WO2018196042A1 - 惯性测量装置及无人飞行器 - Google Patents

惯性测量装置及无人飞行器 Download PDF

Info

Publication number
WO2018196042A1
WO2018196042A1 PCT/CN2017/084484 CN2017084484W WO2018196042A1 WO 2018196042 A1 WO2018196042 A1 WO 2018196042A1 CN 2017084484 W CN2017084484 W CN 2017084484W WO 2018196042 A1 WO2018196042 A1 WO 2018196042A1
Authority
WO
WIPO (PCT)
Prior art keywords
increasing block
measurement device
passage
weight
inertial measurement
Prior art date
Application number
PCT/CN2017/084484
Other languages
English (en)
French (fr)
Inventor
尹亮亮
高廉洁
李少斌
张羽
Original Assignee
上海拓攻机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海拓攻机器人有限公司 filed Critical 上海拓攻机器人有限公司
Priority to EP17902587.9A priority Critical patent/EP3425336B1/en
Priority to US16/088,462 priority patent/US11326885B2/en
Publication of WO2018196042A1 publication Critical patent/WO2018196042A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/265Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network constructional aspects of navigation devices, e.g. housings, mountings, displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present disclosure relates to the field of drone technology, for example, to an inertial measurement device and an unmanned aerial vehicle.
  • the inertial measurement device is the core module in the UAV control system. By analyzing the data measured by the inertial sensor and the air pressure sensor, the attitude information and position information of the UAV can be obtained, thereby achieving complete self-navigation.
  • the main mechanical environment faced by inertial measurement devices is the drastic random vibration of the drone.
  • the vibration not only makes the output signal noise of the inertial measurement device large, resulting in data distortion and reduced measurement accuracy. And it is easy to cause damage to electronic components.
  • An inertial measurement device and an unmanned aerial vehicle can avoid the problems of low integration of the inertial measurement device in the related art, poor damping effect, and measurement susceptible.
  • An inertial measurement device includes a housing, a sensing assembly mounted in the housing, and a shock absorbing assembly, wherein the sensing assembly includes an integrated circuit board, an inertial sensor coupled to the integrated circuit board, and an air pressure connected to the integrated circuit board sensor;
  • the shock absorbing assembly includes a first cushion, a first weight gain block, a second weight gain block, and a second shock absorbing pad connected in sequence, wherein between the first weight gain block and the second weight gain block A receiving cavity in which the integrated circuit board is placed is formed, and the first weight increasing block is provided with a receiving cavity for accommodating the inertial sensor and a pneumatic chamber that accommodates the air pressure sensor and communicates with the outside.
  • the top surface of the first weight increasing block is provided with an air flow passage communicating with the outside, and the first weight increasing block is provided with a static pressure hole connecting the air flow passage and the air pressure chamber.
  • the air flow channel includes a T-shaped channel, a peripheral channel, and a symmetric connection to the T-shaped channel
  • the inner peripheral passages are each connected with a peripheral passage
  • the peripheral passage is provided with an air inlet
  • the two peripheral passages are connected to each other
  • the two static pressure holes are symmetrically connected to the two of the T-shaped passages. end.
  • the T-shaped channel includes a lateral channel and a vertical channel connected to a midpoint of the lateral channel, and the two static pressure holes are symmetrically connected at two ends of the lateral channel, and the inner channel is symmetric Connected to the vertical channel.
  • the inertial measurement device includes at least one of the following structures:
  • a bottom surface of the first cushion is fixed to a top surface of the first weight increasing block by an adhesive plate, and the air flow passage is formed between the adhesive plate and the first weight increasing block;
  • the top surface and the bottom surface of the second cushion are respectively fixed to the bottom surface of the second weight increasing block and the outer casing by an adhesive plate.
  • the outer casing comprises an annular casing and a first metal piece and a second metal piece respectively located on a top surface and a bottom surface of the annular casing, wherein the sensing component and the shock absorbing component are disposed in the annular casing and are A metal piece and a second metal piece are pressed.
  • the opposite edges of the first metal piece extend toward the annular housing with at least one first insert, and the opposite edges of the second metal piece extend at least one direction toward the annular housing.
  • Two inserts, each of the at least one first insert and the at least one second insert being inserted into the annular housing and abutting against an inner wall of the annular housing.
  • the first weight increasing block comprises a sealed cover, and a surface of the air pressure chamber facing the second weight increasing block is connected with a sealing cover, the sealing cover covers the air pressure chamber and the capacity Cavity isolation.
  • the accommodating cavity is filled with thermal grease.
  • An unmanned aerial vehicle comprising the inertial measurement device of any of the above.
  • the above structural arrangement improves the integration degree of the entire inertial measurement device, and can reduce the measurement interference of the inertial sensor and the air pressure sensor by external factors, and improves the measurement accuracy of the inertial measurement device.
  • FIG. 1 is a schematic exploded view of an inertial measurement device according to an embodiment
  • FIG. 2 is a schematic view showing the overall structure of an inertial measurement device according to an embodiment
  • FIG. 3 is a schematic structural view of a first integrated circuit board in an embodiment
  • FIG. 4 is a schematic view showing the cooperation structure of the first weight increasing block and the second weight increasing block and the sensing component in an embodiment
  • Figure 5 is a schematic structural view 1 of the first weight increasing block in an embodiment
  • FIG. 6 is a schematic structural view 2 of a first weight increasing block in an embodiment
  • Figure 7 is a schematic view showing the explosion structure of the first weight increasing block in an embodiment
  • Figure 8 is a schematic view showing the structure of a sealed cover on a pneumatic chamber in an embodiment.
  • the first weight gain block 3.1, accommodation cavity; 3.2, pressure chamber; 3.3, static pressure hole; 3.4, peripheral channel; 3.5, inner channel; 3.6, T-shaped channel; 3.7, air inlet; 3.8, sealed Ware cover; 3.9, first connecting hole; 3.61, lateral channel; 3.62, vertical channel; 3.81, blind hole;
  • the first integrated circuit board 10.1, hypotenuse
  • the present embodiment provides an inertial measurement device, as shown in FIGS. 1-8, which includes a housing, a sensing assembly and a shock absorbing assembly mounted within the housing.
  • the outer casing includes an annular casing 5, and an upper metal piece 1 and a lower metal piece 11 on the upper and lower sides of the annular casing 5, and the above-mentioned sensing assembly and shock absorbing assembly are placed in the annular casing 5. It is supported by the lower metal piece 11 inside.
  • the opposite edges of the upper metal piece 1 respectively extend with a snap ring
  • the opposite edges of the lower metal piece 11 respectively extend with a snap ring
  • the snap ring on the upper metal piece 1 can be referred to as a first snap ring 1.1
  • the snap ring on the lower metal piece 11 can be referred to as a second snap ring 11.
  • a buckle 5.1 is disposed on the annular housing 5 at a position corresponding to the snap ring. The annular casing 5 is fastened to the upper metal piece 1 and the lower metal piece 11 by the mutual engagement of the buckle 5.1 and the snap ring.
  • two of the two edges of the upper metal piece 1 may be provided with two snap rings, and two of the two edges of the lower metal piece 11 may be provided with two snap rings.
  • the side of the annular casing 5 can be provided with a buckle 5.1 of the same number as the snap ring.
  • a notch 5.2 may be disposed on the annular casing 5, and the notch 5.2 may form an intake passage together with at least one of the upper metal piece 1 and the lower metal piece 11 through which outside air can enter. Inside the enclosure.
  • two edges adjacent to the first snap ring on the upper metal sheet 1 extend in the direction of the annular casing 5 with two inserts, and two edges adjacent to the second snap ring on the lower metal sheet 11
  • the annular housing 5 extends in the direction of two tabs.
  • the insert on the upper metal sheet 1 can be referred to as a first insert 1.2
  • the insert on the lower metal sheet 11 can be referred to as a second insert 11.2.
  • the insert piece can be inserted into the annular casing 5 and abuts against the inner wall of the annular casing 5 to avoid deformation of the annular casing 5, enhance the rigidity of the annular casing, and function as a reinforcing rib, and also make the upper metal piece 1
  • the connection to the annular casing 5, the connection of the lower metal sheet 11 to the annular casing 5 is more secure, and the insert is fixed to the shock absorbing assembly and the sensing assembly in the annular casing 5.
  • the sensing component and the shock absorbing component can be pressed into the annular casing 5 through the upper metal piece 1 and the lower metal piece 11.
  • the structure of the entire inertial measurement device is stabilized.
  • the sensing component and the shock absorbing component are disposed in the annular casing 5, which can reduce the influence of the external environment on the measurement accuracy of the sensing component, protect the shock absorbing component, prevent the shock absorbing component from being exposed, and prolong the use of the shock absorbing component.
  • the service life makes the shock absorbing component install securely and is not easy to fall off. Improve the shock absorption of the shock absorbing components.
  • four through holes 11.3 are opened on the surface of the lower metal piece 11, and the four through holes 11.3 are sequentially connected in a quadrangular shape.
  • the inner bottom surface of the casing of the control device may be provided with two bosses (not shown). The positions of the two bosses correspond to the through holes 11.3 of which two of the four through holes 11.3 are diagonal.
  • the shock absorbing component and the sensing component are integrally fixed in the annular casing 5, and the shock absorbing component and the sensing component are fixed by the upper metal piece 1 and the lower metal piece 11, so that the shock absorbing component can be reduced.
  • the relative movement of the components and the components of the sensing assembly enhances the rigidity of the entire inertial measurement device and reduces vibration of the components.
  • the above sensing component may include an integrated circuit board, an inertial sensor (not shown) connected to the integrated circuit board, and an air pressure sensor (not shown) connected to the integrated circuit.
  • the above integrated circuit board comprises a first integrated circuit board 10 and a second integrated circuit board 9.
  • the first integrated circuit board 10 and the second integrated circuit board 9 may be connected by a first flexible cable (not shown).
  • the first integrated circuit board 10 may be provided with an inertial sensor and a second flexible cable.
  • the inertial sensor can include a gyroscope and an accelerometer. The signal of the inertial sensor is transmitted to other devices through the flexible cable, which can improve the reliability, effectiveness, stability and accuracy of the measurement data.
  • the second flexible cable 7 can be connected to the flight control main circuit board of the UAV.
  • An air pressure sensor may be disposed on the second integrated circuit board 9.
  • the shock absorbing assembly may include a first cushion 2, a first weighting block 3, a second weighting block 4, and a first connecting block that are sequentially connected from top to bottom and placed in the annular casing 5.
  • the second cushion 6 is pressed against the first cushion 2 of the outer casing, and the lower metal sheet 11 is pressed under the second cushion 6.
  • the upper metal piece 1 and the lower metal piece 11 enable the first cushion 2, the first weighting block 3, the second weighting block 4, and the second cushion 6 to be pressed into the annular casing 5, so that The positions of the first cushion 2, the first weight increasing block 3, the second weight increasing block 4, and the second cushioning pad 6 are stabilized.
  • the middle portion of the first cushion 2 may be provided with a bottom-opening slot, and the bottom of the first cushion 2 is fixed on the top surface of the first weight-increasing block 3 by the sticking plate 8, the first shock absorption
  • the upper side of the pad 2 can be attached to the bottom surface of the upper metal piece 1 by the bonding plate 8.
  • the sticking plate 8 at the bottom of the first cushion 2 is not slotted, and the sticking plate 8 on the upper side of the first cushion 2 can be slotted in the middle as needed.
  • the second flexible cable 7 can be placed in the slot of the first cushion 2 to save space without slotting.
  • the shape of the second cushion 6 may be a hollow rectangular plate shape, and the middle portion of the second cushion 6 may be provided with a through hole, which can improve the shock absorption effect of the second cushion 6, and the second reduction
  • the upper side of the diaphragm 6 can be adhered to the bottom surface of the second weighting block 4 through the bonding board 8, and the lower side of the second cushion 6 can be bonded to the top surface of the lower metal sheet 11 by the bonding board 8, wherein
  • the middle portion of the adhesive sheet 8 on both sides of the second cushion 6 may be provided with a through hole having a size corresponding to the through hole.
  • the shape of the through hole may be square, circular or elliptical.
  • the time and cost required for fixing the plurality of components can be reduced, the degree of integration of the inertial measuring device is improved, and the vibration is reduced.
  • the first cushion 2 and the second cushion 6 can be made of loose porous and ventilated cushioning materials, which can avoid excessive wind speed and form local turbulence, can buffer vibration and reduce the resonance frequency. And buffer high-speed messy airflow.
  • the first cushion 2 and the second cushion 6 can be made of shock absorbing cotton, and the shock absorbing cotton has good elasticity, so that the vibration caused by the unmanned aerial vehicle to the sensing component can be rapidly attenuated. .
  • a receiving cavity (not shown) in which the integrated circuit board is placed may be formed between the first weight increasing block 3 and the second weight increasing block 4.
  • the first integrated circuit board 10 of the integrated circuit board may be placed in the second weight increasing block 4.
  • a receiving cavity 3.1 and a pneumatic chamber 3.2 may be provided, and the receiving cavity 3.1 may be set.
  • the air pressure chamber 3.2 is connected to the outside and can accommodate the second integrated circuit board 9 and the air pressure sensor on the second integrated circuit board 9.
  • the first weight increasing block 3 and the second weight increasing block 4 may be rectangular blocks, which can reduce the installation space of the first weight increasing block 3 and the second weight increasing block 4.
  • the material of the first weight increasing block 3 and the second weight increasing block 4 may be a metal material, and the density of the metal material may be such that the first weight increasing block and the second weight increasing block have a certain weight, and the first weight increasing block can be made.
  • the vibration of the sensing assembly within 3 and the vibration of the sensing assembly within the second weighting block 4 are reduced.
  • a rectangular slot is formed in the second weight increasing block 4, and the rectangular slot can be used for placing the first integrated circuit board 10.
  • the opening of the rectangular slot can save space and enable the first integrated circuit board. 10 quickly and evenly dissipate heat to avoid local heat generation of the first integrated circuit
  • the large short circuit and the like prolong the service life of the components on the first integrated circuit board 10.
  • the weight of the first weighting block 3 is greater than the weight of the second weighting block 4, and the inertial measuring device can be reduced.
  • the vibration frequency is such that the sensing components within the first weighting block 3 and the sensing components within the second weighting block 4 are in a stable environment.
  • a sealed cover 3.8 is mounted on the pneumatic chamber 3.2, the sealed cover 3.8 is fixed to the pneumatic chamber 3.2 by a connector, and the sealed cover 3.8 is used to seal the pneumatic chamber 3.2.
  • Four through holes may be provided in the sealing cover 3.8, screw holes are arranged at corresponding positions in the air pressure chamber 3.2 of the first weight increasing block 3, and the sealing cover 3.8 is connected to the air pressure chamber 3.2 through the connecting member.
  • the connecting member may be a screw.
  • the sealed cover 3.8 is provided with two blind holes 3.81 with internal threads.
  • the externally threaded screw can be screwed into the blind hole 3.81 with internal thread, and the sealed cover 3.8 can be pulled outward by the screw to remove the sealed cover 3.8, which is easy to operate. Convenience.
  • the accommodating cavity formed by the first weight increasing block 3 and the second weight increasing block 4 may be filled with thermal grease.
  • the filling of the thermal grease can alleviate the vibration, so that the temperature of each component on the first integrated circuit board 10 placed in the second weight increasing block 4 is kept within a certain range and is evenly heated, thereby avoiding vibration of the component itself.
  • Filling the thermal grease can make multiple components on the integrated circuit board as a whole and vibrate at the same frequency to mitigate vibration.
  • the air pressure chamber 3.2 is placed on the first weight increasing block 3, and sealed by the sealing cover 3.8, so that the air pressure chamber 3.2 and The accommodating cavity formed between the first weight increasing block 3 and the second weight increasing block 4 is isolated, which can prevent the thermal grease from affecting the air pressure in the air pressure chamber 3.2, and improve the accurate measurement result of the air pressure sensor located in the air pressure chamber 3.2. Sex.
  • an airflow passage communicating with the outside is provided on the top surface of the first weight increasing block 3.
  • a groove is formed on the top surface of the first weight increasing block 3, and the pasting plate 8 is adhered to the top surface of the first weight increasing block 3.
  • the adhesive plate 8 and the groove form an air flow passage, and are disposed on the first weight increasing block 3.
  • the airflow passage may include a peripheral passage 3.4, an inner peripheral passage 3.5, and a T-shaped passage 3.6.
  • the T-shaped passage 3.6 may include a transverse passage 3.61 and a vertical passage 3.62 communicating at a midpoint of the transverse passage 3.61, and the static pressure holes 3.3 may be symmetrically communicated at both ends of the lateral passage 3.61.
  • the inner channel 3.5 is symmetrically connected on both sides of the vertical channel 3.62, each inner channel 3.5 is connected with a peripheral channel 3.4, and the two peripheral channels 3.4 are connected to each other, and each of the peripheral channels 3.4 is connected with an air inlet.
  • Port 3.7, outside air can enter the airflow passage through the air inlet 3.7 and enter the air pressure chamber 3.2 through the static pressure hole 3.3.
  • the symmetrically disposed inner circumference channel 3.5 and the peripheral channel 3.4 both form a gate structure.
  • the high-speed random airflow enters into the first air port 3.7 and enters into the peripheral channel 3.4.
  • the first shunt and the second air inlet 3.7 enter the shunt through the junction of the two peripheral channels 3.4, and the second
  • the split flow enters the inner peripheral passage 3.5 through the peripheral passage 3.4, and the split into the inner peripheral passage 3.5 is split into the first portion and the second portion when passing through the T-shaped passage 3.6, and the first portion passes through the static pressure on the transverse passage 3.61.
  • the hole 3.3 enters the gas pressure chamber 3.2, and the second portion flows to the vertical channel 3.62, reaches the bottom of the vertical channel 3.62, returns and flows into the gas pressure chamber 3.2 through the static pressure hole 3.3.
  • the above-mentioned peripheral channel 3.4, inner channel 3.5, T-channel 3.6 and two air inlets 3.7 of the present embodiment can be regarded as forming two symmetric inflow channels together, and two symmetric inflow channels can make the air pressure chamber
  • the formation of air convection in 3.2 can balance the pressure difference between the internal air pressure and the external air pressure, buffer and isolate the disordered airflow, and avoid the local high-speed and low-pressure environment generated by the single inflow channel in the related art.
  • Each inflow channel is surrounded by the peripheral channel 3.4.
  • the surrounding channel 3.5 and the T-shaped channel 3.6 form a curved shape, buffering high-speed and disorderly airflow, and avoiding the influence of high-speed and disorderly airflow on the measurement data of the sensor.
  • the first weight increasing block 3 and the second weight increasing block 4 are respectively provided with bosses at four corners, and each of the bosses is respectively provided with a connecting hole, and the first weight increasing block is respectively provided. 3 and the second weight increasing block 4 are fixed by a connecting member provided in the connecting hole.
  • the connecting hole on the first weight increasing block 3 may be referred to as a first connecting hole 3.9
  • the first connecting hole 3.9 may be a through hole
  • the connecting hole on the second weight increasing block 4 may be referred to as a second connecting hole 4.1.
  • the second connecting hole 4.1 may be a threaded hole
  • the connecting member may be a screw.
  • the first integrated circuit board 10 of the present embodiment has a quadrangular shape, and the four corners are cut into oblique sides 10.1.
  • the bosses at the four corners of the second weight increasing block 4 are inwardly convexly formed to have A curved arcuate face 4.2 that is tangent to the beveled edge 10.1 at the four corners of the first integrated circuit board 10.
  • the structure makes the first integrated circuit board 10 more firmly fixed, and can be used for limiting the fixing to avoid use.
  • the phenomenon that the first integrated circuit board is loosened during the process facilitates assembly and improves the measurement accuracy of the inertial sensor.
  • the embodiment improves the integration degree of the entire inertial measurement device, and can reduce the measurement interference of the inertial sensor and the air pressure sensor by external factors, and improves the measurement accuracy of the inertial measurement device.
  • the inertial measurement device and the unmanned aerial vehicle provided by the present disclosure improve the integration degree of the inertial measurement device, the shock absorption effect, and the measurement accuracy of the sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种惯性测量装置及无人飞行器,其中,惯性测量装置包括外壳、安装在外壳内的传感组件和减震组件,其中,传感组件包括集成电路板、连接于集成电路板的惯性传感器和连接于集成电路板的气压传感器;减震组件包括依次连接的第一减震垫(2)、第一增重块(3)、第二增重块(4)和第二减震垫(6),第一增重块(3)和第二增重块(4)之间形成有放置集成电路板的容置腔,第一增重块(3)上设有容纳惯性传感器的容纳腔(3.1)以及容纳气压传感器且连通于外界的气压仓(3.2)。

Description

惯性测量装置及无人飞行器 技术领域
本公开涉及无人机技术领域,例如涉及一种惯性测量装置及无人飞行器。
背景技术
惯性测量装置是无人飞行器控制系统中的核心模块,通过对惯性传感器和气压传感器所测得的数据进行分析,可以获得无人飞行器的姿态信息及位置信息,从而实现完全自我导航。
在无人机飞行器领域,惯性测量装置运行中面临的主要力学环境是无人机剧烈的随机震动,震动不仅会使惯性测量装置测量时输出信号噪声较大,造成数据失真,降低测量准确性,而且容易引起电子元器件损坏。
另外,在无人飞行器飞行过程中,由于机动速度高,高度落差大,飞行环境中的高速杂乱气流对设于惯性测量装置内的气压传感器造成干扰,容易导致气压传感器的测量数据产生波动乃至严重偏差。
发明内容
一种惯性测量装置及无人飞行器,能够避免相关技术中的惯性测量装置存在的集成度不高、减震效果不佳以及测量易受影响的问题。
一种惯性测量装置,包括外壳、安装在外壳内的传感组件和减震组件,其中,所述传感组件包括集成电路板、连接于集成电路板的惯性传感器和连接于集成电路板的气压传感器;
所述减震组件包括依次连接的第一减震垫、第一增重块、第二增重块和第二减震垫,其中,所述第一增重块和第二增重块之间形成有放置所述集成电路板的容置腔,所述第一增重块上设有容纳所述惯性传感器的容纳腔以及容纳所述气压传感器且连通于外界的气压仓。
可选的,所述第一增重块的顶面上设有与外界连通的气流通道,以及所述第一增重块上设有连通所述气流通道和所述气压仓的静压孔。
可选的,所述气流通道包括T形通道、外围通道和对称的连通于T形通道 的内围通道,每个内围通道均连通有外围通道,所述外围通道设有进气口,两个外围通道之间相互连通,两个所述静压孔对称连通在T形通道的两端。
可选的,所述T形通道包括横向通道以及连通于横向通道中点位置处的竖向通道,两个所述静压孔对称的连通在横向通道的两端,所述内围通道对称的连通于竖向通道。
可选的,所述的惯性测量装置,包括以下至少一种结构:
所述第一减震垫的底面通过粘贴板固定在第一增重块的顶面,且所述粘贴板与第一增重块之间形成所述气流通道;以及
所述第二减震垫的顶面和底面分别通过粘贴板固定于所述第二增重块的底面以及外壳。
可选的,所述外壳包括环形壳体以及分别位于环形壳体的顶面和底面的第一金属片以及第二金属片,所述传感组件和减震组件置于环形壳体内并由第一金属片和第二金属片压紧。
可选的,所述第一金属片相对的两边缘向环形壳体的方向延伸有至少一个第一插片,所述第二金属片相对的两边缘向环形壳体的方向延伸有至少一个第二插片,所述至少一个第一插片和至少一个第二插片均插入环形壳体内且抵持在环形壳体的内壁上。
可选的,所述第一增重块包括密封仓盖,所述气压仓面对第二增重块的一表面连接有密封仓盖,所述密封仓盖将所述气压仓与所述容置腔隔离。
可选的,所述容置腔内填充有导热硅脂。
一种无人飞行器,包括上述任一所述的惯性测量装置。
上述结构设置提高了整个惯性测量装置的集成化程度,而且能够减少外界因素对惯性传感器和气压传感器的测量干扰,提高了惯性测量装置测量的准确性。
附图说明
图1为一实施例的惯性测量装置的爆炸结构示意图;
图2为一实施例的惯性测量装置的整体结构示意图;
图3为一实施例中第一集成电路板的结构示意图;
图4为一实施例中第一增重块与第二增重块以及传感组件的配合结构示意图;
图5为一实施例中第一增重块的结构示意图一;
图6为一实施例中第一增重块的结构示意图二;
图7为一实施例中第一增重块的爆炸结构示意图;以及
图8为一实施例中气压仓上密封仓盖的结构示意图。
图中:
1、上金属片;1.1、第一卡环;1.2、第一插片;
2、第一减震垫;
3、第一增重块;3.1、容纳腔;3.2、气压仓;3.3、静压孔;3.4、外围通道;3.5、内围通道;3.6、T形通道;3.7、进气口;3.8、密封仓盖;3.9、第一连接孔;3.61、横向通道;3.62、竖向通道;3.81、盲孔;
4、第二增重块;4.1、第二连接孔;4.2、弧形面;
5、环形壳体;5.1、卡扣;5.2、缺口;
6、第二减震垫;
7、第二软排线;
8、粘贴板;
9、第二集成电路板;
10、第一集成电路板;10.1、斜边;
11、下金属片;11.1、第二卡环;11.2、第二插片;11.3、通孔。
具体实施方式
下面结合附图并通过具体实施方式来可选说明本公开的技术方案。相关技术中针对上述问题对惯性测量装置进行了大量改进,但是仍然存在以下问题:(1)现有惯性测量装置的体积、重量依旧较大,而且集成度不高,难以既保证惯性测量装置整体重量小,又保证结构的强度和刚度满足实际需要;(2)仅仅 通过对设有惯性传感器的集成电路板进行位移的限定,来减小震动频率对惯性传感器的影响,减震效果不佳,难以保证飞行器稳定可靠运行。
本实施例提供一种惯性测量装置,如图1-8所示,该惯性测量装置包括外壳,安装在外壳内的传感组件和减震组件。
如图1和图2所示,外壳包括环形壳体5,以及位于环形壳体5上下两侧的上金属片1以及下金属片11,上述传感组件和减震组件置于环形壳体5内并由下金属片11支撑。
可选的,本实施例在上金属片1相对的两边缘分别延伸有卡环,下金属片11相对的两边缘分别延伸有卡环。本实施例中,可以将上金属片1上的卡环称为第一卡环1.1,可以将下金属片11上的卡环称为第二卡环11.1。可选的,在环形壳体5上与卡环相对应的位置设置卡扣5.1。通过卡扣5.1与卡环的相互扣合,将环形壳体5分别与上金属片1和下金属片11扣接。本实施例中,上金属片1的两边缘中,每一边缘均可设置有两个卡环,下金属片11的两边缘中,每一边缘均可设置有两个卡环。相对应的,环形壳体5的侧面上可设置与卡环数量相同的卡扣5.1。
本实施例中,在环形壳体5上可以设有缺口5.2,该缺口5.2可以与上金属片1和下金属片11中的至少一个共同形成进气通道,外界空气可通过该进气通道进入外壳内。
可选的,在上金属片1上与第一卡环相邻的两边缘向环形壳体5的方向延伸有两个插片,在下金属片11上与第二卡环相邻的两边缘向环形壳体5的方向延伸有两个插片。本实施例中,可以将上金属片1上的插片称为第一插片1.2,将下金属片11上的插片称为第二插片11.2。插片可插入环形壳体5内且抵持于环形壳体5内壁上,以避免环形壳体5发生变形,增强了环形壳体的刚性,起到了加强筋的作用,也使得上金属片1与环形壳体5的连接、下金属片11与环形壳体5的连接更加紧固,插片对环形壳体5内的减震组件和传感组件固定。
本实施例在将传感组件和减震组件放置在环形壳体5内后,通过上金属片1和下金属片11,能够将传感组件和减震组件压紧在环形壳体5内,使得整个惯性测量装置的结构稳定。将传感组件和减震组件设置在环形壳体5内,能够减少外界环境对传感组件的测量精度的影响,能够对减震组件进行保护,避免减震组件外露,延长减震组件的使用寿命,使得减震组件安装牢固,不易脱落, 提高减震组件的减震效果。
可选的,本实施例在下金属片11表面开设有四个通孔11.3(图1所示),四个通孔11.3顺次连接为四边形。在将整个惯性测量装置安装于控制装置(图中未示出)的外壳内(图中未示出)时,控制装置的外壳内底面可以设有两个凸台(图中未示出),两个凸台的位置对应于四个通孔11.3中其中两个呈对角的通孔11.3,通过将凸台置于两个通孔11.3内,能够使得惯性测量装置的位置相对固定,避免安装于外壳内的惯性测量装置发生晃动现象。
本实施例通过将减震组件以及传感组件整体固定于环形壳体5内,且通过上金属片1和下金属片11对减震组件和传感组件进行固定,能够降低上述减震组件的部件以及传感组件的部件的相对移动,增强整个惯性测量装置的刚性,减少部件的震动。
可参照图3和图4,上述传感组件可以包括集成电路板、连接于集成电路板的惯性传感器(图中未示出)和连接于集成电路的气压传感器(图中未示出),可选的,上述集成电路板包括第一集成电路板10和第二集成电路板9。第一集成电路板10和第二集成电路板9之间可以通过第一软排线(图中未示出)连接,上述第一集成电路板10上可以设置有惯性传感器以及第二软排线7,该惯性传感器可以包括陀螺仪和加速计。该惯性传感器的信号通过软排线传送至其他设备中,能够提高测量数据可靠性、有效性、稳定性和准确性。第二软排线7可以与无人飞行器的飞控主电路板连接。在第二集成电路板9上可以设置有气压传感器。
如图1所示,上述减震组件可以包括由上到下依次连接且均放置在环形壳体5内的第一减震垫2、第一增重块3、第二增重块4和第二减震垫6,上述外壳的上金属片1压紧在第一减震垫2上,下金属片11压紧在第二减震垫6下方。上金属片1和下金属片11,能够使得第一减震垫2、第一增重块3、第二增重块4和第二减震垫6被紧压在环形壳体5内,使得第一减震垫2、第一增重块3、第二增重块4和第二减震垫6的位置稳固。
可选的,上述第一减震垫2中部可以开设有底部不通的开槽,第一减震垫2的底部通过粘贴板8固定在第一增重块3的顶面上,第一减震垫2的上侧面可以通过粘贴板8粘贴在上金属片1的底面上。上述第一减震垫2的底部的粘贴板8不开槽,第一减震垫2的上侧面的粘贴板8可根据需要在中部开槽,也可 以不开槽,上述第二软排线7可置于第一减震垫2的开槽内,节省空间。
上述第二减震垫6的形状可以为中空的矩形板状,第二减震垫6的中部可以开设有通孔,该通孔能够提高第二减震垫6的减震效果,第二减震垫6的上侧面可以通过粘贴板8粘接在第二增重块4的底面,第二减震垫6的下侧面可以通过粘贴板8粘接在下金属片11的顶面,其中,第二减震垫6的两侧面的粘贴板8的中部可以开设有与通孔大小一致的通孔。通孔的形状可以为方形、圆形或椭圆形。
通过上述粘贴板8对减震垫进行固定的方式,能够减少固定多个部件连接所需的时间和成本,提高了惯性测量装置的集成化程度,减小了震动。
本实施例中,上述第一减震垫2与第二减震垫6均可以采用疏松多孔以及透气缓冲的材料制成,能够避免风速过大形成局部湍流,能够缓冲隔离震动、降低共震频率以及缓冲高速杂乱气流。本实施例中,上述第一减震垫2与第二减震垫6均可以采用减震棉制成,减震棉具有良好的弹性,使得无人飞行器对传感组件造成的震动能够迅速衰减。
在第一增重块3和第二增重块4之间可以形成有放置集成电路板的容置腔(图中未示出)。参照图4,集成电路板的第一集成电路板10可以置于第二增重块4内,在第一增重块3上可以设有容纳腔3.1以及气压仓3.2,上述容纳腔3.1可以设置有两个,两个容纳腔3.1可以分别用于容纳惯性传感器的陀螺仪和加速计。上述气压仓3.2连通于外界,可以容纳第二集成电路板9以及第二集成电路板9上的气压传感器。在第一增重块3和第二增重块4两者自身的空间中放置传感组件,节省了放置传感组件的额外空间,提高了整个惯性测量装置的集成化程度,能够减少震动对惯性传感器的影响以及高速杂乱气流对气压传感器的干扰,提高惯性传感器和气压传感器的测量精度。
本实施例中,上述第一增重块3和第二增重块4皆可以为矩形块,能够减少第一增重块3和第二增重块4的安装空间。上述第一增重块3和第二增重块4的材质可以为金属材料,金属材料的密度可以使得第一增重块和第二增重块具有一定的重量,能够使得第一增重块3内的传感组件的震动和第二增重块4内的传感组件的震动减小。可选的,参见图4,在第二增重块4上开设有矩形槽,该矩形槽可以用于放置第一集成电路板10,开设该矩形槽能够节省空间,能够使得第一集成电路板10快速均匀地散热,避免出现第一集成电路的局部热量过 大而导致的短路等现象,延长了第一集成电路板10上元器件的使用寿命。
本实施例中,由于第一增重块3上可以仅开设容纳腔3.1以及气压仓3.2,因此第一增重块3的重量大于第二增重块4的重量,能够减小惯性测量装置的震动频率,使得第一增重块3内的传感组件和第二增重块4内的传感组件处于稳定的环境内。
可选的,参照图7,在气压仓3.2上安装有密封仓盖3.8,该密封仓盖3.8与气压仓3.2通过连接件固定,密封仓盖3.8用于将气压仓3.2密封。可以在密封仓盖3.8上设置四个通孔,在第一增重块3的气压仓3.2内相对应的位置设置螺纹孔,通过连接件将密封仓盖3.8连接到气压仓3.2上,本实施例中,上述连接件可以为螺丝。
可选地,参照图8,所述密封仓盖3.8上设有两个带有内螺纹的盲孔3.81。在拆卸密封仓盖3.8时,可以将带有外螺纹的螺丝拧进带有内螺纹的盲孔3.81内,通过螺丝将密封仓盖3.8向外拉,可将密封仓盖3.8拆卸下来,操作简单方便。
本实施例中,在第一增重块3与第二增重块4所形成的容置腔内可以填充有导热硅脂。该导热硅脂的填充,能够缓和震动,使得放置于第二增重块4内的第一集成电路板10上每个元器件温度保持在一定范围内且受热均匀,能避免元器件自身发生震动。填充导热硅脂能够使集成电路板上多个元器件成为一个整体并在同一个频率上震动,缓和震动。
而且在本实施例中,由于导热硅脂存在影响气压仓3.2内气压的可能性,因此将气压仓3.2设置在第一增重块3上,且通过密封仓盖3.8密封,使得气压仓3.2与第一增重块3和第二增重块4之间形成的容置腔相隔离,能够避免导热硅脂影响气压仓3.2内的气压,提高了位于气压仓3.2内的气压传感器测量结果的准确性。
本实施例中,可选的,参照图6,在第一增重块3的顶面上设有与外界连通的气流通道。在第一增重块3的顶面开设凹槽,上述粘贴板8粘贴在第一增重块3的顶面上,粘贴板8与凹槽形成气流通道,在第一增重块3上设有连通气流通道和气压仓3.2的静压孔3.3,通过该静压孔3.3与气流通道的设置,使气压仓3.2内部气压与外部气压保持一致,缓冲隔离震动,缓冲高速杂乱气流。也可以在第一增重块3内部开设上述气流通道,只要能够满足与气压仓3.2以及外 界连通即可。
本实施例中,上述气流通道可以包括外围通道3.4、内围通道3.5和T形通道3.6。该T形通道3.6可以包括横向通道3.61以及连通于横向通道3.61中点位置处的竖向通道3.62,静压孔3.3可以对称的连通在横向通道3.61的两端。可选的,在竖向通道3.62两侧对称连通有内围通道3.5,每个内围通道3.5连通有外围通道3.4,两个外围通道3.4相互连通,且每个外围通道3.4均连通有进气口3.7,外界空气可通过进气口3.7进入气流通道,并通过静压孔3.3进入气压仓3.2。本实施例中,上述对称设置的内围通道3.5和外围通道3.4均构成了门形结构。
外界高速杂乱气流经进第一气口3.7进入并分成两股气流进入到外围通道3.4内,第一股分流与第二进气口3.7进入的分流通过两个外围通道3.4的连通处相抵,第二股分流通过外围通道3.4进入到内围通道3.5内,进入内围通道3.5内的分流在经过T形通道3.6时次形成分流成第一部分和第二部分,第一部分通过横向通道3.61上的静压孔3.3进入到气压仓3.2内,第二部分流向竖向通道3.62,到达竖向通道3.62底部后返回并通过静压孔3.3流入气压仓3.2。
本实施例的上述外围通道3.4、内围通道3.5、T形通道3.6以及两个进气口3.7可以看作是共同形成两个对称的进流通道,两个对称的进流通道能够使气压仓3.2内形成空气对流,能够平衡内部气压和外部气压的压差,缓冲和隔离杂乱气流,避免相关技术中的单个进流通道产生的局部高速低压环境,每个进流通道由外围通道3.4、内围通道3.5以及T形通道3.6形成弯折形,缓冲高速杂乱气流,避免高速杂乱气流对传感器的测量数据的影响。
可选地,参照图4和图5,上述第一增重块3以及第二增重块4的四角处分别设有凸台,每个凸台上分别设有连接孔,第一增重块3和第二增重块4之间通过设于连接孔内的连接件固定。可以将第一增重块3上的连接孔称为第一连接孔3.9,该第一连接孔3.9可以为通孔,可以将第二增重块4上的连接孔称为第二连接孔4.1,该第二连接孔4.1可以为螺纹孔,连接件可以为螺丝。
可选地,参见图4,本实施例的上述第一集成电路板10呈四边形,四个角切为斜边10.1,对应地,第二增重块4四角处的凸台向内凸出形成具有弧度的弧形面4.2,该弧形面4.2与第一集成电路板10四角处的斜边10.1相切。该结构使得第一集成电路板10固定更加牢固,能够起到限位固定作用,避免在使用 过程中发生第一集成电路板松动的现象,方便装配,提高了惯性传感器的测量精度。
本实施例通过上述结构设置,提高了整个惯性测量装置集成化程度,而且能够减少外界因素对惯性传感器和气压传感器的测量干扰,提高了惯性测量装置测量的准确性。
工业实用性
本公开提供的惯性测量装置以及无人飞行器,提高了惯性测量装置的集成度、减震效果以及传感器的测量精度。

Claims (10)

  1. 一种惯性测量装置,包括外壳、安装在外壳内的传感组件和减震组件,其中,所述传感组件包括集成电路板、连接于集成电路板的惯性传感器和连接于集成电路板的气压传感器;
    所述减震组件包括依次连接的第一减震垫、第一增重块、第二增重块和第二减震垫,其中,所述第一增重块和第二增重块之间形成有放置所述集成电路板的容置腔,所述第一增重块上设有容纳所述惯性传感器的容纳腔以及容纳所述气压传感器且连通于外界的气压仓。
  2. 根据权利要求1所述的惯性测量装置,其中,所述第一增重块的顶面上设有与外界连通的气流通道,以及所述第一增重块上设有连通所述气流通道和所述气压仓的静压孔。
  3. 根据权利要求2所述的惯性测量装置,其中,所述气流通道包括T形通道、外围通道和对称的连通于T形通道的内围通道,每个内围通道均连通有外围通道,所述外围通道设有进气口,两个外围通道之间相互连通,两个所述静压孔对称连通在T形通道的两端。
  4. 根据权利要求3所述的惯性测量装置,其中,所述T形通道包括横向通道以及连通于横向通道中点位置处的竖向通道,两个所述静压孔对称的连通在横向通道的两端,所述内围通道对称的连通于竖向通道。
  5. 根据权利要求2-4任一所述的惯性测量装置,包括以下至少一种结构:
    所述第一减震垫的底面通过粘贴板固定在第一增重块的顶面,且所述粘贴板与第一增重块之间形成所述气流通道;以及
    所述第二减震垫的顶面和底面分别通过粘贴板固定于所述第二增重块的底面以及外壳。
  6. 根据权利要求1所述的惯性测量装置,其中,所述外壳包括环形壳体以 及分别位于环形壳体的顶面和底面的第一金属片以及第二金属片,所述传感组件和减震组件置于环形壳体内并由第一金属片和第二金属片压紧。
  7. 根据权利要求6所述的惯性测量装置,其中,所述第一金属片相对的两边缘向环形壳体的方向延伸有至少一个第一插片,所述第二金属片相对的两边缘向环形壳体的方向延伸有至少一个第二插片,所述至少一个第一插片和至少一个第二插片均插入环形壳体内且抵持在环形壳体的内壁上。
  8. 根据权利要求1所述的惯性测量装置,其中,所述第一增重块包括密封仓盖,所述气压仓面对第二增重块的一表面连接有密封仓盖,所述密封仓盖将所述气压仓与所述容置腔隔离。
  9. 根据权利要求8所述的惯性测量装置,其中,所述容置腔内填充有导热硅脂。
  10. 一种无人飞行器,包括权利要求1-9任一所述的惯性测量装置。
PCT/CN2017/084484 2017-04-28 2017-05-16 惯性测量装置及无人飞行器 WO2018196042A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17902587.9A EP3425336B1 (en) 2017-04-28 2017-05-16 Inertia measurement apparatus and unmanned aerial vehicle
US16/088,462 US11326885B2 (en) 2017-04-28 2017-05-16 Inertial measurement device and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710292749.1A CN106871895B (zh) 2017-04-28 2017-04-28 一种惯性测量装置及无人飞行器
CN201710292749.1 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018196042A1 true WO2018196042A1 (zh) 2018-11-01

Family

ID=59161528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084484 WO2018196042A1 (zh) 2017-04-28 2017-05-16 惯性测量装置及无人飞行器

Country Status (4)

Country Link
US (1) US11326885B2 (zh)
EP (1) EP3425336B1 (zh)
CN (1) CN106871895B (zh)
WO (1) WO2018196042A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631882A (zh) * 2018-12-13 2019-04-16 上海航天控制技术研究所 一种基于减震系统的高可靠电路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863266B2 (ja) * 2017-12-20 2021-04-21 オムロン株式会社 圧力センサおよび圧力センサを備えた移動装置
WO2019140659A1 (zh) * 2018-01-19 2019-07-25 深圳市大疆创新科技有限公司 无人机
CN108036891A (zh) * 2018-01-26 2018-05-15 上海歌尔泰克机器人有限公司 一种气压传感器防护结构、气压计及无人机
CN111322984B (zh) * 2020-04-15 2023-10-03 深圳市创客火科技有限公司 海拔高度计算方法及装置、无人机、存储介质
CN113252294B (zh) * 2021-06-16 2022-01-07 西南交通大学 一种跨海大桥空间风速风向测试系统及监测方法
CN114858165B (zh) * 2022-07-06 2022-11-29 河北美泰电子科技有限公司 惯性导航总成

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886724A1 (fr) * 1986-01-10 2006-12-08 Sagem Centrale de reperage pour engin mobile, integrant une plate-forme inertielle gyrostabilisee et un dispositif telescopique de visee stellaire.
CN104931054A (zh) * 2015-07-06 2015-09-23 极翼机器人(上海)有限公司 惯性测量减振器及无人飞行器惯性测量模块
CN204757990U (zh) * 2015-07-01 2015-11-11 极翼机器人(上海)有限公司 新型无人飞行器惯性测量模块
CN205664838U (zh) * 2016-06-08 2016-10-26 上海拓攻机器人有限公司 一种用于无人飞行器的惯性测量装置
CN205748395U (zh) * 2016-05-21 2016-11-30 上海拓攻机器人有限公司 一种用于无人飞行器的惯性测量装置
CN205957985U (zh) * 2016-08-26 2017-02-15 北京臻迪机器人有限公司 一种集气压检测的惯性测量装置
CN206038016U (zh) * 2016-06-28 2017-03-22 上海拓攻机器人有限公司 一种惯性测量装置及含其的无人飞行器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139216B (zh) * 2015-04-07 2021-11-05 深圳市大疆创新科技有限公司 用于提供简单而可靠的惯性测量单元的系统和方法
CN206670648U (zh) * 2017-04-28 2017-11-24 上海拓攻机器人有限公司 一种惯性测量装置及无人飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886724A1 (fr) * 1986-01-10 2006-12-08 Sagem Centrale de reperage pour engin mobile, integrant une plate-forme inertielle gyrostabilisee et un dispositif telescopique de visee stellaire.
CN204757990U (zh) * 2015-07-01 2015-11-11 极翼机器人(上海)有限公司 新型无人飞行器惯性测量模块
CN104931054A (zh) * 2015-07-06 2015-09-23 极翼机器人(上海)有限公司 惯性测量减振器及无人飞行器惯性测量模块
CN205748395U (zh) * 2016-05-21 2016-11-30 上海拓攻机器人有限公司 一种用于无人飞行器的惯性测量装置
CN205664838U (zh) * 2016-06-08 2016-10-26 上海拓攻机器人有限公司 一种用于无人飞行器的惯性测量装置
CN206038016U (zh) * 2016-06-28 2017-03-22 上海拓攻机器人有限公司 一种惯性测量装置及含其的无人飞行器
CN205957985U (zh) * 2016-08-26 2017-02-15 北京臻迪机器人有限公司 一种集气压检测的惯性测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425336A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631882A (zh) * 2018-12-13 2019-04-16 上海航天控制技术研究所 一种基于减震系统的高可靠电路
CN109631882B (zh) * 2018-12-13 2020-08-18 上海航天控制技术研究所 一种基于减震系统的高可靠电路

Also Published As

Publication number Publication date
EP3425336A4 (en) 2019-11-27
US20210095964A1 (en) 2021-04-01
CN106871895B (zh) 2019-03-29
EP3425336B1 (en) 2021-03-24
CN106871895A (zh) 2017-06-20
EP3425336A1 (en) 2019-01-09
US11326885B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2018196042A1 (zh) 惯性测量装置及无人飞行器
US20200209275A1 (en) Inertia measurement module for unmanned aircraft
EP2434263B1 (en) Thermal air flow sensor
US5890569A (en) Vibration isolation system for an inertial sensor assembly
US7746639B2 (en) Canister housing
LU101990B1 (en) Skeleton apparatus and fiber optic gyroscope inertial device having the skeleton apparatus
CN106289631B (zh) 无人机稳定气压环境结构及惯性测量单元
WO2018196043A1 (zh) 无人飞行器的控制装置及无人飞行器
US9560779B2 (en) Thermal stabilization of temperature sensitive components
US20200413177A1 (en) Vibration Sensor and Audio Device
CN205957985U (zh) 一种集气压检测的惯性测量装置
CN105352503A (zh) 一种用于无人飞行器的惯性测量装置
US20150289045A1 (en) Microelectromechanical systems (mems) microphone having two back cavities separated by a tuning port
CN207487690U (zh) 一种无人飞行器惯性测量模块
KR101547379B1 (ko) 항공기 카니스터
CN206670648U (zh) 一种惯性测量装置及无人飞行器
WO2020135796A1 (zh) 一种风扇组件、惯性测量组件以及无人飞行器
CN211702606U (zh) 一种机载控制盒及无人机
CN112964253A (zh) 惯性测量组件的减振机构、飞控惯性测量组件及飞行器
CN206525051U (zh) 无人机飞控系统
CN112798178A (zh) 用于压力传感器的壳体组件、压力传感器及封装方法
CN217125147U (zh) 机载飞控设备及飞行器
CN217693455U (zh) 车载摄像头
CN111156999A (zh) 集成化惯性导航系统
EP4005237A1 (en) Transducer module and electronics device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017902587

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017902587

Country of ref document: EP

Effective date: 20181005

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE