晶層の厚さ方向の中央領域が最も高く、厚さ方向の上方(表面側)および支持体12側に向かうにしたがって、漸次、低くなる構成でもよい。すなわち、波型コレステリック液晶層の断面の波状構造の振幅は、厚さ方向の中央領域が最も大きく、表面側および支持体12側に向かうにしたがって、漸次、小さくなる構成でもよい。
 あるいは、図3に示す波状構造のように、厚さ方向の全域で均一な高さの波を有する構造であってもよい。
 また、各波型コレステリック液晶層の表面(上層のコレステリック液晶層または空気との界面)は、平面状であってもよく、凹凸構造を有してもよい。
 波型コレステリック液晶層の上面が凹凸構造を有する場合には、一般的に、この凹凸構造は、周期的(略周期的)である。
 このような上面に凹凸構造を有する波型コレステリック液晶層は、後述する本発明の製造方法において、キラル剤および/または配向制御剤の選択、ならびに、加熱処理または冷却処理の条件の選択の、少なくとも一方を行うことにより、形成できる。
 表面に凹凸を有する波型コレステリック液晶層は、波型コレステリック液晶層の断面における波状構造の波の高さが、表面が平坦な波型コレステリック液晶層よりも大きい。
 そのため、表面に凹凸を有する波型コレステリック液晶層は、より高い拡散反射性が得られる。一方で、透明性の観点からは表面が平坦な波型コレステリック液晶層が好ましい。
 また、波型コレステリック液晶層の断面における波状構造(明部および暗部の波状構造)は、図1の横方向のみならず、例えば、図1の紙面に垂直な方向の断面でも、同様の波状構造が形成される。すなわち、波型コレステリック液晶層の波状構造は、コレステリック液晶層の面方向において二次元的に形成されており、波型コレステリック液晶層は、あらゆる方向の断面で、波状構造が認められる。
 ただし、本発明は、これに限定はされず、波型コレステリック液晶層は、断面において、連続的な波が一方向にのみ進行するように形成される波状構造を有するものでもよい。しかしながら、拡散反射性の点では、波型コレステリック液晶層は、前述のように、あらゆる方向の断面で波状構造が認められるのが好ましい。
 また、波型コレステリック液晶層の断面の明部と暗部の波状構造のピッチ(波の頂部と頂部の間隔)には、特に制限はない。波型コレステリック液晶層の波状構造のピッチは、0.5~5μmが好ましく、1~4μmがより好ましい。
 波型コレステリック液晶層が好適な拡散反射性を発現するためには、波状構造のピッチ(周期)を小さくして、波の高さ(凹凸の高さすなわち振幅)を高くするのが好ましい。波状構造のピッチと凹凸の高さは、通常、ピッチが大きくなるほど凹凸の高さが高くなる傾向にある。しかしながら、凹凸構造を大きくしすぎた場合、スクリーンとしては不要な方向への光の拡散が増大してしまい、スクリーン前方からの視認性が悪くなってしまう。
 前述のとおり、コレステリック液晶層により特定の光を反射する透明スクリーンにおいて拡散性を高くする構成として、コレステリック液晶構造に欠陥を導入する構成、および、基材表面に複数の凸部を設けて、この凸部の上にコレステリック液晶層を形成する構成が提案されている。しかしながら、これらの構造によって拡散性を向上した場合には、ヘイズが高くなって透明性が低くなる。
 これに対して、本発明の透明スクリーンは、低ヘイズで透明性の高い平型コレステリック液晶層と、拡散反射性の高い波型コレステリック液晶層とを有するので、透明性と拡散性とを両立することができる。すなわち、例えば、投影用のスクリーンとして利用した場合に、高い透明性を持たせつつ、広い視野角での映像の表示を可能にすることができる。
 ここで、前述のとおり、図1に示す例では、平型コレステリック液晶層16Rrおよび波型コレステリック液晶層14Rrは、選択反射波長が同じ赤色光の領域である。
 選択反射波長が同じ平型コレステリック液晶層16と波型コレステリック液晶層14とを有する構成とすることで、この選択反射波長と略同じ波長域の光に対して、透明性と拡散性とを両立することができる。
 また、図1に示す例では、平型コレステリック液晶層16Rrおよび波型コレステリック液晶層14Rrは、反射する円偏光の旋回方向が同じ右円偏光である。
 反射する円偏光の旋回方向が同じ平型コレステリック液晶層16と波型コレステリック液晶層14とを有する構成とすることで、この旋回方向の円偏光の反射性を高めつつ、他方の旋回方向の円偏光は透過して透明性を高めることができる。
 また、本発明の透明スクリーンと、透明スクリーンに光を照射する(映像を投影する)プロジェクターとを組み合わせた本発明の映像投影システムにおいて、プロジェクターとしてレーザープロジェクターを用いることが好ましい。レーザー光は、スペクトル線幅が狭いため、レーザープロジェクターと、反射に波長選択性を有するコレステリック液晶層を有する透明スクリーンとを組み合わせることで、レーザープロジェクターが照射した光を好適に反射することができ、裏面側に抜ける光の量を低減することができる。これにより、透明スクリーンに投影される映像の輝度を高くでき、より鮮明な映像とすることができる。その際、レーザープロジェクターの光源の中心波長とコレステリック液晶層の選択反射波長との差を±20nm以下とするのが好ましい。
 また、レーザープロジェクターが照射する光を円偏光とし、その旋回方向をコレステリック液晶層が反射する円偏光の旋回方向と同じとすることで、レーザープロジェクターが照射した光をより好適に反射することができ、裏面側に抜ける光の量を低減することができる。
 例えば、図4に示す映像投影システム100のように、透明スクリーン10aと、この透明スクリーン10aに光を照射するレーザープロジェクター102とを有する映像投影システムにおいて、レーザープロジェクター102の光源の中心波長と透明スクリーン10aのコレステリック液晶層(平型コレステリック液晶層16Rrおよび波型コレステリック液晶層14Rr)の選択反射波長との差を±20nm以下とし、さらに、レーザープロジェクター102が照射する光を、コレステリック液晶層が反射する円偏光の旋回方向と同じ旋回方向の右円偏光とする。これにより、レーザープロジェクター102が照射した光のほぼ全てをコレステリック液晶層で反射することができ(図4中実線)、透明スクリーン10aの裏面側へ抜ける光の量を低減することができる(図4中破線)。一方で、透明スクリーン10aは高い透明性を有するので、観察者Aは、透明スクリーン10aの裏面側の光景を視認することができる(図4中一点鎖線)。
 ここで、図1に示す例では、透明スクリーン10aは、平型コレステリック液晶層および波型コレステリック液晶層をそれぞれ1層有する構成としたが、これに限定はされず、平型コレステリック液晶層および波型コレステリック液晶層をそれぞれ2層以上有する構成としてもよい。
 図5に本発明の透明スクリーンの他の一例の模式的断面図を示す。
 図5に示す透明スクリーン10bは、支持体12と、青色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Rrと、青色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Rrとを有する。
 すなわち、透明スクリーン10bは、3層の平型コレステリック液晶層16と、3層の波型コレステリック液晶層14を有する。また、3層の平型コレステリック液晶層16は、それぞれの選択反射波長が互いに異なる。同様に、3層の波型コレステリック液晶層14は、それぞれの選択反射波長が互いに異なり、3層の波型コレステリック液晶層14の選択反射波長はそれぞれ、3層の平型コレステリック液晶層16のいずれかの選択反射波長と同じである。
 このように、選択反射波長の異なる2以上の平型コレステリック液晶層16および波型をそれぞれ有する構成とすることで、複数の波長の光を反射可能となり、透明スクリーンに投影される映像をカラー表示することができる。
 また、選択反射波長ごとに平型コレステリック液晶層16と波型コレステリック液晶層14とを有する構成とすることで、各選択反射波長と略同じ波長域の光に対して、透明性と拡散性とを両立することができる。
 また、図5に示す透明スクリーン10bと組み合わせるレーザープロジェクターとしては、赤色光を中心波長とする赤色光源と、緑色光を中心波長とする緑色光源と、青色光を中心波長とする青色光源とを有することが好ましい。また、赤色光源の中心波長と、平型コレステリック液晶層16Rrおよび波型コレステリック液晶層14Rrの選択反射波長の差が±20nm以下であることが好ましい。同様に、緑色光源の中心波長と、平型コレステリック液晶層16Grおよび波型コレステリック液晶層14Grの選択反射波長の差が±20nm以下であることが好ましい。同様に、青色光源の中心波長と、平型コレステリック液晶層16Brおよび波型コレステリック液晶層14Brの選択反射波長の差が±20nm以下であることが好ましい。
 また、レーザープロジェクターの各光源が照射する光は円偏光であるのが好ましく、その旋回方向はコレステリック液晶層が反射する円偏光の旋回方向と同じ右円偏光であるのが好ましい。これにより、レーザープロジェクターが照射した光をより好適に反射することができ、裏面側に抜ける光の量を低減することができる。
 また、本発明の透明スクリーンは、選択反射波長が同じで反射する円偏光の旋回方向が互いに異なる2以上の平型コレステリック液晶層16、および、選択反射波長が同じで反射する円偏光の旋回方向が互いに異なる2以上の波型コレステリック液晶層14をそれぞれ有していてもよい。
 図6は、本発明の透明スクリーンの他の一例を模式的に示す断面図である。
 図6に示す透明スクリーン10cは、支持体12と、青色光の領域に選択反射波長を有し、左円偏光を反射する平型コレステリック液晶層16Blと、緑色光の領域に選択反射波長を有し、左円偏光を反射する平型コレステリック液晶層16Glと、赤色光の領域に選択反射波長を有し、左円偏光を反射する平型コレステリック液晶層16Rlと、青色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Rrと、青色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Rrとを有する。
 すなわち、透明スクリーン10cは、6層の平型コレステリック液晶層16と、3層の波型コレステリック液晶層14を有する。6層の平型コレステリック液晶層16のうち、3層は左円偏光を反射する平型コレステリック液晶層16で、他の3層は右円偏光を反射する平型コレステリック液晶層16である。また、3層の左円偏光を反射する平型コレステリック液晶層16の3つの選択反射波長と、3層の右円偏光を反射する平型コレステリック液晶層16の3つの選択反射波長とは同じである。
 このように、選択反射波長が同じで、反射する円偏光の旋回方向が異なる平型コレステリック液晶層16を有する構成とすることで、透明スクリーン10cと組み合わせるレーザープロジェクターが無偏光の光を照射するものであっても、レーザープロジェクターが照射した光のほぼ全てをコレステリック液晶層で反射することができ、透明スクリーン10cの裏面側へ抜ける光の量を低減することができる。
 なお、図6に示す例では、選択反射波長が同じで、反射する円偏光の旋回方向が異なる平型コレステリック液晶層16を有する構成としたが、これに限定はされず、選択反射波長が同じで、反射する円偏光の旋回方向が異なる波型コレステリック液晶層14を有する構成としてもよく、あるいは、図7に示す透明スクリーン10dのように、選択反射波長が同じで、反射する円偏光の旋回方向が異なる平型コレステリック液晶層16、および、選択反射波長が同じで、反射する円偏光の旋回方向が異なる波型コレステリック液晶層14をそれぞれ有する構成としてもよい。
 図7に示す透明スクリーン10dは、支持体12と、青色光の領域に選択反射波長を有し、左円偏光を反射する平型コレステリック液晶層16Blと、緑色光の領域に選択反射波長を有し、左円偏光を反射する平型コレステリック液晶層16Glと、赤色光の領域に選択反射波長を有し、左円偏光を反射する平型コレステリック液晶層16Rlと、青色光の領域に選択反射波長を有し、左円偏光を反射する波型コレステリック液晶層14Blと、緑色光の領域に選択反射波長を有し、左円偏光を反射する波型コレステリック液晶層14Glと、赤色光の領域に選択反射波長を有し、左円偏光を反射する波型コレステリック液晶層14Rlと、青色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Rrと、青色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Rrとを有する。
 また、本発明の透明スクリーンは、選択反射波長が同じで反射する円偏光の旋回方向が同じ平型コレステリック液晶層16を2層以上有し、この2層以上の平型コレステリック液晶層16の間に配置されるλ/2板を有する構成としてもよい。
 図8は、本発明の透明スクリーンの他の一例を模式的に示す断面図である。
 図8に示す透明スクリーン10eは、支持体12と、青色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Rrと、λ/2板18と、青色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する平型コレステリック液晶層16Rrと、青色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Brと、緑色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Grと、赤色光の領域に選択反射波長を有し、右円偏光を反射する波型コレステリック液晶層14Rrとを有する。
 すなわち、透明スクリーン10eは、6層の平型コレステリック液晶層16と、3層の波型コレステリック液晶層14を有する。6層の平型コレステリック液晶層16は、選択反射波長および反射する円偏光の旋回方向が同じである、同じ種類の平型コレステリック液晶層16を2層ずつ3組有している。また、同じ種類の平型コレステリック液晶層16の間にλ/2板18が配置されている。
 このように、選択反射波長、および、反射する円偏光の旋回方向が同じ平型コレステリック液晶層16を有し、その間にλ/2板18を有する構成とすることで、透明スクリーン10cと組み合わせるレーザープロジェクターから無偏光の光が照射された場合に、λ/2板18の前に配置された平型コレステリック液晶層16において右円偏光が反射され、左円偏光は透過される。透過した左円偏光はλ/2板18で右円偏光に変換されるため、λ/2板18の後に配置された平型コレステリック液晶層16において変換後の右円偏光が反射される。これにより、レーザープロジェクターが照射した光のほぼ全てをコレステリック液晶層で反射することができ、透明スクリーン10cの裏面側へ抜ける光の量を低減することができる。
 なお、図7に示す例では、選択反射波長、および、反射する円偏光の旋回方向が同じ平型コレステリック液晶層16を2層以上有し、その間にλ/2板18を有する構成としたが、これに限定はされず、選択反射波長、および、反射する円偏光の旋回方向が同じ波型コレステリック液晶層14を2層以上有し、その間にλ/2板18を有する構成としてもよい。あるいは、選択反射波長、および、反射する円偏光の旋回方向が同じ平型コレステリック液晶層16を2層以上有し、選択反射波長、および、反射する円偏光の旋回方向が同じ波型コレステリック液晶層14を2層以上有し、同じ種類のコレステリック液晶層の間にλ/2板18を有する構成としてもよい。
 λ/2板は、特定の波長λnmにおける面内レターデーションRe(λ)がRe(λ)=λ/2を満たす板のことをいう。この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよい。
 λ/2板18としては、限定はなく公知のλ/2板を適宜用いることができる。
 ここで、波型コレステリック液晶層14の厚みは、拡散性および透明性の観点から、0.1μm~30μmが好ましく、0.5μm~20μmがより好ましい。
 また、平型コレステリック液晶層16の厚みは、拡散性および透明性の観点から、0.5μm~50μmが好ましく、1μm~30μmがより好ましい。
 また、波型コレステリック液晶層14の厚みと、平型コレステリック液晶層16の厚みとの比率は、拡散性と透明性との両立の観点から適宜調整すればよい。波型コレステリック液晶層14の厚みと、平型コレステリック液晶層16の厚みとの比率は、波型コレステリック液晶層14:平型コレステリック液晶層16=1:10~2:1が好ましく、 1:5~1:1がより好ましい。
 また、透明性の観点から、コレステリック液晶層全体の厚みは、100μm以下が好ましく、50μm以下がより好ましい。
 また、透明スクリーンの全光線透過率は50%以上であることが好ましい。
 本発明において、全光線透過率は、日本電色工業社製のNDH4000またはSH-7000等の市販の測定装置を用いて、JIS K 7361に準拠して測定すればよい。
 また、図1等に示す透明スクリーンにおいては、1つの支持体の上に、複数のコレステリック液晶層を形成する構成としたが、これに限定はされず、異なる支持体の上に1以上のコレステリック液晶層を形成し、コレステリック液晶層が形成された支持体を粘着剤等で貼り合わせる構成としてもよい。すなわち、透明スクリーンは、2以上の支持体を有していてもよい。
 次に、各構成要素について詳細に説明する。
 透明スクリーン10において、支持体12は、コレステリック液晶層を支持するための板状物である。
 支持体12は、色味(色彩)を有さず(すなわち無彩色)、かつ、全光線透過率が80%以上であるのが好ましい。すなわち、支持体12は、無色透明であるのが好ましい。また、支持体12の全光線透過率は、85%以上がより好ましく、90%以上がさらに好ましい。
 本発明において、全光線透過率は、日本電色工業社製のNDH5000またはSH-7000等の市販の測定装置を用いて、JIS K 7361に準拠して測定すればよい。
 支持体12を構成する材料は特に制限されず、例えば、セルロース系ポリマー、ポリカーボネート系ポリマー、ポリエステル系ポリマー、(メタ)アクリル系ポリマー、スチレン系ポリマー、ポリオレフィン系ポリマー、塩化ビニル系ポリマー、アミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、および、ポリエーテルエーテルケトン系ポリマーなどの各種の樹脂材料が挙げられる。
 支持体12には、UV(紫外線)吸収剤、マット剤微粒子、可塑剤、劣化防止剤、および、剥離剤などの各種添加剤が含まれていてもよい。さらに、支持体12は、表面に配向層などの層を有してもよい。
 なお、支持体12は、可視光領域で低複屈折性であることが好ましい。例えば、支持体12の波長550nmにおける位相差は50nm以下が好ましく、20nm以下がより好ましい。
 支持体12の厚さは特に制限されないが、薄型化、および、取り扱い性の点から、10~200μmが好ましく、20~100μmがより好ましい。
 上記厚さは平均厚さを意図し、支持体12の任意の5点の厚さを測定し、それらを算術平均したものである。
 また、本発明の透明スクリーンにおいて、支持体12のコレステリック液晶層の形成面は、凹凸構造または波状構造を有するものではなく、平坦面であることが好ましい。これにより、より低ヘイズにすることができ透明性を高くすることができる。
 次に、コレステリック液晶層(波型コレステリック液晶層および平型コレステリック液晶層)について説明する。
 なお、波型コレステリック液晶層および平型コレステリック液晶層は、断面における明部と暗部の層状構造が異なる以外は、同様の構成であり、形成材料等は同じで、形成方法が一部異なるのみであるので、波型コレステリック液晶層および平型コレステリック液晶層を区別する必要が無い場合には、『コレステリック液晶層』として説明する。
 なお、1つの透明スクリーン中において、波型コレステリック液晶層を構成する液晶組成物と平型コレステリック液晶層を構成する液晶組成物は同一であっても異なっていてもよい。波型コレステリック液晶層の作製に用いることができる液晶組成物およびキラル剤の組み合わせは限定的であるのに対し、平型コレステリック液晶層では多くの種類の液晶材料から選択することが可能である。
 コレステリック液晶相を固定してなるコレステリック液晶層の選択反射中心波長(選択反射の中心波長λ)は、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶層(コレステリック液晶相)の平均屈折率nとλ=n×Pの関係に従う。
 ここで、コレステリック液晶層が有する選択反射の中心波長λは、コレステリック液晶層の法線方向から測定した円偏光反射スペクトルの反射ピークの重心位置にある波長を意味する。上記式から分かるように、螺旋構造のピッチを調節することによって、選択反射の中心波長を調節できる。すなわち、n値とP値を調節して、例えば、青色光に対して右円偏光および左円偏光のいずれか一方を選択的に反射させるために、中心波長λを調節し、見かけ上の選択反射の中心波長が420nm以上500nm未満の波長域となるようにすることができる。なお、見かけ上の選択反射の中心波長とは実用の際(投映像表示用部材としての使用時)の観察方向から測定したコレステリック液晶層の円偏光反射スペクトルの反射ピークの重心位置にある波長を意味する。コレステリック液晶相のピッチは液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。
 コレステリック液晶相を固定してなるコレステリック液晶層の反射光は、円偏光である。すなわち、本発明の透明スクリーンは、円偏光を反射する。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相の螺旋の捩れ方向による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 なお、コレステリック液晶相の旋回の方向は、コレステリック液晶層を形成する液晶化合物の種類または添加されるキラル剤の種類によって調節できる。
 螺旋の捩れ方向(センス)またはピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および、「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
 本発明の透明スクリーンにおいて、コレステリック液晶層が反射する円偏光には、特に制限はなく、右円偏光でも左円偏光でもよい。
 また、複数のコレステリック液晶層を有する場合には、支持体12から上(離間する方向)に向かって、漸次、選択反射波長が短波長になる、あるいは、漸次、選択反射波長が長波長になることが好ましい。
 このような構成を有することにより、すなわち隣接するコレステリック液晶層の選択反射波長の差を小さくすることにより、隣接するコレステリック液晶層における螺旋構造のピッチ等、隣接するコレステリック液晶層同士において構造および特性に大きな差が生じることを防止して、欠陥の少ないコレステリック液晶層を形成できる等の点で好ましい。
 コレステリック液晶層は、いずれも、コレステリック液晶相を固定してなる層である。このようなコレステリック液晶層は、一例として、液晶化合物およびキラル剤を含む組成物(非可視光コレステリック液晶層組成物および上層組成物)を調製して、この組成物を塗布および乾燥し、必要に応じて組成物を硬化して、コレステリック液晶相を固定することで、形成できる。
(液晶化合物)
 液晶化合物の種類は、特に制限されない。
 一般的に、液晶化合物は、その形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(ディスコティック液晶化合物、円盤状液晶化合物)とに分類できる。さらに、棒状タイプおよび円盤状タイプには、それぞれ低分子タイプと高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできる。また、2種以上の液晶化合物を併用してもよい。
 液晶化合物は、重合性基を有していてもよい。重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基がより好ましい。より具体的には、重合性基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基、エポキシ基、または、オキセタン基が好ましく、(メタ)アクリロイル基がより好ましい。
 液晶化合物としては、コレステリック液晶層の拡散反射性がより優れる点で、以下の式(I)で表される液晶化合物が好ましい。
 なかでも、コレステリック液晶層の拡散反射性がより優れる点で、Aで表される置換基を有していてもよいトランス-1,4-シクロヘキシレン基の数をmで割った数をmcとしたとき、mc>0.1を満たす液晶化合物が好ましく、0.4≦mc≦0.8を満たす液晶化合物であるのがより好ましい。
 なお、上記mcは、以下の計算式で表される数である。
  mc=(Aで表される置換基を有していてもよいトランス-1,4-シクロヘキシレン基の数)÷m
Figure JPOXMLDOC01-appb-C000001
 式中、
 Aは、置換基を有していてもよいフェニレン基または置換基を有していてもよいトランス-1,4-シクロヘキシレン基を示し、Aのうち少なくとも1つは置換基を有していてもよいトランス-1,4-シクロヘキシレン基を示し、
 Lは、単結合、または、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=N-N=CH-、-CH=CH-、-C≡C-、-NHC(=O)-、-C(=O)NH-、-CH=N-、-N=CH-、-CH=CH-C(=O)O-、および、-OC(=O)-CH=CH-からなる群から選択される連結基を示し、
 mは3~12の整数を示し、
 Sp1およびSp2は、それぞれ独立に、単結合、または、炭素数1から20の直鎖もしくは分岐のアルキレン基、および、炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示し、
 Q1およびQ2は、それぞれ独立に、水素原子、または、以下の式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基を示し、ただしQ1およびQ2のいずれか一方は重合性基を示す;
Figure JPOXMLDOC01-appb-C000002
 Aは、置換基を有していてもよいフェニレン基、または、置換基を有していてもよいトランス-1,4-シクロヘキシレン基である。本明細書において、フェニレン基というとき、1,4-フェニレン基であるのが好ましい。
 なお、Aのうち少なくとも1つは置換基を有していてもよいトランス-1,4-シクロヘキシレン基である。
 m個のAは、互いに同一でも異なっていてもよい。
 mは3~12の整数を示し、3~9の整数であるのが好ましく、3~7の整数であるのがより好ましく、3~5の整数であるのがさらに好ましい。
 式(I)中の、フェニレン基およびトランス-1,4-シクロヘキシレン基が有していてもよい置換基としては、特に制限されず、例えば、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アミド基、アミノ基、およびハロゲン原子、ならびに、上記の置換基を2つ以上組み合わせて構成される基からなる群から選択される置換基が挙げられる。また、置換基の例としては、後述の-C(=O)-X3-Sp3-Q3で表される置換基が挙げられる。フェニレン基およびトランス-1,4-シクロヘキシレン基は、置換基を1~4個有していてもよい。2個以上の置換基を有するとき、2個以上の置換基は互いに同一であっても異なっていてもよい。
 本明細書において、アルキル基は直鎖および分岐のいずれでもよい。アルキル基の炭素数は1~30が好ましく、1~10がより好ましく、1~6がさらに好ましい。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、および、ドデシル基などが挙げられる。アルコキシ基中のアルキル基の説明も、上記アルキル基に関する説明と同じである。また、本明細書において、アルキレン基というときのアルキレン基の具体例としては、上記のアルキル基の例それぞれにおいて、任意の水素原子を1つ除いて得られる2価の基が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子が挙げられる。
 本明細書において、シクロアルキル基の炭素数は、3以上が好ましく、5以上がより好ましく、また、20以下が好ましく、10以下がより好ましく、8以下がさらに好ましく、6以下が特に好ましい。シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、および、シクロオクチル基などが挙げられる。
 フェニレン基およびトランス-1,4-シクロヘキシレン基が有していてもよい置換基としては、アルキル基、アルコキシ基、および、-C(=O)-X3-Sp3-Q3からなる群から選択される置換基が好ましい。ここで、X3は単結合、-O-、-S-、もしくは-N(Sp4-Q4)-を示すか、または、Q3およびSp3と共に環構造を形成している窒素原子を示す。Sp3およびSp4は、それぞれ独立に、単結合、または、炭素数1から20の直鎖もしくは分岐のアルキレン基、および、炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示す。
 Q3およびQ4はそれぞれ独立に、水素原子、シクロアルキル基、シクロアルキル基において1つもしくは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示す。
 シクロアルキル基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基として、具体的には、テトラヒドロフラニル基、ピロリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピペリジル基、ピペラジニル基、および、モルホルニル基などが挙げられる。これらのうち、テトラヒドロフラニル基が好ましく、2-テトラヒドロフラニル基がより好ましい。
 式(I)において、Lは、単結合、または、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=CH-C(=O)O-、および、-OC(=O)-CH=CH-からなる群から選択される連結基を示す。Lは、-C(=O)O-または-OC(=O)-であるのが好ましい。m個のLは互いに同一でも異なっていてもよい。
 Sp1およびSp2は、それぞれ独立に、単結合、または、炭素数1から20の直鎖もしくは分岐のアルキレン基、および、炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または、-C(=O)O-で置換された基からなる群から選択される連結基を示す。Sp1およびSp2はそれぞれ独立に、両末端にそれぞれ-O-、-OC(=O)-、および、-C(=O)O-からなる群から選択される連結基が結合した炭素数1から10の直鎖のアルキレン基、-OC(=O)-、-C(=O)O-、-O-、および、炭素数1から10の直鎖のアルキレン基からなる群から選択される基を1または2以上組み合わせて構成される連結基であるのが好ましく、両末端に-O-がそれぞれ結合した炭素数1から10の直鎖のアルキレン基であるのがより好ましい。
 Q1およびQ2はそれぞれ独立に、水素原子、または、以下の式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基を示す。ただし、Q1およびQ2のいずれか一方は重合性基を示す。
Figure JPOXMLDOC01-appb-C000003
 重合性基としては、アクリロイル基(式(Q-1))またはメタクリロイル基(式(Q-2))が好ましい。
 上記液晶化合物の具体例としては、以下の式(I-11)で表される液晶化合物、式(I-21)で表される液晶化合物、式(I-31)で表される液晶化合物が挙げられる。上記以外にも、特開2013-112631号公報の式(I)で表される化合物、特開2010-70543号公報の式(I)で表される化合物、特開2008-291218号公報の式(I)で表される化合物、特許第4725516号の式(I)で表される化合物、特開2013-087109号公報の一般式(II)で表される化合物、特開2007-176927号公報の段落[0043]記載の化合物、特開2009-286885号公報の式(1-1)で表される化合物、WO2014/10325号の一般式(I)で表される化合物、特開2016-81035号公報の式(1)で表される化合物、および、特開2016-121339号公報の式(2-1)および式(2-2)で表される化合物、などに記載の公知の化合物が挙げられる。
式(I-11)で表される液晶化合物
Figure JPOXMLDOC01-appb-C000004
 式中、R11は水素原子、炭素数1から12の直鎖もしくは分岐のアルキル基、または、-Z12-Sp12-Q12を示し、
 L11は単結合、-C(=O)O-、または、-O(C=O)-を示し、
 L12は-C(=O)O-、-OC(=O)-、または、-CONR2-を示し、
 R2は、水素原子、または、炭素数1から3のアルキル基を示し、
 Z11およびZ12はそれぞれ独立に、単結合、-O-、-NH-、-N(CH3)-、-S-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、または、-C(=O)NR12-を示し、
 R12は水素原子または-Sp12-Q12を示し、
 Sp11およびSp12はそれぞれ独立に、単結合、Q11で置換されていてもよい炭素数1から12の直鎖もしくは分岐のアルキレン基、または、Q11で置換されていてもよい炭素数1から12の直鎖もしくは分岐のアルキレン基において、いずれか1つ以上の-CH2-を-O-、-S-、-NH-、-N(Q11)-、または、-C(=O)-に置き換えて得られる連結基を示し、
 Q11は水素原子、シクロアルキル基、シクロアルキル基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または、式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基を示し、
 Q12は水素原子または式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基を示し、
 l11は0~2の整数を示し、
 m11は1または2の整数を示し、
 n11は1~3の整数を示し、
 複数のR11、複数のL11、複数のL12、複数のl11、複数のZ11、複数のSp11、および、複数のQ11はそれぞれ互いに同じでも異なっていてもよい。
 また、式(I-11)で表される液晶化合物は、R11として、Q12が式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基である-Z12-Sp12-Q12を少なくとも1つ含む。
 また、式(I-11)で表される液晶化合物は、Z11が-C(=O)O-または-C(=O)NR12-、および、Q11が式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基である-Z11-Sp11-Q11であるのが好ましい。また、式(I-11)で表される液晶化合物は、R11として、Z12が-C(=O)O-または-C(=O)NR12-、および、Q12が式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基である-Z12-Sp12-Q12であるのが好ましい。
 式(I-11)で表される液晶化合物に含まれる1,4-シクロヘキシレン基はいずれもトランス-1,4-シクロヘキレン基である。
 式(I-11)で表される液晶化合物の好適態様としては、L11が単結合、l11が1(ジシクロヘキシル基)、かつ、Q11が式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基である化合物が挙げられる。
 式(I-11)で表される液晶化合物の他の好適態様としては、m11が2、l11が0、かつ、2つのR11がいずれも-Z12-Sp12-Q12を表し、Q12が式(Q-1)~式(Q-5)で表される基からなる群から選択される重合性基である化合物が挙げられる。
式(I-21)で表される液晶化合物
Figure JPOXMLDOC01-appb-C000005
 式中、Z21およびZ22は、それぞれ独立に、置換基を有していてもよいトランス-1,4-シクロヘキシレン基、または、置換基を有していてもよいフェニレン基を示し、
 上記置換基はいずれもそれぞれ独立に、-CO-X21-Sp23-Q23、アルキル基、およびアルコキシ基からなる群から選択される1から4個の置換基であり、
 m21は1または2の整数を示し、n21は0または1の整数を示し、
 m21が2を示すときn21は0を示し、
 m21が2を示すとき2つのZ21は同一であっても異なっていてもよく、
 Z21およびZ22の少なくともいずれか一つは置換基を有していてもよいフェニレン基であり、
 L21、L22、L23およびL24はそれぞれ独立に、単結合、または、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=CH-C(=O)O-、および-OC(=O)-CH=CH-からなる群から選択される連結基を示し、
 X21は-O-、-S-、もしくは-N(Sp25-Q25)-を示すか、または、Q23およびSp23と共に環構造を形成する窒素原子を示し、
 r21は1から4の整数を示し、
 Sp21、Sp22、Sp23、およびSp25はそれぞれ独立に、単結合、または、炭素数1から20の直鎖もしくは分岐のアルキレン基、および、炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示し、
 Q21およびQ22はそれぞれ独立に、式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示し、
 Q23は水素原子、シクロアルキル基、シクロアルキル基において1つもしくは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基、または、X21がQ23およびSp23と共に環構造を形成する窒素原子である場合において単結合を示し、
 Q25は、水素原子、シクロアルキル基、シクロアルキル基において1つもしくは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または、式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示し、Sp25が単結合のとき、Q25は水素原子ではない。
 式(I-21)で表される液晶化合物は、1,4-フェニレン基およびトランス-1,4-シクロヘキシレン基が交互に存在する構造であることも好ましく、例えば、m21が2であり、n21が0であり、かつ、Z21がQ21側からそれぞれ置換基を有していてもよいトランス-1,4-シクロヘキシレン基、置換基を有していてもよいアリーレン基であるか、または、m21が1であり、n21が1であり、Z21が置換基を有していてもよいアリーレン基であり、かつ、Z22が置換基を有していてもよいアリーレン基である構造が好ましい。
式(I-31)で表される液晶化合物;
Figure JPOXMLDOC01-appb-C000006
 式中、R31およびR32はそれぞれ独立に、アルキル基、アルコキシ基、および、-C(=O)-X31-Sp33-Q33からなる群から選択される基であり、
 n31およびn32はそれぞれ独立に、0~4の整数を示し、
 X31は単結合、-O-、-S-、もしくは-N(Sp34-Q34)-を示すか、または、Q33およびSp33と共に環構造を形成している窒素原子を示し、
 Z31は、置換基を有していてもよいフェニレン基を示し、
 Z32は、置換基を有していてもよいトランス-1,4-シクロヘキシレン基、または、置換基を有していてもよいフェニレン基を示し、
 上記置換基はいずれもそれぞれ独立に、アルキル基、アルコキシ基、および、-C(=O)-X31-Sp33-Q33からなる群から選択される1から4個の置換基であり、
 m31は1または2の整数を示し、m32は0~2の整数を示し、
 m31およびm32が2を示すとき2つのZ31、Z32は同一であっても異なっていてもよく、
 L31およびL32はそれぞれ独立に、単結合、または、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=CH-C(=O)O-、および-OC(=O)-CH=CH-からなる群から選択される連結基を示し、
 Sp31、Sp32、Sp33およびSp34はそれぞれ独立に、単結合、または、炭素数1から20の直鎖もしくは分岐のアルキレン基、および、炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示し、
 Q31およびQ32はそれぞれ独立に、式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示し、
 Q33およびQ34はそれぞれ独立に、水素原子、シクロアルキル基、シクロアルキル基において1つもしくは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、もしくは-C(=O)O-で置換された基、または、式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示し、Q33はX31およびSp33と共に環構造を形成している場合において、単結合を示してもよく、Sp34が単結合のとき、Q34は水素原子ではない。
 式(I-31)で表される液晶化合物として、特に好ましい化合物としては、Z32がフェニレン基である化合物およびm32が0である化合物が挙げられる。
 式(I)で表される化合物は、以下の式(II)で表される部分構造を有することも好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(II)において、黒丸は、式(I)の他の部分との結合位置を示す。式(II)で表される部分構造は式(I)中の下記式(III)で表される部分構造の一部として含まれていればよい。
Figure JPOXMLDOC01-appb-C000008
 式中、R1およびR2はそれぞれ独立に、水素原子、アルキル基、アルコキシ基、および、-C(=O)-X3-Sp3-Q3で表される基からなる群から選択される基である。ここで、X3は単結合、-O-、-S-、もしくは-N(Sp4-Q4)-を示すか、または、Q3およびSp3と共に環構造を形成している窒素原子を示す。X3は単結合または-O-であることが好ましい。R1およびR2は、-C(=O)-X3-Sp3-Q3であることが好ましい。また、R1およびR2は、互いに同一であることが好ましい。R1およびR2のそれぞれのフェニレン基への結合位置は特に制限されない。
 Sp3およびSp4はそれぞれ独立に、単結合、または、炭素数1から20の直鎖もしくは分岐のアルキレン基、および、炭素数1から20の直鎖もしくは分岐のアルキレン基において1つまたは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基からなる群から選択される連結基を示す。Sp3およびSp4としては、それぞれ独立に、炭素数1から10の直鎖または分岐のアルキレン基が好ましく、炭素数1から5の直鎖のアルキレン基がより好ましく、炭素数1から3の直鎖のアルキレン基がさらに好ましい。
 Q3およびQ4はそれぞれ独立に、水素原子、シクロアルキル基、シクロアルキル基において1つもしくは2つ以上の-CH2-が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-もしくは-C(=O)O-で置換された基、または、式(Q-1)~式(Q-5)で表される基からなる群から選択されるいずれかの重合性基を示す。
 式(I)で表される化合物は、例えば、以下の式(II-2)で表される構造を有することも好ましい。
Figure JPOXMLDOC01-appb-C000009
 式中、A1およびA2はそれぞれ独立に、置換基を有していてもよいフェニレン基または置換基を有していてもよいトランス-1,4-シクロヘキレン基を示し、上記置換基はいずれもそれぞれ独立に、アルキル基、アルコキシ基、および、-C(=O)-X3-Sp3-Q3からなる群から選択される1から4個の置換基であり、
 L1、L2およびL3は単結合、または、-CH2O-、-OCH2-、-(CH22OC(=O)-、-C(=O)O(CH22-、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-CH=CH-C(=O)O-、および、-OC(=O)-CH=CH-からなる群から選択される連結基を示し、
 n1およびn2はそれぞれ独立に、0から9の整数を示し、かつn1+n2は9以下である。
 Q1、Q2、Sp1、および、Sp2の定義は、上記式(I)中の各基の定義と同義である。X3、Sp3、Q3、R1、および、R2の定義は、上記式(II)中の各基の定義と同義である。
 式(I)で表される液晶化合物であって、0.4≦mc≦0.8を満たす液晶化合物としては、例えば、国際公開第2016/047648号の段落[0051]~[0054]に記載されている化合物が例示される。
 なお、液晶化合物は2種以上併用して用いてもよい。例えば、式(I)で表される液晶化合物を2種以上併用してもよい。
 なかでも、上記式(I)で表される液晶化合物であって、0.4≦mc≦0.8を満たす液晶化合物と共に、式(I)で表される液晶化合物であって、0.1<mc<0.3を満たす液晶化合物を用いるのが好ましい。
 式(I)で表される液晶化合物であって、0.1<mc<0.3を満たす液晶化合物としては、例えば、国際公開第2016/047648号の段落[0055]~[0058]に記載されている化合物が例示される。
 本発明に用いる液晶化合物としては、特開2014-198814号公報に記載される、以下の式(IV)で表される化合物、特に、式(IV)で表される1つの(メタ)アクリレート基を有する重合性液晶化合物も、好適に利用される。
  式(IV)
Figure JPOXMLDOC01-appb-C000010
 式(IV)中、A1は、炭素数2~18のアルキレン基を表し、アルキレン基中の1つのCH2または隣接していない2つ以上のCH2は、-O-で置換されていてもよい;
 Z1は、-C(=O)-、-O-C(=O)-または単結合を表し;
 Z2は、-C(=O)-または-C(=O)-CH=CH-を表し;
 R1は、水素原子またはメチル基を表し;
 R2は、水素原子、ハロゲン原子、炭素数1~4の直鎖アルキル基、メトキシ基、エトキシ基、置換基を有していても良いフェニル基、ビニル基、ホルミル基、ニトロ基、シアノ基、アセチル基、アセトキシ基、N-アセチルアミド基、アクリロイルアミノ基、N,N-ジメチルアミノ基またはマレイミド基、メタクリロイルアミノ基、アリルオキシ基、アリルオキシカルバモイル基、アルキル基の炭素数が1~4であるN-アルキルオキシカルバモイル基、N-(2-メタクリロイルオキシエチル)カルバモイルオキシ基、N-(2-アクリロイルオキシエチル)カルバモイルオキシ基または以下の式(IV-2)で表される構造を表し;
 L1、L2、L3およびL4は各々独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数2~5のアルコキシカルボニル基、炭素数2~4のアシル基、ハロゲン原子または水素原子を表し、L1、L2、L3およびL4のうち少なくとも1つは水素原子以外の基を表す。
   -Z5-T-Sp-P    式(IV-2)
 式(IV-2)中、Pはアクリル基、メタクリル基または水素原子を表し、Z5は単結合、-C(=O)O-、-OC(=O)-、-C(=O)NR1-(R1は水素原子またはメチル基を表す)、-NR1C(=O)-、-C(=O)S-、または、-SC(=O)-を表し、Tは1,4-フェニレンを表し、Spは置換基を有していてもよい炭素数1~12の2価の脂肪族基を表し、脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-S-、-OC(=O)-、-C(=O)O-または-OCOO-で置換されていてもよい。)を表す。
 上記式(IV)で表される化合物は、以下の式(V)で表される化合物であることが好ましい。
  式(V)
Figure JPOXMLDOC01-appb-C000011
 式(V)中、n1は3~6の整数を表し;
 R11は水素原子またはメチル基を表し;
 Z12は、-C(=O)-または-C(=O)-CH=CH-を表し;
 R12は、水素原子、炭素数1~4の直鎖アルキル基、メトキシ基、エトキシ基、フェニル基、アクリロイルアミノ基、メタクリロイルアミノ基、アリルオキシ基、または以下の式(IV-3)で表される構造を表す。
   -Z51-T-Sp-P    式(IV-3)
 式(IV-3)中、Pはアクリル基またはメタクリル基を表し;
 Z51は、-C(=O)O-、または、-OC(=O)-を表し;Tは1,4-フェニレンを表し;
 Spは置換基を有していてもよい炭素数2~6の2価の脂肪族基を表す。この脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-OC(=O)-、-C(=O)O-または-OC(=O)O-で置換されていてもよい。
 上記n1は3~6の整数を表し、3または4であることが好ましい。
 上記Z12は、-C(=O)-または-C(=O)-CH=CH-を表し、-C(=O)-を表すことが好ましい。
 上記R12は、水素原子、炭素数1~4の直鎖アルキル基、メトキシ基、エトキシ基、フェニル基、アクリロイルアミノ基、メタクリロイルアミノ基、アリルオキシ基、または上記式(IV-3)で表される基を表し、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基、フェニル基、アクリロイルアミノ基、メタクリロイルアミノ基、または上記式(IV-3)で表される基を表すことがより好ましく、メチル基、エチル基、メトキシ基、エトキシ基、フェニル基、アクリロイルアミノ基、メタクリロイルアミノ基、または上記式(IV-3)で表される構造を表すことがさらに好ましい。
 式(IV)で表される化合物は、例えば、特開2014-198814号公報の段落[0020]~[0036]に記載されている化合物が例示される。
 本発明に用いる液晶化合物としては、同じく特開2014-198814号公報に記載される、以下の式(VI)で表される化合物、特に、以下の式(VI)で表される(メタ)アクリレート基を有さない液晶化合物も好適に利用される。
  式(VI)
Figure JPOXMLDOC01-appb-C000012
 式(VI)中、Z3は、-C(=O)-または-CH=CH-C(=O)-を表し;
 Z4は、-C(=O)-または-C(=O)-CH=CH-を表し;
 R3およびR4は、各々独立して、水素原子、ハロゲン原子、炭素数1~4の直鎖アルキル基、メトキシ基、エトキシ基、置換基を有していても良い芳香環、シクロヘキシル基、ビニル基、ホルミル基、ニトロ基、シアノ基、アセチル基、アセトキシ基、アクリロイルアミノ基、N,N-ジメチルアミノ基、マレイミド基、メタクリロイルアミノ基、アリルオキシ基、アリルオキシカルバモイル基、アルキル基の炭素数が1~4であるN-アルキルオキシカルバモイル基、N-(2-メタクリロイルオキシエチル)カルバモイルオキシ基、N-(2-アクリロイルオキシエチル)カルバモイルオキシ基または以下の式(VI-2)で表される構造を表し;
 L5、L6、L7およびL8は各々独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数2~5のアルコキシカルボニル基、炭素数2~4のアシル基、ハロゲン原子または水素原子を表し、L5、L6、L7およびL8のうち少なくとも1つは水素原子以外の基を表す。
   -Z5-T-Sp-P    式(VI-2)
 式(VI-2)中、Pはアクリル基、メタクリル基または水素原子を表し、Z5は-C(=O)O-、-OC(=O)-、-C(=O)NR1-(R1は水素原子またはメチル基を表す)、-NR1C(=O)-、-C(=O)S-、または-SC(=O)-を表し、Tは1,4-フェニレンを表し、Spは置換基を有していてもよい炭素数1~12の2価の脂肪族基を表す。ただし、この脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-S-、-OC(=O)-、-C(=O)O-または-OC(=O)O-で置換されていてもよい。
 上記式(VI)で表される化合物は、以下の式(VII)で表される化合物であることが好ましい。
  式(VII)
Figure JPOXMLDOC01-appb-C000013
 式(VII)中、Z13は、-C(=O)-または-C(=O)-CH=CH-を表し;
 Z14は、-C(=O)-または-CH=CH-C(=O)-を表し;
 R13およびR14は各々独立して、水素原子、炭素数1~4の直鎖アルキル基、メトキシ基、エトキシ基、フェニル基、アクリロイルアミノ基、メタクリロイルアミノ基、アリルオキシ基、または上記式(IV-3)で表される構造を表す。
 上記Z13は、-C(=O)-または-C(=O)-CH=CH-を表し、-C(=O)-を表すことが好ましい。
 R13およびR14は各々独立して、水素原子、炭素数1~4の直鎖アルキル基、メトキシ基、エトキシ基、フェニル基、アクリロイルアミノ基、メタクリロイルアミノ基、アリルオキシ基または上記式(IV-3)で表される構造を表し、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基、フェニル基、アクリロイルアミノ基、メタクリロイルアミノ基、もしくは上記式(IV-3)で表される構造を表すことが好ましく、メチル基、エチル基、メトキシ基、エトキシ基、フェニル基、アクリロイルアミノ基、メタクリロイルアミノ基または上記式(IV-3)で表される構造を表すことがさらに好ましい。
 式(VI)で表される化合物は、例えば、特開2014-198814号公報の段落[0042]~[0049]に記載されている化合物が例示される。
 本発明に用いる液晶化合物としては、同じく、特開2014-198814号公報に記載される、以下の式(VIII)で表される化合物、特に、以下の式(VIII)で表される2つの(メタ)アクリレート基を有する重合性液晶化合物も好適に利用される。
  式(VIII)
Figure JPOXMLDOC01-appb-C000014
 式(VIII)中、A2およびA3は各々独立して、炭素数2~18のアルキレン基を表し、アルキレン基中の1つのCH2または隣接していない2つ以上のCH2は、-O-で置換されていてもよい;
 Z5は、-C(=O)-、-OC(=O)-または単結合を表し;
 Z6は、-C(=O)-、-C(=O)O-または単結合を表し;
 R5およびR6は各々独立して、水素原子またはメチル基を表し;
 L9、L10、L11およびL12は各々独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数2~5のアルコキシカルボニル基、炭素数2~4のアシル基、ハロゲン原子または水素原子を表し、L9、L10、L11およびL12のうち少なくとも1つは水素原子以外の基を表す。
 上記式(VIII)で表される化合物は、下記式(IX)で表される化合物であることが好ましい。
  式(IX)
Figure JPOXMLDOC01-appb-C000015
 式(IX)中、n2およびn3は各々独立して、3~6の整数を表し;
 R15およびR16は各々独立して、水素原子またはメチル基を表す。
 式(IX)中、n2およびn3は各々独立して、3~6の整数を表し、上記n2およびn3が4であることが好ましい。
 式(IX)中、R15およびR16は各々独立して、水素原子またはメチル基を表し、上記R15およびR16が水素原子を表すことが好ましい。
 式(VIII)で表される化合物は、例えば、特開2014-198814号公報の段落[0056]および[0057]に記載されている化合物が例示される。
 これらの液晶化合物は、公知の方法により製造することが可能である。
(キラル剤(キラル化合物))
 組成物は、キラル剤を含む。
 キラル剤の種類は、特に制限されない。キラル剤は液晶性であっても、非液晶性であってもよい。キラル剤は、公知の種々のキラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN(Twisted Nematic)、STN(Super Twisted Nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)から選択することができる。キラル剤は、一般に不斉炭素原子を含む。ただし、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物を、キラル剤として用いることもできる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。
 組成物中、キラル剤の含有量は、液晶化合物全質量に対して、0.5~30質量%が好ましい。キラル剤の使用量は、より少ないことが液晶性に影響を及ぼさない傾向があるため好まれる。従って、キラル剤としては、少量でも所望の螺旋ピッチの捩れ配向を達成可能なように、強い捩り力のある化合物が好ましい。
 このような強い捩れ力を示すキラル剤としては、例えば、特開2002-302487号公報、特開2002-80478号公報、特開2002-80851号公報、特開2002―179668号公報、特開2002―179670号公報、特開2002-338575号公報、特開2002-180051号公報、特開昭62―81354号公報、WO2002/006195号、特開2011-241215号公報、特開2003-287623号公報、特開2002-302487号公報、特開2002-80478号公報、特開2002-80851号公報、および、特開2014-034581号公報に記載のキラル剤、ならびに、BASF社製のLC-756などが挙げられる。
(任意の成分)
 組成物には、液晶化合物およびキラル剤以外の他の成分が含まれていてもよい。
(重合開始剤)
 組成物は、重合開始剤を含んでいてもよい。特に、液晶化合物が重合性基を有する場合、組成物が重合開始剤を含むことが好ましい。
 重合開始剤としては、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤としては、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)などが挙げられる。
 組成物中での重合開始剤の含有量は特に制限されないが、液晶化合物全質量に対して、0.1~20質量%が好ましく、1~8質量%がより好ましい。
(配向制御剤(配向剤))
 組成物は、配向制御剤を含んでいてもよい。組成物に配向制御剤が含まれることにより、安定的または迅速なコレステリック液晶相の形成が可能となる。
 配向制御剤としては、例えば、含フッ素(メタ)アクリレート系ポリマー、WO2011/162291号に記載の一般式(X1)~(X3)で表される化合物、特開2012-211306号公報の段落[0007]~[0029]に記載の化合物、特開2013-47204号公報の段落[0020]~[0031]に記載の化合物、WO2016/009648号の段落[0165]~[0170]に記載の化合物、WO2016/092844号の段落[0077]~[0081]、および、特許第4592225号公報に記載の一般式(Cy201)~(Cy211)等が挙げられる。これらから選択される2種以上を含有していてもよい。これらの化合物は、層の空気界面において、液晶化合物の分子のチルト角を低減または実質的に水平配向させることができる。なお、本明細書で「水平配向」とは、液晶分子長軸と膜面が平行であることをいうが、厳密に平行であることを要求するものではなく、本明細書では、水平面とのなす傾斜角が20°未満の配向を意味するものとする。
 配向制御剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 組成物中での配向制御剤の含有量は特に制限されないが、液晶化合物全質量に対して、0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.01~1質量%がさらに好ましい。
(溶媒)
 組成物は、溶媒を含んでいてもよい。
 溶媒としては、水または有機溶媒が挙げられる。有機溶媒としては、例えば、N,N-ジメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類;ピリジンなどのヘテロ環化合物;ベンゼン、ヘキサンなどの炭化水素;クロロホルム、ジクロロメタンなどのアルキルハライド類;酢酸メチル、酢酸ブチル、プロピレングリコールモノエチルエーテルアセテートなどのエステル類;アセトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンなどのケトン類;テトラヒドロフラン、1,2-ジメトキシエタンなどのエーテル類;1,4-ブタンジオールジアセテート;などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
(その他の添加剤)
 組成物は、1種または2種以上の、酸化防止剤、紫外線吸収剤、増感剤、安定剤、可塑剤、連鎖移動剤、重合禁止剤、消泡剤、レべリング剤、増粘剤、難燃剤、界面活性物質、分散剤、ならびに、染料および顔料などの色材、などの他の添加剤を含んでいてもよい。
 次に本発明の透明スクリーンの作製方法について説明する。
 本発明の透明スクリーンは、支持体12の上に、前述のような液晶化合物およびキラル剤を含む組成物(上層組成物)を用いて、塗布法によって、コレステリック液晶層を形成し、さらに、形成したコレステリック液晶層の上に、前述のような液晶化合物およびキラル剤を含む組成物(上層組成物)を用いて、塗布法によって、コレステリック液晶層を、順次、形成することにより、製造できる。
 一例として、図1に示すような、支持体12の上に平型コレステリック液晶層16Rrを有し、平型コレステリック液晶層16Rrの上に波型コレステリック液晶層14Rrを有する透明スクリーンの製造方法について説明する。
 まず、前述のような液晶化合物およびキラル剤を含む組成物(非可視光コレステリック液晶層組成物)を調製し、調製した組成物を支持体12に塗布する。
 塗布方法は特に制限されず、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法などが挙げられる。
 なお、必要に応じて、塗布後に、支持体12に塗布したコレステリック液晶層組成物を乾燥する処理を実施してもよい。乾燥処理を実施することにより、塗布した組成物から溶媒を除去できる。
 次に、支持体12上に塗布したコレステリック液晶層組成物(組成物層(塗膜))を加熱して、組成物中の液晶化合物を配向させてコレステリック液晶相の状態とする。この際、コレステリック液晶相は、支持体12に平行な明部と暗部とが積層した状態となる。
 コレステリック液晶層組成物の液晶相転移温度は、製造適性の面から10~250℃の範囲内が好ましく、10~150℃の範囲内がより好ましい。
 好ましい加熱条件としては、40~100℃(好ましくは、60~100℃)で0.5~5分間(好ましくは、0.5~2分間)にわたって組成物を加熱することが好ましい。
 液晶化合物が重合性基を有する場合には、液晶化合物を配向させてコレステリック液晶相の状態とした後、支持体12上のコレステリック液晶層組成物に硬化処理を施し、コレステリック液晶相を固定してもよい。
 なお、コレステリック液晶相を「固定化した」状態は、コレステリック液晶相となっている液晶化合物の配向が保持された状態が最も典型的、且つ、好ましい態様である。それだけには制限されず、具体的には、通常0~50℃、より過酷な条件下では-30~70℃の温度範囲において、層に流動性が無く、また、外場もしくは外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を意味するものとする。本発明では、後述するように、紫外線照射によって進行する硬化反応により、コレステリック液晶相の配向状態を固定することが好ましい。
 なお、コレステリック液晶相を固定してなる層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、最終的に層中の組成物がもはや液晶性を示す必要はない。
 硬化処理の方法は特に制限されず、光硬化処理および熱硬化処理が挙げられる。なかでも、光照射処理が好ましく、紫外線照射処理がより好ましい。
 紫外線照射には、紫外線ランプなどの光源が利用される。
 紫外線の照射エネルギー量は特に制限されないが、一般的には、0.1~0.8J/cm2程度が好ましい。また、紫外線を照射する時間は特に制限されないが、得られる層の充分な強度および生産性の双方の観点から適宜決定すればよい。
 このようにして、平坦構造を有する平型コレステリック液晶層16を形成したら、平型コレステリック液晶層16の上に、波型コレステリック液晶層14を形成する。
 波型コレステリック液晶層14の形成においては、まず、前述のような液晶化合物およびキラル剤を含む、波型コレステリック液晶層14を形成するための上層組成物を調製する。
 次いで、上層組成物を平型コレステリック液晶層16の上(表面)に塗布する。塗布方法は、平型コレステリック液晶層16の場合と同様の方法が利用される。
 次いで、必要に応じて上層組成物を乾燥した後、加熱して、平型コレステリック液晶層16上に形成された組成物層中の液晶化合物を配向させて、コレステリック液晶相の状態とする。加熱条件は、先と同様である。
 ここで、波型コレステリック液晶層14を形成する場合には、コレステリック液晶層組成物を加熱して、液晶化合物をコレステリック液晶相の状態にしたら、コレステリック液晶層組成物に含まれるキラル剤の螺旋誘起力を向上するように、組成物を冷却または加熱して、コレステリック液晶層を形成する。つまり、平型コレステリック液晶層16に形成された塗布層(組成物層)を構成するコレステリック液晶層組成物に含まれるキラル剤の螺旋誘起力(HTP:Helical Twisting Power)が上昇するように、塗布層に冷却処理または加熱処理を施す。
 塗布層の冷却処理および加熱処理を施すことにより、キラル剤の螺旋誘起力が上昇して、液晶化合物の捩れが増して、結果として、コレステリック液晶相の配向(螺旋軸の傾き)が変化して、これにより、支持体12に平行な明部および暗部が変化して、図3に示すような波状構造(凹凸構造)の明部および暗部を有する波型コレステリック液晶層14(コレステリック液晶相状態の組成物の層)が形成される。
 コレステリック液晶層組成物を冷却する際には、波型コレステリック液晶層14の拡散反射性がより優れる点で、組成物の温度が30℃以上下がるように、組成物を冷却することが好ましい。なかでも、上記効果がより優れる点で、40℃以上下がるように組成物を冷却することが好ましく、50℃以上下がるように組成物を冷却することがより好ましい。上記冷却処理の低減温度幅の上限値は特に制限されないが、通常、70℃程度である。
 なお、上記冷却処理は、言い換えると、冷却前のコレステリック液晶相の状態の組成物の温度をT℃とする場合、T-30℃以下となるように、組成物を冷却することを意図する。
 上記冷却の方法は特に制限されず、組成物が配置された支持体12を所定の温度の雰囲気中に静置する方法が挙げられる。
 冷却処理における冷却速度には制限は無いが、コレステリック液晶相の明部および暗部の波状構造、あるいはさらに、コレステリック液晶層の表面の凹凸を、好適に形成するためには、冷却速度を、ある程度の速さにするのが好ましい。
 具体的には、冷却処理における冷却速度は、その最大値が毎秒1℃以上であるのが好ましく、毎秒2℃以上であるのがより好ましい。
 液晶化合物が重合性基を有する場合、冷却処理または加熱処理を施した後、コレステリック液晶層組成物に硬化処理を施し、コレステリック液晶相を固定してもよい。この硬化処理は、冷却処理または加熱処理と同時に行ってもよく、あるいは、冷却処理または加熱処理を施した後に行ってもよい。
 硬化処理の方法は平型コレステリック液晶層の場合と同様である。
 このようにして、波状構造を有する波型コレステリック液晶層14を形成することができ、支持体12の上に、平型コレステリック液晶層16Rrおよび波型コレステリック液晶層14Rrを有する透明スクリーン10aを作製することができる。
 なお、平型コレステリック液晶層16および波型コレステリック液晶層14を2層以上有する場合には、形成するコレステリック液晶層の数に応じて、それぞれ同様の成膜を繰り返し行えばよい。
 なお、前述のように、下層のコレステリック液晶層が断面において波状構造を有する場合には、上層のコレステリック液晶層も下層のコレステリック液晶層の波状構造に追従して、断面における明部および暗部が波状構造となる場合がある。従って、複数の波型コレステリック液晶層14を形成する場合には、下層の波型コレステリック液晶層14を上記の方法で形成した後に、下層の波型コレステリック液晶層14の上に上層のコレステリック液晶層を形成すれば、上層のコレステリック液晶層も、断面における明部および暗部は波状構造を有する波型コレステリック液晶層となる。
 このような本発明の透明スクリーンは、投映像表示用のスクリーンおよびハーフミラーとして利用することができる。また、反射帯域を制御することで、カラーフィルターまたはディスプレイの表示光の色純度を向上させるフィルタ(例えば特開2003-294948号公報参照)として利用することもできる。
 また、透明スクリーンは、光学素子の構成要素である、偏光素子、反射膜、反射防止膜、視野角補償膜、ホログラフィー、および、配向膜など、種々の用途に利用できる。
 本発明の透明スクリーンは、特に、投映像表示用のスクリーンなどの投影像表示用部材として好適に利用される。具体的には、映像投影システムの透明スクリーンとして好適に利用される。
 すなわち、前述のようなコレステリック液晶層の機能により、投射光のうち選択反射を示す波長において、いずれか一方のセンスの円偏光を反射させて、投映像を形成することができる。投映像は透明スクリーン表面で表示され、そのように視認されるものであってもよく、観察者から見て透明スクリーンの先に浮かび上がって見える虚像であってもよい。
 また、例えば、本発明の透明スクリーンを可視光領域の光に対して透過性を有する構成とすることによりヘッドアップディスプレイのコンバイナとして使用可能な投映表示用ハーフミラーとすることができる。投映像表示用ハーフミラーは、プロジェクターから投映された画像を視認可能に表示することができるとともに、画像が表示されている同じ面側から投映像表示用ハーフミラーを観察したときに、反対の面側にある情報または風景を同時に観察することができる。
 以下に、実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順などは、本発明の主旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 [液晶組成物1~3の調製]
 下記の表1に示す成分を混合して、液晶組成物1~3を調製した。なお、各成分の量は、全て、質量部である。
Figure JPOXMLDOC01-appb-T000016
 棒状液晶化合物101
Figure JPOXMLDOC01-appb-C000017
 棒状液晶化合物102
Figure JPOXMLDOC01-appb-C000018
 棒状液晶化合物201
Figure JPOXMLDOC01-appb-C000019
 棒状液晶化合物202
Figure JPOXMLDOC01-appb-C000020
 配向剤(1)
Figure JPOXMLDOC01-appb-C000021
 配向剤(2)
Figure JPOXMLDOC01-appb-C000022
 [実施例1]
 支持体12として、ラビング処理を施したPETフィルム(富士フイルム社製)を用意した。
 支持体12のラビング処理面に、液晶組成物1を#8のワイヤーバーを用いて塗布した。液晶組成物1の塗布層を室温にて10秒間乾燥させた後、95℃の雰囲気で1分間加熱して液晶化合物を配向させた。その後、1分以内に30℃まで液晶組成物を冷却した。
 その後、塗布層に対して30℃でフュージョン製Dバルブ(ランプ90mW/cm2)を用いて、出力80%で8秒間UV光(紫外光)を照射し、支持体12上に波型コレステリック液晶層14Rrを形成した。
 分光光度計UV-3100PC(島津社製)を用いて波型コレステリック液晶層14Rrの透過スペクトルを測定したところ、波長640nmに中心を持つ選択反射ピークを有していた。
 形成した波型コレステリック液晶層14Rrの一部を剥離し、形状測定レーザマイクロスコープVK-X200(キーエンス社製)にて10倍の対物レンズを用いて、波型コレステリック液晶層14Rrの膜厚は4μmであった。
 さらに、PET基板の遅相軸が偏光顕微鏡の偏光子の方向と一致するように、コレステリック液晶層を有するPET基板を偏光顕微鏡にセットして、コレステリック液晶層を観察したところ、波状構造の形成をはっきりと確認した。
 また、波型コレステリック液晶層の断面SEM観察によって、コレステリック液晶相の層状構造が波型(アンジュレーション構造)であることを確認した。
 次に、波型コレステリック液晶層14Rrの上に、液晶組成物1を#6のワイヤーバーを用いて塗布し、上記と同様にして乾燥、加熱、冷却および硬化を行なって波型コレステリック液晶層14Grを形成した。
 波型コレステリック液晶層14Grは、波長530nmに中心を持つ選択反射ピークを有していた。
 また、波型コレステリック液晶層14Grの膜厚は3μmであった。
 また、先と同様にしてコレステリック液晶相の層状構造を確認したところ波状構造が確認できた。
 さらに、波型コレステリック液晶層14Grの上に、液晶組成物1を#4のワイヤーバーを用いて塗布し、上記と同様にして乾燥、加熱、冷却および硬化を行なって波型コレステリック液晶層14Brを形成した。
 波型コレステリック液晶層14Brは、波長445nmに中心を持つ選択反射ピークを有していた。
 また、波型コレステリック液晶層14Brの膜厚は2μmであった。
 また、先と同様にしてコレステリック液晶相の層状構造を確認したところ波状構造が確認できた。
 このようにして得られた、3層の波型コレステリック液晶層を有する積層体を「波型積層体A」とする。
 95℃で液晶化合物を配向させた後、ホットプレート上で5分かけて95℃から30℃まで液晶組成物を冷却する以外は波型コレステリック液晶層14Rrと同様にして平型コレステリック液晶層16Rrを作製した。
 同サンプルのPET基板の遅相軸が偏光顕微鏡の偏光子の方向と一致するように、コレステリック液晶層を有するPET基板を偏光顕微鏡にセットして、コレステリック液晶層を観察したところ、回折格子状の構造(=アンジュレーション構造)は確認できなかった。
 また、同積層体の断面SEM観察によって、コレステリック液晶層の層状構造は支持体と水平である様子を観察した。
 次に、平型コレステリック液晶層16Rrの上に、95℃で液晶化合物を配向させた後、ホットプレート上で5分かけて95℃から30℃まで液晶組成物を冷却する以外は波型コレステリック液晶層14Grと同様にして平型コレステリック液晶層16Grを作製した。
 さらに、平型コレステリック液晶層16Grの上に、95℃で液晶化合物を配向させた後、ホットプレート上で5分かけて95℃から30℃まで液晶組成物を冷却する以外は波型コレステリック液晶層14Brと同様にして平型コレステリック液晶層16Brを作製した。
 このようにして得られた、3層の平型コレステリック液晶層を有する積層体を「平型積層体A」とする。
 なお、平型コレステリック液晶層16Rrの膜厚は5μm、平型コレステリック液晶層16Grの膜厚は4μm、平型コレステリック液晶層16Brの膜厚は3μm、であった。
 また、先と同様にしてコレステリック液晶相の層状構造を確認したところ、いずれの層も波状構造が確認できなかった。
 PETシート上に光学粘着剤(綜研化学株式会社製 光学粘着剤SKダイン)を貼り、この上に「平型積層体A」を転写して、平型積層体A側のPET基板を剥離した。さらに平型積層体Aの上に光学粘着層(綜研化学株式会社製 光学粘着剤SKダイン)を貼り、「波型積層体A」を転写した後に、波型積層体A側のPET基板を剥離することによって、「透明スクリーンA」を得た。
 この「透明スクリーンA」とレーザープロジェクター(Celluon社製 PicoPro)との組み合わせを実施例1-1とした。レーザープロジェクターの前には円偏光板を配置し、透明スクリーンAに照射される光が右円偏光となるようにした。また、光源の中心波長は、赤色光源が640nm、緑色光源が530nm、青色光源が445nmである。
 また、「透明スクリーンA」と液晶プロジェクター(セイコーエプソン株式会社製 EB-W28)との組み合わせを実施例1-2とした。レーザープロジェクターの前には円偏光板を配置し、透明スクリーンAに照射される光が右円偏光となるようにした。
 [実施例2]
 PETシート上に光学粘着剤を貼り、この上に「平型積層体A」を転写して平型積層体A側のPET基板を剥離した。さらに平型積層体Aの上に光学粘着層(綜研化学株式会社製 光学粘着剤SKダイン)を貼り、市販のλ/2板(株式会社美舘イメージング社製 1/2波長板)を貼合した。さらにλ/2板の上にOCAを貼り、この上に「平型積層体A」を転写して、平型積層体A側のPET基板を剥離した。続いて、平型積層体Aの上にOCAを貼り、「波型積層体A」を転写した後に、波型積層体A側のPET基板を剥離することによって、「透明スクリーンB」を得た。
 この「透明スクリーンB」とレーザープロジェクター(Celluon社製 PicoPro)とを組み合わせた。
 [比較例1]
 PETシート上に光学粘着剤(綜研化学株式会社製 光学粘着剤SKダイン)を貼り、この上に「平型積層体A」を転写して、平型積層体A側のPET基板を剥離し「透明スクリーンC」を得た。
 この「透明スクリーンC」とレーザープロジェクター(Celluon社製 PicoPro)との組み合わせを比較例1-1とした。レーザープロジェクターの前には円偏光板を配置し、透明スクリーンCに照射される光が右円偏光となるようにした。
 また、「透明スクリーンC」と液晶プロジェクター(セイコーエプソン株式会社製 EB-W28)との組み合わせを比較例1-2とした。
 [評価]
 実施例、および、比較例で作製した透明スクリーンについて、以下の評価を行った。
 <目視による評価>
 図9に示すように、レーザープロジェクター102と透明スクリーン10と不透明スクリーOSとを設置し、レーザープロジェクター102から映像を投影して、透明スクリーン上に結像された像が目視できるか確認した。なお、実施例1-1、実施例1-2、および、比較例1-1の場合には、プロジェクターの前に円偏光板104を配置し、透明スクリーンに照射される光が右円偏光となるようにした。
 (スクリーン上への結像(正面))
 プロジェクターから照射され透明スクリーンに結像された像が目視で視認できるか確認し、以下の基準で評価した。
 A:はっきり像が確認できる
 B:暗いが像が確認できる
 C:結像が確認できない
 (スクリーン上への結像(45°方向))
 プロジェクターから透明スクリーンに投影する方向を0°とし、45°の位置から透明スクリーンに結像された像が目視で視認できるか確認した。
 A:はっきり像が確認できる
 B:暗いが像が確認できる
 C:結像が確認できない
 (スクリーンの透明性)
 明るい部屋で0°方向から透明スクリーンを確認し、透明スクリーンの奥の風景が見えるかを確認した。
 A:はっきりと見える
 B:ものがあることは認識できる
 C:見えない
 (不透明スクリーンへの映り込み)
 透明スクリーンと不透明スクリーンの間から不透明スクリーンに結像された像が目視で視認できるか確認した。
 A:確認できない
 B:暗いが像が確認される
 C:はっきり像が確認できる
 <拡散反射性評価>
 村上色彩社製GCMS-3Bのダブルビーム測定モードを用いて、リファレンス(白色板)に対するコレステリック液晶層の相対反射率を測定した。サンプルに対して法線方向(0°)から入射した光に対して10°および45°における反射スペクトルを380nm~780nmで測定し、このときのY値を算出した。
 具体的には、光源からの入射光をサンプル(透明スクリーンあるいは白色板)の表面の法線方向から照射し、サンプルの表面の法線方向に対して極角θが10°および45°となる位置に配置した検出器によって反射光を測定し、リファレンスに対するコレステリック液晶層の相対反射率を測定し、以下の基準で評価した。
 A:5以上
 B:3以上5未満
 C:3未満
 <ヘイズおよび全光線透過率>
 作製した透明スクリーンについて、ヘイズおよび全光線透過率を測定した。ヘイズおよび全光線透過率は、共に、日本電色工業社製のNDH4000を用い、ヘイズはJIS K 7136に準拠して、全光線透過率はJIS K 7361に準拠して、それぞれ測定した。
 全光線透過率は、以下の基準で評価した。
 A:50以上
 B:40%以上50%未満
 C:40%未満
 また、ヘイズは以下の基準で評価した。
 A:20%以下
 B:20%超30%以下
 C:30%超
 結果を、表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000023
 表2に示すように、本発明の透明スクリーンは、いずれも、低いヘイズ、高い全光線透過率を有し、さらに、5以上の45°相対反射量を有し拡散反射性も良好である。すなわち、本発明の積層体は、良好な透明性と拡散反射性とを両立して有している。
 また、実施例1-1と実施例1-2の対比から、本発明の透明スクリーンにレーザープロジェクターを組み合わせることで透明スクリーンの背面側に配置した不透明スクリーンへの映り込みを抑制できることがわかる。
 以上の結果より、本発明の効果は明らかである。
  10、10a~10e 透明スクリーン
  12 支持体
  14 波型コレステリック液晶層
  14Rr 赤色光の領域に選択反射波長を有し右円偏光を反射する波型コレステリック液晶層
  14Gr 緑色光の領域に選択反射波長を有し右円偏光を反射する波型コレステリック液晶層
  14Br 青色光の領域に選択反射波長を有し右円偏光を反射する波型コレステリック液晶層
  14Rl 赤色光の領域に選択反射波長を有し左円偏光を反射する波型コレステリック液晶層
  14Gl 緑色光の領域に選択反射波長を有し左円偏光を反射する波型コレステリック液晶層
  14Bl 青色光の領域に選択反射波長を有し左円偏光を反射する波型コレステリック液晶層
  16 平型コレステリック液晶層
  16Rr 赤色光の領域に選択反射波長を有し右円偏光を反射する平型コレステリック液晶層
  16Gr 緑色光の領域に選択反射波長を有し右円偏光を反射する平型コレステリック液晶層
  16Br 青色光の領域に選択反射波長を有し右円偏光を反射する平型コレステリック液晶層
  16Rl 赤色光の領域に選択反射波長を有し左円偏光を反射する平型コレステリック液晶層
  16Gl 緑色光の領域に選択反射波長を有し左円偏光を反射する平型コレステリック液晶層
  16Bl 青色光の領域に選択反射波長を有し左円偏光を反射する平型コレステリック液晶層
  18 λ/2板
 100 映像投影システム
 102 レーザープロジェクター
 104 円偏光板

Claims (15)

  1.  支持体と、
     前記支持体上に積層される、コレステリック液晶相を固定してなる複数のコレステリック液晶層とを有し、
     複数の前記コレステリック液晶層のうち、少なくとも1層は、断面において前記コレステリック液晶相に由来する明部および暗部が波状構造を有する波型コレステリック液晶層であり、
     複数の前記コレステリック液晶層のうち、他の少なくとも1層は、断面において前記コレステリック液晶相に由来する明部および暗部が支持体の主面に対して平行な平坦構造を有する平型コレステリック液晶層である透明スクリーン。
  2.  前記波型コレステリック液晶層の少なくとも1層の選択反射波長と、前記平型コレステリック液晶層の少なくとも1層の選択反射波長とが同じである請求項1に記載の透明スクリーン。
  3.  互いに異なる選択反射波長を有する、2以上の前記波型コレステリック液晶層と、
     各前記波型コレステリック液晶層の選択反射波長と同じ選択反射波長を有する2以上の前記平型コレステリック液晶層を有する請求項1または2に記載の透明スクリーン。
  4.  複数の前記コレステリック液晶層が反射する円偏光の旋回方向が全ての前記コレステリック液晶層で同じである請求項1~3のいずれか一項に記載の透明スクリーン。
  5.  選択反射波長が同じで、反射する円偏光の旋回方向が同じである前記平型コレステリック液晶層を2以上有し、
     2以上の前記平型コレステリック液晶層の間に配置されるλ/2板を有する請求項1~4のいずれか一項に記載の透明スクリーン。
  6.  選択反射波長が同じで、反射する円偏光の旋回方向が同じである前記波型コレステリック液晶層を2以上有し、
     2以上の前記波型コレステリック液晶層の間に配置されるλ/2板を有する請求項1~5のいずれか一項に記載の透明スクリーン。
  7.  選択反射波長が同じで、反射する円偏光の旋回方向が互いに異なる2以上の前記平型コレステリック液晶層を有する請求項1~3のいずれか一項に記載の透明スクリーン。
  8.  選択反射波長が同じで、反射する円偏光の旋回方向が互いに異なる2以上の前記波型コレステリック液晶層を有する請求項1~3および7のいずれか一項に記載の透明スクリーン。
  9.  前記支持体の全光線透過率が80%以上である請求項1~8のいずれか一項に記載の透明スクリーン。
  10.  前記支持体の前記コレステリック液晶層の形成面が平坦面である請求項1~9のいずれか一項に記載の透明スクリーン。
  11.  前記透明スクリーンの全光線透過率が50%以上である請求項1~10のいずれか一項に記載の透明スクリーン。
  12.  請求項1~11のいずれか一項に記載の透明スクリーンと、
     前記透明スクリーンに光を照射するレーザープロジェクターとを有する映像投影システム。
  13.  前記透明スクリーンが有する前記コレステリック液晶層の少なくとも1層の選択反射波長が、前記レーザープロジェクターの光源の中心波長の±20nmの範囲にある請求項12に記載の映像投影システム。
  14.  前記レーザープロジェクターが照射する光が円偏光である請求項12または13に記載の映像投影システム。
  15.  前記透明スクリーンが有する前記コレステリック液晶層の少なくとも1層が反射する円偏光の旋回方向が、前記レーザープロジェクターが照射する円偏光の旋回方向と一致する請求項14に記載の映像投影システム。
PCT/JP2018/016613 2017-04-28 2018-04-24 透明スクリーンおよび映像投影システム WO2018199092A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514533A JP6815491B2 (ja) 2017-04-28 2018-04-24 透明スクリーンおよび映像投影システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089901 2017-04-28
JP2017-089901 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199092A1 true WO2018199092A1 (ja) 2018-11-01

Family

ID=63919882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016613 WO2018199092A1 (ja) 2017-04-28 2018-04-24 透明スクリーンおよび映像投影システム

Country Status (2)

Country Link
JP (1) JP6815491B2 (ja)
WO (1) WO2018199092A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071169A1 (ja) * 2018-10-01 2020-04-09 富士フイルム株式会社 ディスプレイ
JP2020166015A (ja) * 2019-03-28 2020-10-08 大日本印刷株式会社 反射スクリーン及びそれを用いた投射システム
JPWO2021132113A1 (ja) * 2019-12-26 2021-07-01

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227581A (ja) * 2005-01-21 2006-08-31 Dainippon Printing Co Ltd 透過反射両用投影スクリーン及びそれを備えた投影システム
JP2008242350A (ja) * 2007-03-29 2008-10-09 Nippon Zeon Co Ltd 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
JP2011128417A (ja) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd 電磁波反射部材の製造方法、および電磁波反射部材の反射率回復方法
US20150116648A1 (en) * 2013-10-30 2015-04-30 Samsung Display Co., Ltd. Optical film and display apparatus including optical film
JP2016126326A (ja) * 2014-12-26 2016-07-11 富士フイルム株式会社 反射材、光学部材、ディスプレイおよび画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227581A (ja) * 2005-01-21 2006-08-31 Dainippon Printing Co Ltd 透過反射両用投影スクリーン及びそれを備えた投影システム
JP2008242350A (ja) * 2007-03-29 2008-10-09 Nippon Zeon Co Ltd 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
JP2011128417A (ja) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd 電磁波反射部材の製造方法、および電磁波反射部材の反射率回復方法
US20150116648A1 (en) * 2013-10-30 2015-04-30 Samsung Display Co., Ltd. Optical film and display apparatus including optical film
JP2016126326A (ja) * 2014-12-26 2016-07-11 富士フイルム株式会社 反射材、光学部材、ディスプレイおよび画像表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071169A1 (ja) * 2018-10-01 2020-04-09 富士フイルム株式会社 ディスプレイ
US11275271B2 (en) 2018-10-01 2022-03-15 Fujifilm Corporation Display comprising a transparent screen having a cholesteric liquid crystal layer exhibiting selective reflectivity attached to a light guide plate
JP2020166015A (ja) * 2019-03-28 2020-10-08 大日本印刷株式会社 反射スクリーン及びそれを用いた投射システム
JP7259482B2 (ja) 2019-03-28 2023-04-18 大日本印刷株式会社 反射スクリーン及びそれを用いた投射システム
JPWO2021132113A1 (ja) * 2019-12-26 2021-07-01
JP7293403B2 (ja) 2019-12-26 2023-06-19 富士フイルム株式会社 透明スクリーン
US11977306B2 (en) 2019-12-26 2024-05-07 Fujifilm Corporation Transparent screen

Also Published As

Publication number Publication date
JPWO2018199092A1 (ja) 2020-02-27
JP6815491B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6616885B2 (ja) 反射層の製造方法および反射層
JP6826482B2 (ja) 透明スクリーンおよび明室用スクリーン、ならびに、透明スクリーンの製造方法
JP6336572B2 (ja) 反射部材、投映スクリーン、コンバイナ、および、遮熱部材
US11262634B2 (en) Structure comprising a reflective layer having lines formed by bright portions and dark portions derived from a cholesteric liquid crystalline phase and method for forming the reflective layer
WO2018159751A1 (ja) 構造体および構造体の製造方法
WO2016043219A1 (ja) 光学フィルム、照明装置および画像表示装置
JP6193471B2 (ja) 投映像表示用部材および投映像表示用部材を含む投映システム
WO2018199092A1 (ja) 透明スクリーンおよび映像投影システム
US10663827B2 (en) Transparent screen comprising a plurality of dot arrays having different selective reflective wavelengths, the plurality of dot arrays obtained by immobilizing a cholesteric liquid crystalline phase
WO2018212347A1 (ja) 加飾シート、光学デバイス、画像表示装置
WO2016129645A1 (ja) 光学部材、光学素子、液晶表示装置および近接眼光学部材
WO2018159757A1 (ja) 反射層の製造方法
JP6789194B2 (ja) 構造体
WO2020045626A1 (ja) ウェアラブルディスプレイデバイス
JP7225424B2 (ja) 光学素子
WO2017188251A1 (ja) 透明スクリーンおよび画像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790750

Country of ref document: EP

Kind code of ref document: A1