WO2018198765A1 - 電子機器、生成方法及び生成システム - Google Patents

電子機器、生成方法及び生成システム Download PDF

Info

Publication number
WO2018198765A1
WO2018198765A1 PCT/JP2018/015130 JP2018015130W WO2018198765A1 WO 2018198765 A1 WO2018198765 A1 WO 2018198765A1 JP 2018015130 W JP2018015130 W JP 2018015130W WO 2018198765 A1 WO2018198765 A1 WO 2018198765A1
Authority
WO
WIPO (PCT)
Prior art keywords
smartphone
contour
information
dimensional image
user
Prior art date
Application number
PCT/JP2018/015130
Other languages
English (en)
French (fr)
Inventor
安島 弘美
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/605,481 priority Critical patent/US11051719B2/en
Publication of WO2018198765A1 publication Critical patent/WO2018198765A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1107Measuring contraction of parts of the body, e.g. organ, muscle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6898Portable consumer electronic devices, e.g. music players, telephones, tablet computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/10Measuring tapes

Definitions

  • the present disclosure relates to an electronic device, a generation method, and a generation system.
  • CT computed tomography
  • Patent Document 1 discloses an apparatus that displays a fat area using a circle.
  • An electronic apparatus includes a measuring unit that measures the contour of the body by moving the device along the surface of the body, and a control unit that generates a three-dimensional image of the body based on the contour. .
  • the control unit generates the three-dimensional image by arranging a plurality of first contours measured along the first direction.
  • a display method is a display method executed by an electronic device, the step of measuring an outline of the body by moving the electronic device along a surface of the body, and a first direction Generating a three-dimensional image of the body by arranging a plurality of first contours measured in this manner.
  • a display system includes a measuring unit that measures the contour of the body by moving the device along the surface of the body, and a control unit that generates a three-dimensional image of the body based on the contour. .
  • the control unit generates the three-dimensional image by arranging a plurality of first contours measured along the first direction.
  • FIG. 1 is a schematic perspective view showing the appearance of the smartphone according to the first embodiment.
  • FIG. 2 is a schematic front view showing the appearance of the smartphone according to the first embodiment.
  • FIG. 3 is a schematic rear view showing the appearance of the smartphone according to the first embodiment.
  • FIG. 4 is a block schematic diagram illustrating functions of the smartphone according to the first embodiment.
  • FIG. 5 is a schematic diagram showing a state of measuring the contour of the object according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a state of measuring the contour of the object according to the first embodiment.
  • FIG. 7 is a measurement flowchart of the contour of the object according to the first embodiment.
  • 8A and 8B show an example of the direction and the movement amount according to the first embodiment.
  • FIG. 9 is an example of a record of direction information and movement information according to the first embodiment.
  • FIG. 10 is a diagram illustrating the calculated contour of the object according to the first embodiment.
  • FIG. 11 is a diagram for explaining correction by actually measured values according to the first embodiment.
  • FIG. 12 is an output flow diagram of a three-dimensional image according to the first embodiment.
  • FIG. 13 is a diagram illustrating an example of a three-dimensional image generated in the first embodiment.
  • FIG. 14 is a diagram illustrating another example of the three-dimensional image generated in the first embodiment.
  • FIG. 15 is a schematic diagram illustrating the electronic tape measure according to the first embodiment.
  • FIG. 16 is a diagram illustrating an example of data stored in the storage of the smartphone according to the first embodiment.
  • FIG. 17 is a flowchart for creating a visceral fat area estimation formula and a subcutaneous fat area estimation formula.
  • FIG. 18A to FIG. 18C are schematic views showing an example of classification of the first contour according to the first embodiment.
  • FIG. 19 is a diagram illustrating an example of display by the smartphone according to the first embodiment.
  • FIG. 20 is a flowchart of the entire processing by the smartphone according to the first embodiment.
  • FIG. 21 is a block schematic diagram illustrating functions of the smartphone according to the second embodiment.
  • FIG. 22 is a measurement flowchart of the contour of the object according to the second embodiment.
  • FIG. 23 is an example of a record of direction information and movement information according to the second embodiment.
  • FIG. 24 is a measurement flowchart of the contour of the object according to the third embodiment.
  • FIG. 25 shows an example of the orientation of the smartphone according to the third embodiment.
  • FIG. 26 is an example of a record configured from acquired information according to the third embodiment.
  • FIG. 27 is a diagram illustrating the first contour corrected and corrected according to the third embodiment.
  • FIG. 28 is a diagram illustrating an example of display by the smartphone according to the third embodiment.
  • FIG. 29 is a conceptual diagram illustrating a device and a system including a communication unit according to an embodiment.
  • FIG. 30 is a diagram illustrating a modification of the three-dimensional image.
  • An object of the present disclosure is to provide an electronic device, a generation method, and a generation system in which a user can easily visually grasp the shape of the abdomen.
  • the smartphone 1 is adopted as an example of an embodiment of an electronic device and a human body is measured as an example of an object.
  • the electronic device is not limited to the smartphone 1, and the target may not be a human body.
  • the object may be an animal body.
  • the human body may include, for example, the human abdomen.
  • the animal body may comprise, for example, an animal torso.
  • the smartphone 1 that is its own device includes at least a first sensor unit that obtains orientation information, a device unit that obtains movement information, and a controller 10 that calculates the contour of an object.
  • the device unit for obtaining movement information includes a second sensor unit.
  • the housing 20 has a front face 1A, a back face 1B, and side faces 1C1 to 1C4.
  • the front face 1 ⁇ / b> A is the front of the housing 20.
  • the back face 1 ⁇ / b> B is the back surface of the housing 20.
  • the side faces 1C1 to 1C4 are side faces that connect the front face 1A and the back face 1B.
  • the side faces 1C1 to 1C4 may be collectively referred to as the side face 1C without specifying which face.
  • the smartphone 1 has a touch screen display 2, buttons 3A to 3C, an illuminance sensor 4, a proximity sensor 5, a receiver 7, a microphone 8, and a camera 12 on the front face 1A.
  • the smartphone 1 has a camera 13 on the back face 1B.
  • the smartphone 1 has buttons 3D to 3F and a connector 14 on the side face 1C.
  • the buttons 3A to 3F may be collectively referred to as the button 3 without specifying which button.
  • the touch screen display 2 has a display 2A and a touch screen 2B.
  • the display 2A includes a display device such as a liquid crystal display (Liquid Crystal Display), an organic EL panel (Organic Electro-Luminescence panel), or an inorganic EL panel (Inorganic Electro-Luminescence panel).
  • the display 2A functions as a display unit that displays characters, images, symbols, graphics, or the like.
  • the touch screen 2B detects contact of a finger or a stylus pen with the touch screen 2B.
  • the touch screen 2B can detect a position where a plurality of fingers, a stylus pen, or the like contacts the touch screen 2B.
  • the detection method of the touch screen 2B may be any method such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, and a load detection method.
  • a capacitance method a resistive film method
  • a surface acoustic wave method or an ultrasonic method
  • an infrared method an electromagnetic induction method
  • an electromagnetic induction method an electromagnetic induction method
  • load detection method In the capacitive method, contact and approach of a finger or a stylus pen can be detected.
  • FIG. 4 is a block diagram showing the configuration of the smartphone 1.
  • the smartphone 1 includes a touch screen display 2, a button 3, an illuminance sensor 4, a proximity sensor 5, a communication unit 6, a receiver 7, a microphone 8, a storage 9, a controller 10, a timer 11, and a camera. 12 and 13, a connector 14, and a motion sensor 15.
  • the touch screen display 2 has the display 2A and the touch screen 2B as described above.
  • the display 2A displays characters, images, symbols, graphics, or the like.
  • the touch screen 2B receives a contact with the reception area as an input. That is, the touch screen 2B detects contact.
  • the controller 10 detects a gesture for the smartphone 1.
  • the controller 10 detects an operation (gesture) on the touch screen 2B (touch screen display 2) by cooperating with the touch screen 2B.
  • the controller 10 detects an operation (gesture) on the display 2A (touch screen display 2) by cooperating with the touch screen 2B.
  • the button 3 is operated by the user.
  • the button 3 has buttons 3A to 3F.
  • the controller 10 detects an operation on the button by cooperating with the button 3.
  • the operations on the buttons are, for example, click, double click, push, long push, and multi push.
  • buttons 3A to 3C are a home button, a back button, or a menu button.
  • touch sensor type buttons are employed as the buttons 3A to 3C.
  • the button 3D is a power on / off button of the smartphone 1.
  • the button 3D may also serve as a sleep / sleep release button.
  • the buttons 3E and 3F are volume buttons.
  • the illuminance sensor 4 detects illuminance.
  • the illuminance is light intensity, brightness, luminance, or the like.
  • the illuminance sensor 4 is used for adjusting the luminance of the display 2A, for example.
  • the proximity sensor 5 detects the presence of a nearby object without contact.
  • the proximity sensor 5 detects that the touch screen display 2 is brought close to the face, for example.
  • the communication unit 6 communicates wirelessly.
  • the communication method performed by the communication unit 6 is a wireless communication standard.
  • wireless communication standards include cellular phone communication standards such as 2G, 3G, and 4G.
  • Examples of cellular phone communication standards include LTE (Long Term Evolution), W-CDMA, CDMA2000, PDC, GSM (registered trademark), PHS (Personal Handy-phone System), and the like.
  • wireless communication standards include WiMAX (Worldwide Interoperability for Microwave Access), IEEE 802.11, Bluetooth (registered trademark), IrDA, NFC, and the like.
  • the communication unit 6 may support one or more of the communication standards described above.
  • the receiver 7 outputs the audio signal transmitted from the controller 10 as audio.
  • the microphone 8 converts the voice of the user or the like into a voice signal and transmits it to the controller 10.
  • the smartphone 1 may further include a speaker instead of the receiver 7.
  • the storage 9 stores programs and data as a storage unit.
  • the storage 9 is also used as a storage unit that temporarily stores the processing result of the controller 10.
  • the storage 9 may include any storage device such as a semiconductor storage device and a magnetic storage device.
  • the storage 9 may include a plurality of types of storage devices.
  • the storage 9 may include a combination of a portable storage medium such as a memory card and a storage medium reading device.
  • the program stored in the storage 9 includes an application executed in the foreground or the background, and a control program that supports the operation of the application.
  • the application displays a predetermined screen on the display 2 ⁇ / b> A, and causes the controller 10 to execute processing corresponding to the gesture detected via the touch screen 2 ⁇ / b> B.
  • the control program is, for example, an OS.
  • the application and the control program may be installed in the storage 9 via wireless communication by the communication unit 6 or a storage medium.
  • the storage 9 stores, for example, a control program 9A, a mail application 9B, a browser application 9C, and a measurement application 9Z.
  • the mail application 9B provides an electronic mail function for creating, transmitting, receiving, and displaying an electronic mail.
  • the browser application 9C provides a WEB browsing function for displaying a WEB page.
  • the measurement application 9Z provides a function in which a user measures the contour of an object with the smartphone 1 and generates a three-dimensional image.
  • the control program 9A provides functions related to various controls for operating the smartphone 1.
  • the control program 9A realizes a call by controlling the communication unit 6, the receiver 7, the microphone 8, and the like, for example.
  • the function provided by the control program 9A may be used in combination with a function provided by another program such as the mail application 9B.
  • the controller 10 is, for example, a CPU (Central Processing Unit).
  • the controller 10 may be an integrated circuit such as a SoC (System-on-a-Chip) in which other components such as the communication unit 6 are integrated.
  • the controller 10 may be configured by combining a plurality of integrated circuits.
  • the controller 10 functions as a control unit that comprehensively controls the operation of the smartphone 1 to realize various functions.
  • the controller 10 refers to the data stored in the storage 9 as necessary.
  • the controller 10 implements various functions by executing instructions included in the program stored in the storage 9 and controlling the display 2A, the communication unit 6, the motion sensor 15, and the like.
  • the controller 10 implements various functions by executing instructions included in the measurement application 9Z stored in the storage 9.
  • the controller 10 can change the control according to detection results of various detection units such as the touch screen 2B, the button 3, and the motion sensor 15.
  • the entire controller 10 functions as a control unit.
  • the controller 10 calculates the contour of the object based on the orientation information acquired by the first sensor unit and the movement information acquired by the second sensor unit.
  • Timer 11 outputs a clock signal with a preset frequency.
  • the timer 11 receives a timer operation instruction from the controller 10 and outputs a clock signal to the controller 10.
  • the first sensor unit and the second sensor unit acquire the orientation information and the movement information a plurality of times according to the clock signal input via the controller 10.
  • the timer 11 may be provided outside the controller 10 or may be included in the controller 10 as shown in FIG.
  • the camera 12 is an in-camera that captures an object facing the front face 1A.
  • the camera 13 is an out camera that captures an object facing the back face 1B.
  • the connector 14 is a terminal to which other devices are connected.
  • the connector 14 of this embodiment also functions as a communication unit that communicates between the smartphone 1 and another device via a connection object connected to the terminal.
  • the connector 14 includes USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), MHL (Mobile High-definition Link), Light Peak (Light Peak), Thunderbolt, LAN connector (Local General-purpose terminals such as (Area Network Connector) and an earphone microphone connector may be used.
  • the connector 14 may be a dedicated terminal such as a dock connector.
  • the devices connected to the connector 14 include, for example, a charger, an external storage, a speaker, a communication device, and an information processing device.
  • Motion sensor 15 detects a motion factor.
  • This motion factor is mainly processed as a control factor of the smartphone 1 which is its own device.
  • the control factor is a factor indicating the situation of the device itself, and is processed by the controller 10.
  • the motion sensor 15 functions as a measurement unit that measures the contour of the user's body.
  • the motion sensor 15 of the present embodiment includes an acceleration sensor 16, an orientation sensor 17, an angular velocity sensor 18, and a tilt sensor 19.
  • the outputs of the acceleration sensor 16, the azimuth sensor 17, the angular velocity sensor 18, and the tilt sensor 19 can be used in combination.
  • the controller 10 can execute processing that highly reflects the movement of the smartphone 1 that is the device itself.
  • the first sensor unit obtains the orientation information of the smartphone 1 that is its own device.
  • the orientation information of the smartphone 1 is information output from the first sensor unit.
  • the orientation information of the smartphone 1 is information regarding the direction in which the smartphone 1 is facing.
  • the orientation information of the smartphone 1 includes, for example, the direction of geomagnetism, the inclination with respect to the geomagnetism, the direction of the rotation angle, the change of the rotation angle, the gravity direction, and the inclination with respect to the gravity direction.
  • the direction of the smartphone 1 indicates the normal direction of the surface of the housing 20 facing the object when measuring the contour of the object.
  • the surface of the housing 20 that faces the object may be any surface that can be detected by the first sensor unit, and any of the front face 1A, the back face 1B, and the side faces 1C1 to 1C4 may face each other. .
  • any one of the orientation sensor 17, the angular velocity sensor 18, and the tilt sensor 19 may be used as the first sensor unit.
  • the smartphone 1 measures the contour of the body in two different directions, the first direction and the second direction. Different sensors may be used as the first sensor depending on the direction in which the contour is measured.
  • the direction sensor 17 is a sensor that detects the direction of geomagnetism.
  • the direction sensor 17 is used as the first sensor unit, a component obtained by projecting the direction of the smartphone 1 onto a plane parallel to the ground is the direction information acquired by the direction sensor 17.
  • the orientation information acquired by the orientation sensor 17 is the orientation of the smartphone 1.
  • the orientation of the smartphone 1 can be acquired as orientation information of 0 to 360 degrees. For example, the orientation information is acquired as 0 degree when the smartphone 1 is facing north, 90 degrees when facing east, 180 degrees when facing south, and 270 degrees when facing west. .
  • the azimuth sensor 17 is used as the first sensor, the orientation information can be acquired more accurately if the contour of the measurement object is parallel to the ground. For example, when measuring the abdominal part of the body that is the object in the standing direction in the circumferential direction (first direction described later), the azimuth sensor 17 can be used as the first sensor.
  • the direction sensor 17 outputs the detected direction of geomagnetism.
  • the controller 10 can be used for processing as a control factor that reflects the orientation of the smartphone 1.
  • the controller 10 can be used for processing as a control factor that reflects a change in the direction of the smartphone 1.
  • the angular velocity sensor 18 detects the angular velocity of the smartphone 1.
  • the angular velocity sensor 18 can acquire the angular velocity of the smartphone 1 as orientation information.
  • the controller 10 calculates the orientation of the smartphone 1 by integrating the acquired angular velocity once over time.
  • the calculated orientation of the smartphone 1 is a relative angle based on the initial value at the start of measurement.
  • the angular velocity sensor 18 outputs the detected angular velocity.
  • the controller 10 can be used for processing as a control factor reflecting the rotation direction of the smartphone 1.
  • the controller 10 can be used for processing as a control factor reflecting the rotation amount of the smartphone 1.
  • the tilt sensor 19 detects gravitational acceleration acting on the smartphone 1.
  • the tilt sensor 19 can acquire the gravitational acceleration of the smartphone 1 as orientation information.
  • the smartphone 1 can be acquired by the tilt sensor 19 as direction information of ⁇ 9.8 to 9.8 [m / sec 2 ].
  • direction information is acquired as 0 [m / sec 2 ] in the case of vertical.
  • the orientation information can be obtained more accurately when the contour of the measurement object is substantially perpendicular to the ground.
  • the tilt sensor 19 when measuring the body that is the object in the height direction (second direction described later) in the standing state, the tilt sensor 19 can be used as the first sensor.
  • the tilt sensor 19 outputs the detected tilt.
  • the controller 10 can be used for processing as a control factor that reflects the inclination of the smartphone 1.
  • the controller 10 may calculate the orientation from the orientation information of the smartphone 1. For example, the angular velocity sensor 18 described above acquires the angular velocity as the orientation information. Based on the acquired angular velocity, the controller 10 calculates the orientation of the smartphone 1. For example, the tilt sensor 19 described above acquires the gravitational acceleration as the orientation information. Based on the acquired gravitational acceleration, the controller 10 calculates the orientation of the smartphone 1 with respect to the gravitational direction.
  • the first sensor unit can be used in combination with the motion sensor 15 described above.
  • the controller 10 can more accurately calculate the direction of the smartphone 1 as its own device.
  • the device unit for obtaining the movement information of the own device is the second sensor unit.
  • a 2nd sensor part acquires the movement information of the smart phone 1 which is an own machine.
  • the movement information of the smartphone 1 is information output from the second sensor unit.
  • the movement information of the smartphone 1 is information regarding the movement amount of the smartphone 1.
  • the movement information of the smartphone 1 includes, for example, acceleration, speed, and movement amount.
  • the movement amount of the smartphone 1 is the movement amount of the reference position of the housing 20 of the smartphone 1 in this embodiment.
  • the reference position of the housing 20 may be any position that can be detected by the second sensor unit.
  • the surface of the side face 1C1 is set as the reference position.
  • the acceleration sensor 16 can be used for the second sensor unit.
  • the acceleration sensor 16 is a sensor that detects acceleration acting on the smartphone 1.
  • the acceleration sensor 16 can acquire the acceleration of the smartphone 1 as movement information.
  • the controller 10 calculates the movement amount of the smartphone 1 by time-integrating the acquired acceleration twice.
  • the acceleration sensor 16 outputs the detected acceleration.
  • the controller 10 can be used for processing as a control factor that reflects the direction in which the smartphone 1 is moving.
  • the controller 10 can be used for processing as a control factor that reflects the speed and amount of movement of the smartphone 1.
  • the controller 10 generates a wire frame image of the object by calculating the contour of the object.
  • the contour of the object is calculated based on the direction information and the movement information acquired by the first sensor unit and the second sensor unit.
  • the controller 10 may calculate the amount of movement and direction in the course of calculation.
  • the controller 10 generates a three-dimensional image of the object based on the generated wire frame image.
  • the three-dimensional image is generated as a three-dimensional wire frame image, for example.
  • Each of the motion sensors 15 described above employs sensors capable of detecting motion factors in three axial directions.
  • the three axial directions detected by the motion sensor 15 of the present embodiment are substantially orthogonal to each other.
  • the x, y, and z directions shown in FIGS. 1 to 3 correspond to the three axial directions of the motion sensor 15.
  • the directions of the three axes do not have to be orthogonal to each other.
  • the motion factor in the three directions orthogonal to each other can be calculated by calculation.
  • Each motion sensor 15 may have a different reference direction.
  • each motion sensor 15 does not necessarily have three axes.
  • the controller 10 can calculate the contour based on the orientation information in one axis direction and the movement information in one axis direction.
  • the first sensor unit and the second sensor unit may use any of the motion sensors 15 described above, or other motion sensors.
  • a part or all of the program stored in the storage 9 may be downloaded from another device by wireless communication by the communication unit 6.
  • part or all of the program stored in the storage 9 may be stored in a storage medium that can be read by a reading device included in the storage 9.
  • 4 may be stored in a storage medium that can be read by a reading device connected to the connector 14. Examples of storage media include flash memory, HDD (registered trademark) (Hard Disc Drive), CD (Compact Disc), DVD (registered trademark) (Digital Versatile Disc), or BD (Blu-ray (registered trademark) Disc). Can be used.
  • buttons 3 are not limited to the example of FIG.
  • the smartphone 1 may include buttons such as a numeric keypad layout or a QWERTY layout instead of the buttons 3A to 3C as buttons for operations related to the screen.
  • the smartphone 1 may include only one button or may not include a button for operations related to the screen.
  • the smartphone 1 includes two cameras, but the smartphone 1 may include only one camera or may not include a camera.
  • the illuminance sensor 4 and the proximity sensor 5 may be composed of one sensor.
  • four types of sensors are provided in order to acquire orientation information and movement information of the smartphone 1 that is its own device.
  • the smartphone 1 may not include some of these sensors or may include other sensors.
  • the user moves the smartphone 1 along the object while the measurement function is activated.
  • the user may move the smartphone 1 in the first direction and the second direction different from the first direction.
  • the first direction is the circumferential direction of the body (torso).
  • the second direction is the height direction of the body.
  • FIG. 5 and FIG. 6 are schematic diagrams showing how the contour of the object according to the present embodiment is measured.
  • FIG. 5 is a schematic diagram showing how the contour is measured in the first direction.
  • the user moves (scans) the smartphone 1 along the circumferential direction of the body to measure the contour of the target in the first direction.
  • the contour measured along the first direction is hereinafter also referred to as “first contour” in the present specification.
  • the user can measure a plurality of contours in the first direction by changing the height.
  • the user measures the first contour at a height passing through the navel of the body, and changes the height from the height passing through the navel by a predetermined height (for example, 5 cm or 10 cm) to change the first contour.
  • a plurality of first contours can be measured by moving the smartphone 1 in the direction.
  • FIG. 6 is a schematic diagram showing how the contour is measured in the second direction.
  • the user moves the smartphone 1 along the height direction of the body, thereby measuring the contour of the object in the second direction.
  • the user may move the smartphone 1 along the middle of the body.
  • the contour measured along the second direction is hereinafter also referred to as “second contour”.
  • the first direction and the second direction may be substantially orthogonal.
  • the term “substantially orthogonal” includes the degree of intersection between the circumferential direction of the body and the height direction. Any one of the plurality of first contours and the second contour are contours passing through the navel. Accordingly, the one first contour and the second contour are substantially orthogonal to each other at the navel.
  • FIG. 7 is a measurement flowchart of the contour of the object according to the embodiment. Here, the flow in the case of measuring the first contour will be described.
  • step S101 the user activates the measurement function in the measurement application 9Z.
  • step S102 measurement starts in step S102.
  • the smartphone 1 is placed against the surface of the abdomen 60 at any position on the abdomen that measures the contour of the object.
  • the smartphone 1 is applied to the surface of the abdomen 60 at the height of the user's navel (the position illustrated by AA in FIG. 5).
  • the smartphone 1 may be brought into contact with the surface of the abdomen 60 or may be applied to the surface of the abdomen 60 through clothing as long as the measurement of the contour of the object is not hindered.
  • the measurement start position may start from any position in the abdominal AA position, and a start action set in advance on the smartphone 1 is performed to start measurement.
  • the preset start action may be by pressing any button 3 of the smartphone 1 or by tapping a specific position on the touch screen 2B.
  • the facing surface applied to the surface of the abdomen of the smartphone 1 may be any surface of the front face 1A, the back face 1B, and the side faces 1C1 to 1C4. did.
  • step S103 the user moves the smartphone 1 along the surface of the abdomen 60 along the AA position, and makes the abdomen 60 go around.
  • the movement of the smartphone 1 is applied to the surface of the abdomen 60 and is moved at a constant speed, the acquisition interval of each information becomes constant, and the accuracy of contour measurement can be improved.
  • step S103 direction information is acquired by the azimuth sensor 17 and movement information is acquired by the acceleration sensor 16 under preprogrammed conditions.
  • the direction information and the movement information are acquired a plurality of times.
  • the direction information and the movement information are acquired according to the clock signal output from the timer 11.
  • the acquisition period of each information is appropriately selected according to the size of the contour of the measurement object (that is, the circumference) and / or complexity.
  • the information acquisition cycle is appropriately selected from, for example, a sampling frequency of 5 to 60 Hz (Hertz).
  • the acquired orientation information and movement information are temporarily stored in the smartphone 1. This measurement is continuously executed from the start of step S102 to the end of step S104.
  • the user When the user makes a round while holding the smartphone 1 against the surface of the abdomen 60, the user performs an end action set in advance on the smartphone 1 and ends the measurement (step S104).
  • the preset end action may be by pressing any button 3 of the smartphone 1 or by tapping a specific position on the touch screen 2B.
  • the smartphone 1 automatically recognizes as one round. The measurement may be terminated. In the case of automatic recognition, the user does not need to perform an end action, and the measurement is further simplified.
  • step S105 the direction information and the movement information obtained in step S103 are calculated. This calculation is performed by the controller 10.
  • the controller 10 calculates the contour and abdominal circumference of the object. The calculation in step S105 will be described in detail later.
  • the smartphone 1 stores the result calculated in step S105 in the storage 9 in step S106.
  • step S107 the smartphone 1 determines whether or not to continue the contour measurement based on the user's operation input. If the smartphone 1 continues to measure the contour (YES in step S107), the smartphone 1 proceeds to step S102.
  • the user can measure the first contour by moving the smartphone 1 in the first direction by applying the smartphone 1 to the abdomen 60 at different heights. After measuring the first contour at the height of the navel, the user measures the first contour at a position that is a predetermined distance higher than the height of the navel, and by repeating this, multiple users at different heights are measured. The first contour can be measured.
  • the smartphone 1 can estimate the distance (displacement in the height direction) from the navel of each of the plurality of first contours according to the measured order.
  • the smartphone 1 can measure the second contour in the same manner as the flow shown in FIG.
  • the user can measure the second contour by moving the smartphone 1 in the second direction along the midline from the state where the smartphone 1 is applied to the navel.
  • the smartphone 1 can recognize the measurement start position in the measurement of the second contour as the navel position.
  • the user may input to the smartphone 1 that the second contour is measured before measuring the second contour.
  • the smart phone 1 can process the outline measured after the said input as a 2nd outline.
  • the smartphone 1 moves in the y-axis direction with the back face 1B placed on the abdomen.
  • the orientation sensor 17 may be a uniaxial sensor that can measure the orientation of the smartphone 1 in the y-axis direction.
  • the acceleration sensor 16 may be a uniaxial sensor that can measure the amount of movement in the y-axis direction.
  • FIG. 8 shows an example of the direction and the movement amount according to the embodiment.
  • the horizontal axis represents time, indicating the time from the start of measurement to the end of measurement.
  • the time is counted by a clock signal output from the timer 11.
  • the measurement start is 0 seconds and the measurement end is Tn seconds.
  • the smartphone 1 acquires direction information and movement information at a predetermined acquisition cycle between 0 and Tn seconds.
  • FIG. 8A shows time on the horizontal axis and the orientation of the smartphone 1 on the vertical axis.
  • the orientation of the smartphone 1 on the horizontal axis is the orientation information acquired by the orientation sensor 17.
  • the orientation information is the orientation of the smartphone 1.
  • the orientation of the smartphone 1 is represented by an angle of 0 to 360 degrees.
  • the orientation of the smartphone 1 is determined as one turn in a state where the orientation has changed by 360 degrees from the initial measurement direction.
  • the initial direction of measurement is set to 0 degrees, so the direction after one round is 360 degrees.
  • FIG. 8B shows time on the horizontal axis and the amount of movement of the smartphone 1 on the vertical axis.
  • the movement amount of the smartphone 1 on the vertical axis is calculated based on the movement information acquired by the acceleration sensor 16.
  • the movement information of the smartphone 1 according to the present embodiment is acceleration data acquired by the acceleration sensor 16.
  • the amount of movement is calculated by the controller 10 and is calculated by integrating the acceleration data twice over time. If the acceleration data is noisy, digital filter processing may be performed. Examples of the digital filter include a low-pass filter and a band-pass filter.
  • the movement amount of the smartphone 1 at the end of the measurement corresponds to the length around the measurement object, and is the abdominal circumference in this embodiment.
  • the waist circumference may be calculated in consideration of the arrangement of the acceleration sensor 16 in the smartphone 1. That is, in this embodiment, the correct amount of abdominal circumference may be calculated by correcting the movement amount in consideration of the distance between the back face 1 ⁇ / b> B that is the facing surface applied to the surface of the abdominal part 60 and the acceleration
  • the horizontal axis in FIG. 8A uses normalized times 0 to 1 normalized with Ta
  • the horizontal axis in FIG. 8B uses normalized times 0 to 1 normalized with Tb. You may arrange it.
  • FIG. 9 is an example of a record composed of acquired information.
  • the measurement start time is record number R0, and the measurement end time is record number Rn.
  • Each record stores a pair of direction information and movement information corresponding to time. Further, each record stores a movement amount calculated based on the movement information.
  • the orientation information is the orientation that the smartphone 1 is facing.
  • the heading and amount of movement calculated based on the direction information and movement information configured in a pair are information acquired at the same time in FIGS. 8A and 8B.
  • the azimuth and the amount of movement calculated based on the direction information and movement information configured in a pair may be information acquired at the same standardized time.
  • the time interval of each record may not be equal.
  • a pair of records may be information acquired at the same time, or there may be a difference in acquisition time. When there is a difference in acquisition time, the controller 10 may not consider the time difference.
  • FIG. 10 is a diagram showing the calculated first contour of the object.
  • the first contour of the object can be calculated by plotting the acquired records R0 to Rn in order according to the direction and the moving amount.
  • R0 to Rn in the figure represent corresponding record numbers.
  • a point on the solid line indicates the position of each record. Although it is actually composed of a larger number of points, some of the points are omitted in order to make the figure easier to see.
  • the calculation of the first contour is performed as follows. First, R0 is set to an arbitrary point. Next, the position of R1 is calculated from the change amount of the movement amount of the record R0 and the record R1 and the direction information of the record R1. Next, the position of R2 is calculated from the change amount of the movement amount of the records R1 and R2 and the change amount of the direction information of the record R2. This calculation is performed up to Rn, and the first contour of the object is calculated and displayed by connecting the position from R0 to the position of Rn in order.
  • FIG. 11 is a diagram for explaining correction by actually measured values according to the embodiment.
  • the movement information acquired by the acceleration sensor 16 is used.
  • an actual measurement value of the length around the object measured in advance by another means is used. May be.
  • the horizontal axis represents time
  • the vertical axis represents the movement amount.
  • a dotted line in the figure is a movement amount calculated based on movement information acquired by the acceleration sensor 16.
  • the amount of movement at the end of the measurement corresponds to the length around the measurement object, and in this embodiment is the waist circumference.
  • the amount of movement at the end of the measurement is corrected so that the actual measurement value of the abdominal circumference measured in advance with a tape measure or the like becomes equal.
  • the correction amount ⁇ W shown in FIG. 11 is offset, and then the inclination of the graph is corrected according to the offset ⁇ W.
  • the corrected data is indicated by a solid line.
  • the controller 10 calculates the first contour of the object using the record composed of the corrected solid line data.
  • the calculated symmetry axis of the first contour may be inclined.
  • the inclination is corrected and the abdomen or the back is to be displayed in the Y-axis direction in FIG.
  • the inclination is corrected by rotating the first contour so that the width of the first contour in the X-axis direction or the width of the first contour in the Y-axis direction is minimized or maximized. That's fine.
  • the position coordinates of the smartphone 1 at the start of measurement are the XY origin in FIG. 10, the calculated first contour is displayed shifted from the center.
  • the center of the first contour may be a point where the center line of the maximum width in the X-axis direction of the first contour intersects with the center line of the maximum width of the first contour in the Y-axis direction.
  • the center of the cross section of the first contour may be moved to the XY origin in FIG.
  • the smartphone 1 may determine the intersection of the first contour and the Y axis (in the example illustrated in FIG. 10, the intersection in the positive direction of the Y axis) as the position of the user's navel.
  • the contour of the object can be measured by the sensor built in the smartphone 1.
  • the measured contour of the object is used as a wire frame for generating a three-dimensional image.
  • the smartphone 1 is smaller than a measuring device such as a CT.
  • the smartphone 1 can measure the contour of the object in a short time. Since the smartphone 1 can measure data by the user himself / herself, the measurement is simple. The smartphone 1 can easily carry devices that are difficult in CT or the like. Since the smartphone 1 can store data by itself, the daily change can be easily confirmed. The smartphone 1 is less likely to be exposed to radiation during measurement.
  • FIG. 12 is a flow chart for generating a three-dimensional image according to the first embodiment.
  • step S111 the user activates the measurement application 9Z.
  • the user inputs body dimension information into the smartphone 1.
  • the body dimension information may include, for example, any of height, sitting height, and waist circumference.
  • the smartphone 1 accepts input of body dimension information based on a user's operation input. For example, when body dimension information is input in advance and stored in the storage 9, step S112 may be omitted.
  • the smartphone 1 measures the first contour in step S113.
  • the smartphone 1 measures the second contour in step S114. Details of the first contour measurement and the second contour measurement method by the smartphone 1 are as described with reference to FIG.
  • the smartphone 1 generates a three-dimensional image in step S115 based on the measured first and second contours.
  • FIG. 13 is a diagram illustrating an example of a three-dimensional image generated in the first embodiment.
  • FIG. 13 shows four first contours HF1, HF2, HF3, and HF4 and one second contour VF.
  • the first contours HF1, HF2, HF3 and HF4, and the second contour VF are generated as wire frame images.
  • the smartphone 1 generates a three-dimensional wire frame image as a three-dimensional image by combining the wire frame images.
  • the first contour HF1 and the second contour VF include the navel portion N. That is, in the example shown in FIG. 13, the first contour HF1 is a contour measured along the circumferential direction of the trunk including the navel, and the second contour VF is a contour measured along the midline of the trunk. It is.
  • the first contours HF1, HF2, HF3, and HF4 are contours that are sequentially measured by the user changing the height at which the smartphone 1 is applied to the object. The positions of the first contours HF1, HF2, HF3, and HF4 measured in this order are low.
  • the controller 10 generates a three-dimensional image by intersecting each of the first contours HF1, HF2, HF3, and HF4 with the second contour VF.
  • the controller 10 includes the first contour HF1 and the second contour so that the navel portion N of the first contour HF1 including the navel portion N and the navel portion N of the second contour VF coincide with each other. Cross with VF.
  • the first contours HF2, HF3, and HF4 that do not include the navel portion N are aligned in parallel with each other along with the first contour HF1 that includes the navel portion N.
  • the four first contours HF1, HF2, HF3, and HF4 are arranged in this order as in the case of measurement. In this way, a three-dimensional image as shown in FIG. 13 is generated.
  • step S116 the smartphone 1 outputs the three-dimensional image generated in step S115.
  • Various methods such as display on the display 2A and transmission to a server can be used to output the three-dimensional image.
  • the smartphone 1 displays a three-dimensional image illustrated in FIG. 13 on the display 2A.
  • the smartphone 1 ends the flow when the output of the three-dimensional image ends. A user who sees the displayed three-dimensional image can easily grasp the shape of the abdomen visually.
  • the controller 10 draws a curve VF2 by connecting the points on the back side of the first contours HF1, HF2, HF3, and HF4 as shown as an example in FIG.
  • a three-dimensional image including a virtual contour on the back side may be generated.
  • the point on the back side may be a point at a position opposite to the position intersecting the second contour VF in each of the first contours HF1, HF2, HF3, and HF4.
  • the smartphone 1 can display the three-dimensional image shown in FIG. 14 on the display 2A. By displaying a three-dimensional image including a virtual contour on the back side, the user can more easily grasp the shape of the abdomen visually.
  • FIG. 15 is a schematic diagram illustrating an electronic tape measure according to the embodiment.
  • the electronic tape measure has a function of measuring the length of the drawn tape measure and acquiring data, and like the acceleration sensor 16, movement information can be acquired.
  • the electronic tape measure can also be incorporated in the smartphone 1.
  • the electronic tape measure 71 includes a housing 70.
  • a touch screen display 72 is provided on the front face 71 ⁇ / b> A of the housing 70.
  • a tape measure 73 is provided on the side face 71 ⁇ / b> C ⁇ b> 2 of the housing 70.
  • a dimension scale is engraved on the tape measure 73.
  • the tape measure 73 is usually wound inside the housing 70.
  • a stopper 74 is provided at the tip of the tape measure 73. Before the measurement, the stopper 74 is disposed outside the housing 70, and the B surface of the stopper 74 and the side face 71C2 are in contact with each other. When measuring the dimensions of the object, the stopper 74 is pulled in the direction of the arrow in FIG. At that time, the drawing amount X of the tape measure 73 based on the side face 71C2 is digitally displayed on the touch screen display 72.
  • the measurement procedure when the electronic tape measure 71 is used will be described.
  • the housing 70 is put on the surface of the abdomen.
  • the user moves the housing 70 along the surface of the abdomen 60 along the AA position while holding the stopper 74 at the measurement start position, and makes the abdomen 60 go around.
  • the measurement ends step S104.
  • acceleration is acquired as movement information.
  • the electronic tape measure 71 is used for the second sensor unit, the length can be directly acquired as the movement information. Therefore, when the electronic tape measure 71 is used for the second sensor unit, it is possible to measure the waist circumference with higher accuracy.
  • the smartphone 1 may store the 3D image in association with the time when the 3D image is generated in the storage 9 when the 3D image is generated in step S115.
  • the smartphone 1 acquires information related to the time when the three-dimensional image is generated (hereinafter also referred to as “time information” in this specification).
  • the smartphone 1 acquires time information by a clock function such as a real time clock (RTC), for example.
  • the time information is not necessarily acquired when the three-dimensional image is generated in step S115.
  • the time information may be acquired at any timing related to the generation of the three-dimensional image, for example, after the application is started in step S111.
  • the storage 9 may store other information that may be related to the shape of the abdomen in addition to the three-dimensional image generated by the smartphone 1 and its time information. Here, an example of information stored in the storage 9 will be described.
  • the storage 9 of the smartphone 1 may store information related to food and drink taken by the user in association with the time when the food and drink are taken.
  • the information regarding food and drink may include, for example, at least one of the type, amount and calories of food and drink.
  • the information regarding food and drink may include, for example, at least one of a dish name of food and drink, raw materials and ingredients (for example, nutrients and the like) included in the food and drink.
  • the food and drink referred to here may include any of general foods, health functional foods, and pharmaceuticals.
  • the smartphone 1 can acquire information on food and drink by various methods.
  • the smartphone 1 can acquire information on food and drink by receiving input to the touch screen 2B and / or the button 3 by the user.
  • the user directly inputs information about food and drink into the smartphone 1 using the touch screen 2B and / or the button 3.
  • the controller 10 of the smartphone 1 stores the time at which information about food and drink is input in the storage 9 in association with the information about food and drink.
  • Smart phone 1 may acquire information about food and drink based on information included in a food and drink package, for example.
  • the information included in the package of food and drink includes, for example, a barcode (also called JAN (Japanese Article Number)).
  • JAN Japanese Article Number
  • the user uses the camera 13 of the smartphone 1 to photograph the barcode.
  • the controller 10 of the smartphone 1 reads the photographed barcode, and stores information on the product associated with the barcode in the storage 9 as information on food and drink.
  • the controller 10 may acquire information on the product associated with the barcode by communicating with an external information processing apparatus, for example. For example, when a user takes food or drink, the user reads the barcode using the smartphone 1.
  • the controller 10 of the smartphone 1 stores the time at which the barcode is read in the storage 9 in association with information related to food and drink.
  • the food / beverage package includes a code other than the barcode (for example, a one-dimensional code or a two-dimensional code)
  • the smartphone 1 acquires information on the food / beverage by reading these codes. May be.
  • Information on food and drink includes, for example, RFID (radio frequency identifier).
  • RFID radio frequency identifier
  • the smartphone 1 when an RFID tag having information on the food and drink is provided in the food and drink package and the smartphone 1 is an RFID-compatible electronic device, the user can connect the smartphone 1 to the RFID tag provided in the food and drink package. Get information about food and drink.
  • the controller 10 of the smartphone 1 stores the acquired information regarding food and drink in the storage 9.
  • the controller 10 of the smartphone 1 stores the time at which the information about food and drink is acquired by RFID communication in the storage 9 in association with the information about food and drink.
  • Information on food and drink includes, for example, information on nutritional component labeling written on the package.
  • the user uses the camera 13 of the smartphone 1 to photograph the nutritional component display column described in the package.
  • the controller 10 of the smartphone 1 reads the field of the photographed nutritional component display, and describes the information described as the nutritional component display (in this case, the nutritional component included in the calorie and the food and the amount thereof) as information about the food and drink. And stored in the storage 9.
  • the controller 10 may communicate with an external information processing apparatus, for example, and transmit the photographed image to the external information processing apparatus.
  • the external information processing apparatus reads the captured nutrient component display column and transmits information described as the nutrient component display to the smartphone 1.
  • the smartphone 1 stores the acquired information in the storage 9 as information about food and drink.
  • the controller 10 of the smartphone 1 stores the time at which the nutritional component display field is captured in the storage 9 in association with information on food and drink.
  • Information on food and drink may be estimated based on images of food and drink.
  • the user uses the camera 13 of the smartphone 1 to take an image of food and drink before ingestion.
  • the controller 10 estimates information about food and drink by performing image analysis on the captured image.
  • the controller 10 can estimate the amount of food and drink based on the volume of food and drink by image analysis.
  • the controller 10 can estimate the nutrients contained in the food and drink based on the color of the food and drink by image analysis.
  • the color of the foodstuff contained in food / beverage does not necessarily respond
  • the controller 10 may estimate the calories contained in the food and drink based on the captured image.
  • the controller 10 stores the estimated information in the storage 9 as information about food and drink.
  • the controller 10 stores the time when the image of the food / drink was captured in the storage 9 in association with the information about the food / beverage.
  • the estimation of information about food and drink based on the image of the taken food and drink may not necessarily be executed by the controller 10 of the smartphone 1.
  • the controller 10 of the smartphone 1 may transmit a photographed food and drink image to an external information processing apparatus, and the external information processing apparatus may estimate information about the food and drink based on the food and drink image.
  • the external information processing apparatus transmits information on the estimated food and drink to the smartphone 1.
  • the smartphone 1 stores information on food and drink acquired from an external information processing apparatus in the storage 9.
  • the user may take an image of food and drink after ingestion using the camera 13 of the smartphone 1 in addition to the image of food and drink before ingestion.
  • the controller 10 or the external information processing apparatus can estimate the contents of food and drink left by the user based on the image of food and drink after ingestion. Therefore, the controller 10 or the external information processing apparatus can easily estimate information about food and drink for the food and drink actually taken by the user.
  • the storage 9 of the smartphone 1 may store information on the physical activity of the user in association with the time when the physical activity is performed.
  • information on physical activity refers to activities that users perform in their lives.
  • the information related to physical activity may include, for example, information related to exercise and information related to sleep.
  • the information regarding exercise may include at least one of exercise amount and calorie consumption.
  • the amount of exercise may include the content of exercise and the exercise time.
  • the information regarding sleep may include sleep time.
  • Smartphone 1 can acquire information on exercise in various ways.
  • the smartphone 1 can acquire information related to exercise by receiving input from the user to the touch screen 2 ⁇ / b> B and / or the button 3.
  • the user directly inputs information related to exercise to the smartphone 1 using the touch screen 2 ⁇ / b> B and / or the button 3.
  • the user inputs information regarding exercise before or after exercising.
  • the controller 10 of the smartphone 1 stores the time at which the user exercises in the storage 9 in association with information related to the exercise.
  • the smartphone 1 may estimate information on exercise based on information acquired by a sensor included in the own device. For example, when the user wears the smartphone 1 when exercising, the controller 10 of the smartphone 1 determines the exercise intensity and exercise time based on the magnitude of the user's body movement detected by the motion sensor 15. Estimate information related to exercise. For example, the controller 10 determines that the user is exercising when the magnitude of the body motion exceeds a predetermined body motion threshold. The controller 10 estimates the time during which the magnitude of the body motion continuously exceeds a predetermined body motion threshold as the user's exercise time. The controller 10 can estimate the time when the magnitude of the body motion exceeds the predetermined body motion threshold and the time when it falls below the start time and end time of the exercise time, respectively.
  • the controller 10 may set a plurality of predetermined body motion threshold values, and may estimate the start time and end time of the exercise time corresponding to the exercise of a plurality of intensity levels.
  • the controller 10 may measure the number of steps based on the user's body movement, and calculate calorie consumption from the number of steps.
  • the controller 10 may estimate information related to exercise based on the biological information.
  • a person's pulse increases during exercise and body temperature rises.
  • the controller 10 sets the pulse and body temperature to be higher than the predetermined exercise determination threshold based on a predetermined exercise determination threshold for determining whether or not the user is exercising for the pulse and body temperature.
  • the controller 10 can also estimate the user's exercise intensity based on changes in pulse and body temperature.
  • the controller 10 stores the time when the user exercises in the storage 9 in association with the estimated information related to the exercise.
  • the time when the exercise is performed may be one or both of the exercise start time and the exercise end time.
  • the estimation of information related to exercise does not necessarily have to be executed by the controller 10 of the smartphone 1.
  • an information processing device outside the smartphone 1 may estimate information related to exercise and transmit the estimated information related to exercise to the smartphone 1.
  • the controller 10 of the smartphone 1 can store information regarding exercise acquired from an external information processing apparatus in the storage 9.
  • Information used for estimating information related to exercise may not necessarily be acquired by the smartphone 1.
  • information from the user may be acquired by a dedicated electronic device that is different from the smartphone 1 and includes a motion sensor that can detect the user's body movement or a biological sensor that can acquire the biological information of the user.
  • the information acquired by the dedicated electronic device may be transmitted to the smartphone 1 or an external information processing apparatus, and information related to exercise may be estimated in the smartphone 1 or the external information processing apparatus.
  • the smartphone 1 can acquire information on sleep in various ways.
  • the smartphone 1 can acquire information related to sleep by receiving input from the user to the touch screen 2 ⁇ / b> B and / or the button 3.
  • the user directly inputs information related to sleep to the smartphone 1 using the touch screen 2 ⁇ / b> B and / or the button 3.
  • the user can input information related to sleep, for example, by operating the smartphone 1 before going to bed and after getting up.
  • the controller 10 of the smartphone 1 stores the time related to the user's sleep (for example, the sleep time) in the storage 9 in association with the information related to sleep.
  • the smartphone 1 may estimate information related to sleep based on information acquired by a sensor included in the own device. For example, when the user wears the smartphone 1 during sleep, the controller 10 of the smartphone 1 estimates information about sleep based on the user's body movement detected by the motion sensor 15.
  • the estimation of information related to sleep by the controller 10 will be specifically described. It is known that a person repeats two sleep states of REM sleep and non-REM sleep in a substantially constant cycle during sleep. When the sleep state is REM sleep, the person tends to turn over easily. When the sleep state is non-REM sleep, the person tends not to turn over. Using this tendency, the controller 10 estimates the sleep state of the user based on the body movement resulting from the user turning over.
  • the controller 10 estimates a time zone in which body motion is detected in a predetermined cycle as non-REM sleep, and estimates a time zone in which body motion is not detected in a predetermined cycle as REM sleep.
  • the two sleep states are repeated in a substantially constant cycle. Therefore, after determining the two sleep state cycles, the controller 10 estimates the time when the user went back to sleep, that is, the time when the user actually went to sleep, based on the time zones of the two sleep states.
  • the controller 10 may estimate information related to exercise based on the biological information.
  • a person's pulse decreases and body temperature decreases.
  • the controller 10 can set a predetermined sleep determination threshold for the pulse and the body temperature in advance, and can estimate the time when the pulse and the body temperature are lower than the predetermined sleep determination threshold as the actual sleep time.
  • estimation of information related to sleep may be executed by an external information processing apparatus. Similar to the estimation of information related to exercise, the estimation of information related to sleep may be estimated based on information acquired by a dedicated electronic device.
  • FIG. 16 is a diagram illustrating an example of data stored in the storage 9 of the smartphone 1.
  • the storage 9 stores various information in association with time (date and time).
  • the storage 9 stores a three-dimensional image generated by the smartphone 1 and information related thereto in association with the time.
  • the information related to the three-dimensional image may include information related to the first contour and the second contour, for example.
  • the information related to the three-dimensional image may be information related to the first contour including the navel portion N among the plurality of first contours, for example.
  • the information related to the three-dimensional image includes information on the first contour including the navel portion N, as shown in FIG. 16, abdominal circumference, visceral fat area, subcutaneous fat area, vertical / horizontal length, and aspect ratio May be included.
  • the waist circumference is calculated by the method described with reference to FIG.
  • the user may input the waist circumference.
  • the visceral fat area and the subcutaneous fat area are estimated based on the calculated first contour including the navel portion N, for example.
  • the estimation method of the visceral fat area and the subcutaneous fat area by the smartphone 1 will be described.
  • the storage 9 stores preliminarily created estimation formulas for visceral fat area and subcutaneous fat area.
  • the controller 10 extracts the feature coefficient of the first contour of the target object calculated as described above.
  • the controller 10 reads the estimation formulas for the visceral fat area and the subcutaneous fat area stored in the storage 9, and estimates the visceral fat area and the subcutaneous fat area from the extracted feature coefficients of the contour.
  • the smartphone 1 extracts the feature coefficient of the first contour, for example, after correcting the first contour.
  • a method for extracting the characteristics of the shape of the curve there is a method for obtaining a curvature function or the like.
  • a method using Fourier analysis will be described.
  • the controller 10 can obtain a Fourier coefficient by performing a Fourier analysis on the curve of one round of the first contour.
  • the Fourier coefficient of each order obtained when the curve is Fourier-analyzed is used as a coefficient indicating the feature of the shape.
  • the order of Fourier coefficients to be used as feature coefficients is determined at the time of creating each estimation formula described in detail later.
  • Fourier coefficients Sa 1 , Sa 2 , Sa 3 that affect the visceral fat area are determined.
  • Sa 4 is extracted as a feature coefficient of visceral fat.
  • Fourier coefficients Sb 1 , Sb 2 , Sb 3 , Sb 4 that affect the subcutaneous fat area are extracted as feature coefficients of the subcutaneous fat.
  • the smartphone 1 substitutes the extracted feature coefficients Sa 1 to Sa 4 and Sb 1 to Sb 4 into the visceral fat area estimation formula and the subcutaneous fat area estimation formula obtained in advance, and the visceral fat area and the subcutaneous fat area of the user are substituted. Is estimated.
  • An example of the visceral fat area estimation formula and the subcutaneous fat area estimation formula is shown in Formula 1 and Formula 2.
  • FIG. 17 is a flowchart for creating a visceral fat area estimation formula and a subcutaneous fat area estimation formula.
  • the procedure for creating Formula 1 and Formula 2 will be described with reference to FIG.
  • These estimation formulas need not be generated by the smartphone 1 and may be calculated in advance using another computer or the like. Since the created estimation formula is incorporated in the application in advance, the user need not directly create or change the estimation formula.
  • step S121 the creator creates an estimation formula.
  • step S122 the creator inputs sample data for a predetermined number of people acquired in advance to the computer.
  • Sample data is data obtained from a predetermined number of sample subjects.
  • Sample data of one subject includes at least visceral fat area obtained by CT, subcutaneous fat area, abdominal circumference measured by a tape measure, orientation information acquired by the smartphone 1, and movement information.
  • the sample subjects of a predetermined number are statistically sufficient to improve the accuracy of the estimation formula, and are similar to the visceral fat distribution of subjects who are diagnosed with metabolic syndrome (hereinafter simply referred to as “MS”) It may be a population having a distribution.
  • MS metabolic syndrome
  • the computer calculates a first contour including the navel portion N from the inputted abdominal girth length, orientation information, and movement information (step S123). Further, the calculated first contour is corrected (step S124).
  • a plurality of Fourier coefficients can be obtained by Fourier analysis of the curve of the first contour.
  • the Fourier coefficient of each order obtained by Fourier analysis of a curve is used as a coefficient representing the feature of the shape.
  • Fourier analysis is performed on sample data for a predetermined number of people, and X-axis, Y-axis, and 1st to kth order (k is an arbitrary integer) Fourier coefficients are obtained.
  • the Fourier coefficient may be reduced by performing well-known principal component analysis.
  • the principal component analysis is an analysis method for creating a kind of composite variable (principal component) by searching for components common to multivariate data (in this embodiment, a plurality of Fourier coefficients). The characteristics of can be expressed.
  • regression analysis is performed using the plurality of Fourier coefficients (or principal components) obtained in step S125 and the visceral fat area input in advance (step S126).
  • Regression analysis is one of the statistical methods that examines the relationship between numerical values that are the result and numerical values that are factors, and clarifies each relationship.
  • a Fourier coefficient (or principal component) as an independent variable and a visceral fat area obtained by CT as a dependent variable
  • regression analysis is performed using data of a predetermined number of sample subjects, and a visceral fat area estimation formula is created (step) S127). The same calculation is performed for the subcutaneous fat area to create a subcutaneous fat area estimation formula.
  • Estimation formula created in this way is Formula 1 and Formula 2 described above.
  • Independent variables Sa 1 , Sa 2, Sa 3 , Sa 4 and Sb 1 , Sb 2 , Sb 3 , Sb 4 in Equations 1 and 2 are feature coefficients for estimating the visceral fat area and subcutaneous fat area of the user. .
  • Some or all of the characteristic coefficients Sa 1 to Sa 4 of the visceral fat area estimation formula and the characteristic coefficients Sb 1 to Sb 4 of the subcutaneous fat area may have the same Fourier coefficient.
  • the estimation formulas for the visceral fat area and the subcutaneous fat area can be created by the statistical means described above (principal component analysis, regression analysis, etc.).
  • each estimation formula was created by performing regression analysis on the visceral fat area and the subcutaneous fat area, but the length of the first contour (the length around the abdominal cross section) was also calculated in the same manner.
  • An estimation formula can be created. That is, regression analysis is performed using the plurality of Fourier coefficients (or principal components) obtained in step S125 and the abdominal circumference previously input. Using the Fourier coefficient (or principal component) as an independent variable and the abdominal circumference measured with a tape measure as a dependent variable, regression analysis is performed using data of a predetermined number of sample subjects, and the first contour length estimation formula Can be created.
  • the smartphone 1 according to the present embodiment can measure the first contour easily and accurately by the method described above. Therefore, the smartphone 1 can accurately estimate the visceral fat area and the subcutaneous fat area in a short time.
  • the information related to the first contour may include, for example, the vertical and horizontal lengths (widths) and the aspect ratio.
  • the vertical and horizontal lengths and the aspect ratio are estimated based on, for example, the calculated first contour.
  • the horizontal length of the first contour is the length of the width of the first contour in front view of the person.
  • the horizontal length of the first contour is the width of the first contour in the X-axis direction in FIG.
  • the vertical length of the first contour is the length of the width of the first contour in a human side view, and is the length of the width in the direction orthogonal to the lateral width of the first contour.
  • the vertical length of the first contour is the width of the first contour in the Y-axis direction in FIG.
  • the aspect ratio of the first contour is the ratio of the vertical length to the horizontal length of the first contour.
  • the smart phone 1 may store a first outline classification including the navel portion N in advance.
  • FIG. 18 is a schematic diagram illustrating an example of the first contour classification.
  • the first contour classifications shown in FIG. 18 are A visceral obesity type, B subcutaneous fat type, and C standard type.
  • the user is classified into A to C described above according to the aspect ratio (d2 / d1 in FIG. 14) of the first contour including the measured navel portion N.
  • a step of [Classification] may be added after step S105 of the flowchart shown in FIG.
  • the user can obtain the determination result and / or advice.
  • the classified contents may be stored in the storage 9 together with the vertical and horizontal lengths and aspect ratios of the first contour.
  • the user may, for example, regularly and continuously measure the contour of the object with the smartphone 1.
  • the measurement of the contour of the object may be performed, for example, every day, every week, or every month.
  • the measurement of the contour of the object may be performed at the same time of the day.
  • the measurement of the contour of the object may be performed before a meal at 7 am. Since the measurement of the contour of the object is performed in the same time zone, data of the same condition is easily acquired.
  • the storage 9 stores information on food and drink and information on physical activity in association with time.
  • Information on food and drink may include a meal menu, user calorie intake, beverages, health functional foods and pharmaceuticals.
  • the storage 9 stores, for example, the content of food and drink and the amount thereof as information related to food and drink.
  • Information on physical activity may include calorie consumption and sleep time of the user.
  • the smartphone 1 can acquire information on food and drink and information on physical activity, for example, by the method described above.
  • the smartphone 1 can display two three-dimensional images stored in the storage 9 on the display 2A.
  • the smartphone 1 may display three-dimensional images generated at different times side by side. That is, the smartphone 1 may display the first three-dimensional image measured at the first time and the second three-dimensional image measured at the second time side by side.
  • FIG. 19 is a diagram illustrating an example of display by the smartphone 1.
  • the first three-dimensional image is a three-dimensional image generated at 7:00 am on January 1, 2017, which is the first time
  • the second three-dimensional image is the second time. This is a three-dimensional image generated at 7:00 am on January 7, 2017.
  • the two three-dimensional images displayed side by side may be automatically determined by the controller 10, for example.
  • the controller 10 when the controller 10 generates a three-dimensional image, when the generated three-dimensional image is displayed side by side with the three-dimensional image generated before a predetermined period (for example, the previous day, one week ago, or one month ago). You may decide.
  • Two three-dimensional images displayed side by side may be determined based on, for example, a user's selection. In this case, the user can know the change in the shape of the object at two desired times (date and time).
  • the number of three-dimensional images displayed side by side by the smartphone 1 is not necessarily two.
  • the smartphone 1 may display three or more three-dimensional images side by side. Also in this case, the user can grasp the change with time of the shape of the object.
  • the smartphone 1 relates to food and drink during the time when the two 3D images are generated (between the first time and the second time) in addition to the two 3D images.
  • Information and / or information regarding physical activity may be displayed.
  • the total value of calories consumed by the user and the total value of calories consumed are displayed between the times when the two three-dimensional images are generated.
  • the name and the amount of the health functional food taken by the user during the time when two three-dimensional images are measured are displayed.
  • the information regarding the food and drink displayed and the information regarding physical activity are not limited to the example displayed in FIG.
  • all or part of the data stored in the storage 9 shown as an example in FIG. 16 may be displayed together with two three-dimensional images.
  • the user can change the shape of the object and the food and / or physical activity. It becomes easier to guess the relationship. For example, when information about food and drink is displayed, the user can easily understand how the shape of the object has changed due to what kind of eating habits.
  • FIG. 20 is a flowchart of the entire processing executed by the smartphone 1 according to this embodiment.
  • the smartphone 1 determines whether to perform information input or three-dimensional image generation based on an operation input from the user.
  • the smartphone 1 determines to input information in step S131, the smartphone 1 accepts input of information on food and drink or information on physical activity based on the user's operation input in step S132. Details of reception of information regarding food and drink or information regarding physical activity are as described above, and include, for example, taking an image of food and drink or receiving input of calorie intake.
  • the smartphone 1 receives the input of information in step S132, and then determines in step S134 whether or not the end of the process has been input by the user. If the smartphone 1 determines that the end of the process has been input, the smartphone 1 ends the flow illustrated in FIG. On the other hand, when the smartphone 1 determines that the end of the process is not input (for example, when the continuation of the process is input), the smartphone 1 proceeds to step S131.
  • step S131 the smartphone 1 determines to perform the contour measurement in step S131, the smartphone 1 generates a three-dimensional image in step S133.
  • the details of step S133 are as described with reference to FIG.
  • the smartphone 1 may display the measured contour after measuring the contour.
  • the smartphone 1 determines whether or not the end of the process has been input by the user in Step S134 after performing the contour measurement in Step S133. If the smartphone 1 determines that the end of the process has been input, the smartphone 1 ends the flow illustrated in FIG. On the other hand, when the smartphone 1 determines that the end of the process is not input (for example, when the continuation of the process is input), the smartphone 1 proceeds to step S131.
  • FIG. 21 is a block diagram illustrating a configuration of the smartphone 1 according to the second embodiment.
  • the timer 11 and the control unit 10A are included in the controller 10.
  • the timer 11 is a device unit for obtaining movement information of the smartphone 1.
  • the timer 11 receives a timer operation instruction from the control unit 10A and outputs a clock signal.
  • the direction sensor 17 acquires the orientation information a plurality of times according to the clock signal output from the timer 11.
  • the orientation information acquired according to the clock signal is temporarily stored inside the smartphone 1 together with the clock information.
  • the clock information is information indicating the time when the direction information is acquired.
  • the clock information may be a record number indicating the acquisition order.
  • the clock information may be the time when the orientation information is acquired.
  • the timer 11 is included in the controller 10, and a timer circuit that is a functional unit of the controller 10 can be used as the timer 11.
  • the present disclosure is not limited to this, and the timer 11 may be provided outside the controller 10 as described in FIG. 4 described above.
  • Control unit 10A estimates movement information of smartphone 1 from the clock information.
  • the movement information of the smartphone 1 is information on the movement amount of the smartphone 1, and is the movement amount in the present embodiment.
  • the control unit 10A calculates the contour of the object based on the orientation information and the movement information, and generates a three-dimensional image based on the contour.
  • description of the same points as in the first embodiment will be omitted, and different points will be described.
  • FIG. 22 is a measurement flowchart of the contour of the object according to the second embodiment.
  • step S101 the user activates the measurement function in the measurement application 9Z.
  • the user inputs an actual measurement value of the abdominal circumference measured in advance with a tape measure or the like into the smartphone 1 (step S141).
  • the smartphone 1 may be able to read the actual measurement value of the abdomen from the user information stored in advance in the storage 9.
  • the input of the actual measurement value of the abdominal circumference is not necessarily performed before the measurement is started (step S102), and may be performed after the measurement is completed (step S104).
  • step S102 measurement is started in step S102.
  • the smartphone 1 is placed against the surface of the abdomen 60 at any position on the abdomen that measures the contour of the object.
  • the smartphone 1 is applied to the surface of the abdomen 60 at the height of the user's navel (the position illustrated by AA in FIG. 5).
  • the measurement start position may start from any position in the abdominal AA position, and a start action set in advance on the smartphone 1 is performed to start measurement.
  • the user moves the smartphone 1 along the surface of the abdomen 60 at the position AA.
  • the smartphone 1 is moved at a constant speed while being applied to the surface of the abdomen 60. You may use the auxiliary tool which assists the movement of the smart phone 1 so that a user can move the smart phone 1 at a fixed speed.
  • a supplementary sound at a constant speed may be output from the smartphone 1 to provide operation guidance.
  • step S103 the smartphone 1 acquires orientation information by the orientation sensor 17 under pre-programmed conditions.
  • the direction information is acquired a plurality of times according to the clock signal output from the timer 11.
  • the orientation information acquired according to the clock signal is stored in the smartphone 1 together with the clock information. This measurement is continuously executed from the start of step S102 to the end of step S104.
  • the user moves the smartphone 1 one or more times at a constant speed while keeping the smartphone 1 against the surface of the abdomen 60. Thereafter, the user performs an end action set in advance on the smartphone 1 to end the measurement (step S104).
  • the smartphone 1 recognizes this as one round, and the smartphone 1 automatically ends the measurement without any user operation. Also good.
  • the smartphone 1 automatically terminates the measurement without any user operation. Also good. In the case of automatic recognition, the user does not need to perform an end action, and the measurement is further simplified.
  • step S105 the control unit 10A estimates a movement amount, which is movement information of the smartphone 1, from the actual measurement value of the user's waist and the clock information obtained in step S103.
  • the amount of movement of the smartphone 1 that makes one round of the user's abdominal circumference is equal to the actual measurement value of the abdominal circumference input in step S141, and the smartphone 1 is regarded as moving at a constant speed.
  • the amount of movement that is one piece of movement information can be calculated.
  • the control unit 10A calculates the contour of the object based on the acquired orientation information and the calculated movement information.
  • the smartphone 1 stores the result calculated in step S105 in the storage 9 in step S106.
  • step S107 the smartphone 1 determines whether or not to continue the contour measurement based on the user's operation input. If the smartphone 1 continues to measure the contour (YES in step S107), the smartphone 1 proceeds to step S102.
  • the user can measure the first contour by moving the smartphone 1 in the first direction by applying the smartphone 1 to the abdomen 60 at different heights. After measuring the first contour at the height of the navel, the user measures the first contour at a position that is a predetermined distance higher than the height of the navel, and by repeating this, multiple users at different heights are measured. The first contour can be measured.
  • FIG. 23 is an example of a record configured from acquired information according to the second embodiment.
  • the measurement start time is record number R0
  • the measurement end time is record number Rn.
  • Each record stores a pair of direction information and movement information corresponding to time.
  • the movement information is a movement amount estimated from a record number (or time) that is clock information.
  • the movement information of the record number Rn stores the actual measurement value of the user's abdominal circumference. Since the time interval of each record is equal and the smartphone 1 is regarded as moving at a constant speed, the interval of each movement amount as movement information is also equal.
  • the record acquired in this way is represented as a diagram showing the first contour.
  • the first contour can be calculated by plotting the acquired records R0 to Rn in order to the XY coordinates in accordance with the direction and the moving amount.
  • the plotted points are equally spaced in the calculated first contour shown in FIG.
  • the calculated first contour has a shape that is substantially symmetric with respect to the Y axis.
  • the calculated first contour has an asymmetric shape with respect to the Y axis.
  • a message prompting remeasurement at a constant speed may be displayed on the smartphone 1.
  • the magnitude of the asymmetry can be determined from the difference in the number of plot points in each region separated by the Y axis in FIG. For example, when the difference in the number of plot points is other than ⁇ 10%, it is determined that the asymmetry of the first contour is large.
  • the determination method of the magnitude of asymmetry is not limited to this, and for example, a determination method of calculating the area surrounded by the first contour and comparing the size of the area may be used. Determination criteria can also be set as appropriate.
  • the second contour may be measured in the same manner.
  • the movement information can be obtained without using the second sensor unit by using the timer 11 as the device unit for obtaining the movement information of the own device. Therefore, the smart phone 1 of this embodiment can further reduce the number of parts. Furthermore, the smartphone 1 according to the present embodiment can reduce measurement errors due to the accuracy of the second sensor unit.
  • the method for generating and displaying a three-dimensional image by the smartphone 1 according to the present embodiment may be the same as in the first embodiment. Also with the smartphone 1 according to the present embodiment, the user can easily grasp the three-dimensional image visually.
  • the entire first contour is estimated from a part of the calculated first contour. Further, a three-dimensional image is generated from the estimated value, and the generated three-dimensional image is displayed on the smartphone 1.
  • the smartphone 1 according to this embodiment may have the same configuration as the block diagram of FIG. 22 as in the second embodiment. Hereinafter, description of the same parts as those of the first embodiment and the second embodiment will be omitted, and different points will be described.
  • FIG. 24 is a measurement flowchart of the first contour of the object according to the third embodiment.
  • the first contour of a substantially half-circumferential portion is calculated from the midline position of the body.
  • step S101 the user activates the measurement function in the measurement application 9Z.
  • the user inputs an actual measurement value of the abdominal circumference measured in advance with a tape measure or the like into the smartphone 1 (step S141).
  • an actual measurement value of the abdominal circumference may be read from user information stored in advance in the storage 9 of the smartphone 1.
  • Step S141 is not necessarily performed before the start of measurement, and may be performed after the end of the measurement in step S104.
  • step S102 measurement is started in step S102.
  • the smartphone 1 is applied to the surface of the abdomen 60 at a mid position.
  • the measurement start position is appropriately selected depending on which part is calculated in the first contour. If the measurement start position is determined in advance, the range of the first contour to be calculated does not change for each user, and it is possible to reduce the error of the contour feature coefficient described later.
  • the middle position is set as the measurement start position. For example, the measurement is started by matching the side face 1C1 of the smartphone 1 with the midline position. The user performs a start action set in advance on the smartphone 1 and starts measurement.
  • step S103 the user moves the smartphone 1 in the first direction along the surface of the abdomen 60.
  • the smartphone 1 is moved at a constant speed while being applied to the surface of the abdomen 60.
  • step S103 the smartphone 1 acquires the angular velocity (degrees / second), which is orientation information, by the angular velocity sensor 18 under preprogrammed conditions.
  • the direction information is acquired a plurality of times according to the clock signal output from the timer 11.
  • the orientation information acquired according to the clock signal is stored in the smartphone 1 together with the acquisition time information. This measurement is continuously executed from the start of step S102 to the end of step S104.
  • the user moves the smartphone 1 more than half a circle at a constant speed while keeping the smartphone 1 against the surface of the abdomen 60.
  • the half circle is from the midline to the center of the back.
  • the smartphone 1 may have a means for notifying the user of the half circumference.
  • step S104 the user performs a termination action set in advance on the smartphone 1 to terminate the measurement.
  • step S151 mentioned later the case where the direction of the smart phone 1 changed 180 degree
  • control unit 10A calculates the half circumference portion of the first contour (step S151).
  • the controller 10A calculates the orientation of the smartphone 1 by integrating the angular velocity acquired in step S103 once.
  • FIG. 25 shows an example of the orientation of the smartphone 1 according to the third embodiment.
  • a method for extracting information of the half-circle portion from the acquired orientation information will be described with reference to the drawings.
  • the horizontal axis represents time, the measurement start time is 0 seconds, and the measurement end time is T (n / 2 + a) seconds.
  • n represents 360 degrees of one turn
  • a represents an angle obtained by subtracting 180 degrees of a half turn from the direction at the end of measurement.
  • the vertical axis indicates the orientation of the smartphone 1.
  • the solid line in the figure is acquired information
  • the dotted line is a virtual line of information for one round that is not acquired.
  • the flat part of the curve in the drawing near the direction of 180 degrees is estimated as the information of the back part, and the smartphone 1 determines that the center of the back has passed through the midpoint of this flat part, and detects a half circumference. That is, the smartphone 1 extracts T (n / 2) seconds from 0 seconds in the figure as half-circle information.
  • This method of extracting information of the half-circle portion is an example.
  • the smartphone 1 may perform normalization with the flat portion being 180 degrees.
  • the smartphone 1 may perform normalization using information on a position whose direction is shifted by ⁇ 180 degrees from the flat portion as a starting point.
  • the smartphone 1 may determine that the center of the back is not the midpoint of the flat portion, but the information of the position where the inclination of the curve is the smallest in the vicinity of 180 degrees.
  • FIG. 26 is an example of a record composed of acquired and normalized information according to the third embodiment.
  • Record R0 is the start point (the position of the umbilicus in the present embodiment) of the half-circle portion of the extracted outline, and record R is the end point of the half-circle portion (the record in the center of the back and the orientation is 180 degrees in this embodiment).
  • N / 2 the acquired final information is record R (n / 2 + a).
  • Each record stores a pair of orientation information and movement information.
  • the movement information is a movement amount estimated from a record number (or time) that is clock information.
  • a record having a direction of 0 to 180 degrees is extracted as half-round information.
  • Step S151 may be executed in parallel with step S103.
  • the smartphone 1 corrects the result calculated in step S151 in step S152.
  • a line connecting the start point (the median position in the present embodiment) and the end point (the center of the back in the present embodiment) of the calculated half-circumferential portion of the first contour is used. You may carry out based on the inversion closed curve turned up as a symmetry axis.
  • the contour direction correction may be performed by rotating the inverted closed curve so that the axis of symmetry of the inverted closed curve (line connecting the center and the center of the back) faces a predetermined direction.
  • the contour position may be corrected by moving the inverted closed curve so that the center point of the inverted closed curve is at the origin of the coordinate system.
  • the correction of the direction and the position may be performed by a conventionally known method.
  • FIG. 27 is a diagram showing the first contour corrected and corrected according to the third embodiment.
  • a solid line in the figure is a half-circle portion of the calculated first contour
  • a dotted line in the figure is a virtual curve obtained by inverting the half-circle portion of the calculated first outline with a symmetry axis.
  • a black point is a point obtained by plotting the acquired record on the XY coordinates. The controller 10 can derive the first contour in this way.
  • step S153 the smartphone 1 stores the result calculated and corrected in steps S151 and S152 in the storage 9.
  • step S107 the smartphone 1 determines whether or not to continue the contour measurement based on the user's operation input. If the smartphone 1 continues to measure the contour (YES in step S107), the smartphone 1 proceeds to step S102. In this case, the user can measure the first contour by moving the smartphone 1 in the first direction by applying the smartphone 1 to the abdomen 60 at different heights.
  • the second contour may be measured in the same manner as the method described in the first embodiment.
  • the method for generating and displaying the three-dimensional image by the smartphone 1 according to the present embodiment may be the same as in the first embodiment. Also with the smartphone 1 according to the present embodiment, the user can easily grasp the three-dimensional image visually.
  • the smartphone 1 since the first contour of the person is almost bilaterally symmetric, it is possible to estimate the entire first contour only by calculating at least a half-circle portion of the first contour. Therefore, the user only has to move the smartphone 1 around the abdomen at least half a cycle, and the measurement time is further shortened. In addition, since the operation of changing the smartphone 1 between the left and right hands during measurement is eliminated, the smartphone 1 can be easily moved at a constant speed, and the measurement accuracy can be further improved.
  • the smartphone 1 may calculate the first contour from the 1 ⁇ 4 circumferential portion instead of calculating the first contour from the half circumferential portion. For example, a case where the first contour is calculated from a 1 ⁇ 4 circumference portion from the midline to the flank will be described.
  • the half circumference portion may be replaced with the quarter circumference portion.
  • the quarter-round portion in step S151 for example, when the orientation of the smartphone 1 changes by 90 degrees from the start of measurement, it is determined that the quarter-round is almost 1/4, and information is extracted. In the graph of the orientation of the smartphone 1 shown in FIG.
  • T (n / 4) seconds from 0 seconds in the figure are extracted as information of the 1/4 round portion.
  • a record having a direction of 0 to 90 degrees is extracted as information of a quarter circumference.
  • the end point of the quarter turn portion is the record R (n / 4).
  • the movement information of the record number R (n / 4) a value that is 1/4 of the actual measurement value of the user's waist circumference is stored. Since the movement of the smartphone 1 is at a constant speed, the distance of the movement amount that is the movement information is equal.
  • the quarter circumference portion of the first contour of the object can be calculated. it can.
  • the contour direction correction and the contour position correction in step S152 can be easily corrected if they are performed on the basis of an inverted closed curve obtained by turning the quarter circumference portion of the calculated contour around the Y axis and X axis of the coordinate system as symmetry axes. It is.
  • the estimation equation shown in FIG. 17 described above may be created by changing the half-round portion to the quarter-round portion.
  • This method of extracting the quarter circumference is an example. For example, when the time at which the direction is 180 degrees is T (n / 2) seconds, a record of half that time is extracted as information of the quarter circumference. May be.
  • the smartphone 1 can estimate the first contour by calculating at least a quarter of the first contour. Therefore, the user only has to move the smartphone 1 at least a quarter of the time around the abdomen, and the measurement time is further shortened. In addition, since the operation of turning the smartphone 1 to the back side during measurement is eliminated, the smartphone 1 can be easily moved at a constant speed, and the measurement accuracy can be further improved.
  • the smartphone 1 does not necessarily need to calculate the entire first contour when calculating the first contour from a quarter circumference from the midline to the flank.
  • the smartphone 1 may calculate only the front side of the first contour of the user.
  • the smartphone 1 can correct the 1 ⁇ 4 circumference portion of the calculated contour based on an inversion curve obtained by turning the Y axis of the coordinate system around the symmetry axis.
  • the smartphone 1 may generate a three-dimensional image based on, for example, the first contour indicating only the front side and the second contour.
  • the smartphone 1 generates, for example, a three-dimensional image shown in FIG. 28 and outputs it to the display 2A.
  • the smartphone 1 can display a three-dimensional image only on the front side of the object.
  • the front side is more likely to change than the back side, so that the user can visually grasp the three-dimensional image by displaying only the front side.
  • the smartphone 1 can estimate the first contour even when the orientation information and the movement information are acquired less than a half of the abdomen.
  • the smartphone 1 may estimate the first contour based on the contour information for 135 degrees (for 3/8 lap) from the median position.
  • the system of the embodiment shown in FIG. 29 includes a server 80, a smartphone 1, and a communication network.
  • the smartphone 1 transmits the measurement results of the measured first contour and second contour to the server 80 through the communication network.
  • the server 80 generates a three-dimensional image based on the first contour and the second contour, and transmits the generated three-dimensional image data to the smartphone 1.
  • the smartphone 1 can display the three-dimensional image transmitted from the server 80 on the display 2A.
  • the calculation burden on the controller 10 of the smartphone 1 used by the user can be reduced, and the smartphone 1 can be reduced in size and simplified.
  • a form in which the acquired orientation information, movement information, and waist circumference are transmitted to the server 80 may be employed.
  • the calculation burden on the controller 10 of the smartphone 1 used by the user can be further reduced. The processing speed of calculation is also improved.
  • the server 80 may store the measured first and second contours, and a three-dimensional image generated based on the first and second contours.
  • the server 80 includes a first time when the first three-dimensional image is measured, a second time when the second three-dimensional image is measured, and a user between the first time and the second time. You may memorize
  • the server 80 may transmit a 3D image and data stored in a predetermined period to the smartphone 1 in accordance with a request from the smartphone 1.
  • the smartphone 1 may display the 3D image and data transmitted from the server 80 on the smartphone 1.
  • the system according to the present embodiment shows a configuration in which the smartphone 1 and the server 80 are connected via a communication network, but the system of the present disclosure is not limited to this.
  • a measuring element that moves along the surface of the object, a first sensor unit that obtains direction information of the measuring element, a device unit that obtains movement information of the measuring element, and a contour of the object are calculated to be three-dimensional
  • a control unit that generates an image Each functional unit may be connected by communication means.
  • the smartphone 1 generates a three-dimensional image based on the first contour and the second contour.
  • the smartphone 1 generates a three-dimensional image without using the second contour. May be.
  • the smartphone 1 generates a three-dimensional image by arranging the first contours.
  • FIG. 30 is a diagram illustrating a modification of the three-dimensional image, and is a diagram illustrating an example of the three-dimensional image generated by arranging the first contours.
  • the smartphone 1 displays a plurality of first contours in the order of measured heights (in the example shown in FIG. 30, HF1, HF2, Arrange in order of HF3 and HF4).
  • the smartphone 1 may display three axes (x axis, y axis, and z axis) in order to make the three-dimensional image easy to see.
  • the smartphone 1 may arrange the plurality of first outlines so that the centers of the plurality of first outlines coincide with each other in the z-axis direction.
  • the smartphone 1 arranges the plurality of first outlines so that the centers of the backs of the plurality of first outlines coincide with each other in the z-axis direction. Good.
  • the device of the present disclosure is not limited to this, and may include the first sensor unit, the device unit, and the control unit. Furthermore, it is not necessary to include the first sensor unit, the device unit, and the control unit inside the device itself, and each of them may be individually separated.
  • the case of generating a three-dimensional image of the body has been described.
  • a three-dimensional image of the thigh for example, may be generated.
  • the three-dimensional images generated at different times may be displayed side by side so that they can be compared.
  • the first sensor unit may be any other sensor as long as it can acquire the orientation information of the own device.
  • an inclination sensor or the like may be used.
  • the second sensor unit may be any other unit as long as it can acquire movement information of its own machine, and the number of rotations of the wheel can be determined. You may use the electronic roller distance meter etc. which acquire movement information by detecting.
  • the first contour is measured by turning the object once, half, and 1 ⁇ 4 times.
  • the first contour of two turns is measured.
  • Computer systems and other hardware include, for example, general-purpose computers, PCs (personal computers), dedicated computers, workstations, PCS (Personal Communications System, personal mobile communication systems), mobile (cellular) telephones, and data processing functions Includes mobile phones, RFID receivers, game consoles, electronic notepads, laptop computers, GPS (Global Positioning System) receivers or other programmable data processing devices.
  • the various operations are performed by dedicated circuitry implemented with program instructions (software) (eg, individual logic gates interconnected to perform specific functions), or one or more processors. Note that it is executed by a logic block or a program module.
  • processors that execute logic blocks or program modules include, for example, one or more microprocessors, CPU (Central Processing Unit), ASIC (Application Specific Integrated Circuit), DSP (Digital Signal Processor), PLD (Programmable Includes Logic (Device), FPGA (Field Programmable Gate Array), processor, controller, microcontroller, microprocessor, electronics, other devices designed to perform the functions described here, and / or any combination of these It is.
  • the embodiments shown here are implemented by, for example, hardware, software, firmware, middleware, microcode, or any combination thereof.
  • the instructions may be program code or code segments for performing the necessary tasks.
  • the instructions can then be stored on a machine-readable non-transitory storage medium or other medium.
  • a code segment may represent any combination of procedures, functions, subprograms, programs, routines, subroutines, modules, software packages, classes or instructions, data structures or program statements.
  • a code segment transmits and / or receives information, data arguments, variables or stored contents with other code segments or hardware circuits, thereby connecting the code segments with other code segments or hardware circuits .
  • the network used here is the Internet, ad hoc network, LAN (Local Area Network), WAN (Wide Area Network), MAN (Metropolitan Area Network), cellular network, WWAN (Wireless Includes Wide Area Network, WPAN (Wireless Personal Area Network), PSTN (Public Switched Telephone Network), Terrestrial Wireless Network, or other networks or any combination thereof.
  • the components of the wireless network include, for example, an access point (for example, a Wi-Fi access point) or a femto cell.
  • wireless communication devices include Wi-Fi, Bluetooth (registered trademark), cellular communication technologies such as CDMA (Code Division Multiple Access), TDMA (Time Division Multiple Access), FDMA (Frequency Division Multiple Access), OFDMA (Orthogonal Frequency Frequency). Division (Multiple Access), SC-FDMA (Single-Carrier Frequency Division Multiple Access), or other wireless technologies and / or wireless standards using technology standards.
  • the network can employ one or more technologies, such as UTMS (Universal Mobile Telecommunications System), LTE (Long Term Term Evolution), EV-DO (Evolution-Data Optimized oror Evolution-Data).
  • GSM Global System for Mobile communications
  • WiMAX Worldwide Interoperability for Microwave Access
  • CDMA-2000 Code Division Multiple Access-2000
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • the circuit configuration of the communication unit or the like provides functionality by using various wireless communication networks such as WWAN, WLAN, WPAN, for example.
  • the WWAN can be a CDMA network, a TDMA network, an FDMA network, an OFDMA network, an SC-FDMA network, or the like.
  • a CDMA network can implement one or more RAT (Radio Access Technology) such as CDMA2000, Wideband-CDMA (W-CDMA).
  • CDMA2000 includes IS-95, IS-2000 and IS-856 standards.
  • the TDMA network can implement GSM®, D-AMPS (Digital Advanced Phone System) or other RAT.
  • GSM registered trademark
  • W-CDMA are described in documents issued by a consortium called 3rd Generation Partnership Project (3GPP).
  • CDMA2000 is described in documents issued by a consortium called 3rd Generation Generation Partnership Project 2 (3GPP2).
  • the WLAN can be an IEEE 802.11x network.
  • the WPAN can be a Bluetooth® network, IEEE 802.15x or other type of network.
  • CDMA can be implemented as a radio technology such as UTRA (Universal Terrestrial Radio Access) or CDMA2000.
  • TDMA can be implemented by a wireless technology such as GSM (registered trademark) / GPRS (General Packet Radio Service) / EDGE (Enhanced Data Rate for GSM (Evolution)).
  • GSM registered trademark
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rate for GSM (Evolution)
  • OFDMA can be implemented by wireless technology such as IEEE (Institute of Electrical and Electronics Engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE802.20, E-UTRA (Evolved UTRA).
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX WiMAX
  • IEEE802.20 E-UTRA
  • Such techniques can be used for any combination of WWAN, WLAN and / or WPAN.
  • Such technology can be implemented to use UMB (Ultra Mobile Broadband) network, HRPD (High Rate Packet Data) network, CDMA20001X network, GSM (registered trademark), LTE (Long-Term Evolution), and the like.
  • UMB Ultra Mobile Broadband
  • HRPD High Rate Packet Data
  • CDMA20001X Code Division Multiple Access 20001X
  • GSM registered trademark
  • LTE Long-Term Evolution
  • the storage 9 used here can be further configured as a computer-readable tangible carrier (medium) comprised of solid state memory, magnetic disk and optical disk categories, such media being disclosed herein.
  • An appropriate set of computer instructions, such as program modules, or data structures for causing a processor to execute the techniques to be stored is stored.
  • Computer readable media include electrical connections with one or more wires, magnetic disk storage media, magnetic cassettes, magnetic tapes, and other magnetic and optical storage devices (eg CD (Compact Disk), laser disks ( Registered trademark), DVD (registered trademark) (Digital Versatile Disc), floppy disk (registered trademark) and Blu-ray Disc (registered trademark)), portable computer disk, RAM (Random Access Memory), ROM (Read-Only Memory), It includes a rewritable and programmable ROM such as EPROM, EEPROM or flash memory or other tangible storage medium capable of storing information or any combination thereof.
  • the memory can be provided inside and / or outside the processor / processing unit.
  • the term “memory” means any type of long-term storage, short-term storage, volatile, non-volatile, or other memory in which a particular type or number of memories or storage is stored. The type of medium is not limited.
  • modules, units, and other components may be hardware and / or software implemented to substantially perform the specific functions described herein.
  • the various functions of the different components may be any combination or separation of hardware and / or software, each used separately or in any combination.
  • I / O devices or user interfaces including but not limited to keyboards, displays, touch screens, pointing devices, etc. can be connected directly to the system or via an intervening I / O controller. .
  • I / O controller can be connected directly to the system or via an intervening I / O controller.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Human Computer Interaction (AREA)
  • Physiology (AREA)
  • Multimedia (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

電子機器は、体の表面に沿って自機を移動させることにより体の輪郭を測定する測定部と、輪郭に基づいて体の三次元画像を生成する制御部と、を備え、制御部は、第1方向に沿って測定された第1の輪郭を複数並べることにより三次元画像を生成する。

Description

電子機器、生成方法及び生成システム 関連出願の相互参照
 本出願は、日本国特許出願2017-086610号(2017年4月25日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、電子機器、生成方法及び生成システムに関する。
 従来、腹部断面の内臓脂肪面積を測定する方法として、コンピュータ断層撮影(以下、単に「CT」という)が知られている。さらに、従来、CTにより測定された内臓脂肪面積を視覚的に表示する方法が知られている。例えば特許文献1には、脂肪面積を、円を用いて表示する装置が開示されている。
特開2002-191563号公報
 一実施形態に係る電子機器は、体の表面に沿って自機を移動させることにより前記体の輪郭を測定する測定部と、前記輪郭に基づいて前記体の三次元画像を生成する制御部と、を備える。前記制御部は、第1方向に沿って測定された第1の輪郭を複数並べることにより前記三次元画像を生成する。
 一実施形態に係る表示方法は、電子機器により実行される表示方法であって、体の表面に沿って前記電子機器を移動させることにより前記体の輪郭を測定するステップと、第1方向に沿って測定された第1の輪郭を複数並べることにより前記体の三次元画像を生成するステップと、を含む。
 一実施形態に係る表示システムは、体の表面に沿って自機を移動させることにより前記体の輪郭を測定する測定部と、前記輪郭に基づいて前記体の三次元画像を生成する制御部と、を備える。前記制御部は、第1方向に沿って測定された第1の輪郭を複数並べることにより前記三次元画像を生成する。
図1は、第1実施形態に係るスマートフォンの外観を示す斜視概略図である。 図2は、第1実施形態に係るスマートフォンの外観を示す正面概略図である。 図3は、第1実施形態に係るスマートフォンの外観を示す背面概略図である。 図4は、第1実施形態に係るスマートフォンの機能を示すブロック概略図である。 図5は、第1実施形態に係る対象物の輪郭の測定の様子を示す模式図である。 図6は、第1実施形態に係る対象物の輪郭の測定の様子を示す模式図である。 図7は、第1実施形態に係る対象物の輪郭の測定フロー図である。 図8A,図8Bは、第1実施形態に係る向きと移動量の一例を示す。 図9は、第1実施形態に係る向き情報と移動情報のレコードの一例である。 図10は、第1実施形態に係る演算された対象物の輪郭を示す図である。 図11は、第1実施形態に係る実測値による補正を説明する図である。 図12は、第1実施形態に係る三次元画像の出力フロー図である。 図13は、第1実施形態において生成される三次元画像の一例を示す図である。 図14は、第1実施形態において生成される三次元画像の他の一例を示す図である。 図15は、第1実施形態に係る電子巻尺を説明する概略図である。 図16は、第1実施形態に係るスマートフォンのストレージに記憶されるデータの一例を示す図である。 図17は、内臓脂肪面積推定式及び皮下脂肪面積推定式の作成フロー図である。 図18A~図18Cは、第1実施形態に係る第1の輪郭の分類例を示す概略図である。 図19は、第1実施形態に係るスマートフォンによる表示の一例を示す図である。 図20は、第1実施形態に係るスマートフォンによる処理全体のフロー図である。 図21は、第2実施形態に係るスマートフォンの機能を示すブロック概略図である。 図22は、第2実施形態に係る対象物の輪郭の測定フロー図である。 図23は、第2実施形態に係る向き情報と移動情報のレコードの一例である。 図24は、第3実施形態に係る対象物の輪郭の測定フロー図である。 図25は、第3実施形態に係るスマートフォンの向きの一例を示す。 図26は、第3実施形態に係る取得された情報から構成されたレコードの一例である。 図27は、第3実施形態に係る演算及び補正された第1の輪郭を示す図である。 図28は、第3実施形態に係るスマートフォンによる表示の一例を示す図である。 図29は、一実施形態に係る通信手段を備える機器、及びシステムを示す概念図である。 図30は、三次元画像の一変形例を示す図である。
 特許文献1に開示された装置は円を用いて脂肪面積を表示するものであるため、利用者(被検者)が腹部の形状を視覚的に把握しにくい。本開示の目的は、利用者が簡易的に腹部の形状を視覚的に把握しやすい電子機器、生成方法及び生成システムを提供することにある。
 いくつかの実施形態について、図面を参照しつつ詳細に説明する。
 本実施形態では、電子機器の実施形態の一例としてスマートフォン1を採用し、対象物の一例として人の体を測定した場合について説明する。電子機器は、スマートフォン1に限られるものではなく、対象物は人の体でなくてもよい。対象物は、動物の体であってもよい。人の体は、例えば人の腹部を含んでいてよい。動物の体は、例えば動物の胴体を含んでいてよい。
 (第1実施形態)
 自機であるスマートフォン1は、向き情報を得る第1のセンサ部と、移動情報を得るためのデバイス部と、対象物の輪郭を演算するコントローラ10とを少なくとも備える。本実施形態では移動情報を得るためのデバイス部は第2のセンサ部を含んでいる。
 図1から図3を参照しながら、第1の実施形態に係るスマートフォン1の外観について説明する。
 ハウジング20は、フロントフェイス1Aと、バックフェイス1Bと、サイドフェイス1C1~1C4とを有する。フロントフェイス1Aは、ハウジング20の正面である。バックフェイス1Bは、ハウジング20の背面である。サイドフェイス1C1~1C4は、フロントフェイス1Aとバックフェイス1Bとを接続する側面である。以下では、サイドフェイス1C1~1C4を、どの面であるかを特定することなく、サイドフェイス1Cと総称することがある。
 スマートフォン1は、タッチスクリーンディスプレイ2と、ボタン3A~3Cと、照度センサ4と、近接センサ5と、レシーバ7と、マイク8と、カメラ12とをフロントフェイス1Aに有する。スマートフォン1は、カメラ13をバックフェイス1Bに有する。スマートフォン1は、ボタン3D~3Fと、コネクタ14とをサイドフェイス1Cに有する。以下では、ボタン3A~3Fを、どのボタンであるかを特定することなく、ボタン3と総称することがある。
 タッチスクリーンディスプレイ2は、ディスプレイ2Aと、タッチスクリーン2Bとを有する。ディスプレイ2Aは、液晶ディスプレイ(Liquid Crystal Display)、有機ELパネル(Organic Electro-Luminescence panel)、または無機ELパネル(Inorganic Electro-Luminescence panel)等の表示デバイスを備える。ディスプレイ2Aは、文字、画像、記号または図形等を表示する表示部として機能する。
 タッチスクリーン2Bは、タッチスクリーン2Bに対する指、またはスタイラスペン等の接触を検出する。タッチスクリーン2Bは、複数の指、またはスタイラスペン等がタッチスクリーン2Bに接触した位置を検出することができる。
 タッチスクリーン2Bの検出方式は、静電容量方式、抵抗膜方式、表面弾性波方式(または超音波方式)、赤外線方式、電磁誘導方式、及び荷重検出方式等の任意の方式でよい。静電容量方式では、指、またはスタイラスペン等の接触及び接近を検出することができる。
 図4は、スマートフォン1の構成を示すブロック図である。スマートフォン1は、タッチスクリーンディスプレイ2と、ボタン3と、照度センサ4と、近接センサ5と、通信ユニット6と、レシーバ7と、マイク8と、ストレージ9と、コントローラ10と、タイマー11と、カメラ12及び13と、コネクタ14と、モーションセンサ15と、を有する。
 タッチスクリーンディスプレイ2は、上述したように、ディスプレイ2Aと、タッチスクリーン2Bとを有する。ディスプレイ2Aは、文字、画像、記号、または図形等を表示する。タッチスクリーン2Bは、受付領域に対する接触を入力として受け付ける。つまり、タッチスクリーン2Bは、接触を検出する。コントローラ10は、スマートフォン1に対するジェスチャを検出する。コントローラ10は、タッチスクリーン2Bと協働することによって、タッチスクリーン2B(タッチスクリーンディスプレイ2)における操作(ジェスチャ)を検出する。コントローラ10は、タッチスクリーン2Bと協働することによって、ディスプレイ2A(タッチスクリーンディスプレイ2)における操作(ジェスチャ)を検出する。
 ボタン3は、利用者によって操作される。ボタン3は、ボタン3A~ボタン3Fを有する。コントローラ10はボタン3と協働することによってボタンに対する操作を検出する。ボタンに対する操作は、例えば、クリック、ダブルクリック、プッシュ、ロングプッシュ、及びマルチプッシュである。
 例えば、ボタン3A~3Cは、ホームボタン、バックボタンまたはメニューボタンである。本実施形態では、ボタン3A~3Cとしてタッチセンサ型のボタンを採用している。例えば、ボタン3Dは、スマートフォン1のパワーオン/オフボタンである。ボタン3Dは、スリープ/スリープ解除ボタンを兼ねてもよい。例えば、ボタン3E及び3Fは、音量ボタンである。
 照度センサ4は、照度を検出する。例えば、照度とは、光の強さ、明るさ、輝度等である。照度センサ4は、例えば、ディスプレイ2Aの輝度の調整に用いられる。
 近接センサ5は、近隣の物体の存在を非接触で検出する。近接センサ5は、例えば、タッチスクリーンディスプレイ2が顔に近付けられたことを検出する。
 通信ユニット6は、無線により通信する。通信ユニット6によって行われる通信方式は、無線通信規格である。例えば、無線通信規格として、2G、3G、4G等のセルラーフォンの通信規格がある。例えば、セルラーフォンの通信規格として、LTE(Long TermEvolution)、W-CDMA、CDMA2000、PDC、GSM(登録商標)、PHS(Personal Handy-phone System)等がある。例えば、無線通信規格として、WiMAX(Worldwide Interoperability for Microwave Access)、IEEE802.11、Bluetooth(登録商標)、IrDA、NFC等がある。通信ユニット6は、上述した通信規格の1つまたは複数をサポートしていてもよい。
 レシーバ7は、コントローラ10から送信される音声信号を音声として出力する。マイク8は、利用者等の音声を音声信号へ変換してコントローラ10へ送信する。スマートフォン1は、レシーバ7に代えて、スピーカをさらに有してもよい。
 ストレージ9は、記憶部としてプログラム及びデータを記憶する。ストレージ9は、コントローラ10の処理結果を一時的に記憶する記憶部としても利用される。ストレージ9は、半導体記憶デバイス、及び磁気記憶デバイス等の任意の記憶デバイスを含んでよい。ストレージ9は、複数の種類の記憶デバイスを含んでよい。ストレージ9は、メモリカード等の可搬の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでよい。
 ストレージ9に記憶されるプログラムには、フォアグランドまたはバックグランドで実行されるアプリケーションと、アプリケーションの動作を支援する制御プログラムとが含まれる。アプリケーションは、例えば、ディスプレイ2Aに所定の画面を表示させ、タッチスクリーン2Bを介して検出されるジェスチャに応じた処理をコントローラ10に実行させる。制御プログラムは、例えば、OSである。アプリケーション及び制御プログラムは、通信ユニット6による無線通信または記憶媒体を介してストレージ9にインストールされてもよい。
 ストレージ9は、例えば、制御プログラム9A、メールアプリケーション9B、ブラウザアプリケーション9C、及び測定アプリケーション9Zを記憶する。メールアプリケーション9Bは、電子メールの作成、送信、受信、及び表示等のための電子メール機能を提供する。ブラウザアプリケーション9Cは、WEBページを表示するためのWEBブラウジング機能を提供する。測定アプリケーション9Zは、利用者がスマートフォン1で対象物の輪郭を測定して三次元画像を生成する機能を提供する。
 制御プログラム9Aは、スマートフォン1を稼働させるための各種制御に関する機能を提供する。制御プログラム9Aは、例えば、通信ユニット6、レシーバ7、及びマイク8等を制御することによって、通話を実現させる。制御プログラム9Aが提供する機能は、メールアプリケーション9B等の他のプログラムが提供する機能と組み合わせて利用されることがある。
 コントローラ10は、例えば、CPU(Central Processing Unit)である。コントローラ10は、通信ユニット6等の他の構成要素が統合されたSoC(System-on-a-Chip)等の集積回路であってもよい。コントローラ10は、複数の集積回路を組み合わせて構成されていてもよい。コントローラ10は、スマートフォン1の動作を統括的に制御して各種の機能を実現する制御部として機能する。
 具体的には、コントローラ10は、ストレージ9に記憶されているデータを必要に応じて参照する。コントローラ10は、ストレージ9に記憶されているプログラムに含まれる命令を実行して、ディスプレイ2A、通信ユニット6、及びモーションセンサ15などを制御することによって各種機能を実現する。コントローラ10は、ストレージ9に記憶されている測定アプリケーション9Zに含まれる命令を実行して各種機能を実現する。コントローラ10は、タッチスクリーン2B、ボタン3、モーションセンサ15などの各種検出部の検出結果に応じて、制御を変更することができる。本実施形態では、コントローラ10全体が制御部として機能する。コントローラ10は、第1のセンサ部により取得された向き情報と、第2のセンサ部により取得された移動情報とに基づいて、対象物の輪郭を演算する。
 タイマー11はあらかじめ設定された周波数のクロック信号を出力する。タイマー11はコントローラ10からタイマー動作の指示を受け、クロック信号をコントローラ10に出力する。第1のセンサ部及び第2のセンサ部は、コントローラ10を介して入力されるクロック信号に従って、向き情報及び移動情報を複数回取得する。タイマー11はコントローラ10の外部に備えられていてもよいし、後述する図21で示すように、コントローラ10に含まれていてもよい。
 カメラ12は、フロントフェイス1Aに面している物体を撮影するインカメラである。カメラ13は、バックフェイス1Bに面している物体を撮影するアウトカメラである。
 コネクタ14は、他の装置が接続される端子である。本実施形態のコネクタ14は、当該端子に接続される接続物を介してスマートフォン1と他の装置とが通信する通信部としても機能する。コネクタ14は、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、MHL(Mobile High-definition Link)、ライトピーク(Light Peak)、サンダーボルト(Thunderbolt)、LANコネクタ(Local Area Network connector)、イヤホンマイクコネクタのような汎用的な端子であってもよい。コネクタ14は、Dockコネクタのような専用に設計された端子でもよい。コネクタ14に接続される装置には、例えば、充電器、外部ストレージ、スピーカ、通信装置、情報処理装置が含まれる。
 モーションセンサ15は、モーションファクタを検出する。このモーションファクタは、自機であるスマートフォン1のコントロールファクタとして主に処理される。コントロールファクタは自機のおかれた状況を示す因子であり、コントローラ10で処理される。モーションセンサ15は、利用者の体の輪郭を測定する測定部として機能する。本実施形態のモーションセンサ15には、加速度センサ16と、方位センサ17と、角速度センサ18と、傾きセンサ19とが含まれている。加速度センサ16、方位センサ17、角速度センサ18、及び傾きセンサ19の出力は、組み合わせて利用することが可能である。モーションセンサ15の出力を組み合わせて処理することによって、自機であるスマートフォン1の動きを高度に反映させた処理を、コントローラ10によって実行することが可能となる。
 本実施形態では、第1のセンサ部は自機であるスマートフォン1の向き情報を得る。スマートフォン1の向き情報とは、第1のセンサ部から出力される情報である。スマートフォン1の向き情報とは、スマートフォン1の向いている方向に関する情報である。スマートフォン1の向き情報には、例えば地磁気の方向、地磁気に対する傾き、回転角の方向、回転角の変化、重力方向、重力方向に対する傾きが含まれる。
 スマートフォン1の向きとは、対象物の輪郭を測定する際に、対象物に対向しているハウジング20の面の法線方向を示す。対象物に対向させるハウジング20の面は、第1のセンサ部でその向きを検出できる面であればよく、フロントフェイス1A、バックフェイス1B、サイドフェイス1C1~1C4、のいずれを対向させてもよい。
 本実施形態では、第1のセンサ部として、方位センサ17、角速度センサ18及び傾きセンサ19のいずれかを用いてよい。後述するように、スマートフォン1は、第1方向及び第2方向という2つの異なる方向で体の輪郭を測定する。輪郭を測定する方向に応じて、第1のセンサとして、それぞれ異なるセンサが用いられてもよい。
 方位センサ17は地磁気の向きを検出するセンサである。方位センサ17が第1のセンサ部として用いられる場合、スマートフォン1の向きを地面に平行な面上に投影した成分が、方位センサ17で取得される向き情報である。方位センサ17で取得される向き情報は、スマートフォン1の方位である。スマートフォン1の方位は、0~360度の向き情報として取得することができる。例えば、スマートフォン1の向きが北を向いていれば0度、東を向いていれば90度、南を向いていれば180度、西を向いていれば270度、として向き情報が取得される。方位センサ17が第1のセンサとして用いられる場合、測定対象物の輪郭が地面に平行であると、向き情報がより正確に取得されうる。例えば、起立状態で、対象物である体の腹部を周方向(後述する第1方向)で測定する場合、方位センサ17を第1のセンサとして用いることができる。
 方位センサ17は、検出した地磁気の向きを出力する。例えば地磁気の向きがモーションファクタとして出力されると、コントローラ10は、スマートフォン1の向いている方位を反映したコントロールファクタとして処理に利用することが可能となる。例えば地磁気の向きの変化がモーションファクタとして出力されると、コントローラ10は、スマートフォン1の向きの変化を反映したコントロールファクタとして処理に利用することが可能となる。
 角速度センサ18は、スマートフォン1の角速度を検出する。角速度センサ18は、スマートフォン1の角速度を、向き情報として取得することができる。コントローラ10は、取得された角速度を1回時間積分することにより、スマートフォン1の向きを演算する。演算されたスマートフォン1の向きは、測定開始の初期値を基準とした相対角度である。
 角速度センサ18は、検出した角速度を出力する。例えば角速度の向きがモーションファクタとして出力されると、コントローラ10は、スマートフォン1の回転方向を反映したコントロールファクタとして処理に利用することが可能となる。例えば角速度の大きさが出力されると、コントローラ10は、スマートフォン1の回転量を反映したコントロールファクタとして処理に利用することが可能となる。
 傾きセンサ19は、スマートフォン1に働く重力加速度を検出する。傾きセンサ19は、スマートフォン1の重力加速度を、向き情報として取得することができる。例えば、スマートフォン1は傾きセンサ19によって、-9.8~9.8[m/秒]の向き情報として取得することができる。例えば、図1に示すスマートフォン1のy軸方向が重力方向と同じ場合は9.8[m/秒]、逆の場合は-9.8[m/秒]、y軸方向が重力方向と垂直の場合は0[m/秒]、として向き情報が取得される。傾きセンサ19が第1のセンサとして用いられる場合、測定対象物の輪郭が地面に対して略垂直であると、向き情報がより正確に取得され得る。例えば、起立状態で、対象物である体を高さ方向(後述する第2方向)で測定する場合、傾きセンサ19を第1のセンサとして用いることができる。
 傾きセンサ19は、検出した傾きを出力する。例えば重力方向に対する傾きがモーションファクタとして出力されると、コントローラ10は、スマートフォン1の傾きを反映したコントロールファクタとして処理に利用することが可能となる。
 コントローラ10は、スマートフォン1の向き情報から向きを演算する場合がある。例えば、上述した角速度センサ18は向き情報として角速度を取得する。取得された角速度に基づいて、コントローラ10はスマートフォン1の向きを演算する。例えば、上述した傾きセンサ19は向き情報として重力加速度を取得する。取得された重力加速度に基づいて、コントローラ10はスマートフォン1の重力方向に対する向きを演算する。
 第1のセンサ部は、上述したモーションセンサ15を組み合わせて利用することが可能である。複数のモーションセンサからの向き情報を組み合わせて処理することによって、自機であるスマートフォン1の向きを、コントローラ10はより正確に演算することが可能となる。
 本実施形態では、自機の移動情報を得るためのデバイス部は第2のセンサ部である。第2のセンサ部は自機であるスマートフォン1の移動情報を得る。スマートフォン1の移動情報とは、第2のセンサ部から出力される情報である。スマートフォン1の移動情報とは、スマートフォン1の移動量に関する情報である。スマートフォン1の移動情報には、例えば加速度、速度、移動量が含まれる。
 スマートフォン1の移動量とは、本実施形態では、スマートフォン1のハウジング20の基準位置の移動量である。ハウジング20の基準位置は、第2のセンサ部で検出できる位置であればどこでもよく、例えばサイドフェイス1C1の面を基準位置とする。
 本実施形態では、第2のセンサ部に加速度センサ16を用いることができる。加速度センサ16はスマートフォン1に働く加速度を検出するセンサである。加速度センサ16は、スマートフォン1の加速度を移動情報として取得することができる。コントローラ10は、取得された加速度を2回時間積分することにより、スマートフォン1の移動量を演算する。
 加速度センサ16は、検出した加速度を出力する。例えば加速度の方向が出力されると、コントローラ10は、スマートフォン1の動いている方向を反映したコントロールファクタとして処理に利用することが可能となる。例えば加速度の大きさが出力されると、コントローラ10は、スマートフォン1の動いている速度、移動量を反映したコントロールファクタとして処理に利用することが可能となる。
 コントローラ10は、対象物の輪郭を演算することにより、対象物のワイヤフレーム画像を生成する。対象物の輪郭は、第1のセンサ部、第2のセンサ部で取得された向き情報、移動情報に基づいて演算される。コントローラ10は演算の過程で向き、移動量を演算する場合がある。コントローラ10は、生成したワイヤフレーム画像に基づいて、対象物の三次元画像を生成する。三次元画像は、例えば三次元ワイヤフレーム画像として生成される。
 上述した各モーションセンサ15は、それぞれ3つの軸方向におけるモーションファクタの検出が可能なセンサを採用している。本実施形態のモーションセンサ15が検出する3つの軸方向は、互いに略直交している。図1~3に示したx方向、y方向、z方向は、モーションセンサ15の3つの軸方向と対応している。3つの軸の方向は互いに直交していなくてもよい。3方向が互いに直交していないモーションセンサ15では、演算によって直交する3方向におけるモーションファクタを算出可能である。各モーションセンサ15は、基準とする方向が異なっていてもよい。本実施形態においては、各モーションセンサ15は必ずしも3軸でなくてもよい。コントローラ10は、1軸方向における向き情報及び1軸方向における移動情報で、輪郭の演算が可能である。
 第1のセンサ部、第2のセンサ部は、上述したモーションセンサ15のいずれかを用いるか、あるいは他のモーションセンサを用いてもよい。
 図4においてストレージ9が記憶するプログラムの一部または全部は、通信ユニット6による無線通信で他の装置からダウンロードされてもよい。図4においてストレージ9が記憶するプログラムの一部または全部は、ストレージ9に含まれる読み取り装置が読み取り可能な記憶媒体に記憶されていてもよい。図4においてストレージ9が記憶するプログラムの一部または全部は、コネクタ14に接続される読み取り装置が読み取り可能な記憶媒体に記憶されていてもよい。記憶媒体としては、例えばフラッシュメモリ、HDD(登録商標)(Hard Disc Drive)、CD(Compact Disc)、DVD(登録商標)(Digital Versatile Disc)、またはBD(Blu-ray(登録商標) Disc)などを用いることができる。
 図1~図4に示したスマートフォン1の構成は一例であり、本開示の要旨を損なわない範囲において適宜変更してよい。例えば、ボタン3の数と種類は図1の例に限定されない。例えば、スマートフォン1は、画面に関する操作のためのボタンとして、ボタン3A~3Cに代えて、テンキー配列またはQWERTY配列等のボタンを備えていてもよい。スマートフォン1は、画面に関する操作のために、ボタンを1つだけ備えてもよいし、ボタンを備えなくてもよい。図4に示した例では、スマートフォン1が2つのカメラを備えることとしたが、スマートフォン1は、1つのカメラのみを備えてもよいし、カメラを備えなくてもよい。照度センサ4と近接センサ5とは、1つのセンサから構成されていてもよい。図4に示した例では、自機であるスマートフォン1の向き情報及び移動情報を取得するために、4種類のセンサを備える。スマートフォン1は、このうちいくつかのセンサを備えなくてもよいし、他のセンサを備えてもよい。
 次に、本実施形態に係るスマートフォン1を用いた対象物の測定方法について説明する。利用者は、測定アプリケーション9Zにおいて、測定機能が起動された状態で、スマートフォン1を、対象物に沿って移動させる。利用者は、スマートフォン1を、第1方向、及び第1方向とは異なる第2方向に移動させてよい。本実施形態において、第1方向は、体(胴体)の周方向である。本実施形態において、第2方向は、体の高さ方向である。
 図5及び図6は、本実施形態に係る対象物の輪郭の測定の様子を示す模式図である。図5は、第1方向に輪郭を測定する様子を示す模式図である。利用者は、図5に示すように、体の周方向に沿ってスマートフォン1を移動(走査)させることにより、対象物の第1方向の輪郭を測定する。第1方向に沿って測定された輪郭を、本明細書において、以下、「第1の輪郭」とも称する。利用者は、図5に示すように、第1方向の輪郭を、高さを変えて、複数測定することができる。利用者は、例えば、体のへそを通る高さにおける第1の輪郭を測定させ、当該へそを通る高さから、所定の高さ(例えば5cmまたは10cm等)ずつ高さを変えて、第1方向にスマートフォン1を移動させることにより、複数の第1の輪郭を測定できる。
 図6は、第2方向に輪郭を測定する様子を示す模式図である。利用者は、図6に示すように、体の高さ方向に沿ってスマートフォン1を移動させることにより、対象物の第2方向の輪郭を測定する。利用者は、例えば、体の正中に沿ってスマートフォン1を移動させてよい。第2方向に沿って測定された輪郭を、本明細書において、以下、「第2の輪郭」とも称する。
 図5及び図6から理解されるように、第1方向と第2方向とは、略直交していてよい。ここでいう略直交とは、胴体の周方向と高さ方向との交差の程度を含む。複数の第1の輪郭のうちのいずれか1つと、第2の輪郭とは、へそを通る輪郭である。従って、当該1つの第1の輪郭と、第2の輪郭とは、へそにおいて略直交する。
 図7は実施形態に係る対象物の輪郭の測定フロー図である。ここでは、第1の輪郭の測定を行う場合のフローについて説明する。
 ステップS101で、利用者は測定アプリケーション9Zにおける測定機能を起動させる。次に、ステップS102で測定を開始する。測定開始時、スマートフォン1は、対象物の輪郭を測定する腹部のいずれかの位置に、腹部60の表面に対して当てられる。例えば、スマートフォン1は、利用者のへその高さ(図5のA-Aで図示した位置)において腹部60の表面に対して当てられる。対象物の輪郭の測定に支障がない範囲で、スマートフォン1は、腹部60の表面へ接触させてもよいし、腹部60の表面へ着衣を介して当ててもよい。測定開始位置は腹部A-A位置のどこから開始してもよく、スマートフォン1にあらかじめ設定された開始アクションを行い、測定を開始する。あらかじめ設定された開始アクションは、スマートフォン1のいずれかのボタン3を押すことでもよいし、タッチスクリーン2B上の特定の位置をタップするなどでもよい。スマートフォン1の腹部の表面へ当てられる対向面は、フロントフェイス1A、バックフェイス1B、サイドフェイス1C1~1C4のどの面でもよいが、操作性を考慮し、本実施形態ではバックフェイス1Bを対向面とした。
 ステップS103で、利用者は腹部60のA-A位置の表面に沿ってスマートフォン1を移動させ、腹部60を一周させる。ここで、スマートフォン1の移動は、腹部60の表面に対して当てたままで、一定速度で移動させると、各情報の取得間隔が一定となり、輪郭測定の精度を高めることができる。
 ステップS103では、あらかじめプログラムされた条件で、方位センサ17により向き情報を取得し、加速度センサ16により移動情報を取得する。向き情報と移動情報とは複数回取得される。向き情報と移動情報は、タイマー11から出力されたクロック信号に従って取得される。各情報の取得周期は測定対象物の輪郭の大きさ(つまり周の長さ)及び/または複雑さによって、適宜選択される。情報の取得周期は、例えばサンプリング周波数5~60Hz(ヘルツ)の中から適宜選択される。取得された向き情報と移動情報の情報は、スマートフォン1の内部に一時的に記憶される。この測定はステップS102の開始から、ステップS104の終了まで連続して実行される。
 利用者は、スマートフォン1を腹部60の表面に対して当てたまま一周させたところで、スマートフォン1にあらかじめ設定された終了アクションを行い、測定を終了する(ステップS104)。あらかじめ設定された終了アクションは、スマートフォン1のいずれかのボタン3を押すことでもよいし、タッチスクリーン2B上の特定の位置をタップすることでもよい。あるいは、スマートフォン1の方位センサ17で取得された向き情報が、測定開始時の向き情報と一致した場合、または測定開始時の向き情報から360度変化した場合を一周と自動認識し、スマートフォン1が測定を終了させてもよい。自動認識の場合、利用者は終了アクションを行う必要がなく、測定はより簡略化される。
 ステップS103にて得られた向き情報と移動情報とを、ステップS105において演算する。この演算はコントローラ10によって行われる。コントローラ10は、対象物の輪郭及び腹囲を演算する。ステップS105における演算については後に詳述する。
 スマートフォン1は、ステップS106において、ステップS105にて演算した結果をストレージ9に記憶する。
 スマートフォン1は、ステップS107において、利用者の操作入力に基づいて輪郭の測定を継続するか否かを判定する。スマートフォン1は、輪郭の測定を継続する場合(ステップS107のYES)、ステップS102に移行する。この場合、利用者は、異なる高さにおいて、腹部60に対してスマートフォン1を当てて第1方向に動かすことにより、第1の輪郭を測定することができる。利用者は、へその高さにおける第1の輪郭を測定した後、当該へその高さよりも所定の距離高い位置における第1の輪郭を測定し、これを繰り返すことによって、それぞれ異なる高さにおける複数の第1の輪郭を測定することができる。スマートフォン1は、測定された順序に応じて、複数の第1の輪郭それぞれの、へそからの距離(高さ方向の変位)を推定することができる。
 スマートフォン1は、輪郭の測定を継続しない場合(ステップS107のNO)、フローを終了する。
 スマートフォン1は、図7に示すフローと同様の要領で、第2の輪郭を測定できる。この場合、例えば利用者は、スマートフォン1を、へそに当てた状態から、正中に沿って第2方向に移動させることにより、第2の輪郭を測定できる。これにより、スマートフォン1は、第2の輪郭の測定における測定開始位置を、へその位置として認識することができる。利用者は、第1の輪郭を測定した後、第2の輪郭を測定する前に、第2の輪郭を測定することをスマートフォン1に入力してもよい。これにより、スマートフォン1は、当該入力後に測定された輪郭を、第2の輪郭として処理することができる。
 本実施形態では、スマートフォン1はバックフェイス1Bを腹部に当て、y軸方向に移動する。このような場合、方位センサ17は、スマートフォン1のy軸方向の向きを測定できる1軸のセンサであってよい。加速度センサ16は、y軸方向の移動量が測定できる1軸のセンサであってよい。
 次に図8~図10を用いて対象物の輪郭の演算方法について、スマートフォン1を例に挙げて説明する。ここでは、第1の輪郭の演算方法について説明するが、第2の輪郭についても、同様の方法により演算されてよい。
 図8は実施形態に係る向きと移動量との一例を示す。
 図8A,図8Bの横軸は時間で、測定開始から測定終了までの時間を示す。時間はタイマー11が出力するクロック信号によりカウントされる。腹部の1周をTn秒で測定した場合、測定開始は0秒、測定終了はTn秒である。スマートフォン1は、0~Tn秒の間に、あらかじめ決められた取得周期で向き情報、移動情報を取得する。
 図8Aは、横軸に時間、縦軸にスマートフォン1の方位を示す。横軸のスマートフォン1の方位は、方位センサ17で取得された向き情報である。第1のセンサ部として方位センサ17を採用する本実施形態では、向き情報をスマートフォン1の方位とする。スマートフォン1の方位は、0~360度の角度で表される。スマートフォン1の方位は、測定の最初の向きから360度の変化した状態で、1周と判定される。本実施形態では、わかりやすくするために、測定の最初の向きを0度と設定したので、1周後の向きは360度となる。
 図8Bは、横軸に時間、縦軸にスマートフォン1の移動量を示す。縦軸のスマートフォン1の移動量は、加速度センサ16で取得された移動情報に基づいて演算されたものである。本実施形態のスマートフォン1の移動情報は、加速度センサ16で取得された加速度データである。移動量はコントローラ10によって演算されたものであり、加速度データを2回時間積分して演算される。加速度データのノイズが大きい場合は、デジタルフィルタ処理を行ってもよい。デジタルフィルタは、例えばローパスフィルタ、バンドパスフィルタ等がある。測定終了時のスマートフォン1の移動量は、測定対象物の周りの長さに相当し、本実施形態では腹囲である。腹囲は、スマートフォン1内での加速度センサ16の配置を考慮して演算されてもよい。すなわち、本実施形態では、腹部60の表面へ当てられる対向面であるバックフェイス1Bと、加速度センサ16との間隔を考慮して移動量を補正し、正しい腹囲を演算してもよい。
 本実施形態では、方位と移動量が同一時間Tnで測定された場合を示したが、方位と移動量はそれぞれ異なる時間Ta、Tbで測定されてもよい。その場合、図8Aの横軸はTaで規格化した規格化時間0~1を用い、図8Bの横軸はTbで規格化した規格化時間0~1を用い、互いの横軸の数値をそろえてもよい。
 図9は取得された情報から構成されたレコードの一例である。
 測定開始時をレコード番号R0、測定終了時をレコード番号Rnとした。各レコードは、時間に対応する向き情報と移動情報とが1対で格納されている。さらに各レコードは、移動情報に基づいて演算された移動量が格納されている。方位センサ17を用いた本実施形態では、向き情報はスマートフォン1の向いている方位である。1対で構成された向き情報及び移動情報に基づいて演算された方位及び移動量は、図8A,図8Bの同一時間に取得された情報である。1対で構成された向き情報及び移動情報に基づいて演算された方位及び移動量は、同一規格化時間に取得された情報であってもよい。各レコードの時間間隔は等間隔でなくてもよい。1対のレコードは同一時間に取得された情報であってもよいし、取得時間にずれがあってもよい。取得時間にずれがある場合、コントローラ10は、時間のずれを考慮しなくてもよい。
 図10は演算された対象物の第1の輪郭を示す図である。
 取得されたレコードR0からレコードRnを、向きと移動量に従って、順にプロットしていくことにより、対象物の第1の輪郭を演算することができる。図中のR0からRnは、対応するレコード番号を表している。実線上の点は、各レコードの位置を示す。実際はより多数の点で構成されるが、図を見やすくするために点の一部を省略して図示した。
 第1の輪郭の演算は次のように行っていく。まず、R0を任意の点に設定する。次に、R1の位置は、レコードR0とレコードR1の移動量の変化量と、レコードR1の向き情報とから演算される。次に、R2の位置は、レコードR1とレコードR2の移動量の変化量と、レコードR2の向き情報の変化量とから演算される。この演算をRnまで行い、R0の位置から、順にRnの位置までをつなげることで、対象物の第1の輪郭を演算し、表示をする。
 図11は実施形態に係る実測値による補正を説明する図である。
 上述の実施形態では、第1の輪郭を演算するときに、加速度センサ16により取得された移動情報を用いたが、あらかじめ他の手段で測定された対象物の周りの長さの実測値を用いてもよい。図11は横軸に時間、縦軸に移動量を示す。図中点線は、加速度センサ16により取得された移動情報に基づいて演算された移動量である。測定終了時の移動量は、測定対象物の周りの長さに相当し、本実施形態では腹囲となる。この測定終了時の移動量を、あらかじめ巻尺等で測定された腹囲の実測値を等しくなるように補正する。具体的には、図11に示す補正量ΔWをオフセットし、その後オフセットしたΔWにあわせてグラフの傾きを補正する。補正後のデータを実線で示す。この補正後の実線データから構成されたレコードを用いて、コントローラ10は対象物の第1の輪郭を演算する。
 次に、演算された第1の輪郭の傾き及び位置の補正について説明する。測定開始時のスマートフォン1の向きを0度と設定すると、演算された第1の輪郭の対称軸は傾いている場合がある。例えば第1の輪郭の場合、傾きを補正して、図10のY軸方向に腹部もしくは背中を正対させて表示したい場合がある。図10の座標軸において、傾きの補正は、第1の輪郭のX軸方向の幅、もしくは第1の輪郭のY軸方向の幅が最小もしくは最大になるように、第1の輪郭を回転させればよい。
 測定開始時のスマートフォン1の位置座標を図10のXY原点とすると、演算された第1の輪郭は中央からずれて表示される。第1の輪郭を表示する場合、図10のXY原点と第1の輪郭の中心とを一致させたい場合がある。第1の輪郭の中心は、第1の輪郭のX軸方向の最大幅の中心線と、第1の輪郭のY軸方向の最大幅の中心線とが交わる点としてもよい。さらに、第1の輪郭の断面の中心を図10のXY原点に移動してもよい。スマートフォン1は、第1の輪郭と、Y軸との交点(図10に示す例では、Y軸正方向における交点)を、利用者のへその位置と決定してよい。
 以上説明した通り、本実施形態に係る機器においては、スマートフォン1に内蔵されたセンサにより対象物の輪郭の測定ができる。測定された対象物の輪郭は、三次元画像を生成するためのワイヤフレームとして使用される。スマートフォン1は、CTなどの測定装置に比べて小型である。スマートフォン1は、短時間に対象物の輪郭を測定できる。スマートフォン1は、利用者自身でデータの測定ができるので、測定が簡便である。スマートフォン1は、CTなどでは困難な機器の持ち運びが容易である。スマートフォン1は、利用者自身でデータの蓄積ができるので、日々の変化が容易に確認できる。スマートフォン1は、測定時に放射線被爆の恐れが少ない。
 次に、スマートフォン1による三次元画像の生成方法の詳細について説明する。図12は、第1実施形態に係る三次元画像の生成フロー図である。
 ステップS111で、利用者は測定アプリケーション9Zを起動させる。
 次に、利用者はスマートフォン1に、身体の寸法情報を入力する。身体の寸法情報は、例えば、身長、座高及び腹囲のいずれかを含んでよい。スマートフォン1は、ステップS112において、利用者の操作入力に基づく、身体の寸法情報の入力を受け付ける。例えば身体の寸法情報が予め入力されてストレージ9に記憶されている場合には、ステップS112は省略されてもよい。
 次に、スマートフォン1は、ステップS113において、第1の輪郭を測定する。スマートフォン1は、ステップS114において、第2の輪郭を測定する。スマートフォン1による第1の輪郭の測定及び第2の輪郭の測定方法の詳細は、図7等を参照して説明したとおりである。
 スマートフォン1は、測定した第1の輪郭及び第2の輪郭に基づき、ステップS115において、三次元画像を生成する。
 図13は、第1実施形態において生成される三次元画像の一例を示す図である。図13には、4つの第1の輪郭HF1、HF2、HF3及びHF4と、1つの第2の輪郭VFとが記載されている。第1の輪郭HF1、HF2、HF3及びHF4、並びに第2の輪郭VFは、ワイヤフレーム画像として生成されたものである。スマートフォン1は、ワイヤフレーム画像を組み合わせることにより、三次元画像としての三次元ワイヤフレーム画像を生成する。
 1つの第1の輪郭HF1と、第2の輪郭VFとは、へそ部Nを含む。すなわち、図13に示す例では、第1の輪郭HF1は、へそを含む胴体の周方向に沿って測定された輪郭であり、第2の輪郭VFは、胴体の正中に沿って測定された輪郭である。第1の輪郭HF1、HF2、HF3及びHF4は、それぞれ利用者が、スマートフォン1を対象物に当てる高さを変えて、順次測定した輪郭である。第1の輪郭HF1、HF2、HF3及びHF4は、この順で測定された位置が低い。
 コントローラ10は、図13に示すように、第1の輪郭HF1、HF2、HF3及びHF4のそれぞれと、第2の輪郭VFとを交差させることにより三次元画像を生成する。このとき、コントローラ10は、へそ部Nを含む第1の輪郭HF1のへそ部Nと、第2の輪郭VFのへそ部Nとが一致するように、第1の輪郭HF1と、第2の輪郭VFとを交差させる。へそ部Nを含まない第1の輪郭HF2、HF3及びHF4は、へそ部Nを含む第1の輪郭HF1とともに互いに平行に並べられる。4つの第1の輪郭HF1、HF2、HF3及びHF4は、測定した場合と同様にこの順で並べられる。このようにして、図13に示すような三次元画像が生成される。
 図12に戻ると、スマートフォン1は、ステップS116において、ステップS115で生成した三次元画像を出力する。三次元画像の出力は、例えばディスプレイ2Aへの表示、サーバへの送信など種々の方法が挙げられる。スマートフォン1は、例えば図13に示す三次元画像を、ディスプレイ2Aに表示する。スマートフォン1は、三次元画像の出力が終了すると、フローを終了する。表示された三次元画像を見た利用者は、腹部の形状を視覚的に把握しやすくなる。
 ステップS115における三次元画像の生成において、コントローラ10は、例えば図14に一例として示すように、第1の輪郭HF1、HF2、HF3及びHF4それぞれの背面側の点を結んで曲線VF2を描画することにより、背面側の仮想的な輪郭を含む三次元画像を生成してもよい。背面側の点は、第1の輪郭HF1、HF2、HF3及びHF4のそれぞれにおいて、第2の輪郭VFと交差する位置の反対の位置の点であってよい。この場合、スマートフォン1は、図14に示す三次元画像をディスプレイ2Aに表示できる。背面側の仮想的な輪郭を含む三次元画像を表示することにより、利用者は、腹部の形状をより視覚的に把握しやすくなる。
 図15は実施形態に係る電子巻尺を説明する概略図である。
 電子巻尺とは、引き出した分の巻尺の長さを測定し、データを取得する機能を持つもので、加速度センサ16と同様に、移動情報を取得することができる。電子巻尺は、スマートフォン1に内蔵させることもできる。
 電子巻尺71は、ハウジング70を備える。ハウジング70のフロントフェイス71Aにはタッチスクリーンディスプレイ72を備えている。ハウジング70のサイドフェイス71C2には、巻尺73が備えられている。巻尺73には寸法目盛が刻まれている。巻尺73は、通常はハウジング70の内部に巻き込まれている。巻尺73の先端には、ストッパ74が備えられている。測定前、ストッパ74はハウジング70の外部に配置され、ストッパ74のB面とサイドフェイス71C2とは接触している状態である。対象物の寸法を測る場合は、図15の矢印方向にストッパ74を引っ張り、巻尺73をハウジング70から引き出す。その時、サイドフェイス71C2を基準とした巻尺73の引き出し量Xが、タッチスクリーンディスプレイ72にデジタル表示されている。図15に示す実施形態は、X=5.00cmの場合である。
 本実施形態におけるスマートフォン1の第2のセンサ部に電子巻尺71を用いる場合、測定手順、対象物の輪郭の演算は図5~図10で説明した内容に準じる。以下、電子巻尺71を用いた場合の測定手順について説明する。ステップS102の測定開始で、ハウジング70を腹部の表面に当てる。ステップ103で、利用者はストッパ74を測定開始位置に保持したまま、ハウジング70を腹部60のA-A位置の表面に沿って移動させ、腹部60を一周させる。サイドフェイス71C2とストッパ74のB面が一致したとき、測定は終了となる(ステップS104)。
 第2のセンサ部に加速度センサ16を用いた場合は、移動情報として加速度が取得される。これに対して、第2のセンサ部に電子巻尺71を用いた場合は、移動情報として直接長さを取得することができる。従って、第2のセンサ部に電子巻尺71を用いた場合、より精度の高い腹囲の測定が可能となる。
 本実施形態に係るスマートフォン1は、ステップS115で三次元画像を生成したときに、三次元画像と、三次元画像を生成した時刻とを対応付けて、ストレージ9に記憶してもよい。例えば、スマートフォン1は、三次元画像を生成した時刻に関する情報(以下、本明細書において「時刻情報」とも称する)を取得する。スマートフォン1は、例えば、リアルタイムクロック(RTC)等の時計機能により、時刻情報を取得する。時刻情報は、必ずしもステップS115で三次元画像を生成したときに取得されなくてもよい。時刻情報は、例えば、ステップS111におけるアプリケーションの起動後等、三次元画像の生成に関連する任意のタイミングで取得されてよい。
 ストレージ9には、スマートフォン1が生成した三次元画像及びその時刻情報に加え、腹部の形状に関係し得る他の情報が記憶されてもよい。ここで、ストレージ9が記憶する情報の一例について説明する。
 例えば、スマートフォン1のストレージ9は、利用者が摂取した飲食物に関する情報を、当該飲食物を摂取した時刻に対応付けて記憶してよい。飲食物に関する情報は、例えば、飲食物の種類、量及びカロリーの少なくとも1つを含んでよい。飲食物に関する情報は、例えば、飲食物の料理名、飲食物に含まれる原材料及び成分(例えば栄養素等)の少なくとも1つを含んでよい。ここでいう飲食物は、一般食品、健康機能食品及び医薬品のいずれかを含んでよい。
 スマートフォン1は、多様な方法で飲食物に関する情報を取得することができる。例えば、スマートフォン1は、利用者によるタッチスクリーン2B及び/またはボタン3への入力を受け付けることにより、飲食物に関する情報を取得できる。この場合、利用者は、タッチスクリーン2B及び/またはボタン3を用いて、飲食物に関する情報をスマートフォン1に直接入力する。利用者は、例えば飲食物を摂取するときに、飲食物に関する情報を入力する。スマートフォン1のコントローラ10は、飲食物に関する情報が入力された時刻を、飲食物に関する情報に対応付けてストレージ9に記憶する。
 スマートフォン1は、例えば、飲食物のパッケージに含まれる情報に基づいて、飲食物に関する情報を取得してもよい。飲食物のパッケージに含まれる情報は、例えばバーコード(JAN(Japanese Article Number)ともいう)を含む。例えば、飲食物のパッケージにバーコードが記載されている場合、利用者は、スマートフォン1のカメラ13を用いて、バーコードを撮影する。スマートフォン1のコントローラ10は、撮影されたバーコードを読み取り、当該バーコードに対応付けられた商品に関する情報を、飲食物に関する情報として、ストレージ9に記憶する。このとき、コントローラ10は、例えば外部の情報処理装置と通信を行うことにより、バーコードに対応付けられた商品に関する情報を取得してもよい。利用者は、例えば飲食物を摂取するときに、スマートフォン1を用いてバーコードを読み取らせる。スマートフォン1のコントローラ10は、バーコードを読み取った時刻を、飲食物に関する情報に対応付けてストレージ9に記憶する。飲食物のパッケージに、バーコード以外の他のコード(例えば、1次元コード又は2次元コード等)が含まれる場合には、スマートフォン1は、これらのコードを読み取ることにより、飲食物に関する情報を取得してもよい。
 飲食物に関する情報は、例えば、RFID(radio frequency identifier)を含む。例えば、飲食物のパッケージに当該飲食物に関する情報を有するRFIDタグが備えられ、スマートフォン1がRFID対応の電子機器である場合、利用者は、スマートフォン1に、飲食物のパッケージに備えられるRFIDタグから飲食物に関する情報を取得させる。スマートフォン1のコントローラ10は、取得した飲食物に関する情報をストレージ9に記憶する。スマートフォン1のコントローラ10は、RFID通信により飲食物に関する情報を取得した時刻を、飲食物に関する情報に対応付けてストレージ9に記憶する。
 飲食物に関する情報は、例えば、パッケージに記載された栄養成分表示に関する情報を含む。例えば、飲食物のパッケージに栄養成分表示に関する情報が記載されている場合、利用者は、スマートフォン1のカメラ13を用いて、パッケージに記載された栄養成分表示の欄を撮影する。スマートフォン1のコントローラ10は、撮影された栄養成分表示の欄を読み取り、栄養成分表示として記載された情報(この場合、カロリー及び食品に含まれる栄養成分及びその量等)を、飲食物に関する情報として、ストレージ9に記憶する。このとき、コントローラ10は、例えば外部の情報処理装置と通信を行って、外部の情報処理装置に撮影した画像を送信してもよい。この場合、当該外部の情報処理装置が、撮影された栄養成分表示の欄を読み取り、栄養成分表示として記載された情報を、スマートフォン1に送信する。スマートフォン1は、取得した情報を、飲食物に関する情報として、ストレージ9に記憶する。スマートフォン1のコントローラ10は、栄養成分表示の欄を撮影した時刻を、飲食物に関する情報に対応付けてストレージ9に記憶する。
 飲食物に関する情報は、飲食物の画像に基づいて推定されてもよい。例えば、利用者は、スマートフォン1のカメラ13を用いて、摂取前の飲食物の画像を撮影する。コントローラ10は、撮影された画像を画像分析することにより、飲食物に関する情報を推定する。例えば、コントローラ10は、画像分析により、飲食物の体積に基づいて飲食物の量を推定できる。例えば、コントローラ10は、画像分析により、飲食物の色に基づいて飲食物が含む栄養素を推定できる。飲食物に含まれる食材の色は、必ずしも食材が含む栄養素に対応するものではないが、食材の色によって、その食材が含む栄養素を推定できる。コントローラ10は、撮像された画像に基づき、飲食物に含まれるカロリーを推定してもよい。コントローラ10は、推定した情報を、飲食物に関する情報として、ストレージ9に記憶する。コントローラ10は、飲食物の画像を撮影した時刻を、飲食物に関する情報に対応付けてストレージ9に記憶する。
 撮影された飲食物の画像に基づく飲食物に関する情報の推定は、必ずしもスマートフォン1のコントローラ10によって実行されなくてもよい。例えば、スマートフォン1のコントローラ10は、撮影された飲食物の画像を外部の情報処理装置に送信し、当該外部の情報処理装置が飲食物の画像に基づいて飲食物に関する情報を推定してもよい。外部の情報処理装置は、推定した飲食物に関する情報を、スマートフォン1に送信する。スマートフォン1は、外部の情報処理装置から取得した飲食物に関する情報をストレージ9に記憶する。
 利用者は、摂取前の飲食物の画像に加え、スマートフォン1のカメラ13を用いて、摂取後の飲食物の画像も撮影してもよい。この場合、コントローラ10または外部の情報処理装置は、摂取後の飲食物の画像に基づいて、利用者の食べ残した飲食物の内容を推定できる。そのため、コントローラ10または外部の情報処理装置は、利用者が実際に摂取した飲食物について、飲食物に関する情報を推定しやすくなる。
 スマートフォン1のストレージ9は、利用者の身体活動に関する情報を、当該身体活動を行った時刻に対応付けて記憶してもよい。本明細書において、身体活動に関する情報は、利用者が生活において行う活動をいう。身体活動に関する情報は、例えば、運動に関する情報と、睡眠に関する情報とを含んでよい。運動に関する情報は、運動量及び消費カロリーの少なくとも1つを含んでよい。本明細書において、運動量は、運動の内容及び運動時間を含んでよい。睡眠に関する情報は、睡眠時間を含んでよい。
 スマートフォン1は、多様な方法で運動に関する情報を取得することができる。例えば、スマートフォン1は、利用者によるタッチスクリーン2B及び/またはボタン3への入力を受け付けることにより、運動に関する情報を取得できる。この場合、利用者は、タッチスクリーン2B及び/またはボタン3を用いて、運動に関する情報をスマートフォン1に直接入力する。利用者は、例えば運動を行う前または運動を行った後に、運動に関する情報を入力する。スマートフォン1のコントローラ10は、利用者による入力に基づいて、利用者が運動を行った時刻を、運動に関する情報に対応付けてストレージ9に記憶する。
 スマートフォン1は、自機が備えるセンサにより取得した情報に基づいて、運動に関する情報を推定してもよい。例えば、利用者が運動を行う際にスマートフォン1を身につける場合、スマートフォン1のコントローラ10は、モーションセンサ15により検出された利用者の体動の大きさに基づいて、運動の強度及び運動時間等の運動に関する情報を推定する。例えば、コントローラ10は、体動の大きさが所定の体動閾値を超えている場合に利用者が運動を行っていると判断する。コントローラ10は、体動の大きさが所定の体動閾値を継続して超えている時間を利用者の運動時間として推定する。コントローラ10は、体動の大きさが所定の体動閾値を超えた時刻及び下回った時刻を、それぞれ運動時間の開始時刻及び終了時刻として推定できる。コントローラ10は、所定の体動閾値を複数設定し、複数の強度レベルの運動に対応する運動時間の開始時刻及び終了時刻を推定してもよい。コントローラ10は、利用者の体動に基づいて歩数を計測し、歩数から消費カロリーを算出してもよい。
 スマートフォン1が、例えば利用者の脈拍及び体温等の生体情報を検出可能なセンサを備える場合、コントローラ10は、生体情報に基づいて運動に関する情報を推定してもよい。人は、運動中に脈拍が増加し、体温が上昇する。コントローラ10は、脈拍及び体温について、あらかじめ設定された、利用者が運動をしているか否かを判定するための所定の運動判定閾値に基づき、脈拍及び体温が所定の運動判定閾値よりも大きくなった時刻を、運動を開始した時刻と推定できる。コントローラ10は、脈拍及び体温の変化に基づいて、利用者の運動強度を推定することもできる。
 コントローラ10は、運動に関する情報を推定した場合、利用者が運動を行った時刻を、推定した運動に関する情報に対応付けてストレージ9に記憶する。運動を行った時刻は、運動開始時刻及び運動終了時刻の一方または双方であってよい。
 運動に関する情報の推定は、必ずしもスマートフォン1のコントローラ10により実行されなくてもよい。例えば、スマートフォン1の外部の情報処理装置が、運動に関する情報を推定し、推定した運動に関する情報を、スマートフォン1に送信してもよい。スマートフォン1のコントローラ10は、外部の情報処理装置から取得した運動に関する情報を、ストレージ9に記憶することができる。
 運動に関する情報を推定するために用いられる情報は、必ずしもスマートフォン1により取得されなくてもよい。例えば、利用者の体動を検出可能なモーションセンサまたは利用者の生体情報を取得可能な生体センサを備える、スマートフォン1とは異なる専用の電子機器により、利用者からの情報が取得されてよい。この場合、当該専用の電子機器により取得された情報は、スマートフォン1または外部の情報処理装置に送信され、スマートフォン1または外部の情報処理装置において、運動に関する情報が推定されてよい。
 スマートフォン1は、多様な方法で睡眠に関する情報を取得することができる。例えば、スマートフォン1は、利用者によるタッチスクリーン2B及び/またはボタン3への入力を受け付けることにより、睡眠に関する情報を取得できる。この場合、利用者は、タッチスクリーン2B及び/またはボタン3を用いて、睡眠に関する情報をスマートフォン1に直接入力する。利用者は、例えば就寝前及び起床後にスマートフォン1を操作することにより、睡眠に関する情報を入力できる。スマートフォン1のコントローラ10は、利用者による入力に基づいて、利用者の睡眠に関する時刻(例えば入眠時刻)を、睡眠に関する情報に対応付けてストレージ9に記憶する。
 スマートフォン1は、自機が備えるセンサにより取得した情報に基づいて、睡眠に関する情報を推定してもよい。例えば、利用者が睡眠時にスマートフォン1を身につける場合、スマートフォン1のコントローラ10は、モーションセンサ15により検出された利用者の体動に基づいて、睡眠に関する情報を推定する。ここで、コントローラ10による睡眠に関する情報の推定について具体的に説明する。人は、睡眠中に、ほぼ一定のサイクルでレム睡眠とノンレム睡眠との2つの睡眠状態を繰り返すことが知られている。睡眠状態がレム睡眠の場合、人は寝返りをうちやすい傾向にあり、ノンレム睡眠の場合、人は寝返りをうちにくい傾向にある。この傾向を利用して、コントローラ10は、利用者の寝返りに起因する体動に基づき、利用者の睡眠状態を推定する。すなわち、コントローラ10は、所定のサイクルで体動が検出される時間帯をノンレム睡眠と推定し、所定のサイクルで体動が検出されない時間帯をレム睡眠と推定する。2つの睡眠状態は、ほぼ一定のサイクルで繰り返される。そのため、コントローラ10は、2つの睡眠状態のサイクルを決定した後、2つの睡眠状態の時間帯に基づいて、遡って利用者が入眠した時刻、すなわち実際に眠りに入った時刻を推定する。
 スマートフォン1が、例えば利用者の脈拍及び体温等の生体情報を検出可能なセンサを備える場合、コントローラ10は、生体情報に基づいて運動に関する情報を推定してもよい。人は、睡眠中に、脈拍が減少し体温が低下する。コントローラ10は、脈拍及び体温についてあらかじめ所定の睡眠判定閾値を設定し、脈拍及び体温が所定の睡眠判定閾値よりも低くなった時刻を、実際に入眠時刻と推定できる。
 運動に関する情報の推定と同様に、睡眠に関する情報の推定も、外部の情報処理装置により実行されてもよい。運動に関する情報の推定と同様に、睡眠に関する情報の推定も、専用の電子機器により取得された情報に基づいて推定されてよい。
 図16は、スマートフォン1のストレージ9に記憶されるデータの一例を示す図である。図16に示すように、ストレージ9には、時刻(日時)に対応付けて、多様な情報が記憶される。例えば、ストレージ9には、時刻に対応付けて、スマートフォン1により生成された三次元画像及びこれに関連する情報が記憶される。三次元画像に関連する情報は、例えば第1の輪郭及び第2の輪郭に関する情報を含んでよい。三次元画像に関連する情報は、例えば、複数の第1の輪郭のうち、へそ部Nを含む第1の輪郭に関連する情報であってよい。三次元画像に関連する情報は、へそ部Nを含む第1の輪郭に関する情報として、図16に示すように、腹囲、内臓脂肪面積、皮下脂肪面積、縦/横の長さ、及び、縦横比を含んでよい。
 腹囲は、図7を参照して説明した方法により、算出される。腹囲は、利用者が入力してもよい。
 内臓脂肪面積及び皮下脂肪面積は、例えば、演算された、へそ部Nを含む第1の輪郭に基づいて推定される。ここで、スマートフォン1による、内臓脂肪面積及び皮下脂肪面積の推定方法について説明する。例えば、ストレージ9はあらかじめ作成された内臓脂肪面積及び皮下脂肪面積の推定式を記憶している。コントローラ10は、上述のようにして演算した対象物の第1の輪郭の特徴係数を抽出する。コントローラ10は、ストレージ9に記憶された内臓脂肪面積及び皮下脂肪面積の推定式を読み出し、抽出された輪郭の特徴係数から内臓脂肪面積及び皮下脂肪面積を推定する。
 具体的には、スマートフォン1は、例えば第1の輪郭の補正を行った後に、第1の輪郭の特徴係数を抽出する。曲線の形状の特徴を抽出する方法は、曲率関数を求める方法等があるが、本実施形態ではフーリエ解析を用いる方法について説明する。コントローラ10は、第1の輪郭の一周分の曲線をフーリエ解析することで、フーリエ係数を求めることができる。周知のように、曲線をフーリエ解析したときに求められる各次数のフーリエ係数は形状の特徴を示す係数として用いられる。何次のフーリエ係数を特徴係数とするかは、後に詳述する各推定式の作成の際に決められており、本実施形態では内臓脂肪面積に影響するフーリエ係数Sa、Sa、Sa、Saを内臓脂肪の特徴係数として抽出する。同様に、皮下脂肪面積に影響するフーリエ係数Sb、Sb、Sb、Sbを皮下脂肪の特徴係数として抽出する。各推定式を作成する際に、推定式の独立変数を主成分とした場合は、主成分を特徴係数として抽出してもよい。
 スマートフォン1はあらかじめ求められた内臓脂肪面積推定式及び皮下脂肪面積推定式に、抽出した特徴係数Sa~Sa及びSb~Sbを代入して、利用者の内臓脂肪面積及び皮下脂肪面積を推定する。内臓脂肪面積推定式及び皮下脂肪面積推定式の一例を数式1及び数式2に示す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、内臓脂肪面積推定式及び皮下脂肪面積推定式の作成方法について説明する。図17は、内臓脂肪面積推定式及び皮下脂肪面積推定式の作成フロー図である。図17を用いて、数式1及び数式2を作成する手順について説明する。これら推定式の作成は、スマートフォン1で行う必要はなく、事前に別のコンピュータ等を用いて計算してもよい。作成された推定式は、あらかじめアプリケーションに組み込まれているため、利用者は直接推定式を作成、変更しなくてもよい。
 ステップS121で、作成者は推定式の作成を実行する。ステップS122で、作成者は事前に取得された所定の人数分のサンプルデータをコンピュータに入力する。サンプルデータは所定の人数のサンプル被験者から取得されたデータである。一人の被験者のサンプルデータは、CTで得た内臓脂肪面積、皮下脂肪面積、巻尺等で測定された腹囲長、スマートフォン1で取得された向き情報、移動情報から少なくとも構成される。所定の人数のサンプル被験者は、推定式の精度向上のため、統計的に十分な人数であり、かつ、メタボリックシンドローム(以下、単に「MS」という)診断を行う対象者の内臓脂肪分布と同様の分布を有する集団であってよい。
 次に、コンピュータは入力された腹囲長、向き情報、移動情報から、へそ部Nを含む第1の輪郭を演算する(ステップS123)。さらに演算された第1の輪郭の補正を行う(ステップS124)。
 次に、演算、補正された第1の輪郭の曲線のフーリエ解析を行う(ステップS125)。第1の輪郭の曲線をフーリエ解析することで、複数のフーリエ係数を求めることができる。周知のように、曲線をフーリエ解析して得られる各次数のフーリエ係数は、形状の特徴を表す係数として用いられる。本実施形態では、所定の人数分のサンプルデータのフーリエ解析を行い、X軸、Y軸、及びそれらの1~k次(kは任意の整数)のフーリエ係数を求める。さらに、フーリエ係数は、周知の主成分分析を行い、その次元数を削減しておいてもよい。ここで、主成分分析とは、多変量データ(本実施形態では複数のフーリエ係数)に共通な成分を探って、一種の合成変数(主成分)を作り出す分析手法であり、さらに少ない変数で曲線の特徴を表現することができる。
 次に、ステップS125で求められた複数のフーリエ係数(または主成分)とあらかじめ入力された内臓脂肪面積とで回帰分析を行う(ステップS126)。回帰分析とは、結果となる数値と要因となる数値の関係を調べて、それぞれの関係を明らかにする統計的手法の一つである。フーリエ係数(または主成分)を独立変数とし、CTで得た内臓脂肪面積を従属変数として、所定の人数のサンプル被験者のデータを用いて回帰分析を行い、内臓脂肪面積推定式を作成する(ステップS127)。皮下脂肪面積についても、同様の計算を行い、皮下脂肪面積推定式を作成する。
 このように作成された推定式の一例は、前述の数式1及び数式2である。数式1及び数式2の独立変数Sa、Sa2、Sa、Sa及びSb、Sb、Sb、Sbは、利用者の内臓脂肪面積及び皮下脂肪面積を推定する特徴係数である。内臓脂肪面積推定式の特徴係数Sa~Saと皮下脂肪面積の特徴係数Sb~Sbとは、一部または全部が同じフーリエ係数の場合がある。このように、内臓脂肪面積及び皮下脂肪面積の推定式は、上述の統計的手段(主成分分析、回帰分析等)により作成することができる。
 ステップS126では、内臓脂肪面積及び皮下脂肪面積について回帰分析をおこなうことによりそれぞれの推定式を作成したが、同様の手法により、第1の輪郭の長さ(腹部断面における周りの長さ)についても推定式を作成することができる。すなわち、ステップS125で求められた複数のフーリエ係数(または主成分)とあらかじめ入力された腹囲長とで回帰分析を行う。フーリエ係数(または主成分)を独立変数とし、巻尺等で測定された腹囲長を従属変数として、所定の人数のサンプル被験者のデータを用いて回帰分析を行い、第1の輪郭の長さ推定式を作成することができる。
 上記説明した方法により、本実施形態に係るスマートフォン1は、第1の輪郭を簡便に精度よく測定することができる。そのため、スマートフォン1は、内臓脂肪面積及び皮下脂肪面積を短時間で精度よく推定することができる。
 再び図16を参照すると、第1の輪郭に関連する情報は、例えば、縦及び横の長さ(幅)、並びに、縦横比を含んでよい。縦及び横の長さ、並びに縦横比は、例えば、演算された第1の輪郭に基づいて推定される。第1の輪郭の横の長さは、人の正面視における第1の輪郭の幅の長さである。第1の輪郭の横の長さは、図10においてX軸方向における第1の輪郭の幅の長さである。第1の輪郭の縦の長さは、人の側面視における第1の輪郭の幅の長さであり、第1の輪郭の横の幅に直交する方向の幅の長さである。第1の輪郭の縦の長さは、図10においてY軸方向における第1の輪郭の幅の長さである。第1の輪郭の縦横比は、第1の輪郭の横の長さに対する縦の長さの比である。
 スマートフォン1にはあらかじめへそ部Nを含む第1の輪郭の分類が記憶されていてもよい。図18は、第1の輪郭の分類の一例を示す概略図である。図18に示す第1の輪郭の分類は、A 内臓肥満型、B 皮下脂肪型、C 標準型、である。利用者は、測定されたへそ部Nを含む第1の輪郭の縦横比(図14のd2/d1)によって、上述のA~Cに分類される。例えば、縦横比0.8以上でA 内臓肥満型、縦横比0.6以上0.8未満でB 皮下脂肪型、縦横比0.6未満でC 標準型、と分類される。この場合、図7に示したフロー図のステップS105の後に、[分類]のステップが追加されてもよい。分類された内容に従って、利用者は判定結果及び/またはアドバイスを入手することもできる。分類された内容は、第1の輪郭の縦及び横の長さ並びに縦横比とともに、ストレージ9に記憶されてよい。
 利用者は、スマートフォン1による対象物の輪郭の測定を、例えば定期的に且つ継続的に行ってよい。対象物の輪郭の測定は、例えば毎日、1週間毎に、又は1ヶ月毎に行われてよい。対象物の輪郭の測定は、1日のうちの同時間帯に行われてよい。例えば、対象物の輪郭の測定は、午前7時の食前に行われてよい。対象物の輪郭の測定が同時間帯に行われることにより、同条件のデータが取得されやすくなる。
 再び図16を参照すると、例えば、ストレージ9には、時刻に対応付けて、飲食物に関する情報及び身体活動に関する情報が記憶される。
 飲食物に関する情報は、食事メニュー、利用者の摂取カロリー、飲料、健康機能食品及び医薬品を含んでよい。ストレージ9には、飲食物に関する情報として、例えば飲食物の内容とその量とが記憶される。
 身体活動に関する情報は、利用者の消費カロリー及び睡眠時間を含んでよい。
 スマートフォン1は、飲食物に関する情報及び身体活動に関する情報を、例えば上述した方法により取得できる。
 スマートフォン1は、ディスプレイ2Aに、ストレージ9に記憶された2つの三次元画像を表示できる。スマートフォン1は、それぞれ異なる時刻に生成された三次元画像を並べて表示してよい。つまり、スマートフォン1は、第1の時刻に測定された第1の三次元画像と、第2の時刻に測定された第2の三次元画像とを並べて表示してよい。
 図19は、スマートフォン1による表示の一例を示す図である。図19の例において、第1の三次元画像は、第1の時刻である2017年1月1日午前7時に生成された三次元画像であり、第2の三次元画像は、第2の時刻である2017年1月7日午前7時に生成された三次元画像である。2つの三次元画像を並べて表示することにより、利用者は対象物の形状の経時的な変化を視覚的に把握することができる。
 並べて表示される2つの三次元画像は、例えばコントローラ10により自動的に決定されてよい。例えば、コントローラ10は、三次元画像を生成したときに、生成した三次元画像と、所定期間前(例えば、前日、1週間前または1ヶ月前等)に生成した三次元画像とを並べて表示すると決定してよい。並べて表示される2つの三次元画像は、例えば利用者の選択に基づいて決定されてもよい。この場合、利用者は希望する2つの時期(日時)における対象物の形状の変化を知ることができる。
 スマートフォン1が並べて表示する三次元画像の数は、必ずしも2つでなくてもよい。スマートフォン1は、3つ以上の三次元画像を並べて表示してもよい。この場合にも、利用者は、対象物の形状の経時的な変化を把握することができる。
 スマートフォン1は、図19に示すように、2つの三次元画像に加えて、当該2つの三次元画像を生成した時刻の間(第1の時刻と第2の時刻との間)における飲食物に関する情報及び/または身体活動に関する情報を表示してもよい。図19に示す例では、2つの三次元画像を生成した時刻の間において利用者が摂取したカロリーの合計値と消費したカロリーの合計値とが表示されている。図15に示す例では、2つの三次元画像を測定した時刻の間において利用者が摂取した健康機能食品の名称及びその量が表示されている。表示される飲食物に関する情報及び身体活動に関する情報は、図19に表示された例に限られない。例えば、図16に一例として示したストレージ9に記憶されたデータの全部または一部が、2つの三次元画像とともに表示されてもよい。2つの三次元画像を生成した時刻の間における飲食物に関する情報及び/または身体活動に関する情報を表示することにより、利用者は、飲食物及び/または身体活動と、対象物の形状の変化との関係を推測しやすくなる。例えば、利用者は、飲食物に関する情報が表示される場合、どのような食生活により対象物の形状がどのように変化したかを把握しやすくなる。
 図20は、本実施形態に係るスマートフォン1が実行する処理全体のフロー図である。ステップS131で、スマートフォン1は、利用者からの操作入力に基づき、情報の入力または三次元画像の生成のいずれを実行するかを決定する。
 スマートフォン1は、ステップS131で情報の入力を実行すると決定した場合、ステップS132で、利用者の操作入力に基づき、飲食物に関する情報または身体活動に関する情報の入力を受け付ける。飲食物に関する情報または身体活動に関する情報の入力の受付の詳細は、上述した通りであり、例えば、飲食物の画像を撮影したり、摂取カロリーの入力を受け付けたりすることを含む。
 スマートフォン1は、ステップS132で情報の入力を受け付けた後、ステップS134において、利用者により、処理の終了が入力されたか否かを判定する。スマートフォン1は、処理の終了が入力されたと判定した場合、図20に示すフローを終了する。一方、スマートフォン1は、処理の終了が入力されていないと判定した場合(例えば処理の継続が入力された場合)、ステップS131に移行する。
 スマートフォン1は、ステップS131で輪郭の測定を実行すると決定した場合、ステップS133で三次元画像の生成を行う。ステップS133の詳細は、図7を参照して説明したとおりである。スマートフォン1は、輪郭の測定を実行した後、測定した輪郭を表示してもよい。
 スマートフォン1は、ステップS133で輪郭の測定を実行した後、ステップS134において、利用者により、処理の終了が入力されたか否かを判定する。スマートフォン1は、処理の終了が入力されたと判定した場合、図20に示すフローを終了する。一方、スマートフォン1は、処理の終了が入力されていないと判定した場合(例えば処理の継続が入力された場合)、ステップS131に移行する。
 (第2実施形態)
 図21は、第2実施形態に係るスマートフォン1の構成を示すブロック図である。
 本実施形態では、タイマー11及び制御部10Aはコントローラ10に含まれている。タイマー11は、スマートフォン1の移動情報を得るためのデバイス部である。タイマー11は制御部10Aからタイマー動作の指示を受け、クロック信号を出力する。方位センサ17は、タイマー11から出力されるクロック信号に従って、向き情報を複数回取得する。クロック信号に従って取得された向き情報は、クロック情報とともに、スマートフォン1の内部に一時的に記憶される。ここでクロック情報とは、向き情報が取得された時間を示す情報である。例えば、一定周期のクロック信号を用いた場合、クロック情報は取得順を示すレコード番号でもよい。クロック情報は向き情報を取得した時間でもよい。本実施形態ではタイマー11はコントローラ10に含まれており、コントローラ10の機能部であるタイマー回路をタイマー11として用いることができる。本開示はこれに限ることなく、前述した図4に記載した通り、タイマー11はコントローラ10の外部に備えられていてもよい。
 制御部10Aはクロック情報からスマートフォン1の移動情報を推定する。スマートフォン1の移動情報とは、スマートフォン1の移動量に関する情報であり、本実施形態では移動量である。制御部10Aは向き情報と、移動情報とに基づいて対象物の輪郭を演算し、輪郭に基づいて三次元画像を生成する。以下、第1実施形態と同じ点については説明を省略し、異なる点について説明を行う。
 図22は第2実施形態に係る対象物の輪郭の測定フロー図である。
 ステップS101で、利用者は測定アプリケーション9Zにおける測定機能を起動させる。測定アプリケーション9Zにおける測定機能の起動後、利用者はあらかじめ巻尺等で測定された腹囲の実測値をスマートフォン1に入力する(ステップS141)。あるいは、スマートフォン1は、ストレージ9にあらかじめ記憶された利用者情報から、腹囲の実測値を読み込んできてもよい。腹囲の実測値の入力は必ずしも測定開始(ステップS102)前に行う必要はなく、測定終了(ステップS104)後に行ってもよい。
 次に、ステップS102で測定を開始する。測定開始時、スマートフォン1は、対象物の輪郭を測定する腹部のいずれかの位置に、腹部60の表面に対して当てられる。例えば、第1の輪郭を測定する場合、スマートフォン1は、利用者のへその高さ(図5のA-Aで図示した位置)において腹部60の表面に対して当てられる。測定開始位置は腹部A-A位置のどこから開始してもよく、スマートフォン1にあらかじめ設定された開始アクションを行い、測定を開始する。ステップS103で、利用者は腹部60のA-A位置の表面に沿ってスマートフォン1を移動させる。スマートフォン1の移動は、腹部60の表面に対して当てたままで、一定速度で移動させる。利用者が一定速度でスマートフォン1を移動することができるように、スマートフォン1の移動を補助する補助具を用いてもよい。スマートフォン1から一定速度の補助音を出力して動作のガイダンスとしてもよい。
 ステップS103では、スマートフォン1はあらかじめプログラムされた条件で、方位センサ17により向き情報を取得する。向き情報は、タイマー11から出力されたクロック信号に従って複数回取得される。クロック信号に従って取得された向き情報は、クロック情報とともに、スマートフォン1に記憶される。この測定はステップS102の開始から、ステップS104の終了まで連続して実行される。
 利用者は、スマートフォン1を腹部60の表面に対して当てたまま一定速度で一周以上移動させる。その後利用者は、スマートフォン1にあらかじめ設定された終了アクションを行い、測定を終了させる(ステップS104)。あるいは、スマートフォン1の方位センサ17で取得された向き情報が、測定開始時の向き情報と一致した場合を一周と認識し、利用者が操作することなく、スマートフォン1は自動で測定を終了させてもよい。スマートフォン1の方位センサ17で取得された向き情報が、測定開始時の向き情報から360度変化した場合を一周と認識し、利用者が操作することなく、スマートフォン1は自動で測定を終了させてもよい。自動認識の場合、利用者は終了アクションを行う必要がなく、測定はより簡略化される。
 ステップS105において、制御部10Aは、利用者の腹囲の実測値とステップS103にて得られたクロック情報により、スマートフォン1の移動情報である移動量を推定する。利用者の腹囲を1周するスマートフォン1の一周移動量は、ステップS141で入力された腹囲の実測値と等しく、かつ、スマートフォン1は一定速度で移動しているとみなされていることから、スマートフォン1の移動情報である移動量を演算することができる。制御部10Aは取得された向き情報と、演算された移動情報に基づいて対象物の輪郭を演算する。
 スマートフォン1は、ステップS106において、ステップS105にて演算した結果を、ストレージ9に記憶する。
 スマートフォン1は、ステップS107において、利用者の操作入力に基づいて輪郭の測定を継続するか否かを判定する。スマートフォン1は、輪郭の測定を継続する場合(ステップS107のYES)、ステップS102に移行する。この場合、利用者は、異なる高さにおいて、腹部60に対してスマートフォン1を当てて第1方向に動かすことにより、第1の輪郭を測定することができる。利用者は、へその高さにおける第1の輪郭を測定した後、当該へその高さよりも所定の距離高い位置における第1の輪郭を測定し、これを繰り返すことによって、それぞれ異なる高さにおける複数の第1の輪郭を測定することができる。
 スマートフォン1は、輪郭の測定を継続しない場合(ステップS107のNO)、フローを終了する。本実施形態のフローにおいて、詳細を記載していない他の動作は図7の記載内容に準じる。
 図23は第2実施形態に係る取得された情報から構成されたレコードの一例である。
 測定開始時をレコード番号R0、測定終了時をレコード番号Rnとした。各レコードは、時間に対応する向き情報と移動情報とが1対で格納されている。移動情報はクロック情報であるレコード番号(あるいは時間)から推定された移動量である。レコード番号Rnの移動情報は、利用者の腹囲の実測値が格納される。各レコードの時間間隔は等間隔であり、スマートフォン1は一定速度で移動しているとみなされているので、移動情報である各移動量の間隔も等間隔である。このように取得されたレコードは、第1の輪郭を示す図として表される。
 取得されたレコードR0からレコードRnを、向きと移動量に従って、順にXY座標にプロットしていくことにより、第1の輪郭を演算することができる。本実施形態では、図10に示す演算された第1の輪郭において、各プロット点が等間隔となる。測定時、スマートフォン1の移動が一定速度の場合、演算された第1の輪郭はY軸にほぼ対称の形状となる。測定時、スマートフォン1の移動が一定速度ではなかった場合、演算された第1の輪郭はY軸に非対称でいびつな形状となる。演算された第1の輪郭の形状の非対称性が大きい場合、一定速度での再測定を促すメッセージをスマートフォン1に表示させてもよい。非対称性の大きさの判定は、図10のY軸で分離された各領域におけるプロット点数の差により判断することができる。例えば、このプロット点数の差が±10%以外の場合は、第1の輪郭の非対称性が大きいと判断する。非対称性の大きさの判定方法は、これに限ることなく、例えば第1の輪郭で囲まれた面積を演算しその面積の大きさを比較する判定方法でもよい。判定基準も適宜設定できる。
 第2の輪郭についても、同様の要領で測定されてよい。
 以上、本実施形態では、自機の移動情報を得るためのデバイス部としてタイマー11を用いることにより、第2のセンサ部を用いることなく移動情報を得ることができる。そのため、本実施形態のスマートフォン1は部品点数がさらに削減できる。さらに本実施形態のスマートフォン1は、第2のセンサ部の精度に起因する測定誤差の低減を図ることができる。
 本実施形態に係るスマートフォン1による、三次元画像の生成方法及び表示方法は、第1実施形態と同様であってよい。本実施形態に係るスマートフォン1によっても、利用者は、三次元画像を視覚的に把握しやすくなる。
 (第3実施形態)
 第3実施形態においては、演算された第1の輪郭の一部から第1の輪郭全体を推定する。さらにその推定値から三次元画像を生成し、生成した三次元画像をスマートフォン1に表示する。本実施形態のスマートフォン1は、第2実施形態と同じ図22のブロック図の構成であってよい。以下、第1実施形態及び第2実施形態と同じ部分については説明を省略し、異なる点について説明を行う。
 図24は、第3実施形態に係る対象物の第1の輪郭の測定フロー図である。本実施形態では、第1の輪郭の少なくとも一部を演算する一例として、体の正中の位置からほぼ半周部分の第1の輪郭を演算する場合について説明する。
 ステップS101で、利用者は測定アプリケーション9Zにおける測定機能を起動させる。測定アプリケーション9Zにおける測定機能の起動後、利用者はあらかじめ巻尺等で測定された腹囲の実測値をスマートフォン1に入力する(ステップS141)。あるいは、スマートフォン1のストレージ9にあらかじめ記憶された利用者情報から、腹囲の実測値を読み込んできてもよい。ステップS141は必ずしも測定開始前に行う必要はなく、ステップS104の測定終了後に行ってもよい。
 次に、ステップS102で測定を開始する。測定開始時、例えば、スマートフォン1は、正中の位置で、腹部60の表面に対して当てられる。測定開始位置は第1の輪郭においてどの部分を演算するかによって適宜選択される。測定開始位置をあらかじめ定めておくと、演算される第1の輪郭の範囲が利用者毎に変わらなくなり、後述する輪郭の特徴係数の誤差を低減できる。本実施形態では、正中の位置を測定開始位置とする。例えば、スマートフォン1のサイドフェイス1C1を正中の位置に一致させて測定を開始する。利用者は、スマートフォン1にあらかじめ設定された開始アクションを行い、測定を開始する。
 ステップS103で、利用者は腹部60の表面に沿って第1方向にスマートフォン1を移動させる。スマートフォン1の移動は、腹部60の表面に対して当てたままで、一定速度で移動させる。
 ステップS103で、スマートフォン1はあらかじめプログラムされた条件で、角速度センサ18により、向き情報である角速度(度/秒)を取得する。向き情報は、タイマー11から出力されたクロック信号に従って複数回取得される。クロック信号に従って取得された向き情報は、取得の時間情報とともに、スマートフォン1に記憶される。この測定はステップS102の開始から、ステップS104の終了まで連続して実行される。
 利用者は、スマートフォン1を腹部60の表面に対して当てたまま一定速度で半周以上移動させる。本実施形態で半周とは、正中から背中の中心までである。スマートフォン1は利用者に半周を報知する手段を有していてもよい。
 スマートフォン1を半周以上移動させたら、利用者はスマートフォン1にあらかじめ設定された終了アクションを行い、測定を終了させる(ステップS104)。あるいは、後述するステップS151が同時に実行されている場合は、スマートフォン1の向きが、測定開始から180度変化した場合をほぼ半周と認識し、自動で測定を終了させてもよい。このような自動認識の場合、利用者は終了アクションを行う必要がなく、測定はより簡略化される。
 測定終了後または測定中に、制御部10Aは第1の輪郭の半周部分を演算する(ステップS151)。制御部10Aは、ステップS103にて取得された角速度を1回積分することにより、スマートフォン1の向きを演算する。
 図25は第3実施形態に係るスマートフォン1の向きの一例を示す。図を用いて、取得された向き情報から、半周部分の情報を抽出する方法について説明する。横軸は時間を示し、測定開始時間は0秒、測定終了時間はT(n/2+a)秒である。ここでnは1周の360度を示し、aは測定終了時の向きから半周の180度を引いた角度を示す。縦軸はスマートフォン1の向きを示す。図中の実線は取得された情報であり、点線は取得されていない1周分の情報の仮想線である。向き180度近傍の図中曲線の平坦部は、背中部分の情報と推定され、スマートフォン1は、この平坦部の中点で背中の中心を通過したと判定し、半周を検出する。つまり、スマートフォン1は、図中の0秒からT(n/2)秒を半周部分の情報として抽出する。この半周部分の情報の抽出方法は一例である。例えば、平坦部が180度からずれた位置にある場合は、スマートフォン1は、平坦部を180度とする正規化を行ってもよい。スマートフォン1は、平坦部から向きが-180度ずれた位置の情報を開始点とする正規化を行ってもよい。スマートフォン1は、平坦部の中点ではなく、向きが180度の近傍で最も曲線の傾きが小さい位置の情報を背中の中心と判定してもよい。
 図26は第3実施形態に係る取得及び正規化された情報から構成されたレコードの一例である。抽出された輪郭の半周部分の開始点(本実施形態ではへその位置)をレコード番号R0、半周部分の終了点(本実施形態では背中の中央部で、向きが180度のレコード)をレコードR(n/2)、取得された最終の情報をレコードR(n/2+a)とした。各レコードは向き情報と移動情報とが一対で格納されている。移動情報は、クロック情報であるレコード番号(あるいは時間)から推定された移動量である。本実施形態では向き0~180度のレコードを半周部分の情報として抽出する。レコード番号R(n/2)の移動情報は、利用者の腹囲の実測値の半分の値が格納される。各レコードの時間間隔は等間隔であり、スマートフォン1は一定速度で移動しているとみなされているので、移動情報である各移動量の間隔も等間隔である。このように取得されたレコードは、第1の輪郭の半周部分を示す図として表される。スマートフォン1は、取得されたレコードR0からレコードR(n/2)を、向きと移動量に従って、順にXY座標にプロットしていくことにより、対象物の第1の輪郭の半周部分を演算することができる。ステップS151はステップS103と並行して実行してもよい。
 スマートフォン1は、ステップS151で演算した結果を、ステップS152において補正する。輪郭の向き補正と輪郭の位置補正は、演算された第1の輪郭の半周部分を、開始点(本実施形態では正中の位置)と終了点(本実施形態では背中の中心)を結ぶ線を対称軸として折り返した反転閉曲線に基づいて行ってもよい。輪郭の向き補正は、反転閉曲線の対称軸(正中と背中の中心を結んだ線)が所定の方向を向くように反転閉曲線を回転させてもよい。輪郭の位置補正は、反転閉曲線の中心点が座標系の原点に来るように反転閉曲線を移動させてもよい。向き及び位置の補正は、従来周知の手法により行ってもよい。
 図27は第3実施形態に係る演算及び補正された第1の輪郭を示す図である。図中実線は演算された第1の輪郭の半周部分であり、図中点線は演算された第1の輪郭の半周部分を対称軸で反転させた仮想曲線である。黒点は取得されたレコードをXY座標にプロットした点である。コントローラ10は、このようにして、第1の輪郭を導出することができる。
 スマートフォン1は、ステップS153において、ステップS151及びS152にて演算及び補正した結果をストレージ9に記憶する。
 スマートフォン1は、ステップS107において、利用者の操作入力に基づいて輪郭の測定を継続するか否かを判定する。スマートフォン1は、輪郭の測定を継続する場合(ステップS107のYES)、ステップS102に移行する。この場合、利用者は、異なる高さにおいて、腹部60に対してスマートフォン1を当てて第1方向に動かすことにより、第1の輪郭を測定することができる。
 スマートフォン1は、輪郭の測定を継続しない場合(ステップS107のNO)、フローを終了する。
 第2の輪郭については、第1実施形態で説明した方法と同様の要領で測定されてよい。本実施形態に係るスマートフォン1による、三次元画像の生成方法及び表示方法は、第1実施形態と同様であってよい。本実施形態に係るスマートフォン1によっても、利用者は、三次元画像を視覚的に把握しやすくなる。
 本実施形態に係るスマートフォン1によると、人の第1の輪郭はほぼ左右対称なので、第1の輪郭の少なくとも半周部分を演算するだけで、第1の輪郭全体を推定することができる。そのため利用者は、スマートフォン1を少なくとも腹部周りに半周移動させればよく、より測定時間が短くなる。あわせて、スマートフォン1を測定途中で左右の手でもちかえる動作がなくなるので、スマートフォン1を一定速度での移動させやすくなり、より測定精度を高めることができる。
 スマートフォン1は半周部分から第1の輪郭を演算するのではなく、1/4周部分から第1の輪郭を演算してもよい。例えば正中から脇腹までの1/4周部分から第1の輪郭を演算する場合について説明する。処理の流れは、前述の図24に示すフロー図の説明において、半周部分を1/4周部分と置き換えればよい。ステップS151の1/4周部分の演算は、例えばスマートフォン1の向きが、測定開始から90度変化した場合をほぼ1/4周と判定し、情報の抽出を行う。前述の図25に示すスマートフォン1の向きのグラフにおいて、図中の向き90度で1/4周通過したと判定し、1/4周を検出する。つまり、図中の0秒からT(n/4)秒を1/4周部分の情報として抽出する。前述の図26において、向き0~90度のレコードを1/4周部分の情報として抽出する。図26に示すレコードの一例において、1/4周部分の終了点はレコードR(n/4)となる。レコード番号R(n/4)の移動情報は、利用者の腹囲の実測値の1/4の値が格納される。スマートフォン1の移動は一定速度であるので、移動情報である移動量の間隔は等間隔である。このように取得されたレコードR0からレコードR(n/4)を、向きと移動量に従って、順にプロットしていくことにより、対象物の第1の輪郭の1/4周部分を演算することができる。ステップS152における輪郭の向き補正と輪郭の位置補正は、演算された輪郭の1/4周部分を、座標系のY軸及びX軸を対称軸として折り返した反転閉曲線に基づいて行うと補正が容易である。この場合、前述の図17に示す推定式の作成は、半周部分を1/4周部分に変更して作成を行ってよい。この1/4周部分の抽出方法は一例であり、例えば向き180度となる時間がT(n/2)秒であるとき、その半分の時間のレコードを1/4周部分の情報として抽出してもよい。
 この場合、スマートフォン1は、第1の輪郭の少なくとも1/4周部分を演算することにより、第1の輪郭を推定することができる。そのため利用者は、スマートフォン1を少なくとも腹部周りに1/4周移動させればよく、より測定時間が短くなる。あわせて、スマートフォン1を測定途中で背中側に回す動作がなくなるので、スマートフォン1を一定速度での移動させやすくなり、より測定精度を高めることができる。
 本実施形態では正中から脇腹の1/4周部分の例を示したが、本開示はこれに限ることなく、脇腹付近から背中にむけて1/4周部分の演算を行い、第1の輪郭を推定することもできる。
 スマートフォン1は、正中から脇腹までの1/4周部分から第1の輪郭を演算する場合、必ずしも第1の輪郭全体を演算しなくてもよい。スマートフォン1は、例えば、利用者の第1の輪郭のうち前面側のみを演算してもよい。この場合、スマートフォン1は、演算された輪郭の1/4周部分を、座標系のY軸を対称軸として折り返した反転曲線に基づいて補正を行うことができる。この場合、スマートフォン1は、例えば、前面側のみを示す第1の輪郭と、第2の輪郭とに基づいて、三次元画像を生成してもよい。この場合、スマートフォン1は、例えば図28に示す三次元画像を生成し、ディスプレイ2Aに出力する。このように、スマートフォン1は、対象物の前面側のみの三次元画像を表示できる。対象物が体の腹部である場合、背面側よりも前面側の方が変化しやすいため、前面側のみを表示することによっても、利用者に三次元画像を視覚的に把握させることができる。
 本実施形態において、スマートフォン1は、向き情報及び移動情報の取得が腹部の半周分に満たない場合にも、第1の輪郭を推定できる。例えば、スマートフォン1は、正中の位置から135度分(3/8周分)の輪郭情報に基づいて、第1の輪郭を推定してもよい。
 次に本開示の実施形態に係るシステムを、図面を参照しつつ詳細に説明する。
 図29に示した実施形態のシステムは、サーバ80と、スマートフォン1と、通信ネットワークを含んで構成される。図29に示したように、スマートフォン1は、測定した第1の輪郭及び第2の輪郭の演算結果を、通信ネットワークを通じてサーバ80に送信する。サーバ80は、第1の輪郭及び第2の輪郭に基づいて、三次元画像を生成し、生成した三次元画像のデータをスマートフォン1に送信する。スマートフォン1は、サーバ80から送信された三次元画像をディスプレイ2Aに表示することができる。この場合、サーバ80で三次元画像が生成されるため、利用者が使うスマートフォン1のコントローラ10への演算の負担を軽減することができ、スマートフォン1の小型化、簡略化が可能となる。取得された向き情報、移動情報及び腹囲を当該サーバ80に送信する形態を採用してもよい。この場合、第1の輪郭及び第2の輪郭の演算をサーバ80で行うため、利用者が使うスマートフォン1のコントローラ10への演算の負担をさらに軽減することができる。演算の処理速度も向上する。
 サーバ80は、測定した第1の輪郭及び第2の輪郭と、第1の輪郭及び第2の輪郭に基づいて生成された三次元画像を記憶していてもよい。サーバ80は、第1の三次元画像が測定された第1の時刻と、第2の三次元画像が測定された第2の時刻と、第1の時刻及び第2の時刻の間に利用者が摂取した飲食物の種類、量及びカロリー、並びに利用者の運動量、消費カロリー及び睡眠時間の少なくとも1つのデータを記憶してもよい。サーバ80は、スマートフォン1からの要求に従い、所定の期間に記憶された三次元画像及びデータをスマートフォン1に送信してもよい。スマートフォン1は、サーバ80から送信された三次元画像及びデータをスマートフォン1に表示してもよい。
 本実施形態に係るシステムはスマートフォン1とサーバ80を通信ネットワークで接続した構成を示したが、本開示のシステムはこれに限定されるものではない。対象物の表面に沿って移動させる測定子と、測定子の向き情報を得る第1のセンサ部と、測定子の移動情報を得るためのデバイス部と、対象物の輪郭を演算して三次元画像を生成する制御部と、を備えていればよい。それぞれの機能部が通信手段で接続されていてもよい。
 本開示を完全かつ明瞭に開示するために特徴的な実施例に関し記載してきた。しかし、添付の請求項は、上記実施例に限定されるべきものでなく、本明細書に示した基礎的事項の範囲内で当該技術分野の当業者が創作しうるすべての変形例及び代替可能な構成を具現化するように構成されるべきである。
 例えば、上述の実施形態においては、スマートフォン1は、第1の輪郭と第2の輪郭とに基づいて三次元画像を生成すると説明したが、第2の輪郭を用いずに、三次元画像を生成してもよい。この場合、スマートフォン1は、第1の輪郭を並べることにより、三次元画像を生成する。
 図30は、三次元画像の一変形例を示す図であり、第1の輪郭を並べることにより生成された三次元画像の一例を示す図である。第1の輪郭を並べることにより三次元画像を生成する場合、スマートフォン1は、複数の第1の輪郭を、測定された高さの順で(図30に示す例では、下からHF1、HF2、HF3及びHF4の順で)並べる。この場合、スマートフォン1は、三次元画像を見やすくするために、3つの軸(x軸、y軸及びz軸)を表示してもよい。
 スマートフォン1は、第1の輪郭を並べることにより三次元画像を生成する場合、複数の第1の輪郭を、当該複数の第1の輪郭の中心がz軸方向において一致するように並べてよい。スマートフォン1は、第1の輪郭を並べることにより三次元画像を生成する場合、複数の第1の輪郭を、当該複数の第1の輪郭の背中の中心がz軸方向において一致するように並べてもよい。
 上述の実施形態においては、機器としてスマートフォン1の場合について説明したが、本開示の機器はこれに限ることなく、第1のセンサ部と、デバイス部と、制御部を備えていればよい。さらには、自機の内部に、第1のセンサ部とデバイス部と制御部を備えている必要もなく、それぞれが個別に分かれていてもよい。
 上述の実施形態においては、体の三次元画像生成の場合について説明したが、体だけでなく、例えば大腿部等の三次元画像を生成してもよい。人の体だけでなく、動物の体、脚部等の輪郭を測定してもよい。異なる時間に生成された三次元画像が比較できるように、並べて表示されてもよい。
 上述の実施形態においては、第1のセンサ部として方位センサ17及び角速度センサ18を用いる場合について説明したが、第1のセンサ部は自機の向き情報を取得できるものであれば他のものでもよく、例えば、傾きセンサ等を用いてもよい。
 第2のセンサ部として加速度センサ16または電子巻尺71を用いる場合について説明したが、第2のセンサ部は自機の移動情報を取得できるものであれば他のものでもよく、車輪の回転数を検出することによって移動情報を取得する電子ローラー距離計等、を用いてもよい。
 上述の実施形態においては、対象物を1周、半周、1/4周して第1の輪郭を測定する例を示したが、それ以外でも良く、例えば2周の第1の輪郭を測定してそのデータを平均化することで、よりばらつきの少ない高精度な測定が可能となる。
 本開示内容の多くの側面は、プログラム命令を実行可能なコンピュータシステムその他のハードウェアにより実行される、一連の動作として示される。コンピュータシステムその他のハードウェアには、例えば、汎用コンピュータ、PC(パーソナルコンピュータ)、専用コンピュータ、ワークステーション、PCS(Personal Communications System、パーソナル移動通信システム)、移動(セルラー)電話機、データ処理機能を備えた移動電話機、RFID受信機、ゲーム機、電子ノートパッド、ラップトップコンピュータ、GPS(Global Positioning System)受信機またはその他のプログラム可能なデータ処理装置が含まれる。各実施形態では、種々の動作は、プログラム命令(ソフトウェア)で実装された専用回路(例えば、特定機能を実行するために相互接続された個別の論理ゲート)、または一以上のプロセッサにより実行される論理ブロックもしくはプログラムモジュール等により実行されることに留意されたい。論理ブロックまたはプログラムモジュール等を実行する一以上のプロセッサには、例えば、一以上のマイクロプロセッサ、CPU(中央演算処理ユニット)、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子機器、ここに記載する機能を実行可能に設計されたその他の装置及び/またはこれらいずれかの組合せが含まれる。ここに示す実施形態は、例えば、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコードまたはこれらいずれかの組合せにより実装される。命令は、必要なタスクを実行するためのプログラムコードまたはコードセグメントであってもよい。そして、命令は、機械読取り可能な非一時的記憶媒体その他の媒体に格納することができる。コードセグメントは、手順、関数、サブプログラム、プログラム、ルーチン、サブルーチン、モジュール、ソフトウェアパッケージ、クラスまたは命令、データ構造もしくはプログラムステートメントのいずれかの任意の組合せを示すものであってもよい。コードセグメントは、他のコードセグメントまたはハードウェア回路と、情報、データ引数、変数または記憶内容の送信及び/または受信を行い、これにより、コードセグメントが他のコードセグメントまたはハードウェア回路と接続される。
 ここで用いられるネットワークには、他に特段の断りがない限りは、インターネット、アドホックネットワーク、LAN(Local Area Network)、WAN(Wide Area Network)、MAN(Metropolitan Area Network)、セルラーネットワーク、WWAN(Wireless Wide Area Network)、WPAN(Wireless Personal Area Network)、PSTN(Public Switched Telephone Network)、地上波無線ネットワーク(Terrestrial Wireless Network)もしくは他のネットワークまたはこれらいずれかの組合せが含まれる。無線ネットワークの構成要素には、例えば、アクセスポイント(例えば、Wi-Fiアクセスポイント)またはフェムトセル等が含まれる。さらに、無線通信器機は、Wi-Fi、Bluetooth(登録商標)、セルラー通信技術、例えばCDMA(Code Division Multiple Access)、TDMA(Time Division Multiple Access)、FDMA(Frequency Division Multiple Access)、OFDMA(Orthogonal Frequency Division Multiple Access)、SC-FDMA(Single-Carrier Frequency Division Multiple Access)またはその他の無線技術及び/または技術標準を用いた無線ネットワークに接続することができる。ネットワークには、一つ以上の技術を採用することができ、かかる技術には、例えば、UTMS(Universal Mobile Telecommunications System)、LTE(Long Term Evolution)、EV-DO(Evolution-Data Optimized or Evolution-Data Only)、GSM(登録商標)(Global System for Mobile communications)、WiMAX(Worldwide Interoperability for Microwave Access)、CDMA-2000(Code Division Multiple Access-2000)またはTD-SCDMA(Time Division Synchronous Code Division Multiple Access)が含まれる。
 通信ユニット等の回路構成は、例えば、WWAN、WLAN、WPAN、等の種々の無線通信ネットワークを用いることで、機能性を提供する。WWANは、CDMAネットワーク、TDMAネットワーク、FDMAネットワーク、OFDMAネットワーク、SC-FDMAネットワーク等とすることができる。CDMAネットワークは、CDMA2000、Wideband-CDMA(W-CDMA)等、一つ以上のRAT(Radio Access Technology)を実装することができる。CDMA2000は、IS-95、IS-2000及びIS-856標準を含む。TDMAネットワークは、GSM(登録商標)、D-AMPS(Digital Advanced Phone System)またはその他のRATを実装することができる。GSM(登録商標)及びW-CDMAは、3rd Generation Partnership Project(3GPP)と称するコンソーシアムから発行される文書に記載されている。CDMA2000は、3rd Generation Partnership Project 2(3GPP2)と称するコンソーシアムから発行される文書に記載されている。WLANは、IEEE802.11xネットワークとすることができる。WPANは、Bluetooth(登録商標)ネットワーク、IEEE802.15xまたはその他のタイプのネットワークとすることができる。CDMAは、UTRA(Universal Terrestrial Radio Access)もしくはCDMA2000といった無線技術として実装することができる。TDMAは、GSM(登録商標)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM(登録商標) Evolution)といった無線技術により実装することができる。OFDMAは、IEEE(Institute of Electrical and Electronics Engineers)802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE802.20、E-UTRA(Evolved UTRA)等の無線技術により実装することができる。こうした技術は、WWAN、WLAN及び/またはWPANのいずれかの組合せに用いることができる。こうした技術は、UMB(Ultra Mobile Broadband)ネットワーク、HRPD(High Rate Packet Data)ネットワーク、CDMA20001Xネットワーク、GSM(登録商標)、LTE(Long-Term Evolution)等を使用するために実装することができる。
 ここで用いられるストレージ9は、さらに、ソリッドステートメモリ、磁気ディスク及び光学ディスクの範疇で構成されるコンピュータ読取り可能な有形のキャリア(媒体)として構成することができ、かかる媒体には、ここに開示する技術をプロセッサに実行させるためのプログラムモジュールなどのコンピュータ命令の適宜なセット、またはデータ構造が格納される。コンピュータ読取り可能な媒体には、一つ以上の配線を備えた電気的接続、磁気ディスク記憶媒体、磁気カセット、磁気テープ、その他の磁気及び光学記憶装置(例えば、CD(Compact Disk)、レーザーディスク(登録商標)、DVD(登録商標)(Digital Versatile Disc)、フロッピー(登録商標)ディスク及びブルーレイディスク(登録商標))、可搬型コンピュータディスク、RAM(Random Access Memory)、ROM(Read-Only Memory)、EPROM、EEPROMもしくはフラッシュメモリ等の書換え可能でプログラム可能なROMもしくは情報を格納可能な他の有形の記憶媒体またはこれらいずれかの組合せが含まれる。メモリは、プロセッサ/プロセッシングユニットの内部及び/または外部に設けることができる。ここで用いられるように、「メモリ」という語は、あらゆる種類の長期記憶用、短期記憶用、揮発性、不揮発性その他のメモリを意味し、特定の種類またはメモリの数または記憶が格納される媒体の種類は限定されない。
 ここでは、特定の機能を実行する種々のモジュール及び/またはユニットを有するものとしてのシステムを開示しており、これらのモジュール及びユニットは、その機能性を簡略に説明するために模式的に示されたものであって、必ずしも、特定のハードウェア及び/またはソフトウェアを示すものではないことに留意されたい。その意味において、これらのモジュール、ユニット、その他の構成要素は、ここで説明された特定の機能を実質的に実行するように実装されたハードウェア及び/またはソフトウェアであればよい。異なる構成要素の種々の機能は、ハードウェア及び/もしくはソフトウェアのいかなる組合せまたは分離したものであってもよく、それぞれ別々に、またはいずれかの組合せにより用いることができる。キーボード、ディスプレイ、タッチスクリーン、ポインティングデバイス等を含むがこれらに限られない入力/出力もしくはI/Oデバイスまたはユーザインターフェースは、システムに直接にまたは介在するI/Oコントローラを介して接続することができる。このように、本開示内容の種々の側面は、多くの異なる態様で実施することができ、それらの態様はすべて本開示内容の範囲に含まれる。
 1 スマートフォン
 1A,71A フロントフェイス
 1B バックフェイス
 1C1~4,71C2 サイドフェイス
 2,72 タッチスクリーンディスプレイ
 2A ディスプレイ
 2B タッチスクリーン
 3 ボタン
 4 照度センサ
 5 近接センサ
 6 通信ユニット
 7 レシーバ
 8 マイク
 9 ストレージ
 9A 制御プログラム
 9B メールアプリケーション
 9C ブラウザアプリケーション
 9Z 測定アプリケーション
10 コントローラ
10A 制御部
11 タイマー
12,13 カメラ
14 コネクタ
15 モーションセンサ
16 加速度センサ
17 方位センサ
18 角速度センサ
19 傾きセンサ
20,70 ハウジング
60 腹部
71 電子巻尺
73 巻尺
74 ストッパ
80 サーバ
 

Claims (11)

  1.  体の表面に沿って自機を移動させることにより前記体の輪郭を測定する測定部と、
     前記輪郭に基づいて前記体の三次元画像を生成する制御部と、を備え、
     前記制御部は、第1方向に沿って測定された第1の輪郭を複数並べることにより前記三次元画像を生成する、電子機器。
  2.  前記制御部は、前記第1の輪郭と、前記第1方向とは異なる第2方向に沿って取得された第2の輪郭とを交差させることにより前記三次元画像を生成する、請求項1に記載の電子機器。
  3.  前記第1方向と前記第2方向とは略直交する、請求項2に記載の電子機器。
  4.  前記第1の輪郭及び前記第2の輪郭はへそ部を含み、
     前記制御部は、前記第1の輪郭のへそ部と前記第2の輪郭のへそ部とを交差させることにより前記三次元画像を生成する、
    請求項2または請求項3のいずれか一項に記載の電子機器。
  5.  前記三次元画像は、三次元ワイヤフレーム画像を含む、請求項1乃至請求項4のいずれか一項に記載の電子機器。
  6.  前記制御部は、それぞれ異なる時刻に測定された輪郭に基づいて生成した第1の三次元画像と第2の三次元画像とを並べて表示部に表示する、請求項1乃至請求項5のいずれか一項に記載の電子機器。
  7.  前記制御部は、利用者の選択に基づき、前記表示部に表示させる前記第1の三次元画像及び前記第2の三次元画像を決定する、請求項6に記載の電子機器。
  8.  前記測定部は、加速度センサ、方位センサ、角速度センサ及び傾きセンサの少なくとも1つを含む、請求項1乃至請求項7のいずれか一項に記載の電子機器。
  9.  前記体は腹部を含む、請求項1乃至請求項8のいずれか一項に記載の電子機器。
  10.  電子機器により実行される表示方法であって、
     体の表面に沿って前記電子機器を移動させることにより前記体の輪郭を測定するステップと、
     第1方向に沿って測定された第1の輪郭を複数並べることにより前記体の三次元画像を生成するステップと、
    を含む生成方法。
  11.  体の表面に沿って自機を移動させることにより前記体の輪郭を測定する測定部と、
     前記輪郭に基づいて前記体の三次元画像を生成する制御部と、を備え、
     前記制御部は、第1方向に沿って測定された第1の輪郭を複数並べることにより前記三次元画像を生成する、生成システム。
PCT/JP2018/015130 2017-04-25 2018-04-10 電子機器、生成方法及び生成システム WO2018198765A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/605,481 US11051719B2 (en) 2017-04-25 2018-04-10 Electronic device, generation method, and generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017086610A JP6712965B2 (ja) 2017-04-25 2017-04-25 電子機器、生成方法及び生成システム
JP2017-086610 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018198765A1 true WO2018198765A1 (ja) 2018-11-01

Family

ID=63918332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015130 WO2018198765A1 (ja) 2017-04-25 2018-04-10 電子機器、生成方法及び生成システム

Country Status (3)

Country Link
US (1) US11051719B2 (ja)
JP (1) JP6712965B2 (ja)
WO (1) WO2018198765A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH717307A1 (de) * 2020-04-14 2021-10-15 Sigvaris Ag Elektronisches Massband.

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428874B2 (ja) * 2019-11-25 2024-02-07 ミツミ電機株式会社 体型を判別するための演算デバイス、プロセッサー実施方法、および体型判別システム
JP7429416B2 (ja) * 2019-12-05 2024-02-08 株式会社Agama-X 情報処理装置及びプログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118953A (ja) * 2014-12-22 2016-06-30 京セラ株式会社 筋肉面積推定システム、機器、及び筋肉面積推定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091302A2 (en) * 2001-05-04 2002-11-14 Legend Films, Llc Image sequence enhancement system and method
GB9818790D0 (en) * 1998-08-28 1998-10-21 Univ Montfort Apparatus and method for detecting abnormalities in bodily matter
US7239908B1 (en) * 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US6546356B1 (en) * 2000-05-01 2003-04-08 Genovation Inc. Body part imaging method
AU2001296873A1 (en) * 2000-09-14 2002-03-26 Leland Stanford Junior University Technique for manipulating medical images
JP3910795B2 (ja) 2000-12-26 2007-04-25 株式会社タニタ 体脂肪面積を求める装置
JP4780106B2 (ja) * 2005-06-07 2011-09-28 ソニー株式会社 情報処理装置及び情報処理方法、画像処理装置及び画像処理方法、並びにコンピュータ・プログラム
CN101466998B (zh) * 2005-11-09 2015-09-16 几何信息学股份有限公司 三维绝对坐标表面成像的方法和装置
DE102008047248A1 (de) * 2008-09-10 2010-03-11 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Spindelantrieb für eine Lordosenstütze in der Rückenlehnenstruktur eines Kraftfahrzeugsitzes
JP5360989B2 (ja) * 2009-09-29 2013-12-04 株式会社日立ソリューションズ 地理情報生成システム及び地理情報生成方法
US20140121564A1 (en) * 2012-05-03 2014-05-01 Aliphcom Estimating body fat in a user
JP5832966B2 (ja) * 2012-07-17 2015-12-16 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影システム、放射線の照射開始の検出感度制御方法およびプログラム
US9129398B2 (en) * 2013-03-15 2015-09-08 Qualcomm Incorporated Edgel sampling for edge-based tracking

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118953A (ja) * 2014-12-22 2016-06-30 京セラ株式会社 筋肉面積推定システム、機器、及び筋肉面積推定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA, TAKAAKI: "Calculating moved distance using acceleration sensor of smart phone", RECORD OF JOINT CONFERENCE OF ELECTRICAL AND ELECTRONICS ENGINEERS IN KYUSHU, 2011, pages 513 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH717307A1 (de) * 2020-04-14 2021-10-15 Sigvaris Ag Elektronisches Massband.

Also Published As

Publication number Publication date
US20200121223A1 (en) 2020-04-23
US11051719B2 (en) 2021-07-06
JP2018183372A (ja) 2018-11-22
JP6712965B2 (ja) 2020-06-24

Similar Documents

Publication Publication Date Title
JP5992985B2 (ja) 体脂肪推定方法、機器、及びシステム
EP3079090B1 (en) Method for processing data and electronic device thereof
US10842436B2 (en) Electronic device and body composition measuring method of electronic device capable of automatically recognizing body part to be measured
US10186014B2 (en) Information display method and electronic device for supporting the same
KR102348489B1 (ko) 전자 장치 및 전자 장치에서 신체 측정 부위 자동 인식 가능한 체성분 측정 방법
WO2018198765A1 (ja) 電子機器、生成方法及び生成システム
CN107809949A (zh) 用于测量与人体有关的信息的电子设备及其操作方法
US20150226747A1 (en) Physical Change Evaluation Device, Method, and Recording Medium Stored with Program
US20170354351A1 (en) Nutrition coaching for children
US10357198B2 (en) System for estimating muscle area, device, and method for estimating muscle area
JP2015225460A (ja) 食事管理方法、食事管理システム及び食事管理端末
WO2018198764A1 (ja) 電子機器、表示方法及び表示システム
KR102424353B1 (ko) 혈당량의 변화율에 기초한 혈당 측정 방법 및 이를 위한 혈당 측정 장치
WO2017175607A1 (ja) 腹部断面画像の生成装置及び腹部断面画像の生成システム
KR20170081911A (ko) 위치에 대응하는 전자 장치의 기능 제공 장치 및 방법
JP2017012875A (ja) 筋肉面積推定システム、機器、及び筋肉面積推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791052

Country of ref document: EP

Kind code of ref document: A1