WO2018197184A1 - Modifying the power during wobbling - Google Patents
Modifying the power during wobbling Download PDFInfo
- Publication number
- WO2018197184A1 WO2018197184A1 PCT/EP2018/058884 EP2018058884W WO2018197184A1 WO 2018197184 A1 WO2018197184 A1 WO 2018197184A1 EP 2018058884 W EP2018058884 W EP 2018058884W WO 2018197184 A1 WO2018197184 A1 WO 2018197184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy beam
- power
- max
- substrate
- laser
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/144—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
Definitions
- the invention relates to an adaptation of the power during the wobble of an order strategy during welding.
- Welding processes are carried out on metallic components in order to apply missing material or to achieve three-dimensional structures.
- Laser welding processes in particular powder application processes, in particular laser powder deposition welding processes, are currently frequently used. In these methods, but also in other methods in which powder or the material is supplied in any other way, a Wobbeistrategie is applied, in which the energy beam and substrate oscillate relative to each other.
- FIGS. 1, 2 show the schematic procedure of the method.
- a laser beam build-up welding with powdered filler material using a pendulum motion in the form of a sinusoidal or zigzag oscillation is performed.
- an adjustment of the laser processing Leis ⁇ P to the reciprocal points 16 16 ⁇ ⁇ , in particular with a reduction of the laser power P in particular 90% of P m ax is performed.
- Nickel-base superalloys avoid epitaxial growth of columnar grains over several layers, so that the risk of formation of critical hot cracks is increased. is reduced during the solidification and / or the subsequent heat treatment.
- FIG. 1 shows the relative method of operation 13 (FIG. 2) of the energy beam, in particular of a laser beam
- FIGS. 1 and 2 show the relative method of operation 13 (FIG. 2) of the energy beam, in particular of a laser beam
- FIG. 2 shows the arrangement of material flow and energy beam 7 (FIG. 2) with respect to a substrate 4.
- the energy beam in particular the laser beam, is allowed to oscillate.
- the course of the oscillation ie the deflection or deflection and the simultaneous change of the power P is plotted against the time t in milliseconds.
- the oscillation 13 has, as is usual with a sine curve, at least one sweeping point 16 16 ⁇ ⁇ , ....
- the sine curve is only one example of a wave-shaped movement, such as a zigzag movement, which has sweeping points 16 16 ⁇ ⁇ .
- the energy beam is laser beam 7 such a sweeping point 16 16 ⁇ ⁇ (max / min point)
- the laser power was in advance in particular continuously reduced and there ⁇ by up again, that is in the range of the sweeping point 16 16 ⁇ ⁇ is the laser power L shut down in advance to a lower laser power and then again in particular continuously ramped up to the original previous value P ma x for a time t max .
- t m i n and t max give half the oscillation period of the sinusoid and it is preferably t max ⁇ 0.3 t m i n ⁇
- P max is preferably greatest when the sinusoidal curve or oscillation passes through the zero line 17.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
During the wobbling process, the laser power (P) is lowered for a short period of time in the region of the cusps (16', 16",...), thus allowing for better welding results.
Description
Veränderung der Leistung beim Wobbein Change in power at the wobble
Die Erfindung betrifft eine Adaptierung der Leistung beim Wobbein einer Auftragsstrategie beim Schweißen. The invention relates to an adaptation of the power during the wobble of an order strategy during welding.
Schweißverfahren werden bei metallischen Bauteilen durchgeführt, um fehlendes Material aufzutragen oder um dreidimensionale Strukturen zu erzielen. Dabei werden zurzeit oft Laserschweißverfahren, insbesondere Pulverauftragsverfahren, insbesondere Laser-Pulver-Auftragschweißverfahren, verwendet. Bei diesen Verfahren, aber auch bei anderen Verfahren, bei denen Pulver oder das Material in sonstiger Art und Weise zugeführt wird, wird eine Wobbeistrategie angewendet, bei der der Energiestrahl und Substrat relativ zueinander oszillieren . Welding processes are carried out on metallic components in order to apply missing material or to achieve three-dimensional structures. Laser welding processes, in particular powder application processes, in particular laser powder deposition welding processes, are currently frequently used. In these methods, but also in other methods in which powder or the material is supplied in any other way, a Wobbeistrategie is applied, in which the energy beam and substrate oscillate relative to each other.
Dies kann dadurch geschehen, dass der Laserstrahl und/oder Materialstrahl gegenüber dem Substrat oszillieren gelassen wird oder das Substrat durch eine Vibrationsanlage oszilliert oder beides davon. Weitere Möglichkeiten zur Erzeugung der Wobbeistrategie sind ebenfalls möglich. This can be done by causing the laser beam and / or material beam to oscillate relative to the substrate or by oscillating the substrate through a vibrating system or both. Further possibilities for generating the wobble strategy are also possible.
Durch eine Wöbbel-Strategie beim Laserstrahl-Auftragschweißen können eine Keimbildung und ein Kornwachstum in der breiigen Zone gezielt erzeugt werden, so dass das Wachstum einer ko- lumnaren Erstarrungsfront unterdrückt bzw. vollständig ver¬ mieden wird. Es ist daher Aufgabe der Erfindung oben genanntes Verfahren weiterhin zu verbessern. By a Wöbbel strategy when laser cladding a nucleation and grain growth in the mushy zone can be produced selectively so that the growth of a co- lumnaren solidification front is suppressed or completely avoided ¬ ver. It is therefore an object of the invention to further improve the above-mentioned method.
Die Aufgabe wird gelöst durch ein Verfahren gemäß Anspruch 1. In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön¬ nen, um weitere Vorteile zu erzielen.
Erste experimentelle Ergebnisse mit oszillierender, insbeson¬ dere sinusförmiger oder zickzackförmiger Laserstrahlung zeigen vielversprechende Ergebnisse mit rissfreier Gefügestruk¬ tur von einer Nickelbasis-Superlegierung . The object is achieved by a method according to claim 1. In the subclaims further advantageous measures are listed, which are combined with each other Kgs ¬ nen to achieve further advantages. Initial experimental results with oscillating, insbeson ¬ particular sinusoidal or zigzag-shaped laser radiation show promising results with crack-free structure Struk ¬ ture of a nickel-base superalloy.
Dabei kann durch eine Anpassung der Laserleistung an den Umkehrpunkten, insbesondere Verkleinerung der Laserleistung aufIt can by adjusting the laser power at the reversal points, in particular reduction of the laser power on
90 -6 θΠ Praax / eine homogene Einschmelztiefe über die Breite der auftraggeschweißten Spur in den Grundwerkstoff erzielt werden. Normalerweise wird bei Verwendung nicht oszillierender Laserstrahlung beim Laserstrahl-Auftragschweißen aufgrund des Wärmestaus eine maximale Aufmischung in der Mitte der Spur generiert. Dies kann bei schwer schweißbaren Nickel- basis-Superlegierungen zur kolumnaren Erstarrung von Körnern über mehrere Lagen hinweg führen und damit die Initiierung von kritischen Heißrissen fördern. 90 -6 θΠ Praax / a homogeneous melting depth over the width of the order-welded track in the base material can be achieved. Normally, when using non-oscillating laser radiation in laser cladding welding, maximum buildup is generated in the center of the track due to heat build-up. This can lead to columnar solidification of grains over multiple layers in heavy-weldable nickel-base superalloys, thereby promoting the initiation of critical hot cracks.
Dadurch soll die Heißrissneigung von schwer schweißbaren Nickelbasis-Superlegierungen beim Laserstrahl-Auftragschwei- ßen vermieden werden. This is intended to avoid the hot cracking tendency of hard-to-weld nickel-base superalloys in laser beam build-up welding.
Es zeigen die Figuren 1, 2 die schematische Vorgehensweise des Verfahrens. Insbesondere ein Laserstrahl-Auftragschweißen mit pulverför- migen Zusatzwerkstoff unter Verwendung einer Pendelbewegung in Form einer sinusförmigen oder zickzackförmigen Oszillation wird durchgeführt. Dabei wird eine Anpassung der Laserleis¬ tung P an den Kehrpunkten 16 16 λ λ, insbesondere mit einer Verkleinerung der Laserleistung P auf insbesondere 90% von Pmax durchgeführt. FIGS. 1, 2 show the schematic procedure of the method. In particular, a laser beam build-up welding with powdered filler material using a pendulum motion in the form of a sinusoidal or zigzag oscillation is performed. In this case, an adjustment of the laser processing Leis ¬ P to the reciprocal points 16 16 λ λ, in particular with a reduction of the laser power P in particular 90% of P m ax is performed.
Dadurch wird eine kleine (< 150μη) , homogene Einschmelztiefe über die Breite der auftraggeschweißten Spur in den Grund- werkstoff erzielt. Dadurch kann bei schwer schweißbaren As a result, a small (<150μη), homogeneous melting depth is achieved across the width of the job-welded track in the base material. This can be difficult to weld
Nickelbasis-Superlegierungen ein epitaktisches Wachstum kolumnarer Körnern über mehrere Lagen hinweg vermieden werden, so dass die Gefahr der Bildung kritischer Heißrisse wäh-
rend der Erstarrung und/oder der anschließenden Wärmebehandlung verkleinert wird. Nickel-base superalloys avoid epitaxial growth of columnar grains over several layers, so that the risk of formation of critical hot cracks is increased. is reduced during the solidification and / or the subsequent heat treatment.
Die Vorteile sind: The advantages are:
· Vermeidung der Heißrissbildung beim Auftragschweißen · Prevention of hot cracking during buildup welding
schwer schweißbarer Nickelbasis-Superlegierungen mit großem Anteil an intermetallischer Phase. hard-to-weld nickel base superalloys with a high proportion of intermetallic phase.
• Verbesserte Materialeigenschaften des Bauteils im Vergleich zu konventionell geschweißten Bauteilen. • Improved material properties of the component compared to conventionally welded components.
· Einsparung von Material, Verkleinerung der Ausschusszahlen bei Service-Bauteilen. · Material savings, reduction of scrap rates for service components.
Die Figur 1 zeigt die relative Verfahrweise 13 (Fig. 2) des Energiestrahls, insbesondere eines Laserstrahls, und dieFIG. 1 shows the relative method of operation 13 (FIG. 2) of the energy beam, in particular of a laser beam, and FIGS
Figur 2 die Anordnung von Materialstrom und Energiestrahl 7 (Fig. 2) gegenüber einem Substrat 4. Vorzugsweise wird nur der Energiestrahl, insbesondere der Laserstrahl, oszillieren gelassen . 2 shows the arrangement of material flow and energy beam 7 (FIG. 2) with respect to a substrate 4. Preferably, only the energy beam, in particular the laser beam, is allowed to oscillate.
In Figur 1 ist der Verlauf der Oszillation, also die Auslenkung oder Deflection und die gleichzeitige Veränderung der Leistung P gegenüber der Zeit t in Millisekunden aufgetragen. Die Oszillation 13 hat wie bei einer Sinuskurve üblich zumindest einen Kehrpunkt 16 16 λ λ, .... Die Sinuskurve ist nur ein Beispiel für eine wellenförmige Bewegung, wie z.B. eine Zick- Zack-Bewegung, die Kehrpunkte 16 16 λ λ aufweist. Erreicht der Energiestrahl Laserstrahl 7 einen solchen Kehrpunkt 16 16 λ λ (Max/Min-Punkt) , so wurde die Laserleistung bereits vorab insbesondere kontinuierlich reduziert und da¬ nach wieder hochgefahren, das heißt im Bereich des Kehrpunkts 16 16 λ λ wurde die Laserleistung L vorab heruntergefahren auf eine niedrigere Laserleistung und danach wieder insbesondere kontinuierlich hochgefahren auf den ursprünglichen vorherigen Wert Pmax für eine Zeit tmax .
tmin und tmax ergeben die Hälfte der Schwingungsdauer der Sinuskurve und es gilt vorzugsweise tmax ^ 0,3 tmin · In Figure 1, the course of the oscillation, ie the deflection or deflection and the simultaneous change of the power P is plotted against the time t in milliseconds. The oscillation 13 has, as is usual with a sine curve, at least one sweeping point 16 16 λ λ , .... The sine curve is only one example of a wave-shaped movement, such as a zigzag movement, which has sweeping points 16 16 λ λ . Reaches the energy beam is laser beam 7 such a sweeping point 16 16 λ λ (max / min point), the laser power was in advance in particular continuously reduced and there ¬ by up again, that is in the range of the sweeping point 16 16 λ λ is the laser power L shut down in advance to a lower laser power and then again in particular continuously ramped up to the original previous value P ma x for a time t max . t m i n and t max give half the oscillation period of the sinusoid and it is preferably t max ^ 0.3 t m i n ·
Nur während einer Zeitspanne tmax wird nahezu Pmax verwendet. Ansonsten ist während tmin die Leistung P reduziert. Only during a time period t max is almost P max used. Otherwise, the power P is reduced during t m i n .
Im besten Fall wird in der Hälfte zweier direkt aufeinander folgenden Kehrpunkten 16 16 λ λ, also im Nullpunkt 17 die maximale Leistung P = Pmax angewendet. In the best case 16 16 λ λ , ie at zero point 17, the maximum power P = P max is applied in the half of two directly successive Kehrpunkte.
Pmax ist vorzugsweise am größten, wenn die Sinuskurve bzw. die Oszillierung die Nulllinie 17 durchschreitet. P max is preferably greatest when the sinusoidal curve or oscillation passes through the zero line 17.
Vorzugsweise oszilliert nur der Energiestrahl, insbesondere der Laserstrahl.
Preferably, only the energy beam, in particular the laser beam, oscillates.
Claims
1. Verfahren beim Wobbein eines Materialauftragsverfahren, insbesondere eines Auftragsschweißens, 1. A method for wobbling a material application method, in particular a hardfacing,
ganz insbesondere eines Pulverauftragschweißens, in particular a powder build-up welding,
bei dem ein Energiestrahl, where an energy beam,
insbesondere ein Laserstrahl, in particular a laser beam,
und/oder Materialstrom gegenüber einem Substrat (4) oszillierend (13) verfahren werden, and / or material flow are moved in an oscillating manner (13) with respect to a substrate (4),
wobei die Oszillationsbewegung zumindest einen Kehrpunkt (16λ, 16λ λ) aufweist, und wherein the oscillatory motion has at least one sweeping point (16 λ , 16 λ λ ), and
wobei die Leistung (P) des Energiestrahls (7) sich zwischen den Kehrpunkten (16 16 λ λ) verändert, wherein the power (P) of the energy beam (7) varies between the points of refraction (16 16 λ λ ),
insbesondere oszilliert. in particular oscillates.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
bei dem die Leistung (P) des Energiestrahls (7) vor Errei- chen des Kehrpunkts (16 16 λ λ) erniedrigt wird, in which the power (P) of the energy beam (7) is lowered before reaching the keying point (16 16 λ λ ),
insbesondere kontinuierlich erniedrigt wird und is lowered in particular continuously and
nach Überschreiten des Kehrpunkts (16 16 λ λ) diese Leis¬ tung (P) des Energiestrahls (7) wieder, after exceeding the Kehrpunkts (16 16 λ λ ) this Leis ¬ tion (P) of the energy beam (7) again,
insbesondere kontinuierlich, especially continuously,
erhöht wird. is increased.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
bei dem ein Laserauftragschweißen, in which a laser deposition welding,
insbesondere ein Laserpulverauftragschweißen angewendet wird, in particular, a laser powder build-up welding is used,
und der Materialstrom Pulver aufweist.
and the material stream comprises powder.
4. Verfahren nach einem oder mehreren der Ansprüche 1, 2 oder 3, 4. The method according to one or more of claims 1, 2 or 3,
bei dem es eine Maximalleistung Pmax gibt, where there is a maximum power P max ,
und die Leistung (P) immer wieder bis auf Pmax erhöht wird. and the power (P) is repeatedly raised to P max .
5. Verfahren nach Anspruch 4, 5. The method according to claim 4,
bei dem die Leistung (P) maximal um mindestens 10%, insbesondere maximal um 50% der Maximalleistung (Pmax ) er- niedrigt wird. in which the power (P) is reduced by a maximum of at least 10%, in particular by a maximum of 50% of the maximum power (P ma x).
6. Verfahren nach einem Anspruch 5, 6. The method according to claim 5,
bei dem die Erniedrigung der Leistung (P) höchstens 30%, insbesondere höchstens 20% der maximalen Leistung (Pmax ) entspricht . in which the reduction of the power (P) corresponds to at most 30%, in particular at most 20% of the maximum power (P ma x).
7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, 7. The method according to one or more of the preceding claims,
bei dem die Oszillation von Energiestrahl und/oder Materialstrom sowie Substrat (4) sinusförmig ist. in which the oscillation of energy beam and / or material flow and substrate (4) is sinusoidal.
8. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, 8. The method according to one or more of the preceding claims,
bei dem die Oszillation von Energiestrahl und/oder Materialstrom sowie Substrat (4) zickzackförmig ist. in which the oscillation of energy beam and / or material flow and substrate (4) is zigzag.
9. Verfahren einem oder mehreren der vorhergehenden Ansprüche, 9. Method according to one or more of the preceding claims,
bei dem tmin und tmax eine halbe Schwingungsdauer der Oszil¬ lation darstellen und es gilt tmax ^ 0,3 tmin , represent wherein m i t n and t max half a period of oscillation of the Oszil ¬ lation and it holds that t max ^ 0.3 t m i n,
wobei während tmax die maximale Leistung verwendet wird.
wherein during t max the maximum power is used.
10. Verfahren einem oder mehreren der vorhergehenden Ansprüche, 10. Method according to one or more of the preceding claims,
bei dem nur der Energiestrahl gegenüber dem Substrat (4) oszilliert . in which only the energy beam oscillates relative to the substrate (4).
11. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 9, 11. The method according to any one of the preceding claims 1 to 9,
bei dem Energiestrahl und Materialstrom gegenüber dem Substrat (4) oszillieren.
at the energy beam and material flow relative to the substrate (4) oscillate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017206843.4 | 2017-04-24 | ||
DE102017206843.4A DE102017206843A1 (en) | 2017-04-24 | 2017-04-24 | Change in performance when wobbling |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018197184A1 true WO2018197184A1 (en) | 2018-11-01 |
Family
ID=62046866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/058884 WO2018197184A1 (en) | 2017-04-24 | 2018-04-06 | Modifying the power during wobbling |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102017206843A1 (en) |
WO (1) | WO2018197184A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201900004681A1 (en) * | 2019-03-28 | 2020-09-28 | Prima Ind Spa | PROCEDURE AND ADDITIVE MANUFACTURING SYSTEM |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997004916A1 (en) * | 1995-08-01 | 1997-02-13 | Progressive Tool & Industries Company | Laser welding apparatus and method for high temperature gradient cooling alloys |
DE102013225490A1 (en) * | 2013-12-10 | 2015-06-11 | Siemens Aktiengesellschaft | Oscillating welding process |
US20150315710A1 (en) * | 2014-04-30 | 2015-11-05 | Wayne Marion Penn | Cladding apparatus and method |
US9272365B2 (en) * | 2012-09-12 | 2016-03-01 | Siemens Energy, Inc. | Superalloy laser cladding with surface topology energy transfer compensation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0698506B2 (en) * | 1986-12-08 | 1994-12-07 | トヨタ自動車株式会社 | Method for forming dispersed alloy layer on metal substrate |
DE3905684A1 (en) * | 1989-02-24 | 1990-08-30 | Ulrich Prof Dr Ing Draugelates | Build-up welding process |
US6856634B2 (en) * | 2001-02-19 | 2005-02-15 | Toyota Jidoshi Kabushiki Kaisha | Laser processing device and laser processing method |
DE102007063456A1 (en) * | 2007-12-22 | 2008-11-06 | Rofin-Sinar Laser Gmbh | Method for welding metallic components comprises arranging the components over each other in an overlapping zone and moving the laser beam along a welding path using an energy input per longitudinal unit which varies in the overlapping zone |
US9347318B2 (en) * | 2008-05-29 | 2016-05-24 | Siemens Aktiengesellschaft | Method and device for welding workpieces made of high-temperature resistant super alloys |
DE102016107581B3 (en) * | 2016-02-16 | 2017-04-13 | Scansonic Mi Gmbh | Welding process for joining workpieces to a lap joint |
-
2017
- 2017-04-24 DE DE102017206843.4A patent/DE102017206843A1/en not_active Withdrawn
-
2018
- 2018-04-06 WO PCT/EP2018/058884 patent/WO2018197184A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997004916A1 (en) * | 1995-08-01 | 1997-02-13 | Progressive Tool & Industries Company | Laser welding apparatus and method for high temperature gradient cooling alloys |
US9272365B2 (en) * | 2012-09-12 | 2016-03-01 | Siemens Energy, Inc. | Superalloy laser cladding with surface topology energy transfer compensation |
DE102013225490A1 (en) * | 2013-12-10 | 2015-06-11 | Siemens Aktiengesellschaft | Oscillating welding process |
US20150315710A1 (en) * | 2014-04-30 | 2015-11-05 | Wayne Marion Penn | Cladding apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
DE102017206843A1 (en) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3942051B4 (en) | Method of manufacturing engine blades by build-up welding | |
CH697660A2 (en) | Welding repair method, in particular for a turbine blade tip. | |
WO2013167240A1 (en) | Method and device for laser-joining at least two workpieces using a vapor capillary and oscillation of the laser beam | |
EP2493650A2 (en) | Method and device for producing a component of a turbomachine | |
DE102014105941A1 (en) | Laser beam welding process for the reduction of thermo-mechanical stresses | |
EP3099446A1 (en) | Laser build-up welding of high heat resistant super alloys by means of oscillating beam guidance | |
WO2015086194A1 (en) | Oscillating welding method | |
DE102012217766B4 (en) | Method and apparatus for vapor pressure cutting of a metallic workpiece | |
DE212013000142U1 (en) | System for edge forming and plating operations | |
WO2014154408A1 (en) | Process for producing coarse-grain structures, use of the process and coarse-grain structure | |
EP1497071B1 (en) | Laser material machining process and device using hybrid processes | |
EP4114597A1 (en) | Method for additively manufacturing a three-dimensional component, and repairing system | |
DE102014208435A1 (en) | Arrangement and method for layering a job layer | |
WO2018197184A1 (en) | Modifying the power during wobbling | |
DE102009047995B3 (en) | Method for burr-free cutting of workpieces | |
WO2020160928A1 (en) | Method for producing a functional structure and component | |
EP3334558B1 (en) | Method for laser build up welding | |
DE4219549A1 (en) | Welding components - using vibration exciters to produce periodically varying gap at weld spot | |
DE102019219133A1 (en) | Additive manufacturing process | |
EP1348781B1 (en) | Methode de croissance épitaxiale par irradiation avec un faisceau d'énergie | |
WO2015106833A1 (en) | Oscillating welding method | |
DE102017201872A1 (en) | Method for the thermal joining of a component assembly and component assembly | |
WO2019211441A1 (en) | Method and device for welding a substrate surface region by laser metal deposition and component welded by laser metal deposition | |
DE102017201261A1 (en) | Magnetic impact surfacer and surfacing method | |
DE102017120938A1 (en) | Process for coating a substrate and apparatus for carrying out the process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18719764 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18719764 Country of ref document: EP Kind code of ref document: A1 |