WO2018199071A1 - Acoustic wave device manufacturing method and acoustic wave device - Google Patents

Acoustic wave device manufacturing method and acoustic wave device Download PDF

Info

Publication number
WO2018199071A1
WO2018199071A1 PCT/JP2018/016563 JP2018016563W WO2018199071A1 WO 2018199071 A1 WO2018199071 A1 WO 2018199071A1 JP 2018016563 W JP2018016563 W JP 2018016563W WO 2018199071 A1 WO2018199071 A1 WO 2018199071A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
bus bar
connection
wave device
piezoelectric substrate
Prior art date
Application number
PCT/JP2018/016563
Other languages
French (fr)
Japanese (ja)
Inventor
康晴 中井
晴信 堀川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019514522A priority Critical patent/JP6813084B2/en
Publication of WO2018199071A1 publication Critical patent/WO2018199071A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Definitions

  • the present invention relates to a method for manufacturing an elastic wave device and an elastic wave device.
  • This elastic wave device is an elastic wave resonator having an IDT electrode.
  • the direction in which the electrode fingers of the IDT electrode extend is defined as the cross width direction.
  • the IDT electrode has a central region arranged at the center in the cross width direction, a low sound velocity region arranged outside the cross width direction, and a high sound velocity region arranged further outside in the cross width direction.
  • the bus bar in the IDT electrode described in Patent Document 1 has a plurality of openings provided at the center in the cross width direction.
  • the region provided with the plurality of openings is a high sound velocity region in the IDT electrode.
  • a band-shaped inner bus bar portion located on the inner side in the cross width direction than the opening portion is a low sound velocity region.
  • An object of the present invention is to provide a method of manufacturing an elastic wave device and an elastic wave device, in which resist residues are hardly generated, electrical characteristics are hardly deteriorated, and productivity can be improved. is there.
  • the method of manufacturing an acoustic wave device includes a first bus bar and a second bus bar facing each other, a plurality of first electrode fingers having one ends connected to the first bus bar, A method of manufacturing an acoustic wave device having an IDT electrode having one end connected to two bus bars and including a plurality of second electrode fingers that are interleaved with each other.
  • a step of preparing a piezoelectric substrate; a first inner bus bar on the piezoelectric substrate; the plurality of first electrode fingers having one end connected to the first inner bus bar; and the first inner bus bar A second inner bus bar facing the bus bar, the plurality of second electrode fingers having one end connected to the second inner bus bar, and the plurality of first electrode fingers of the first inner bus bar.
  • a plurality of first connection electrodes, and a plurality of second connection electrodes having one ends connected to the side of the second inner busbar opposite to the side to which the plurality of second electrode fingers are connected And forming the first outer bus bar on the piezoelectric substrate so as to cover a part of the plurality of first connection electrodes, the first outer bus bar, Forming a first bus bar having a plurality of first openings surrounded by a plurality of first connection electrodes and the first inner bus bar; and part of the plurality of second connection electrodes.
  • a second outer bus bar is formed on the piezoelectric substrate so as to cover the second outer bus bar, the plurality of second connection electrodes, and a plurality of second bus bars surrounded by the second inner bus bar.
  • the second bus bar having an opening of And forming a.
  • the first connection electrode in the step of forming the first connection electrode, the first connection electrode on the first inner bus bar on the piezoelectric substrate.
  • a third connection electrode connected to an end opposite to the connected side and extending in a direction intersecting with the direction in which the first connection electrode extends is formed. In this case, the electrical resistance of the IDT electrode can be lowered.
  • a plurality of the third connection electrodes are spaced from each other. Form apart. In this case, the electrical resistance of the IDT electrode can be lowered, and the resist pattern can be easily peeled off effectively.
  • the third connection electrode in the step of forming the first connection electrode and the third connection electrode, the third connection electrode, the plurality of first electrodes Forming a plurality of third openings surrounded by the connection electrode and the first inner bus bar, and the dimension along the direction in which the first connection electrode of the third opening extends is
  • the third connection electrode is formed so as to be longer than a dimension along the direction in which the first connection electrode extends in the first opening. In this case, the electric resistance of the IDT electrode can be lowered and the resist pattern can be easily peeled off.
  • the first connection electrode and the second connection electrode are in a direction in which the first electrode finger and the second electrode finger extend. It extends in the parallel direction.
  • the first connection electrode and the second connection electrode extend in the direction in which the first electrode finger and the second electrode finger extend. It extends in the direction of crossing. In this case, spurious due to the transverse mode can be suppressed.
  • the elastic wave propagation direction is the first direction
  • the direction in which the first electrode finger and the second electrode finger extend is the second direction.
  • the IDT electrode has a crossing region in which the first electrode finger and the second electrode finger overlap in the first direction.
  • a central region located on the center side in the second direction, and a first edge region and a second edge region disposed on both sides of the central region in the second direction, and the first region
  • An edge region is located on the first inner busbar side
  • the second edge region is located on the second inner busbar side
  • the first edge region and the second edge region The sound speed is lower than the sound speed in the central region. In this case, spurious due to the transverse mode can be suppressed.
  • the method further includes a step of forming a wiring electrode on the piezoelectric substrate so as to be connected to the first outer bus bar.
  • the step of forming the wiring electrode is performed simultaneously with the step of forming the first outer bus bar. In this case, productivity can be further enhanced.
  • the method further includes a step of forming a terminal on the piezoelectric substrate so as to be connected to the wiring electrode, and the terminal is formed.
  • the step is performed simultaneously with the step of forming the first outer bus bar and the wiring electrode. In this case, productivity can be further enhanced.
  • An elastic wave device includes a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate, and the IDT electrode has one end connected to a first inner bus bar and the first inner bus bar.
  • a plurality of first electrode fingers, a second inner bus bar facing the first inner bus bar, and one end connected to the second inner bus bar, and the plurality of first electrodes A plurality of second electrode fingers that are interdigitated with the fingers and a plurality of ends connected to the side of the first inner busbar opposite to the side to which the plurality of first electrode fingers are connected
  • a plurality of second connection electrodes whose one ends are connected to a side opposite to a side to which the plurality of second electrode fingers of the second inner bus bar are connected;
  • a second outer bus bar A first outer bus bar; a first outer bus bar; a
  • the plurality of first connection electrodes and the second connection electrodes intersect with a direction in which the first electrode fingers and the second electrode fingers extend. Extending in the direction. In this case, spurious due to the transverse mode can be suppressed.
  • the elastic wave propagation direction is the first direction
  • the direction in which the first electrode finger and the second electrode finger extend is the second direction
  • the IDT electrode has a crossing region in which the first electrode finger and the second electrode finger overlap in the first direction, and the IDT electrode is in the crossing region, A central region located on the center side in the second direction, and a first edge region and a second edge region disposed on both sides of the central region in the second direction, and the first region
  • the edge region is located on the first inner busbar side
  • the second edge region is located on the second inner busbar side
  • the first edge region and the second edge region Is faster than the sound speed in the central region.
  • the first outer bus bar is provided on an uneven portion including the plurality of first connection electrodes and the piezoelectric substrate
  • the second The outer bus bar is provided on the concavo-convex portion composed of the plurality of second connection electrodes and the piezoelectric substrate.
  • the present invention it is possible to provide a method of manufacturing an elastic wave device and an elastic wave device that are unlikely to cause resist residue, can hardly cause deterioration of electrical characteristics, and can improve productivity. it can.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG.
  • FIG. 3 is an enlarged plan view near the first edge region of the IDT electrode in the first embodiment of the present invention.
  • FIG. 4 is an enlarged front cross-sectional view of the first electrode finger in the first embodiment of the present invention.
  • FIG. 5A and FIG. 5B are plan views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 6A and FIG. 6B are plan views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG.
  • FIG. 3 is an enlarged plan view near the
  • FIG. 7 is a front cross-sectional view for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing the relationship between the return loss at the intermediate frequency between the resonance frequency and the antiresonance frequency and the first opening length of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 9 is a plan view of an IDT electrode in the first modification of the first embodiment of the present invention.
  • FIG. 10 is a plan view of an IDT electrode in a second modification of the first embodiment of the present invention.
  • FIG. 11 is a plan view of an IDT electrode according to a third modification of the first embodiment of the present invention.
  • FIG. 12 is a plan view of an IDT electrode according to the second embodiment of the present invention.
  • FIG. 13 is a plan view of an IDT electrode in a first modification of the second embodiment of the present invention.
  • FIG. 14 is a plan view of an IDT electrode in a second modification of the second embodiment of the present invention.
  • FIG. 15 is a plan view of an IDT electrode according to the third embodiment of the present invention.
  • FIG. 16 is a plan view of an acoustic wave device according to the fourth embodiment of the present invention.
  • FIG. 17 is a plan view of an acoustic wave device according to the fifth embodiment of the present invention.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • a first dielectric film and a second dielectric film which will be described later, are omitted.
  • the acoustic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 is made of 127.5 ° YX LiNbO 3 .
  • the cut angle of the piezoelectric substrate 2 is not limited to the above.
  • the piezoelectric substrate 2, such as LiTaO 3, may be made of a piezoelectric single crystal other than LiNbO 3, or may be made from a suitable piezoelectric ceramic.
  • the elastic wave device 1 is a 1-port type elastic wave resonator.
  • the elastic wave device of the present invention is not limited to this, and may be, for example, a ladder type filter having a plurality of elastic wave resonators or a longitudinally coupled resonator type elastic wave filter having a plurality of IDT electrodes.
  • the elastic wave device 1 of the present embodiment uses a piston mode, and the IDT electrode 3 includes a first low sound velocity region La, a first high sound velocity region Ha, a second low sound velocity region Lb, and a second sound wave, which will be described later.
  • High sound velocity region Hb This will be described more specifically below.
  • the IDT electrode 3 has a first inner bus bar 4a and a second inner bus bar 5a facing each other.
  • the IDT electrode 3 has a plurality of first electrode fingers 4b, one end of which is connected to the first inner bus bar 4a.
  • the IDT electrode 3 has a plurality of second electrode fingers 5b, one end of which is connected to the second inner bus bar 5a.
  • the plurality of first electrode fingers 4b and the plurality of second electrode fingers 5b are interleaved with each other.
  • the elastic wave propagation direction is defined as a first direction x
  • the direction in which the first electrode finger 4b and the second electrode finger 5b extend is defined as a second direction y.
  • the direction orthogonal to the first direction x and the second direction y are parallel.
  • the IDT electrode 3 has a plurality of first connection electrodes 4c whose one ends are connected to the side opposite to the side where the first electrode fingers 4b of the first inner bus bar 4a are connected.
  • the first connection electrode 4c extends in parallel to the second direction y.
  • the first inner bus bar 4a and the plurality of first connection electrodes 4c form a comb-like electrode pattern, and a gap is formed between the electrodes on the outer side in the second direction y.
  • the IDT electrode 3 has a plurality of second connection electrodes 5c whose one ends are connected to the side opposite to the side where the second electrode fingers 5b of the second inner bus bar 5a are connected.
  • the second connection electrode 5c extends in parallel with the second direction y.
  • the second inner bus bar 5a and the plurality of second connection electrodes 5c form a comb-like electrode pattern, and a gap is formed between the electrodes on the outer side in the second direction y.
  • a first outer bus bar 6 is provided on the piezoelectric substrate 2 so as to cover a part of the plurality of first connection electrodes 4c.
  • the first outer bus bar 6, the plurality of first connection electrodes 4c, and the first inner bus bar 4a constitute a first bus bar.
  • the first bus bar 14 has a plurality of first openings 8 surrounded by the first outer bus bar 6, the plurality of first connection electrodes 4c, and the first inner bus bar 4a.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG. In FIG. 2, a first dielectric film and a second dielectric film described later are omitted.
  • the first outer bus bar 6 is provided on an uneven portion formed by the piezoelectric substrate 2 and the plurality of first connection electrodes 4c.
  • a second outer bus bar 7 is provided on the piezoelectric substrate 2 so as to cover a part of the plurality of second connection electrodes 5c.
  • the second outer bus bar 7 is provided on the uneven portion formed by the piezoelectric substrate 2 and the plurality of second connection electrodes 5c.
  • the second outer bus bar 7, the plurality of second connection electrodes 5c, and the second inner bus bar 5a constitute a second bus bar 15.
  • the second bus bar 15 has a plurality of second openings 9 surrounded by the second outer bus bar 7, the plurality of second connection electrodes 5c, and the second inner bus bar 5a.
  • the IDT electrode 3 has a crossing region A, which is a portion where the first electrode finger 4b and the second electrode finger 5b overlap in the first direction x.
  • the crossing region A has a central region B located at the center of the first electrode finger 4b and the second electrode finger 5b in the second direction y.
  • the crossing region A has a first edge region Ca and a second edge region Cb arranged outside the central region B in the second direction y.
  • the first edge region Ca is located on the first inner bus bar 4a side
  • the second edge region Cb is located on the second inner bus bar 5a side.
  • FIG. 3 is an enlarged plan view near the first edge region of the IDT electrode according to the first embodiment.
  • the dimension along the first direction x of the first electrode finger 4b and the second electrode finger 5b is defined as the width.
  • the first electrode finger 4b has a wide portion 16 that is wider than other portions in the first edge region Ca.
  • the second electrode finger 5b also has a wide portion 17 that is wider than other portions in the first edge region Ca.
  • the sound speed in the first edge area Ca is lower than the sound speed in the central area B.
  • the sound speed in the area where the first inner bus bar 4a is provided is also lower than the sound speed in the central area B.
  • the first low sound velocity region La in which the average sound velocity is lower than the sound velocity in the central region B is configured from the first edge region Ca to the region where the first inner bus bar 4a is provided.
  • the speed of sound is the propagation speed of the elastic wave in the first direction x.
  • the first electrode finger 4b and the second electrode finger 5b have a wide portion also in the second edge region Cb. From the second edge region Cb to the region where the second inner bus bar 5a is provided, a second low sound velocity region Lb in which the average sound velocity is lower than the sound velocity in the central region B is configured.
  • the first opening 8 is located outside the first edge region Ca in the second direction y.
  • the first connection electrode 4c constituting the first opening 8 is located on the extension line of the first electrode finger 4b in the second direction y, and the second electrode It is not located on the extension line of the finger 5b. Therefore, the occupation ratio of the electrodes along the first direction x in the region where the first opening 8 is provided is smaller than the occupation ratio of the electrodes along the first direction x in the central region B. Therefore, in the region where the first opening 8 is provided, the first high sound velocity region Ha is configured in which the sound velocity is higher than the sound velocity in the central region B.
  • the second opening 9 is located outside the second edge region Cb in the second direction y. Similar to the region in which the first opening 8 is provided, the second high sound velocity region Hb having a higher sound speed than the sound velocity in the central region B is configured in the region in which the second opening 9 is provided. Has been.
  • the central region B, the first low sound velocity region La, and the first high sound velocity region Ha are arranged in this order, and the central region B, the second low sound velocity region Lb, and the second high sound velocity region Ha. Hb is arranged in this order.
  • FIG. 4 is an enlarged front cross-sectional view of the first electrode finger in the first embodiment.
  • the first electrode finger 4b is connected to the first metal layer 3a, the second metal layer 3b, the third metal layer 3c, the fourth metal layer 3d, and the fifth metal layer from the piezoelectric substrate 2 side.
  • the metal layer 3e is composed of a laminated metal film laminated in this order.
  • the first metal layer 3a is made of NiCr.
  • the second metal layer 3b is made of Pt.
  • the third metal layer 3c is made of Ti.
  • the fourth metal layer 3d is made of AlCu.
  • the fifth metal layer 3e is made of Ti.
  • the film thickness of the first metal layer 3a is 10 nm
  • the film thickness of the second metal layer 3b is 72 nm
  • the film thickness of the third metal layer 3c is 60 nm
  • the film of the fourth metal layer 3d is 130 nm
  • the thickness of the fifth metal layer 3e is 10 nm.
  • the other first electrode fingers, the plurality of second electrode fingers, the plurality of first connection electrodes, and the plurality of second connection electrodes of the IDT electrode are similarly configured.
  • the materials and film thicknesses of the plurality of first electrode fingers, the plurality of second electrode fingers, the plurality of first connection electrodes, and the plurality of second connection electrodes are not limited to the above.
  • the plurality of first electrode fingers, the plurality of second electrode fingers, the plurality of first connection electrodes, and the plurality of second connection electrodes may be formed of a single layer metal film.
  • the first outer bus bar and the second outer bus bar may also be made of a laminated metal film in which a plurality of metal layers are laminated, or may be made of a single-layer metal film.
  • a first dielectric film 18 is provided on the piezoelectric substrate 2 so as to cover the IDT electrode and the reflector.
  • the first dielectric film 18 is not particularly limited, it is made of SiO 2 . Thereby, the frequency temperature characteristic can be improved.
  • the film thickness of the first dielectric film 18 is not particularly limited, but is 1110 nm.
  • a second dielectric film 19 is provided on the first dielectric film 18.
  • the second dielectric film 19 is not particularly limited, it is made of SiN. By adjusting the film thickness of the second dielectric film 19, the frequency can be easily adjusted.
  • the film thickness of the second dielectric film 19 is not particularly limited, but is 40 nm. Note that the first dielectric film 18 and the second dielectric film 19 may not be provided.
  • the feature of this embodiment is that the first outer bus bar 6 is provided on the piezoelectric substrate 2 so as to cover a part of the plurality of first connection electrodes 4c, and the plurality of second connection electrodes 4c are provided.
  • the second outer bus bar 7 is provided on the piezoelectric substrate 2 so as to cover a part of the connection electrode 5c.
  • FIG. 5A and FIG. 5B are plan views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment.
  • FIG. 6A and FIG. 6B are plan views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment.
  • FIG. 7 is a front cross-sectional view for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment.
  • a resist pattern described later is indicated by hatching.
  • a piezoelectric substrate 2 is prepared.
  • the IDT electrode first inner bus bar, the plurality of first electrode fingers, the second inner bus bar, the plurality of second electrode fingers, the plurality of second electrode fingers, and the like on the piezoelectric substrate 2 by a lift-off method.
  • a first connection electrode and a plurality of second connection electrodes are formed.
  • a resist layer is formed on the piezoelectric substrate 2.
  • the resist layer can be formed by, for example, a printing method or a spin coating method.
  • the resist pattern 22 is formed by developing after exposing the resist layer. The portions corresponding to the IDT electrodes in the resist pattern 22 are all continuous.
  • a first inner bus bar, a second inner bus bar, a first electrode finger, a second electrode finger, A metal film 23 for the first connection electrode and the second connection electrode is formed.
  • the metal film 23 is formed by a vacuum deposition method.
  • the metal film 23 may be formed by an appropriate method such as sputtering.
  • the resist pattern 22 is peeled off.
  • the resist pattern 22 can be easily and more reliably peeled off. Accordingly, as shown in FIG. 6A, the first inner bus bar 4a, the second inner bus bar 5a, the plurality of first electrode fingers 4b, the plurality of second electrode fingers 5b, and the plurality of first electrodes.
  • a connection electrode 4c and a plurality of second connection electrodes 5c can be formed.
  • the first outer bus bar 6 is formed on the piezoelectric substrate 2 so as to cover a part of the plurality of first connection electrodes 4c.
  • the first bus bar 14 having the plurality of first openings 8 surrounded by the first outer bus bar 6, the plurality of first connection electrodes 4c and the first inner bus bar 4a is formed.
  • the second outer bus bar 7 is formed on the piezoelectric substrate 2 so as to cover a part of the plurality of second connection electrodes 5c.
  • a second bus bar 15 having a plurality of second openings 9 surrounded by the second outer bus bar 7, the plurality of second connection electrodes 5c, and the second inner bus bar 5a is formed.
  • the first outer bus bar 6 and the second outer bus bar 7 can be formed by a lift-off method. Thereby, the IDT electrode 3 can be formed on the piezoelectric substrate 2.
  • the reflector 13a and the reflector 13b are also formed by the lift-off method simultaneously with the IDT electrode 3.
  • a first dielectric film 18 is formed on the piezoelectric substrate 2 so as to cover the IDT electrode 3, the reflector 13a, and the reflector 13b.
  • a second dielectric film 19 is formed on the first dielectric film 18.
  • the first dielectric film 18 and the second dielectric film 19 can be formed by, for example, a sputtering method or a vacuum evaporation method.
  • the first bus bar and the second bus bar are formed by the steps shown in FIGS. 5 (a), 5 (b) and 6 (a) and FIG. 6 (b). ) And the process shown in FIG. Therefore, as shown in FIG. 5A, in the portions corresponding to the first opening and the second opening of the IDT electrode, the resist layer is not surrounded by the portion from which the resist layer has been removed. Thereby, as shown in FIG. 5B, the resist layer in the portion corresponding to the IDT electrode of the resist pattern 22 is not surrounded by the portion where the metal film 23 is directly formed on the piezoelectric substrate 2. . For this reason, all the portions corresponding to the IDT electrodes of the resist pattern 22 can be connected. Therefore, the resist pattern 22 can be easily peeled off, and the production efficiency can be increased. In addition, since the resist pattern 22 can be peeled off more reliably, the occurrence rate of defects due to resist residues can be reduced. Therefore, productivity can be improved effectively.
  • a dimension along the second direction y of the first opening 8 is defined as a first opening length.
  • a dimension along the second direction y of the second opening 9 is defined as a second opening length.
  • the first opening length is the distance between the first inner bus bar 4a and the first outer bus bar 6, and the second opening length is the second inner bus bar 5a and the second outer bus bar. 7 distance.
  • the first opening length and the second opening length are preferably 2 ⁇ or less. Thereby, the electrical resistance of the IDT electrode 3 can be lowered.
  • the first opening length and the second opening length are preferably 1 ⁇ or more, and more preferably 1.2 ⁇ or more. Thereby, the return loss can be improved. This will be described below.
  • the return loss at the intermediate frequency between the resonance frequency and the antiresonance frequency of the elastic wave device 1 of the present embodiment was evaluated under the following conditions.
  • the dimension along the second direction y of the first bus bar 14 and the second bus bar 15 is the width of the first inner bus bar 4a and the second inner bus bar 5a.
  • the dimension of the first electrode finger 4b and the second electrode finger 5b along the second direction y is the length of the first electrode finger 4b and the second electrode finger 5b.
  • the dimension along the first direction x of the first electrode finger 4b and the second electrode finger 5b is the width of the first electrode finger 4b and the second electrode finger 5b.
  • a dimension along the second direction y of the crossing area A is defined as a crossing width.
  • Piezoelectric substrate Material 127.5 ° YX LiNbO 3 Width of the first inner bus bar and the second inner bus bar: 0.85 ⁇ m Width of first electrode finger and second electrode finger (other than wide part): 1 ⁇ m
  • Wavelength 4 ⁇ m
  • Cross width 40 ⁇ m Number of pairs of first electrode fingers and second electrode fingers: 150 pairs
  • FIG. 8 is a diagram showing the relationship between the return loss at the intermediate frequency between the resonance frequency and the anti-resonance frequency and the first opening length of the elastic wave device according to the first embodiment.
  • the absolute value of the return loss can be 0.35 or less, and the return loss can be improved. It can be seen that when the first opening length is in the range from 1.2 ⁇ to 2 ⁇ , the return loss can be further improved.
  • the first outer bus bar 6 is provided on the concavo-convex portion including the plurality of first connection electrodes 4 c and the piezoelectric substrate 2.
  • the bonding force between the first outer bus bar 6 and the plurality of first connection electrodes 4c can be increased.
  • the bonding force between the second outer bus bar and the plurality of second connection electrodes can be increased. Therefore, the IDT electrode is hardly damaged, and the reliability of the acoustic wave device 1 can be improved.
  • the first electrode finger 4 b has the wide portion 16 and the second electrode finger 5 b has the wide portion 17.
  • the sound speed is low.
  • region Ca low is not limited to this.
  • a mass addition film may be provided on the first electrode finger 4b and the second electrode finger 5b. The same applies to the configuration for lowering the sound speed in the second edge region.
  • first to third modifications of the first embodiment will be described.
  • the configurations of the first bus bar and the second bus bar are different from those of the first embodiment.
  • the first to third modifications are configured in the same manner as in the first embodiment.
  • the first inner bus bar and the first outer bus bar in the first bus bar and the second inner bus bar and the second outer bus bar in the second bus bar are the first bus bar, It is comprised similarly to embodiment of this. Also in the first to third modifications, the productivity can be improved as in the first embodiment.
  • FIG. 9 is a plan view of the IDT electrode in the first modification of the first embodiment.
  • FIG. 9 shows the vicinity of a portion where the IDT electrode is provided on the piezoelectric substrate. The same applies to each drawing showing IDT electrodes, which will be described later.
  • the first connection electrode 4c is provided on an extension line in the second direction y of the second electrode finger 5b.
  • the second connection electrode 5c is provided on an extension line in the second direction y of the first electrode finger 4b.
  • FIG. 10 is a plan view of the IDT electrode in the second modification of the first embodiment.
  • the width of the first connection electrode 104c is wider than the width of the first electrode finger 4b.
  • Each first connection electrode 104c is provided to face every other first electrode finger 4b via the first inner bus bar 4a.
  • the width of the second connection electrode 105c is wider than the width of the first electrode finger 4b.
  • Each second connection electrode 105c is provided on an extension line in the second direction y of every other one or more first electrode fingers 4b.
  • FIG. 11 is a plan view of an IDT electrode according to a third modification of the first embodiment.
  • first connection electrode 114c and the second connection electrode 115c have a curved shape.
  • the first opening 118 and the second opening 119 also have a curved shape.
  • FIG. 12 is a plan view of the IDT electrode in the second embodiment.
  • the IDT electrode 33 includes a third connection electrode 34c connected to the first connection electrode 4c and a fourth connection electrode 35c connected to the second connection electrode 5c. Except for the above points, the elastic wave device of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the third connection electrode 34c is connected to the end of the plurality of first connection electrodes 4c opposite to the side connected to the first inner bus bar 4a.
  • the third connection electrode 34c is provided so that a plurality of third openings 38 surrounded by the third connection electrode 34c, the plurality of first connection electrodes 4c, and the first inner bus bar 4a are formed.
  • a plurality of fourth connection electrodes 35c are provided so that a plurality of fourth openings 39 are formed, similarly to the first bus bar 34 side.
  • the third connection electrode 34c extends in the first direction x.
  • the third connection electrode 34c only needs to extend in a direction crossing the direction in which the first connection electrode 4c extends. The same applies to the fourth connection electrode 35c.
  • the first opening length is D1
  • the second opening length is D2.
  • the dimension along the second direction y of the third opening 38 is defined as a third opening length D3
  • the dimension along the second direction y of the fourth opening 39 is defined as a fourth opening length D4.
  • the third opening length D3 is longer than the first opening length D1.
  • the fourth opening length D4 is longer than the second opening length D2.
  • connection electrode 34c and the fourth connection electrode 4c are formed on the piezoelectric substrate 2 in the step of forming the first connection electrode 4c and the second connection electrode 5c.
  • the connection electrode 35c may be formed.
  • the first connection electrode 4c is connected to the end opposite to the side connected to the first inner bus bar 4a, and the plurality of third openings 38 are formed.
  • 3 connection electrodes 34c may be formed.
  • the second connection electrode 5c is connected to the end opposite to the side connected to the second inner bus bar 5a, and the plurality of fourth openings 39 are formed.
  • Four connection electrodes 35c may be formed.
  • the resist pattern can be easily peeled off, and defects due to the resist residue hardly occur. .
  • productivity can also be improved in this embodiment.
  • a gap is formed between the electrodes outside the first inner bus bar 4a in the second direction y and the electrodes are not connected. . It is preferable that a gap is formed between the electrodes outside the second inner bus bar 5a in the second direction y, and the electrodes are not connected. Thereby, the resist pattern can be more easily and more reliably peeled off.
  • the process after the process of forming the 1st connection electrode 4c and the 2nd connection electrode 5c is the same as that of the manufacturing method of the elastic wave apparatus 1 of 1st Embodiment.
  • FIG. 13 is a plan view of the IDT electrode in the first modification of the second embodiment.
  • the second embodiment is different in that a plurality of third connection electrodes 124c are provided with a gap therebetween and a plurality of fourth connection electrodes 125c are provided with a gap therebetween. And different. Except for the above points, the elastic wave device of the present modification has the same configuration as the elastic wave device of the second embodiment.
  • a gap is formed between the electrodes outside the first inner bus bar 4a in the second direction y, and the electrodes are not connected.
  • a gap is formed between the electrodes on the outer side in the second direction y than the second inner bus bar 5a, and the electrodes are not connected. Therefore, the productivity can be effectively increased as in the first embodiment.
  • the acoustic wave device in the step of forming the first connection electrode 4c and the third connection electrode 124c, the plurality of third connection electrodes 124c are formed with a gap therebetween. do it.
  • Other processes are the same as the processes in manufacturing the acoustic wave device of the second embodiment.
  • FIG. 14 is a plan view of an IDT electrode according to a second modification of the second embodiment.
  • This modification is the first modification of the second embodiment in that the first bus bar 134 includes a plurality of first electrodes 134c and the second bus bar 135 includes a plurality of second electrodes 135c.
  • the elastic wave device of the present modification has the same configuration as the elastic wave device of the first modification of the second embodiment.
  • the first electrode 134c is provided on an extension line of the first electrode finger 4b in the second direction y.
  • the first electrode 134c extends in parallel with the direction in which the first connection electrode 4c extends.
  • a gap is formed between the end portion of the first electrode 134c on the first inner bus bar 4a side and the first inner bus bar 4a.
  • the first connection electrodes 4c and the plurality of first electrodes 134c are alternately arranged along the first direction x.
  • a third connection electrode 124c is connected to the end of the first electrode 134c opposite to the first inner bus bar 4a side.
  • a gap is formed between the third connection electrode 124c connected to the first electrode 134c and the third connection electrode 124c connected to the first connection electrode 4c.
  • the second bus bar 135 side is configured similarly to the first bus bar 134 side.
  • a gap is formed between the third connection electrodes 124c and between the fourth connection electrodes 125c, as in the first modification of the second embodiment.
  • gaps are also formed between the first electrode 134c and the first inner bus bar 4a and between the second electrode 135c and the second inner bus bar 5a. Therefore, also in this modified example, in the manufacturing process, the resist pattern can be easily and more reliably peeled off, and productivity can be improved.
  • FIG. 15 is a plan view of an IDT electrode according to the third embodiment.
  • the third embodiment is different in that the first connection electrode 44c and the second connection electrode 45c extend in a direction intersecting with the direction in which the first electrode finger 44b and the second electrode finger 45b extend. Different from the first embodiment. Furthermore, the third embodiment is different from the first embodiment in that the first electrode finger 44b and the second electrode finger 45b do not have a wide portion. Except for the above points, the elastic wave device of the third embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the productivity can be effectively increased as in the first embodiment.
  • the first opening 48 is inclined with respect to the second direction y.
  • the second opening 49 is also inclined with respect to the second direction y.
  • the transverse mode generated when the elastic wave is excited in the crossing region propagates to the first bus bar 44 side and the second bus bar 45 side. Since the first bus bar 44 and the second bus bar 45 have the first opening 48 and the second opening 49 inclined as described above, the transverse mode can be reflected to the crossing region side. The reflected transverse mode and the transverse mode propagating from the crossing region to the first bus bar 44 side and the second bus bar 45 side are canceled out. Thereby, spurious due to the transverse mode can be suppressed.
  • first electrode finger 44b and the second electrode finger 45b may have wide portions in the first edge region and the second edge region.
  • FIG. 16 is a plan view of the acoustic wave device according to the fourth embodiment.
  • the dashed-dotted line in FIG. 16 shows the boundary line of each IDT electrode and each wiring electrode mentioned later, and the boundary line between each wiring electrode and each terminal mentioned later.
  • the elastic wave device 51 of the present embodiment includes a longitudinally coupled resonator type acoustic wave filter 52, a wiring electrode 58 connected to the longitudinally coupled resonator type acoustic wave filter 52, and a plurality of wiring electrodes 58 connected to the wiring electrode 58. Terminal.
  • the wiring electrode 58 and the plurality of terminals are provided on the piezoelectric substrate 2.
  • the longitudinally coupled resonator type acoustic wave filter 52 includes a first IDT electrode 53A, a second IDT electrode 53B, and a third IDT electrode 53C arranged along the first direction x.
  • the first IDT electrode 53A, the second IDT electrode 53B, and the third IDT electrode 53C have the same configuration as the IDT electrode in the first embodiment.
  • a reflector 13a is disposed on the opposite side of the first IDT electrode 53A to the second IDT electrode 53B side, and a reflector 13b is provided on the opposite side of the third IDT electrode 53C to the second IDT electrode 53B side. Is arranged.
  • the longitudinally coupled resonator type acoustic wave filter 52 has three IDT electrodes, but the number of IDT electrodes is not limited to the above.
  • the plurality of terminals are an input terminal 59a, an output terminal 59b, and a ground terminal 59c.
  • An output terminal 59b is connected to the first outer bus bar 56A of the first IDT electrode 53A via a wiring electrode 58.
  • a ground terminal 59c is connected to the second outer bus bar 57A of the first IDT electrode 53A via a wiring electrode 58.
  • a ground terminal 59c is connected to the first outer bus bar 56B of the second IDT electrode 53B via a wiring electrode 58.
  • An input terminal 59a is connected to the second outer bus bar 57B of the second IDT electrode 53B via a wiring electrode 58.
  • An output terminal 59b is connected to the first outer bus bar 56C of the third IDT electrode 53C via a wiring electrode 58.
  • a ground terminal 59c is connected to the second outer bus bar 57C of the third IDT electrode 53C via a wiring electrode 58.
  • the resist pattern can be easily and more easily formed in the manufacturing process. It can be reliably peeled off. Therefore, the productivity can be increased as in the first embodiment.
  • the first inner bus bar, the second inner bus bar, the plurality of first electrode fingers, A plurality of second electrode fingers, a plurality of first connection electrodes, and a plurality of second connection electrodes are formed. It is preferable to simultaneously form the above-described portions of the first IDT electrode 53A, the second IDT electrode 53B, and the third IDT electrode 53C. Thereby, productivity can be improved.
  • the first outer bus bar 56A is formed in the same manner as in the method of manufacturing the acoustic wave device 1 of the first embodiment.
  • the output terminal 59b is formed on the piezoelectric substrate 2 so as to be connected to the wiring electrode 58 simultaneously with the first outer bus bar 56A and the wiring electrode 58.
  • the subsequent steps are the same as the manufacturing method of the acoustic wave device 1 of the first embodiment.
  • FIG. 17 is a plan view of the acoustic wave device according to the fifth embodiment.
  • the elastic wave device 61 of the present embodiment is a ladder type filter having a plurality of elastic wave resonators.
  • the acoustic wave device 61 includes a wiring electrode 68 that electrically connects a plurality of acoustic wave resonators, and a plurality of terminals that are electrically connected to the plurality of acoustic wave resonators via a wiring electrode 58.
  • the wiring electrode 58, the wiring electrode 68, and the plurality of terminals are provided on the piezoelectric substrate.
  • the plurality of elastic wave resonators in the elastic wave device 61 are a first elastic wave resonator 62A, a second elastic wave resonator 62B, and a third elastic wave resonator 62C.
  • the first elastic wave resonator 62A, the second elastic wave resonator 62B, and the third elastic wave resonator 62C have the same configuration as that of the elastic wave device 1 of the first embodiment.
  • the elastic wave apparatus 61 of this embodiment has three elastic wave resonators, the number of elastic wave resonators is not specifically limited.
  • the plurality of terminals are an input terminal 59a, an output terminal 59b, and a ground terminal 59c.
  • An input terminal 59a is connected to the first outer bus bar of the first acoustic wave resonator 62A via a wiring electrode 58.
  • a ground terminal 59c is connected to the first outer bus bar of the second acoustic wave resonator 62B through a wiring electrode 58.
  • An output terminal 59b is connected to the second outer bus bar of the third elastic wave resonator 62C through a wiring electrode 58.
  • the second outer bus bar of the first elastic wave resonator 62A, the second outer bus bar of the second elastic wave resonator 62B, and the first outer bus bar of the third elastic wave resonator 62C are formed by wiring electrodes 68. It is connected.
  • the first elastic wave resonator 62A and the third elastic wave resonator 62C are series arm resonators in a ladder type filter, and the second elastic wave resonator 62B is a parallel arm resonator.
  • the first elastic wave resonator 62A, the second elastic wave resonator 62B, and the third elastic wave resonator 62C have the same configuration as that of the first embodiment. Therefore, the productivity can be increased as in the first embodiment.
  • each first outer bus bar, each second outer bus bar, each wiring electrode 58, wiring electrode 68, input terminal 59a, output terminal 59b, and ground terminal 59c are formed simultaneously. Is preferred. Thereby, productivity can be further increased.
  • First to third elastic wave resonators 68 Wiring electrodes 104c, 105c ... First and second connection electrodes 114c, 115c ... First, second connection electrodes 118, 119: first and second openings 124c, 125c ... third and fourth connection electrodes 134, 135 ... first and second bus bars 134c, 135c ... first and second electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is an acoustic wave device manufacturing method with which a resist residue is less likely to remain and degradation in electric characteristics is less likely to occur, and which makes it possible to increase productivity. An acoustic wave device 1 manufacturing method is a method for manufacturing an acoustic wave device 1 having an IDT electrode 3 and is provided with: a step of preparing a piezoelectric substrate 2; a step of forming on the piezoelectric substrate 2 a first inner bus bar 4a, a plurality of first electrode fingers 4b, a second inner bus bar 5a, a plurality of second electrode fingers 5b, a plurality of first connection electrodes 4c, and a plurality of second connection electrodes 5c by a lift-off process; a step of forming a first bus bar 14 having a plurality of first opening portions 8 by forming a first outer bus bar 6 on the piezoelectric substrate 2 so as to cover a part of the plurality of first connection electrodes 4c; and a step of forming a second bus bar 15 having a plurality of second opening portions 9 by forming a second outer bus bar 7 on the piezoelectric substrate 2 so as to cover a part of the plurality of second connection electrodes 5c.

Description

弾性波装置の製造方法及び弾性波装置Method for manufacturing elastic wave device and elastic wave device
 本発明は、弾性波装置の製造方法及び弾性波装置に関する。 The present invention relates to a method for manufacturing an elastic wave device and an elastic wave device.
 従来、不要波を抑制するために、ピストンモードを利用した弾性波装置が提案されている。 Conventionally, in order to suppress unnecessary waves, an elastic wave device using a piston mode has been proposed.
 例えば、下記の特許文献1には、ピストンモードを利用した弾性波装置の一例が示されている。この弾性波装置は、IDT電極を有する弾性波共振子である。ここで、IDT電極の電極指が延びる方向を交叉幅方向とする。上記IDT電極は、交叉幅方向中央に配置された中央領域と、その交叉幅方向外側に配置された低音速領域と、さらに交叉幅方向外側に配置された高音速領域とを有する。 For example, in Patent Document 1 below, an example of an acoustic wave device using a piston mode is shown. This elastic wave device is an elastic wave resonator having an IDT electrode. Here, the direction in which the electrode fingers of the IDT electrode extend is defined as the cross width direction. The IDT electrode has a central region arranged at the center in the cross width direction, a low sound velocity region arranged outside the cross width direction, and a high sound velocity region arranged further outside in the cross width direction.
 特許文献1に記載のIDT電極におけるバスバーは、交叉幅方向中央に設けられた、複数の開口部を有する。この複数の開口部が設けられた領域が、上記IDT電極における高音速領域である。開口部よりも交叉幅方向内側に位置している、帯状の内側バスバー部が低音速領域である。それによって、上記弾性波装置は横モードリップルを抑制している。 The bus bar in the IDT electrode described in Patent Document 1 has a plurality of openings provided at the center in the cross width direction. The region provided with the plurality of openings is a high sound velocity region in the IDT electrode. A band-shaped inner bus bar portion located on the inner side in the cross width direction than the opening portion is a low sound velocity region. Thereby, the elastic wave device suppresses transverse mode ripple.
国際公開第2014/192755号International Publication No. 2014/192755
 特許文献1に記載のような弾性波装置を製造するに際しては、バスバー内に複数の開口部を有する微細な電極パターンを形成する必要がある。このような電極パターンをリフトオフ法により形成する場合、上記開口部の部分においてレジストが電極に囲まれることになる。そのため、レジストの剥離に際し、剥離液が安定してレジストに接触し難く、レジストの残渣による不良が発生することがあった。 When manufacturing an elastic wave device as described in Patent Document 1, it is necessary to form a fine electrode pattern having a plurality of openings in a bus bar. When such an electrode pattern is formed by the lift-off method, the resist is surrounded by the electrode in the opening portion. Therefore, when the resist is stripped, the stripping solution is not stable and hardly comes into contact with the resist, and a defect due to the resist residue may occur.
 本発明の目的は、レジストの残渣が生じ難く、電気的特性の劣化を生じ難くすることができ、かつ生産性を高めることができる、弾性波装置の製造方法及び弾性波装置を提供することにある。 An object of the present invention is to provide a method of manufacturing an elastic wave device and an elastic wave device, in which resist residues are hardly generated, electrical characteristics are hardly deteriorated, and productivity can be improved. is there.
 本発明に係る弾性波装置の製造方法は、互いに対向し合う第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続されている複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と互いに間挿し合っている複数の第2の電極指とを含むIDT電極を有する弾性波装置の製造方法であって、圧電基板を用意する工程と、前記圧電基板上に、第1の内側バスバーと、前記第1の内側バスバーに一端が接続されている前記複数の第1の電極指と、前記第1の内側バスバーに対向する第2の内側バスバーと、前記第2の内側バスバーに一端が接続されている前記複数の第2の電極指と、前記第1の内側バスバーの前記複数の第1の電極指が接続されている側とは反対側に一端が接続されている複数の第1の接続電極と、前記第2の内側バスバーの前記複数の第2の電極指が接続されている側とは反対側に一端が接続されている複数の第2の接続電極とをリフトオフ法により形成する工程と、前記複数の第1の接続電極の一部を覆うように、前記圧電基板上に第1の外側バスバーを形成することにより、前記第1の外側バスバー、前記複数の第1の接続電極及び前記第1の内側バスバーにより囲まれた複数の第1の開口部を有する前記第1のバスバーを形成する工程と、前記複数の第2の接続電極の一部を覆うように、前記圧電基板上に第2の外側バスバーを形成することにより、前記第2の外側バスバー、前記複数の第2の接続電極及び前記第2の内側バスバーにより囲まれた複数の第2の開口部を有する前記第2のバスバーを形成する工程とを備える。 The method of manufacturing an acoustic wave device according to the present invention includes a first bus bar and a second bus bar facing each other, a plurality of first electrode fingers having one ends connected to the first bus bar, A method of manufacturing an acoustic wave device having an IDT electrode having one end connected to two bus bars and including a plurality of second electrode fingers that are interleaved with each other. A step of preparing a piezoelectric substrate; a first inner bus bar on the piezoelectric substrate; the plurality of first electrode fingers having one end connected to the first inner bus bar; and the first inner bus bar A second inner bus bar facing the bus bar, the plurality of second electrode fingers having one end connected to the second inner bus bar, and the plurality of first electrode fingers of the first inner bus bar. Connect one end to the opposite side of the connected side. A plurality of first connection electrodes, and a plurality of second connection electrodes having one ends connected to the side of the second inner busbar opposite to the side to which the plurality of second electrode fingers are connected And forming the first outer bus bar on the piezoelectric substrate so as to cover a part of the plurality of first connection electrodes, the first outer bus bar, Forming a first bus bar having a plurality of first openings surrounded by a plurality of first connection electrodes and the first inner bus bar; and part of the plurality of second connection electrodes. A second outer bus bar is formed on the piezoelectric substrate so as to cover the second outer bus bar, the plurality of second connection electrodes, and a plurality of second bus bars surrounded by the second inner bus bar. The second bus bar having an opening of And forming a.
 本発明に係る弾性波装置の製造方法のある特定の局面では、前記第1の接続電極を形成する工程において、前記圧電基板上に、前記第1の接続電極の、前記第1の内側バスバーに接続されている側とは反対側の端部に接続されている、前記第1の接続電極が延びる方向に交叉する方向に延びる第3の接続電極を形成する。この場合には、IDT電極の電気抵抗を低くすることができる。 In a specific aspect of the method for manufacturing an acoustic wave device according to the present invention, in the step of forming the first connection electrode, the first connection electrode on the first inner bus bar on the piezoelectric substrate. A third connection electrode connected to an end opposite to the connected side and extending in a direction intersecting with the direction in which the first connection electrode extends is formed. In this case, the electrical resistance of the IDT electrode can be lowered.
 本発明に係る弾性波装置の製造方法の他の特定の局面では、前記第1の接続電極及び前記第3の接続電極を形成する工程において、複数の前記第3の接続電極を、互いにギャップを隔てて形成する。この場合には、IDT電極の電気抵抗を低くすることができ、かつレジストパターンを効果的に剥離し易くすることができる。 In another specific aspect of the method for manufacturing an acoustic wave device according to the present invention, in the step of forming the first connection electrode and the third connection electrode, a plurality of the third connection electrodes are spaced from each other. Form apart. In this case, the electrical resistance of the IDT electrode can be lowered, and the resist pattern can be easily peeled off effectively.
 本発明に係る弾性波装置の製造方法のさらに他の特定の局面では、前記第1の接続電極及び前記第3の接続電極を形成する工程において、前記第3の接続電極、前記複数の第1の接続電極及び前記第1の内側バスバーにより囲まれた複数の第3の開口部を形成するように、かつ前記第3の開口部の前記第1の接続電極が延びる方向に沿う寸法が、前記第1の開口部の前記第1の接続電極が延びる方向に沿う寸法より長くなるように、前記第3の接続電極を形成する。この場合には、IDT電極の電気抵抗を低くすることができ、かつレジストパターンを剥離し易い。 In still another specific aspect of the method for manufacturing an acoustic wave device according to the present invention, in the step of forming the first connection electrode and the third connection electrode, the third connection electrode, the plurality of first electrodes Forming a plurality of third openings surrounded by the connection electrode and the first inner bus bar, and the dimension along the direction in which the first connection electrode of the third opening extends is The third connection electrode is formed so as to be longer than a dimension along the direction in which the first connection electrode extends in the first opening. In this case, the electric resistance of the IDT electrode can be lowered and the resist pattern can be easily peeled off.
 本発明に係る弾性波装置の製造方法の別の特定の局面では、前記第1の接続電極及び前記第2の接続電極が、前記第1の電極指及び前記第2の電極指が延びる方向と平行な方向に延びている。 In another specific aspect of the method of manufacturing an acoustic wave device according to the present invention, the first connection electrode and the second connection electrode are in a direction in which the first electrode finger and the second electrode finger extend. It extends in the parallel direction.
 本発明に係る弾性波装置の製造方法のさらに別の特定の局面では、前記第1の接続電極及び前記第2の接続電極が、前記第1の電極指及び前記第2の電極指が延びる方向と交叉する方向に延びている。この場合には、横モードによるスプリアスを抑制することができる。 In still another specific aspect of the method for manufacturing an acoustic wave device according to the present invention, the first connection electrode and the second connection electrode extend in the direction in which the first electrode finger and the second electrode finger extend. It extends in the direction of crossing. In this case, spurious due to the transverse mode can be suppressed.
 本発明に係る弾性波装置の製造方法のさらに別の特定の局面では、弾性波伝搬方向を第1の方向とし、前記第1の電極指及び前記第2の電極指が延びる方向を第2の方向としたときに、前記IDT電極が、前記第1の電極指と前記第2の電極指とが前記第1の方向において重なり合っている部分である交叉領域を有し、前記交叉領域が、前記第2の方向中央側に位置している中央領域と、前記中央領域の前記第2の方向両側に配置されている第1のエッジ領域及び第2のエッジ領域とを有し、前記第1のエッジ領域が前記第1の内側バスバー側に位置しており、前記第2のエッジ領域が前記第2の内側バスバー側に位置しており、前記第1のエッジ領域及び前記第2のエッジ領域における音速が、前記中央領域における音速よりも低い。この場合には、横モードによるスプリアスを抑制することができる。 In still another specific aspect of the method for manufacturing an elastic wave device according to the present invention, the elastic wave propagation direction is the first direction, and the direction in which the first electrode finger and the second electrode finger extend is the second direction. When the direction is set, the IDT electrode has a crossing region in which the first electrode finger and the second electrode finger overlap in the first direction. A central region located on the center side in the second direction, and a first edge region and a second edge region disposed on both sides of the central region in the second direction, and the first region An edge region is located on the first inner busbar side, the second edge region is located on the second inner busbar side, and the first edge region and the second edge region The sound speed is lower than the sound speed in the central region. In this case, spurious due to the transverse mode can be suppressed.
 本発明に係る弾性波装置の製造方法のさらに別の特定の局面では、前記圧電基板上に、前記第1の外側バスバーに接続するように配線電極を形成する工程がさらに備えられており、前記配線電極を形成する工程を、前記第1の外側バスバーを形成する工程と同時に行う。この場合には、生産性をより一層高めることができる。 In still another specific aspect of the method for manufacturing an acoustic wave device according to the present invention, the method further includes a step of forming a wiring electrode on the piezoelectric substrate so as to be connected to the first outer bus bar. The step of forming the wiring electrode is performed simultaneously with the step of forming the first outer bus bar. In this case, productivity can be further enhanced.
 本発明に係る弾性波装置の製造方法のさらに別の特定の局面では、前記圧電基板上に、前記配線電極に接続するように端子を形成する工程がさらに備えられており、前記端子を形成する工程を、前記第1の外側バスバー及び前記配線電極を形成する工程と同時に行う。この場合には、生産性をより一層高めることができる。 In still another specific aspect of the method for manufacturing an acoustic wave device according to the present invention, the method further includes a step of forming a terminal on the piezoelectric substrate so as to be connected to the wiring electrode, and the terminal is formed. The step is performed simultaneously with the step of forming the first outer bus bar and the wiring electrode. In this case, productivity can be further enhanced.
 本発明に係る弾性波装置は、圧電基板と、前記圧電基板上に設けられているIDT電極とを備え、前記IDT電極が、第1の内側バスバーと、前記第1の内側バスバーに一端が接続されている複数の第1の電極指と、前記第1の内側バスバーに対向する第2の内側バスバーと、前記第2の内側バスバーに一端が接続されており、かつ前記複数の第1の電極指と互いに間挿し合っている複数の第2の電極指と、前記第1の内側バスバーの前記複数の第1の電極指が接続されている側とは反対側に一端が接続されている複数の第1の接続電極と、前記第2の内側バスバーの前記複数の第2の電極指が接続されている側とは反対側に一端が接続されている複数の第2の接続電極と、前記複数の第1の接続電極上及び前記圧電基板上に設けられている第1の外側バスバーと、前記第1の外側バスバー、前記複数の第1の接続電極及び前記第1の内側バスバーにより囲まれた複数の第1の開口部と、前記複数の第2の接続電極上及び前記圧電基板上に設けられている第2の外側バスバーと、前記第2の外側バスバー、前記複数の第2の接続電極及び前記第2の内側バスバーにより囲まれた複数の第2の開口部とを有する。 An elastic wave device according to the present invention includes a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate, and the IDT electrode has one end connected to a first inner bus bar and the first inner bus bar. A plurality of first electrode fingers, a second inner bus bar facing the first inner bus bar, and one end connected to the second inner bus bar, and the plurality of first electrodes A plurality of second electrode fingers that are interdigitated with the fingers and a plurality of ends connected to the side of the first inner busbar opposite to the side to which the plurality of first electrode fingers are connected A plurality of second connection electrodes whose one ends are connected to a side opposite to a side to which the plurality of second electrode fingers of the second inner bus bar are connected; Provided on the plurality of first connection electrodes and on the piezoelectric substrate; A first outer bus bar; a first outer bus bar; a plurality of first connection electrodes; a plurality of first openings surrounded by the first inner bus bar; and the plurality of second connection electrodes. A second outer bus bar provided on the piezoelectric substrate and the second outer bus bar, a plurality of second openings surrounded by the second outer bus bar, the plurality of second connection electrodes, and the second inner bus bar Part.
 本発明に係る弾性波装置のある特定の局面では、前記複数の第1の接続電極及び前記第2の接続電極が、前記第1の電極指及び前記第2の電極指が延びる方向と交叉する方向に延びている。この場合には、横モードによるスプリアスを抑制することができる。 In a specific aspect of the acoustic wave device according to the present invention, the plurality of first connection electrodes and the second connection electrodes intersect with a direction in which the first electrode fingers and the second electrode fingers extend. Extending in the direction. In this case, spurious due to the transverse mode can be suppressed.
 本発明に係る弾性波装置の他の特定の局面では、弾性波伝搬方向を第1の方向とし、前記第1の電極指及び前記第2の電極指が延びる方向を第2の方向としたときに、前記IDT電極が、前記第1の電極指と前記第2の電極指とが前記第1の方向において重なり合っている部分である交叉領域を有し、前記IDT電極が、前記交叉領域において、前記第2の方向中央側に位置している中央領域と、前記中央領域の前記第2の方向両側に配置されている第1のエッジ領域及び第2のエッジ領域とを有し、前記第1のエッジ領域が前記第1の内側バスバー側に位置しており、前記第2のエッジ領域が前記第2の内側バスバー側に位置しており、前記第1のエッジ領域及び前記第2のエッジ領域における音速が、前記中央領域における音速よりも低い。この場合には、横モードによるスプリアスを抑制することができる。 In another specific aspect of the elastic wave device according to the present invention, the elastic wave propagation direction is the first direction, and the direction in which the first electrode finger and the second electrode finger extend is the second direction. In addition, the IDT electrode has a crossing region in which the first electrode finger and the second electrode finger overlap in the first direction, and the IDT electrode is in the crossing region, A central region located on the center side in the second direction, and a first edge region and a second edge region disposed on both sides of the central region in the second direction, and the first region The edge region is located on the first inner busbar side, the second edge region is located on the second inner busbar side, and the first edge region and the second edge region Is faster than the sound speed in the central region. There. In this case, spurious due to the transverse mode can be suppressed.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第1の外側バスバーは前記複数の第1の接続電極及び前記圧電基板からなる凹凸部上に設けられており、前記第2の外側バスバーは前記複数の第2の接続電極及び前記圧電基板からなる凹凸部上に設けられている。この場合には、第1の外側バスバーと複数の第1の接続電極との接合力を高めることができる。同様に第2の外側バスバーと複数の第2の接続電極との接合力を高めることができる。 In still another specific aspect of the acoustic wave device according to the present invention, the first outer bus bar is provided on an uneven portion including the plurality of first connection electrodes and the piezoelectric substrate, and the second The outer bus bar is provided on the concavo-convex portion composed of the plurality of second connection electrodes and the piezoelectric substrate. In this case, the joining force between the first outer bus bar and the plurality of first connection electrodes can be increased. Similarly, the bonding force between the second outer bus bar and the plurality of second connection electrodes can be increased.
 本発明によれば、レジストの残渣が生じ難く、電気的特性の劣化を生じ難くすることができ、かつ生産性を高めることができる、弾性波装置の製造方法及び弾性波装置を提供することができる。 According to the present invention, it is possible to provide a method of manufacturing an elastic wave device and an elastic wave device that are unlikely to cause resist residue, can hardly cause deterioration of electrical characteristics, and can improve productivity. it can.
図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention. 図2は、図1中のI-I線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line II in FIG. 図3は、本発明の第1の実施形態におけるIDT電極の第1のエッジ領域付近の拡大平面図である。FIG. 3 is an enlarged plan view near the first edge region of the IDT electrode in the first embodiment of the present invention. 図4は、本発明の第1の実施形態における第1の電極指の拡大正面断面図である。FIG. 4 is an enlarged front cross-sectional view of the first electrode finger in the first embodiment of the present invention. 図5(a)及び図5(b)は、本発明の第1の実施形態に係る弾性波装置の製造方法の一例を説明するための平面図である。FIG. 5A and FIG. 5B are plan views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment of the present invention. 図6(a)及び図6(b)は、本発明の第1の実施形態に係る弾性波装置の製造方法の一例を説明するための平面図である。FIG. 6A and FIG. 6B are plan views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態に係る弾性波装置の製造方法の一例を説明するための正面断面図である。FIG. 7 is a front cross-sectional view for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment of the present invention. 図8は、本発明の第1の実施形態に係る弾性波装置の、共振周波数及び反共振周波数の中間の周波数におけるリターンロスと、第1の開口長との関係を示す図である。FIG. 8 is a diagram showing the relationship between the return loss at the intermediate frequency between the resonance frequency and the antiresonance frequency and the first opening length of the acoustic wave device according to the first embodiment of the present invention. 図9は、本発明の第1の実施形態の第1の変形例におけるIDT電極の平面図である。FIG. 9 is a plan view of an IDT electrode in the first modification of the first embodiment of the present invention. 図10は、本発明の第1の実施形態の第2の変形例におけるIDT電極の平面図である。FIG. 10 is a plan view of an IDT electrode in a second modification of the first embodiment of the present invention. 図11は、本発明の第1の実施形態の第3の変形例におけるIDT電極の平面図である。FIG. 11 is a plan view of an IDT electrode according to a third modification of the first embodiment of the present invention. 図12は、本発明の第2の実施形態におけるIDT電極の平面図である。FIG. 12 is a plan view of an IDT electrode according to the second embodiment of the present invention. 図13は、本発明の第2の実施形態の第1の変形例におけるIDT電極の平面図である。FIG. 13 is a plan view of an IDT electrode in a first modification of the second embodiment of the present invention. 図14は、本発明の第2の実施形態の第2の変形例におけるIDT電極の平面図である。FIG. 14 is a plan view of an IDT electrode in a second modification of the second embodiment of the present invention. 図15は、本発明の第3の実施形態におけるIDT電極の平面図である。FIG. 15 is a plan view of an IDT electrode according to the third embodiment of the present invention. 図16は、本発明の第4の実施形態に係る弾性波装置の平面図である。FIG. 16 is a plan view of an acoustic wave device according to the fourth embodiment of the present invention. 図17は、本発明の第5の実施形態に係る弾性波装置の平面図である。FIG. 17 is a plan view of an acoustic wave device according to the fifth embodiment of the present invention.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be pointed out that each embodiment described in this specification is an example, and a partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。なお、図1においては、後述する第1の誘電体膜及び第2の誘電体膜を省略している。 FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention. In FIG. 1, a first dielectric film and a second dielectric film, which will be described later, are omitted.
 弾性波装置1は、圧電基板2を有する。本実施形態では、圧電基板2は127.5°Y-XのLiNbOからなる。なお、圧電基板2のカット角は上記に限定されない。圧電基板2は、LiTaOなどの、LiNbO以外の圧電単結晶からなっていてもよく、あるいは、適宜の圧電セラミックスからなっていてもよい。 The acoustic wave device 1 has a piezoelectric substrate 2. In the present embodiment, the piezoelectric substrate 2 is made of 127.5 ° YX LiNbO 3 . The cut angle of the piezoelectric substrate 2 is not limited to the above. The piezoelectric substrate 2, such as LiTaO 3, may be made of a piezoelectric single crystal other than LiNbO 3, or may be made from a suitable piezoelectric ceramic.
 圧電基板2上には、IDT電極3が設けられている。IDT電極3に交流電圧を印加すると、弾性波が励振される。IDT電極3の弾性波伝搬方向両側には反射器13a及び反射器13bが設けられている。このように、本実施形態では、弾性波装置1は1ポート型の弾性波共振子である。なお、本発明の弾性波装置はこれに限定されず、例えば、弾性波共振子を複数有するラダー型フィルタや、IDT電極を複数有する縦結合共振子型弾性波フィルタであってもよい。 An IDT electrode 3 is provided on the piezoelectric substrate 2. When an AC voltage is applied to the IDT electrode 3, an elastic wave is excited. A reflector 13a and a reflector 13b are provided on both sides of the IDT electrode 3 in the elastic wave propagation direction. Thus, in this embodiment, the elastic wave device 1 is a 1-port type elastic wave resonator. The elastic wave device of the present invention is not limited to this, and may be, for example, a ladder type filter having a plurality of elastic wave resonators or a longitudinally coupled resonator type elastic wave filter having a plurality of IDT electrodes.
 本実施形態の弾性波装置1は、ピストンモードを利用しており、IDT電極3は後述する第1の低音速領域La及び第1の高音速領域Ha並びに第2の低音速領域Lb及び第2の高音速領域Hbを有する。これを以下においてより具体的に説明する。 The elastic wave device 1 of the present embodiment uses a piston mode, and the IDT electrode 3 includes a first low sound velocity region La, a first high sound velocity region Ha, a second low sound velocity region Lb, and a second sound wave, which will be described later. High sound velocity region Hb. This will be described more specifically below.
 IDT電極3は、互いに対向し合う第1の内側バスバー4a及び第2の内側バスバー5aを有する。IDT電極3は、第1の内側バスバー4aに一端が接続されている、複数の第1の電極指4bを有する。さらに、IDT電極3は、第2の内側バスバー5aに一端が接続されている、複数の第2の電極指5bを有する。複数の第1の電極指4bと複数の第2の電極指5bとは、互いに間挿し合っている。 The IDT electrode 3 has a first inner bus bar 4a and a second inner bus bar 5a facing each other. The IDT electrode 3 has a plurality of first electrode fingers 4b, one end of which is connected to the first inner bus bar 4a. Furthermore, the IDT electrode 3 has a plurality of second electrode fingers 5b, one end of which is connected to the second inner bus bar 5a. The plurality of first electrode fingers 4b and the plurality of second electrode fingers 5b are interleaved with each other.
 ここで、弾性波伝搬方向を第1の方向xとし、第1の電極指4b及び第2の電極指5bが延びる方向を第2の方向yとする。本実施形態では、第1の方向xに直交する方向と、第2の方向yとは平行である。 Here, the elastic wave propagation direction is defined as a first direction x, and the direction in which the first electrode finger 4b and the second electrode finger 5b extend is defined as a second direction y. In the present embodiment, the direction orthogonal to the first direction x and the second direction y are parallel.
 IDT電極3は、第1の内側バスバー4aの第1の電極指4bが接続されている側とは反対側に一端が接続されている複数の第1の接続電極4cを有する。本実施形態では、第1の接続電極4cは、第2の方向yに平行に延びている。第1の内側バスバー4a及び複数の第1の接続電極4cは、櫛歯状の電極パターンを形成しており、第2の方向yにおける外側においては、電極間においてギャップが形成されている。 The IDT electrode 3 has a plurality of first connection electrodes 4c whose one ends are connected to the side opposite to the side where the first electrode fingers 4b of the first inner bus bar 4a are connected. In the present embodiment, the first connection electrode 4c extends in parallel to the second direction y. The first inner bus bar 4a and the plurality of first connection electrodes 4c form a comb-like electrode pattern, and a gap is formed between the electrodes on the outer side in the second direction y.
 IDT電極3は、第2の内側バスバー5aの第2の電極指5bが接続されている側とは反対側に一端が接続されている複数の第2の接続電極5cを有する。本実施形態では、第2の接続電極5cは、第2の方向yに平行に延びている。第2の内側バスバー5a及び複数の第2の接続電極5cは、櫛歯状の電極パターンを形成しており、第2の方向yにおける外側においては、電極間においてギャップが形成されている。 The IDT electrode 3 has a plurality of second connection electrodes 5c whose one ends are connected to the side opposite to the side where the second electrode fingers 5b of the second inner bus bar 5a are connected. In the present embodiment, the second connection electrode 5c extends in parallel with the second direction y. The second inner bus bar 5a and the plurality of second connection electrodes 5c form a comb-like electrode pattern, and a gap is formed between the electrodes on the outer side in the second direction y.
 複数の第1の接続電極4cの一部を覆うように、圧電基板2上に第1の外側バスバー6が設けられている。第1の外側バスバー6、複数の第1の接続電極4c及び第1の内側バスバー4aにより、第1のバスバー14が構成されている。第1のバスバー14は、第1の外側バスバー6、複数の第1の接続電極4c及び第1の内側バスバー4aにより囲まれた複数の第1の開口部8を有する。 A first outer bus bar 6 is provided on the piezoelectric substrate 2 so as to cover a part of the plurality of first connection electrodes 4c. The first outer bus bar 6, the plurality of first connection electrodes 4c, and the first inner bus bar 4a constitute a first bus bar. The first bus bar 14 has a plurality of first openings 8 surrounded by the first outer bus bar 6, the plurality of first connection electrodes 4c, and the first inner bus bar 4a.
 図2は、図1中のI-I線に沿う断面図である。なお、図2においては、後述する第1の誘電体膜及び第2の誘電体膜を省略している。 FIG. 2 is a cross-sectional view taken along the line II in FIG. In FIG. 2, a first dielectric film and a second dielectric film described later are omitted.
 第1の外側バスバー6は、圧電基板2及び複数の第1の接続電極4cにより形成された凹凸部上に設けられている。 The first outer bus bar 6 is provided on an uneven portion formed by the piezoelectric substrate 2 and the plurality of first connection electrodes 4c.
 図1に戻り、複数の第2の接続電極5cの一部を覆うように、圧電基板2上に第2の外側バスバー7が設けられている。第2の外側バスバー7は、圧電基板2及び複数の第2の接続電極5cにより形成された凹凸部上に設けられている。第2の外側バスバー7、複数の第2の接続電極5c及び第2の内側バスバー5aにより、第2のバスバー15が構成されている。第2のバスバー15は、第2の外側バスバー7、複数の第2の接続電極5c及び第2の内側バスバー5aにより囲まれた複数の第2の開口部9を有する。 Returning to FIG. 1, a second outer bus bar 7 is provided on the piezoelectric substrate 2 so as to cover a part of the plurality of second connection electrodes 5c. The second outer bus bar 7 is provided on the uneven portion formed by the piezoelectric substrate 2 and the plurality of second connection electrodes 5c. The second outer bus bar 7, the plurality of second connection electrodes 5c, and the second inner bus bar 5a constitute a second bus bar 15. The second bus bar 15 has a plurality of second openings 9 surrounded by the second outer bus bar 7, the plurality of second connection electrodes 5c, and the second inner bus bar 5a.
 IDT電極3は、第1の電極指4bと第2の電極指5bとが第1の方向xにおいて重なり合っている部分である交叉領域Aを有する。交叉領域Aは、第2の方向yにおける第1の電極指4b及び第2の電極指5bの中央に位置している中央領域Bを有する。交叉領域Aは、第2の方向yにおける中央領域Bの外側に配置された第1のエッジ領域Ca及び第2のエッジ領域Cbを有する。第1のエッジ領域Caは第1の内側バスバー4a側に位置し、第2のエッジ領域Cbは第2の内側バスバー5a側に位置している。 The IDT electrode 3 has a crossing region A, which is a portion where the first electrode finger 4b and the second electrode finger 5b overlap in the first direction x. The crossing region A has a central region B located at the center of the first electrode finger 4b and the second electrode finger 5b in the second direction y. The crossing region A has a first edge region Ca and a second edge region Cb arranged outside the central region B in the second direction y. The first edge region Ca is located on the first inner bus bar 4a side, and the second edge region Cb is located on the second inner bus bar 5a side.
 図3は、第1の実施形態におけるIDT電極の第1のエッジ領域付近の拡大平面図である。 FIG. 3 is an enlarged plan view near the first edge region of the IDT electrode according to the first embodiment.
 第1の電極指4b及び第2の電極指5bの第1の方向xに沿う寸法を幅とする。第1の電極指4bは、第1のエッジ領域Caにおいて、他の部分より幅が広い幅広部16を有する。第2の電極指5bも、第1のエッジ領域Caにおいて、他の部分より幅が広い幅広部17を有する。これにより、第1のエッジ領域Caにおける音速は、中央領域Bにおける音速よりも低い。さらに、第1の内側バスバー4aが設けられている領域における音速も、中央領域Bにおける音速よりも低い。このように、第1のエッジ領域Caから第1の内側バスバー4aが設けられている領域にかけて、平均音速が中央領域Bにおける音速よりも低い、第1の低音速領域Laが構成されている。なお、本明細書において、音速とは弾性波の第1の方向xにおける伝搬速度である。 The dimension along the first direction x of the first electrode finger 4b and the second electrode finger 5b is defined as the width. The first electrode finger 4b has a wide portion 16 that is wider than other portions in the first edge region Ca. The second electrode finger 5b also has a wide portion 17 that is wider than other portions in the first edge region Ca. Thereby, the sound speed in the first edge area Ca is lower than the sound speed in the central area B. Furthermore, the sound speed in the area where the first inner bus bar 4a is provided is also lower than the sound speed in the central area B. Thus, the first low sound velocity region La in which the average sound velocity is lower than the sound velocity in the central region B is configured from the first edge region Ca to the region where the first inner bus bar 4a is provided. In the present specification, the speed of sound is the propagation speed of the elastic wave in the first direction x.
 図1に戻り、第1の電極指4b及び第2の電極指5bは、第2のエッジ領域Cbにおいても、幅広部を有する。第2のエッジ領域Cbから第2の内側バスバー5aが設けられている領域にかけて、平均音速が中央領域Bにおける音速よりも低い、第2の低音速領域Lbが構成されている。 Referring back to FIG. 1, the first electrode finger 4b and the second electrode finger 5b have a wide portion also in the second edge region Cb. From the second edge region Cb to the region where the second inner bus bar 5a is provided, a second low sound velocity region Lb in which the average sound velocity is lower than the sound velocity in the central region B is configured.
 上記第1の開口部8は、第1のエッジ領域Caの第2の方向yにおける外側に位置している。本実施形態では、第1の開口部8を構成している第1の接続電極4cは、第1の電極指4bの、第2の方向yにおける延長線上に位置しており、第2の電極指5bの上記延長線上には位置していない。よって、第1の開口部8が設けられている領域における、第1の方向xに沿う電極の占有率は、中央領域Bにおける、第1の方向xに沿う電極の占有率より小さい。従って、第1の開口部8が設けられている領域において、中央領域Bの音速よりも音速が高い、第1の高音速領域Haが構成されている。 The first opening 8 is located outside the first edge region Ca in the second direction y. In the present embodiment, the first connection electrode 4c constituting the first opening 8 is located on the extension line of the first electrode finger 4b in the second direction y, and the second electrode It is not located on the extension line of the finger 5b. Therefore, the occupation ratio of the electrodes along the first direction x in the region where the first opening 8 is provided is smaller than the occupation ratio of the electrodes along the first direction x in the central region B. Therefore, in the region where the first opening 8 is provided, the first high sound velocity region Ha is configured in which the sound velocity is higher than the sound velocity in the central region B.
 上記第2の開口部9は、第2のエッジ領域Cbの第2の方向yにおける外側に位置している。第1の開口部8が設けられている領域と同様に、第2の開口部9が設けられている領域において、中央領域Bの音速よりも音速が高い、第2の高音速領域Hbが構成されている。 The second opening 9 is located outside the second edge region Cb in the second direction y. Similar to the region in which the first opening 8 is provided, the second high sound velocity region Hb having a higher sound speed than the sound velocity in the central region B is configured in the region in which the second opening 9 is provided. Has been.
 このように、中央領域B、第1の低音速領域La及び第1の高音速領域Haがこの順序で配置されており、中央領域B、第2の低音速領域Lb及び第2の高音速領域Hbがこの順序で配置されている。それによって、弾性波のエネルギーを閉じ込め、かつ高次の横モードによるスプリアスを抑制している。 Thus, the central region B, the first low sound velocity region La, and the first high sound velocity region Ha are arranged in this order, and the central region B, the second low sound velocity region Lb, and the second high sound velocity region Ha. Hb is arranged in this order. As a result, the energy of the elastic wave is confined and spurious due to higher-order transverse modes is suppressed.
 図4は、第1の実施形態における第1の電極指の拡大正面断面図である。 FIG. 4 is an enlarged front cross-sectional view of the first electrode finger in the first embodiment.
 本実施形態では、第1の電極指4bは、圧電基板2側から、第1の金属層3a、第2の金属層3b、第3の金属層3c、第4の金属層3d及び第5の金属層3eがこの順序で積層された積層金属膜からなる。第1の金属層3aはNiCrからなる。第2の金属層3bはPtからなる。第3の金属層3cはTiからなる。第4の金属層3dはAlCuからなる。第5の金属層3eはTiからなる。第1の金属層3aの膜厚は10nmであり、第2の金属層3bの膜厚は72nmであり、第3の金属層3cの膜厚は60nmであり、第4の金属層3dの膜厚は130nmであり、第5の金属層3eの膜厚は10nmである。IDT電極の他の第1の電極指、複数の第2の電極指、複数の第1の接続電極及び複数の第2の接続電極も同様に構成されている。 In the present embodiment, the first electrode finger 4b is connected to the first metal layer 3a, the second metal layer 3b, the third metal layer 3c, the fourth metal layer 3d, and the fifth metal layer from the piezoelectric substrate 2 side. The metal layer 3e is composed of a laminated metal film laminated in this order. The first metal layer 3a is made of NiCr. The second metal layer 3b is made of Pt. The third metal layer 3c is made of Ti. The fourth metal layer 3d is made of AlCu. The fifth metal layer 3e is made of Ti. The film thickness of the first metal layer 3a is 10 nm, the film thickness of the second metal layer 3b is 72 nm, the film thickness of the third metal layer 3c is 60 nm, and the film of the fourth metal layer 3d. The thickness is 130 nm, and the thickness of the fifth metal layer 3e is 10 nm. The other first electrode fingers, the plurality of second electrode fingers, the plurality of first connection electrodes, and the plurality of second connection electrodes of the IDT electrode are similarly configured.
 なお、複数の第1の電極指、複数の第2の電極指、複数の第1の接続電極及び複数の第2の接続電極の材料及び膜厚は上記に限定されない。複数の第1の電極指、複数の第2の電極指、複数の第1の接続電極及び複数の第2の接続電極は、単層の金属膜からなっていてもよい。上記第1の外側バスバー及び上記第2の外側バスバーも、複数の金属層が積層された積層金属膜からなっていてもよく、あるいは、単層の金属膜からなっていてもよい。 Note that the materials and film thicknesses of the plurality of first electrode fingers, the plurality of second electrode fingers, the plurality of first connection electrodes, and the plurality of second connection electrodes are not limited to the above. The plurality of first electrode fingers, the plurality of second electrode fingers, the plurality of first connection electrodes, and the plurality of second connection electrodes may be formed of a single layer metal film. The first outer bus bar and the second outer bus bar may also be made of a laminated metal film in which a plurality of metal layers are laminated, or may be made of a single-layer metal film.
 圧電基板2上には、IDT電極及び反射器を覆うように第1の誘電体膜18が設けられている。第1の誘電体膜18は、特に限定されないが、SiOからなる。それによって、周波数温度特性を改善することができる。第1の誘電体膜18の膜厚は、特に限定されないが、1110nmである。 A first dielectric film 18 is provided on the piezoelectric substrate 2 so as to cover the IDT electrode and the reflector. Although the first dielectric film 18 is not particularly limited, it is made of SiO 2 . Thereby, the frequency temperature characteristic can be improved. The film thickness of the first dielectric film 18 is not particularly limited, but is 1110 nm.
 第1の誘電体膜18上には、第2の誘電体膜19が設けられている。第2の誘電体膜19は、特に限定されないが、SiNからなる。第2の誘電体膜19の膜厚を調整することにより、容易に周波数調整を行うことができる。第2の誘電体膜19の膜厚は、特に限定されないが、40nmである。なお、第1の誘電体膜18及び第2の誘電体膜19は設けられていなくともよい。 A second dielectric film 19 is provided on the first dielectric film 18. Although the second dielectric film 19 is not particularly limited, it is made of SiN. By adjusting the film thickness of the second dielectric film 19, the frequency can be easily adjusted. The film thickness of the second dielectric film 19 is not particularly limited, but is 40 nm. Note that the first dielectric film 18 and the second dielectric film 19 may not be provided.
 図1に戻り、本実施形態の特徴は、複数の第1の接続電極4cの一部を覆うように、圧電基板2上に第1の外側バスバー6が設けられており、複数の第2の接続電極5cの一部を覆うように、圧電基板2上に第2の外側バスバー7が設けられていることにある。これにより、弾性波装置1の製造に際し、レジストの残渣を生じ難くすることができる。それによって、フィルタ特性などの電気的特性の劣化を生じ難くすることができ、かつ生産性を高めることができる。これを、以下において、本実施形態の弾性波装置1の製造方法の一例と共に説明する。 Returning to FIG. 1, the feature of this embodiment is that the first outer bus bar 6 is provided on the piezoelectric substrate 2 so as to cover a part of the plurality of first connection electrodes 4c, and the plurality of second connection electrodes 4c are provided. The second outer bus bar 7 is provided on the piezoelectric substrate 2 so as to cover a part of the connection electrode 5c. Thereby, when manufacturing the acoustic wave device 1, it is possible to make it difficult to generate a resist residue. Accordingly, it is possible to make it difficult for electrical characteristics such as filter characteristics to deteriorate, and to increase productivity. This will be described below together with an example of a method for manufacturing the acoustic wave device 1 of the present embodiment.
 図5(a)及び図5(b)は、第1の実施形態に係る弾性波装置の製造方法の一例を説明するための平面図である。図6(a)及び図6(b)は、第1の実施形態に係る弾性波装置の製造方法の一例を説明するための平面図である。図7は、第1の実施形態に係る弾性波装置の製造方法の一例を説明するための正面断面図である。なお、図5(a)においては、後述するレジストパターンをハッチングにより示す。 FIG. 5A and FIG. 5B are plan views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment. FIG. 6A and FIG. 6B are plan views for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment. FIG. 7 is a front cross-sectional view for explaining an example of the method for manufacturing the acoustic wave device according to the first embodiment. In FIG. 5A, a resist pattern described later is indicated by hatching.
 図5(a)に示すように、圧電基板2を用意する。次に、リフトオフ法により、圧電基板2上に、IDT電極の第1の内側バスバーと、複数の第1の電極指と、第2の内側バスバーと、複数の第2の電極指と、複数の第1の接続電極と、複数の第2の接続電極とを形成する。 As shown in FIG. 5A, a piezoelectric substrate 2 is prepared. Next, the IDT electrode first inner bus bar, the plurality of first electrode fingers, the second inner bus bar, the plurality of second electrode fingers, the plurality of second electrode fingers, and the like on the piezoelectric substrate 2 by a lift-off method. A first connection electrode and a plurality of second connection electrodes are formed.
 より具体的には、圧電基板2上に、レジスト層を形成する。レジスト層は、例えば、印刷法やスピンコート法などにより形成することができる。次に、レジスト層を露光した後に現像することにより、レジストパターン22を形成する。レジストパターン22におけるIDT電極に相当する部分は、全て連なっている。 More specifically, a resist layer is formed on the piezoelectric substrate 2. The resist layer can be formed by, for example, a printing method or a spin coating method. Next, the resist pattern 22 is formed by developing after exposing the resist layer. The portions corresponding to the IDT electrodes in the resist pattern 22 are all continuous.
 次に、図5(b)に示すように、レジストパターン22を覆うように圧電基板2上に、第1の内側バスバー、第2の内側バスバー、第1の電極指、第2の電極指、第1の接続電極及び第2の接続電極用の金属膜23を形成する。金属膜23は、真空蒸着法により形成する。なお、金属膜23は、例えば、スパッタリング法などの適宜の方法によって形成してもよい。 Next, as shown in FIG. 5B, on the piezoelectric substrate 2 so as to cover the resist pattern 22, a first inner bus bar, a second inner bus bar, a first electrode finger, a second electrode finger, A metal film 23 for the first connection electrode and the second connection electrode is formed. The metal film 23 is formed by a vacuum deposition method. The metal film 23 may be formed by an appropriate method such as sputtering.
 次に、レジストパターン22を剥離する。このとき、上述したように、レジストパターン22のIDT電極に相当する部分は全て連なっているため、レジストパターン22を容易に、かつより一層確実に剥離することができる。これにより、図6(a)に示すように、第1の内側バスバー4a、第2の内側バスバー5a、複数の第1の電極指4b、複数の第2の電極指5b、複数の第1の接続電極4c及び複数の第2の接続電極5cを形成することができる。 Next, the resist pattern 22 is peeled off. At this time, as described above, since the portions corresponding to the IDT electrodes of the resist pattern 22 are all continuous, the resist pattern 22 can be easily and more reliably peeled off. Accordingly, as shown in FIG. 6A, the first inner bus bar 4a, the second inner bus bar 5a, the plurality of first electrode fingers 4b, the plurality of second electrode fingers 5b, and the plurality of first electrodes. A connection electrode 4c and a plurality of second connection electrodes 5c can be formed.
 次に、図6(b)に示すように、複数の第1の接続電極4cの一部を覆うように、圧電基板2上に第1の外側バスバー6を形成する。これにより、第1の外側バスバー6、複数の第1の接続電極4c及び第1の内側バスバー4aにより囲まれた複数の第1の開口部8を有する第1のバスバー14を形成する。これと同時に、複数の第2の接続電極5cの一部を覆うように、圧電基板2上に第2の外側バスバー7を形成する。これにより、第2の外側バスバー7、複数の第2の接続電極5c及び第2の内側バスバー5aにより囲まれた複数の第2の開口部9を有する第2のバスバー15を形成する。第1の外側バスバー6及び第2の外側バスバー7は、リフトオフ法により形成することができる。これにより、圧電基板2上にIDT電極3を形成することができる。 Next, as shown in FIG. 6B, the first outer bus bar 6 is formed on the piezoelectric substrate 2 so as to cover a part of the plurality of first connection electrodes 4c. As a result, the first bus bar 14 having the plurality of first openings 8 surrounded by the first outer bus bar 6, the plurality of first connection electrodes 4c and the first inner bus bar 4a is formed. At the same time, the second outer bus bar 7 is formed on the piezoelectric substrate 2 so as to cover a part of the plurality of second connection electrodes 5c. As a result, a second bus bar 15 having a plurality of second openings 9 surrounded by the second outer bus bar 7, the plurality of second connection electrodes 5c, and the second inner bus bar 5a is formed. The first outer bus bar 6 and the second outer bus bar 7 can be formed by a lift-off method. Thereby, the IDT electrode 3 can be formed on the piezoelectric substrate 2.
 なお、反射器13a及び反射器13bも、IDT電極3と同時に、リフトオフ法により形成する。 In addition, the reflector 13a and the reflector 13b are also formed by the lift-off method simultaneously with the IDT electrode 3.
 次に、図7に示すように、IDT電極3、反射器13a及び反射器13bを覆うように、圧電基板2上に第1の誘電体膜18を形成する。次に、第1の誘電体膜18上に第2の誘電体膜19を形成する。第1の誘電体膜18及び第2の誘電体膜19は、例えば,スパッタリング法や真空蒸着法により形成することができる。 Next, as shown in FIG. 7, a first dielectric film 18 is formed on the piezoelectric substrate 2 so as to cover the IDT electrode 3, the reflector 13a, and the reflector 13b. Next, a second dielectric film 19 is formed on the first dielectric film 18. The first dielectric film 18 and the second dielectric film 19 can be formed by, for example, a sputtering method or a vacuum evaporation method.
 本実施形態の弾性波装置1の製造においては、第1のバスバー及び第2のバスバーを、図5(a)及び図5(b)並びに図6(a)に示す工程と、図6(b)に示す工程とに分けて形成する。そのため、図5(a)に示すように、IDT電極の第1の開口部及び第2の開口部に相当する部分において、レジスト層は、レジスト層が除去された部分により囲まれていない。これにより、図5(b)に示すように、レジストパターン22のIDT電極に相当する部分におけるレジスト層は、圧電基板2上に直接的に金属膜23が形成されている部分により囲まれていない。そのため、レジストパターン22のIDT電極に相当する部分が全て連なった状態とすることができる。よって、レジストパターン22を容易に剥離することができ、生産効率を高めることができる。加えて、レジストパターン22をより一層確実に剥離することができるため、レジスト残渣による不良の発生率を低減することができる。従って、生産性を効果的に高めることができる。 In the manufacture of the elastic wave device 1 of the present embodiment, the first bus bar and the second bus bar are formed by the steps shown in FIGS. 5 (a), 5 (b) and 6 (a) and FIG. 6 (b). ) And the process shown in FIG. Therefore, as shown in FIG. 5A, in the portions corresponding to the first opening and the second opening of the IDT electrode, the resist layer is not surrounded by the portion from which the resist layer has been removed. Thereby, as shown in FIG. 5B, the resist layer in the portion corresponding to the IDT electrode of the resist pattern 22 is not surrounded by the portion where the metal film 23 is directly formed on the piezoelectric substrate 2. . For this reason, all the portions corresponding to the IDT electrodes of the resist pattern 22 can be connected. Therefore, the resist pattern 22 can be easily peeled off, and the production efficiency can be increased. In addition, since the resist pattern 22 can be peeled off more reliably, the occurrence rate of defects due to resist residues can be reduced. Therefore, productivity can be improved effectively.
 ここで、図1に示す、IDT電極3の電極指ピッチにより規定される波長をλとする。第1の開口部8の第2の方向yに沿う寸法を第1の開口長とする。第2の開口部9の第2の方向yに沿う寸法を第2の開口長とする。本実施形態では、第1の開口長は、第1の内側バスバー4aと第1の外側バスバー6との距離であり、第2の開口長は、第2の内側バスバー5aと第2の外側バスバー7との距離である。第1の開口長及び第2の開口長は、2λ以下であることが好ましい。それによって、IDT電極3の電気抵抗を低くすることができる。 Here, the wavelength defined by the electrode finger pitch of the IDT electrode 3 shown in FIG. A dimension along the second direction y of the first opening 8 is defined as a first opening length. A dimension along the second direction y of the second opening 9 is defined as a second opening length. In the present embodiment, the first opening length is the distance between the first inner bus bar 4a and the first outer bus bar 6, and the second opening length is the second inner bus bar 5a and the second outer bus bar. 7 distance. The first opening length and the second opening length are preferably 2λ or less. Thereby, the electrical resistance of the IDT electrode 3 can be lowered.
 他方、第1の開口長及び第2の開口長は、1λ以上であることが好ましく、1.2λ以上であることがより好ましい。それによって、リターンロスを良好とすることができる。これを以下において説明する。 On the other hand, the first opening length and the second opening length are preferably 1λ or more, and more preferably 1.2λ or more. Thereby, the return loss can be improved. This will be described below.
 以下の条件において、本実施形態の弾性波装置1の共振周波数及び反共振周波数の中間の周波数におけるリターンロスを評価した。なお、第1のバスバー14及び第2のバスバー15の第2の方向yに沿う寸法を第1の内側バスバー4a及び第2の内側バスバー5aの幅とする。他方、本実施形態において、第1の電極指4b及び第2の電極指5bの第2の方向yに沿う寸法を、第1の電極指4b及び第2の電極指5bの長さとする。上述したように、第1の電極指4b及び第2の電極指5bの第1の方向xに沿う寸法は、第1の電極指4b及び第2の電極指5bの幅である。交叉領域Aの第2の方向yに沿う寸法を交叉幅とする。 The return loss at the intermediate frequency between the resonance frequency and the antiresonance frequency of the elastic wave device 1 of the present embodiment was evaluated under the following conditions. The dimension along the second direction y of the first bus bar 14 and the second bus bar 15 is the width of the first inner bus bar 4a and the second inner bus bar 5a. On the other hand, in the present embodiment, the dimension of the first electrode finger 4b and the second electrode finger 5b along the second direction y is the length of the first electrode finger 4b and the second electrode finger 5b. As described above, the dimension along the first direction x of the first electrode finger 4b and the second electrode finger 5b is the width of the first electrode finger 4b and the second electrode finger 5b. A dimension along the second direction y of the crossing area A is defined as a crossing width.
 圧電基板:材料127.5°Y-X LiNbO
 第1の内側バスバー及び第2の内側バスバーの幅:0.85μm
 第1の電極指及び第2の電極指の幅(幅広部以外):1μm
 第1の電極指の幅広部及び第2の電極指の幅広部の幅:1.4μm
 第1の電極指の幅広部及び第2の電極指の幅広部の長さ:1μm
 波長:4μm
 交叉幅:40μm
 第1の電極指及び第2の電極指の対数:150対
Piezoelectric substrate: Material 127.5 ° YX LiNbO 3
Width of the first inner bus bar and the second inner bus bar: 0.85 μm
Width of first electrode finger and second electrode finger (other than wide part): 1 μm
The width of the wide part of the first electrode finger and the wide part of the second electrode finger: 1.4 μm
Length of the wide part of the first electrode finger and the wide part of the second electrode finger: 1 μm
Wavelength: 4μm
Cross width: 40 μm
Number of pairs of first electrode fingers and second electrode fingers: 150 pairs
 図8は、第1の実施形態に係る弾性波装置の、共振周波数及び反共振周波数の中間の周波数におけるリターンロスと、第1の開口長との関係を示す図である。 FIG. 8 is a diagram showing the relationship between the return loss at the intermediate frequency between the resonance frequency and the anti-resonance frequency and the first opening length of the elastic wave device according to the first embodiment.
 図8に示すように、第1の開口長が1λ以上、2λ以下の範囲のとき、リターンロスの絶対値を0.35以下とすることができ、リターンロスを良好とし得ることがわかる。第1の開口長が1.2λ以上、2λ以下の範囲のとき、より一層リターンロスを良好とし得ることがわかる。 As shown in FIG. 8, when the first opening length is in the range of 1λ or more and 2λ or less, the absolute value of the return loss can be 0.35 or less, and the return loss can be improved. It can be seen that when the first opening length is in the range from 1.2λ to 2λ, the return loss can be further improved.
 ところで、図2に示すように、第1の外側バスバー6は複数の第1の接続電極4c及び圧電基板2からなる凹凸部上に設けられている。それによって、第1の外側バスバー6と複数の第1の接続電極4cとの接合力を高めることができる。同様に第2の外側バスバーと複数の第2の接続電極との接合力を高めることができる。よって、IDT電極が破損し難く、弾性波装置1の信頼性を高めることができる。 By the way, as shown in FIG. 2, the first outer bus bar 6 is provided on the concavo-convex portion including the plurality of first connection electrodes 4 c and the piezoelectric substrate 2. Thereby, the bonding force between the first outer bus bar 6 and the plurality of first connection electrodes 4c can be increased. Similarly, the bonding force between the second outer bus bar and the plurality of second connection electrodes can be increased. Therefore, the IDT electrode is hardly damaged, and the reliability of the acoustic wave device 1 can be improved.
 図3に示すように、本実施形態では、第1のエッジ領域Caにおいては、第1の電極指4bが幅広部16を有し、第2の電極指5bが幅広部17を有することにより、音速が低くなっている。なお、第1のエッジ領域Caの音速を低くする構成はこれに限定されない。例えば、第1のエッジ領域Caにおいて、第1の電極指4b上及び第2の電極指5b上に質量付加膜が設けられていてもよい。第2のエッジ領域における音速を低くする構成についても同様である。 As shown in FIG. 3, in the present embodiment, in the first edge region Ca, the first electrode finger 4 b has the wide portion 16 and the second electrode finger 5 b has the wide portion 17. The sound speed is low. In addition, the structure which makes the sound speed of 1st edge area | region Ca low is not limited to this. For example, in the first edge region Ca, a mass addition film may be provided on the first electrode finger 4b and the second electrode finger 5b. The same applies to the configuration for lowering the sound speed in the second edge region.
 以下において、第1の実施形態の第1~第3の変形例を示す。第1~第3の変形例においては、第1のバスバー及び第2のバスバーの構成が第1の実施形態と異なる。上記の点以外においては、第1~第3の変形例は、第1の実施形態と同様に構成されている。なお、第1~第3の変形例においては、第1のバスバーにおける第1の内側バスバー及び第1の外側バスバー並びに第2のバスバーにおける第2の内側バスバー及び第2の外側バスバーは、第1の実施形態と同様に構成されている。第1~第3の変形例においても、第1の実施形態と同様に、生産性を高めることができる。 Hereinafter, first to third modifications of the first embodiment will be described. In the first to third modifications, the configurations of the first bus bar and the second bus bar are different from those of the first embodiment. Except for the above points, the first to third modifications are configured in the same manner as in the first embodiment. In the first to third modifications, the first inner bus bar and the first outer bus bar in the first bus bar and the second inner bus bar and the second outer bus bar in the second bus bar are the first bus bar, It is comprised similarly to embodiment of this. Also in the first to third modifications, the productivity can be improved as in the first embodiment.
 図9は、第1の実施形態の第1の変形例におけるIDT電極の平面図である。なお、図9では、圧電基板におけるIDT電極が設けられている部分付近を示す。後述する、IDT電極を示す各図においても同様である。 FIG. 9 is a plan view of the IDT electrode in the first modification of the first embodiment. FIG. 9 shows the vicinity of a portion where the IDT electrode is provided on the piezoelectric substrate. The same applies to each drawing showing IDT electrodes, which will be described later.
 本変形例においては、第1の接続電極4cは、第2の電極指5bの第2の方向yにおける延長線上に設けられている。第2の接続電極5cは、第1の電極指4bの第2の方向yにおける延長線上に設けられている。 In the present modification, the first connection electrode 4c is provided on an extension line in the second direction y of the second electrode finger 5b. The second connection electrode 5c is provided on an extension line in the second direction y of the first electrode finger 4b.
 図10は、第1の実施形態の第2の変形例におけるIDT電極の平面図である。 FIG. 10 is a plan view of the IDT electrode in the second modification of the first embodiment.
 本変形例においては、第1の接続電極104cの幅が第1の電極指4bの幅よりも広い。各第1の接続電極104cは、1本以上おきの第1の電極指4bに、第1の内側バスバー4aを介して対向するように設けられている。同様に、第2の接続電極105cの幅は第1の電極指4bの幅よりも広い。各第2の接続電極105cは、1本以上おきの第1の電極指4bの第2の方向yにおける延長線上に設けられている。 In the present modification, the width of the first connection electrode 104c is wider than the width of the first electrode finger 4b. Each first connection electrode 104c is provided to face every other first electrode finger 4b via the first inner bus bar 4a. Similarly, the width of the second connection electrode 105c is wider than the width of the first electrode finger 4b. Each second connection electrode 105c is provided on an extension line in the second direction y of every other one or more first electrode fingers 4b.
 図11は、第1の実施形態の第3の変形例におけるIDT電極の平面図である。 FIG. 11 is a plan view of an IDT electrode according to a third modification of the first embodiment.
 本変形例においては、第1の接続電極114c及び第2の接続電極115cが曲線形状を有する。第1の開口部118及び第2の開口部119も曲線形状を有する。 In the present modification, the first connection electrode 114c and the second connection electrode 115c have a curved shape. The first opening 118 and the second opening 119 also have a curved shape.
 図12は、第2の実施形態におけるIDT電極の平面図である。 FIG. 12 is a plan view of the IDT electrode in the second embodiment.
 本実施形態においては、IDT電極33が、第1の接続電極4cに接続されている第3の接続電極34c及び第2の接続電極5cに接続されている第4の接続電極35cを有する。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。 In the present embodiment, the IDT electrode 33 includes a third connection electrode 34c connected to the first connection electrode 4c and a fourth connection electrode 35c connected to the second connection electrode 5c. Except for the above points, the elastic wave device of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
 第3の接続電極34cは、複数の第1の接続電極4cの、第1の内側バスバー4aに接続されている側とは反対側の端部に接続されている。第3の接続電極34cは、第3の接続電極34c、複数の第1の接続電極4c及び第1の内側バスバー4aにより囲まれた複数の第3の開口部38が形成されるように設けられている。他方、第2のバスバー35側においても、第1のバスバー34側と同様に、複数の第4の開口部39が形成されるように、複数の第4の接続電極35cが設けられている。第3の接続電極34c及び第4の接続電極35cを有することにより、IDT電極33の電気抵抗を小さくすることができる。 The third connection electrode 34c is connected to the end of the plurality of first connection electrodes 4c opposite to the side connected to the first inner bus bar 4a. The third connection electrode 34c is provided so that a plurality of third openings 38 surrounded by the third connection electrode 34c, the plurality of first connection electrodes 4c, and the first inner bus bar 4a are formed. ing. On the other hand, also on the second bus bar 35 side, a plurality of fourth connection electrodes 35c are provided so that a plurality of fourth openings 39 are formed, similarly to the first bus bar 34 side. By having the third connection electrode 34c and the fourth connection electrode 35c, the electrical resistance of the IDT electrode 33 can be reduced.
 第3の接続電極34cは第1の方向xに延びている。なお、第3の接続電極34cは、第1の接続電極4cが延びる方向に交叉する方向に延びていればよい。第4の接続電極35cも同様である。 The third connection electrode 34c extends in the first direction x. The third connection electrode 34c only needs to extend in a direction crossing the direction in which the first connection electrode 4c extends. The same applies to the fourth connection electrode 35c.
 ここで、図12に示すように、第1の開口長をD1とし、第2の開口長をD2とする。第3の開口部38の第2の方向yに沿う寸法を第3の開口長D3とし、第4の開口部39の第2の方向yに沿う寸法を第4の開口長D4とする。このとき、第3の開口長D3は第1の開口長D1より長い。同様に、第4の開口長D4は第2の開口長D2より長い。 Here, as shown in FIG. 12, the first opening length is D1, and the second opening length is D2. The dimension along the second direction y of the third opening 38 is defined as a third opening length D3, and the dimension along the second direction y of the fourth opening 39 is defined as a fourth opening length D4. At this time, the third opening length D3 is longer than the first opening length D1. Similarly, the fourth opening length D4 is longer than the second opening length D2.
 第2の実施形態に係る弾性波装置の製造に際しては、第1の接続電極4c及び第2の接続電極5cを形成する工程において、圧電基板2上に、第3の接続電極34c及び第4の接続電極35cを形成すればよい。このとき、第1の接続電極4cの第1の内側バスバー4aに接続される側とは反対側の端部に接続するように、かつ複数の第3の開口部38を形成するように、第3の接続電極34cを形成すればよい。同様に、第2の接続電極5cの第2の内側バスバー5aに接続される側とは反対側の端部に接続するように、かつ複数の第4の開口部39を形成するように、第4の接続電極35cを形成すればよい。 In manufacturing the acoustic wave device according to the second embodiment, the third connection electrode 34c and the fourth connection electrode 4c are formed on the piezoelectric substrate 2 in the step of forming the first connection electrode 4c and the second connection electrode 5c. The connection electrode 35c may be formed. At this time, the first connection electrode 4c is connected to the end opposite to the side connected to the first inner bus bar 4a, and the plurality of third openings 38 are formed. 3 connection electrodes 34c may be formed. Similarly, the second connection electrode 5c is connected to the end opposite to the side connected to the second inner bus bar 5a, and the plurality of fourth openings 39 are formed. Four connection electrodes 35c may be formed.
 このとき、第1のバスバー34側においては、第3の開口長D3は、第1の開口長D1より長いため、レジストパターンを容易に剥離することができ、かつレジスト残渣による不良が発生し難い。第2のバスバー35側においても同様である。従って、本実施形態においても、生産性を高めることができる。 At this time, on the first bus bar 34 side, since the third opening length D3 is longer than the first opening length D1, the resist pattern can be easily peeled off, and defects due to the resist residue hardly occur. . The same applies to the second bus bar 35 side. Therefore, productivity can also be improved in this embodiment.
 もっとも、図1に示す第1の実施形態のように、第1の内側バスバー4aよりも第2の方向yにおける外側において、電極間にギャップが形成されており、電極が連なっていないことが好ましい。第2の内側バスバー5aよりも第2の方向yにおける外側において、電極間にギャップが形成されており、電極が連なっていないことが好ましい。それによって、レジストパターンをより一層容易にかつより一層確実に剥離することができる。 However, as in the first embodiment shown in FIG. 1, it is preferable that a gap is formed between the electrodes outside the first inner bus bar 4a in the second direction y and the electrodes are not connected. . It is preferable that a gap is formed between the electrodes outside the second inner bus bar 5a in the second direction y, and the electrodes are not connected. Thereby, the resist pattern can be more easily and more reliably peeled off.
 なお、第1の接続電極4c及び第2の接続電極5cを形成する工程の後の工程は、第1の実施形態の弾性波装置1の製造方法と同様である。 In addition, the process after the process of forming the 1st connection electrode 4c and the 2nd connection electrode 5c is the same as that of the manufacturing method of the elastic wave apparatus 1 of 1st Embodiment.
 図13は、第2の実施形態の第1の変形例におけるIDT電極の平面図である。 FIG. 13 is a plan view of the IDT electrode in the first modification of the second embodiment.
 本変形例においては、第3の接続電極124cが互いにギャップを隔てて複数設けられている点及び第4の接続電極125cが互いにギャップを隔てて複数設けられている点において、第2の実施形態と異なる。上記の点以外においては、本変形例の弾性波装置は第2の実施形態の弾性波装置と同様の構成を有する。 In this modification, the second embodiment is different in that a plurality of third connection electrodes 124c are provided with a gap therebetween and a plurality of fourth connection electrodes 125c are provided with a gap therebetween. And different. Except for the above points, the elastic wave device of the present modification has the same configuration as the elastic wave device of the second embodiment.
 本変形例においては、第1の実施形態と同様に、第1の内側バスバー4aよりも第2の方向yにおける外側において、電極間にギャップが形成されており、電極が連なっていない。第2の内側バスバー5aよりも第2の方向yにおける外側においても、電極間にギャップが形成されており、電極が連なっていない。よって、第1の実施形態と同様に、生産性を効果的に高めることができる。 In the present modification, as in the first embodiment, a gap is formed between the electrodes outside the first inner bus bar 4a in the second direction y, and the electrodes are not connected. A gap is formed between the electrodes on the outer side in the second direction y than the second inner bus bar 5a, and the electrodes are not connected. Therefore, the productivity can be effectively increased as in the first embodiment.
 なお、本変形例に係る弾性波装置の製造に際しては、第1の接続電極4c及び第3の接続電極124cを形成する工程において、複数の第3の接続電極124cを、互いにギャップを隔てて形成すればよい。他の工程は、第2の実施形態の弾性波装置の製造に際しての工程と同様である。 In manufacturing the acoustic wave device according to this modification, in the step of forming the first connection electrode 4c and the third connection electrode 124c, the plurality of third connection electrodes 124c are formed with a gap therebetween. do it. Other processes are the same as the processes in manufacturing the acoustic wave device of the second embodiment.
 図14は、第2の実施形態の第2の変形例におけるIDT電極の平面図である。 FIG. 14 is a plan view of an IDT electrode according to a second modification of the second embodiment.
 本変形例は、第1のバスバー134が複数の第1の電極134cを含む点及び第2のバスバー135が複数の第2の電極135cを含む点において、第2の実施形態の第1の変形例と異なる。上記の点以外においては、本変形例の弾性波装置は、第2の実施形態の第1の変形例の弾性波装置と同様の構成を有する。 This modification is the first modification of the second embodiment in that the first bus bar 134 includes a plurality of first electrodes 134c and the second bus bar 135 includes a plurality of second electrodes 135c. Different from the example. Except for the above points, the elastic wave device of the present modification has the same configuration as the elastic wave device of the first modification of the second embodiment.
 第1の電極134cは、第2の方向yにおける第1の電極指4bの延長線上に設けられている。第1の電極134cは、第1の接続電極4cが延びる方向に平行に延びている。第1の電極134cの第1の内側バスバー4a側の端部と、第1の内側バスバー4aとの間には、ギャップが形成されている。第1の方向xに沿い、第1の接続電極4cと複数の第1の電極134cとが交互に配置されている。 The first electrode 134c is provided on an extension line of the first electrode finger 4b in the second direction y. The first electrode 134c extends in parallel with the direction in which the first connection electrode 4c extends. A gap is formed between the end portion of the first electrode 134c on the first inner bus bar 4a side and the first inner bus bar 4a. The first connection electrodes 4c and the plurality of first electrodes 134c are alternately arranged along the first direction x.
 第1の電極134cの第1の内側バスバー4a側とは反対側の端部には、第3の接続電極124cが接続されている。第1の電極134cに接続されている第3の接続電極124cと、第1の接続電極4cに接続されている第3の接続電極124cとの間には、ギャップが形成されている。他方、第2のバスバー135側も、第1のバスバー134側と同様に構成されている。 A third connection electrode 124c is connected to the end of the first electrode 134c opposite to the first inner bus bar 4a side. A gap is formed between the third connection electrode 124c connected to the first electrode 134c and the third connection electrode 124c connected to the first connection electrode 4c. On the other hand, the second bus bar 135 side is configured similarly to the first bus bar 134 side.
 本変形例においても、第2の実施形態の第1の変形例と同様に、第3の接続電極124c同士の間及び第4の接続電極125c同士の間においてギャップが形成されている。加えて、第1の電極134cと第1の内側バスバー4aとの間及び第2の電極135cと第2の内側バスバー5aとの間においてもギャップが形成されている。よって、本変形例においても、製造工程において、レジストパターンを容易にかつより一層確実に剥離することができ、生産性を高めることができる。 Also in this modification, a gap is formed between the third connection electrodes 124c and between the fourth connection electrodes 125c, as in the first modification of the second embodiment. In addition, gaps are also formed between the first electrode 134c and the first inner bus bar 4a and between the second electrode 135c and the second inner bus bar 5a. Therefore, also in this modified example, in the manufacturing process, the resist pattern can be easily and more reliably peeled off, and productivity can be improved.
 図15は、第3の実施形態におけるIDT電極の平面図である。 FIG. 15 is a plan view of an IDT electrode according to the third embodiment.
 第3の実施形態は、第1の接続電極44c及び第2の接続電極45cが、第1の電極指44b及び第2の電極指45bが延びる方向と交叉する方向に延びている点において、第1の実施形態と異なる。さらに、第1の電極指44b及び第2の電極指45bが、幅広部を有しない点においても、第3の実施形態は第1の実施形態と異なる。上記の点以外においては、第3の実施形態の弾性波装置は、第1の実施形態の弾性波装置1と同様の構成を有する。 The third embodiment is different in that the first connection electrode 44c and the second connection electrode 45c extend in a direction intersecting with the direction in which the first electrode finger 44b and the second electrode finger 45b extend. Different from the first embodiment. Furthermore, the third embodiment is different from the first embodiment in that the first electrode finger 44b and the second electrode finger 45b do not have a wide portion. Except for the above points, the elastic wave device of the third embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
 本実施形態においても、第1の実施形態と同様に、生産性を効果的に高めることができる。 Also in the present embodiment, the productivity can be effectively increased as in the first embodiment.
 本実施形態においては、複数の第1の接続電極44cが第2の方向yと交叉する方向に延びているため、第1の開口部48は第2の方向yに対して傾斜している。第2の開口部49も、同様に、第2の方向yに対して傾斜している。 In the present embodiment, since the plurality of first connection electrodes 44c extend in a direction crossing the second direction y, the first opening 48 is inclined with respect to the second direction y. Similarly, the second opening 49 is also inclined with respect to the second direction y.
 ここで、交叉領域において弾性波が励振された際に生じる横モードは、第1のバスバー44側及び第2のバスバー45側に伝搬する。第1のバスバー44及び第2のバスバー45は、上記のように傾斜した第1の開口部48及び第2の開口部49を有するため、横モードを交叉領域側に反射させることができる。反射された横モードと、交叉領域から第1のバスバー44側及び第2のバスバー45側に伝搬する横モードとは相殺される。それによって、横モードによるスプリアスを抑制することができる。 Here, the transverse mode generated when the elastic wave is excited in the crossing region propagates to the first bus bar 44 side and the second bus bar 45 side. Since the first bus bar 44 and the second bus bar 45 have the first opening 48 and the second opening 49 inclined as described above, the transverse mode can be reflected to the crossing region side. The reflected transverse mode and the transverse mode propagating from the crossing region to the first bus bar 44 side and the second bus bar 45 side are canceled out. Thereby, spurious due to the transverse mode can be suppressed.
 なお、本実施形態においても、第1の電極指44b及び第2の電極指45bは、第1のエッジ領域及び第2のエッジ領域において幅広部を有していてもよい。 In the present embodiment also, the first electrode finger 44b and the second electrode finger 45b may have wide portions in the first edge region and the second edge region.
 図16は、第4の実施形態に係る弾性波装置の平面図である。なお、図16中の一点鎖線は、後述する各IDT電極と各配線電極との境界線及び後述する各配線電極と各端子との境界線を示す。 FIG. 16 is a plan view of the acoustic wave device according to the fourth embodiment. In addition, the dashed-dotted line in FIG. 16 shows the boundary line of each IDT electrode and each wiring electrode mentioned later, and the boundary line between each wiring electrode and each terminal mentioned later.
 本実施形態の弾性波装置51は、縦結合共振子型弾性波フィルタ52と、縦結合共振子型弾性波フィルタ52に接続されている配線電極58と、配線電極58に接続されている複数の端子とを有する。なお、配線電極58及び複数の端子は、圧電基板2上に設けられている。 The elastic wave device 51 of the present embodiment includes a longitudinally coupled resonator type acoustic wave filter 52, a wiring electrode 58 connected to the longitudinally coupled resonator type acoustic wave filter 52, and a plurality of wiring electrodes 58 connected to the wiring electrode 58. Terminal. The wiring electrode 58 and the plurality of terminals are provided on the piezoelectric substrate 2.
 縦結合共振子型弾性波フィルタ52は、第1の方向xに沿い配置された第1のIDT電極53A、第2のIDT電極53B及び第3のIDT電極53Cを有する。第1のIDT電極53A、第2のIDT電極53B及び第3のIDT電極53Cは、第1の実施形態におけるIDT電極と同様の構成を有する。第1のIDT電極53Aの第2のIDT電極53B側とは反対側に反射器13aが配置されており、第3のIDT電極53Cの第2のIDT電極53B側とは反対側に反射器13bが配置されている。なお、本実施形態では、縦結合共振子型弾性波フィルタ52は3個のIDT電極を有するが、IDT電極の個数は上記に限定されない。 The longitudinally coupled resonator type acoustic wave filter 52 includes a first IDT electrode 53A, a second IDT electrode 53B, and a third IDT electrode 53C arranged along the first direction x. The first IDT electrode 53A, the second IDT electrode 53B, and the third IDT electrode 53C have the same configuration as the IDT electrode in the first embodiment. A reflector 13a is disposed on the opposite side of the first IDT electrode 53A to the second IDT electrode 53B side, and a reflector 13b is provided on the opposite side of the third IDT electrode 53C to the second IDT electrode 53B side. Is arranged. In the present embodiment, the longitudinally coupled resonator type acoustic wave filter 52 has three IDT electrodes, but the number of IDT electrodes is not limited to the above.
 本実施形態では、複数の端子は、入力端子59a、出力端子59b及びグラウンド端子59cである。第1のIDT電極53Aの第1の外側バスバー56Aには、配線電極58を介して出力端子59bが接続されている。第1のIDT電極53Aの第2の外側バスバー57Aには、配線電極58を介してグラウンド端子59cが接続されている。第2のIDT電極53Bの第1の外側バスバー56Bには、配線電極58を介してグラウンド端子59cが接続されている。第2のIDT電極53Bの第2の外側バスバー57Bには、配線電極58を介して入力端子59aが接続されている。第3のIDT電極53Cの第1の外側バスバー56Cには、配線電極58を介して出力端子59bが接続されている。第3のIDT電極53Cの第2の外側バスバー57Cには、配線電極58を介してグラウンド端子59cが接続されている。 In the present embodiment, the plurality of terminals are an input terminal 59a, an output terminal 59b, and a ground terminal 59c. An output terminal 59b is connected to the first outer bus bar 56A of the first IDT electrode 53A via a wiring electrode 58. A ground terminal 59c is connected to the second outer bus bar 57A of the first IDT electrode 53A via a wiring electrode 58. A ground terminal 59c is connected to the first outer bus bar 56B of the second IDT electrode 53B via a wiring electrode 58. An input terminal 59a is connected to the second outer bus bar 57B of the second IDT electrode 53B via a wiring electrode 58. An output terminal 59b is connected to the first outer bus bar 56C of the third IDT electrode 53C via a wiring electrode 58. A ground terminal 59c is connected to the second outer bus bar 57C of the third IDT electrode 53C via a wiring electrode 58.
 第1のIDT電極53A、第2のIDT電極53B及び第3のIDT電極53Cは、第1の実施形態におけるIDT電極と同様の構成を有するため、製造工程においてレジストパターンを容易に、かつより一層確実に剥離することができる。従って、第1の実施形態と同様に、生産性を高めることができる。 Since the first IDT electrode 53A, the second IDT electrode 53B, and the third IDT electrode 53C have the same configuration as the IDT electrode in the first embodiment, the resist pattern can be easily and more easily formed in the manufacturing process. It can be reliably peeled off. Therefore, the productivity can be increased as in the first embodiment.
 本実施形態の弾性波装置51の製造に際しては、第1の実施形態の弾性波装置1の製造方法と同様に、第1の内側バスバー、第2の内側バスバー、複数の第1の電極指、複数の第2の電極指、複数の第1の接続電極及び複数の第2の接続電極を形成する。第1のIDT電極53A、第2のIDT電極53B及び第3のIDT電極53Cの上記の各部分を同時に形成することが好ましい。これにより生産性を高めることができる。 When manufacturing the acoustic wave device 51 of the present embodiment, as in the method of manufacturing the acoustic wave device 1 of the first embodiment, the first inner bus bar, the second inner bus bar, the plurality of first electrode fingers, A plurality of second electrode fingers, a plurality of first connection electrodes, and a plurality of second connection electrodes are formed. It is preferable to simultaneously form the above-described portions of the first IDT electrode 53A, the second IDT electrode 53B, and the third IDT electrode 53C. Thereby, productivity can be improved.
 次に、第1の実施形態の弾性波装置1の製造方法と同様に、第1の外側バスバー56Aを形成する。このとき、第1の外側バスバー56Aと同時に、圧電基板2上に、第1の外側バスバー56Aに接続するように配線電極58を形成することが好ましい。第1の外側バスバー56A及び配線電極58と同時に、配線電極58に接続するように、圧電基板2上に出力端子59bを形成することがより好ましい。ここで、第1の外側バスバー56B、第1の外側バスバー56C、第2の外側バスバー57A、第2の外側バスバー57B、第2の外側バスバー57C、他の配線電極58、他の出力端子59b、入力端子59a及び各グラウンド端子59cも同時に形成することがさらに好ましい。それによって、生産性をより一層高めることができる。 Next, the first outer bus bar 56A is formed in the same manner as in the method of manufacturing the acoustic wave device 1 of the first embodiment. At this time, it is preferable to form the wiring electrode 58 on the piezoelectric substrate 2 so as to be connected to the first outer bus bar 56A simultaneously with the first outer bus bar 56A. More preferably, the output terminal 59b is formed on the piezoelectric substrate 2 so as to be connected to the wiring electrode 58 simultaneously with the first outer bus bar 56A and the wiring electrode 58. Here, the first outer bus bar 56B, the first outer bus bar 56C, the second outer bus bar 57A, the second outer bus bar 57B, the second outer bus bar 57C, the other wiring electrodes 58, the other output terminals 59b, More preferably, the input terminal 59a and each ground terminal 59c are formed simultaneously. Thereby, productivity can be further increased.
 この後の工程は、第1の実施形態の弾性波装置1の製造方法と同様である。 The subsequent steps are the same as the manufacturing method of the acoustic wave device 1 of the first embodiment.
 図17は、第5の実施形態に係る弾性波装置の平面図である。 FIG. 17 is a plan view of the acoustic wave device according to the fifth embodiment.
 本実施形態の弾性波装置61は、複数の弾性波共振子を有するラダー型フィルタである。弾性波装置61は、複数の弾性波共振子を電気的に接続している配線電極68と、複数の弾性波共振子に配線電極58を介して電気的に接続されている複数の端子とを有する。なお、配線電極58、配線電極68及び複数の端子は、圧電基板上に設けられている。 The elastic wave device 61 of the present embodiment is a ladder type filter having a plurality of elastic wave resonators. The acoustic wave device 61 includes a wiring electrode 68 that electrically connects a plurality of acoustic wave resonators, and a plurality of terminals that are electrically connected to the plurality of acoustic wave resonators via a wiring electrode 58. Have. The wiring electrode 58, the wiring electrode 68, and the plurality of terminals are provided on the piezoelectric substrate.
 弾性波装置61における複数の弾性波共振子は、第1の弾性波共振子62A、第2の弾性波共振子62B及び第3の弾性波共振子62Cである。第1の弾性波共振子62A、第2の弾性波共振子62B及び第3の弾性波共振子62Cは、第1の実施形態の弾性波装置1と同様の構成を有する。なお、本実施形態の弾性波装置61は3個の弾性波共振子を有するが、弾性波共振子の個数は特に限定されない。 The plurality of elastic wave resonators in the elastic wave device 61 are a first elastic wave resonator 62A, a second elastic wave resonator 62B, and a third elastic wave resonator 62C. The first elastic wave resonator 62A, the second elastic wave resonator 62B, and the third elastic wave resonator 62C have the same configuration as that of the elastic wave device 1 of the first embodiment. In addition, although the elastic wave apparatus 61 of this embodiment has three elastic wave resonators, the number of elastic wave resonators is not specifically limited.
 本実施形態では、複数の端子は、入力端子59a、出力端子59b及びグラウンド端子59cである。第1の弾性波共振子62Aの第1の外側バスバーには、配線電極58を介して入力端子59aが接続されている。第2の弾性波共振子62Bの第1の外側バスバーには、配線電極58を介してグラウンド端子59cが接続されている。第3の弾性波共振子62Cの第2の外側バスバーには、配線電極58を介して出力端子59bが接続されている。第1の弾性波共振子62Aの第2の外側バスバー、第2の弾性波共振子62Bの第2の外側バスバー及び第3の弾性波共振子62Cの第1の外側バスバーは、配線電極68により接続されている。第1の弾性波共振子62A及び第3の弾性波共振子62Cはラダー型フィルタにおける直列腕共振子であり、第2の弾性波共振子62Bは並列腕共振子である。 In the present embodiment, the plurality of terminals are an input terminal 59a, an output terminal 59b, and a ground terminal 59c. An input terminal 59a is connected to the first outer bus bar of the first acoustic wave resonator 62A via a wiring electrode 58. A ground terminal 59c is connected to the first outer bus bar of the second acoustic wave resonator 62B through a wiring electrode 58. An output terminal 59b is connected to the second outer bus bar of the third elastic wave resonator 62C through a wiring electrode 58. The second outer bus bar of the first elastic wave resonator 62A, the second outer bus bar of the second elastic wave resonator 62B, and the first outer bus bar of the third elastic wave resonator 62C are formed by wiring electrodes 68. It is connected. The first elastic wave resonator 62A and the third elastic wave resonator 62C are series arm resonators in a ladder type filter, and the second elastic wave resonator 62B is a parallel arm resonator.
 第1の弾性波共振子62A、第2の弾性波共振子62B及び第3の弾性波共振子62Cは、第1の実施形態と同様の構成を有する。従って、第1の実施形態と同様に、生産性を高めることができる。 The first elastic wave resonator 62A, the second elastic wave resonator 62B, and the third elastic wave resonator 62C have the same configuration as that of the first embodiment. Therefore, the productivity can be increased as in the first embodiment.
 弾性波装置61の製造に際し、第1の弾性波共振子62A、第2の弾性波共振子62B及び第3の弾性波共振子62Cを構成する工程は、第1の実施形態と同様に行うことができる。なお、第4の実施形態と同様に、各第1の外側バスバー、各第2の外側バスバー、各配線電極58、配線電極68、入力端子59a、出力端子59b及びグラウンド端子59cを同時に形成することが好ましい。それによって、生産性をより一層高めることができる。 When manufacturing the elastic wave device 61, the steps of configuring the first elastic wave resonator 62A, the second elastic wave resonator 62B, and the third elastic wave resonator 62C are performed in the same manner as in the first embodiment. Can do. As in the fourth embodiment, each first outer bus bar, each second outer bus bar, each wiring electrode 58, wiring electrode 68, input terminal 59a, output terminal 59b, and ground terminal 59c are formed simultaneously. Is preferred. Thereby, productivity can be further increased.
1…弾性波装置
2…圧電基板
3…IDT電極
3a~3e…第1~第5の金属層
4a…第1の内側バスバー
4b…第1の電極指
4c…第1の接続電極
5a…第2の内側バスバー
5b…第2の電極指
5c…第2の接続電極
6,7…第1,第2の外側バスバー
8,9…第1,第2の開口部
13a,13b…反射器
14,15…第1,第2のバスバー
16,17…幅広部
18,19…第1,第2の誘電体膜
22…レジストパターン
23…金属膜
33…IDT電極
34,35…第1,第2のバスバー
34c,35c…第3,第4の接続電極
38,39…第3,第4の開口部
44,45…第1,第2のバスバー
44b,45b…第1,第2の電極指
44c,45c…第1,第2の接続電極
48,49…第1,第2の開口部
51…弾性波装置
52…縦結合共振子型弾性波フィルタ
53A~53C…第1~第3のIDT電極
56A~56C…第1の外側バスバー
57A~57C…第2の外側バスバー
58…配線電極
59a…入力端子
59b…出力端子
59c…グラウンド端子
61…弾性波装置
62A~62C…第1~第3の弾性波共振子
68…配線電極
104c,105c…第1,第2の接続電極
114c,115c…第1,第2の接続電極
118,119…第1,第2の開口部
124c,125c…第3,第4の接続電極
134,135…第1,第2のバスバー
134c,135c…第1,第2の電極
DESCRIPTION OF SYMBOLS 1 ... Elastic wave apparatus 2 ... Piezoelectric substrate 3 ... IDT electrode 3a-3e ... 1st-5th metal layer 4a ... 1st inner side bus-bar 4b ... 1st electrode finger 4c ... 1st connection electrode 5a ... 2nd Inner bus bar 5b ... second electrode finger 5c ... second connection electrode 6, 7 ... first and second outer bus bars 8, 9 ... first and second openings 13a, 13b ... reflectors 14, 15 ... 1st, 2nd bus bar 16, 17 ... Wide part 18, 19 ... 1st, 2nd dielectric film 22 ... Resist pattern 23 ... Metal film 33 ... IDT electrode 34, 35 ... 1st, 2nd bus bar 34c, 35c ... 3rd, 4th connection electrodes 38, 39 ... 3rd, 4th opening 44, 45 ... 1st, 2nd bus bar 44b, 45b ... 1st, 2nd electrode finger 44c, 45c ... first and second connection electrodes 48, 49 ... first and second openings 51 ... elastic wave device 52 ... both longitudinally coupled Sub-type elastic wave filters 53A to 53C ... 1st to 3rd IDT electrodes 56A to 56C ... 1st outer bus bar 57A to 57C ... 2nd outer bus bar 58 ... Wiring electrode 59a ... Terminal 61 ... Elastic wave devices 62A to 62C ... First to third elastic wave resonators 68 ... Wiring electrodes 104c, 105c ... First and second connection electrodes 114c, 115c ... First, second connection electrodes 118, 119: first and second openings 124c, 125c ... third and fourth connection electrodes 134, 135 ... first and second bus bars 134c, 135c ... first and second electrodes

Claims (13)

  1.  互いに対向し合う第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続されている複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と互いに間挿し合っている複数の第2の電極指と、を含むIDT電極を有する弾性波装置の製造方法であって、
     圧電基板を用意する工程と、
     前記圧電基板上に、第1の内側バスバーと、前記第1の内側バスバーに一端が接続されている前記複数の第1の電極指と、前記第1の内側バスバーに対向する第2の内側バスバーと、前記第2の内側バスバーに一端が接続されている前記複数の第2の電極指と、前記第1の内側バスバーの前記複数の第1の電極指が接続されている側とは反対側に一端が接続されている複数の第1の接続電極と、前記第2の内側バスバーの前記複数の第2の電極指が接続されている側とは反対側に一端が接続されている複数の第2の接続電極と、をリフトオフ法により形成する工程と、
     前記複数の第1の接続電極の一部を覆うように、前記圧電基板上に第1の外側バスバーを形成することにより、前記第1の外側バスバー、前記複数の第1の接続電極及び前記第1の内側バスバーにより囲まれた複数の第1の開口部を有する前記第1のバスバーを形成する工程と、
     前記複数の第2の接続電極の一部を覆うように、前記圧電基板上に第2の外側バスバーを形成することにより、前記第2の外側バスバー、前記複数の第2の接続電極及び前記第2の内側バスバーにより囲まれた複数の第2の開口部を有する前記第2のバスバーを形成する工程と、
    を備える、弾性波装置の製造方法。
    A first bus bar and a second bus bar facing each other, a plurality of first electrode fingers having one end connected to the first bus bar, one end connected to the second bus bar, and A method of manufacturing an acoustic wave device having an IDT electrode including the plurality of first electrode fingers and a plurality of second electrode fingers interleaved with each other,
    Preparing a piezoelectric substrate;
    On the piezoelectric substrate, a first inner bus bar, the plurality of first electrode fingers whose one ends are connected to the first inner bus bar, and a second inner bus bar facing the first inner bus bar And a plurality of second electrode fingers whose one ends are connected to the second inner bus bar and a side of the first inner bus bar opposite to the side to which the plurality of first electrode fingers are connected. A plurality of first connection electrodes whose one ends are connected to each other and a plurality of one ends connected to the side of the second inner busbar opposite to the side where the plurality of second electrode fingers are connected Forming a second connection electrode by a lift-off method;
    By forming a first outer bus bar on the piezoelectric substrate so as to cover a part of the plurality of first connection electrodes, the first outer bus bar, the plurality of first connection electrodes, and the first Forming the first bus bar having a plurality of first openings surrounded by one inner bus bar;
    By forming a second outer bus bar on the piezoelectric substrate so as to cover a part of the plurality of second connection electrodes, the second outer bus bar, the plurality of second connection electrodes, and the second Forming the second bus bar having a plurality of second openings surrounded by two inner bus bars;
    A method of manufacturing an acoustic wave device.
  2.  前記第1の接続電極を形成する工程において、前記圧電基板上に、前記第1の接続電極の、前記第1の内側バスバーに接続されている側とは反対側の端部に接続されている、前記第1の接続電極が延びる方向に交叉する方向に延びる第3の接続電極を形成する、請求項1に記載の弾性波装置の製造方法。 In the step of forming the first connection electrode, the first connection electrode is connected to the end of the first connection electrode opposite to the side connected to the first inner bus bar on the piezoelectric substrate. The method of manufacturing an acoustic wave device according to claim 1, wherein a third connection electrode extending in a direction intersecting with a direction in which the first connection electrode extends is formed.
  3.  前記第1の接続電極及び前記第3の接続電極を形成する工程において、複数の前記第3の接続電極を、互いにギャップを隔てて形成する、請求項2に記載の弾性波装置の製造方法。 3. The method of manufacturing an acoustic wave device according to claim 2, wherein, in the step of forming the first connection electrode and the third connection electrode, a plurality of the third connection electrodes are formed with a gap therebetween.
  4.  前記第1の接続電極及び前記第3の接続電極を形成する工程において、前記第3の接続電極、前記複数の第1の接続電極及び前記第1の内側バスバーにより囲まれた複数の第3の開口部を形成するように、かつ前記第3の開口部の前記第1の接続電極が延びる方向に沿う寸法が、前記第1の開口部の前記第1の接続電極が延びる方向に沿う寸法より長くなるように、前記第3の接続電極を形成する、請求項2に記載の弾性波装置の製造方法。 In the step of forming the first connection electrode and the third connection electrode, the plurality of third connections surrounded by the third connection electrode, the plurality of first connection electrodes, and the first inner bus bar. The dimension along the direction in which the first connection electrode of the third opening extends so as to form the opening is larger than the dimension along the direction in which the first connection electrode of the first opening extends. The method for manufacturing an acoustic wave device according to claim 2, wherein the third connection electrode is formed to be long.
  5.  前記第1の接続電極及び前記第2の接続電極が、前記第1の電極指及び前記第2の電極指が延びる方向と平行な方向に延びている、請求項1~4のいずれか1項に記載の弾性波装置の製造方法。 5. The method according to claim 1, wherein the first connection electrode and the second connection electrode extend in a direction parallel to a direction in which the first electrode finger and the second electrode finger extend. The manufacturing method of the elastic wave apparatus as described in 2 ..
  6.  前記第1の接続電極及び前記第2の接続電極が、前記第1の電極指及び前記第2の電極指が延びる方向と交叉する方向に延びている、請求項1~4のいずれか1項に記載の弾性波装置の製造方法。 5. The method according to claim 1, wherein the first connection electrode and the second connection electrode extend in a direction intersecting with a direction in which the first electrode finger and the second electrode finger extend. The manufacturing method of the elastic wave apparatus as described in 2 ..
  7.  弾性波伝搬方向を第1の方向とし、前記第1の電極指及び前記第2の電極指が延びる方向を第2の方向としたときに、前記IDT電極が、前記第1の電極指と前記第2の電極指とが前記第1の方向において重なり合っている部分である交叉領域を有し、
     前記交叉領域が、前記第2の方向中央側に位置している中央領域と、前記中央領域の前記第2の方向両側に配置されている第1のエッジ領域及び第2のエッジ領域と、を有し、
     前記第1のエッジ領域が前記第1の内側バスバー側に位置しており、前記第2のエッジ領域が前記第2の内側バスバー側に位置しており、
     前記第1のエッジ領域及び前記第2のエッジ領域における音速が、前記中央領域における音速よりも低い、請求項1~6のいずれか1項に記載の弾性波装置の製造方法。
    When the elastic wave propagation direction is a first direction and the direction in which the first electrode finger and the second electrode finger extend is a second direction, the IDT electrode is connected to the first electrode finger and the first electrode finger. A crossing region that is a portion where the second electrode finger overlaps in the first direction;
    The crossing region is a central region located on the center side in the second direction, and a first edge region and a second edge region disposed on both sides of the central region in the second direction, Have
    The first edge region is located on the first inner busbar side, the second edge region is located on the second inner busbar side,
    The method of manufacturing an acoustic wave device according to any one of claims 1 to 6, wherein sound velocity in the first edge region and the second edge region is lower than sound velocity in the central region.
  8.  前記圧電基板上に、前記第1の外側バスバーに接続するように配線電極を形成する工程をさらに備え、
     前記配線電極を形成する工程を、前記第1の外側バスバーを形成する工程と同時に行う、請求項1~7のいずれか1項に記載の弾性波装置の製造方法。
    Forming a wiring electrode on the piezoelectric substrate so as to be connected to the first outer bus bar;
    The method of manufacturing an acoustic wave device according to any one of claims 1 to 7, wherein the step of forming the wiring electrode is performed simultaneously with the step of forming the first outer bus bar.
  9.  前記圧電基板上に、前記配線電極に接続するように端子を形成する工程をさらに備え、
     前記端子を形成する工程を、前記第1の外側バスバー及び前記配線電極を形成する工程と同時に行う、請求項8に記載の弾性波装置の製造方法。
    A step of forming a terminal on the piezoelectric substrate so as to connect to the wiring electrode;
    The method for manufacturing an acoustic wave device according to claim 8, wherein the step of forming the terminal is performed simultaneously with the step of forming the first outer bus bar and the wiring electrode.
  10.  圧電基板と、
     前記圧電基板上に設けられているIDT電極と、
    を備え、
     前記IDT電極が、第1の内側バスバーと、前記第1の内側バスバーに一端が接続されている複数の第1の電極指と、前記第1の内側バスバーに対向する第2の内側バスバーと、前記第2の内側バスバーに一端が接続されており、かつ前記複数の第1の電極指と互いに間挿し合っている複数の第2の電極指と、前記第1の内側バスバーの前記複数の第1の電極指が接続されている側とは反対側に一端が接続されている複数の第1の接続電極と、前記第2の内側バスバーの前記複数の第2の電極指が接続されている側とは反対側に一端が接続されている複数の第2の接続電極と、前記複数の第1の接続電極上及び前記圧電基板上に設けられている第1の外側バスバーと、前記第1の外側バスバー、前記複数の第1の接続電極及び前記第1の内側バスバーにより囲まれた複数の第1の開口部と、前記複数の第2の接続電極上及び前記圧電基板上に設けられている第2の外側バスバーと、前記第2の外側バスバー、前記複数の第2の接続電極及び前記第2の内側バスバーにより囲まれた複数の第2の開口部と、を有する、弾性波装置。
    A piezoelectric substrate;
    An IDT electrode provided on the piezoelectric substrate;
    With
    The IDT electrode includes a first inner bus bar, a plurality of first electrode fingers having one ends connected to the first inner bus bar, a second inner bus bar facing the first inner bus bar, One end connected to the second inner bus bar, and a plurality of second electrode fingers interleaved with the plurality of first electrode fingers, and the plurality of second electrodes of the first inner bus bar. A plurality of first connection electrodes whose one ends are connected to a side opposite to a side to which one electrode finger is connected, and the plurality of second electrode fingers of the second inner bus bar are connected. A plurality of second connection electrodes having one end connected to the side opposite to the side, a first outer bus bar provided on the plurality of first connection electrodes and the piezoelectric substrate, and the first Outer bus bar, the plurality of first connection electrodes and the first inner side A plurality of first openings surrounded by a sbar; a second outer bus bar provided on the plurality of second connection electrodes and the piezoelectric substrate; the second outer bus bar; An elastic wave device comprising: a second connection electrode; and a plurality of second openings surrounded by the second inner bus bar.
  11.  前記複数の第1の接続電極及び前記第2の接続電極が、前記第1の電極指及び前記第2の電極指が延びる方向と交叉する方向に延びている、請求項10に記載の弾性波装置。 11. The acoustic wave according to claim 10, wherein the plurality of first connection electrodes and the second connection electrodes extend in a direction crossing a direction in which the first electrode fingers and the second electrode fingers extend. apparatus.
  12.  弾性波伝搬方向を第1の方向とし、前記第1の電極指及び前記第2の電極指が延びる方向を第2の方向としたときに、前記IDT電極が、前記第1の電極指と前記第2の電極指とが前記第1の方向において重なり合っている部分である交叉領域を有し、
     前記IDT電極が、前記交叉領域において、前記第2の方向中央側に位置している中央領域と、前記中央領域の前記第2の方向両側に配置されている第1のエッジ領域及び第2のエッジ領域と、を有し、
     前記第1のエッジ領域が前記第1の内側バスバー側に位置しており、前記第2のエッジ領域が前記第2の内側バスバー側に位置しており、
     前記第1のエッジ領域及び前記第2のエッジ領域における音速が、前記中央領域における音速よりも低い、請求項10または11に記載の弾性波装置。
    When the elastic wave propagation direction is a first direction and the direction in which the first electrode finger and the second electrode finger extend is a second direction, the IDT electrode is connected to the first electrode finger and the first electrode finger. A crossing region that is a portion where the second electrode finger overlaps in the first direction;
    The IDT electrode has a central region located on the center side in the second direction in the crossing region, a first edge region and a second edge region disposed on both sides of the central region in the second direction. An edge region, and
    The first edge region is located on the first inner busbar side, the second edge region is located on the second inner busbar side,
    The acoustic wave device according to claim 10 or 11, wherein sound velocity in the first edge region and the second edge region is lower than sound velocity in the central region.
  13.  前記第1の外側バスバーは前記複数の第1の接続電極及び前記圧電基板からなる凹凸部上に設けられており、前記第2の外側バスバーは前記複数の第2の接続電極及び前記圧電基板からなる凹凸部上に設けられている、請求項10~12のいずれか1項に記載の弾性波装置。 The first outer bus bar is provided on a concavo-convex portion including the plurality of first connection electrodes and the piezoelectric substrate, and the second outer bus bar is formed from the plurality of second connection electrodes and the piezoelectric substrate. The elastic wave device according to any one of claims 10 to 12, which is provided on the uneven portion.
PCT/JP2018/016563 2017-04-28 2018-04-24 Acoustic wave device manufacturing method and acoustic wave device WO2018199071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514522A JP6813084B2 (en) 2017-04-28 2018-04-24 Manufacturing method of elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-089125 2017-04-28
JP2017089125 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199071A1 true WO2018199071A1 (en) 2018-11-01

Family

ID=63919831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016563 WO2018199071A1 (en) 2017-04-28 2018-04-24 Acoustic wave device manufacturing method and acoustic wave device

Country Status (2)

Country Link
JP (1) JP6813084B2 (en)
WO (1) WO2018199071A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120153A1 (en) * 2018-12-12 2020-06-18 RF360 Europe GmbH Electro acoustic resonator with suppressed transversal gap mode excitation and reduced transversal modes
KR20210105971A (en) 2019-03-11 2021-08-27 가부시키가이샤 무라타 세이사쿠쇼 seismic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643818A (en) * 1979-09-17 1981-04-22 Hitachi Ltd Surface elastic wave device and its manufacture
WO2012063521A1 (en) * 2010-11-10 2012-05-18 株式会社村田製作所 Elastic wave device and method for manufacturing same
JP2014131351A (en) * 2010-01-25 2014-07-10 Epcos Ag Electroacoustic transducer having performance enhanced by reducing lateral direction radiation loss and suppressing lateral direction mode
WO2015197111A1 (en) * 2014-06-24 2015-12-30 Epcos Ag Electro-acoustic transducer and electro-acoustic component comprising an electro-acoustic transducer
WO2016084526A1 (en) * 2014-11-28 2016-06-02 株式会社村田製作所 Elastic wave device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643818A (en) * 1979-09-17 1981-04-22 Hitachi Ltd Surface elastic wave device and its manufacture
JP2014131351A (en) * 2010-01-25 2014-07-10 Epcos Ag Electroacoustic transducer having performance enhanced by reducing lateral direction radiation loss and suppressing lateral direction mode
WO2012063521A1 (en) * 2010-11-10 2012-05-18 株式会社村田製作所 Elastic wave device and method for manufacturing same
WO2015197111A1 (en) * 2014-06-24 2015-12-30 Epcos Ag Electro-acoustic transducer and electro-acoustic component comprising an electro-acoustic transducer
WO2016084526A1 (en) * 2014-11-28 2016-06-02 株式会社村田製作所 Elastic wave device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120153A1 (en) * 2018-12-12 2020-06-18 RF360 Europe GmbH Electro acoustic resonator with suppressed transversal gap mode excitation and reduced transversal modes
US11876504B2 (en) 2018-12-12 2024-01-16 Rf360 Singapore Pte. Ltd. Electro acoustic resonator with suppressed transversal gap mode excitation and reduced transversal modes
KR20210105971A (en) 2019-03-11 2021-08-27 가부시키가이샤 무라타 세이사쿠쇼 seismic device
CN113474995A (en) * 2019-03-11 2021-10-01 株式会社村田制作所 Elastic wave device
CN113474995B (en) * 2019-03-11 2023-07-28 株式会社村田制作所 Elastic wave device
KR102608527B1 (en) 2019-03-11 2023-12-01 가부시키가이샤 무라타 세이사쿠쇼 elastic wave device

Also Published As

Publication number Publication date
JP6813084B2 (en) 2021-01-13
JPWO2018199071A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
KR102479702B1 (en) elastic wave device
US10797679B2 (en) Elastic wave device
US9035725B2 (en) Acoustic wave device
US8390400B2 (en) Acoustic wave element having an electrode finger with a protrusion
US10050601B2 (en) Elastic wave apparatus
US8810104B2 (en) Acoustic wave device and method for fabricating the same
US20220216846A1 (en) Acoustic wave device
US8878419B2 (en) Piezoelectric device
JP5083469B2 (en) Surface acoustic wave device
JP5195443B2 (en) Elastic wave device
WO2018199071A1 (en) Acoustic wave device manufacturing method and acoustic wave device
US20230261634A1 (en) Acoustic wave device and ladder filter
US20210399711A1 (en) Acoustic wave device
US11309866B2 (en) Acoustic wave device and method for manufacturing acoustic wave device
CN115699574A (en) Elastic wave device
JP2011041082A (en) One-port type elastic wave resonator and elastic wave filter device
JP2005244359A (en) Surface acoustic wave device, ladder type filter, and resonator type filter
WO2023048256A1 (en) Elastic wave device
WO2023241828A1 (en) Surface acoustic wave resonator element and electronic apparatus comprising said surface acoustic wave resonator element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790368

Country of ref document: EP

Kind code of ref document: A1