WO2018195839A1 - 球形机器人 - Google Patents

球形机器人 Download PDF

Info

Publication number
WO2018195839A1
WO2018195839A1 PCT/CN2017/082097 CN2017082097W WO2018195839A1 WO 2018195839 A1 WO2018195839 A1 WO 2018195839A1 CN 2017082097 W CN2017082097 W CN 2017082097W WO 2018195839 A1 WO2018195839 A1 WO 2018195839A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
ultrasonic
circuit board
disposed
rolling ball
Prior art date
Application number
PCT/CN2017/082097
Other languages
English (en)
French (fr)
Inventor
陈华兴
Original Assignee
深圳鼎极智慧科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳鼎极智慧科技有限公司 filed Critical 深圳鼎极智慧科技有限公司
Priority to PCT/CN2017/082097 priority Critical patent/WO2018195839A1/zh
Publication of WO2018195839A1 publication Critical patent/WO2018195839A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members

Definitions

  • the present invention belongs to the field of robot technology, and in particular, to a spherical robot.
  • a spherical robot refers to a type of robot in which a driving system is located inside a spherical casing or a sphere, and the sphere is moved by an internal driving method.
  • One of the functions of a spherical robot is to interact with children and children.
  • the existing spherical robot has poor obstacle avoidance function, and it is easy to collide with children or foreign objects during walking, which causes the spherical robot to be damaged, even hurting children, and the safety performance is poor.
  • the existing spherical robot Only by actively approaching or approaching the spherical robot can the child interact with the spherical robot, and can not effectively control the spherical robot to actively approach or approach the child to achieve interaction, and the playability is poor.
  • An object of the present invention is to provide a spherical robot, which aims to solve the technical problem of poor obstacle avoidance function of a spherical robot in the prior art.
  • the technical solution adopted by the present invention is: a spherical robot comprising a spherical outer casing, a rolling ball, a driving device and an ultrasonic device;
  • the spherical outer casing is provided with a circular hole, and the rolling ball is disposed on a part of the rolling ball is exposed outside the circular hole;
  • the driving device is disposed in the spherical casing and connected to the rolling ball to drive the rolling ball to roll;
  • the ultrasonic device The ultrasonic fixing base and the plurality of ultrasonic positioning modules are disposed in the spherical outer casing and fixedly mounted on the driving device, and each of the ultrasonic positioning modules is annularly distributed on the ultrasonic fixing base
  • Each of the ultrasonic positioning modules is electrically connected to the driving device, and each of the ultrasonic positioning modules is configured to measure an obstacle of the outer circumference and drive the rolling by the driving device according to a signal fed back by the obstacle The ball rolls to avoid the obstacle.
  • the number of the ultrasonic positioning modules is six, and the ultrasonic fixing base is provided with six modes. Block mounting positions, six of the ultrasonic positioning modules are respectively mounted on six of the module mounting positions.
  • each of the ultrasonic positioning modules includes an ultrasonic circuit board, and an ultrasonic transmitter disposed on the ultrasonic circuit board for transmitting ultrasonic waves toward the obstacle and an ultrasonic wave receiving a reflected wave of the obstacle
  • the receiver, the ultrasonic circuit board is electrically connected to the driving device.
  • the ultrasonic positioning module further includes an audio device, the audio device is disposed on the ultrasonic circuit board, and the audio device is configured to receive a sound signal of the outer circumference and according to the strength of the sound signal The rolling ball is driven by the driving device to scroll to the sound signal.
  • the driving device comprises a motor fixing frame, an annular connecting plate, three servo motors and three Mecanum wheels, and the annular connecting plate is disposed on an outer circumference of the rolling ball and the spherical outer casing
  • the inner wall of the motor is fixedly connected to the upper end of the annular connecting plate, and the three servo motors are uniformly fixed on the motor mounting frame and are electrically connected to the ultrasonic positioning modules.
  • three of the Mecanum wheels are respectively connected to the main shafts of the three servo motors and both abut against the outer surface of the rolling ball.
  • the central axis extension lines of the three Mecanum wheels intersect to form an equilateral triangle.
  • the motor mount comprises a triangular plate and three support columns, the triangular plate is disposed above the rolling ball, and the three support columns are respectively fixedly connected to the three triangular plates Between the corner portion and the annular connecting plate; the three sides of the triangular plate are respectively provided with the avoidance wheel groove, and the three servo motors are respectively fixed at the bottom of the triangular plate near the three sides of the triangular plate The position of the portion, and the three said Mecanum wheels are respectively accommodated in three of the sheltered wheel slots.
  • the spherical robot further includes a display device disposed in the spherical casing, the display device includes a driving circuit board and a display circuit board, and the driving circuit board is disposed above the triangular plate.
  • the display circuit board is fixed to one side of the driving circuit board and disposed perpendicular to the driving circuit board, and the display circuit board is provided with a plurality of display LEDs toward an end of the inner wall of the spherical outer casing.
  • the display device further includes a rotating motor, a transmission mechanism and a bearing, the rotating motor is fixed to a side of the triangular plate, and an inner surface of the bearing is fixed to a top of the triangular plate.
  • the drive circuit board is fixedly coupled to an outer surface of the bearing, and the transmission mechanism is coupled between a main shaft of the rotating electrical machine and an outer surface of the bearing.
  • the transmission mechanism includes a large gear disk and a pinion disk, and the large gear disk is fixed to the shaft
  • the pinion disk is fixedly coupled to the main shaft of the rotating electrical machine, and the large gear disk is meshed with the pinion disk.
  • the spherical robot further includes a power supply device disposed in the spherical outer casing, the power supply device includes a power supply fixing seat, a battery and a slip ring reed, and the power fixing base is fixed to the spherical outer casing Connected and located above the driving circuit board, the power fixing base is provided with a reed slot, the battery is fixed on the power fixing base, and the driving circuit board is provided with a slip ring line, the slip ring The reed is disposed in the reed slot and electrically connected between the battery and the slip ring line; and the driving device and the ultrasonic device are electrically connected to the battery.
  • the power supply device includes a power supply fixing seat, a battery and a slip ring reed
  • the power fixing base is fixed to the spherical outer casing Connected and located above the driving circuit board
  • the power fixing base is provided with a reed slot
  • the battery is fixed on the power fixing base
  • the power supply device further includes a fixing piece, and the top of the power fixing base is provided with a power fixing slot
  • the battery is disposed in the power fixing slot, the fixing piece presses the battery, and both ends of the fixing piece are fixedly connected to the power fixing base.
  • the spherical robot further includes a button device, wherein the button device comprises a button circuit board, a ring button cover and a plurality of button springs, wherein the button circuit board is fixed on the ultrasonic holder and respectively
  • the ultrasonic device, the driving device, the display device and the power supply device are electrically connected, and the button circuit board is provided with a plurality of capacitive non-contact button positions uniformly distributed in a ring shape, and each of the button springs corresponds to each other.
  • the spherical housing Provided on each of the capacitor non-contact button positions, and the spherical housing is provided with a spring hole for exposing each of the button springs, and the ring button cover is fastened to the spherical housing and sealed in each of the positions On the spring hole.
  • the spherical robot further includes a speaker device disposed in the spherical casing, the speaker device includes a control circuit board, a speaker and a volume potentiometer, and the control circuit board is fixed to the spherical body
  • the inner wall of the outer casing is electrically connected to the battery
  • the speaker is fixed to the bottom of the ultrasonic holder and electrically connected to the control circuit board
  • the volume potentiometer is disposed on the control circuit board for use The volume of the speaker is adjusted, and the spherical housing is provided with a potentiometer air outlet for exposing the volume potentiometer.
  • control circuit board is further provided with an infrared tracking sensor, and the infrared tracking sensor is configured to detect the color identification of the ground, and drive the device through the driving device according to the detected signal.
  • the scroll ball is scrolled along the color logo.
  • control circuit board is provided with at least one electrical interface and at least one color LED
  • the spherical outer casing is provided with an interface air cutout for exposing each of the electrical interfaces.
  • a plurality of annular uniformly spherical arc grooves are disposed in an edge of the spherical outer casing near the circular hole, and each of the curved spherical grooves is provided with balls, and the balls are respectively disposed. Both abut against the rolling ball.
  • the spherical robot further includes a tray, the tray is provided with a hemispherical groove, the spherical outer casing is placed on the hemispherical groove, and the portion exposed outside the circular hole is A rolling ball is placed in the hemispherical groove.
  • the spherical outer casing comprises a lower shell, a middle shell, an upper shell and a decorative hollow shell, and the lower shell, the middle shell and the upper shell are sequentially snap-fitted from bottom to top, the circle
  • the upper aperture is disposed at the bottom of the lower casing, and the upper casing is provided with an ultrasonic hole corresponding to the position of each of the ultrasonic positioning modules, and the decorative hollow casing is buckled outside the ultrasonic holes.
  • the spherical robot of the present invention drives a rolling ball provided in a spherical outer casing by a driving device to roll, and since a part of the structure of the rolling ball is exposed to a circular hole provided by the spherical outer casing, the exposure is to The rolling ball outside the circular hole provided by the spherical shell contacts the ground cymbal, so that the rolling walk can be realized on the ground or the spherical shell can be kept static.
  • the ultrasonic wave of the ultrasonic device The positioning module can measure the obstacle and transmit the signal according to the obstacle feedback to the driving device, so as to drive the rolling ball to avoid the obstacle through the driving device, thereby avoiding hitting the obstacle and not easily hitting the child. , good obstacle avoidance function, interaction with children, high safety performance.
  • FIG. 1 is a schematic structural diagram of a spherical robot according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a spherical robot after hiding a chassis according to an embodiment of the present invention
  • 3 is a schematic exploded view of a spherical robot according to an embodiment of the present invention
  • FIG. 4 is a schematic exploded view of a spherical outer casing of a spherical robot according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an ultrasonic device of a spherical robot according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a driving device of a spherical robot according to an embodiment of the present invention.
  • FIG. 7 is a schematic exploded view of a display device of a spherical robot according to an embodiment of the present invention.
  • FIG. 8 is a schematic exploded view of a key device of a spherical robot according to an embodiment of the present invention.
  • FIG. 9 is a schematic exploded view of a power supply device of a spherical robot according to an embodiment of the present invention.
  • FIG. 10 is a schematic partial exploded view of a spherical robot according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a spherical robot after hiding a middle shell according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a rolling ball of a spherical robot abutting a ball according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be, for example, a fixed connection or a Removable connection, or integrated; can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of two elements or the interaction of two elements.
  • the meaning of the above terms in the present invention can be understood by those skilled in the art on a case-by-case basis.
  • a spherical robot provided by an embodiment of the present invention includes a spherical outer casing 10, a rolling ball 20, a driving device 30, and an ultrasonic device 40;
  • the outer casing 10 is provided with a circular hole 111.
  • the rolling ball 20 is disposed in the spherical outer casing 10 and a part of the rolling ball 20 is exposed outside the circular hole 111.
  • the driving device 30 is disposed on the spherical outer casing. 10 and connected to the rolling ball 20 to drive
  • the ultrasonic device 40 includes an ultrasonic mount 41 and a plurality of ultrasonic positioning modules 42.
  • the ultrasonic mount 41 is disposed in the spherical outer casing 10 and fixedly mounted to the driving device 30.
  • the ultrasonic positioning module 42 is annularly distributed on the ultrasonic fixing base 41, and each of the ultrasonic positioning modules 42 is electrically connected to the driving device 30, and each of the ultrasonic positioning modules 42 is used for measurement.
  • the peripheral obstacle and the signal fed back by the obstacle are used to drive the rolling ball 20 through the driving device 30 to roll to avoid the obstacle.
  • the spherical robot of the embodiment of the present invention drives the rolling ball 20 provided in the spherical outer casing 10 to roll by the driving device 30, and the partial structure of the rolling ball 20 is exposed to the circular hole 111 provided in the spherical outer casing 10. Then, the rolling ball 20 exposed to the outside of the circular hole 111 provided in the spherical outer casing 10 contacts the ground raft, so that the rolling walk can be realized on the ground or the spherical outer casing can be statically moved.
  • the spherical outer casing 10 When rolling, the spherical outer casing 10
  • the outer peripheral obstacle ⁇ , the ultrasonic positioning module 42 of the ultrasonic device 40 can measure the obstacle and transmit the signal according to the obstacle feedback to the driving device 30 to drive the rolling ball through the driving device 30 to avoid the rolling Obstacles, so as to avoid hitting obstacles, not easily hitting children, have good obstacle avoidance function, interact with children, and have high safety performance.
  • the movable component of the spherical robot of the embodiment of the present invention is hidden inside, and since the outer portion of the spherical outer casing 10 has no edges and corners, the accidental injury to the infant child is greatly reduced, so that the product It can be applied to children from 0 to 6 years old. It is the ideal intelligent robot for early education of infants and young children.
  • the number of the ultrasonic positioning modules 42 is six, and the ultrasonic fixing base 41 is provided with six module mounting positions 411, and the six ultrasonic waves.
  • Positioning modules 42 are mounted on six of said module mounting locations 411, respectively.
  • the measurement of the obstacle substantially covers any position in the circumferential direction, that is, when there is an obstacle in the front, left side, right side or rear side of the spherical outer casing 10 Both can be measured by one of the ultrasonic positioning modules 42, and the feedback signal drives the rolling ball 20 through the driving device 30 to change the rolling route to avoid obstacles.
  • the number of the ultrasonic positioning modules 42 may also be four or eight.
  • each of the ultrasonic positioning modules 42 includes an ultrasonic circuit board 41 2 and an ultrasonic wave board 412 disposed on the ultrasonic circuit board 412 for transmitting ultrasonic waves toward the obstacle.
  • An ultrasonic transmitter 422 and an ultrasonic receiver 423 that receives reflected waves of the obstacle, the ultrasonic circuit board 412 is electrically connected to the driving device 30.
  • the ultrasonic transmitter 422 emits ultrasonic waves in a certain direction, and the ultrasonic wave propagates in the air at the same time as the emission eclipse, and immediately returns to the obstacle when it hits the obstacle, and the ultrasonic receiver 423 receives the reflected wave. Stop counting immediately. In this way, the obstacle in the direction is calculated, so that it can be judged whether or not the rolling wheel is driven by the driving device 30 to avoid obstacles, and the obstacle avoiding effect is excellent.
  • the ultrasonic positioning module 42 further includes an audio device 43.
  • the audio device 43 is disposed on the ultrasonic circuit board 412, and the audio device 43 is used.
  • a peripheral sound signal is received and scrolled to the sound signal by the driving device 30 by driving the rolling ball 20 according to the strength of the sound signal.
  • the audio device 43 disposed on the ultrasonic circuit board 412 can detect the strength of the corresponding sound signal in the direction, and can drive the rolling ball 20 to scroll toward the sound signal according to the direction of the sound, or face the sound signal.
  • Direction scrolling This can effectively control the spherical robot to actively approach or stay away from children, so that children can better interact with the spherical robot, and the playability is excellent.
  • the audio device is a microphone.
  • the driving device 30 includes a motor mounting bracket 31, an annular connecting plate 32, three servo motors 33, and three Mecanum wheels 34.
  • An annular connecting plate 32 is disposed on an outer circumference of the rolling ball 20 and fixedly connected to an inner wall of the spherical outer casing 10.
  • the motor fixing frame 31 is fixedly connected to the upper side of the annular connecting plate 32, and the three servo motors 33 are provided.
  • the ring-shaped uniformity is fixed on the motor mounting frame 31 and is electrically connected to each of the ultrasonic positioning modules 42.
  • the three Mecanum wheels 34 are respectively connected to the main shafts of the three servo motors 33 and both are connected.
  • the function of the annular connecting plate 32 serves to connect the motor fixing frame 31 with the inner wall of the spherical outer casing 10.
  • the function of the motor fixing frame 31 is for mounting and fixing the servo motor 33.
  • the treads of the three Mecanum wheels 34 are in tangential contact with the spherical surface of the rolling ball 20.
  • the servo motor 33 When the servo motor 33 is operated, the main shaft of the servo motor 33 drives the Mecanum wheel 34 to rotate, and the Mecanum wheel 34 passes the friction. Force drives the rolling ball 20 to roll from The spherical robot is caused to roll and walk, since the three Mecanum wheels 34 can coordinate and work according to the received signals to drive the rolling ball 20 to roll.
  • the realization of obstacle avoidance or interaction with children, active away from or close to children based on the sound signals emitted by children is highly practical.
  • the central axis extension lines of the three Mecanum wheels 34 intersect to form an equilateral triangle.
  • the coordinated drive control effect of the rolling ball 20 is optimal under such a structural design, and the rolling route for driving the rolling ball 20 can be controlled very accurately.
  • the motor mount 31 includes a triangular plate 311 and three support columns 312.
  • the triangular plate 311 is disposed above the rolling ball 20, and the three
  • the support posts 312 are respectively fixedly connected between the three corners of the triangular plate 311 and the annular connecting plate 32; the three sides of the triangular plate 31 1 are respectively provided with the avoidance wheel slots 3111, three of the three
  • the servo motor 33 is respectively fixed at a position where the bottom of the triangular plate 311 is close to the three sides of the triangular plate 311, and the three Mecanum wheels 34 are respectively accommodated in the three of the avoidance wheel slots.
  • the function of the triangular plate 311 is for mounting and fixing of the servo motor 33.
  • the support post 312 functions to connect the triangular plate 311 and the annular connecting plate 32 such that a space is formed between the annular connecting plate 32 and the triangular plate 311, which accommodates each servo motor 33 and the Mecanum wheel 34.
  • the evacuation wheel groove 3111 is further provided at the three sides of the triangular plate 311, so that the triangular plate 311 can be prevented from interfering with the installation of the Mecanum wheel 34, and the structure design is ingenious and practical.
  • the spherical robot further includes a display device 50 disposed in the spherical casing 10, and the display device 50 includes a driving circuit board 51 and a display circuit.
  • the driving circuit board 51 is disposed above the triangular board 311, and the display circuit board 52 is fixed to one side of the driving circuit board 51 and perpendicular to the driving circuit board 51, and the board
  • the display circuit board 52 is provided with a plurality of display LEDs (not shown) toward the end of the inner wall of the spherical casing 10.
  • the function of the display device 50 is to display various electronic patterns and characters.
  • the driving circuit board 51 is electrically connected to the display circuit board 52, and each of the display LEDs on the display circuit board 52 is controlled to be lit by the driving circuit board 51, so that different electronic patterns can be formed by different arrangement of the respective display LEDs. Better interaction with children.
  • the display device 50 further includes a rotating motor 53, a transmission mechanism 54 and a bearing 55.
  • the rotating motor 53 is fixed to a side of the triangular plate 311. Inside the bearing 55 The surface is fixed to the top of the triangular plate 311, the driving circuit board 51 is fixedly connected to the outer surface of the bearing 55, and the transmission mechanism 54 is coupled to the main axis of the rotating motor 53 and the outer surface of the bearing 55. between. Specifically, the rotating motor 53 drives the bearing 55 to rotate through the transmission mechanism 54. Since the driving circuit board 51 is fixedly connected to the outer surface of the bearing 55, the bearing 55 also drives the driving circuit board 51 to rotate after being rotated, and is mounted on the driving circuit.
  • the display circuit board 52 on the side of the board 51 is also rotated.
  • various display LEDs disposed on the display circuit board 52 can form various electronic patterns and display different characters. Realize the display of patterns or texts to achieve the effect of rotating the display.
  • the spherical outer casing 10 has a transparent structure corresponding to a position on the display circuit board 52 to facilitate the appearance of a pattern or a character.
  • a light emitting diode may be disposed on the motor holder 31, and a photoelectric receiving tube (not shown) is disposed on the driving circuit board 51, and the photoelectric receiving on the driving circuit board 51 is performed.
  • the tube is turned to the upper side of the LED, and the photo receiving tube induces a signal, which can be used as the starting point of the display circuit board 52.
  • the transmission mechanism 54 includes a large gear plate 541 and a pinion disk 542, and the large gear plate 541 is fixed to an outer surface of the bearing 55, the pinion gear The disk 542 is fixedly coupled to the spindle of the rotary motor 53, and the large gear disk 541 is meshed with the pinion disk 542.
  • the main shaft of the rotating motor 53 drives the pinion disk 542 to rotate, and the large gear plate 541 that is meshed with the pinion disk 542 also rotates, so that the bearing 55 fixed to the large gear plate 541 is The outer surface is also rotated, and then the driving circuit board 51 fixedly connected to the outer surface of the bearing 55 is also rotated, thereby realizing the control of the driving circuit board 51 to rotate, thereby controlling the rotation of the display circuit board 52, and the display circuit board 52 is rotated, each The display LED forms the effect of rotating the display.
  • the spherical robot further includes a power supply device 60 disposed in the spherical outer casing 10.
  • the power supply device 60 includes a power supply fixing base 61, a battery 62, and a sliding device. a ring spring 63, the power supply holder 61 is fixedly connected to the spherical housing 10 and located above the driving circuit board 51.
  • the power supply fixing base 61 is provided with a reed slot 611, and the battery 62 is fixed to
  • the power supply fixing base 61 is provided with a slip ring line 511, and the sliding ring spring 63 is disposed in the spring groove 611 and electrically connected to the battery 62 and the sliding
  • the driving device 30 and the ultrasonic device 40 are electrically connected to the battery 62.
  • the power supply device 60 functions as a power supply, wherein Battery 62 can be a battery or a dry battery or a rechargeable battery.
  • the power supply mount 61 is used for mounting and fixing the battery 62, wherein the battery 62 is electrically connected to the drive circuit board 51 by the arrangement of the slip ring spring 63, and the slip ring line on the slip ring spring 63 and the drive circuit board 51. With the cooperation of the 511, even if the driving circuit board 51 is rotated, electrical connection can be made between the slip ring springs 63.
  • the battery 62 can also supply power to the electric components of the drive unit 30 and the electric components of the ultrasonic device 40.
  • the power supply device 60 further includes a fixing piece 64.
  • the top of the power fixing base 61 is provided with a power fixing slot 612, and the battery 62 is disposed in the In the power fixing slot 612, the fixing piece 64 presses the battery 62, and both ends of the fixing piece 64 are fixedly connected to the power fixing base 61.
  • the battery 62 is fixed in the power fixing groove 612 by fixing the battery 62 in the power fixing groove 612, and the battery 62 is further fixed in the power fixing groove 612 through the fixing piece 64.
  • the fixing piece 64 and the power fixing base 61 may be connected by a fastener, and the fastener may be a bolt, a screw or a screw.
  • the spherical robot further includes a button device 70.
  • the button device 70 includes a button circuit board 71, a ring button cover 72, and a plurality of button springs 73.
  • the button circuit board 71 is fixed to the ultrasonic mount 41 and electrically connected to the ultrasonic device 40, the driving device 30, the display device 50, and the power supply device 60, respectively.
  • a plurality of capacitive non-contact button positions are arranged on the ring, and each of the button springs 73 is correspondingly disposed on each of the capacitive non-contact button positions, and the spherical casing 10 is disposed There is a spring hole 131 for exposing each of the button springs 73.
  • the ring button cover 72 is fastened to the spherical casing 10 and is sealed on each of the spring holes 131.
  • the function of the button device 70 is to control the operation of each device.
  • the non-contact button position of the capacitor realizes the function operation of the corresponding function, such as turning on or off.
  • a corresponding LED (not shown) may be disposed on the corresponding non-contact key position of the capacitor, and the state of the function of the non-contact key position control of the capacitor is determined by the state of the LED or the color state of the LED, for example,
  • the function ⁇ can be displayed for the identification LED, and the function can be turned off for the identification LED.
  • the spherical robot further includes a speaker device 80 disposed in the spherical casing 10, and the speaker device 80 includes a control circuit board 81 and a speaker 82.
  • the control circuit board 81 is fixed to an inner wall of the spherical outer casing 10 and electrically connected to the battery 62, and the speaker 82 is fixed to the bottom of the ultrasonic fixing base 41 and is The control circuit board 81 is electrically connected.
  • the volume potentiometer 83 is disposed on the control circuit board 81 for adjusting the volume of the speaker 82, and the spherical housing 10 is provided with the volume potentiometer 83.
  • the volume of the speaker 82 is controlled by the volume potentiometer 83, so that the volume can be adjusted to a suitable decibel, to avoid noise or affect the hearing of the child, to interact with the child through sound or music, to be entertaining and beneficial. body and mind.
  • the control circuit board 81 is further provided with an infrared tracking sensor 84, and the infrared tracking sensor 84 is used for detecting the color identification of the ground, and according to The detected signal is used to drive the rolling ball 20 through the drive device 30 to scroll along the color identification.
  • the infrared tracking sensor 84 is composed of an infrared emitting diode and an infrared receiving diode, and can detect the color identification of the ground and roll along the color identification tape, so that the color identification route can be set in advance, and then the spherical shape is The robot is placed in the route to allow the spherical robot to roll along the predetermined route, with diverse functions and diverse interactions with children.
  • the control circuit board 81 is provided with at least one electrical interface 85 and at least one color LED 86, and the spherical housing 10 is provided with each of the electric batteries.
  • the interface avoidance port 114 is exposed by the sexual interface 85.
  • the electrical interface 85 is, for example, a USB interface, a micro-USB interface, or a Type-C interface, etc., and the number may be one, two, or three.
  • the number of color LEDs 86 can also be set according to actual needs. It can be one, two or more. The color LEDs emit colored light, which is more attractive to children. It can raise the interest of children interacting with spherical robots. Strong.
  • a plurality of annular uniform spherical arc slots 112 are disposed in the spherical outer casing 10 near the edge of the circular hole 111, and the arcs are respectively arranged.
  • Balls 90 are provided in the spherical groove 112, and each of the balls 90 abuts against the rolling ball 20.
  • the respective balls 90 are uniformly annularly arranged and jacked up by the rolling balls 20, so that the rolling balls 20 are only in contact with the balls 90 without coming into contact with the spherical outer casing 10, and the frictional resistance of the rolling balls 20 is minimized, thereby causing the rolling balls 20 to be made.
  • the scrolling is smoother and more accurate.
  • the spherical robot further includes a tray 100.
  • the tray 100 is provided with a hemispherical groove 101, and the spherical outer casing 10 is placed in the hemispherical groove 101.
  • the rolling ball 20 is placed in the hemispherical groove 101 at a portion which is exposed outside the circular hole 111.
  • the tray 100 is used to maintain the entire spherical outer casing 10 in an upright stable state in a non-moving state, and is a support member of the spherical outer casing 10 and all the structures inside the spherical outer casing 10.
  • the spherical outer casing 10 includes a lower casing 11, a middle casing 12, an upper casing 13 and a decorative hollow shell 14, the lower casing 11, the middle casing 12 and the
  • the upper case 13 is sequentially connected from the bottom to the top, and the circular hole 111 is disposed at the bottom of the lower case 11, and the upper case 13 is provided with an ultrasonic wave corresponding to the position of each of the ultrasonic positioning modules 42.
  • the hole 132 is fastened to the outside of each of the ultrasonic holes 132.
  • the ultrasonic holes 132 can be used for ultrasonic waves, and the decorative hollow shell 14 ensures that the ultrasonic holes 132 are not completely exposed, thereby avoiding affecting the overall aesthetics of the spherical outer casing.
  • the assembly of the lower case 11, the middle case 12 and the upper case 13 can be easily assembled and disassembled, thereby facilitating the assembly and disassembly of the components provided in the spherical outer casing 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Toys (AREA)

Abstract

一种球形机器人,包括设有圆形孔(111)的球形外壳(10)、滚动球(20)、驱动装置(30)和超声波装置(40);滚动球(20)设于球形外壳(10)内且露出于圆形孔(111)外;驱动装置(30)与滚动球(20)连接;超声波装置(40)包括超声波固定座(41)和若干个超声波定位模块(42),各超声波定位模块(42)环形均布于超声波固定座(41)上,各超声波定位模块(42)均与驱动装置(30)电性连接,各超声波定位模块(42)用于测量外周的障碍物并根据障碍物反馈的信号以通过驱动装置30驱动滚动球(20)滚动避开障碍物。通过各超声波定位模块(42)的设置,可以避免撞上障碍物,与儿童互动时安全性能高。

Description

球形机器人
技术领域
[0001] 本发明属于机器人技术领域, 尤其涉及一种球形机器人。
背景技术
[0002] 球形机器人是指一类驱动系统位于球形外壳或球体内部, 通过内驱动方式实现 球体运动的机器人。 球形机器人的其中一种功能就是配合儿童与儿童之间实现 交流互动。 现有的球形机器人的避障功能也较差, 易在行走过程中与儿童或者 异物产生相互的碰撞, 导致球形机器人损坏, 甚至撞伤儿童, 安全性能较差; 同吋, 现有的球形机器人只有通过儿童主动靠近或者走近球形机器人, 才能够 实现与球形机器人互动, 而无法有效控制球形机器人主动靠近或者走近儿童实 现互动, 可玩性较差。
技术问题
[0003] 本发明的目的在于提供一种球形机器人, 旨在解决现有技术中的球形机器人避 障功能差的技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明采用的技术方案是: 一种球形机器人, 包括球形外壳 、 滚动球、 驱动装置和超声波装置; 所述球形外壳设有圆形孔, 所述滚动球设 于所述球形外壳内且部分所述滚动球露出于所述圆形孔外; 所述驱动装置设于 所述球形外壳内并与所述滚动球连接以驱动所述滚动球滚动; 所述超声波装置 包括超声波固定座和若干个超声波定位模块, 所述超声波固定座设于所述球形 外壳内且固定安装于所述驱动装置的上方, 各所述超声波定位模块环形均布于 所述超声波固定座上, 各所述超声波定位模块均与所述驱动装置电性连接, 且 各所述超声波定位模块用于测量外周的障碍物并根据所述障碍物反馈的信号以 通过所述驱动装置驱动所述滚动球滚动避幵所述障碍物。
[0005] 优选地, 所述超声波定位模块的数量为六个, 所述超声波固定座上设有六个模 块安装位, 六个所述超声波定位模块分别安装于六个所述模块安装位上。
[0006] 优选地, 各所述超声波定位模块包括超声波电路板以及设于所述超声波电路板 上的用于朝向所述障碍物发射超声波的超声波发射器和接收所述障碍物的反射 波的超声波接收器, 所述超声波电路板与所述驱动装置电性连接。
[0007] 优选地, 所述超声波定位模块还包括音频器件, 所述音频器件设于所述超声波 电路板上, 所述音频器件用于接收外周的声音信号并根据所述声音信号的强弱 以通过所述驱动装置驱动所述滚动球滚动至所述声音信号处。
[0008] 优选地, 所述驱动装置包括电机固定架、 环形连接板、 三个伺服电机和三个麦 克纳姆轮, 所述环形连接板设于所述滚动球的外周并与所述球形外壳的内壁固 定连接, 所述电机固定架固定连接于所述环形连接板的上方, 三个所述伺服电 机环形均布固定于所述电机固定架上且均与各所述超声波定位模块电性连接, 三个所述麦克纳姆轮分别与三个所述伺服电机的主轴连接且均抵接于所述滚动 球的外表面。
[0009] 优选地, 三个所述麦克纳姆轮的中轴延长线相交形成等边三角形。
[0010] 优选地, 所述电机固定架包括三角形板和三个支撑柱, 所述三角形板设于所述 滚动球的上方, 三个所述支撑柱分别固定连接于所述三角形板的三个角部与所 述环形连接板之间; 所述三角形板的三条边部均设有避空轮槽, 三个所述伺服 电机分别固定于所述三角形板的底部靠近所述三角形板的三条边部的位置, 且 三个所述麦克纳姆轮分别对应容置于三个所述避空轮槽内。
[0011] 优选地, 所述球形机器人还包括设于所述球形外壳内的显示装置, 所述显示装 置包括驱动电路板和显示电路板, 所述驱动电路板设于所述三角形板的上方, 所述显示电路板固定于所述驱动电路板的一侧并与所述驱动电路板垂直设置, 且所述显示电路板朝向所述球形外壳内壁的端部设有若干个显示 LED。
[0012] 优选地, 所述显示装置还包括转动电机、 传动机构和轴承, 所述转动电机固定 于所述三角形板的侧部, 所述轴承的内表面固定于所述三角形板的顶部, 所述 驱动电路板与所述轴承的外表面固定连接, 所述传动机构连接于所述转动电机 的主轴与所述轴承的外表面之间。
[0013] 优选地, 所述传动机构包括大齿轮盘和小齿轮盘, 所述大齿轮盘固定于所述轴 承的外表面, 所述小齿轮盘与所述转动电机的主轴固定连接, 所述大齿轮盘与 所述小齿轮盘啮合连接。
[0014] 优选地, 所述球形机器人还包括设于所述球形外壳内的电源装置, 所述电源装 置包括电源固定座、 电池和滑环簧片, 所述电源固定座与所述球形外壳固定连 接并位于所述驱动电路板的上方, 所述电源固定座上设有簧片槽, 所述电池固 定于所述电源固定座上, 所述驱动电路板上设有滑环线, 所述滑环簧片设于所 述簧片槽内且电性连接于所述电池与所述滑环线之间; 所述驱动装置和所述超 声波装置均与所述电池电性连接。
[0015] 优选地, 所述电源装置还包括固定片, 所述电源固定座的顶部设有电源固定槽
, 所述电池设于所述电源固定槽内, 所述固定片压紧所述电池, 且所述固定片 的两端均与所述电源固定座固定连接。
[0016] 优选地, 所述球形机器人还包括按键装置, 所述按键装置包括按键电路板、 环 形按键盖和若干个按键弹簧, 所述按键电路板固定于所述超声波固定座上并分 别与所述超声波装置、 所述驱动装置、 所述显示装置和所述电源装置电性连接 , 所述按键电路板上设有环形均布的若干个电容非接触按键位, 各所述按键弹 簧一一对应地设于各所述电容非接触按键位上, 且所述球形外壳上设有供各所 述按键弹簧露出的弹簧孔, 所述环形按键盖与所述球形外壳扣接且封盖于各所 述弹簧孔上。
[0017] 优选地, 所述球形机器人还包括设于所述球形外壳内的扬声装置, 所述扬声装 置包括控制电路板、 扬声器和音量电位器, 所述控制电路板固定于所述球形外 壳的内壁并与所述电池电性连接, 所述扬声器固定于所述超声波固定座的底部 并与所述控制电路板电性连接, 所述音量电位器设于所述控制电路板上以用于 调节所述扬声器的音量, 且所述球形外壳上设有供所述音量电位器露出的电位 器避空口。
[0018] 优选地, 所述控制电路板上还设有红外循迹传感器, 且所述红外循迹传感器用 于对地面的颜色标识进行检测, 并根据检测的信号以通过所述驱动装置驱动所 述滚动球沿着所述颜色标识滚动。
[0019] 优选地, 所述控制电路板上设有至少一个电性接口和至少一个彩色 LED, 所述 球形外壳上设有供各所述电性接口露出的接口避空口。
[0020] 优选地, 所述球形外壳内靠近所述圆形孔的边缘处设有若干个环形均布的弧形 球槽, 各所述弧形球槽内均设有滚珠, 各所述滚珠均与所述滚动球抵接。
[0021] 优选地, 所述球形机器人还包括托盘, 所述托盘上设有半球形槽, 所述球形外 壳放置于所述半球形槽上, 且露出于所述圆形孔外的部分所述滚动球容置于所 述半球形槽内。
[0022] 优选地, 所述球形外壳包括下壳、 中壳、 上壳和装饰镂空壳, 所述下壳、 所述 中壳和所述上壳从下至上依序扣合连接, 所述圆形孔幵设于所述下壳的底部, 所述上壳幵设有与各所述超声波定位模块位置对应的超声波孔, 所述装饰镂空 壳扣设于各所述超声波孔的外部。
发明的有益效果
有益效果
[0023] 本发明的有益效果: 本发明的球形机器人, 通过驱动装置驱动设于球形外壳内 的滚动球滚动, 由于滚动球的部分结构露出至球形外壳设置的圆形孔外, 那么 该露出至球形外壳设置的圆形孔外的滚动球接触地面吋, 即可在地面上实现滚 动行走或保持球形外壳静态不动, 当在滚动过程中, 球形外壳的外周有障碍物 吋, 超声波装置的超声波定位模块即可测量到该障碍物并根据障碍物反馈的信 号传递到驱动装置上, 以通过该驱动装置驱动滚动球滚动避幵障碍物, 从而可 以避免撞上障碍物, 不会轻易撞上儿童, 避障功能好, 与儿童互动吋安全性能 高。
对附图的简要说明
附图说明
[0024] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有技术描 述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
[0025] 图 1为本发明实施例提供的球形机器人的结构示意图;
[0026] 图 2为本发明实施例提供的球形机器人隐藏底盘后的结构示意图; [0027] 图 3为本发明实施例提供的球形机器人的结构分解示意图;
[0028] 图 4为本发明实施例提供的球形机器人的球形外壳的结构分解示意图;
[0029] 图 5为本发明实施例提供的球形机器人的超声波装置的结构示意图;
[0030] 图 6为本发明实施例提供的球形机器人的驱动装置的结构示意图;
[0031] 图 7为本发明实施例提供的球形机器人的显示装置的结构分解示意图;
[0032] 图 8为本发明实施例提供的球形机器人的按键装置的结构分解示意图;
[0033] 图 9为本发明实施例提供的球形机器人的电源装置的结构分解示意图;
[0034] 图 10为本发明实施例提供的球形机器人的部分结构分解示意图;
[0035] 图 11为本发明实施例提供的球形机器人隐藏中壳后的结构示意图;
[0036] 图 12为本发明实施例提供的球形机器人的滚动球与滚珠抵接的结构示意图。
[0037] 其中, 图中各附图标记:
[0038] 10- -球形外壳 11一下壳 12_中壳
[0039] 13- -上壳 14_装饰镂空壳 20_滚动球
[0040] 30- -驱动装置 31_电机固定架 32_环形连接板
[0041] 33- -伺服电机 34_麦克纳姆轮 40_超声波装置
[0042] 41- -超声波固定座 42—超声波定位模块 43—音频器件
[0043] 50- -显示装置 51_驱动电路板 52_显示电路板
[0044] 53- -转动电机 54_传动机构 55—轴承
[0045] 60- -电源装置 61_电源固定座 62_电池
[0046] 63- -滑环簧片 64_固定片 70_按键装置
[0047] 71- -按键电路板 72_环形按键盖 73—按键弹簧
[0048] 80- -扬声装置 81_控制电路板 82_扬声器
[0049] 83- -音量电位器 84_红外循迹传感器 85_电性接口
[0050] 86- -彩色 LED 90_滚珠 100_托盘
[0051] 101- _半球形槽 111 圆形孔 112_弧形球槽
[0052] 113 电位器避空口 114一接口避空口 131 弹簧孔
[0053] 132—超声波孔 311—三角形板 312 支撑柱
[0054] 411一模块安装位 421 超声波电路板 422 超声波发射器 [0055] 423—超声波接收器 511—滑环线 541—大齿轮盘
[0056] 542—小齿轮盘 611—簧片槽 612—电源固定槽
[0057] 3111—避空轮槽。
本发明的实施方式
[0058] 下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至 终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下 面通过参考附图 1~12描述的实施例是示例性的, 旨在用于解释本发明, 而不能 理解为对本发明的限制。
[0059] 在本发明的描述中, 需要理解的是, 术语"长度"、 "宽度"、 "上"、 "下"、 "前" 、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底 ""内"、 "外"等指示的方位或 位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化 描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方 位构造和操作, 因此不能理解为对本发明的限制。
[0060] 此外, 术语"第一"、 "第二 "仅用于描述目的, 而不能理解为指示或暗示相对重 要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二 "的特 征可以明示或者隐含地包括一个或者更多个该特征。 在本发明的描述中, "多个" 的含义是两个或两个以上, 除非另有明确具体的限定。
[0061] 在本发明中, 除非另有明确的规定和限定, 术语"安装"、 "相连"、 "连接"、 "固 定"等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或成 一体; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间 媒介间接相连, 可以是两个元件内部的连通或两个元件的相互作用关系。 对于 本领域的普通技术人员而言, 可以根据具体情况理解上述术语在本发明中的具 体含义。
[0062] 如图 1、 2、 3、 5、 10、 11所示, 本发明实施例提供的一种球形机器人, 包括球 形外壳 10、 滚动球 20、 驱动装置 30和超声波装置 40; 所述球形外壳 10设有圆形 孔 111, 所述滚动球 20设于所述球形外壳 10内且部分所述滚动球 20露出于所述圆 形孔 111外; 所述驱动装置 30设于所述球形外壳 10内并与所述滚动球 20连接以驱 动所述滚动球 20滚动; 所述超声波装置 40包括超声波固定座 41和若干个超声波 定位模块 42, 所述超声波固定座 41设于所述球形外壳 10内且固定安装于所述驱 动装置 30的上方, 各所述超声波定位模块 42环形均布于所述超声波固定座 41上 , 各所述超声波定位模块 42均与所述驱动装置 30电性连接, 且各所述超声波定 位模块 42用于测量外周的障碍物并根据所述障碍物反馈的信号以通过所述驱动 装置 30驱动所述滚动球 20滚动避幵所述障碍物。
[0063] 具体地, 本发明实施例的球形机器人, 通过驱动装置 30驱动设于球形外壳 10内 的滚动球 20滚动, 由于滚动球 20的部分结构露出至球形外壳 10设置的圆形孔 111 夕卜, 那么该露出至球形外壳 10设置的圆形孔 111外的滚动球 20接触地面吋, 即可 在地面上实现滚动行走或保持球形外壳静态不动, 当在滚动过程中, 球形外壳 1 0外周的有障碍物吋, 超声波装置 40的超声波定位模块 42即可测量到该障碍物并 根据障碍物反馈的信号传递到驱动装置 30上, 以通过该驱动装置 30驱动滚动球 2 0滚动避幵障碍物, 从而可以避免撞上障碍物, 不会轻易撞上儿童, 避障功能好 , 与儿童互动吋安全性能高。
[0064] 结合图 1~2所示, 本发明实施例的球形机器人可动部件隐藏在内部, 由于球形 外壳 10外部无棱角, 极大地减少了对婴幼儿童可能带来的意外伤害, 使得产品 可以适用于 0~6岁的孩子, 是婴幼儿童早期教育最理想的智能型机器人。
[0065] 本实施例中, 结合图 5所示, 优选地, 所述超声波定位模块 42的数量为六个, 所述超声波固定座 41上设有六个模块安装位 411, 六个所述超声波定位模块 42分 别安装于六个所述模块安装位 411上。 具体地, 六个超声波定位模块 42环形均布 设置后, 对障碍物的测量基本上覆盖了圆周方向的任何位置, 即当球形外壳 10 的前方、 左侧、 右侧或者后侧有障碍物吋, 均可以通过其中一个超声波定位模 块 42测量到, 并反馈信号通过驱动装置 30驱动滚动球 20改变滚动路线以避幵障 碍物。
[0066] 特别地, 当在球形机器人的后背有儿童突然朝向球形机器人跑来吋, 通过后侧 设置的超声波定位模块 42实吋测量到该儿童, 然后反馈信号通过驱动装置 30驱 动滚动球 20改变滚动路线以避幵儿童, 从而可以避免与儿童相撞, 进而避免造 成儿童受伤, 安全性能大大提高。 [0067] 当然, 在其他实施例中, 超声波定位模块 42的数量也可以为四个或者八个。
[0068] 本实施例中, 结合图 3、 5所示, 各所述超声波定位模块 42包括超声波电路板 41 2以及设于所述超声波电路板 412上的用于朝向所述障碍物发射超声波的超声波 发射器 422和接收所述障碍物的反射波的超声波接收器 423, 所述超声波电路板 4 12与所述驱动装置 30电性连接。 具体地, 超声波发射器 422向某一方向发射超声 波, 在发射吋刻的同吋幵始计吋, 超声波在空气中传播, 途中碰到障碍物就立 即返回来, 超声波接收器 423收到反射波就立即停止计吋。 以此计算出该方向的 障碍物, 从而可以判断是否通过驱动装置 30驱动滚动轮滚动以避幵障碍物, 避 障效果极佳。
[0069] 本实施例中, 结合图 3、 5所示, 所述超声波定位模块 42还包括音频器件 43, 所 述音频器件 43设于所述超声波电路板 412上, 所述音频器件 43用于接收外周的声 音信号并根据所述声音信号的强弱以通过所述驱动装置 30驱动所述滚动球 20滚 动至所述声音信号处。 具体地, 超声波电路板 412上设置的音频器件 43可以检测 对应的该方向的声音信号的强弱, 可以根据声音的方向通过驱动装置 30驱动滚 动球 20朝向声音信号方向滚动, 或者背向声音信号方向滚动。 这样可以有效控 制球形机器人主动靠近或者远离儿童, 使得儿童能够更好地实现与球形机器人 互动, 可玩性极佳。
[0070] 优选地, 所述音频器为麦克风。
[0071] 本实施例中, 结合图 3、 6、 11所示, 所述驱动装置 30包括电机固定架 31、 环形 连接板 32、 三个伺服电机 33和三个麦克纳姆轮 34, 所述环形连接板 32设于所述 滚动球 20的外周并与所述球形外壳 10的内壁固定连接, 所述电机固定架 31固定 连接于所述环形连接板 32的上方, 三个所述伺服电机 33环形均布固定于所述电 机固定架 31上且均与各所述超声波定位模块 42电性连接, 三个所述麦克纳姆轮 3 4分别与三个所述伺服电机 33的主轴连接且均抵接于所述滚动球 20的外表面。 其 中, 环形连接板 32的作用起到连接电机固定架 31与球形外壳 10内壁的作用, 电 机固定架 31的作用是用于供伺服电机 33的安装和固定。 具体地, 三个麦克纳姆 轮 34的轮面与滚动球 20的球面相切接触, 当伺服电机 33工作吋, 伺服电机 33的 主轴带动麦克纳姆轮 34转动, 麦克纳姆轮 34通过摩擦力驱动滚动球 20滚动, 从 而使得球形机器人实现滚动行走, 由于三个麦克纳姆轮 34可以根据接收到的信 号协调共同工作, 以实现驱动滚动球 20滚动。 例如, 实现避障功能或者与儿童 互动吋, 根据儿童发出的声音信号而主动远离或者靠近儿童, 实用性强。
[0072] 本实施例中, 结合图 6所示, 优选地, 三个所述麦克纳姆轮 34的中轴延长线相 交形成等边三角形。 具体地, 在该种结构设计下对滚动球 20的协调驱动控制效 果最佳, 可以非常精确地控制驱动滚动球 20的滚动路线。
[0073] 本实施例中, 结合图 6所示, 所述电机固定架 31包括三角形板 311和三个支撑柱 312, 所述三角形板 311设于所述滚动球 20的上方, 三个所述支撑柱 312分别固定 连接于所述三角形板 311的三个角部与所述环形连接板 32之间; 所述三角形板 31 1的三条边部均设有避空轮槽 3111, 三个所述伺服电机 33分别固定于所述三角形 板 311的底部靠近所述三角形板 311的三条边部的位置, 且三个所述麦克纳姆轮 3 4分别对应容置于三个所述避空轮槽 3111内。 具体地, 三角形板 311的作用是用 于供伺服电机 33的安装和固定。 支撑柱 312的作用是连接三角形板 311和环形连 接板 32, 这样使得环形连接板 32与三角形板 311之间形成一个空间, 该空间即可 容纳各伺服电机 33和麦克纳姆轮 34。 而进一步地在三角形板 311的三条边部设置 避空轮槽 3111, 可以避免三角形板 311对麦克纳姆轮 34的安装造成干涉, 结构设 计巧妙, 实用性强。
[0074] 本实施例中, 结合图 3、 7、 11所示, 所述球形机器人还包括设于所述球形外壳 10内的显示装置 50, 所述显示装置 50包括驱动电路板 51和显示电路板 52, 所述 驱动电路板 51设于所述三角形板 311的上方, 所述显示电路板 52固定于所述驱动 电路板 51的一侧并与所述驱动电路板 51垂直设置, 且所述显示电路板 52朝向所 述球形外壳 10内壁的端部设有若干个显示 LED (图未示) 。 其中, 显示装置 50的 作用是显示各种电子图案和文字。 具体地, 驱动电路板 51与显示电路板 52电性 连接, 通过驱动电路板 51控制显示电路板 52上的各个显示 LED点亮, 这样通过各 个显示 LED的不同排列即可形成不同的电子图案, 与儿童之间产生更佳的互动效 果。
[0075] 本实施例中, 结合图 3、 7所示, 所述显示装置 50还包括转动电机 53、 传动机构 54和轴承 55, 所述转动电机 53固定于所述三角形板 311的侧部, 所述轴承 55的内 表面固定于所述三角形板 311的顶部, 所述驱动电路板 51与所述轴承 55的外表面 固定连接, 所述传动机构 54连接于所述转动电机 53的主轴与所述轴承 55的外表 面之间。 具体地, 转动电机 53通过传动机构 54带动轴承 55转动, 由于驱动电路 板 51与轴承 55的外表面固定连接的, 那么轴承 55在转动吋也会带动驱动电路板 5 1转动, 安装于驱动电路板 51—侧的显示电路板 52也跟随着转动, 在显示电路板 52转动的过程中, 设置在显示电路板 52上的各个显示 LED即可形成各种电子图案 , 以及显示不同的文字, 从而实现图案或者文字的显示, 达到旋转显示屏的效 果。 优选地, 球形外壳 10对应在显示电路板 52上旋转的位置处为透明结构, 以 便于显现出图案或者文字。
[0076] 进一步地, 在电机固定架 31上还可以设置一个发光二极管 (图未示) , 在驱动 电路板 51上设置一个光电接收管 (图未示) , 当驱动电路板 51上的光电接收管 转到发光二极管的上方吋, 光电接收管感应出信号, 这个信号可以作为显示电 路板 52的起始点。
[0077] 本实施例中, 结合图 7所示, 所述传动机构 54包括大齿轮盘 541和小齿轮盘 542 , 所述大齿轮盘 541固定于所述轴承 55的外表面, 所述小齿轮盘 542与所述转动 电机 53的主轴固定连接, 所述大齿轮盘 541与所述小齿轮盘 542啮合连接。 具体 地, 转动电机 53启动后, 转动电机 53的主轴带动小齿轮盘 542转动, 与小齿轮盘 542啮合连接的大齿轮盘 541也跟随着转动, 如此, 与大齿轮盘 541固定的轴承 55 的外表面也转动, 那么与轴承 55的外表面固定连接的驱动电路板 51也转动, 这 样就实现了控制驱动电路板 51转动, 进而实现控制显示电路板 52转动, 显示电 路板 52转动吋, 各个显示 LED则形成旋转显示屏的效果。
[0078] 本实施例中, 结合图 3、 9所示, 所述球形机器人还包括设于所述球形外壳 10内 的电源装置 60, 所述电源装置 60包括电源固定座 61、 电池 62和滑环簧片 63, 所 述电源固定座 61与所述球形外壳 10固定连接并位于所述驱动电路板 51的上方, 所述电源固定座 61上设有簧片槽 611, 所述电池 62固定于所述电源固定座 61上, 所述驱动电路板 51上设有滑环线 511, 所述滑环簧片 63设于所述簧片槽 611内且 电性连接于所述电池 62与所述滑环线 511之间; 所述驱动装置 30和所述超声波装 置 40均与所述电池 62电性连接。 具体地, 电源装置 60起到供电的作用, 其中, 电池 62可以是蓄电池或者干电池或者充电电池。 电源固定座 61用于电池 62的安 装和固定, 其中通过滑环簧片 63的设置使得电池 62与驱动电路板 51电性连接, 且在滑环簧片 63与驱动电路板 51上的滑环线 511配合下, 即使驱动电路板 51在转 动的情况下依然可以通过滑环簧片 63之间实现电性连接。 当然, 电池 62还可以 为驱动装置 30的电动部件和超声波装置 40的电动部件供电。
[0079] 本实施例中, 结合图 3、 9所示, 所述电源装置 60还包括固定片 64, 所述电源固 定座 61的顶部设有电源固定槽 612, 所述电池 62设于所述电源固定槽 612内, 所 述固定片 64压紧所述电池 62, 且所述固定片 64的两端均与所述电源固定座 61固 定连接。 具体地, 由于球形机器人在滚动行走过程中不可避免会产生振动, 那 么通过将电池 62固定座在电源固定槽 612内, 并通过固定片 64进一步将电池 62压 紧固定在电源固定槽 612内可以彻底确保电池 62安装后的稳定性和可靠性, 不用 担心球形机器人在滚动行走过程中电池 62会出现松脱等问题。 其中, 固定片 64 与电源固定座 61的连接可以采用紧固件锁紧连接, 紧固件可以是螺栓、 螺丝或 者螺钉等。
[0080] 本实施例中, 结合图 3、 8所示, 所述球形机器人还包括按键装置 70, 所述按键 装置 70包括按键电路板 71、 环形按键盖 72和若干个按键弹簧 73, 所述按键电路 板 71固定于所述超声波固定座 41上并分别与所述超声波装置 40、 所述驱动装置 3 0、 所述显示装置 50和所述电源装置 60电性连接, 所述按键电路板 71上设有环形 均布的若干个电容非接触按键位 (图未示) , 各所述按键弹簧 73—一对应地设 于各所述电容非接触按键位上, 且所述球形外壳 10上设有供各所述按键弹簧 73 露出的弹簧孔 131, 所述环形按键盖 72与所述球形外壳 10扣接且封盖于各所述弹 簧孔 131上。 具体地, 按键装置 70的作用是控制各装置的工作, 其中, 通过手触 碰环形按键盖 72, 环形按键盖 72通过对应位置的弹簧触发到按键电路板 71上的 电容非接触按键位, 那么该电容非接触按键位则实现相应的功能的幵启或者关 闭等功能操作。 其中, 在对应的电容非接触按键位上可以设置标识 LED (图未示 ) , 通过该标识 LED的幵启状态或者颜色状态来判断该电容非接触按键位控制的 功能处于的状态, 例如, 某功能的幵可以为标识 LED显示, 而该功能的关在可以 为标识 LED熄灭。 [0081] 本实施例中, 结合图 3、 10所示, 所述球形机器人还包括设于所述球形外壳 10 内的扬声装置 80, 所述扬声装置 80包括控制电路板 81、 扬声器 82和音量电位器 8 3, 所述控制电路板 81固定于所述球形外壳 10的内壁并与所述电池 62电性连接, 所述扬声器 82固定于所述超声波固定座 41的底部并与所述控制电路板 81电性连 接, 所述音量电位器 83设于所述控制电路板 81上以用于调节所述扬声器 82的音 量, 且所述球形外壳 10上设有供所述音量电位器 83露出的电位器避空口 113。 具 体地, 通过音量电位器 83控制扬声器 82放出的音量的大小, 这样可以调节音量 至适合的分贝, 避免产生噪音或者影响儿童的听力, 通过声音或者音乐与儿童 互动, 寓教于乐, 又有益身心。
[0082] 本实施例中, 结合图 3所示, 所述控制电路板 81上还设有红外循迹传感器 84, 且所述红外循迹传感器 84用于对地面的颜色标识进行检测, 并根据检测的信号 以通过所述驱动装置 30驱动所述滚动球 20沿着所述颜色标识滚动。 具体地, 红 外循迹传感器 84由红外发射二极管和红外接收二极管组成, 可以对地面的颜色 标识进行检测, 并沿着颜色标识带滚动, 这样可以在预先设定颜色标识的路线 , 然后将该球形机器人置于该路线中即可使得球形机器人沿着该预定的路线滚 动行走, 功能多样化, 与儿童之间的互动多样化。
[0083] 本实施例中, 结合图 2~4所示, 所述控制电路板 81上设有至少一个电性接口 85 和至少一个彩色 LED86, 所述球形外壳 10上设有供各所述电性接口 85露出的接口 避空口 114。 具体地, 电性接口 85例如是 USB接口、 micro-USB接口或者 Type-C 接口等, 数量可以是一个、 两个或者三个以上, 通过该电性接口 85可以对球形 机器人进行充电或者进行存储数据的相互传输。 而彩色 LED86的数量也可以根据 实际需求设定数量可以是一个、 两个或者三个以上, 彩色 LED86发出彩色光, 对 儿童的吸引力更强, 可以提起儿童与球形机器人互动的兴趣, 实用性强。
[0084] 本实施例中, 结合图 4、 12所示, 所述球形外壳 10内靠近所述圆形孔 111的边缘 处设有若干个环形均布的弧形球槽 112, 各所述弧形球槽 112内均设有滚珠 90, 各所述滚珠 90均与所述滚动球 20抵接。 具体地, 各个滚珠 90环形均布并顶起滚 动球 20, 使得滚动球 20只和滚珠 90接触而不与球形外壳 10接触, 最大限度地减 小滚动球 20的摩擦阻力, 从而使得滚动球 20的滚动更加顺畅以及准确度更高。 [0085] 本实施例中, 结合图 1、 3所示, 所述球形机器人还包括托盘 100, 所述托盘 100 上设有半球形槽 101, 所述球形外壳 10放置于所述半球形槽 101上, 且露出于所 述圆形孔 111外的部分所述滚动球 20容置于所述半球形槽 101内。 具体地, 托盘 1 00用于在非运动状态下让整个球形外壳 10保持直立的稳定状态, 是球形外壳 10 以及球形外壳 10内部所有结构的支撑件。
[0086] 本实施例中, 结合图 4所示, 所述球形外壳 10包括下壳 11、 中壳 12、 上壳 13和 装饰镂空壳 14, 所述下壳 11、 所述中壳 12和所述上壳 13从下至上依序扣合连接 , 所述圆形孔 111幵设于所述下壳 11的底部, 所述上壳 13幵设有与各所述超声波 定位模块 42位置对应的超声波孔 132, 所述装饰镂空壳 14扣设于各所述超声波孔 132的外部。 具体地, 超声波孔 132可以用于供超声波发出, 而装饰镂空壳 14则 保证超声波孔 132不会全部外露, 避免影响球形外壳的整体美观性。 而通过下壳 11、 中壳 12和上壳 13扣合组装可以便于组装和拆卸, 从而也便于对设于球形外 壳 10内的部件的组装和拆卸。
[0087] 本实施例中, 需要统一说明的是, 部件与部件之间的固定连接或者可拆卸连接 可以采用紧固件连接的方式实现。
[0088] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种球形机器人, 其特征在于: 包括球形外壳、 滚动球、 驱动装置和 超声波装置; 所述球形外壳设有圆形孔, 所述滚动球设于所述球形外 壳内且部分所述滚动球露出于所述圆形孔外; 所述驱动装置设于所述 球形外壳内并与所述滚动球连接以驱动所述滚动球滚动; 所述超声波 装置包括超声波固定座和若干个超声波定位模块, 所述超声波固定座 设于所述球形外壳内且固定安装于所述驱动装置的上方, 各所述超声 波定位模块环形均布于所述超声波固定座上, 各所述超声波定位模块 均与所述驱动装置电性连接, 且各所述超声波定位模块用于测量外周 的障碍物并根据所述障碍物反馈的信号以通过所述驱动装置驱动所述 滚动球滚动避幵所述障碍物。
[权利要求 2] 根据权利要求 1所述的球形机器人, 其特征在于: 所述超声波定位模 块的数量为六个, 所述超声波固定座上设有六个模块安装位, 六个所 述超声波定位模块分别安装于六个所述模块安装位上。
[权利要求 3] 根据权利要求 1所述的球形机器人, 其特征在于: 各所述超声波定位 模块包括超声波电路板以及设于所述超声波电路板上的用于朝向所述 障碍物发射超声波的超声波发射器和接收所述障碍物的反射波的超声 波接收器, 所述超声波电路板与所述驱动装置电性连接。
[权利要求 4] 根据权利要求 3所述的球形机器人, 其特征在于: 所述超声波定位模 块还包括音频器件, 所述音频器件设于所述超声波电路板上, 所述音 频器件用于接收外周的声音信号并根据所述声音信号的强弱以通过所 述驱动装置驱动所述滚动球滚动至所述声音信号处。
[权利要求 5] 根据权利要求 1~4任一项所述的球形机器人, 其特征在于: 所述驱动 装置包括电机固定架、 环形连接板、 三个伺服电机和三个麦克纳姆轮 , 所述环形连接板设于所述滚动球的外周并与所述球形外壳的内壁固 定连接, 所述电机固定架固定连接于所述环形连接板的上方, 三个所 述伺服电机环形均布固定于所述电机固定架上且均与各所述超声波定 位模块电性连接, 三个所述麦克纳姆轮分别与三个所述伺服电机的主 轴连接且均抵接于所述滚动球的外表面。
根据权利要求 5所述的球形机器人, 其特征在于: 三个所述麦克纳姆 轮的中轴延长线相交形成等边三角形。
根据权利要求 5所述的球形机器人, 其特征在于: 所述电机固定架包 括三角形板和三个支撑柱, 所述三角形板设于所述滚动球的上方, 三 个所述支撑柱分别固定连接于所述三角形板的三个角部与所述环形连 接板之间; 所述三角形板的三条边部均设有避空轮槽, 三个所述伺服 电机分别固定于所述三角形板的底部靠近所述三角形板的三条边部的 位置, 且三个所述麦克纳姆轮分别对应容置于三个所述避空轮槽内。 根据权利要求 7所述的球形机器人, 其特征在于: 所述球形机器人还 包括设于所述球形外壳内的显示装置, 所述显示装置包括驱动电路板 和显示电路板, 所述驱动电路板设于所述三角形板的上方, 所述显示 电路板固定于所述驱动电路板的一侧并与所述驱动电路板垂直设置, 且所述显示电路板朝向所述球形外壳内壁的端部设有若干个显示 LED 根据权利要求 8所述的球形机器人, 其特征在于: 所述显示装置还包 括转动电机、 传动机构和轴承, 所述转动电机固定于所述三角形板的 侧部, 所述轴承的内表面固定于所述三角形板的顶部, 所述驱动电路 板与所述轴承的外表面固定连接, 所述传动机构连接于所述转动电机 的主轴与所述轴承的外表面之间。
根据权利要求 9所述的球形机器人, 其特征在于: 所述传动机构包括 大齿轮盘和小齿轮盘, 所述大齿轮盘固定于所述轴承的外表面, 所述 小齿轮盘与所述转动电机的主轴固定连接, 所述大齿轮盘与所述小齿 轮盘啮合连接。
根据权利要求 9所述的球形机器人, 其特征在于: 所述球形机器人还 包括设于所述球形外壳内的电源装置, 所述电源装置包括电源固定座 、 电池和滑环簧片, 所述电源固定座与所述球形外壳固定连接并位于 所述驱动电路板的上方, 所述电源固定座上设有簧片槽, 所述电池固 定于所述电源固定座上, 所述驱动电路板上设有滑环线, 所述滑环簧 片设于所述簧片槽内且电性连接于所述电池与所述滑环线之间; 所述 驱动装置和所述超声波装置均与所述电池电性连接。
根据权利要求 11所述的球形机器人, 其特征在于: 所述电源装置还包 括固定片, 所述电源固定座的顶部设有电源固定槽, 所述电池设于所 述电源固定槽内, 所述固定片压紧所述电池, 且所述固定片的两端均 与所述电源固定座固定连接。
根据权利要求 11所述的球形机器人, 其特征在于: 所述球形机器人还 包括按键装置, 所述按键装置包括按键电路板、 环形按键盖和若干个 按键弹簧, 所述按键电路板固定于所述超声波固定座上并分别与所述 超声波装置、 所述驱动装置、 所述显示装置和所述电源装置电性连接 , 所述按键电路板上设有环形均布的若干个电容非接触按键位, 各所 述按键弹簧一一对应地设于各所述电容非接触按键位上, 且所述球形 外壳上设有供各所述按键弹簧露出的弹簧孔, 所述环形按键盖与所述 球形外壳扣接且封盖于各所述弹簧孔上。
根据权利要求 11所述的球形机器人, 其特征在于: 所述球形机器人还 包括设于所述球形外壳内的扬声装置, 所述扬声装置包括控制电路板 、 扬声器和音量电位器, 所述控制电路板固定于所述球形外壳的内壁 并与所述电池电性连接, 所述扬声器固定于所述超声波固定座的底部 并与所述控制电路板电性连接, 所述音量电位器设于所述控制电路板 上以用于调节所述扬声器的音量, 且所述球形外壳上设有供所述音量 电位器露出的电位器避空口。
根据权利要求 14所述的球形机器人, 其特征在于: 所述控制电路板上 还设有红外循迹传感器, 且所述红外循迹传感器用于对地面的颜色标 识进行检测, 并根据检测的信号以通过所述驱动装置驱动所述滚动球 沿着所述颜色标识滚动。
根据权利要求 14所述的球形机器人, 其特征在于: 所述控制电路板上 设有至少一个电性接口和至少一个彩色 LED, 所述球形外壳上设有供 各所述电性接口露出的接口避空口。
[权利要求 17] 根据权利要求 1~4任一项所述的球形机器人, 其特征在于: 所述球形 外壳内靠近所述圆形孔的边缘处设有若干个环形均布的弧形球槽, 各 所述弧形球槽内均设有滚珠, 各所述滚珠均与所述滚动球抵接。
[权利要求 18] 根据权利要求 1~4任一项所述的球形机器人, 其特征在于: 所述球形 机器人还包括托盘, 所述托盘上设有半球形槽, 所述球形外壳放置于 所述半球形槽上, 且露出于所述圆形孔外的部分所述滚动球容置于所 述半球形槽内。
[权利要求 19] 根据权利要求 1~4任一项所述的球形机器人, 其特征在于: 所述球形 外壳包括下壳、 中壳、 上壳和装饰镂空壳, 所述下壳、 所述中壳和所 述上壳从下至上依序扣合连接, 所述圆形孔幵设于所述下壳的底部, 所述上壳幵设有与各所述超声波定位模块位置对应的超声波孔, 所述 装饰镂空壳扣设于各所述超声波孔的外部。
PCT/CN2017/082097 2017-04-27 2017-04-27 球形机器人 WO2018195839A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/082097 WO2018195839A1 (zh) 2017-04-27 2017-04-27 球形机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/082097 WO2018195839A1 (zh) 2017-04-27 2017-04-27 球形机器人

Publications (1)

Publication Number Publication Date
WO2018195839A1 true WO2018195839A1 (zh) 2018-11-01

Family

ID=63920088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082097 WO2018195839A1 (zh) 2017-04-27 2017-04-27 球形机器人

Country Status (1)

Country Link
WO (1) WO2018195839A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109909981A (zh) * 2019-04-22 2019-06-21 滨州学院 球形保护装置
CN111806586A (zh) * 2020-07-01 2020-10-23 南京航空航天大学 一种具有全向跳跃能力的球形机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218578A (ja) * 1999-02-03 2000-08-08 Sony Corp 球形ロボット
JP4105580B2 (ja) * 2003-04-10 2008-06-25 正豊 松田 球アクチュエータ
CN102407890A (zh) * 2011-10-27 2012-04-11 北京邮电大学 增强功能的球形移动装置
CN103921859A (zh) * 2014-04-15 2014-07-16 南京航空航天大学 球形运动机构及其运动方式
US20150313438A1 (en) * 2014-05-03 2015-11-05 Bobsweep Inc. Auxiliary Oval Wheel for Robotic Devices
CN105564523A (zh) * 2015-10-16 2016-05-11 朱虹斐 复杂地形探索机器人
CN105923064A (zh) * 2015-12-30 2016-09-07 东莞市凡豆信息科技有限公司 具有翻滚和跳跃功能的球形机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218578A (ja) * 1999-02-03 2000-08-08 Sony Corp 球形ロボット
JP4105580B2 (ja) * 2003-04-10 2008-06-25 正豊 松田 球アクチュエータ
CN102407890A (zh) * 2011-10-27 2012-04-11 北京邮电大学 增强功能的球形移动装置
CN103921859A (zh) * 2014-04-15 2014-07-16 南京航空航天大学 球形运动机构及其运动方式
US20150313438A1 (en) * 2014-05-03 2015-11-05 Bobsweep Inc. Auxiliary Oval Wheel for Robotic Devices
CN105564523A (zh) * 2015-10-16 2016-05-11 朱虹斐 复杂地形探索机器人
CN105923064A (zh) * 2015-12-30 2016-09-07 东莞市凡豆信息科技有限公司 具有翻滚和跳跃功能的球形机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109909981A (zh) * 2019-04-22 2019-06-21 滨州学院 球形保护装置
CN111806586A (zh) * 2020-07-01 2020-10-23 南京航空航天大学 一种具有全向跳跃能力的球形机器人

Similar Documents

Publication Publication Date Title
US20090311941A1 (en) Portable Device
WO2018195839A1 (zh) 球形机器人
JP6908780B2 (ja) ペット用運動装置及びペット用運動システム
WO2024067701A1 (zh) 玩具
WO2024067700A1 (zh) 玩具
CN205434944U (zh) 一种玩具球
US20030171065A1 (en) Infant mobile having multiple activation modes, including a kick-bar activation mode and a remote activation mode
JP2002224461A (ja) 人形またはキャラクタを保持するように適用されたインタラクティブなおもちゃの乗り物
TW202339997A (zh) 兒童安全座椅
KR20140060448A (ko) 로봇 청소기
US20090128367A1 (en) Sensing ball
CN211659270U (zh) 一种颜色识别巡线玩具
CN217988256U (zh) 具有测量功能的摸高器
US20190009183A1 (en) Children's toy for promoting movement
WO1997001381A1 (en) Remote controlled toy ball
CN105169710A (zh) 一种游戏方式多元的悠悠球
CN215781426U (zh) 滑板玩具
CN214019210U (zh) 一种磁吸式声光套叠玩具
JP2009502437A (ja) 相互作用ヒューマンインターフェースのための物体検出
JP2023081739A (ja) 玩具
CN215025908U (zh) 滑板玩具
CN108594859B (zh) 一种可移动式儿童文学智能学习机及其跟随方法
CN221049831U (zh) 轮足式机器人
JP3076763B2 (ja) 車両玩具性能計測装置
CN214019173U (zh) 一种多功能套叠玩具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17907278

Country of ref document: EP

Kind code of ref document: A1