WO2018198684A1 - 半導体ナノ粒子、半導体ナノ粒子含有分散液、及び、フィルム - Google Patents

半導体ナノ粒子、半導体ナノ粒子含有分散液、及び、フィルム Download PDF

Info

Publication number
WO2018198684A1
WO2018198684A1 PCT/JP2018/014127 JP2018014127W WO2018198684A1 WO 2018198684 A1 WO2018198684 A1 WO 2018198684A1 JP 2018014127 W JP2018014127 W JP 2018014127W WO 2018198684 A1 WO2018198684 A1 WO 2018198684A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
semiconductor
shell
core
group iii
Prior art date
Application number
PCT/JP2018/014127
Other languages
English (en)
French (fr)
Inventor
佐々木 勉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197031196A priority Critical patent/KR102332865B1/ko
Priority to JP2019515187A priority patent/JP6979062B2/ja
Publication of WO2018198684A1 publication Critical patent/WO2018198684A1/ja
Priority to US16/660,236 priority patent/US11133382B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/567Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/221Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds including two or more compounds, e.g. alloys
    • H01L29/225Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to semiconductor nanoparticles, a dispersion containing semiconductor nanoparticles, and a film.
  • Colloidal semiconductor nanoparticles (hereinafter also referred to as “quantum dots”) obtained by a chemical synthesis method in a solution containing a metal element are fluorescent in wavelength conversion films for some display applications. Practical use has begun as a material, and application to biomarkers, light emitting diodes, solar cells, thin film transistors and the like is also expected.
  • Patent Document 1 is cited as a document disclosing semiconductor nanoparticles.
  • the present inventor manufactured semiconductor nanoparticles with reference to Patent Document 1 and applied them to various applications.
  • the characteristics were found in environments exposed to the atmosphere such as manufacturing processes and actual use. It has been found that the rate, etc. may decrease.
  • the present invention provides semiconductor nanoparticles exhibiting excellent atmospheric durability, a semiconductor nanoparticle-containing dispersion containing the semiconductor nanoparticles, and a film containing the semiconductor nanoparticles.
  • atmospheric durability means the difficulty of the fall of the characteristics (quantum yield etc.) in air
  • Zinc, sulfur and indium are detected by energy dispersive X-ray analysis, Semiconductor nanoparticles in which the molar ratio of zinc to indium, Zn / In, determined from energy dispersive X-ray analysis satisfies the following formula (1a). 7 ⁇ Zn / In ⁇ 15 (1a) (2) The semiconductor nanoparticle according to (1), wherein a peak A is detected at 300 to 400 cm ⁇ 1 and a peak B is detected at 100 to 130 cm ⁇ 1 by Raman spectroscopy. (3) The semiconductor nanoparticle according to (2), wherein the intensity ratio B / A of the peak B to the peak A satisfies the following formula (2a).
  • the group III element contained in the group III-V semiconductor is a group III element different from the group III element contained in the core.
  • the first shell is the II-VI group semiconductor, the II group element is Zn, and the VI group element is Se or S.
  • the semiconductor nanoparticles according to (16), wherein the group III element is Ga and the group V element is P.
  • the second shell is a group II-VI semiconductor containing a group II element and a group VI element or a group III-V semiconductor containing a group III element and a group V element.
  • the band gap of the core is the smallest, and The semiconductor nanoparticle according to any one of (10) to (21), wherein the core and the first shell exhibit a type 1 type band structure.
  • semiconductor nanoparticles exhibiting excellent atmospheric durability, a semiconductor nanoparticle-containing dispersion containing the semiconductor nanoparticles, and a film containing the semiconductor nanoparticles. be able to.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the semiconductor nanoparticles of the present invention exhibit excellent atmospheric durability by taking such a configuration.
  • the reason is not clear in detail, but in the semiconductor nanoparticles of the present invention, since the molar ratio of Zn to In is very high, In is sufficiently protected by Zn (very few defects), and as a result, excellent It is presumed to show atmospheric durability.
  • knowledge has been obtained that atmospheric durability is greatly improved by making Zn / In within a specific range. That is, it has been found that there is a criticality between Zn / In and atmospheric durability.
  • the semiconductor nanoparticle of the present invention is a core-shell particle of InP core and ZnS, which is one of the preferred embodiments described later, the ZnS shell is coated on the InP core even when Zn is more than In.
  • the semiconductor nanoparticles of the present invention have a peak A detected at 300 to 400 cm ⁇ 1 and a peak B (at 100 to 130 cm ⁇ 1) by Raman spectroscopic analysis because the atmospheric durability is further improved.
  • Mg is oxidized by itself because the reduction potential of Mg is low
  • Zn for example, the InP core described above
  • ZnS shell In the case of core-shell particles of ZnS shell and ZnS shell, it is presumed that the oxidation of ZnS shell) is suppressed.
  • the semiconductor nanoparticles of the present invention contain zinc (Zn), sulfur (S), and indium (In).
  • Zn / In preferably satisfies the following formula (1b), more preferably satisfies the following formula (1c), more preferably satisfies the following formula (1d), because the effect of the present invention is more excellent. It is particularly preferable that the following formula (1e) is satisfied. 7 ⁇ Zn / In ⁇ 12 (1b) 9 ⁇ Zn / In ⁇ 12 (1c) 9 ⁇ Zn / In ⁇ 12 (1d) 9 ⁇ Zn / In ⁇ 12 (1e)
  • Zn / In is obtained as follows. First, a toluene dispersion of semiconductor nanoparticles is applied on a non-doped Si substrate and dried to obtain a sample for EDX analysis. And about the obtained sample, EDX analysis is performed on the following conditions using the following apparatuses (an apparatus, a detector, and software), and Zn / In is calculated
  • Equipment etc. -Equipment: Miniscope TM1000 manufactured by Hitachi High-Technologies Corporation Detector: Oxford Instruments Software: SwitchED-TM (conditions) ⁇ Integration time: 30 seconds ⁇ Acceleration voltage: 15 kV ⁇ Measurement range: 100 ⁇ m ⁇ 100 ⁇ m
  • the semiconductor nanoparticles of the present invention preferably have a peak A detected at 300 to 400 cm ⁇ 1 and a peak B detected at 100 to 130 cm ⁇ 1 by Raman spectroscopic analysis for the reason that the effects of the present invention are more excellent. .
  • the peak A is considered to be a peak derived from a structure containing In such as an In-V group semiconductor (for example, InP).
  • InP In-V group semiconductor
  • the peak B is considered to be a peak derived from MgS or ZnMgS.
  • the Raman spectroscopic analysis is performed as follows. First, a toluene dispersion (300 ⁇ L) of semiconductor nanoparticles is filled in a quartz cell (optical path length: 1 mm) to obtain a sample for Raman spectroscopic analysis. Next, Raman spectroscopic analysis is performed on the obtained sample as follows. The output light of the titanium sapphire laser (wavelength: 800 nm, pulse time width: 92 fs, output: 1.8 W, repetition frequency: 1 kHz) is divided into two, and Raman excitation light (530 nm, 10 ps, 8 cm) by a picosecond optical parametric amplifier. -1 ) and Raman detection light (531-680 nm) is generated by the sapphire substrate. The sample is irradiated with Raman excitation light and Raman detection light by a parabolic mirror, and the Raman detection light transmitted through the sample is detected by a spectroscope and a CCD (Charge Coupled Device) camera.
  • the intensity ratio B / A of the peak B to the peak A (hereinafter also referred to as “B / A” or “B / A (Raman)”) is not particularly limited, but for the reason that the effect of the present invention is more excellent.
  • the expression (2a) is preferably satisfied, the following expression (2b) is more preferably satisfied, the following expression (2c) is more preferably satisfied, and the following expression (2d) is particularly preferably satisfied.
  • (2b) 0.5 ⁇ B / A ⁇ 1.5
  • (2c) 0.5 ⁇ B / A ⁇ 1.5
  • B / A was determined as follows. As described above, a sample for Raman spectroscopic analysis is prepared. The obtained sample subjected to Raman spectrometry as described above, obtaining the 300 ⁇ 400 cm intensity ratio of peak B of 100 ⁇ 130 cm -1 to the peak A of -1 (B / A). More specifically, normalization is performed using the peak intensity of peak A, and the peak intensity of peak B is obtained by baseline correction.
  • the average particle diameter of the semiconductor nanoparticles of the present invention is not particularly limited, but is preferably 10 nm or less, more preferably 6 nm or less, because the effects of the present invention are more excellent.
  • the lower limit is not particularly limited, but is preferably 2 nm or more, and more preferably 3 nm or more, because the effect of the present invention is more excellent.
  • the average particle diameter of the semiconductor nanoparticles of the present invention is more preferably 3.5 nm or more and 5.5 nm or less because the effect of the present invention is more excellent.
  • the average particle diameter refers to the value of an arithmetic average obtained by directly observing at least 20 particles with a transmission electron microscope and calculating the diameter of a circle having the same area as the projected area of the particles.
  • the semiconductor nanoparticles of the present invention are preferably core-shell particles because the effects of the present invention are more excellent.
  • the semiconductor nanoparticles of the present invention are core-shell particles, for example, a core containing a group III element and a group V element, and a group II element covering at least a part of the surface of the core And a shell having a shell containing a group VI element (single shell shape).
  • the semiconductor nanoparticles of the present invention are core-shell particles, for example, a core containing a group III element and a group V element, and a first layer covering at least a part of the surface of the core.
  • An embodiment (multi-shell shape) having one shell and a second shell covering at least a part of the first shell is mentioned.
  • a multishell shape is preferable because the effect of the present invention is more excellent.
  • the semiconductor nanoparticle of this invention contains magnesium (Mg) from the reason for which the effect of this invention is more excellent.
  • the core of the core-shell particles is a so-called III-V group semiconductor containing a group III element and a group V element because the effects of the present invention are more excellent. Is preferred.
  • Group III element Specific examples of the group III element include indium (In), aluminum (Al), gallium (Ga), and the like, and among them, the effect of the present invention is more excellent. For reasons, In is preferred.
  • Group V element Specific examples of the group V element include P (phosphorus), N (nitrogen), As (arsenic), and the like, and among them, the effect of the present invention is more excellent. For reasons, P is preferred.
  • a III-V semiconductor in which the above examples of the group III element and the group V element are appropriately combined can be used as the core.
  • the luminous efficiency is higher and the emission half-width is narrowed.
  • InP, InN, or InAs is preferable because a clear exciton peak is obtained, and InP is more preferable because light emission efficiency is further increased.
  • group III element and group V element in addition to the above-mentioned group III element and group V element, it is preferable to further contain a group II element, and particularly when the core is InP, group II By doping with Zn as an element, the lattice constant is reduced, and the lattice matching with a shell having a lattice constant smaller than that of InP (for example, GaP, ZnS described later) is increased.
  • the shell is a material that covers at least a part of the surface of the core and contains a group II element and a group VI element, so-called II-VI group A semiconductor is preferred.
  • whether or not the shell covers at least a part of the surface of the core is determined by, for example, energy dispersive X-ray spectroscopy (TEM (Transmission Electron Microscope)) using a transmission electron microscope. It can also be confirmed by a composition distribution analysis by EDX (Energy Dispersive X-ray spectroscopy).
  • Group II element Specific examples of the Group II element include zinc (Zn), cadmium (Cd), magnesium (Mg), and the like, and among them, the reason why the effect of the present invention is more excellent Therefore, Zn is preferable.
  • Group VI element Specific examples of the Group VI element include sulfur (S), oxygen (O), selenium (Se), tellurium (Te), and the like. From the reason that the effect is more excellent, S or Se is preferable, and S is more preferable.
  • a II-VI group semiconductor in which the examples of the group II element and the group VI element described above are appropriately combined can be used as the shell.
  • a similar crystal system is preferable.
  • ZnS and ZnSe are preferable because the effect of the present invention is more excellent, and ZnS is more preferable from the viewpoint of safety and the like.
  • the first shell is a material that covers at least a part of the surface of the core.
  • whether or not the first shell covers at least part of the surface of the core is determined by, for example, energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. It can also be confirmed by composition distribution analysis.
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the first shell contains a Group II element or a Group III element because interface defects with the core are easily suppressed.
  • the group III element included in the first shell is a group III element different from the group III element included in the core described above.
  • the first shell containing a group II element or a group III element include, for example, a group III-VI semiconductor containing a group III element and a group VI element in addition to a group II-VI semiconductor and a group III-V semiconductor described later. (For example, Ga 2 O 3 , Ga 2 S 3, etc.).
  • the first shell contains a group II-VI semiconductor containing a group II element and a group VI element, or a group III element and a group V element because a good crystalline phase with few defects can be obtained.
  • a III-V group semiconductor is preferable, and a III-V group semiconductor having a small difference in lattice constant from the above-described core is more preferable.
  • the group III element contained in the group III-V semiconductor is a group III element different from the group III element contained in the core described above.
  • II-VI group semiconductor Specific examples of the group II element contained in the II-VI group semiconductor include zinc (Zn), cadmium (Cd), and magnesium (Mg). Of these, Zn is preferable because the effects of the present invention are more excellent.
  • Specific examples of the group VI element contained in the II-VI group semiconductor include sulfur (S), oxygen (O), selenium (Se), and tellurium (Te). Among these, S or Se is preferable and S is more preferable because the effect of the present invention is more excellent.
  • a II-VI group semiconductor in which the examples of the group II element and the group VI element described above are appropriately combined can be used.
  • a crystal system for example, zinc blende structure
  • ZnSe, ZnS, or a mixed crystal thereof is preferable, and ZnSe is more preferable.
  • Group III-V semiconductor examples include indium (In), aluminum (Al), and gallium (Ga). Of these, Ga is preferable because the effect of the present invention is more excellent.
  • the group III element included in the group III-V semiconductor is a group III element different from the group III element included in the core described above.
  • the group III element included in the core is In.
  • the group III element contained in the group III-V semiconductor is Al, Ga, or the like.
  • Specific examples of the group V element contained in the group III-V semiconductor include P (phosphorus), N (nitrogen), As (arsenic), and the like. P is preferred for the reason that the above effect is more excellent.
  • a group III-V semiconductor in which the above examples of the group III element and the group V element are appropriately combined can be used.
  • a crystal system for example, zinc blende structure
  • GaP is preferable.
  • the difference in lattice constant between the core and the first shell is smaller because the surface defects of the obtained core-shell particles are smaller. It is preferable that the difference between the lattice constants is 10% or less.
  • the first shell is ZnSe (difference in lattice constant: 3.4%) or GaP (difference in lattice constant: 7.1%).
  • GaP GaP that is the same group III-V semiconductor as the core and easily forms a mixed crystal state at the interface between the core and the first shell. .
  • the first shell when the first shell is a III-V group semiconductor, other elements (for example, the above-described elements) are included in a range that does not affect the magnitude relationship of the band gap with the core (core ⁇ first shell). Group II elements and Group VI elements) may be contained or doped. Similarly, when the first shell is a II-VI group semiconductor, other elements (for example, the above-described group III elements and the above-mentioned elements are not affected in the band gap relationship with the core (core ⁇ first shell)). Group V element) may be contained or doped.
  • the second shell is a material that covers at least part of the surface of the first shell described above.
  • whether or not the second shell covers at least a part of the surface of the first shell is determined by, for example, energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. This can also be confirmed by composition distribution analysis.
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the second shell contains a II-VI group containing a II-group element and a VI-group element.
  • a semiconductor or a III-V semiconductor containing a group III element and a group V element is preferred, and the reason is that the material itself has high reactivity and a shell with higher crystallinity can be easily obtained.
  • a group semiconductor is more preferable.
  • the group II element, the group VI element, the group III element, and the group V element are all the same as those described in the first shell.
  • a II-VI group semiconductor in which the above examples of the II group element and the VI group element are appropriately combined can be used.
  • a crystal system for example, zinc blende structure
  • ZnSe, ZnS, or a mixed crystal thereof is preferable, and ZnS is more preferable.
  • a group III-V semiconductor in which the above examples of the group III element and the group V element are appropriately combined can be used.
  • a crystal system for example, zinc blende structure
  • GaP is preferable.
  • the difference in lattice constant between the first shell and the second shell described above is smaller because the surface defects of the obtained core-shell particles are reduced.
  • the difference in lattice constant with the second shell is preferably 10% or less.
  • the second shell is ZnSe (difference in lattice constant: 3.8%) or ZnS (difference in lattice constant: 0.8%). ), And ZnS is more preferable.
  • the second shell when the second shell is a II-VI group semiconductor, other elements (for example, the above-described elements) are included in a range that does not affect the magnitude relationship of the band gap with the core (core ⁇ second shell).
  • Group III element and Group V element may be contained or doped.
  • the second shell when the second shell is a group III-V semiconductor, other elements (for example, the above-described group II elements and the above-described elements are included in a range that does not affect the magnitude relationship of the band gap with the core (core ⁇ second shell)).
  • Group VI element may be contained or doped.
  • the above-described core, the first shell, and the second shell are all made of a crystal system having a zinc blende structure. Preferably there is.
  • the probability that excitons stay in the core increases, and the luminous efficiency becomes higher, so that the core band gap is the smallest among the above-described core, first shell, and second shell, and
  • the core and the first shell are preferably core-shell particles exhibiting a type 1 type (type I type) band structure.
  • the semiconductor nanoparticles of the present invention preferably contain magnesium (Mg) because the effects of the present invention are more excellent.
  • the semiconductor nanoparticles of the present invention preferably contain Mg as ZnMgS or MgS, more preferably as a ZnMgS layer or MgS layer in the vicinity of the surface of the semiconductor nanoparticles, because the effects of the present invention are more excellent.
  • the semiconductor nanoparticles of the present invention contain ZnMgS or MgS, it is considered that the above-described peak B is detected.
  • semiconductor nanoparticles containing Mg are also referred to as “semiconductor nanoparticles (with Mg)”, and the semiconductor nanoparticles not containing Mg are also referred to as “semiconductor nanoparticles (without Mg)”.
  • the semiconductor nanoparticles of the present invention desirably have a coordinating molecule on the surface of the semiconductor nanoparticles from the viewpoint of imparting dispersibility.
  • the coordinating molecule preferably contains an aliphatic hydrocarbon group from the viewpoint of dispersibility in a solvent and the like.
  • the coordination molecule is preferably a ligand having at least 6 carbon atoms in the main chain, and is a ligand having 10 or more carbon atoms in the main chain. Is more preferable.
  • Such a coordination molecule may be a saturated compound or an unsaturated compound.
  • decanoic acid lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid
  • examples include oleic acid, erucic acid, oleylamine, dodecylamine, dodecanethiol, 1,2-hexadecanethiol, trioctylphosphine oxide, cetrimonium bromide, and these may be used alone or in combination of two or more. You may use together.
  • the method for producing the semiconductor nanoparticles of the present invention is not particularly limited, and examples thereof include a method of mixing a compound containing zinc, a compound containing sulfur and a compound containing indium in a solvent.
  • fills the formula (1a) mentioned above can be obtained by adjusting the compounding quantity of the compound containing zinc, the compounding quantity of the compound containing indium, etc.
  • the method for producing semiconductor nanoparticles of the present invention is a first preferred method described later, because the atmospheric durability of the obtained semiconductor particles is further improved (hereinafter also referred to as “the reason why the effect of the present invention is more excellent”). It is preferable that it is an aspect or a 2nd suitable aspect, and it is more preferable that it is a 2nd suitable aspect.
  • the manufacturing method which has a 4th process from the following 1st process is mentioned, for example.
  • semiconductor nanoparticles (without Mg) having a core, a first shell covering the surface of the core, and a second shell covering the surface of the first shell are obtained.
  • the second step of forming the core (3) The first shell material is added to the solution after the second step, and the third step of forming the first shell (4) In the solution after the third step 4th process of adding the II group raw material containing a II group element, forming a 2nd shell, and synthesize
  • each process is demonstrated.
  • the first step is a step of heating and stirring a solution obtained by adding a group III material containing a group III element in a solvent.
  • the solvent used in the first step is preferably a nonpolar solvent having a boiling point of 170 ° C. or higher.
  • the nonpolar solvent include aliphatic saturated hydrocarbons such as n-decane, n-dodecane, n-hexadecane, and n-octadecane; 1-undecene, 1-dodecene, 1-hexadecene, And aliphatic unsaturated hydrocarbons such as 1-octadecene; trioctylphosphine; and the like.
  • aliphatic unsaturated hydrocarbons having 12 or more carbon atoms are preferable, and 1-octadecene is more preferable because the effects of the present invention are more excellent.
  • Group III material added to the solvent include indium chloride, indium oxide, indium acetate, indium nitrate, indium sulfate, and indium acid; aluminum phosphate, acetylacetate Natoaluminum, aluminum chloride, aluminum fluoride, aluminum oxide, aluminum nitrate, and aluminum sulfate; and acetylacetonatogallium chloride, gallium fluoride, gallium oxide, gallium nitrate, and gallium sulfate; These may be used alone or in combination of two or more.
  • indium compounds that can easily achieve higher luminous efficiency and easily control the emission wavelength in the visible range are preferred, and impurity ions such as chlorides are less likely to be taken into the core, realizing high crystallinity. It is more preferable to use indium acetate which is easy to do.
  • Group II material containing a Group II element may be added together with the Group III material described above.
  • Specific examples of Group II materials containing Group II elements include, for example, dimethyl zinc, diethyl zinc, zinc carboxylate, acetylacetonato zinc, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, and carbonic acid. Examples thereof include zinc, zinc cyanide, zinc nitrate, zinc oxide, zinc peroxide, zinc perchlorate, zinc acetate, and zinc sulfate.
  • zinc acetate or zinc chloride which is an acetate salt of Zn, is preferably used, and zinc acetate is more preferably used because the effect of the present invention is more excellent.
  • a coordinating molecule may be added to the solvent in the first step.
  • the coordinating molecule to be used include the same ones as described above. Among these, oleic acid, palmitic acid, or stearic acid that promotes the synthesis of the core and has an appropriate coordination power to the core is preferable.
  • each of the above-described materials (Group III raw material, Group II raw material, and coordination molecule) is preferably dissolved in the above-described solvent because the effect of the present invention is more excellent.
  • the time required for the above-described heating and dissolution is preferably 30 minutes or more.
  • the second step is a step of adding a group V raw material containing a group V element to the solution after the first step to form a core that is a group III-V semiconductor.
  • Group V materials containing Group V elements include tristrialkylsilylphosphine, trisdialkylsilylphosphine, and trisdialkylaminophosphine; arsenic oxide, arsenic chloride, and arsenic sulfate. , Arsenic bromide, and arsenic iodide; and nitric oxide, nitric acid, and ammonium nitrate; Of these, a compound containing P is preferable because the effect of the present invention is more excellent.
  • tristrialkylsilylphosphine or trisdialkylaminophosphine is preferably used. More preferably, trimethylsilylphosphine is used.
  • the third step is a step of forming the first shell by adding the first shell raw material to the solution after the second step.
  • a semiconductor nanoparticle precursor having a core and a first shell is obtained.
  • the raw material of the first shell when the first shell is the above-described II-VI group semiconductor, the above-mentioned group II raw material including the group II element and the group VI raw material including the group VI element described later are included.
  • the first shell is the above-described group III-V semiconductor, a group III material containing the above group III element and a group V material containing the above group V element can be mentioned.
  • the group III element included in the group III-V semiconductor is a group III element different from the group III element included in the core described above. is there.
  • the group V material containing the group V element may be the same material as the group V material forming the core. A part of the group V raw material used in the process may be used, and only the group III raw material may be added in the third step.
  • Group VI materials Specific examples of Group VI materials containing Group VI elements include sulfur, alkylthiol, trialkylphosphine sulfide, trialkenylphosphine sulfide, alkylaminosulfide, alkenylaminosulfide, and cyclohexyl isothiocyanate.
  • alkylthiol for the reason that the dispersibility of the obtained semiconductor nanoparticles is good. Specifically, it is more preferable to use dodecanethiol or octanethiol, and use dodecanethiol. Is more preferable.
  • Group III materials and Group V materials it is preferable to use Group III materials and Group V materials.
  • a compound containing Ga for example, acetylacetonato gallium chloride, gallium fluoride, gallium fluoride, gallium oxide, gallium nitrate, gallium sulfate, etc.
  • Ga for example, acetylacetonato gallium chloride, gallium fluoride, gallium fluoride, gallium oxide, gallium nitrate, gallium sulfate, etc.
  • the group III raw material More preferably, is used.
  • the fourth step is a step of synthesizing semiconductor nanoparticles (without Mg) by adding a Group II raw material containing a Group II element to the solution after the third step to form a second shell.
  • a Group II raw material containing a Group II element a Group II element
  • the second shell is the above-described II-VI group semiconductor
  • the above-mentioned Group II raw material including the Group II element and the above Group VI raw material including the Group VI element are included. Can be mentioned.
  • the Group II raw material it is preferable to use fatty acid zinc (for example, zinc acetate, zinc oleate, and zinc stearate) or zinc diethyldithiocarbamate because the effect of the present invention is more excellent. More preferably, it is more preferable to use zinc oleate.
  • fatty acid zinc for example, zinc acetate, zinc oleate, and zinc stearate
  • zinc diethyldithiocarbamate More preferably, it is more preferable to use zinc oleate.
  • alkylthiol for the reason that the effect of this invention is more excellent, and it is more preferable to use dodecanethiol.
  • ⁇ Second preferred embodiment> As a 2nd suitable aspect of the manufacturing method of the semiconductor nanoparticle of this invention, after the 4th process of the 1st suitable aspect (manufacturing method which has a 4th process from the 1st process) mentioned above, for example The method which has the following 5th process is mentioned.
  • the core, the first shell covering the surface of the core, the second shell covering the surface of the first shell, and the magnesium-containing layer (layer containing magnesium) covering the surface of the second shell ) (Preferably a ZnMgS layer or MgS layer) is obtained.
  • the fifth step is a step of synthesizing semiconductor nanoparticles (with Mg) by adding a magnesium raw material to the solution after the fourth step to form a magnesium-containing layer.
  • Magnesium raw material Although it does not restrict
  • the fifth step it is preferable to add a group VI raw material together with the magnesium raw material because the effect of the present invention is more excellent.
  • Specific examples and preferred embodiments of the Group VI raw material are the same as those of the Group VI raw material used in the third step described above.
  • the fourth step (lamination treatment) is preferably performed a plurality of times because the effects of the present invention are more excellent.
  • the number of lamination treatments is preferably 3 to 10 times, and more preferably 4 to 6 times.
  • Group II raw material / III materials (preparation)>
  • the molar ratio of the Group II raw material added in Steps 1 to 4 to the Group III raw material added in the first step (hereinafter referred to as “Group II raw material / III Is also preferably 7 to 20, more preferably 9 to 15, and even more preferably 10 to 12 for the reason that the effect of the present invention is more excellent.
  • the quantity of the II group raw material added at a 4th process points out the total quantity added by all the lamination processes.
  • group III element of the group III material added in the first step is In and the group II element of the group II material added in the first to fourth steps is Zn
  • group II material / III Group raw material (preparation)” is also referred to as “Zn / In (preparation)”.
  • the molar ratio of the magnesium raw material added in the fifth step to the group III raw material added in the first step is:
  • it is preferably 0.01 to 10, more preferably 0.1 to 3, further preferably 0.2 to 1.5, Is particularly preferably from 0.8 to 0.8, and most preferably from 0.4 to 0.6.
  • magnesium raw material / group III raw material (preparation) when the group III element of the group III raw material added in the first step is In is also referred to as “Mg / In (preparation)”.
  • the temperature at which the magnesium raw material is added in the fifth step (hereinafter also referred to as “Mg addition temperature”) is 100 to 400 ° C. for the reason that the effect of the present invention is more excellent.
  • the temperature is preferably 190 to 300 ° C, and more preferably 210 to 250 ° C.
  • the semiconductor nanoparticle-containing dispersion of the present invention (hereinafter also referred to as “dispersion of the present invention”) is a dispersion containing the semiconductor nanoparticles of the present invention described above.
  • the solvent constituting the dispersion medium of the dispersion is preferably a nonpolar solvent.
  • the nonpolar solvent include aromatic hydrocarbons such as toluene; alkyl halides such as chloroform; fats such as hexane, octane, n-decane, n-dodecane, n-hexadecane, and n-octadecane.
  • Saturated aliphatic hydrocarbons such as 1-undecene, 1-dodecene, 1-hexadecene, 1-octadecene; trioctylphosphine; and the like.
  • the content (concentration) of the semiconductor nanoparticles of the present invention in the dispersion of the present invention is preferably 0.1 to 100 mol / L, and more preferably 0.1 to 1 mol / L.
  • the semiconductor nanoparticles of the present invention contained in the dispersion of the present invention may be one type or two or more types.
  • the film of the present invention is a film containing the semiconductor nanoparticles of the present invention described above. Since the film of the present invention exhibits excellent atmospheric durability, it can be applied to, for example, a wavelength conversion film for display use, a photoelectric conversion (or wavelength conversion) film for solar cells, a biomarker, a thin film transistor, and the like. . In particular, the film of the present invention is suitable for application to a down-conversion or down-shift type wavelength conversion film that absorbs light in a shorter wavelength region than the absorption edge of quantum dots and emits longer wave light. .
  • the film material as a base material which comprises the film of this invention is not specifically limited, Resin may be sufficient and a thin glass film
  • membrane may be sufficient.
  • ionomer polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polypropylene, polyester, polycarbonate, polystyrene, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-methacrylic acid
  • ⁇ Second step> the temperature of the flask was raised to 300 ° C. under a nitrogen flow, and when the temperature of the solution was stabilized, 0.12 mmol of tristrimethylsilylphosphine dissolved in about 2 mL of octadecene was added. Thereafter, the solution was heated at 230 ° C. for 120 minutes. It was confirmed that the solution was colored red and particles (core) were formed.
  • ⁇ Third step> in a state where the solution was heated to 200 ° C., 15 mg (0.09 mmol) of gallium chloride and 62.5 ⁇ L (0.2 mmol) of oleic acid dissolved in 4 mL of octadecene were added and heated for about 1 hour. A dispersion of a semiconductor nanoparticle precursor having InP (core) and GaP (first shell) doped with Zn was obtained.
  • ZnS (second shell) covering the surface of the first shell was formed.
  • the temperature is maintained at 150 ° C. to 240 ° C.
  • the Group II raw material for example, fatty acid zinc (for example, zinc acetate, zinc oleate or zinc stearate) or zinc diethyldithiocarbamate
  • Group VI raw materials eg, sulfur dissolved in octadecene (ODE-S), sulfur dissolved in trioctylphosphine (TOP-S), or linear alkanethiols (eg, butanethiol, octanethiol, or , Dodecanethiol), etc.
  • ODE-S octadecene
  • TOP-S trioctylphosphine
  • linear alkanethiols eg, butanethiol, octanethiol, or , Dodecanethiol
  • semiconductor nanoparticles without Mg having InP (core) doped with Zn, GaP (first shell) covering the surface of the core, and ZnS (second shell) covering the surface of the first shell.
  • the following fifth step is further performed to form a ZnMgS or MgS layer that covers the surface of the second shell, and ZnP-doped InP (core) and GaP that covers the surface of the core
  • Semiconductor nanoparticles (with Mg) having (first shell), ZnS (second shell) covering the surface of the first shell, and ZnMgS layer or MgS layer covering the surface of the second shell were manufactured.
  • a magnesium raw material for example, magnesium fatty acid (for example, magnesium oleate)
  • a Group VI raw material for example, octadecene
  • ODE-S sulfur
  • TOP-S trioctylphosphine
  • linear alkanethiol eg, butanethiol, octanethiol, or dodecanethiol
  • InP core
  • GaP first shell
  • ZnS second shell
  • ZnMgS layer covering the surface of the second shell
  • semiconductor nanoparticles (with Mg) having an MgS layer were obtained.
  • Comparative Example 1 is a semiconductor nanoparticle (without Mg) produced as described above, and the number of lamination treatments in the fourth step is as shown in Table 1.
  • Comparative Example 2 and Example 6 are the semiconductor nanoparticles (without Mg) produced as described above, and the number of stacking treatments in the fourth step is as shown in Table 1.
  • Comparative Example 3 is the semiconductor nanoparticles (with Mg) produced as described above, and the number of lamination processes in the fourth step is as shown in Table 1. However, in the first step, the amount of indium acetate used is 35 mg (0.12 mmol), zinc acetate 12 mg (0.06 mmol) is used as the Group II raw material, and in the second step, the amount of tristrimethylsilylphosphine used is 0. 0.08 mmol, and in the third step, the amount of gallium chloride used was 0.03 mg.
  • Examples 1 to 5 and 7 to 11 are semiconductor nanoparticles (with Mg) produced as described above, and the number of lamination treatments in the fourth step is as shown in Table 1.
  • Table 1 shows “Zn / In” described above for each example and comparative example (Zn / In (EDX)).
  • the method for obtaining Zn / In is as described above.
  • zinc, sulfur and indium were detected by EDX analysis.
  • Table 1 shows the “average particle diameter” described above for each of the examples and comparative examples. The method for measuring the average particle size is as described above.
  • Zn / In is 7 ⁇ Zn / In.
  • Examples 1 to 4 with ⁇ 12 showed better initial characteristics and atmospheric durability.
  • Examples 2 to 4 in which Zn / In is 9 ⁇ Zn / In ⁇ 12 showed further excellent initial characteristics and atmospheric durability.
  • Examples 2 and 3 in which Zn / In is 9 ⁇ Zn / In ⁇ 12 showed further excellent atmospheric durability.
  • Example 3 in which Zn / In is 9 ⁇ Zn / In ⁇ 12 showed further excellent initial characteristics and atmospheric durability.
  • Examples 3 and 7 to 11 in which peak B was detected were more excellent. Atmospheric durability was shown.
  • Examples 3 and 7 to 10 in which B / A was 0 ⁇ B / A ⁇ 3 exhibited further excellent initial characteristics and atmospheric durability.
  • Examples 3 and 8 to 10 where B / A is 0.5 ⁇ B / A ⁇ 1.5 showed further excellent durability.
  • Examples 3 and 8 to 9 where B / A is 0.5 ⁇ B / A ⁇ 1.5 showed further excellent atmospheric durability.
  • Example 3 and 9 whose B / A is 0.5 ⁇ B / A ⁇ 1.5 showed the further outstanding atmospheric durability.
  • Example 3 in which B / A is 0.5 ⁇ B / A ⁇ 1.2 showed further excellent initial characteristics and atmospheric durability.
  • Example 3 From the comparison between Examples 3 and 7 to 8 (contrast between embodiments in which Zn / In (preparation) is 11.75 and Mg / In (preparation) is 0.5), the Mg addition temperature is 190 ° C.
  • the above Examples 3 and 8 showed more excellent atmospheric durability.
  • Example 3 in which the Mg addition temperature was 210 ° C. or higher showed further excellent initial characteristics and atmospheric durability.
  • the embodiment using a Group II raw material other than fatty acid zinc as the Group II raw material in the fourth step and the embodiment using a Group VI raw material other than dodecanethiol as the Group VI raw material in the fourth step are also the comparative examples described above.
  • Zn / In “B / A” and “average particle diameter” were measured in the same manner as in Examples 1 to 3 and Examples 1 to 11, the same results as in Table 1 were obtained. The trend was the same as in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本発明は、優れた大気耐久性を示す半導体ナノ粒子、上記半導体ナノ粒子を含有する半導体ナノ粒子含有分散液、及び、上記半導体ナノ粒子を含有するフィルムを提供することを目的とする。本発明の半導体ナノ粒子は、エネルギー分散型X線分析により、亜鉛、硫黄及びインジウムが検出され、エネルギー分散型X線分析から求められる、インジウムに対する亜鉛のモル比Zn/Inが、下記式(1a)を満たす。 7≦Zn/In≦15・・・(1a)

Description

半導体ナノ粒子、半導体ナノ粒子含有分散液、及び、フィルム
 本発明は、半導体ナノ粒子、半導体ナノ粒子含有分散液、及び、フィルムに関する。
 金属元素を含む溶液中において化学的な合成法によって得られるシングルナノサイズレベルのコロイド状の半導体ナノ粒子(以下、「量子ドット」とも称す。)は、一部のディスプレイ用途の波長変換フィルムにおける蛍光材料として実用化が始まっており、また、生体標識、発光ダイオード、太陽電池、薄膜トランジスタ等への応用も期待されている。半導体ナノ粒子を開示する文献としては、例えば特許文献1が挙げられる。
国際公開2016/080435号
 このような背景において、本発明者が特許文献1を参考に半導体ナノ粒子を製造し、各種アプリケーションに応用したところ、製造工程や実際の使用など大気に曝されている環境下で特性(量子収率等)が低下していく場合があることが分かった。
 そこで、本発明は、上記実情を鑑みて、優れた大気耐久性を示す半導体ナノ粒子、上記半導体ナノ粒子を含有する半導体ナノ粒子含有分散液、及び、上記半導体ナノ粒子を含有するフィルムを提供することを目的とする。なお、大気耐久性とは、大気中での特性(量子収率等)の低下し難さを言う。
 上述のとおり、本発明者の検討から、半導体ナノ粒子を大気中に曝しておくと量子収率等の特性が低下することが分かっている。また、さらなる検討の結果、上述した特性の低下が、大気中の酸素や水分による酸化が主要因であるとの知見も得られている。
 このようななか、本発明者がインジウムに対する亜鉛のモル比Zn/Inに着目し検討を行ったところ、上記モル比と酸化との間に顕著な相関が見られること、そして、上記モル比を特定の範囲にすることで酸化を著しく抑えることができることが明らかになった。
 本発明は上記知見に基づくものであり、その具体的な構成は以下のとおりである。
(1) エネルギー分散型X線分析により、亜鉛、硫黄及びインジウムが検出され、
 エネルギー分散型X線分析から求められる、インジウムに対する亜鉛のモル比Zn/Inが、下記式(1a)を満たす、半導体ナノ粒子。
 7≦Zn/In≦15・・・(1a)
(2) ラマン分光分析により、300~400cm-1にピークAが検出され、100~130cm-1にピークBが検出される、上記(1)に記載の半導体ナノ粒子。
(3) 上記ピークAに対する上記ピークBの強度比B/Aが、下記式(2a)を満たす、上記(2)に記載の半導体ナノ粒子。
 0<B/A<3・・・(2a)
(4) 上記ピーク強度比B/Aが、下記式(2b)を満たす、上記(3)に記載の半導体ナノ粒子。
 0.5≦B/A≦1.5・・・(2b)
(5) 上記モル比Zn/Inが、下記式(1b)を満たす、上記(1)~(4)のいずれかに記載の半導体ナノ粒子。
 7≦Zn/In≦12・・・(1b)
(6) 上記モル比Zn/Inが、下記式(1c)を満たす、上記(5)に記載の半導体ナノ粒子。
 9≦Zn/In≦12・・・(1c)
(7) 平均粒子径が、6nm以下である、上記(1)~(6)のいずれかに記載の半導体ナノ粒子。
(8) 平均粒子径が、3.5nm以上5.5nm以下である、上記(7)に記載の半導体ナノ粒子。
(9) III族元素及びV族元素を含有するコアと、上記コアの表面の少なくとも一部を覆うII族元素及びVI族元素を含有するシェルとを有する、上記(1)~(8)のいずれかに記載の半導体ナノ粒子。
(10) III族元素及びV族元素を含有するコアと、上記コアの表面の少なくとも一部を覆う第1シェルと、上記第1シェルの少なくとも一部を覆う第2シェルとを有する、上記(1)~(8)のいずれかに記載の半導体ナノ粒子。
(11) 上記コアに含まれる上記III族元素がInであり、上記コアに含まれる上記V族元素がP、N及びAsのいずれかである、上記(9)又は(10)に記載の半導体ナノ粒子。
(12) 上記コアに含まれる上記III族元素がInであり、上記コアに含まれる上記V族元素がPである、上記(11)に記載の半導体ナノ粒子。
(13) 上記コアが、更にII族元素を含有する、上記(9)~(12)のいずれかに記載の半導体ナノ粒子。
(14) 上記コアに含まれる上記II族元素がZnである、上記(13)に記載の半導体ナノ粒子。
(15) 上記第1シェルが、II族元素又はIII族元素を含む、上記(10)~(14)のいずれかに記載の半導体ナノ粒子。
 ただし、上記第1シェルがIII族元素を含む場合、上記第1シェルに含まれるIII族元素は、上記コアに含まれるIII族元素とは異なるIII族元素である。
(16) 上記第1シェルが、II族元素及びVI族元素を含有するII-VI族半導体、又は、III族元素及びV族元素を含有するIII-V族半導体である、上記(10)~(15)のいずれかに記載の半導体ナノ粒子。
 ただし、上記第1シェルが、上記III-V族半導体である場合、上記III-V族半導体に含まれるIII族元素は、上記コアに含まれるIII族元素とは異なるIII族元素である。
(17) 上記第1シェルが、上記II-VI族半導体である場合、上記II族元素がZnであり、上記VI族元素がSe又はSであり、
 上記第1シェルが、上記III-V族半導体である場合、上記III族元素がGaであり、上記V族元素がPである、上記(16)に記載の半導体ナノ粒子。
(18) 上記第1シェルが、上記III-V族半導体であり、上記III族元素がGaであり、上記V族元素がPである、上記(16)に記載の半導体ナノ粒子。
(19) 上記第2シェルが、II族元素及びVI族元素を含有するII-VI族半導体、又は、III族元素及びV族元素を含有するIII-V族半導体である、上記(10)~(18)のいずれかに記載の半導体ナノ粒子。
(20) 上記第2シェルが、上記II-VI族半導体であり、上記II族元素がZnであり、上記VI族元素がSである、上記(19)に記載の半導体ナノ粒子。
(21) 上記コアと、上記第1シェルと、上記第2シェルとが、いずれも閃亜鉛鉱構造を有する結晶系である、上記(10)~(20)のいずれかに記載の半導体ナノ粒子。
(22) 上記コア、上記第1シェル及び上記第2シェルのうち、上記コアのバンドギャップが最も小さく、かつ、
 上記コア及び上記第1シェルがタイプ1型のバンド構造を示す、上記(10)~(21)のいずれかに記載の半導体ナノ粒子。
(23) 上記(1)~(22)のいずれかに記載の半導体ナノ粒子を含有する半導体ナノ粒子含有分散液。
(24) 上記(1)~(22)のいずれかに記載の半導体ナノ粒子を含有するフィルム。
 以下に示すように、本発明によれば、優れた大気耐久性を示す半導体ナノ粒子、上記半導体ナノ粒子を含有する半導体ナノ粒子含有分散液、及び、上記半導体ナノ粒子を含有するフィルムを提供することができる。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[半導体ナノ粒子]
 本発明の半導体ナノ粒子は、エネルギー分散型X線分析(以下、「EDX分析」、又は、単に「EDX」とも言う)により、亜鉛、硫黄及びインジウムが検出され、エネルギー分散型X線分析(EDX)から求められる、インジウムに対する亜鉛のモル比Zn/In(以下、「Zn/In」又は「Zn/In(EDX)」とも言う)が、下記式(1a)を満たす。
 7≦Zn/In≦15・・・(1a)
 本発明の半導体ナノ粒子はこのような構成をとることにより、優れた大気耐久性を示すものと考えられる。その理由は詳細には明らかではないが、本発明の半導体ナノ粒子において、Inに対するZnのモル比が非常に高いため、InがZnによって十分に保護され(欠陥が極めて少ない)、結果として、優れた大気耐久性を示すものと推測される。
 ここで、上述のとおり、Zn/Inを特定の範囲にすることで大気耐久性が大幅に向上するとの知見が得られている。すなわち、Zn/Inと大気耐久性との間に臨界性が見られることが分かっている。
 これは、Inに対してZnを多く含んでいてもZnによるInの保護が十分でないと微小な欠陥から大気中の酸素や水が入り込み、半導体ナノ粒子の酸化が生じてしまうところ、Inに対するZnの量をモル比で7倍以上にすることで欠陥がほぼ無くなり、大気中の酸素や水がほぼ完全にシャットダウンされ、結果として、大気耐久性が大幅に向上するためと考えられる。
 例えば、本発明の半導体ナノ粒子が後述する好適な態様の1つであるInPコアとZnSとのコアシェル粒子である場合、Inに対してZnが多い場合でも、InPコアに対してZnSシェルの被覆が不十分、つまり、InPコアへの保護が十分でないと、InPコアが露出した部分や微小な欠陥から大気中の酸素や水が入り込み、半導体ナノ粒子の酸化が生じてしまう。一方で、Inに対するZnの量をモル比で7倍以上にすることで、InPコアの被覆不足がほぼ解消され、欠陥がほぼ無くなり、大気中の酸素や水がほぼ完全にシャットダウンされ、結果として、大気耐久性が大幅に向上するものと考えられる。
 また、後述のとおり、本発明の半導体ナノ粒子は、さらに大気耐久性が向上する理由から、ラマン分光分析により、300~400cm-1にピークAが検出され、100~130cm-1にピークB(MgS又はZnMgSに由来すると考えらえるピーク)が検出される態様であることが好ましい。そのような態様にすることで大気耐久性が向上する理由は詳細には明らかではないが、Mgの還元電位が低いために、Mgが自ら酸化されることで、Zn(例えば、上述したInPコアとZnSシェルとのコアシェル粒子の場合にはZnSシェル)の酸化が抑制されるためと推測される。
 以下、本発明の半導体ナノ粒子について詳述する。
〔亜鉛、硫黄及びインジウム〕
 上述のとおり、本発明の半導体ナノ粒子は、エネルギー分散型X線分析(EDX)により、亜鉛、硫黄及びインジウムが検出される。すなわち、本発明の半導体ナノ粒子は、亜鉛(Zn)、硫黄(S)及びインジウム(In)を含む。
〔Zn/In〕
 本発明の半導体ナノ粒子において、エネルギー分散型X線分析から求められる、インジウムに対する亜鉛のモル比Zn/In(Zn/In)は、下記式(1a)を満たす。
 7≦Zn/In≦15・・・(1a)
 Zn/Inは、本発明の効果がより優れる理由から、下記式(1b)を満たすことが好ましく、下記式(1c)を満たすことがより好ましく、下記式(1d)を満たすことがさらに好ましく、下記式(1e)を満たすことが特に好ましい。
 7≦Zn/In≦12・・・(1b)
 9≦Zn/In≦12・・・(1c)
 9≦Zn/In<12・・・(1d)
 9<Zn/In<12・・・(1e)
 なお、Zn/Inは以下のとおり求めたものである。
 まず、半導体ナノ粒子のトルエン分散液をノンドープのSi基板上に塗布し、乾燥させ、EDX分析用サンプルとする。そして、得られたサンプルについて、下記装置等(装置、検出器及びソフトウエア)を用いて、下記条件にてEDX分析を行い、Zn/Inを求める。
(装置等)
・装置:日立ハイテクノロジース社製Miniscope TM1000
・検出器:オックスフォード・インストゥルメンツ製
・ソフトウエア:SwiftED-TM
(条件)
・積算時間:30秒
・加速電圧:15kV
・測定範囲:100μm×100μm
〔ピークA及びB〕
 本発明の半導体ナノ粒子は、本発明の効果がより優れる理由から、ラマン分光分析により、300~400cm-1にピークAが検出され、100~130cm-1にピークBが検出されるのが好ましい。
<ピークA>
 上記ピークAは、In-V族半導体(例えば、InP)などInを含有する構造に由来するピークと考えられる。なお、例えば、InPに由来するピークが300~400cm-1に検出される点は、M.J.Seong、外4名,「Size-dependent Raman study of InP quantum dots」,Appl.Phys.Lett.,American Institute of Physics,2003年1月13日,第82巻、第2号,p185-187などに記載されている。
<ピークB>
 上記ピークBは、MgS又はZnMgSに由来するピークと考えられる。
 なお、ラマン分光分析は以下のとおり行う。
 まず、半導体ナノ粒子のトルエン分散液(300μL)を石英セル(光路長1mm)に充填し、ラマン分光分析用サンプルとする。次いで、得られたサンプルについて下記のとおりラマン分光分析を行う。
 チタンサファイアレーザーの出力光(波長:800nm、パルス時間幅:92fs、出力:1.8W、繰り返し周波数:1kHz)を2つに分割し、ピコ秒光パラメトリック増幅器によりラマン励起光(530nm、10ps、8cm-1)と、サファイア基板によりラマン検出光(531-680nm)を発生させる。ラマン励起光とラマン検出光を放物面鏡でサンプルに照射し、サンプルを透過したラマン検出光は分光器とCCD(Charge Coupled Device)カメラにより検出する。
<B/A>
 上記ピークAに対する上記ピークBの強度比B/A(以下、「B/A」又は「B/A(ラマン)」とも言う)は特に制限されないが、本発明の効果がより優れる理由から、下記式(2a)を満たすことが好ましく、下記式(2b)を満たすことがより好ましく、下記式(2c)を満たすことがさらに好ましく、下記式(2d)を満たすことが特に好ましい。
 0<B/A<3・・・(2a)
 0.5≦B/A≦1.5・・・(2b)
 0.5≦B/A<1.5・・・(2c)
 0.5<B/A<1.5・・・(2d)
 なお、B/Aは以下のとおり求めたものである。
 上述のとおり、ラマン分光分析用サンプルを調製する。得られたサンプルについて上述のとおりラマン分光分析を行い、300~400cm-1のピークAに対する100~130cm-1のピークBの強度比(B/A)を求める。より具体的には、ピークAのピーク強度で規格化し、ピークBのピーク強度をベースライン補正して求める。
〔平均粒子径〕
 本発明の半導体ナノ粒子の平均粒子径は特に制限されないが、本発明の効果がより優れる理由から、10nm以下であることが好ましく、6nm以下であることがより好ましい。下限も特に制限されないが、本発明の効果がより優れる理由から、2nm以上であることが好ましく、3nm以上であることがより好ましい。本発明の半導体ナノ粒子の平均粒子径は、本発明の効果がより優れる理由から、3.5nm以上5.5nm以下であることがより好ましい。
 ここで、平均粒子径は、透過型電子顕微鏡で少なくとも20個の粒子を直接観察し、粒子の投影面積と同一面積を有する円の直径を算出し、それらの算術平均の値をいう。
〔好適な態様〕
 本発明の半導体ナノ粒子は、本発明の効果がより優れる理由から、コアシェル粒子であることが好ましい。
 本発明の半導体ナノ粒子がコアシェル粒子である場合の第1の好適な態様としては、例えば、III族元素及びV族元素を含有するコアと、上記コアの表面の少なくとも一部を覆うII族元素及びVI族元素を含有するシェルとを有する態様(シングルシェル形状)が挙げられる。
 また、本発明の半導体ナノ粒子がコアシェル粒子である場合の第2の好適な態様としては、例えば、III族元素及びV族元素を含有するコアと、上記コアの表面の少なくとも一部を覆う第1シェルと、上記第1シェルの少なくとも一部を覆う第2シェルとを有する態様(マルチシェル形状)が挙げられる。
 なかでも、本発明の効果がより優れる理由から、マルチシェル形状が好ましい。
 また、本発明の半導体ナノ粒子は、本発明の効果がより優れる理由から、マグネシウム(Mg)を含有するのが好ましい。
<コア>
 本発明の半導体ナノ粒子がコアシェル粒子である場合、コアシェル粒子が有するコアは、本発明の効果がより優れる理由から、III族元素及びV族元素を含有する、いわゆるIII-V族半導体であるのが好ましい。
(1)III族元素
 III族元素としては、具体的には、例えば、インジウム(In)、アルミニウム(Al)、及び、ガリウム(Ga)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Inであるのが好ましい。
(2)V族元素
 V族元素としては、具体的には、例えば、P(リン)、N(窒素)、及び、As(ヒ素)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Pであるのが好ましい。
 本発明においては、コアとして、上述したIII族元素及びV族元素の例示を適宜組み合わせたIII-V族半導体を用いることができるが、発光効率がより高くなり、また、発光半値幅が狭くなり、明瞭なエキシトンピークが得られる理由から、InP、InN、又は、InAsであるのが好ましく、中でも、発光効率が更に高くなる理由から、InPであるのがより好ましい。
 本発明においては、本発明の効果がより優れる理由から、上述したIII族元素及びV族元素以外に、更にII族元素を含有しているのが好ましく、特にコアがInPである場合、II族元素としてのZnをドープさせることにより格子定数が小さくなり、InPよりも格子定数の小さいシェル(例えば、後述するGaP、ZnSなど)との格子整合性が高くなる。
<シェル>
 本発明の半導体ナノ粒子がシングルシェル形状のコアシェル粒子である場合、シェルは、コアの表面の少なくとも一部を覆う材料であって、II族元素及びVI族元素を含有する、いわゆるII-VI族半導体であるのが好ましい。
 ここで、本発明においては、シェルがコアの表面の少なくとも一部を被覆しているか否かは、例えば、透過型電子顕微鏡を用いたエネルギー分散型X線分光法(TEM(Transmission Electron Microscope)-EDX(Energy Dispersive X-ray spectroscopy))による組成分布解析によっても確認することが可能である。
(1)II族元素
 II族元素としては、具体的には、例えば、亜鉛(Zn)、カドミウム(Cd)、及び、マグネシウム(Mg)等が挙げられ、なかでも本発明の効果がより優れる理由から、Znであるのが好ましい。
(2)VI族元素
 VI族元素としては、具体的には、例えば、硫黄(S)、酸素(O)、セレン(Se)、及び、テルル(Te)等が挙げられ、なかでも本発明の効果がより優れる理由から、S又はSeであるのが好ましく、Sであるのがより好ましい。
 本発明においては、シェルとして、上述したII族元素及びVI族元素の例示を適宜組み合わせたII-VI族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系であるのが好ましい。
 具体的には、本発明の効果がより優れる理由から、ZnS、ZnSeであるのが好ましく、安全性等の観点から、ZnSであるのがより好ましい。
<第1シェル>
 本発明の半導体ナノ粒子がマルチシェル形状のコアシェル粒子である場合、第1シェルは、コアの表面の少なくとも一部を覆う材料である。
 ここで、本発明においては、第1シェルがコアの表面の少なくとも一部を被覆しているか否かは、例えば、透過型電子顕微鏡を用いたエネルギー分散型X線分光法(TEM-EDX)による組成分布解析によっても確認することが可能である。
 本発明においては、コアとの界面欠陥を抑制しやすくなる理由から、第1シェルがII族元素又はIII族元素を含むことが好ましい。
 ここで、第1シェルがIII族元素を含む場合は、第1シェルに含まれるIII族元素は、上述したコアに含まれるIII族元素とは異なるIII族元素である。
 また、II族元素又はIII族元素を含む第1シェルとしては、例えば、後述するII-VI族半導体及びIII-V族半導体の他、III族元素及びVI族元素を含有するIII-VI族半導体(例えば、Ga23、Ga23など)などが挙げられる。
 本発明においては、欠陥の少ない良質な結晶相が得られる理由から、第1シェルが、II族元素及びVI族元素を含有するII-VI族半導体、又は、III族元素及びV族元素を含有するIII-V族半導体であるのが好ましく、上述したコアとの格子定数の差が小さいIII-V族半導体であるのがより好ましい。
 ここで、第1シェルがIII-V族半導体である場合は、III-V族半導体に含まれるIII族元素は、上述したコアに含まれるIII族元素とは異なるIII族元素である。
(1)II-VI族半導体
 上記II-VI族半導体に含まれるII族元素としては、具体的には、例えば、亜鉛(Zn)、カドミウム(Cd)、及び、マグネシウム(Mg)等が挙げられ、なかでも本発明の効果がより優れる理由から、Znであるのが好ましい。
 また、上記II-VI族半導体に含まれるVI族元素としては、具体的には、例えば、硫黄(S)、酸素(O)、セレン(Se)、及び、テルル(Te)等が挙げられ、なかでも本発明の効果がより優れる理由から、S又はSeであるのが好ましく、Sであるのがより好ましい。
 第1シェルとして、上述したII族元素及びVI族元素の例示を適宜組み合わせたII-VI族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系(例えば、閃亜鉛鉱構造)であるのが好ましい。具体的には、本発明の効果がより優れる理由から、ZnSe、ZnS、又はそれらの混晶であるのが好ましく、ZnSeであるのがより好ましい。
(2)III-V族半導体
 上記III-V族半導体に含まれるIII族元素としては、具体的には、例えば、インジウム(In)、アルミニウム(Al)、及び、ガリウム(Ga)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Gaであるのが好ましい。なお、上述した通り、III-V族半導体に含まれるIII族元素は、上述したコアに含まれるIII族元素とは異なるIII族元素であり、例えば、コアに含まれるIII族元素がInである場合は、III-V族半導体に含まれるIII族元素はAl、Ga等である。
 また、上記III-V族半導体に含まれるV族元素としては、具体的には、例えば、P(リン)、N(窒素)、及び、As(ヒ素)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Pであるのが好ましい。
 第1シェルとして、上述したIII族元素及びV族元素の例示を適宜組み合わせたIII-V族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系(例えば、閃亜鉛鉱構造)であるのが好ましい。具体的には、GaPであるのが好ましい。
 本発明においては、得られるコアシェル粒子の表面欠陥が少なくなる理由から、上述したコアと第1シェルとの格子定数の差が小さい方が好ましく、具体的には、上述したコアと第1シェルとの格子定数の差が10%以下であることが好ましい。
 具体的には、上述したコアがInPである場合、上述した通り、第1シェルはZnSe(格子定数の差:3.4%)、又は、GaP(格子定数の差:7.1%)であることが好ましく、特に、本発明の効果がより優れる理由から、コアと同じIII-V族半導体であり、コアと第1シェルとの界面に混晶状態を作りやすいGaPであることがより好ましい。
 また、本発明においては、第1シェルがIII-V族半導体である場合、コアとのバンドギャップの大小関係(コア<第1シェル)に影響を与えない範囲で他の元素(例えば、上述したII族元素及びVI族元素)を含有又はドープしていてもよい。同様に、第1シェルがII-VI族半導体である場合、コアとのバンドギャップの大小関係(コア<第1シェル)に影響を与えない範囲で他の元素(例えば、上述したIII族元素及びV族元素)を含有又はドープしていてもよい。
<第2シェル>
 本発明の半導体ナノ粒子がマルチシェル形状のコアシェル粒子である場合、第2シェルは、上述した第1シェルの表面の少なくとも一部を覆う材料である。
 ここで、本発明においては、第2シェルが第1シェルの表面の少なくとも一部を被覆しているか否かは、例えば、透過型電子顕微鏡を用いたエネルギー分散型X線分光法(TEM-EDX)による組成分布解析によっても確認することが可能である。
 本発明においては、第1シェルとの界面欠陥を抑制し、また、欠陥の少ない良質な結晶相が得られる理由から、第2シェルが、II族元素及びVI族元素を含有するII-VI族半導体、又は、III族元素及びV族元素を含有するIII-V族半導体であるのが好ましく、材料自体の反応性が高く、より結晶性の高いシェルが容易に得られる理由から、II-VI族半導体であるのがより好ましい。
 なお、II族元素及びVI族元素並びにIII族元素及びV族元素としては、いずれも、第1シェルにおいて説明したものが挙げられる。
 第2シェルとして、上述したII族元素及びVI族元素の例示を適宜組み合わせたII-VI族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系(例えば、閃亜鉛鉱構造)であるのが好ましい。具体的には、ZnSe、ZnS、又はそれらの混晶であるのが好ましく、ZnSであるのがより好ましい。
 第2シェルとして、上述したIII族元素及びV族元素の例示を適宜組み合わせたIII-V族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系(例えば、閃亜鉛鉱構造)であるのが好ましい。具体的には、GaPであるのが好ましい。
 本発明においては、得られるコアシェル粒子の表面欠陥が少なくなる理由から、上述した第1シェルと第2シェルとの格子定数の差が小さい方が好ましく、具体的には、上述した第1シェルと第2シェルとの格子定数の差が10%以下であることが好ましい。
 具体的には、上述した第1シェルがGaPである場合、上述した通り、第2シェルはZnSe(格子定数の差:3.8%)、又は、ZnS(格子定数の差:0.8%)であることが好ましく、ZnSであることがより好ましい。
 また、本発明においては、第2シェルがII-VI族半導体である場合、コアとのバンドギャップの大小関係(コア<第2シェル)に影響を与えない範囲で他の元素(例えば、上述したIII族元素及びV族元素)を含有又はドープしていてもよい。同様に、第2シェルがIII-V族半導体である場合、コアとのバンドギャップの大小関係(コア<第2シェル)に影響を与えない範囲で他の元素(例えば、上述したII族元素及びVI族元素)を含有又はドープしていてもよい。
 本発明においては、エピタキシャル成長が容易となり、各層間の界面欠陥を抑制しやすくなる理由から、上述したコアと、第1シェルと、第2シェルとが、いずれも閃亜鉛鉱構造を有する結晶系であるのが好ましい。
 また、本発明においては、コアにエキシトンが滞在する確率が増大し、発光効率がより高くなる理由から、上述したコア、第1シェル及び第2シェルのうち、コアのバンドギャップが最も小さく、かつ、コア及び第1シェルがタイプ1型(タイプI型)のバンド構造を示すコアシェル粒子であるのが好ましい。
<Mg>
 上述のとおり、本発明の半導体ナノ粒子は、本発明の効果がより優れる理由から、マグネシウム(Mg)を含有するのが好ましい。
 本発明の半導体ナノ粒子は、本発明の効果がより優れる理由から、Mgを、ZnMgS又はMgSとして含有するのが好ましく、半導体ナノ粒子の表面近傍にZnMgS層又はMgS層として含有するのがより好ましい。本発明の半導体ナノ粒子がZnMgS又はMgSを含有する場合、上述したピークBが検出されるものと考えられる。
 なお、以下、Mgを含有する半導体ナノ粒子を「半導体ナノ粒子(Mg有り)」、Mgを含有しない半導体ナノ粒子を「半導体ナノ粒子(Mg無し)」とも言う。
<配位性分子>
 本発明の半導体ナノ粒子は、分散性を付与する観点から、半導体ナノ粒子の表面に配位性分子を有していることが望ましい。
 配位性分子は、溶媒への分散性等の観点から、脂肪族炭化水素基を含むことが好ましい。
 また、配位性分子は、分散性を向上する観点から、主鎖の炭素数が少なくとも6以上の配位子であることが好ましく、主鎖の炭素数が10以上の配位子であることがより好ましい。
 このような配位性分子としては、飽和化合物であっても不飽和化合物であってもよく、具体的には、例えば、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、エルカ酸、オレイルアミン、ドデシルアミン、ドデカンチオール、1,2-ヘキサデカンチオール、トリオクチルホスフィンオキシド、臭化セトリモニウム等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
〔半導体ナノ粒子の製造方法〕
 本発明の半導体ナノ粒子を製造する方法は特に制限されないが、例えば、溶媒中で、亜鉛を含む化合物と硫黄を含む化合物とインジウムを含む化合物とを混合する方法などが挙げられる。その際、亜鉛を含む化合物の配合量、及び、インジウムを含む化合物の配合量を調整すること等により、上述した式(1a)を満たす半導体ナノ粒子を得ることができる。
 本発明の半導体ナノ粒子を製造する方法は、得られる半導体粒子の大気耐久性がより向上する理由(以下、「本発明の効果がより優れる理由」とも言う)から、後述する第1の好適な態様又は第2の好適な態様であることが好ましく、第2の好適な態様であることがより好ましい。
<第1の好適な態様>
 本発明の半導体ナノ粒子の製造方法の第1の好適な態様としては、例えば、下記第1工程から第4工程を有する製造方法が挙げられる。上記第1の好適な態様により、コアと、コアの表面を覆う第1シェルと、第1シェルの表面を覆う第2シェルとを有する半導体ナノ粒子(Mg無し)が得られる。
(1)溶媒中にIII族元素を含むIII族原料を添加した溶液を加熱撹拌する第1工程
(2)第1工程後の上記溶液中に、V族元素を含むV族原料を添加してコアを形成する第2工程
(3)第2工程後の上記溶液中に、第1シェルの原料を添加し、第1シェルを形成する第3工程
(4)第3工程後の上記溶液中に、II族元素を含むII族原料を添加して第2シェルを形成し、半導体ナノ粒子を合成する第4工程
 以下、各工程について説明する。
(第1工程)
 第1工程は、溶媒中にIII族元素を含むIII族原料を添加した溶液を加熱撹拌する工程である。
(1)溶媒
 第1工程において使用する溶媒としては、170℃以上の沸点を有する非極性溶媒が好適に挙げられる。
 非極性溶媒としては、具体的には、例えば、n-デカン、n-ドデカン、n-ヘキサデカン、及び、n-オクタデカンなどの脂肪族飽和炭化水素;1-ウンデセン、1-ドデセン、1-ヘキサデセン、及び、1-オクタデセンなどの脂肪族不飽和炭化水素;トリオクチルホスフィン;等が挙げられる。
 これらのうち、本発明の効果がより優れる理由から、炭素数12以上の脂肪族不飽和炭化水素が好ましく、1-オクタデセンがより好ましい。
(2)III族原料
 溶媒中に添加するIII族原料としては、具体的には、例えば、塩化インジウム、酸化インジウム、酢酸インジウム、硝酸インジウム、硫酸インジウム、及び、インジウム酸;リン酸アルミニウム、アセチルアセトナトアルミニウム、塩化アルミニウム、フッ化アルミニウム、酸化アルミニウム、硝酸アルミニウム、及び、硫酸アルミニウム;並びに、アセチルアセトナトガリウム、塩化ガリウム、フッ化ガリウム、酸化ガリウム、硝酸ガリウム、及び、硫酸ガリウム;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、より高い発光効率が実現し易く、且つ可視域での発光波長制御がし易いインジウム化合物であることが好ましく、塩化物などの不純物イオンがコアに取り込まれ難く、高い結晶性を実現しやすい酢酸インジウムを用いるのがより好ましい。
(3)II族原料
 第1工程において、上述したIII族原料とともに、II族元素を含むII族原料を添加してもよい。
 II族元素を含むII族原料としては、具体的には、例えば、ジメチル亜鉛、ジエチル亜鉛、亜鉛カルボキシル酸塩、アセチルアセトナト亜鉛、ヨウ化亜鉛、臭化亜鉛、塩化亜鉛、フッ化亜鉛、炭酸亜鉛、シアン化亜鉛、硝酸亜鉛、酸化亜鉛、過酸化亜鉛、亜鉛過塩素酸塩、酢酸亜鉛、及び、硫酸亜鉛等が挙げられる。
 II族原料は、本発明の効果がより優れる理由から、Znの酢酸塩である酢酸亜鉛又は塩化亜鉛を用いるのが好ましく、酢酸亜鉛を用いるのがより好ましい。
(4)配位性分子
 第1工程において溶媒に配位性分子を添加してもよい。使用する配位性分子としては、上述したものと同様のものが挙げられる。なかでも、コアの合成を促進し、コアへの適度な配位力を有するオレイン酸、パルミチン酸、又は、ステアリン酸が好ましい。
(5)加熱撹拌条件
 第1工程において、上述した各材料(III族原料、II族原料、配位性分子)は、本発明の効果がより優れる理由から、上述した溶媒に溶解させるのが好ましく、例えば、100~180℃の温度で加熱撹拌して溶解させることが好ましい。なお、本発明の効果がより優れる理由から、この際に、減圧条件下で加熱することより、溶解させた混合溶液から溶存酸素や水分などを除去することが好ましい。
 また、本発明の効果がより優れる理由から、上述した加熱溶解に要する時間は、30分以上であることが好ましい。
(第2工程)
 第2工程は、第1工程後の溶液中に、V族元素を含むV族原料を添加してIII-V族半導体であるコアを形成する工程である。
(1)V族原料
 V族元素を含むV族原料としては、具体的には、例えば、トリストリアルキルシリルホスフィン、トリスジアルキルシリルホスフィン、及び、トリスジアルキルアミノホスフィン;酸化砒素、塩化砒素、硫酸砒素、臭化砒素、及び、ヨウ化砒素;並びに、一酸化窒素、硝酸、及び、硝酸アンモニウム;等が挙げられる。
 これらのうち、本発明の効果がより優れる理由から、Pを含む化合物であるのが好ましく、例えば、トリストリアルキルシリルホスフィン、又は、トリスジアルキルアミノホスフィンを用いるのが好ましく、具体的には、トリストリメチルシリルホスフィンを用いるのがより好ましい。
(第3工程)
 第3工程は、第2工程後の溶液中に、第1シェルの原料を添加し、第1シェルを形成する工程である。これにより、コアと第1シェルとを有する半導体ナノ粒子前駆体が得られる。
 ここで、第1シェルの原料としては、第1シェルが上述したII-VI族半導体である場合には、上述したII族元素を含むII族原料及び後述するVI族元素を含むVI族原料が挙げられ、第1シェルが上述したIII-V族半導体である場合には、上述したIII族元素を含むIII族原料及び上述したV族元素を含有するV族原料が挙げられる。
 ここで、第1シェルが、上述したIII-V族半導体である場合には、III-V族半導体に含まれるIII族元素は、上述したコアに含まれるIII族元素とは異なるIII族元素である。
 また、第1シェルが、上述したIII-V族半導体である場合には、V族元素を含むV族原料については、コアを形成するV族原料と同一原料であってもよいため、第2工程で使用するV族原料の一部を使用し、第3工程においてはIII族原料のみを添加する態様であってもよい。
(1)VI族原料
 VI族元素を含むVI族原料としては、具体的には、例えば、硫黄、アルキルチオール、トリアルキルホスフィンスルフィド、トリアルケニルホスフィンスルフィド、アルキルアミノスルフィド、アルケニルアミノスルフィド、イソチオシアン酸シクロヘキシル、ジエチルジチオカルバミン酸、及び、ジエチルジチオカルバミン酸;並びに、トリアルキルホスフィンセレン、トリアルケニルホスフィンセレン、アルキルアミノセレン、アルケニルアミノセレン、トリアルキルホスフィンテルリド、トリアルケニルホスフィンテルリド、アルキルアミノテルリド、及び、アルケニルアミノテルリド;等が挙げられる。
 これらのうち、得られる半導体ナノ粒子の分散性が良好となる理由から、アルキルチオールを用いるのが好ましく、具体的には、ドデカンチオール、又は、オクタンチオールを用いるのがより好ましく、ドデカンチオールを用いるのが更に好ましい。
 これらの材料のうち、III族原料及びV族原料を用いるのが好ましい。
 特に、III族原料としては、Gaを含む化合物(例えば、アセチルアセトナトガリウム、塩化ガリウム、フッ化ガリウム、酸化ガリウム、硝酸ガリウム、及び、硫酸ガリウム等)を用いるのがより好ましく、Gaの塩化物を用いるのが更に好ましい。
 なお、V族原料としては、上述したとおり、第2工程で使用するV族原料の一部を用いるのが好ましい。
(第4工程)
 第4工程は、第3工程後の溶液中に、II族元素を含むII族原料を添加して第2シェルを形成し、半導体ナノ粒子(Mg無し)を合成する工程である。
 ここで、第2シェルの原料としては、第2シェルが上述したII-VI族半導体である場合には、上述したII族元素を含むII族原料及び上述したVI族元素を含むVI族原料が挙げられる。
 II族原料としては、本発明の効果がより優れる理由から、脂肪酸亜鉛(例えば、酢酸亜鉛、オレイン酸亜鉛、及び、ステアリン酸亜鉛)、又は、ジエチルジチオカルバミン酸亜鉛を用いるのが好ましく、脂肪酸亜鉛を用いるのがより好ましく、オレイン酸亜鉛を用いるのがさらに好ましい。
 また、VI族原料としては、本発明の効果がより優れる理由から、アルキルチオールを用いるのが好ましく、ドデカンチオールを用いるのがより好ましい。
<第2の好適な態様>
 本発明の半導体ナノ粒子の製造方法の第2の好適な態様としては、例えば、上述した第1の好適な態様(第1工程から第4工程を有する製造方法)の第4工程の後に、さらに、下記第5工程を有する方法が挙げられる。上記第2の好適な態様により、コアと、コアの表面を覆う第1シェルと、第1シェルの表面を覆う第2シェルと、第2シェルの表面を覆うマグネシウム含有層(マグネシウムを含有する層)(好ましくは、ZnMgS層又はMgS層)とを有する半導体ナノ粒子(Mg有り)が得られる。
(第5工程)
 第5工程は、第4工程後の上記溶液中に、マグネシウム原料を添加してマグネシウム含有層を形成し、半導体ナノ粒子(Mg有り)を合成する工程である。
(1)マグネシウム原料
 マグネシウム原料としては特に制限されないが、本発明の効果がより優れる理由から、脂肪酸マグネシウムであることが好ましく、脂肪酸マグネシウムは、本発明の効果がより優れる理由から、酢酸マグネシウム、オレイン酸マグネシウム、又は、ステアリン酸マグネシウムであることが好ましく、オレイン酸マグネシウムであることがより好ましい。
 また、第5工程において、本発明の効果がより優れる理由から、マグネシウム原料とともに、VI族原料を添加するのが好ましい。VI族原料の具体例及び好適な態様は、上述した第3工程で使用されるVI族原料と同じである。
<積層処理回数>
 上述した第1の好適な態様及び第2の好適な態様において、本発明の効果がより優れる理由から、第4工程(積層処理)は複数回数行うことが好ましい。本発明の効果がより優れる理由から、積層処理回数は3~10回であることが好ましく、4~6回であることがより好ましい。
<II族原料/III族原料(仕込み)>
 上述した第1の好適な態様及び第2の好適な態様において、第1工程で添加するIII族原料に対する第1~4工程で添加するII族原料のモル比(以下、「II族原料/III族原料(仕込み)」とも言う)は、本発明の効果がより優れる理由から、7~20であることが好ましく、9~15であることがより好ましく、10~12であることがさらに好ましい。なお、第4工程が複数回の積層処理である場合、第4工程で添加するII族原料の量は、全ての積層処理で添加した合計の量を指す。
 以下、第1工程で添加するIII族原料のIII族元素がInであり、且つ、第1~4工程で添加するII族原料のII族元素がZnである場合の上記「II族原料/III族原料(仕込み)」を「Zn/In(仕込み)」とも言う。
<マグネシウム原料/III族原料(仕込み)>
 上述した第2の好適な態様において、第1工程で添加するIII族原料に対する第5工程で添加するマグネシウム原料のモル比(以下、「マグネシウム原料/III族原料(仕込み)」とも言う)は、本発明の効果がより優れる理由から、0.01~10であることが好ましく、0.1~3であることがより好ましく、0.2~1.5であることがさらに好ましく、0.3~0.8であることが特に好ましく、0.4~0.6であることが最も好ましい。
 以下、第1工程で添加するIII族原料のIII族元素がInである場合の上記「マグネシウム原料/III族原料(仕込み)」を「Mg/In(仕込み)」とも言う。
<Mg添加温度>
 上述した第2の好適な態様において、第5工程でマグネシウム原料を添加する温度(以下、「Mg添加温度」とも言う)は、本発明の効果がより優れる理由から、100~400℃であることが好ましく、190~300℃であることがより好ましく、なかでも、210~250℃であることがさらに好ましい。
[半導体ナノ粒子含有分散液]
 本発明の半導体ナノ粒子含有分散液(以下、「本発明の分散液」とも言う)は、上述した本発明の半導体ナノ粒子を含有する分散液である。
 ここで、分散液の分散媒を構成する溶媒は、非極性溶媒が好ましい。
 非極性溶媒としては、具体的には、例えば、トルエンなどの芳香族炭化水素;クロロホルムなどのハロゲン化アルキル;ヘキサン、オクタン、n-デカン、n-ドデカン、n-ヘキサデカン、n-オクタデカンなどの脂肪族飽和炭化水素;1-ウンデセン、1-ドデセン、1-ヘキサデセン、1-オクタデセンなどの脂肪族不飽和炭化水素;トリオクチルホスフィン;等が挙げられる。
 本発明の分散液における本発明の半導体ナノ粒子の含有量(濃度)は、0.1~100mol/Lであるのが好ましく、0.1~1mol/Lであるのがより好ましい。
 本発明の分散液に含有される本発明の半導体ナノ粒子は1種であっても、2種以上であってもよい。
[フィルム]
 本発明のフィルムは、上述した本発明の半導体ナノ粒子を含有するフィルムである。
 このような本発明のフィルムは、優れた大気耐久性を示すため、例えば、ディスプレイ用途の波長変換フィルム、太陽電池の光電変換(または波長変換)フィルム、生体標識、薄膜トランジスタ等に適用することができる。特に、本発明のフィルムは、量子ドットの吸収端よりも短波の領域の光を吸収し、より長波の光を放出するダウンコンバージョン、または、ダウンシフト型の波長変換フィルムへの応用が好適である。
 また、本発明のフィルムを構成する母材としてのフィルム材料は特に限定されず、樹脂であってもよく、薄いガラス膜であってもよい。
 具体的には、アイオノマー、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリプロピレン、ポリエステル、ポリカーボネート、ポリスチレン、ポリアクリロニトリル、エチレン酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-メタクリル酸共重合体フィルム、ナイロン等をベースとする樹脂材料が挙げられる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
〔半導体ナノ粒子(Mg無し)の製造〕
 下記第1~4工程を行うことで、ZnがドープされたInP(コア)とコアの表面を覆うGaP(第1シェル)と第1シェルの表面を覆うZnS(第2シェル)とを有する半導体ナノ粒子(Mg無し)を製造した。
<第1工程>
 フラスコ中に16mLのオクタデセン、酢酸インジウム70mg(0.24mmol)、酢酸亜鉛24mg(0.12mmol)を加え、真空下で110℃加熱攪拌を行い、原料を十分溶解させると共に90分間脱気を行った。
<第2工程>
 次いで、窒素フロー下でフラスコを300℃まで昇温し、溶液の温度が安定したところで、約2mLのオクタデセンに溶解させた0.12mmolのトリストリメチルシリルホスフィンを加えた。
 その後、溶液を230℃にした状態で120分間加熱した。溶液が赤色に着色し粒子(コア)が形成している様子が確認された。
<第3工程>
 次いで、溶液を200℃に加熱した状態において、4mLのオクタデセンに溶解させた、塩化ガリウム15mg(0.09mmol)及びオレイン酸62.5μL(0.2mmol)を加え、1時間ほど加熱することで、ZnがドープされたInP(コア)とGaP(第1シェル)とを有する半導体ナノ粒子前駆体の分散液を得た。
<第4工程>
 その後、第1シェルの表面を覆うZnS(第2シェル)を形成した。
 具体的には、温度を150℃~240℃に保持し、II族原料(例えば、脂肪酸亜鉛(例えば、酢酸亜鉛、オレイン酸亜鉛、若しくは、ステアリン酸亜鉛)、又は、ジエチルジチオカルバミン酸亜鉛、等)及びVI族原料(例えば、オクタデセンに溶解させた硫黄(ODE-S)、トリオクチルホスフィンに溶解させた硫黄(TOP-S)、若しくは、直鎖状アルカンチオール(例えば、ブタンチオール、オクタンチオール、又は、ドデカンチオール)、等)を交互に加え、15分~4時間程度保持した(積層処理)。この積層処理を、添加原料の濃度を調整しながら5回程度繰り返すことでZnS(第2シェル)を形成した。
 このようにして、ZnがドープされたInP(コア)とコアの表面を覆うGaP(第1シェル)と第1シェルの表面を覆うZnS(第2シェル)とを有する半導体ナノ粒子(Mg無し)を得た。
〔半導体ナノ粒子(Mg有り)の製造〕
 上述した第4工程の後に、さらに、下記第5工程を行うことで、第2シェルの表面を覆うZnMgS又はMgS層を形成し、ZnがドープされたInP(コア)とコアの表面を覆うGaP(第1シェル)と第1シェルの表面を覆うZnS(第2シェル)と第2シェルの表面を覆うZnMgS層又はMgS層とを有する半導体ナノ粒子(Mg有り)を製造した。
<第5工程>
 第4工程の最終処理において、VI族原料添加から1時間経過後に、マグネシウム原料(例えば、脂肪酸マグネシウム(例えば、オレイン酸マグネシウムなど))を30分かけて添加し、さらにVI族原料(例えば、オクタデセンに溶解させた硫黄(ODE-S)、トリオクチルホスフィンに溶解させた硫黄(TOP-S)、若しくは、直鎖状アルカンチオール(例えば、ブタンチオール、オクタンチオール、又は、ドデカンチオール)、等)を添加して30分保持することでZnMgS層又はMgS層を形成した。
 このようにして、ZnがドープされたInP(コア)とコアの表面を覆うGaP(第1シェル)と第1シェルの表面を覆うZnS(第2シェル)と第2シェルの表面を覆うZnMgS層又はMgS層とを有する半導体ナノ粒子(Mg有り)を得た。
〔比較例1~3及び実施例1~11〕
 以下に、上述のとおり製造した半導体ナノ粒子(Mg無し、Mg有り)のうち、第4工程において、II族原料として脂肪酸亜鉛を使用し、且つ、VI族原料としてドデカンチオールを使用した態様(比較例1~3及び実施例1~11)について、より具体的に示す。
 なお、いずれもトルエン分散液(半導体ナノ粒子含有分散液)とした。具体的には、得られた分散液を室温まで冷却し、エタノールを加え、遠心分離を行い、粒子を沈殿させ、上澄みを廃棄した後、トルエン溶媒に分散させた。
<比較例1>
 比較例1は、上述のとおり製造した半導体ナノ粒子(Mg無し)であり、第4工程における積層処理回数は表1に示されるとおりである。
<比較例2及び実施例6>
 比較例2及び実施例6は、上述のとおり製造した半導体ナノ粒子(Mg無し)であり、第4工程における積層処理回数は表1に示されるとおりである。
<比較例3>
 比較例3は、上述のとおり製造した半導体ナノ粒子(Mg有り)であり、第4工程における積層処理回数は表1に示されるとおりである。ただし、第1工程において、酢酸インジウムの使用量を35mg(0.12mmol)とし、II族原料として酢酸亜鉛12mg(0.06mmol)を使用し、第2工程において、トリストリメチルシリルホスフィンの使用量を0.08mmolとし、第3工程において、塩化ガリウムの使用量を0.03mgとした。
<実施例1~5及び7~11>
 実施例1~5及び7~11は、上述のとおり製造した半導体ナノ粒子(Mg有り)であり、第4工程における積層処理回数は表1に示されるとおりである。
<Zn/In(仕込み)、Mg/In(仕込み)、Mg添加温度>
 下記表1に、各実施例及び比較例について、
 第1工程で使用した酢酸インジウムに対する第1~4工程で使用した脂肪酸亜鉛(合計)のモル比(Zn/In(仕込み))、
 第1工程で使用した酢酸インジウムに対する第5工程で使用したマグネシウム原料のモル比(Mg/In(仕込み))、及び、
 第5工程におけるマグネシウム原料を添加した温度[℃](Mg添加温度)を示す。
<Zn/In(EDX)>
 下記表1に、各実施例及び比較例について、上述した「Zn/In」を示す(Zn/In(EDX))。Zn/Inの求め方は上述のとおりである。
 なお、比較例1~3及び実施例1~11いずれについても、EDX分析により、亜鉛、硫黄及びインジウムが検出された。
<B/A(ラマン)>
 下記表1に、各実施例及び比較例について、上述した「B/A」を示す(B/A(ラマン))。B/Aの求め方は上述のとおりである。
 なお、ピークAは、比較例1~3及び実施例1~11いずれについても検出された。
 一方、ピークBは、半導体ナノ粒子(Mg有り)(比較例3、実施例1~5及び7~11)には検出されたが、半導体ナノ粒子(Mg無し)(比較例1~2及び実施例6)には検出されなかった。
<平均粒子径>
 下記表1に、各実施例及び比較例について、上述した「平均粒子径」を示す。平均粒子径の測定方法は上述のとおりである。
〔評価〕
 得られた半導体ナノ粒子について以下のとおり初期特性及び大気耐久性を評価した。
<初期特性>
 得られた半導体ナノ粒子含有分散液を用いて量子収率(%)を測定した。結果を表1に示す(初期特性)。
<大気耐久性>
 得られた半導体ナノ粒子含有分散液(500μm)に大気(20℃、相対湿度30%)を満たし、遮光状態で85℃24時間放置した(耐久試験)。その後、量子収率を測定した。そして、量子収率の維持率(=耐久試験後の量子収率÷耐久試験前の量子収率×100)(%)を算出した。結果を表1に示す(維持率)。維持率が高いほど大気耐久性に優れることを表す。
 また、下記基準に基づき大気耐久性を評価した。結果を表1に示す(大気耐久性)。大気耐久性の観点から、A~Cであることが好ましく、A又はBであることがより好ましく、Aであることがさらに好ましい。
・A:維持率が78%以上
・B:維持率が75%以上78%未満
・C:維持率が60%以上75%未満
・D:維持率が50%以上60%未満
・E:維持率が50%未満
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の2つの実施例3は同じものである。
 表1から分かるように、Zn/Inが7未満の比較例1~3と比較して、Zn/Inが7≦Zn/In≦15である実施例1~11は、優れた大気耐久性を示した。ここで、Zn/Inが2.7である比較例1と、Zn/Inが6である比較例2と、Zn/Inが7以上である実施例6との対比から分かるように、Zn/Inを7以上にすることで大気耐久性が大幅に向上した。すなわち、Zn/Inと大気耐久性との間に臨界性が見られた。
 実施例1~5の対比(Mg/In(仕込み)が0.5であり、且つ、Mg添加温度が240℃である態様同士の対比)から分かるように、Zn/Inが7≦Zn/In≦12である実施例1~4は、より優れた初期特性及び大気耐久性を示した。なかでも、Zn/Inが9≦Zn/In≦12である実施例2~4は、さらに優れた初期特性及び大気耐久性を示した。そのなかでも、Zn/Inが9≦Zn/In<12である実施例2及び3は、さらに優れた大気耐久性を示した。そのなかでも、Zn/Inが9<Zn/In<12である実施例3は、さらに優れた初期特性及び大気耐久性を示した。
 実施例3及び6~11の対比(Zn/In(仕込み)が11.75である態様同士の対比)から分かるように、ピークBが検出された実施例3及び7~11は、より優れた大気耐久性を示した。なかでも、B/Aが0<B/A<3である実施例3及び7~10は、さらに優れた初期特性及び大気耐久性を示した。なかでも、B/Aが0.5≦B/A≦1.5である実施例3及び8~10は、さらに優れた耐久性を示した。なかでも、B/Aが0.5≦B/A<1.5である実施例3及び8~9は、さらに優れた大気耐久性を示した。なかでも、B/Aが0.5<B/A<1.5である実施例3及び9は、さらに優れた大気耐久性を示した。そのなかでも、B/Aが0.5<B/A<1.2である実施例3は、さらに優れた初期特性及び大気耐久性を示した。
 実施例3及び7~8の対比(Zn/In(仕込み)が11.75であり、且つ、Mg/In(仕込み)が0.5である態様同士の対比)から、Mg添加温度が190℃以上である実施例3及び8は、より優れた大気耐久性を示した。なかでも、Mg添加温度が210℃以上である実施例3は、さらに優れた初期特性及び大気耐久性を示した。
 また、第4工程のII族原料として脂肪酸亜鉛以外のII族原料を使用した態様、及び、第4工程のVI族原料としてドデカンチオール以外のVI族原料を使用した態様についても、上述した比較例1~3及び実施例1~11と同様に「Zn/In」、「B/A」及び「平均粒子径」を測定したところ、表1と同様の結果となり、また、その初期特性及び維持率も表1と同様の傾向となった。
 また、上述した第3工程を行わなかった点以外は上述した比較例1~3及び実施例1~11と同様の手順に従って、シングルシェル形状の半導体ナノ粒子(ZnS(シェル)が、ZnがドープされたInP(コア)の表面を覆う半導体ナノ粒子)を製造した。そして、上述した比較例1~3及び実施例1~11と同様に「Zn/In」及び「B/A」を測定したところ、表1と同様の結果となり、また、その初期特性及び維持率も表1と同様の傾向となった。

Claims (24)

  1.  エネルギー分散型X線分析により、亜鉛、硫黄及びインジウムが検出され、
     エネルギー分散型X線分析から求められる、インジウムに対する亜鉛のモル比Zn/Inが、下記式(1a)を満たす、半導体ナノ粒子。
     7≦Zn/In≦15・・・(1a)
  2.  ラマン分光分析により、300~400cm-1にピークAが検出され、100~130cm-1にピークBが検出される、請求項1に記載の半導体ナノ粒子。
  3.  前記ピークAに対する前記ピークBの強度比B/Aが、下記式(2a)を満たす、請求項2に記載の半導体ナノ粒子。
     0<B/A<3・・・(2a)
  4.  前記ピーク強度比B/Aが、下記式(2b)を満たす、請求項3に記載の半導体ナノ粒子。
     0.5≦B/A≦1.5・・・(2b)
  5.  前記モル比Zn/Inが、下記式(1b)を満たす、請求項1~4のいずれか1項に記載の半導体ナノ粒子。
     7≦Zn/In≦12・・・(1b)
  6.  前記モル比Zn/Inが、下記式(1c)を満たす、請求項5に記載の半導体ナノ粒子。
     9≦Zn/In≦12・・・(1c)
  7.  平均粒子径が、6nm以下である、請求項1~6のいずれか1項に記載の半導体ナノ粒子。
  8.  平均粒子径が、3.5nm以上5.5nm以下である、請求項7に記載の半導体ナノ粒子。
  9.  III族元素及びV族元素を含有するコアと、前記コアの表面の少なくとも一部を覆うII族元素及びVI族元素を含有するシェルとを有する、請求項1~8のいずれか1項に記載の半導体ナノ粒子。
  10.  III族元素及びV族元素を含有するコアと、前記コアの表面の少なくとも一部を覆う第1シェルと、前記第1シェルの少なくとも一部を覆う第2シェルとを有する、請求項1~8のいずれか1項に記載の半導体ナノ粒子。
  11.  前記コアに含まれる前記III族元素がInであり、前記コアに含まれる前記V族元素がP、N及びAsのいずれかである、請求項9又は10に記載の半導体ナノ粒子。
  12.  前記コアに含まれる前記III族元素がInであり、前記コアに含まれる前記V族元素がPである、請求項11に記載の半導体ナノ粒子。
  13.  前記コアが、更にII族元素を含有する、請求項9~12のいずれか1項に記載の半導体ナノ粒子。
  14.  前記コアに含まれる前記II族元素がZnである、請求項13に記載の半導体ナノ粒子。
  15.  前記第1シェルが、II族元素又はIII族元素を含む、請求項10~14のいずれか1項に記載の半導体ナノ粒子。
     ただし、前記第1シェルがIII族元素を含む場合、前記第1シェルに含まれるIII族元素は、前記コアに含まれるIII族元素とは異なるIII族元素である。
  16.  前記第1シェルが、II族元素及びVI族元素を含有するII-VI族半導体、又は、III族元素及びV族元素を含有するIII-V族半導体である、請求項10~15のいずれか1項に記載の半導体ナノ粒子。
     ただし、前記第1シェルが、前記III-V族半導体である場合、前記III-V族半導体に含まれるIII族元素は、前記コアに含まれるIII族元素とは異なるIII族元素である。
  17.  前記第1シェルが、前記II-VI族半導体である場合、前記II族元素がZnであり、前記VI族元素がSe又はSであり、
     前記第1シェルが、前記III-V族半導体である場合、前記III族元素がGaであり、前記V族元素がPである、請求項16に記載の半導体ナノ粒子。
  18.  前記第1シェルが、前記III-V族半導体であり、前記III族元素がGaであり、前記V族元素がPである、請求項16に記載の半導体ナノ粒子。
  19.  前記第2シェルが、II族元素及びVI族元素を含有するII-VI族半導体、又は、III族元素及びV族元素を含有するIII-V族半導体である、請求項10~18のいずれか1項に記載の半導体ナノ粒子。
  20.  前記第2シェルが、前記II-VI族半導体であり、前記II族元素がZnであり、前記VI族元素がSである、請求項19に記載の半導体ナノ粒子。
  21.  前記コアと、前記第1シェルと、前記第2シェルとが、いずれも閃亜鉛鉱構造を有する結晶系である、請求項10~20のいずれか1項に記載の半導体ナノ粒子。
  22.  前記コア、前記第1シェル及び前記第2シェルのうち、前記コアのバンドギャップが最も小さく、かつ、
     前記コア及び前記第1シェルがタイプ1型のバンド構造を示す、請求項10~21のいずれか1項に記載の半導体ナノ粒子。
  23.  請求項1~22のいずれか1項に記載の半導体ナノ粒子を含有する半導体ナノ粒子含有分散液。
  24.  請求項1~22のいずれか1項に記載の半導体ナノ粒子を含有するフィルム。
PCT/JP2018/014127 2017-04-25 2018-04-02 半導体ナノ粒子、半導体ナノ粒子含有分散液、及び、フィルム WO2018198684A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197031196A KR102332865B1 (ko) 2017-04-25 2018-04-02 반도체 나노 입자, 반도체 나노 입자 함유 분산액, 및 필름
JP2019515187A JP6979062B2 (ja) 2017-04-25 2018-04-02 半導体ナノ粒子、半導体ナノ粒子含有分散液、及び、フィルム
US16/660,236 US11133382B2 (en) 2017-04-25 2019-10-22 Semiconductor nanoparticle, semiconductor nanoparticle-containing dispersion liquid, and film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017085971 2017-04-25
JP2017-085971 2017-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/660,236 Continuation US11133382B2 (en) 2017-04-25 2019-10-22 Semiconductor nanoparticle, semiconductor nanoparticle-containing dispersion liquid, and film

Publications (1)

Publication Number Publication Date
WO2018198684A1 true WO2018198684A1 (ja) 2018-11-01

Family

ID=63919744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014127 WO2018198684A1 (ja) 2017-04-25 2018-04-02 半導体ナノ粒子、半導体ナノ粒子含有分散液、及び、フィルム

Country Status (4)

Country Link
US (1) US11133382B2 (ja)
JP (1) JP6979062B2 (ja)
KR (1) KR102332865B1 (ja)
WO (1) WO2018198684A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194562A (ja) * 2010-03-22 2011-10-06 Samsung Electronics Co Ltd 量子ドットの製造方法
JP2012144587A (ja) * 2011-01-07 2012-08-02 Murata Mfg Co Ltd 化合物半導体粒子の製造方法
JP2015147726A (ja) * 2014-02-05 2015-08-20 三星電子株式会社Samsung Electronics Co.,Ltd. ナノ結晶粒子及びその製造方法並びに素子
JP2016172829A (ja) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 被覆半導体ナノ粒子およびその製造方法。
WO2016185933A1 (ja) * 2015-05-15 2016-11-24 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の製造方法およびフィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433507B2 (ja) 2014-11-20 2018-12-05 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の製造方法およびフィルム
US10590340B2 (en) * 2018-01-11 2020-03-17 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194562A (ja) * 2010-03-22 2011-10-06 Samsung Electronics Co Ltd 量子ドットの製造方法
JP2012144587A (ja) * 2011-01-07 2012-08-02 Murata Mfg Co Ltd 化合物半導体粒子の製造方法
JP2015147726A (ja) * 2014-02-05 2015-08-20 三星電子株式会社Samsung Electronics Co.,Ltd. ナノ結晶粒子及びその製造方法並びに素子
JP2016172829A (ja) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 被覆半導体ナノ粒子およびその製造方法。
WO2016185933A1 (ja) * 2015-05-15 2016-11-24 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の製造方法およびフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, SUNGWOO ET AL.: "Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes", J. AM. CHEM. SOC., vol. 134, no. 8, 3 February 2012 (2012-02-03), pages 3804 - 3809, XP055332559, ISSN: 0002-7863 *

Also Published As

Publication number Publication date
JPWO2018198684A1 (ja) 2020-02-20
JP6979062B2 (ja) 2021-12-08
KR20190132442A (ko) 2019-11-27
US11133382B2 (en) 2021-09-28
KR102332865B1 (ko) 2021-11-29
US20200052068A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
EP3448957B1 (en) Stable inp quantum dots with thick shell coating and method of producing the same
US11136498B2 (en) Core shell particle, method of producing core shell particle, and film
JP6433507B2 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
JP6473272B2 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
WO2017082116A1 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
US11136497B2 (en) Multicore-shell particle, nanoparticle dispersion liquid, and film
US10266764B2 (en) Core shell particle, method of producing core shell particle, and film
US10519369B2 (en) Core shell particles, method for producing core shell particles, and film
US10465111B2 (en) Core shell particle, method of producing core shell particle, and film
JP6698858B2 (ja) 半導体ナノ粒子含有分散液、及び、フィルム
WO2018198684A1 (ja) 半導体ナノ粒子、半導体ナノ粒子含有分散液、及び、フィルム
Győri et al. Synthesis and characterization of composition-gradient based Cd x Zn 1− x Se y S 1− y heterostructured quantum dots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515187

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197031196

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18789814

Country of ref document: EP

Kind code of ref document: A1