WO2018195753A1 - 一种被用于无线通信的用户、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户、基站中的方法和装置 Download PDF

Info

Publication number
WO2018195753A1
WO2018195753A1 PCT/CN2017/081798 CN2017081798W WO2018195753A1 WO 2018195753 A1 WO2018195753 A1 WO 2018195753A1 CN 2017081798 W CN2017081798 W CN 2017081798W WO 2018195753 A1 WO2018195753 A1 WO 2018195753A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
signal
time
frequency resource
power
Prior art date
Application number
PCT/CN2017/081798
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to PCT/CN2017/081798 priority Critical patent/WO2018195753A1/zh
Priority to CN201780088309.2A priority patent/CN110431890B/zh
Publication of WO2018195753A1 publication Critical patent/WO2018195753A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a method and apparatus for transmitting wireless signals in a wireless communication system, and more particularly to a transmission scheme and apparatus for wireless signals in a wireless communication system supporting power adjustment.
  • long duration PUCCH Physical Uplink Control Channel
  • the number of symbols occupied on a slot is variable.
  • the number of symbols occupied by a long duration PUCCH on one time slot may vary between 4 and 14. Such a large range of changes has brought new problems to the design of PUCCH.
  • the inventor has discovered through research that in a dynamic TDD (Time Division Duplex) system, the base station uses dynamic signaling to notify the user equipment of the transmission direction corresponding to different symbols in a time slot, thereby improving the utilization of uplink and downlink resources. flexibility.
  • the user equipment's understanding of the PUCCH length is prone to errors.
  • the understanding of the PUCCH length is inconsistent between different user equipments, it will bring additional interference between user equipments.
  • the energy used to transmit the PUCCH increases as the length of the PUCCH increases, and in the case of a longer PUCCH, the energy of the user equipment is wasted.
  • the time domain resource occupied by the PUCCH can be divided into two parts.
  • the configuration of the first part of the time domain resource is fixed or slow, and is configured by high layer signaling.
  • the second part of the configuration of the time domain resources is dynamically variable and configured by dynamic signaling.
  • the user equipment sends the PUCCH with different powers on the first part of the time domain resource and the second part of the time domain resource, and the transmit power on the second part of the time domain resource is lower than the transmit power of the first part of the time domain resource, which is reduced. Additional user equipment interference due to inconsistent understanding of the second part of the time domain resource length by different user equipments.
  • Another advantage of the above method is that when the PUCCH length is long, by using a lower transmission power on the second part of the time domain resource, the transmission power on the entire PUCCH is reduced under the premise of ensuring PUCCH coverage, and the work is improved. Rate efficiency.
  • the present invention discloses a solution to the above findings. It should be noted that although the initial motivation of the present invention is directed to PUCCH, the present invention is also applicable to other physical layer channels. In the case of no conflict, the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station and vice versa. The features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the invention discloses a method in a user equipment used for wireless communication, which comprises the following steps:
  • Step A Send the first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols. If the T is greater than X1, the transmit power of the first radio signal on the X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T Transmit power on the multi-carrier symbol other than the X1 of the multi-carrier symbols in the multi-carrier symbol is a second power; otherwise, the transmit power of the first radio signal in the T multi-carrier symbols It is the first power.
  • the T and the X1 are each a positive integer.
  • the foregoing method has the following advantages: the X1 of the multi-carrier symbols are configured by high-layer signaling, and have high reliability, and the X1 and the multi-carrier symbols are more than Carrier symbols are configured by dynamic signaling with high flexibility. The combination of the two can achieve a compromise between reliability and flexibility.
  • the above method has the advantage that lower transmission power can be adopted on the multi-carrier symbols except the X1 multi-carrier symbols, and the multi-carrier is reduced due to the X1 Additional interference to other terminal devices caused by misunderstanding of the number of multi-carrier symbols outside the symbol.
  • the above method has the advantage that the total transmit power of the first wireless signal can be reduced by using a lower transmit power on the multi-carrier symbols other than the X1 of the multi-carrier symbols.
  • the power waste when the T is large due to the T variable is reduced, and the power efficiency is improved.
  • the physical layer control channel refers to a physical layer uplink channel that can only be used to carry UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the physical layer control channel is a PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the physical layer control channel is sPUCCH (short PUCCH, short PUCCH).
  • the physical layer control channel is NR-PUCCH (New Radio PUCCH).
  • the physical layer control channel is NB-PUCCH (Narrow Band PUCCH).
  • the first time unit is a slot.
  • the first time unit is a sub-frame.
  • the first time unit occupies 1 ms in the time domain.
  • the first time unit includes a positive integer number of time domain resources occupied by the multicarrier symbols in the time domain.
  • the number of the multi-carrier symbols included in the time domain of the first time unit is equal to the T.
  • the number of the multi-carrier symbols included in the time domain of the first time unit is greater than the T.
  • the T is not less than the X1.
  • the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit is fixed.
  • the X1 is a fixed constant.
  • the X1 is less than 14.
  • the X1 is not less than 4.
  • the X1 is 4.
  • the T is a positive integer not less than 4 and not more than 14.
  • the X1 is configured by higher layer signaling.
  • the T is configured by dynamic signaling.
  • the T is configured by physical layer signaling.
  • the first wireless signal comprises a UCI.
  • the UCI includes ⁇ HARQ-ACK (Acknowledgement), CSI (Channel State Information, channel) At least one of a status information), an SR (Scheduling Request), and a CRI (Channel State Information Reference Signal Resource Indication).
  • HARQ-ACK Acknowledgement
  • CSI Channel State Information
  • SR Service Request
  • CRI Channel State Information Reference Signal Resource Indication
  • the multicarrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier) symbol.
  • the size of the frequency domain resource occupied by the first wireless signal in the frequency domain is independent of the T.
  • the frequency domain resource occupied by the first wireless signal in the frequency domain and the time domain resource occupied by the first wireless signal in the time domain are independently configured.
  • the second power is less than the first power.
  • the unit of the first power is dBm (millimeters).
  • the first power is P PUCCH (i)
  • the P PUCCH (i) is a transmit power of a PUCCH in an i th subframe in a serving cell indexed by c
  • the first wireless signal is in an index Transmitted on the serving cell of c.
  • the first power is linearly related to a first component
  • the first component is a power reference of a PUCCH on the X1 of the multicarrier symbols.
  • a linear coefficient between the first power and the first component is one.
  • the first component is P O_PUCCH
  • the P O_PUCCH is a power reference of the PUCCH.
  • the specific definition of P O_PUCCH see TS36.213.
  • the first component is configured by higher layer signaling.
  • the first component is common to the cell.
  • the first power and the second component are linearly related, the second component being related to channel quality between the user equipment and a target recipient of the first wireless signal.
  • a linear coefficient between the first power and the second component is one.
  • the second component is PL c
  • the PL c is a path loss estimation value in dB of the user equipment in the serving cell with index c
  • the first wireless signal is transmitted on a serving cell indexed c.
  • the second component is equal to the transmit power of the given reference signal minus the RSRP (Reference Signal Received Power) of the given reference signal measured by the user equipment. ).
  • the sender of the given reference signal is the target recipient of the first wireless signal, and the target recipient of the given reference signal is the user equipment.
  • the first power and the third component are linearly related, and the third component is related to a format of the PUCCH.
  • the linear coefficient between the first power and the third component is 1.
  • the third component is a ⁇ F_PUCCH (F), the ⁇ F_PUCCH (F), PUCCH format (format) F with respect to the PUCCH format 1a is a power offset.
  • ⁇ F_PUCCH (F) see TS 36.213.
  • the PUCCH format includes ⁇ 1, 1a, 1b, 2, 2a, 2b, 3, 4, 5 ⁇ .
  • the first power and the ⁇ fourth component, the fifth component ⁇ are respectively linearly correlated, and the linear coefficients between the first power and the ⁇ the fourth component and the fifth component ⁇ are respectively 1.
  • the fourth component is related to a format of a PUCCH
  • the fifth component is related to a number of antenna ports that the user equipment can use to transmit a PUCCH.
  • the PUCCH format corresponding to the first wireless signal belongs to ⁇ 1, 1a, 1b, 2, 2a, 2b, 3 ⁇ .
  • the fourth component is h(n CQI , n HARQ , n SR ), and the h(n CQI , n HARQ , n SR ) is related to a format of the PUCCH,
  • the n CQI is the number of information bits included in the channel quality information
  • the n HARQ is the number of information bits of the HARQ-ACK in the i-th subframe
  • the n SR indicates whether the i-th subframe is in the i-th subframe.
  • Carry the SR For specific definitions of h(n CQI , n HARQ , n SR ), the n CQI , the n HARQ and the n SR , see TS 36.213.
  • the fifth component is ⁇ TxD (F′), and when the user equipment is configured by higher layer signaling, the PUCCH can be transmitted on two antenna ports, the ⁇ TxD (F ')
  • Each PUCCH format F' is configured by higher layer signaling; otherwise the ⁇ TxD (F') is equal to zero.
  • TS 36.213 For a specific definition of the ⁇ TxD (F'), see TS 36.213.
  • the fifth component is configured by higher layer signaling.
  • the fifth component is common to the cell.
  • the first power and the ⁇ sixth component, the seventh component ⁇ are respectively linearly correlated, and the linear coefficients between the first power and the ⁇ the sixth component and the seventh component ⁇ are respectively 1.
  • the sixth component is related to a bandwidth occupied by the first wireless signal
  • the seventh component is related to an MCS (Modulation and Coding Scheme) of the first wireless signal.
  • the PUCCH format corresponding to the first wireless signal belongs to ⁇ 4, 5 ⁇ .
  • the sixth component is 10 log 10 (M PUCCH,c (i)), and the M PUCCH,c (i) is the i-th subframe in the serving cell with index c The bandwidth allocated by the PUCCH in units of resource blocks, the first radio signal being transmitted on the serving cell indexed c.
  • M PUCCH,c (i) see TS 36.213.
  • the seventh component is ⁇ TF,c (i)
  • the ⁇ TF,c (i) is the i-th subframe in the serving cell with index c and the first An MCS related power offset of a wireless signal transmitted on a serving cell indexed c.
  • ⁇ TF,c (i) see TS 36.213.
  • the seventh component is configured by higher layer signaling.
  • the seventh component is common to the cell.
  • the first power is equal to the first power limit, and the first power limit is a highest transmit power threshold of the PUCCH sent by the user equipment on the X1 multi-carrier symbols.
  • the first limited power is P CMAX,c (i)
  • the P CMAX,c (i) is the user in the i th subframe in the serving cell with index c
  • the first limited power is configured by higher layer signaling.
  • the first limited power is common to the cell.
  • the first power is less than the first limited power.
  • the unit of the second power is dBm (millimeters).
  • the second power and the eighth component are linearly related, and the eighth component is the multicarrier of the PUCCH other than the X1 of the multicarrier symbols in the T multicarrier symbols
  • the power reference of the transmit power on the symbol is one.
  • the eighth component is P O_PUCCH
  • the P O_PUCCH is a power reference of the PUCCH.
  • the specific definition of P O_PUCCH see TS36.213.
  • the eighth component is configured by higher layer signaling.
  • the eighth component is common to the cell.
  • the eighth component is smaller than the first component.
  • the second power and the second component are linearly related, and a linear coefficient between the second power and the second component is 1.
  • the second power and the third component are linearly related, and a linear coefficient between the second power and the third component is 1.
  • the second power and the [the fourth component, the fifth component] are linearly correlated, respectively, between the second power and ⁇ the fourth component, the fifth component ⁇
  • the linear coefficients are 1, respectively.
  • the second power and the [the sixth component, the seventh component] are linearly correlated, respectively, between the second power and ⁇ the sixth component, the seventh component ⁇
  • the linear coefficients are 1, respectively.
  • the second power is equal to a second limited power, where the second limited power is other than the X1 of the multi-carrier symbols in the T multi-carrier symbols.
  • the highest transmit power threshold of the PUCCH is transmitted on the multicarrier symbol.
  • the second limiting power is less than the first limiting power.
  • the second limited power is P CMAX,c (i)
  • the P CMAX,c (i) is the user in the i th subframe in the serving cell with index c
  • the second limited power is configured by higher layer signaling.
  • the second limited power is common to the cell.
  • the second power is less than the second limited power.
  • the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the foregoing method has the advantages of allowing the user equipment to separately send the first wireless signal by using the first antenna port group and the second antenna port group, thereby improving the first wireless signal. Robustness and occlusion resistance.
  • the foregoing method has the following advantages: the wireless signal sent by the first antenna port group and the wireless signal sent by the second antenna port group occupy different frequency domain resources on different time domain resources, so that the The interference of the first wireless signal to the neighboring cell is sufficiently randomized to reduce inter-cell interference.
  • the first sub-signal, the second sub-signal, the third sub-signal, the fourth sub-signal ⁇ respectively carry a first bit block, and the first bit block includes a positive integer One bit, the first bit block including UCI.
  • a given wireless signal carrying a given bit block means that the given wireless signal is the channel block (Channel Coding), the modulation mapper (Modulation Mapper) ), Layer Mapper, Precoding, Resource Element Mapper, and output after wideband symbol generation.
  • a given wireless signal carrying a given bit block means that the given wireless signal is the given bit block sequentially subjected to channel coding, and the modulation mapping , layer mapper, transform precoder (for generating complex-valued signals), precoding, resource particle mapper, output after the occurrence of wideband symbols.
  • a given wireless signal carrying a given block of bits means that the given block of bits is used to generate the given wireless signal.
  • the antenna port is formed by superposing a plurality of antennas through antenna virtualization, and mapping coefficients of the plurality of antennas to the antenna port form a beamforming vector.
  • the beamforming vector is composed of an analog beamforming vector and a Kronecker product of a digital beamforming vector.
  • different antenna ports in the first antenna port group correspond to the same analog beamforming vector
  • different antenna ports in the second antenna port group correspond to the same analog Beamforming vector
  • the first antenna port group and the second antenna port group correspond to different analog beamforming vectors.
  • different antenna ports in the first antenna port group correspond to different digital beamforming vectors
  • different antenna ports in the second antenna port group correspond to different numbers. Beamforming vector.
  • the first antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the first antenna port group is equal to the analog beam assignment corresponding to the first antenna port group.
  • Type vector the beamforming vector corresponding to the first antenna port group is equal to the analog beam assignment corresponding to the first antenna port group.
  • the first antenna port group includes a plurality of the antenna ports.
  • the second antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the second antenna port group is equal to the analog beam assignment corresponding to the second antenna port group.
  • Type vector the beamforming vector corresponding to the second antenna port group is equal to the analog beam assignment corresponding to the second antenna port group.
  • the second antenna port group includes a plurality of the antenna ports.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be assumed to be the same.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be assumed to be the same. It is meant that the small-scale characteristics of the wireless channel experienced by the signal transmitted by the first antenna port cannot be used to infer the small-scale characteristics of the wireless channel experienced by the signal transmitted by the second antenna port.
  • the first antenna port and the second antenna port are respectively the first An antenna port of any one of the antenna port group and the second antenna port group, the small scale characteristic comprising a channel impulse response.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be assumed to be the same.
  • the user equipment cannot perform joint channel estimation by using the reference signal sent by the first antenna port and the reference signal sent by the second antenna port.
  • the first antenna port and the second antenna port are respectively the antenna port of any one of the first antenna port group and the second antenna port group.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be assumed to be the same. It means that the beamforming vector corresponding to the first antenna port and the beamforming vector corresponding to the second antenna port cannot be assumed to be the same.
  • the first antenna port and the second antenna port are respectively the antenna port of any one of the first antenna port group and the second antenna port group.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be assumed to be the same.
  • the analog beamforming vector corresponding to the first antenna port group and the analog beamforming vector corresponding to the second antenna port group cannot be assumed to be the same.
  • any one of the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource is in the The T multi-carrier symbols occupy a positive integer number of discontinuous multi-carrier symbols.
  • any one of the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource is in the A plurality of consecutive consecutive multi-carrier symbols are occupied in the T multi-carrier symbols.
  • any one of the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource is in the frequency domain.
  • a positive integer number of consecutive frequency units are occupied.
  • the frequency unit is a bandwidth occupied by one subcarrier.
  • the first time-frequency resource, the second time-frequency resource, The third time-frequency resource, any one of the fourth time-frequency resources occupies a positive integer number of discontinuous frequency units in the frequency domain.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource occupy the plurality of the T multi-carrier symbols
  • the number of carrier symbols is equal.
  • the number of the multi-carrier symbols occupied by the first time-frequency resource and the third time-frequency resource in the T multi-carrier symbols is unequal, and the second time-frequency resource And the number of the multi-carrier symbols occupied by the fourth time-frequency resource in the T multi-carrier symbols is unequal.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource occupy the same number of frequency units in a frequency domain. .
  • the second component is equal to the first path loss
  • the measurement for the first reference signal is used to determine the first path loss.
  • the sender of the first reference signal is a target receiver of the first wireless signal
  • the target receiver of the first reference signal is the user equipment
  • the analog beam corresponding to the first antenna port group A shaped vector is used to receive the first reference signal.
  • the first path loss is equal to a transmit power of the first reference signal minus an RSRP of the first reference signal measured by the user equipment.
  • the second component is equal to the second path loss and the measurement for the second reference signal is used to determine the second path loss.
  • the sender of the second reference signal is a target receiver of the first wireless signal
  • the target receiver of the second reference signal is the user equipment
  • the analog beam corresponding to the second antenna port group A shaping vector is used to receive the second reference signal.
  • the second path loss is equal to the transmit power of the second reference signal minus the RSRP of the second reference signal measured by the user equipment.
  • the second component is equal to an average path loss, the average path loss being equal to a base 10 pair of the linear value of the first path loss and the average of the linear value of the second path loss Multiply the number by 10.
  • the linear value of a given value is equal to the given value divided by 10, and the index is taken from the base of 10.
  • the first wireless signal occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the Y1 elements sequentially constitute a first sequence, and the first sequence is one of the K candidate sequences, and the K candidate sequences are orthogonal to each other.
  • the Y1 is a positive integer not greater than the X1
  • the K is a positive integer greater than 1
  • any one of the Y1 elements is a complex number.
  • the candidate sequence is an OCC (Orthogonal Cover Code).
  • the foregoing method has the advantages that time-domain orthogonal spreading is used on the X1 multi-carrier symbols to improve the capacity of multi-user multiplexing and improve resource utilization.
  • the Y1 is greater than one.
  • the Y1 is equal to the X1.
  • the Y1 is smaller than the X1.
  • the Y1 is equal to the X1 divided by 2, and the X1 is an even number.
  • the Y1 is equal to the X1 minus 1 and then divided by 2, and the X1 is an odd number.
  • the Y1 is equal to the X1 plus 1 and then divided by 2, and the X1 is an odd number.
  • the Y1 is equal to the X1 divided by 4 and rounded.
  • the Y1 sub-signals are respectively transmitted on the Y1 of the multi-carrier symbols.
  • the Y1 of the multicarrier symbols are continuously distributed among the X1 of the multicarrier symbols.
  • the Y1 of the multicarrier symbols are discontinuously distributed among the X1 of the multicarrier symbols.
  • the reference sub-signal carries a first block of bits, the first block of bits comprising a UCI.
  • the Y1 sub-signals are respectively sent by the first antenna port group.
  • the Y1 sub-signals are respectively sent by the second antenna port group.
  • the first sub-signal occupies the Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols, and the first sub-signal is on the Y1 of the multi-carrier symbols
  • the transmitted parts are the Y1 sub-signals, respectively.
  • the second sub-signal occupies the Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols, and the second sub-signal is on the Y1 of the multi-carrier symbols
  • the transmitted parts are the Y1 sub-signals, respectively.
  • the third sub-signal occupies the Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols, and the third sub-signal is on the Y1 of the multi-carrier symbols
  • the transmitted parts are the Y1 sub-signals, respectively.
  • the fourth sub-signal occupies the Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols, and the fourth sub-signal is on the Y1 of the multi-carrier symbols
  • the transmitted parts are the Y1 sub-signals, respectively.
  • the first wireless signal occupies Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the above method has the advantage that the same wireless signal is simply repeated on the multi-carrier symbols except the X1 multi-carrier symbols, so that the design of the PUCCH can be flexibly extended to different In the case of T, the flexibility of the PUCCH design is guaranteed.
  • the Z1 sub-signals are respectively transmitted on the Z1 of the multi-carrier symbols.
  • the Z1 is a non-negative integer that is not greater than the difference between the T and the X1.
  • the Z1 is equal to the difference between the T and the X1.
  • the Z1 is smaller than the difference between the T and the X1.
  • the Z1 of the multicarrier symbols are continuously distributed in the time domain.
  • the Z1 of the multicarrier symbols are discontinuously distributed in the time domain.
  • the Z1 sub-signals are respectively sent by the first antenna port group.
  • the Z1 sub-signals are respectively sent by the second antenna port group.
  • the first sub-signal occupies the Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols, and the first sub-signal is in the Z1 the multi-carrier symbols
  • the parts transmitted on the above are respectively the Z1 sub-signals.
  • the second sub-signal occupies the Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols, and the second sub-signal is at the Z1 of the multi-carrier symbols
  • the parts transmitted on the above are respectively the Z1 sub-signals.
  • the third sub-signal occupies the Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols, and the third sub-signal is at the Z1 of the multi-carrier symbols
  • the parts transmitted on the above are respectively the Z1 sub-signals.
  • the fourth sub-signal occupies the Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols, and the fourth sub-signal is at the Z1 of the multi-carrier symbols
  • the parts transmitted on the above are respectively the Z1 sub-signals.
  • any one of the Z1 sub-signals carries a first bit block, and the first bit block includes a UCI.
  • any one of the Z1 sub-signals is the reference sub-signal.
  • the step A further includes the following steps:
  • the R first first signalings are used to determine R first offsets, and the R first offsets are used to determine the first power and the second power.
  • the R is a positive integer.
  • the R first signalings schedule the same carrier.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is dynamic signaling for a Downlink Grant.
  • the first signaling includes DCI (Downlink Control Information).
  • the first signaling indicates the corresponding first offset.
  • the first signaling includes a TPC (Transmitter Power Control) field.
  • TPC Transmitter Power Control
  • the first offset is indicated by a corresponding TPC field in the first signaling.
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control Channel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is a NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the sum of the R first offsets is used to determine the first power and the second power.
  • the first signaling includes a first domain, and at least one of ⁇ R1 sum of the first offsets, R2 of the sum of the first offsets is used to determine The first power and the second power.
  • R1 pieces of the first signaling are respectively used to determine the R1 pieces of the first offset
  • R2 pieces of the first signaling are respectively used to determine the R2 pieces of the first offset quantity
  • the values of the first domain included in the R1 first signaling are all equal to the first index
  • the values of the first domain included in the R2 first signalings are all equal to the second index.
  • the R1 and the R2 are each a positive integer not greater than the R.
  • the first index and the second index are respectively non-negative integers.
  • the first antenna port group corresponds to the first index
  • the second antenna port group corresponds to the second index
  • ⁇ the first index, the second index ⁇ are respectively an index of ⁇ first antenna virtualization vector, second antenna virtualization vector ⁇ in Q1 antenna virtualization vectors.
  • the Q1 is a positive integer greater than one.
  • the analog beamforming vector corresponding to the first antenna port group is equal to the first antenna virtualization vector.
  • the analog beamforming vector corresponding to the second antenna port group is equal to the second antenna virtualization vector.
  • the first antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the first antenna port group is equal to the first antenna virtualization vector.
  • the second antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the second antenna port group is equal to the second antenna virtualization vector.
  • ⁇ the first index, the second index ⁇ are respectively an index of the ⁇ first antenna virtualization vector group, the second antenna virtualization vector group ⁇ in the Q2 antenna virtualization vector group.
  • the antenna virtualization vector group includes a positive integer number of antenna virtualization vectors.
  • the Q2 is a positive integer greater than one.
  • the analog beamforming vector corresponding to the first antenna port group belongs to the first antenna virtualization vector group.
  • the analog beamforming vector corresponding to the second antenna port group belongs to the second antenna virtualization vector group.
  • the first antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the first antenna port group belongs to the first antenna virtualization vector group.
  • the second antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the second antenna port group belongs to the second antenna virtualization vector group.
  • the first power and the second power are linearly related to the ninth component, respectively.
  • the linear coefficient between ⁇ the first power, the second power ⁇ and the ninth component is 1, respectively.
  • the sum of the R first offsets is used to determine the ninth component.
  • the ninth component and the R first biases The magnitude of the shift is linearly related, and the linear coefficient between the sum of the ninth component and the R first offsets is one.
  • the sum of the R first offsets is g(i), and the g(i) is a state of power control adjustment on the current PUCCH.
  • g(i) For a specific definition of g(i), see TS 36.213.
  • At least one of the sum of the R1 of the first offsets and the sum of the R2 of the first offsets is used to determine the Ninth component
  • the sum of the ninth component and the R1 of the first offsets is linearly related, the ninth component and the R1 of the first offset
  • the linear coefficient between and is 1.
  • the sum of the ninth component and the R2 of the first offsets is linearly related, the ninth component and the R2 of the first offset
  • the sum of the R1 first offsets is g(i), and the g(i) is a state of power control adjustment on the current PUCCH.
  • g(i) For a specific definition of g(i), see TS 36.213.
  • the sum of the R2 first offsets is g(i), and the g(i) is a state of power control adjustment on the current PUCCH.
  • g(i) For a specific definition of g(i), see TS 36.213.
  • the ninth component and the reference component are linearly related, and the linear coefficient between the ninth component and the reference component is 1.
  • the reference component is equal to ⁇ the linear value of the sum of the R1 of the first offsets, the base 10 of the average of the linear values of the sum of the R2 of the first offsets ⁇ Multiply the number by 10.
  • the first power and the second power are linearly related to a tenth component, respectively, and a linear coefficient between the first power, the second power, and the tenth component It is 1. ⁇ the first path loss, the second path loss, the sum of the R1 of the first offsets, and the sum of the R1 of the second offsets ⁇ are used to determine the Quite a quantity.
  • the tenth component is equal to a linear value of a sum of a sum of the first path loss and the R1 first offsets, the second path loss
  • the base 10 logarithm of the average value of the linear value of the sum of the sum of the R2 and the first offsets is multiplied by 10.
  • the step A further includes at least one of the following two steps:
  • the first downlink information is used to determine ⁇ the X1, the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit, the first wireless signal At least one of the configuration information, the configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, (OCC) (Orthogonal Cover Code, At least one of orthogonal mask), PUCCH format (PUCCH format), UCI content ⁇ .
  • OCC Orthogonal mask
  • PUCCH format PUCCH format
  • UCI content UCI content
  • the first downlink information is carried by high layer signaling.
  • the first downlink information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first downlink information is common to the cell.
  • the first downlink information is UE (User Equipment) specific (UE specific).
  • UE User Equipment
  • the second downlink information is carried by dynamic signaling.
  • the second downlink information is carried by physical layer signaling.
  • the second downlink information is common to the cell.
  • the second downlink information is UE group common.
  • the first downlink information is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the downlink physical layer data channel is sPDSCH (short PDSCH).
  • the downlink physical layer data channel is an NR-PDSCH (New Radio PDSCH).
  • NR-PDSCH New Radio PDSCH
  • the downlink physical layer data channel is a NB-PDSCH (Narrow Band PDSCH).
  • the first downlink information is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the second downlink information is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the second downlink information is used to determine a transmission direction of the first time unit, where the transmission direction is one of a candidate direction set, and the candidate direction set includes ⁇ upstream, downlink ⁇ ,
  • the T multicarrier symbols belong to the multicarrier symbol corresponding to an uplink transmission direction in the first time unit.
  • the candidate direction set further includes a sidelink.
  • the number of the multi-carrier symbols corresponding to the uplink transmission direction in the first time unit is equal to the T.
  • the number of the multi-carrier symbols corresponding to the uplink transmission direction in the first time unit is greater than the T.
  • the second downlink information indicates the T.
  • the second downlink information indicates a location of the T of the multi-carrier symbols in the multi-carrier symbol corresponding to an uplink transmission direction in the first time unit.
  • all of the multi-carrier symbols in the first time unit correspond to the same transmission direction.
  • At least two of the multi-carrier symbols in the first time unit correspond to different transmission directions.
  • the first downlink information is used to determine ⁇ the first time frequency resource Source, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource ⁇ .
  • the first downlink information is used to determine the Y1 elements.
  • the step A further includes the following steps
  • the second signaling is used to trigger transmission of the first wireless signal.
  • the second signaling is used to determine configuration information of the first wireless signal.
  • the second signaling indicates configuration information of the first wireless signal.
  • the first downlink information is used to determine M pieces of configuration information, and the M is a positive integer greater than one.
  • the configuration information of the first wireless signal is one of the M pieces of the configuration information.
  • the second signaling is used to determine configuration information of the first wireless signal from the M pieces of configuration information.
  • the second signaling indicates an index of configuration information of the first wireless signal in the M pieces of configuration information.
  • the second signaling is used to determine ⁇ the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource ⁇ .
  • the second signaling is used to determine the Y1 elements.
  • the Y1 elements sequentially form a first sequence, the first sequence is one of the K candidate sequences, and the first downlink information is used to determine the K candidates. a sequence, the second signaling being used to determine the first sequence from the K candidate sequences.
  • the second signaling indicates an index of the first sequence in the K candidate sequences.
  • the second signaling is high layer signaling.
  • the second signaling is a MAC CE (Medium Access Control Layer Control Element) signaling.
  • MAC CE Medium Access Control Layer Control Element
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the second signaling is UE specific.
  • the second signaling is in a downlink physical layer data channel (ie, can be used Transmission on the downlink channel carrying the physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the second signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the invention discloses a method in a base station used for wireless communication, which comprises the following steps:
  • Step A Receive the first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols. If the T is greater than X1, the transmit power of the first radio signal on the X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T Transmit power on the multi-carrier symbol other than the X1 of the multi-carrier symbols in the multi-carrier symbol is a second power; otherwise, the transmit power of the first radio signal in the T multi-carrier symbols It is the first power.
  • the T and the X1 are each a positive integer.
  • the physical layer control channel refers to a physical layer uplink channel that can only be used to carry UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit is fixed.
  • the X1 is configured by higher layer signaling.
  • the T is configured by dynamic signaling.
  • the T is configured by physical layer signaling.
  • the size of the frequency domain resource occupied by the first wireless signal in the frequency domain is independent of the T.
  • the second power is less than the first power.
  • the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be assumed to be the same.
  • the first wireless signal occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the Y1 elements sequentially constitute a first sequence, and the first sequence is one of the K candidate sequences, and the K candidate sequences are orthogonal to each other.
  • the Y1 is a positive integer not greater than the X1
  • the K is a positive integer greater than 1
  • any one of the Y1 elements is a complex number.
  • the candidate sequence is OCC (Orthogonal) Cover Code, orthogonal mask).
  • the reference sub-signal carries a first block of bits, the first block of bits comprising a UCI.
  • the Y1 sub-signals are respectively sent by the first antenna port group.
  • the Y1 sub-signals are respectively sent by the second antenna port group.
  • the first wireless signal occupies Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the Z1 sub-signals are respectively sent by the first antenna port group.
  • the Z1 sub-signals are respectively sent by the second antenna port group.
  • any one of the Z1 sub-signals carries a first bit block, and the first bit block includes a UCI.
  • any one of the Z1 sub-signals is the reference sub-signal.
  • the step A further includes the following steps:
  • Step A0 Send R first signalings.
  • the R first first signalings are used to determine R first offsets, and the R first offsets are used to determine the first power and the second power.
  • the R is a positive integer.
  • the step A further includes at least one of the following two steps:
  • Step A2 Send the second downlink information.
  • the first downlink information is used to determine ⁇ the X1, the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit, the first wireless At least one of the configuration information of the number, the configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, cyclic OCC (Orthogonal Cover) At least one of Code, orthogonal mask, PUCCH format, UCI content ⁇ .
  • the second downlink information is used to determine the T.
  • the first downlink information is carried by high layer signaling.
  • the first downlink information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the second downlink information is carried by dynamic signaling.
  • the second downlink information is carried by physical layer signaling.
  • the step A further includes the following steps
  • Step A3. Send the second signaling.
  • the second signaling is used to trigger transmission of the first wireless signal.
  • the invention discloses a user equipment used for wireless communication, which comprises the following modules:
  • the first processing module is configured to send the first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols. If the T is greater than X1, the transmit power of the first radio signal on the X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T Transmit power on the multi-carrier symbol other than the X1 of the multi-carrier symbols in the multi-carrier symbol is a second power; otherwise, the transmit power of the first radio signal in the T multi-carrier symbols It is the first power.
  • the T and the X1 are each a positive integer.
  • the user equipment used for wireless communication is characterized in that the first wireless signal comprises a first sub-signal, a second sub-signal, a third sub-signal and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time The frequency resources are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the user equipment used for wireless communication is characterized in that the first wireless signal occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the user equipment used for wireless communication is characterized in that the first wireless signal occupies Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the foregoing user equipment used for wireless communication is characterized in that the first processing module is further configured to receive R first signalings.
  • the R first first signalings are used to determine R first offsets, and the R first offsets are used to determine the first power and the second power.
  • the R is a positive integer.
  • the foregoing user equipment used for wireless communication is characterized in that the first processing module is further configured to receive first downlink information.
  • the first downlink information is used to determine ⁇ the X1, the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit, the first wireless signal
  • At least one of the configuration information the configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, (OCC) (Orthogonal Cover Code, At least one of orthogonal mask), PUCCH format (PUCCH format), UCI content ⁇ .
  • the foregoing user equipment used for wireless communication is characterized in that the first processing module is further configured to receive second downlink information.
  • the second downlink information is used to determine the T.
  • the foregoing user equipment used for wireless communication is characterized in that the first processing module is further configured to receive the second signaling.
  • the second signaling is used to trigger transmission of the first wireless signal.
  • the invention discloses a base station device used for wireless communication, which comprises the following modules:
  • the second processing module is configured to receive the first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols. If the T is greater than X1, the transmit power of the first radio signal on the X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T Transmit power on the multi-carrier symbol other than the X1 of the multi-carrier symbols in the multi-carrier symbol is a second power; otherwise, the transmit power of the first radio signal in the T multi-carrier symbols It is the first power.
  • the T and the X1 are each a positive integer.
  • the above-described base station apparatus used for wireless communication is characterized in that the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the base station device used for wireless communication is characterized in that the first wireless signal occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the above-described base station apparatus used for wireless communication is characterized in that the first wireless signal occupies Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the base station device used for wireless communication is characterized in that the second processing module is further configured to send R first signalings.
  • the R first signalings are used to determine R first offsets, and the R first offsets are used to determine the first One power and the second power.
  • the R is a positive integer.
  • the base station device used for wireless communication is characterized in that the second processing module is further configured to send the first downlink information.
  • the first downlink information is used to determine ⁇ the X1, the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit, the first wireless signal At least one of the configuration information, the configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, (OCC) (Orthogonal Cover Code, At least one of orthogonal mask), PUCCH format (PUCCH format), UCI content ⁇ .
  • OCC Orthogonal mask
  • the base station device used for wireless communication is characterized in that the second processing module is further configured to send the second downlink information.
  • the second downlink information is used to determine the T.
  • the base station device used for wireless communication is characterized in that the second processing module is further configured to send the second signaling.
  • the second signaling is used to trigger transmission of the first wireless signal.
  • the present invention has the following advantages over the conventional solution:
  • the use of lower transmit power on time domain resources configured by physical layer signaling reduces additional interference to other terminal devices due to user equipment decoding errors in the physical layer signaling.
  • the total transmit power on the PUCCH is reduced, and in the case of ensuring PUCCH coverage, the power waste when the PUCCH length is large is improved, and the power efficiency is improved.
  • Time domain orthogonal spreading is used on time domain resources configured by higher layer signaling, which improves the capacity and resource utilization of multi-user multiplexing.
  • the same wireless signal is simply repeated on the time domain resources configured by the physical layer signaling, so that the design of the PUCCH can be flexibly extended to different PUCCH lengths, which ensures the flexibility of the PUCCH design.
  • FIG. 1 shows a flow chart of wireless transmission in accordance with one embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the structure of a first time unit and constituent components of ⁇ first power, second power ⁇ according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the structure of a first time unit and constituent components of ⁇ first power, second power ⁇ according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the structure of a first time unit and a constituent component of ⁇ first power, second power ⁇ according to another embodiment of the present invention
  • FIG. 5 is a schematic diagram showing resource mapping of a ⁇ first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time-frequency resource ⁇ in a time-frequency domain according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of resource mapping in a time-frequency domain of ⁇ first time-frequency resource, second time-frequency resource, third time-frequency resource, fourth time-frequency resource ⁇ according to another embodiment of the present invention
  • FIG. 7 is a diagram showing resource mapping of Y1 sub-signals and Z1 sub-signals in a time-frequency domain according to an embodiment of the present invention
  • FIG. 8 is a diagram showing resource mapping of Y1 sub-signals and Z1 sub-signals in a time-frequency domain according to another embodiment of the present invention.
  • FIG. 9 is a diagram showing resource mapping of Y1 sub-signals and Z1 sub-signals in a time-frequency domain according to another embodiment of the present invention.
  • FIG. 10 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present invention.
  • FIG. 11 is a block diagram showing the structure of a processing device for use in a base station in accordance with one embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of UE U2.
  • the steps in block F1, block F2, block F3 and block F4 are optional, respectively.
  • step S101 transmitting first downlink information in step S101; transmitting R first signalings in step S102; transmitting second signaling in step S103; transmitting second downlink information in step S104;
  • the first wireless signal is received in the first time unit.
  • the first downlink information is received in step S201; the R first signalings are received in step S202; the second signaling is received in step S203; the second downlink information is received in step S204; The first wireless signal is transmitted in the first time unit.
  • the first wireless signal is transmitted in one physical layer control channel, and the first wireless signal occupies T multi-carrier symbols. If the T is greater than X1, the transmit power of the first radio signal on the X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T Transmit power on the multi-carrier symbol other than the X1 of the multi-carrier symbols in the multi-carrier symbol is a second power; otherwise, the transmit power of the first radio signal in the T multi-carrier symbols It is the first power.
  • the T and the X1 are each a positive integer.
  • the R first signalings are used by the U2 to determine R first offsets, and the R first offsets are used by the U2 to determine the first power and the second power.
  • the R is a positive integer.
  • the first downlink information is used by the U2 to determine ⁇ the X1, the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit, the first wireless signal At least one of the configuration information, the configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, cyclic OCC, PUCCH format ( At least one of PUCCH format), UCI content ⁇ .
  • the second downlink information is used by the U2 to determine the T.
  • the second signaling is used to trigger transmission of the first wireless signal.
  • the physical layer control channel refers to a physical layer uplink channel that can only be used to carry UCI.
  • the physical layer control channel is a PUCCH.
  • the physical layer control channel is sPUCCH.
  • the physical layer control channel is NR-PUCCH.
  • the physical layer control channel is NB-PUCCH.
  • the first time unit is a slot.
  • the first time unit is a sub-frame.
  • the first time unit occupies 1 ms in the time domain.
  • the first time unit includes a time domain resource occupied by a positive integer number of the multi-carrier symbols in the time domain.
  • the first time unit is The number of said multicarrier symbols included on the time domain is equal to said T.
  • the number of the multi-carrier symbols included in the time domain of the first time unit is greater than the T.
  • the T is not smaller than the X1.
  • the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit is fixed.
  • the X1 is a fixed constant.
  • the X1 is configured by higher layer signaling.
  • the T is configured by dynamic signaling.
  • the T is configured by physical layer signaling.
  • the first wireless signal includes UCI.
  • the UCI includes at least one of ⁇ HARQ-ACK, CSI, SR, CRI ⁇ .
  • the multi-carrier symbol is an OFDM symbol.
  • the multi-carrier symbol is a DFT-S-OFDM symbol.
  • the multi-carrier symbol is an FBMC symbol.
  • the size of the frequency domain resource occupied by the first wireless signal in the frequency domain is independent of the T.
  • the frequency domain resource occupied by the first wireless signal in the frequency domain and the time domain resource occupied by the first wireless signal in the time domain are independently configured.
  • the second power is less than the first power.
  • the unit of the first power is dBm (millimeters).
  • the unit of the second power is dBm (millimeters).
  • the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain, in the frequency domain The above is overlapping.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the first sub-signal, the second sub-signal, the third sub-signal, and the fourth sub-signal respectively carry a first bit block
  • the first The bit block includes a positive integer number of bits
  • the first bit block includes UCI.
  • the given wireless signal carrying a given bit block means that the given wireless signal is the channel block (Channel Coding) modulated by the given bit block. Modulation Mapper, Layer Mapper, Precoding, Resource Element Mapper, Output after Wideband Symbol Generation.
  • the given wireless signal carrying a given bit block means that the given wireless signal is the given bit block sequentially subjected to channel coding, a modulation mapper, and a layer Mapper, transform precoder (for generating complex-valued signals), precoding, resource particle mapper, output after the occurrence of wideband symbols.
  • the given wireless signal carrying a given bit block means that the given bit block is used to generate the given wireless signal.
  • the antenna port is formed by superposing a plurality of antennas through antenna virtualization, and mapping coefficients of the plurality of antennas to the antenna port constitute a beamforming vector.
  • the beamforming vector is composed of an analog beamforming vector and a Kronecker product of a digital beamforming vector.
  • different antenna ports in the first antenna port group correspond to the same analog beamforming vector
  • different antenna ports in the second antenna port group correspond to The same analog beamforming vector
  • the first antenna port group and the second antenna port group correspond to different analog beamforming vectors.
  • different antenna ports in the first antenna port group correspond to different digital beamforming vectors
  • different antenna ports in the second antenna port group correspond to Different of the digital beamforming vectors
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be assumed to be the same.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be It is assumed that the same means that the small-scale characteristics of the wireless channel experienced by the signal transmitted by the first antenna port cannot be used to infer the small-scale characteristics of the wireless channel experienced by the signal transmitted by the second antenna port.
  • the first antenna port and the second antenna port are respectively the antenna port of any one of the first antenna port group and the second antenna port group, and the small-scale characteristic includes a channel impulse response.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be It is assumed that the same means that the user equipment cannot perform joint channel estimation by using the reference signal transmitted by the first antenna port and the reference signal transmitted by the second antenna port.
  • the first antenna port and the second antenna port are respectively the antenna port of any one of the first antenna port group and the second antenna port group.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be It is assumed that the same is true that the beamforming vector corresponding to the first antenna port and the beamforming vector corresponding to the second antenna port cannot be assumed to be the same.
  • the first antenna port and the second antenna port are respectively the antenna port of any one of the first antenna port group and the second antenna port group.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be It is assumed that the same is that the analog beamforming vector corresponding to the first antenna port group and the analog beamforming vector corresponding to the second antenna port group cannot be assumed to be the same.
  • the first downlink information is used by the U2 to determine ⁇ the first time-frequency resource, the second time-frequency resource, and the third time-frequency resource, The fourth time-frequency resource ⁇ .
  • the second signaling is used by the U2 to determine ⁇ The first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource.
  • the first wireless signal occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the Y1 elements sequentially constitute a first sequence, the first sequence is one of the K candidate sequences, and the K candidate sequences are orthogonal to each other.
  • the Y1 is a positive integer not greater than the X1
  • the K is a positive integer greater than 1
  • any one of the Y1 elements is a complex number.
  • the candidate sequence is an OCC.
  • the first downlink information indicates the Y1 elements.
  • the second signaling is used by the U2 to determine the Y1 elements.
  • the first downlink information is used by the U2 to determine the K candidate sequences, and the second signaling indicates that the first sequence is in the K candidate sequences Index in .
  • the reference sub-signal carries a first block of bits, the first block of bits comprising a UCI.
  • the Y1 sub-signals are respectively transmitted by the same antenna port group.
  • the first wireless signal occupies Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the Z1 is a non-negative integer not larger than the difference between the T and the X1.
  • the Z1 sub-signals are respectively transmitted by the same antenna port group.
  • the any one of the Z1 sub-signals carries a first block of bits, the first block of bits comprising a UCI.
  • the first signaling includes a first domain. At least one of ⁇ R1 sum of the first offsets, R2 of the sum of the first offsets ⁇ is used by the U2 to determine the first power and the second power.
  • the first signalings of the R1 are used by the U2 to determine the R1 first offsets, and the R2 first signalings are used by the U2 to determine the R2 a first offset, the value of the first domain included in the R1 first signaling is equal to a first index, and the value of the first domain included in the R2 first signaling Both are equal to the second index.
  • the R1 and the R2 are each a positive integer not greater than the R.
  • the R first signalings schedule the same carrier.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is dynamic signaling for a Downlink Grant.
  • the first signaling includes DCI.
  • the first signaling indicates the corresponding first offset.
  • the first signaling includes a TPC field.
  • the first offset is indicated by a corresponding TPC field in the first signaling.
  • the first antenna port group corresponds to the first index
  • the second antenna port group corresponds to the second index
  • the first downlink information is carried by higher layer signaling.
  • the first downlink information is carried by RRC signaling.
  • the first downlink information is common to the cell.
  • the first downlink information is UE specific.
  • the second downlink information is carried by dynamic signaling. of.
  • the second downlink information is carried by physical layer signaling.
  • the second downlink information is common to the cell.
  • the second downlink information is UE group common.
  • the second downlink information is used by the U2 to determine a transmission direction of the first time unit, where the transmission direction is one of a candidate direction set, and the candidate direction is The set includes ⁇ uplink, downlink ⁇ , and the T multicarrier symbols belong to the multicarrier symbol in the corresponding uplink transmission direction in the first time unit.
  • the candidate direction set further includes a sidelink.
  • the second signaling is used by the U2 to determine configuration information of the first wireless signal.
  • the first downlink information is used by the U2 to determine M pieces of configuration information, and the M is a positive integer greater than one.
  • the configuration information of the first wireless signal is one of the M pieces of the configuration information.
  • the second signaling is used by the U2 to determine configuration information of the first wireless signal from the M pieces of configuration information.
  • the second signaling indicates an index of configuration information of the first wireless signal in the M pieces of configuration information.
  • the second signaling is high layer signaling.
  • the second signaling is MAC CE signaling.
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the second signaling is UE specific.
  • the block F1, the block F2, the block F3 and the block F4 in Fig. 1 are present.
  • the first downlink information is used by the U2 to determine ⁇ the X1, the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit, the first wireless signal Configuration information ⁇ , the second signaling is used to trigger the first The transmission of a wireless signal.
  • the first wireless signal includes a semi-persistent CSI.
  • the first wireless signal includes aperiodic CSI (aperiodic CSI).
  • the first downlink information is UE specific.
  • the second signaling is used by the U2 to determine ⁇ the first time-frequency resource, the second time-frequency resource, the third time Frequency resource, the fourth time-frequency resource ⁇ .
  • the second signaling is used by the U2 to determine the Y1 elements.
  • the first downlink information is used by the U2 to determine the K candidate sequences, and the second signaling indicates that the first sequence is in the An index into the K candidate sequences.
  • the first downlink information is used by the U2 to determine M pieces of configuration information, and the M is a positive integer greater than one.
  • the configuration information of the first wireless signal is one of the M pieces of the configuration information.
  • the second signaling indicates an index of the configuration information of the first wireless signal in the M pieces of configuration information.
  • the first downlink information is used by the U2 to determine ⁇ the X1, the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit, the first wireless signal Configuration information ⁇ .
  • the first downlink information indicates configuration information of the first wireless signal.
  • the first wireless signal includes periodic CSI (periodic CSI).
  • the first downlink information is UE specific.
  • the first downlink information The U2 is used to determine ⁇ the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource ⁇ .
  • the first downlink information indicates the Y1 elements.
  • the first downlink information is used by the U2 to determine at least one of ⁇ X1, a location of the X1 multi-carrier symbol occupied by a time domain resource in the first time unit ⁇ ,
  • the second signaling is used to trigger transmission of the first wireless signal.
  • the second signaling indicates configuration information of the first wireless signal.
  • the first wireless signal comprises a HARQ-ACK.
  • the first downlink information is common to the cell.
  • the second signaling indicates ⁇ the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, the first Four time-frequency resources ⁇ .
  • the second signaling indicates the Y1 elements.
  • block F1, block F2 and block F3 in Fig. 1 exist, and block F4 does not exist.
  • block F2, block F3 and block F4 in Fig. 1 exist, and block F1 does not exist.
  • block F1 and block F3 in Fig. 1 exist, and block F2 and block F4 do not exist.
  • block F1 and block F2 in Fig. 1 exist, and block F3 and block F4 do not exist.
  • block F2 and block F3 in Fig. 1 exist, and block F1 and block F4 do not exist.
  • the block F1 in FIG. 1 exists, block F2, Block F3 and block F4 do not exist.
  • Embodiment 2 exemplifies a structural diagram of a first time unit and a schematic diagram of constituent components of ⁇ first power, second power ⁇ , as shown in FIG.
  • the user equipment in the present invention transmits the first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols.
  • Transmitting power of the first radio signal on X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T multi-carrier symbols
  • the transmission power on the multicarrier symbols other than the X1 multicarrier symbols is the second power.
  • the T is a positive integer and the X1 is a positive integer less than the T.
  • the number of the multi-carrier symbols included in the first time unit is greater than the T.
  • the second power is less than the first power.
  • a left-slash filled box represents the X1 of the multi-carrier symbols
  • a right-slash filled box represents the X1 of the multi-carrier symbols in the T multi-carrier symbols.
  • the multi-carrier symbol outside, the white-filled box represents the multi-carrier symbol other than the T multi-carrier symbols in the first time unit.
  • the first power is the smallest one of ⁇ first limited power, first reference power ⁇ , and the first reference power and the ⁇ first component, the second component, the third component, the fourth component, and the fifth component, respectively , ninth component ⁇ linear correlation. a linear coefficient between the first reference power and ⁇ the first component, the second component, the third component, the fourth component, the fifth component, and the ninth component ⁇ it's 1.
  • the second power is the smallest one of ⁇ second limited power, second reference power ⁇ , and the second reference power and ⁇ eight component, the second component, the third component, the first Four components, the fifth component, the ninth component ⁇ are linearly related. a linear coefficient between the second reference power and the ⁇ the eighth component, the second component, the third component, the fourth component, the fifth component, and the ninth component ⁇ it's 1. which is:
  • P PUCCH (i), P PUCCH_2 (i), P CMAX, c (i), P CMAX, c_2 (i), P 0_PUCCH , P 0_PUCCH_2 , PL c , h(n CQI , n HARQ , n SR ) , ⁇ F_PUCCH (F), ⁇ TxD (F′) and g(i) are the first power, the second power, the first limited power, the second limited power, the first a component, the eighth component, the second component, the fourth component, the third component, the fifth component, and the ninth component.
  • TS 36.213 A detailed definition of the ⁇ TxD (F') and the g(i) is referred to TS 36.213.
  • the P 0_PUCCH_2 is a power reference of a transmit power of the PUCCH on the multi-carrier symbol except the X1 of the multi-carrier symbols in the T multi-carrier symbols, the P CMAX, c_2(i) And transmitting, by the user equipment, a transmit power highest threshold of the PUCCH on the multi-carrier symbol except the X1 multi-carrier symbols in the T multi-carrier symbols.
  • the PUCCH format corresponding to the first wireless signal belongs to ⁇ 1, 1a, 1b, 2, 2a, 2b, 3 ⁇ .
  • the sum of the R first offset amounts in the present invention is equal to the g(i).
  • the eighth component is smaller than the first component.
  • the second limiting power is less than the first limiting power.
  • the location of the time domain resource occupied by the X1 of the multi-carrier symbols in the first time unit is fixed.
  • the X1 is a fixed constant.
  • the X1 is less than 14.
  • the X1 is not less than 4.
  • the X1 is 4.
  • the T is a positive integer not less than 4 and not more than 14.
  • the X1 is configured by higher layer signaling.
  • the T is configured by dynamic signaling.
  • the T is configured by physical layer signaling.
  • the number of the multi-carrier symbols corresponding to the uplink transmission direction in the first time unit is equal to the T.
  • the transmission direction corresponding to the multi-carrier symbol indicated by the white-filled box in FIG. 2 is downlink.
  • At least two of the multi-carrier symbols in the first time unit correspond to different transmission directions.
  • Embodiment 3 exemplifies a structural diagram of a first time unit and a schematic diagram of constituent components of ⁇ first power, second power ⁇ , as shown in FIG.
  • the user equipment in the present invention transmits a first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols.
  • Transmitting power of the first radio signal on X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T multi-carrier symbols
  • the transmission power on the multicarrier symbols other than the X1 multicarrier symbols is the second power.
  • the T is a positive integer and the X1 is a positive integer less than the T.
  • the number of the multi-carrier symbols included in the first time unit is greater than the T.
  • the second power is less than the first power.
  • a left-hatched filled box represents the X1 of the multi-carrier symbols
  • a right-slash filled box represents the X1 of the multi-carrier symbols in the T multi-carrier symbols.
  • the multi-carrier symbol outside, the white-filled box represents the multi-carrier symbol other than the T multi-carrier symbols in the first time unit.
  • the first power is the smallest one of ⁇ first limited power, first reference power ⁇ , and the first reference power and the ⁇ first component, the second component, the third component, the sixth component, and the seventh component, respectively , ninth component ⁇ linear correlation. a linear coefficient between the first reference power and ⁇ the first component, the second component, the third component, the sixth component, the seventh component, and the ninth component ⁇ it's 1.
  • the second power is the smallest one of ⁇ second limited power, second reference power ⁇ , and the second reference power and ⁇ eight component, the second component, the third component, the first Six components, the seventh component, the ninth component ⁇ are linearly related. a linear coefficient between the second reference power and the ⁇ the eighth component, the second component, the third component, the sixth component, the seventh component, and the ninth component ⁇ it's 1. which is:
  • 10log 10 (M PUCCH,c (i)) and ⁇ TF,c (i) are the sixth component and the seventh component, respectively.
  • a detailed definition of the 10 log 10 (M PUCCH,c (i)) and the ⁇ TF,c (i) is referred to TS 36.213.
  • the PUCCH format corresponding to the first wireless signal belongs to ⁇ 4, 5 ⁇ .
  • the number of the multi-carrier symbols corresponding to the uplink transmission direction in the first time unit is greater than the T.
  • the transmission direction corresponding to the multi-carrier symbol indicated by the white-filled box in FIG. 3 is the uplink.
  • all of the multi-carrier symbols in the first time unit correspond to the same transmission direction.
  • Embodiment 4 exemplifies a structural diagram of a first time unit and a schematic diagram of constituent components of ⁇ first power, second power ⁇ , as shown in FIG.
  • the user equipment in the present invention transmits the first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols.
  • Transmitting power of the first radio signal on X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T multi-carrier symbols
  • the transmission power on the multicarrier symbols other than the X1 multicarrier symbols is the second power.
  • the T is a positive integer and the X1 is a positive integer less than the T.
  • the number of the multi-carrier symbols included in the first time unit is greater than the T.
  • the second power is less than the first power.
  • the first wireless signal is transmitted by the first antenna port group and the second antenna port group, respectively.
  • the R first signalings are used to determine R first offsets, respectively.
  • the first signaling includes a first domain, ⁇ R1 sum of the first offsets, R2 sums of the first offsets ⁇ are used to determine the first power sum The second power.
  • R1 pieces of the first signaling are respectively used to determine the R1 pieces of the first offset, and R2 pieces of the first signaling are respectively used to determine the R2 pieces of the first offset quantity,
  • the values of the first domain included in the R1 first signaling are all equal to the first index, and the values of the first domain included in the R2 first signalings are all equal to the second index.
  • the first index and the second index respectively correspond to the first antenna port group and the second antenna port group.
  • the R is a positive integer, and R1 and R2 are each a positive integer not greater than the R.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • a left-hatched filled box represents the X1 of the multi-carrier symbols
  • a right-slash filled box represents the X1 of the multi-carrier symbols in the T multi-carrier symbols.
  • the multi-carrier symbols outside, the white-filled block and the dot-filled block collectively represent the multi-carrier symbols other than the T multi-carrier symbols in the first time unit.
  • the first power is the smallest one of ⁇ first limited power, first reference power ⁇ , and the first reference power and ⁇ first component, third component, fourth component, fifth component, tenth Quantity ⁇ linear correlation.
  • the linear coefficients between the first reference power and the ⁇ first component, the third component, the fourth component, the fifth component, and the tenth component ⁇ are respectively 1.
  • the second power is the smallest one of ⁇ second limited power, second reference power ⁇ , and the second reference power and ⁇ eight component, the third component, the fourth component, the first Five components, the tenth component ⁇ is linearly related.
  • the linear coefficients between the second reference power and the ⁇ the eighth component, the third component, the fourth component, the fifth component, and the tenth component ⁇ are respectively 1. which is:
  • the PL c_1 , the PL c_2 , the g 1 (i) and the g 2 (i) are respectively a first path loss, a second path loss, and a sum of the R1 first offsets And R2 sums of the first offsets.
  • a measurement for the first reference signal is used to determine the first path loss.
  • the sender of the first reference signal is a target receiver of the first wireless signal, the target receiver of the first reference signal is a sender of the first wireless signal, and the first antenna port group corresponds to A beamforming vector is used to receive the first reference signal.
  • a measurement for the second reference signal is used to determine the second path loss.
  • the sender of the second reference signal is a target receiver of the first wireless signal, the target receiver of the second reference signal is a sender of the first wireless signal, and the first antenna port group corresponds to The beamforming vector is used to receive the second reference signal.
  • the first path loss is equal to a transmission power of the first reference signal minus an RSRP of the first reference signal measured by a sender of the first wireless signal.
  • the second path loss is equal to a transmission power of the second reference signal minus an RSRP of the second reference signal measured by a sender of the first wireless signal.
  • the antenna port is formed by superposing a plurality of antennas through antenna virtualization, and mapping coefficients of the plurality of antennas to the antenna port constitute a beamforming vector.
  • the beamforming vector is composed of an analog beamforming vector and a Kronecker product of a digital beamforming vector.
  • different antenna ports in the first antenna port group correspond to the same analog beamforming vector
  • different antenna ports in the second antenna port group correspond to The same analog beamforming vector
  • the analog beamforming vector corresponding to the first antenna port group is used to receive the first reference signal.
  • the analog beamforming vector corresponding to the second antenna port group is used to receive the second reference signal.
  • the first antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the first antenna port group is used to receive the First reference signal.
  • the second antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the second antenna port group is used to receive the Second reference signal.
  • the first antenna port group and the second antenna port group correspond to different analog beamforming vectors.
  • different antenna ports in the first antenna port group correspond to different digital beamforming vectors
  • different antenna ports in the second antenna port group correspond to Different of the digital beamforming vectors
  • the first antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the first antenna port group is equal to the corresponding one of the first antenna port groups.
  • the analog beamforming vector is equal to the corresponding one of the first antenna port groups.
  • the first antenna port group includes a plurality of the antenna ports.
  • the second antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the second antenna port group is equal to the corresponding one of the second antenna port groups.
  • the analog beamforming vector is the first beamforming vector.
  • the second antenna port group includes a plurality of the antenna ports.
  • the R first signalings schedule the same carrier.
  • the first signaling is dynamic signaling for a Downlink Grant.
  • the first offset is indicated by a corresponding TPC field in the first signaling.
  • the first index and the second index are respectively non-negative integers.
  • the first index, the second index ⁇ are respectively an index of ⁇ first antenna virtualization vector, second antenna virtualization vector ⁇ in Q1 antenna virtualization vectors .
  • the Q1 is a positive integer greater than one.
  • the analog beamforming vector corresponding to the first antenna port group is equal to the first antenna virtualization vector.
  • the analog beamforming vector corresponding to the second antenna port group is equal to the second antenna virtualization vector.
  • the first antenna port group includes one of the antenna ports, and the beam shaping direction corresponding to the first antenna port group The amount is equal to the first antenna virtualization vector.
  • the second antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the second antenna port group is equal to the second antenna Virtualization vector.
  • the first index, the second index ⁇ are respectively ⁇ first antenna virtualization vector group, second antenna virtualization vector group ⁇ in Q2 antenna virtualization vector groups
  • the antenna virtualization vector group includes a positive integer number of antenna virtualization vectors.
  • the Q2 is a positive integer greater than one.
  • the analog beamforming vector corresponding to the first antenna port group belongs to the first antenna virtualization vector group.
  • the analog beamforming vector corresponding to the second antenna port group belongs to the second antenna virtualization vector group.
  • the first antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the first antenna port group belongs to the first antenna Virtualization vector group.
  • the second antenna port group includes one of the antenna ports, and the beamforming vector corresponding to the second antenna port group belongs to the second antenna Virtualization vector group.
  • the PUCCH format corresponding to the first wireless signal belongs to ⁇ 1, 1a, 1b, 2, 2a, 2b, 3 ⁇ .
  • the number of the multi-carrier symbols corresponding to the uplink transmission direction in the first time unit is greater than the T.
  • the transmission direction corresponding to the multi-carrier symbol indicated by the small-filled box in FIG. 4 is the uplink.
  • At least two of the multi-carrier symbols in the first time unit correspond to different transmission directions.
  • the transmission direction corresponding to the multi-carrier symbol indicated by the white-filled box in FIG. 4 is downlink, and the other multi-carrier symbols are represented by other blocks.
  • the corresponding transmission directions are all uplinks.
  • Embodiment 5 exemplifies a resource mapping of ⁇ first time-frequency resource, second time-frequency resource, third time-frequency resource, fourth time-frequency resource ⁇ in the time-frequency domain, as shown in FIG. 5.
  • the first wireless signal in the present invention includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in the first time-frequency resource, the second time-frequency resource, and the third time
  • the frequency resource and the fourth time-frequency resource are sent.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource respectively occupy a positive integer number of consecutive embodiments in the present invention in the time domain
  • the time domain resources occupied by the multicarrier symbols occupy a positive integer number of consecutive frequency units in the frequency domain.
  • the first sub-signal, the second sub-signal, the third sub-signal, and the fourth sub-signal respectively carry a first bit block
  • the first The bit block includes a positive integer number of bits
  • the first bit block includes UCI.
  • the given wireless signal carrying a given bit block means that the given wireless signal is the channel block (Channel Coding) modulated by the given bit block. Modulation Mapper, Layer Mapper, Precoding, Resource Element Mapper, Output after Wideband Symbol Generation.
  • a given wireless signal carrying a given bit block means that the given wireless signal is the given bit block sequentially subjected to channel coding, a modulation mapper, and a layer Mapper, transform precoder (for generating complex-valued signals), precoding, resource particle mapper, output after the occurrence of wideband symbols.
  • given a wireless signal carrying a given block of bits means that said given block of bits is used to generate said given wireless signal.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be assumed to be the same.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be It is assumed that the same means that the small-scale characteristics of the wireless channel experienced by the signal transmitted by the first antenna port cannot be used to infer the small-scale characteristics of the wireless channel experienced by the signal transmitted by the second antenna port.
  • the first antenna port and the second antenna port are respectively the antenna port of any one of the first antenna port group and the second antenna port group, and the small-scale characteristic includes a channel impulse response.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be It is assumed that the same means that joint channel estimation cannot be performed using the reference signal transmitted by the first antenna port and the reference signal transmitted by the second antenna port.
  • the first antenna port and the second antenna port are respectively the antenna port of any one of the first antenna port group and the second antenna port group.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be It is assumed that the same is true that the beamforming vector corresponding to the first antenna port and the beamforming vector corresponding to the second antenna port cannot be assumed to be the same.
  • the first antenna port and the second antenna port are respectively the antenna port of any one of the first antenna port group and the second antenna port group.
  • any one of the antenna port and the second antenna port group in the first antenna port group cannot be It is assumed that the same is that the analog beamforming vector corresponding to the first antenna port group and the analog beamforming vector corresponding to the second antenna port group cannot be assumed to be the same.
  • the frequency unit is a bandwidth occupied by one subcarrier.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource occupy the multi-carrier in a time domain Symbol
  • the number of numbers is equal.
  • the number of the multi-carrier symbols occupied by the first time-frequency resource and the third time-frequency resource in the time domain is unequal, and the second time-frequency resource and The number of the multi-carrier symbols occupied by the fourth time-frequency resource in the time domain is unequal.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource occupy the frequency unit in a frequency domain.
  • the number is equal.
  • Embodiment 6 exemplifies a resource mapping of the ⁇ first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource ⁇ in the time-frequency domain, as shown in FIG. 6.
  • the first wireless signal in the present invention includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in the first time-frequency resource, the second time-frequency resource, and the third time
  • the frequency resource and the fourth time-frequency resource are sent.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource respectively occupy a positive integer number of discontinuous devices in the present invention in the time domain
  • the time domain resources occupied by the multi-carrier symbols occupy a positive integer number of discontinuous frequency units in the frequency domain.
  • Embodiment 7 illustrates a schematic diagram of resource mapping of Y1 sub-signals and Z1 sub-signals in the time-frequency domain, as shown in FIG.
  • the first wireless signal in the present invention is the X1 in the present invention.
  • Y1 of the multi-carrier symbols are occupied by the multi-carrier symbols, and Z1 of the multi-carrier symbols are occupied outside the X1 of the multi-carrier symbols.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the Y1 sub-signals are portions of the first sub-signal located within the X1 of the multi-carrier symbols, and the first sub-signals of the Z1 sub-signals are located outside the X1 of the multi-carrier symbols part.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource respectively occupy a positive integer number of discontinuous multi-carrier symbols in the time domain
  • the occupied time domain resource occupies a positive integer number of consecutive frequency units in the frequency domain.
  • the Y1 elements sequentially constitute a first sequence, and the first sequence is one of the K candidate sequences, and the K candidate sequences are orthogonal to each other.
  • the Y1 is a positive integer not greater than the X1
  • the K is a positive integer greater than 1
  • any one of the Y1 elements is a complex number.
  • the candidate sequence is an OCC.
  • the Y1 sub-signals are respectively transmitted on the Y1 of the multi-carrier symbols.
  • the Z1 sub-signals are respectively transmitted on the Z1 of the multi-carrier symbols.
  • the Y1 is greater than one.
  • the Y1 is smaller than the X1.
  • the Y1 is equal to the X1 divided by 2, and the X1 is an even number.
  • the Y1 is equal to the X1 minus one and then divided by two, and the X1 is an odd number.
  • the Y1 is equal to the X1 plus 1 and then divided by 2, and the X1 is an odd number.
  • the Z1 is a non-negative integer not larger than the difference between the T and the X1.
  • the Y1 of the multicarrier symbols are continuously distributed in the time domain.
  • the Z1 of the multicarrier symbols are continuously distributed in the time domain.
  • the reference sub-signal carries a first block of bits, the first block of bits comprising a UCI.
  • the Y1 sub-signals are respectively transmitted by the first antenna port group.
  • the Z1 sub-signals are respectively transmitted by the first antenna port group.
  • any one of the Z1 sub-signals carries a first bit block, and the first bit block includes UCI.
  • the sub-signal of any one of the Z1 sub-signals is the reference sub-signal.
  • the frequency domain resources occupied by the Y1 sub-signals and the Z1 sub-signals are overlapped.
  • Embodiment 8 illustrates a schematic diagram of resource mapping of Y1 sub-signals and Z1 sub-signals in the time-frequency domain, as shown in FIG.
  • the first wireless signal in the present invention occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols in the present invention, and the X1 of the multi-carrier symbols Z1 of the multicarrier symbols are occupied outside the wave symbol.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the Y1 sub-signals are portions of the first sub-signal located within the X1 of the multi-carrier symbols, and the first sub-signals of the Z1 sub-signals are located outside the X1 of the multi-carrier symbols part.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource, and the fourth time-frequency resource respectively occupy a positive integer number of discontinuous multi-carrier symbols in the time domain
  • the occupied time domain resource occupies a positive integer number of discrete frequency units in the frequency domain.
  • the frequency domain resources occupied by the Y1 sub-signals and the Z1 sub-signals are orthogonal.
  • Embodiment 9 illustrates a schematic diagram of resource mapping of Y1 sub-signals and Z1 sub-signals in the time-frequency domain, as shown in FIG.
  • the first wireless signal in the present invention occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols in the present invention, and the X1 of the multi-carrier symbols in the X1 Z1 of the multi-carrier symbols are occupied outside.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the first wireless signal is in the Z1 of the multi-load
  • the wave symbols respectively include Z1 sub-signals, and the Z1 sub-signals are identical.
  • the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the first time-frequency resource includes a first sub-resource, a second sub-resource, a third sub-resource, and a fourth sub-resource on a time-frequency domain, where the first sub-resource and the second sub-resource are located in the Within the X1 of the multicarrier symbols, the third sub-resource and the fourth sub-resource are located outside the X1 of the multi-carrier symbols.
  • the frequency domain resources occupied by the first sub-resource and the second sub-resource are orthogonal, and the frequency domain resources occupied by the third sub-resource and the fourth sub-resource are orthogonal.
  • the Y1 sub-signals are portions of the first sub-signal located in the first sub-resource, and the Z1 sub-signals are located in a portion of the third sub-resource.
  • the Y1 is equal to the X1 divided by 4 and rounded up.
  • Embodiment 10 exemplifies a structural block diagram of a processing device for use in a user equipment, as shown in FIG.
  • the processing device 200 in the user equipment is mainly composed of the first processing module 201.
  • the first processing module 201 is configured to send the first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols. If the T is greater than X1, the transmit power of the first radio signal on the X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T The X1 in the multicarrier symbol The transmission power on the multi-carrier symbol other than the multi-carrier symbol is the second power; otherwise, the transmission power of the first radio signal in the T multi-carrier symbols is the first power.
  • the T and the X1 are each a positive integer.
  • the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ports.
  • the first wireless signal occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the first wireless signal occupies Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the first processing module 201 is further configured to receive R first signalings.
  • the R first signalings are used by the first processing module 201 to determine R first offsets, and the R first offsets are used by the first processing module 201. Determining the first power and the second power.
  • the R is a positive integer.
  • the first processing module 201 is further configured to receive the first downlink information.
  • the first downlink information is used by the first processing module 201 to determine ⁇ X1, the location of the time domain resource occupied by the X1 multicarrier symbols in the first time unit, At least one of the configuration information of the first wireless signal, the The information includes ⁇ time domain resources occupied, frequency domain resources occupied, code domain resources occupied, cyclic shift, OCC (Orthogonal Cover Code), PUCCH format (PUCCH format) ), at least one of UCI content ⁇ .
  • the first processing module 201 is further configured to receive the second downlink information.
  • the second downlink information is used by the first processing module 201 to determine the T.
  • the first processing module is further configured to receive the second signaling.
  • the second signaling is used to trigger transmission of the first wireless signal.
  • Embodiment 11 exemplifies a structural block diagram for a processing device in a base station, as shown in FIG.
  • the base station apparatus 300 is mainly composed of a second processing module 301.
  • the second processing module 301 is configured to receive the first wireless signal in the first time unit.
  • the first wireless signal is transmitted in a physical layer control channel, and the first wireless signal occupies T multi-carrier symbols. If the T is greater than X1, the transmit power of the first radio signal on the X1 of the multi-carrier symbols in the T multi-carrier symbols is a first power, and the first radio signal is in the T Transmit power on the multi-carrier symbol other than the X1 of the multi-carrier symbols in the multi-carrier symbol is a second power; otherwise, the transmit power of the first radio signal in the T multi-carrier symbols It is the first power.
  • the T and the X1 are each a positive integer.
  • the first wireless signal includes a first sub-signal, a second sub-signal, a third sub-signal, and a fourth sub-signal.
  • the first sub-signal, the second sub-signal, the third sub-signal and the fourth sub-signal are respectively in a first time-frequency resource, a second time-frequency resource, a third time-frequency resource, and a fourth time Sent in the frequency resource.
  • the first time-frequency resource and the second time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the third time-frequency resource and the fourth time-frequency resource are overlapped in the time domain and orthogonal in the frequency domain.
  • the first time-frequency resource and the third time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the second time-frequency resource and the fourth time-frequency resource are orthogonal in the time domain and overlap in the frequency domain.
  • the first sub-signal and the fourth sub-signal are respectively sent by the first antenna port group, and the second sub-signal and the third sub-signal are respectively sent by the second antenna port group.
  • the first antenna port group and the second antenna port group respectively comprise a positive integer number of antenna ends mouth.
  • the first radio signal occupies Y1 of the multi-carrier symbols in the X1 of the multi-carrier symbols.
  • the first wireless signal includes Y1 sub-signals on the Y1 of the multi-carrier symbols, respectively, and the Y1 sub-signals are respectively equal to a product of a reference sub-signal and Y1 elements.
  • the first wireless signal occupies Z1 of the multi-carrier symbols outside the X1 of the multi-carrier symbols.
  • the first wireless signal includes Z1 sub-signals on the Z1 of the multi-carrier symbols, and the Z1 sub-signals are the same.
  • the second processing module 301 is further configured to send R first signalings.
  • the R first first signalings are used to determine R first offsets, and the R first offsets are used to determine the first power and the second power.
  • the R is a positive integer.
  • the second processing module 301 is further configured to send the first downlink information.
  • the first downlink information is used to determine ⁇ the X1, the location of the time domain resource occupied by the X1 of the multicarrier symbols in the first time unit, the first wireless signal.
  • the configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, (OCC) (Orthogonal Cover Code, At least one of orthogonal mask), PUCCH format (PUCCH format), UCI content ⁇ .
  • the second processing module 301 is further configured to send the second downlink information.
  • the second downlink information is used to determine the T.
  • the second processing module 301 is further configured to send the second signaling.
  • the second signaling is used to trigger transmission of the first wireless signal.
  • the UE or the terminal includes, but is not limited to, a mobile communication device such as a mobile phone, a tablet computer, a notebook computer, an internet card, an Internet of Things communication module, an in-vehicle communication device, an NB-IOT terminal, and an eMTC terminal.
  • the base station or system equipment in the present invention includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种被用于无线通信的用户、基站中的方法和装置。用户设备在第一时间单元中发送第一无线信号。其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。上述方法降低了由于用户设备对所述T的解码错误而造成的对其他终端设备的额外干扰,同时改善了功率效率。

Description

一种被用于无线通信的用户、基站中的方法和装置 技术领域
本发明涉及无线通信系统中的无线信号的传输方法和装置,尤其是支持功率调整的无线通信系统中的无线信号的传输方案和装置。
背景技术
根据3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN1(Radio Access Network,无线接入网)#88会议的结论,长持续时间(long duration)的PUCCH(Physical Uplink Control Channel,物理上行控制信道)在一个时隙(slot)上占用的符号个数是可变的。根据一些3GPP文稿(例如R1-1701647),长持续时间的PUCCH在一个时隙上占用的符号个数会在4到14之间变化。这样大的一个变化范围给PUCCH的设计带来了新的问题。
发明内容
发明人通过研究发现,在动态TDD(Time Division Duplex,时分双工)系统中,基站会利用动态信令来通知用户设备一个时隙中不同符号对应的传输方向,以此提高上下行资源利用的灵活性。在这种情况下,用户设备对PUCCH长度的理解容易发生错误。当不同用户设备对PUCCH长度的理解不一致时,会带来额外的用户设备间的干扰。另外,用于发送PUCCH的能量会随着PUCCH长度的增加而增加,在较长PUCCH的情况下会导致用户设备能量的浪费。
为了解决上述问题,发明人发现,可以把PUCCH占用的时域资源分为两部分。第一部分时域资源的配置是固定不变或者慢变的,由高层信令配置。第二部分时域资源的配置是动态可变的,由动态信令配置。用户设备在第一部分时域资源和第二部分时域资源上用不同的功率来发送PUCCH,在第二部分时域资源上的发送功率低于第一部分时域资源上的发送功率,这样降低了由于不同用户设备对第二部分时域资源长度的理解不一致而带来的额外用户设备间干扰。上述方法的另一个好处在于当PUCCH长度较长时,通过在第二部分时域资源上采用较低的发送功率,在保证PUCCH覆盖的前提下降低了整个PUCCH上的发送功率,提高了功 率效率。
本发明针对上述发现公开了一种解决方案。需要说明的是,虽然本发明最初的动机是针对PUCCH,本发明也适用于其他物理层信道。在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本发明公开了一种被用于无线通信的用户设备中的方法,其中,包括如下步骤:
-步骤A.在第一时间单元中发送第一无线信号。
其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
作为一个实施例,上述方法的好处在于,所述X1个所述多载波符号是由高层信令配置的,具有较高的可靠性,所述X1个所述多载波符号之外的所述多载波符号是由动态信令配置的,具有较高的灵活性。两者结合可以在可靠性和灵活性之间实现折中。
作为一个实施例,上述方法的好处在于,可以在所述X1个所述多载波符号之外的所述多载波符号上采用较低的发送功率,降低了由于对所述X1个所述多载波符号之外的所述多载波符号的数量的误解而造成的对其他终端设备的额外干扰。
作为一个实施例,上述方法的好处在于,通过在所述X1个所述多载波符号之外的所述多载波符号上采用较低的发送功率,可以降低所述第一无线信号的总发送功率,在保证所述第一无线信号覆盖的情况下,降低由于所述T可变而带来的在所述T较大时的功率浪费,提高功率效率。
作为一个实施例,所述物理层控制信道是指:只能被用于承载UCI(Uplink Control Information,上行控制信息)的物理层上行信道。
作为一个实施例,所述物理层控制信道是PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为一个实施例,所述物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为一个实施例,所述物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述第一时间单元是一个时隙(slot)。
作为一个实施例,所述第一时间单元是一个子帧(sub-frame)。
作为一个实施例,所述第一时间单元在时域上占用1ms。
作为一个实施例,所述第一时间单元在时域上包括正整数个所述多载波符号占用的时域资源。
作为上述实施例的一个子实施例,所述第一时间单元在时域上包括的所述多载波符号的数量等于所述T。
作为上述实施例的一个子实施例,所述第一时间单元在时域上包括的所述多载波符号的数量大于所述T。
作为一个实施例,所述T不小于所述X1。
作为一个实施例,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置是固定的。
作为一个实施例,所述X1是固定的常数。
作为一个实施例,所述X1小于14。
作为一个实施例,所述X1不小于4。
作为一个实施例,所述X1是4。
作为一个实施例,所述T是不小于4并且不大于14的正整数。
作为一个实施例,所述X1是由高层信令配置的。
作为一个实施例,所述T是由动态信令配置的。
作为一个实施例,所述T是由物理层信令配置的。
作为一个实施例,所述第一无线信号包括UCI。
作为上述实施例的一个子实施例,所述UCI包括{HARQ-ACK(Acknowledgement,确认),CSI(Channel State Information,信道 状态信息),SR(Scheduling Request,调度请求),CRI(Channel state information reference signals Resource Indication,信道状态信息参考信号资源标识)}中的至少之一。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述第一无线信号在频域上占据的频域资源的大小和所述T无关。
作为一个实施例,所述第一无线信号在频域上占据的频域资源与所述第一无线信号在时域上占据的时域资源是独立配置的。
作为一个实施例,所述第二功率小于所述第一功率。
作为一个实施例,所述第一功率的单位是dBm(毫分贝)。
作为一个实施例,所述第一功率是PPUCCH(i),所述PPUCCH(i)是索引为c的服务小区中第i个子帧中PUCCH的发送功率,所述第一无线信号在索引为c的服务小区上传输。所述PPUCCH(i)的具体定义参见TS36.213。
作为一个实施例,所述第一功率和第一分量线性相关,所述第一分量是PUCCH在所述X1个所述多载波符号上的功率基准。所述第一功率与所述第一分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述第一分量是PO_PUCCH,所述PO_PUCCH是PUCCH的功率基准。所述PO_PUCCH的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第一分量是由高层信令配置的。
作为上述实施例的一个子实施例,所述第一分量是小区公共的。
作为一个实施例,所述第一功率和第二分量线性相关,所述第二分量和所述用户设备到所述第一无线信号的目标接收者之间的信道质量相关。所述第一功率与所述第二分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述第二分量是PLc,所述PLc是在索引为c的服务小区中,所述用户设备的以dB为单位的路损估计值, 所述第一无线信号在索引为c的服务小区上传输。所述PLc的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第二分量等于给定参考信号的发送功率减去所述用户设备测量到的所述给定参考信号的RSRP(Reference Signal Received Power,参考信号接收功率)。所述给定参考信号的发送者是所述第一无线信号的目标接收者,所述给定参考信号的目标接收者是所述用户设备。
作为一个实施例,所述第一功率和第三分量线性相关,所述第三分量和PUCCH的格式(format)相关。所述第一功率与所述第三分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述第三分量是ΔF_PUCCH(F),所述ΔF_PUCCH(F)是PUCCH格式(format)F相对于PUCCH格式1a的功率偏移量。所述ΔF_PUCCH(F)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述PUCCH格式(format)包括{1,1a,1b,2,2a,2b,3,4,5}。
作为一个实施例,所述第一功率和{第四分量,第五分量}分别线性相关,所述第一功率和{所述第四分量,所述第五分量}之间的线性系数分别是1。所述第四分量和PUCCH的格式(format)相关,所述第五分量和所述用户设备能用来发送PUCCH的天线端口的数量相关。
作为上述实施例的一个子实施例,所述第一无线信号对应的PUCCH格式(format)属于{1,1a,1b,2,2a,2b,3}。
作为上述实施例的一个子实施例,所述第四分量是h(nCQI,nHARQ,nSR),所述h(nCQI,nHARQ,nSR)和PUCCH的格式(format)相关,所述nCQI是信道质量信息(channel quality information)包括的信息比特个数,所述nHARQ是第i个子帧中HARQ-ACK的信息比特个数,所述nSR指示第i个子帧中是否携带SR。所述h(nCQI,nHARQ,nSR),所述nCQI,所述nHARQ和所述nSR的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第五分量是ΔTxD(F'),当所述用户设备被高层信令配置可以在两个天线端口上发送PUCCH时,所述ΔTxD(F')由高层信令对每一个PUCCH格式F'进行配置;否则所述ΔTxD(F')等于0。所述ΔTxD(F')的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第五分量由高层信令配置。
作为上述实施例的一个子实施例,所述第五分量是小区公共的。
作为一个实施例,所述第一功率和{第六分量,第七分量}分别线性相关,所述第一功率和{所述第六分量,所述第七分量}之间的线性系数分别是1。所述第六分量和所述第一无线信号占用的带宽相关,所述第七分量和所述第一无线信号的MCS(Modulation and Coding Scheme)相关。
作为上述实施例的一个子实施例,所述第一无线信号对应的PUCCH格式(format)属于{4,5}。
作为上述实施例的一个子实施例,所述第六分量是10log10(MPUCCH,c(i)),所述MPUCCH,c(i)是索引为c的服务小区中第i个子帧中PUCCH分配到的以资源块为单位的带宽,所述第一无线信号在索引为c的服务小区上传输。所述MPUCCH,c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第七分量是ΔTF,c(i),所述ΔTF,c(i)是索引为c的服务小区中第i个子帧中和所述第一无线信号的MCS相关的功率偏移量,所述第一无线信号在索引为c的服务小区上传输。所述ΔTF,c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第七分量由高层信令配置。
作为上述实施例的一个子实施例,所述第七分量是小区公共的。
作为一个实施例,所述第一功率等于第一限制功率,所述第一限制功率是所述用户设备在所述X1个所述多载波符号上发送PUCCH的发送功率最高门限。
作为上述实施例的一个子实施例,所述第一限制功率是PCMAX,c(i),所述PCMAX,c(i)是索引为c的服务小区中第i个子帧中所述用户设备配置的发送功率最高门限,所述第一无线信号在索引为c的服务小区上传输。所述PCMAX,c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第一限制功率是由高层信令配置的。
作为上述实施例的一个子实施例,所述第一限制功率是小区公共的。
作为一个实施例,所述第一功率小于所述第一限制功率。
作为一个实施例,所述第二功率的单位是dBm(毫分贝)。
作为一个实施例,所述第二功率和第八分量线性相关,所述第八分量是PUCCH在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率的功率基准。所述第二功率与所述第八分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述第八分量是PO_PUCCH,所述PO_PUCCH是PUCCH的功率基准。所述PO_PUCCH的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第八分量是由高层信令配置的。
作为上述实施例的一个子实施例,所述第八分量是小区公共的。
作为上述实施例的一个子实施例,所述第八分量小于所述第一分量。
作为一个实施例,所述第二功率和所述第二分量线性相关,所述第二功率与所述第二分量之间的线性系数是1。
作为一个实施例,所述第二功率和所述第三分量线性相关,所述第二功率与所述第三分量之间的线性系数是1。
作为一个实施例,所述第二功率和{所述第四分量,所述第五分量}分别线性相关,所述第二功率和{所述第四分量,所述第五分量}之间的线性系数分别是1。
作为一个实施例,所述第二功率和{所述第六分量,所述第七分量}分别线性相关,所述第二功率和{所述第六分量,所述第七分量}之间的线性系数分别是1。
作为一个实施例,所述第二功率等于第二限制功率,所述第二限制功率是所述用户设备在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上发送PUCCH的发送功率最高门限。
作为上述实施例的一个子实施例,所述第二限制功率小于所述第一限制功率。
作为上述实施例的一个子实施例,所述第二限制功率是PCMAX,c(i),所述PCMAX,c(i)是索引为c的服务小区中第i个子帧中所述用户设备配置的发送功率最高门限,所述第一无线信号在索引为c的服务小区上传输。所述PCMAX,c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第二限制功率是由高层信令配置的。
作为上述实施例的一个子实施例,所述第二限制功率是小区公共的。
作为一个实施例,所述第二功率小于所述第二限制功率。
具体的,根据本发明的一个方面,其特征在于,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
作为一个实施例,上述方法的好处在于,允许所述用户设备用所述第一天线端口组和所述第二天线端口组分别发送所述第一无线信号,提高了所述第一无线信号的鲁棒性和抗遮挡的能力。
作为一个实施例,上述方法的好处在于,所述第一天线端口组发送的无线信号和所述第二天线端口组发送的无线信号在不同时域资源上占用不同的频域资源,使所述第一无线信号对邻小区的干扰得到充分随机化,降低了小区间干扰。
作为一个实施例,{所述第一子信号,所述第二子信号,所述第三子信号,所述第四子信号}分别携带第一比特块,所述第一比特块包括正整数个比特,所述第一比特块包括UCI。
作为上述实施例的一个子实施例,给定无线信号携带给定比特块是指:所述给定无线信号是所述给定比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后的输出。
作为上述实施例的一个子实施例,给定无线信号携带给定比特块是指:所述给定无线信号是所述给定比特块依次经过信道编码,调制映射 器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
作为上述实施例的一个子实施例,给定无线信号携带给定比特块是指:所述给定比特块被用于生成所述给定无线信号。
作为一个实施例,所述天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述天线端口的映射系数组成波束赋型向量。所述波束赋型向量是由一个模拟波束赋型向量和一个数字波束赋型向量的Kronecker积所构成的。
作为一个实施例,所述第一天线端口组内的不同所述天线端口对应相同的所述模拟波束赋型向量,所述第二天线端口组内的不同所述天线端口对应相同的所述模拟波束赋型向量。
作为一个实施例,所述第一天线端口组和所述第二天线端口组对应不同的所述模拟波束赋型向量。
作为一个实施例,所述第一天线端口组内的不同所述天线端口对应不同的所述数字波束赋型向量,所述第二天线端口组内的不同所述天线端口对应不同的所述数字波束赋型向量。
作为一个实施例,所述第一天线端口组包括1个所述天线端口,所述第一天线端口组对应的所述波束赋型向量等于所述第一天线端口组对应的所述模拟波束赋型向量。
作为一个实施例,所述第一天线端口组包括多个所述天线端口。
作为一个实施例,所述第二天线端口组包括1个所述天线端口,所述第二天线端口组对应的所述波束赋型向量等于所述第二天线端口组对应的所述模拟波束赋型向量。
作为一个实施例,所述第二天线端口组包括多个所述天线端口。
作为一个实施例,所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的。
作为上述实施例的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:被第一天线端口发送的信号所经历的无线信道的小尺度特性不能被用于推断被第二天线端口发送的信号所经历的无线信道的小尺度特性。所述第一天线端口和所述第二天线端口分别是所述第 一天线端口组和所述第二天线端口组中的任意一个所述天线端口,所述小尺度特性包括信道冲激响应。
作为上述实施例的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:所述用户设备不能利用第一天线端口发送的参考信号和第二天线端口发送的参考信号执行联合信道估计。所述第一天线端口和所述第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的任意一个所述天线端口。
作为上述实施例的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:第一天线端口所对应的波束赋型向量和第二天线端口所对应的波束赋型向量不能被假定是相同的。所述第一天线端口和所述第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的任意一个所述天线端口。
作为上述实施例的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:所述第一天线端口组对应的所述模拟波束赋型向量和所述第二天线端口组对应的所述模拟波束赋型向量不能被假定是相同的。
作为一个实施例,{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}中的任意一个所述时频资源在所述T个多载波符号中占用正整数个不连续的所述多载波符号。
作为一个实施例,{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}中的任意一个所述时频资源在所述T个多载波符号中占用正整数个连续的所述多载波符号。
作为一个实施例,{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}中的任意一个所述时频资源在频域上占用正整数个连续的频率单元。
作为上述实施例的一个子实施例,所述频率单元是一个子载波占据的带宽。
作为一个实施例,{所述第一时频资源,所述第二时频资源,所述 第三时频资源,所述第四时频资源}中的任意一个所述时频资源在频域上占用正整数个不连续的所述频率单元。
作为一个实施例,所述第一时频资源,所述第二时频资源,所述第三时频资源和所述第四时频资源在所述T个多载波符号中占用的所述多载波符号的数量是相等的。
作为一个实施例,所述第一时频资源和所述第三时频资源在所述T个多载波符号中占用的所述多载波符号的数量是不相等的,所述第二时频资源和所述第四时频资源在所述T个多载波符号中占用的所述多载波符号的数量是不相等的。
作为一个实施例,所述第一时频资源,所述第二时频资源,所述第三时频资源和所述第四时频资源在频域上占用所述频率单元的数量是相等的。
作为一个实施例,所述第二分量等于第一路损,针对第一参考信号的测量被用于确定所述第一路损。所述第一参考信号的发送者是所述第一无线信号的目标接收者,所述第一参考信号的目标接收者是所述用户设备,所述第一天线端口组对应的所述模拟波束赋型向量被用于接收所述第一参考信号。
作为上述实施例的一个子实施例,所述第一路损等于所述第一参考信号的发送功率减去所述用户设备测量到的所述第一参考信号的RSRP。
作为一个实施例,所述第二分量等于第二路损,针对第二参考信号的测量被用于确定所述第二路损。所述第二参考信号的发送者是所述第一无线信号的目标接收者,所述第二参考信号的目标接收者是所述用户设备,所述第二天线端口组对应的所述模拟波束赋型向量被用于接收所述第二参考信号。
作为上述实施例的一个子实施例,所述第二路损等于第二参考信号的发送功率减去所述用户设备测量到的所述第二参考信号的RSRP。
作为一个实施例,所述第二分量等于平均路损,所述平均路损等于所述第一路损的线性值和所述第二路损的线性值的平均值的以10为底的对数再乘以10。
作为上述实施例的一个子实施例,给定数值的线性值等于所述给定数值除以10,再以10为底取指数。
具体的,根据本发明的一个方面,其特征在于,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
作为一个实施例,所述Y1个元素依次组成第一序列,所述第一序列是K个候选序列中的一个所述候选序列,所述K个候选序列两两正交。所述Y1是不大于所述X1的正整数,所述K是大于1的正整数,所述Y1个元素中的任意一个所述元素是复数。
作为上述实施例的一个子实施例,所述候选序列是OCC(Orthogonal Cover Code,正交掩码)。
作为一个实施例,上述方法的好处在于,在所述X1个所述多载波符号上采用时域正交扩频来提高多用户复用的容量,提高资源利用率。
作为一个实施例,所述Y1大于1。
作为一个实施例,所述Y1等于所述X1。
作为一个实施例,所述Y1小于所述X1。
作为一个实施例,所述Y1等于所述X1除以2,所述X1是偶数。
作为一个实施例,所述Y1等于所述X1减1后再除以2,所述X1是奇数。
作为一个实施例,所述Y1等于所述X1加1后再除以2,所述X1是奇数。
作为一个实施例,所述Y1等于所述X1除以4再取整。
作为一个实施例,所述Y1个子信号分别在所述Y1个所述多载波符号上发送。
作为一个实施例,所述Y1个所述多载波符号在所述X1个所述多载波符号中是连续分布的。
作为一个实施例,所述Y1个所述多载波符号在所述X1个所述多载波符号中是不连续分布的。
作为一个实施例,所述参考子信号携带第一比特块,所述第一比特块包括UCI。
作为一个实施例,所述Y1个子信号分别被所述第一天线端口组发送。
作为一个实施例,所述Y1个子信号分别被所述第二天线端口组发送。
作为一个实施例,所述第一子信号在所述X1个所述多载波符号中占用所述Y1个所述多载波符号,所述第一子信号在所述Y1个所述多载波符号上发送的部分分别是所述Y1个子信号。
作为一个实施例,所述第二子信号在所述X1个所述多载波符号中占用所述Y1个所述多载波符号,所述第二子信号在所述Y1个所述多载波符号上发送的部分分别是所述Y1个子信号。
作为一个实施例,所述第三子信号在所述X1个所述多载波符号中占用所述Y1个所述多载波符号,所述第三子信号在所述Y1个所述多载波符号上发送的部分分别是所述Y1个子信号。
作为一个实施例,所述第四子信号在所述X1个所述多载波符号中占用所述Y1个所述多载波符号,所述第四子信号在所述Y1个所述多载波符号上发送的部分分别是所述Y1个子信号。
具体的,根据本发明的一个方面,其特征在于,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
作为一个实施例,上述方法的好处在于,在所述X1个所述多载波符号之外的所述多载波符号上简单的重复相同的无线信号,使PUCCH的设计能灵活地扩展到不同所述T的情况下,保证了PUCCH设计的灵活性。
作为一个实施例,所述Z1个子信号分别在所述Z1个所述多载波符号上发送。
作为一个实施例,所述Z1是不大于所述T和所述X1的差的非负整数。
作为一个实施例,所述Z1等于所述T和所述X1的差。
作为一个实施例,所述Z1小于所述T和所述X1的差。
作为一个实施例,所述Z1个所述多载波符号在时域上是连续分布的。
作为一个实施例,所述Z1个所述多载波符号在时域上是不连续分布的。
作为一个实施例,所述Z1个子信号分别被所述第一天线端口组发送。
作为一个实施例,所述Z1个子信号分别被所述第二天线端口组发送。
作为一个实施例,所述第一子信号在所述X1个所述多载波符号之外占用所述Z1个所述多载波符号,所述第一子信号在所述Z1个所述多载波符号上发送的部分分别是所述Z1个子信号。
作为一个实施例,所述第二子信号在所述X1个所述多载波符号之外占用所述Z1个所述多载波符号,所述第二子信号在所述Z1个所述多载波符号上发送的部分分别是所述Z1个子信号。
作为一个实施例,所述第三子信号在所述X1个所述多载波符号之外占用所述Z1个所述多载波符号,所述第三子信号在所述Z1个所述多载波符号上发送的部分分别是所述Z1个子信号。
作为一个实施例,所述第四子信号在所述X1个所述多载波符号之外占用所述Z1个所述多载波符号,所述第四子信号在所述Z1个所述多载波符号上发送的部分分别是所述Z1个子信号。
作为一个实施例,所述Z1个子信号中的任意一个所述子信号携带第一比特块,所述第一比特块包括UCI。
作为一个实施例,所述Z1个子信号中的任意一个所述子信号是所述参考子信号。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A0.接收R个第一信令。
其中,所述R个第一信令分别被用于确定R个第一偏移量,所述R个第一偏移量被用于确定所述第一功率和所述第二功率。所述R是正整数。
作为一个实施例,所述R个第一信令调度同一个载波。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是用于下行授予(Downlink Grant)的动态信令。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令指示对应的所述第一偏移量。
作为一个实施例,所述第一信令包括TPC(Transmitter Power Control,发送功率控制)域(field)。
作为一个实施例,所述第一偏移量是由对应的所述第一信令中的TPC域所指示的。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述R个第一偏移量的和被用于确定所述第一功率和所述第二功率。
作为一个实施例,所述第一信令包括第一域,{R1个所述第一偏移量的和,R2个所述第一偏移量的和}中的至少之一被用于确定所述第一功率和所述第二功率。R1个所述第一信令分别被用于确定所述R1个所述第一偏移量,R2个所述第一信令分别被用于确定所述R2个所述第一偏移量,所述R1个所述第一信令包括的所述第一域的值都等于第一索引,所述R2个所述第一信令包括的所述第一域的值都等于第二索引。所述R1和所述R2分别是不大于所述R的正整数。
作为一个实施例,所述第一索引和所述第二索引分别是非负整数。
作为一个实施例,所述第一天线端口组对应所述第一索引,所述第二天线端口组对应所述第二索引。
作为一个实施例,{所述第一索引,所述第二索引}分别是{第一天线虚拟化向量,第二天线虚拟化向量}在Q1个天线虚拟化向量中的索引。 所述Q1是大于1的正整数。
作为上述实施例的一个子实施例,所述第一天线端口组对应的所述模拟波束赋型向量等于所述第一天线虚拟化向量。
作为上述实施例的一个子实施例,所述第二天线端口组对应的所述模拟波束赋型向量等于所述第二天线虚拟化向量。
作为上述实施例的一个子实施例,所述第一天线端口组包括一个所述天线端口,所述第一天线端口组对应的所述波束赋型向量等于所述第一天线虚拟化向量。
作为上述实施例的一个子实施例,所述第二天线端口组包括一个所述天线端口,所述第二天线端口组对应的所述波束赋型向量等于所述第二天线虚拟化向量。
作为一个实施例,{所述第一索引,所述第二索引}分别是{第一天线虚拟化向量组,第二天线虚拟化向量组}在Q2个天线虚拟化向量组中的索引,所述天线虚拟化向量组包括正整数个天线虚拟化向量。所述Q2是大于1的正整数。
作为上述实施例的一个子实施例,所述第一天线端口组对应的所述模拟波束赋型向量属于所述第一天线虚拟化向量组。
作为上述实施例的一个子实施例,所述第二天线端口组对应的所述模拟波束赋型向量属于所述第二天线虚拟化向量组。
作为上述实施例的一个子实施例,所述第一天线端口组包括一个所述天线端口,所述第一天线端口组对应的所述波束赋型向量属于所述第一天线虚拟化向量组。
作为上述实施例的一个子实施例,所述第二天线端口组包括一个所述天线端口,所述第二天线端口组对应的所述波束赋型向量属于所述第二天线虚拟化向量组。
作为一个实施例,所述第一功率和所述第二功率分别和第九分量线性相关。{所述第一功率,所述第二功率}与所述第九分量之间的线性系数分别是1。
作为上述实施例的一个子实施例,所述R个第一偏移量的和被用于确定所述第九分量。
作为上述实施例的一个子实施例,所述第九分量和所述R个第一偏 移量的和线性相关,所述第九分量和所述R个第一偏移量的和之间的线性系数是1。
作为上述实施例的一个子实施例,所述R个第一偏移量的和是g(i),所述g(i)是当前PUCCH上功率控制调整的状态。所述g(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,{所述R1个所述第一偏移量的和,所述R2个所述第一偏移量的和}中的至少之一被用于确定所述第九分量
作为上述实施例的一个子实施例,所述第九分量和所述R1个所述第一偏移量的和线性相关,所述第九分量和所述R1个所述第一偏移量的和之间的线性系数是1。
作为上述实施例的一个子实施例,所述第九分量和所述R2个所述第一偏移量的和线性相关,所述第九分量和所述R2个所述第一偏移量的和之间的线性系数是1。
作为上述实施例的一个子实施例,所述R1个所述第一偏移量的和是g(i),所述g(i)是当前PUCCH上功率控制调整的状态。所述g(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述R2个所述第一偏移量的和是g(i),所述g(i)是当前PUCCH上功率控制调整的状态。所述g(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第九分量和参考分量线性相关,所述第九分量和所述参考分量之间的线性系数是1。所述参考分量等于{所述R1个所述第一偏移量的和的线性值,所述R2个所述第一偏移量的和的线性值}的平均值的以10为底的对数再乘以10。
作为一个实施例,所述第一功率和所述第二功率分别和第十分量线性相关,{所述第一功率,所述第二功率}和所述第十分量之间的线性系数分别是1。{所述第一路损,所述第二路损,所述R1个所述第一偏移量的和,所述R1个所述第二偏移量的和}被用于确定所述第十分量。
作为上述实施例的一个子实施例,所述第十分量等于{所述第一路损和所述R1个所述第一偏移量的和的和的线性值,所述第二路损和所述R2个所述第一偏移量的和的和的线性值}的平均值的以10为底的对数再乘以10。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下两个步骤中的至少之一:
-步骤A1.接收第一下行信息;
-步骤A2.接收第二下行信息。
其中,所述第一下行信息被用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}中的至少之一,所述配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),PUCCH格式(PUCCH format),UCI内容}中的至少之一。所述第二下行信息被用于确定所述T。
作为一个实施例,所述第一下行信息是由高层信令承载的。
作为一个实施例,所述第一下行信息是由RRC(Radio Resource Control,无线资源控制)信令承载的。
作为一个实施例,所述第一下行信息是小区公共的。
作为一个实施例,所述第一下行信息是UE(User Equipment,用户设备)特定(UE specific)的。
作为一个实施例,所述第二下行信息是由动态信令承载的。
作为一个实施例,所述第二下行信息是由物理层信令承载的。
作为一个实施例,所述第二下行信息是小区公共的。
作为一个实施例,所述第二下行信息是UE组公共(UE group common)的。
作为一个实施例,所述第一下行信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一下行信息在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第二下行信息在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述第二下行信息被用于确定所述第一时间单元的传输方向,所述传输方向是候选方向集合中的一种,所述候选方向集合包括{上行,下行},所述T个多载波符号属于所述第一时间单元中对应上行传输方向的所述多载波符号。
作为上述实施例的一个子实施例,所述候选方向集合还包括侧行(sidelink)。
作为一个实施例,所述第一时间单元中对应上行传输方向的所述多载波符号的数量等于所述T。
作为一个实施例,所述第一时间单元中对应上行传输方向的所述多载波符号的数量大于所述T。
作为一个实施例,所述第二下行信息指示所述T。
作为一个实施例,所述第二下行信息指示所述T个所述多载波符号在所述所述第一时间单元中对应上行传输方向的所述多载波符号中的位置。
作为一个实施例,所述第一时间单元中的所有所述多载波符号对应相同的所述传输方向。
作为一个实施例,所述第一时间单元中至少有两个所述多载波符号对应不同的所述传输方向。
作为一个实施例,所述第一下行信息被用于确定{所述第一时频资 源,所述第二时频资源,所述第三时频资源,所述第四时频资源}。
作为一个实施例,所述第一下行信息被用于确定所述Y1个元素。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤
-步骤A3.接收第二信令。
其中,所述第二信令被用于触发所述第一无线信号的发送。
作为一个实施例,所述第二信令被用于确定所述第一无线信号的配置信息。
作为一个实施例,所述第二信令指示所述第一无线信号的配置信息。
作为一个实施例,所述第一下行信息被用于确定M个所述配置信息,所述M是大于1的正整数。所述第一无线信号的配置信息是所述M个所述配置信息中的一个所述配置信息。所述第二信令被用于从所述M个所述配置信息中确定所述所述第一无线信号的配置信息。
作为上述实施例的一个子实施例,所述第二信令指示所述所述第一无线信号的配置信息在所述M个所述配置信息中的索引。
作为一个实施例,所述第二信令被用于确定{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}。
作为一个实施例,所述第二信令被用于确定所述Y1个元素。
作为一个实施例,所述Y1个元素依次组成第一序列,所述第一序列是K个候选序列中的一个所述候选序列,所述第一下行信息被用于确定所述K个候选序列,所述第二信令被用于从所述K个候选序列中确定所述第一序列。
作为上述实施例的一个子实施例,所述第二信令指示所述第一序列在所述K个候选序列中的索引。
作为一个实施例,所述第二信令是高层信令。
作为一个实施例,所述第二信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令是UE特定(UE specific)的。
作为一个实施例,所述第二信令在下行物理层数据信道(即能用于 承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
本发明公开了一种被用于无线通信的基站中的方法,其中,包括如下步骤:
-步骤A.在第一时间单元中接收第一无线信号。
其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
作为一个实施例,所述物理层控制信道是指只能被用于承载UCI(Uplink Control Information,上行控制信息)的物理层上行信道。
作为一个实施例,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置是固定的。
作为一个实施例,所述X1是由高层信令配置的。
作为一个实施例,所述T是由动态信令配置的。
作为一个实施例,所述T是由物理层信令配置的。
作为一个实施例,所述第一无线信号在频域上占据的频域资源的大小和所述T无关。
作为一个实施例,所述第二功率小于所述第一功率。
具体的,根据本发明的一个方面,其特征在于,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
作为一个实施例,所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的。
具体的,根据本发明的一个方面,其特征在于,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
作为一个实施例,所述Y1个元素依次组成第一序列,所述第一序列是K个候选序列中的一个所述候选序列,所述K个候选序列两两正交。所述Y1是不大于所述X1的正整数,所述K是大于1的正整数,所述Y1个元素中的任意一个所述元素是复数。
作为上述实施例的一个子实施例,所述候选序列是OCC(Orthogonal  Cover Code,正交掩码)。
作为一个实施例,所述参考子信号携带第一比特块,所述第一比特块包括UCI。
作为一个实施例,所述Y1个子信号分别被所述第一天线端口组发送。
作为一个实施例,所述Y1个子信号分别被所述第二天线端口组发送。
具体的,根据本发明的一个方面,其特征在于,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
作为一个实施例,所述Z1个子信号分别被所述第一天线端口组发送。
作为一个实施例,所述Z1个子信号分别被所述第二天线端口组发送。
作为一个实施例,所述Z1个子信号中的任意一个所述子信号携带第一比特块,所述第一比特块包括UCI。
作为一个实施例,所述Z1个子信号中的任意一个所述子信号是所述参考子信号。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A0.发送R个第一信令。
其中,所述R个第一信令分别被用于确定R个第一偏移量,所述R个第一偏移量被用于确定所述第一功率和所述第二功率。所述R是正整数。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下两个步骤中的至少之一:
-步骤A1.发送第一下行信息;
-步骤A2.发送第二下行信息。
其中,所述第一下行信息被用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信 号的配置信息}中的至少之一,所述配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),PUCCH格式(PUCCH format),UCI内容}中的至少之一。所述第二下行信息被用于确定所述T。
作为一个实施例,所述第一下行信息是由高层信令承载的。
作为一个实施例,所述第一下行信息是由RRC(Radio Resource Control,无线资源控制)信令承载的。
作为一个实施例,所述第二下行信息是由动态信令承载的。
作为一个实施例,所述第二下行信息是由物理层信令承载的。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤
-步骤A3.发送第二信令。
其中,所述第二信令被用于触发所述第一无线信号的发送。
本发明公开了一种被用于无线通信的用户设备,其中,包括如下模块:
第一处理模块:用于在第一时间单元中发送第一无线信号。
其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时 频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还用于接收R个第一信令。其中,所述R个第一信令分别被用于确定R个第一偏移量,所述R个第一偏移量被用于确定所述第一功率和所述第二功率。所述R是正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还用于接收第一下行信息。其中,所述第一下行信息被用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}中的至少之一,所述配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),PUCCH格式(PUCCH format),UCI内容}中的至少之一。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还用于接收第二下行信息。其中,所述第二下行信息被用于确定所述T。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还用于接收第二信令。其中,所述第二信令被用于触发所述第一无线信号的发送。
本发明公开了一种被用于无线通信的基站设备,其中,包括如下模块:
第二处理模块:用于在第一时间单元中接收第一无线信号。
其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理模块还用于发送R个第一信令。其中,所述R个第一信令分别被用于确定R个第一偏移量,所述R个第一偏移量被用于确定所述第 一功率和所述第二功率。所述R是正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理模块还用于发送第一下行信息。其中,所述第一下行信息被用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}中的至少之一,所述配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),PUCCH格式(PUCCH format),UCI内容}中的至少之一。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理模块还用于发送第二下行信息。其中,所述第二下行信息被用于确定所述T。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理模块还用于发送第二信令。其中,所述第二信令被用于触发所述第一无线信号的发送。
作为一个实施例,和传统方案相比,本发明具备如下优势:
-.结合高层信令和物理层信令来配置PUCCH占用的时域资源,在可靠性和灵活性之间实现折中。
-.在由物理层信令配置的时域资源上采用较低的发送功率,降低了由于用户设备对物理层信令解码错误而造成的对其他终端设备的额外干扰。同时,降低了PUCCH上的总发送功率,在保证PUCCH覆盖的情况下,改善了在PUCCH长度较大时的功率浪费,提高功率效率。
-.允许用户设备用两个天线端口组发送PUCCH,并且不同天线端口组发送的信号在不同时域资源上占用不同的频域资源,使每个天线端口组对邻小区的干扰得到充分随机化,降低了小区间干扰。
-.在由高层信令配置的时域资源上采用时域正交扩频,提高了多用户复用的容量和资源利用率。在由物理层信令配置的时域资源上简单重复相同的无线信号,使PUCCH的设计能灵活地扩展到不同所述PUCCH长度下,保证了PUCCH设计的灵活性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的无线传输的流程图;
图2示出了根据本发明的一个实施例的第一时间单元的结构示意图和{第一功率,第二功率}的组成分量的示意图;
图3示出了根据本发明的另一个实施例的第一时间单元的结构示意图和{第一功率,第二功率}的组成分量的示意图;
图4示出了根据本发明的另一个实施例的第一时间单元的结构示意图和{第一功率,第二功率}的组成分量的示意图;
图5示出了根据本发明的一个实施例的{第一时频资源,第二时频资源,第三时频资源,第四时频资源}在时频域上资源映射的示意图;
图6示出了根据本发明的另一个实施例的{第一时频资源,第二时频资源,第三时频资源,第四时频资源}在时频域上资源映射的示意图;
图7示出了根据本发明的一个实施例的Y1个子信号和Z1个子信号在时频域上的资源映射的示意图;
图8示出了根据本发明的另一个实施例的Y1个子信号和Z1个子信号在时频域上的资源映射的示意图;
图9示出了根据本发明的另一个实施例的Y1个子信号和Z1个子信号在时频域上的资源映射的示意图;
图10示出了根据本发明的一个实施例的用于用户设备中的处理装置的结构框图;
图11示出了根据本发明的一个实施例的用于基站中的处理装置的结构框图。
实施例1
实施例1示例了无线传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区维持基站。附图1中,方框F1,方框F2,方框F3和方框F4中的步骤分别是可选的。
对于N1,在步骤S101中发送第一下行信息;在步骤S102中发送R个第一信令;在步骤S103中发送第二信令;在步骤S104中发送第二下行信息;在步骤S11中在第一时间单元中接收第一无线信号。
对于U2,在步骤S201中接收第一下行信息;在步骤S202中接收R个第一信令;在步骤S203中接收第二信令;在步骤S204中接收第二下行信息;在步骤S21中在第一时间单元中发送第一无线信号。
在实施例1中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。所述R个第一信令分别被所述U2用于确定R个第一偏移量,所述R个第一偏移量被所述U2用于确定所述第一功率和所述第二功率。所述R是正整数。所述第一下行信息被所述U2用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}中的至少之一,所述配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC,PUCCH格式(PUCCH format),UCI内容}中的至少之一。所述第二下行信息被所述U2用于确定所述T。所述第二信令被用于触发所述第一无线信号的发送。
作为实施例1的子实施例1,所述物理层控制信道是指:只能被用于承载UCI的物理层上行信道。
作为实施例1的子实施例2,所述物理层控制信道是PUCCH。
作为实施例1的子实施例3,所述物理层控制信道是sPUCCH。
作为实施例1的子实施例4,所述物理层控制信道是NR-PUCCH。
作为实施例1的子实施例5,所述物理层控制信道是NB-PUCCH。
作为实施例1的子实施例6,所述第一时间单元是一个时隙(slot)。
作为实施例1的子实施例7,所述第一时间单元是一个子帧(sub-frame)。
作为实施例1的子实施例8,所述第一时间单元在时域上占用1ms。
作为实施例1的子实施例9,所述第一时间单元在时域上包括正整数个所述多载波符号占用的时域资源。
作为实施例1的子实施例9的一个子实施例,所述第一时间单元在 时域上包括的所述多载波符号的数量等于所述T。
作为实施例1的子实施例9的一个子实施例,所述第一时间单元在时域上包括的所述多载波符号的数量大于所述T。
作为实施例1的子实施例10,所述T不小于所述X1。
作为实施例1的子实施例11,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置是固定的。
作为实施例1的子实施例12,所述X1是固定的常数。
作为实施例1的子实施例13,所述X1是由高层信令配置的。
作为实施例1的子实施例14,所述T是由动态信令配置的。
作为实施例1的子实施例15,所述T是由物理层信令配置的。
作为实施例1的子实施例16,所述第一无线信号包括UCI。
作为实施例1的子实施例16的一个子实施例,所述UCI包括{HARQ-ACK,CSI,SR,CRI}中的至少之一。
作为实施例1的子实施例17,所述多载波符号是OFDM符号。
作为实施例1的子实施例18,所述多载波符号是DFT-S-OFDM符号。
作为实施例1的子实施例19,所述多载波符号是FBMC符号。
作为实施例1的子实施例20,所述第一无线信号在频域上占据的频域资源的大小和所述T无关。
作为实施例1的子实施例21,所述第一无线信号在频域上占据的频域资源与所述第一无线信号在时域上占据的时域资源是独立配置的。
作为实施例1的子实施例22,所述第二功率小于所述第一功率。
作为实施例1的子实施例23,所述第一功率的单位是dBm(毫分贝)。
作为实施例1的子实施例24,所述第二功率的单位是dBm(毫分贝)。
作为实施例1的子实施例25,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域 上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。
作为实施例1的子实施例25的一个子实施例,所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
作为实施例1的子实施例26,{所述第一子信号,所述第二子信号,所述第三子信号,所述第四子信号}分别携带第一比特块,所述第一比特块包括正整数个比特,所述第一比特块包括UCI。
作为实施例1的子实施例26的一个子实施例,给定无线信号携带给定比特块是指:所述给定无线信号是所述给定比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后的输出。
作为实施例1的子实施例26的一个子实施例,给定无线信号携带给定比特块是指:所述给定无线信号是所述给定比特块依次经过信道编码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
作为实施例1的子实施例26的一个子实施例,给定无线信号携带给定比特块是指:所述给定比特块被用于生成所述给定无线信号。
作为实施例1的子实施例27,所述天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述天线端口的映射系数组成波束赋型向量。所述波束赋型向量是由一个模拟波束赋型向量和一个数字波束赋型向量的Kronecker积所构成的。
作为实施例1的子实施例28,所述第一天线端口组内的不同所述天线端口对应相同的所述模拟波束赋型向量,所述第二天线端口组内的不同所述天线端口对应相同的所述模拟波束赋型向量。
作为实施例1的子实施例29,所述第一天线端口组和所述第二天线端口组对应不同的所述模拟波束赋型向量。
作为实施例1的子实施例30,所述第一天线端口组内的不同所述天线端口对应不同的所述数字波束赋型向量,所述第二天线端口组内的不同所述天线端口对应不同的所述数字波束赋型向量。
作为实施例1的子实施例31,所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的。
作为实施例1的子实施例31的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:被第一天线端口发送的信号所经历的无线信道的小尺度特性不能被用于推断被第二天线端口发送的信号所经历的无线信道的小尺度特性。所述第一天线端口和所述第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的任意一个所述天线端口,所述小尺度特性包括信道冲激响应。
作为实施例1的子实施例31的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:所述用户设备不能利用第一天线端口发送的参考信号和第二天线端口发送的参考信号执行联合信道估计。所述第一天线端口和所述第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的任意一个所述天线端口。
作为实施例1的子实施例31的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:第一天线端口所对应的波束赋型向量和第二天线端口所对应的波束赋型向量不能被假定是相同的。所述第一天线端口和所述第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的任意一个所述天线端口。
作为实施例1的子实施例31的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:所述第一天线端口组对应的所述模拟波束赋型向量和所述第二天线端口组对应的所述模拟波束赋型向量不能被假定是相同的。
作为实施例1的子实施例32,所述第一下行信息被所述U2用于确定{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}。
作为实施例1的子实施例33,所述第二信令被所述U2用于确定{所 述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}。
作为实施例1的子实施例34,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
作为实施例1的子实施例35,所述Y1个元素依次组成第一序列,所述第一序列是K个候选序列中的一个所述候选序列,所述K个候选序列两两正交。所述Y1是不大于所述X1的正整数,所述K是大于1的正整数,所述Y1个元素中的任意一个所述元素是复数。
作为实施例1的子实施例36,所述候选序列是OCC。
作为实施例1的子实施例37,所述第一下行信息指示所述Y1个元素。
作为实施例1的子实施例38,所述第二信令被所述U2用于确定所述Y1个元素。
作为实施例1的子实施例39,所述第一下行信息被所述U2用于确定所述K个候选序列,所述第二信令指示所述第一序列在所述K个候选序列中的索引。
作为实施例1的子实施例40,所述参考子信号携带第一比特块,所述第一比特块包括UCI。
作为实施例1的子实施例41,所述Y1个子信号分别被同一个天线端口组发送。
作为实施例1的子实施例42,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
作为实施例1的子实施例43,所述Z1是不大于所述T和所述X1的差的非负整数。
作为实施例1的子实施例44,所述Z1个子信号分别被同一个天线端口组发送。
作为实施例1的子实施例45,所述Z1个子信号中的任意一个所述 子信号携带第一比特块,所述第一比特块包括UCI。
作为实施例1的子实施例46,所述第一信令包括第一域。{R1个所述第一偏移量的和,R2个所述第一偏移量的和}中的至少之一被所述U2用于确定所述第一功率和所述第二功率。R1个所述第一信令分别被所述U2用于确定所述R1个所述第一偏移量,R2个所述第一信令分别被所述U2用于确定所述R2个所述第一偏移量,所述R1个所述第一信令包括的所述第一域的值都等于第一索引,所述R2个所述第一信令包括的所述第一域的值都等于第二索引。所述R1和所述R2分别是不大于所述R的正整数。
作为实施例1的子实施例46的一个子实施例,所述R个第一信令调度同一个载波。
作为实施例1的子实施例47,所述第一信令是物理层信令。
作为实施例1的子实施例48,所述第一信令是动态信令。
作为实施例1的子实施例49,所述第一信令是用于下行授予(Downlink Grant)的动态信令。
作为实施例1的子实施例50,所述第一信令包括DCI。
作为实施例1的子实施例51,所述第一信令指示对应的所述第一偏移量。
作为实施例1的子实施例52,所述第一信令包括TPC域(field)。
作为实施例1的子实施例53,所述第一偏移量是由对应的所述第一信令中的TPC域所指示的。
作为实施例1的子实施例54,所述第一天线端口组对应所述第一索引,所述第二天线端口组对应所述第二索引。
作为实施例1的子实施例55,所述第一下行信息是由高层信令承载的。
作为实施例1的子实施例56,所述第一下行信息是由RRC信令承载的。
作为实施例1的子实施例57,所述第一下行信息是小区公共的。
作为实施例1的子实施例58,所述第一下行信息是UE特定(UE specific)的。
作为实施例1的子实施例59,所述第二下行信息是由动态信令承载 的。
作为实施例1的子实施例60,所述第二下行信息是由物理层信令承载的。
作为实施例1的子实施例61,所述第二下行信息是小区公共的。
作为实施例1的子实施例62,所述第二下行信息是UE组公共(UE group common)的。
作为实施例1的子实施例63,所述第二下行信息被所述U2用于确定所述第一时间单元的传输方向,所述传输方向是候选方向集合中的一种,所述候选方向集合包括{上行,下行},所述T个多载波符号属于所述第一时间单元中对应上行传输方向的所述多载波符号。
作为实施例1的子实施例63的一个子实施例,所述候选方向集合还包括侧行(sidelink)。
作为实施例1的子实施例64,所述第二信令被所述U2用于确定所述第一无线信号的配置信息。
作为实施例1的子实施例65,所述第一下行信息被所述U2用于确定M个所述配置信息,所述M是大于1的正整数。所述第一无线信号的配置信息是所述M个所述配置信息中的一个所述配置信息。所述第二信令被所述U2用于从所述M个所述配置信息中确定所述所述第一无线信号的配置信息。
作为实施例1的子实施例65的一个子实施例,所述第二信令指示所述所述第一无线信号的配置信息在所述M个所述配置信息中的索引。
作为实施例1的子实施例66,所述第二信令是高层信令。
作为实施例1的子实施例67,所述第二信令是MAC CE信令。
作为实施例1的子实施例68,所述第二信令是物理层信令。
作为实施例1的子实施例69,所述第二信令是动态信令。
作为实施例1的子实施例70,所述第二信令是UE特定(UE specific)的。
作为实施例1的子实施例71,附图1中的方框F1,方框F2,方框F3和方框F4都存在。所述第一下行信息被所述U2用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息},所述第二信令被用于触发所述第 一无线信号的发送。
作为实施例1的子实施例71的一个子实施例,所述第一无线信号包括半静态的CSI(semi-persistent CSI)。
作为实施例1的子实施例71的一个子实施例,所述第一无线信号包括非周期的CSI(aperiodic CSI)。
作为实施例1的子实施例71的一个子实施例,所述第一下行信息是UE特定(UE specific)的。
作为实施例1的子实施例71的一个子实施例,所述第二信令被所述U2用于确定{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}。
作为实施例1的子实施例71的一个子实施例,所述第二信令被所述U2用于确定所述Y1个元素。
作为实施例1的子实施例71的一个子实施例,所述第一下行信息被所述U2用于确定所述K个候选序列,所述第二信令指示所述第一序列在所述K个候选序列中的索引。
作为实施例1的子实施例71的一个子实施例,所述第一下行信息被所述U2用于确定M个所述配置信息,所述M是大于1的正整数。所述第一无线信号的配置信息是所述M个所述配置信息中的一个所述配置信息。所述第二信令指示所述所述第一无线信号的配置信息在所述M个所述配置信息中的索引。
作为实施例1的子实施例72,附图1中的方框F1,方框F2和方框F4存在,方框F3不存在。所述第一下行信息被所述U2用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}。
作为实施例1的子实施例72的一个子实施例,所述第一下行信息指示所述所述第一无线信号的配置信息。
作为实施例1的子实施例72的一个子实施例,所述第一无线信号包括周期的CSI(periodic CSI)。
作为实施例1的子实施例72的一个子实施例,所述第一下行信息是UE特定(UE specific)的。
作为实施例1的子实施例72的一个子实施例,所述第一下行信息 被所述U2用于确定{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}。
作为实施例1的子实施例72的一个子实施例,所述第一下行信息指示所述Y1个元素。
作为实施例1的子实施例73,附图1中的方框F1,方框F3和方框F4存在,方框F2不存在。所述第一下行信息被所述U2用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置}中的至少之一,所述第二信令被用于触发所述第一无线信号的发送。
作为实施例1的子实施例73的一个子实施例,所述第二信令指示所述第一无线信号的配置信息。
作为实施例1的子实施例73的一个子实施例,所述第一无线信号包括HARQ-ACK。
作为实施例1的子实施例73的一个子实施例,所述第一下行信息是小区公共的。
作为实施例1的子实施例73的一个子实施例,所述第二信令指示{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}。
作为实施例1的子实施例73的一个子实施例,所述第二信令指示所述Y1个元素。
作为实施例1的子实施例74,附图1中的方框F1,方框F2和方框F3存在,方框F4不存在。
作为实施例1的子实施例75,附图1中的方框F2,方框F3和方框F4存在,方框F1不存在。
作为实施例1的子实施例76,附图1中的方框F1和方框F3存在,方框F2和方框F4不存在。
作为实施例1的子实施例77,附图1中的方框F1和方框F2存在,方框F3和方框F4不存在。
作为实施例1的子实施例78,附图1中的方框F2和方框F3存在,方框F1和方框F4不存在。
作为实施例1的子实施例79,附图1中的方框F1存在,方框F2, 方框F3和方框F4不存在。
作为实施例1的子实施例80,附图1中的方框F1,方框F2,方框F3和方框F4都不存在。
实施例2
实施例2示例了第一时间单元的结构示意图和{第一功率,第二功率}的组成分量的示意图,如附图2所示。
在实施例2中,本发明中的所述用户设备在所述第一时间单元中发送第一无线信号。其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率。所述T是正整数,所述X1是小于所述T的正整数。所述第一时间单元包括的所述多载波符号的数量大于所述T。所述第二功率小于所述第一功率。
在附图2中,左斜线填充的方框表示所述X1个所述多载波符号,右斜线填充的方框表示所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号,白色填充的方框表示所述第一时间单元中的所述T个多载波符号以外的所述多载波符号。
所述第一功率是{第一限制功率,第一参考功率}中最小的一个,所述第一参考功率分别和{第一分量,第二分量,第三分量,第四分量,第五分量,第九分量}线性相关。所述第一参考功率和{所述第一分量,所述第二分量,所述第三分量,所述第四分量,所述第五分量,所述第九分量}之间的线性系数分别是1。所述第二功率是{第二限制功率,第二参考功率}中最小的一个,所述第二参考功率分别和{第八分量,所述第二分量,所述第三分量,所述第四分量,所述第五分量,所述第九分量}线性相关。所述第二参考功率和{所述第八分量,所述第二分量,所述第三分量,所述第四分量,所述第五分量,所述第九分量}之间的线性系数分别是1。即:
Figure PCTCN2017081798-appb-000001
Figure PCTCN2017081798-appb-000002
其中,PPUCCH(i),PPUCCH_2(i),PCMAX,c(i),PCMAX,c_2(i),P0_PUCCH,P0_PUCCH_2,PLc,h(nCQI,nHARQ,nSR),ΔF_PUCCH(F),ΔTxD(F')和g(i)分别是所述第一功率,所述第二功率,所述第一限制功率,所述第二限制功率,所述第一分量,所述第八分量,所述第二分量,所述第四分量,所述第三分量,所述第五分量,和所述第九分量。所述PPUCCH(i),所述PCMAX,c(i),所述P0_PUCCH,所述PLc,所述h(nCQI,nHARQ,nSR),所述ΔF_PUCCH(F),所述ΔTxD(F')和所述g(i)的详细的定义参考TS36.213。所述P0_PUCCH_2是PUCCH在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率的功率基准,所述PCMAX,c_2(i)是所述用户设备在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上发送PUCCH的发送功率最高门限。
作为实施例2的子实施例1,所述第一无线信号对应的PUCCH格式(format)属于{1,1a,1b,2,2a,2b,3}。
作为实施例2的子实施例2,本发明中的所述R个第一偏移量的和等于所述g(i)。
作为实施例2的子实施例3,所述第八分量小于所述第一分量。
作为实施例2的子实施例4,所述第二限制功率小于所述第一限制功率。
作为实施例2的子实施例5,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置是固定的。
作为实施例2的子实施例6,所述X1是固定的常数。
作为实施例2的子实施例7,所述X1小于14。
作为实施例2的子实施例8,所述X1不小于4。
作为实施例2的子实施例9,所述X1是4。
作为实施例2的子实施例10,所述T是不小于4并且不大于14的正整数。
作为实施例2的子实施例11,所述X1是由高层信令配置的。
作为实施例2的子实施例12,所述T是由动态信令配置的。
作为实施例2的子实施例13,所述T是由物理层信令配置的。
作为实施例2的子实施例14,所述第一时间单元中对应上行传输方向的所述多载波符号的数量等于所述T。
作为实施例2的子实施例14的一个子实施例,附图2中白色填充的方框表示的所述多载波符号对应的所述传输方向是下行。
作为实施例2的子实施例15,所述第一时间单元中至少有两个所述多载波符号对应不同的所述传输方向。
实施例3
实施例3示例了第一时间单元的结构示意图和{第一功率,第二功率}的组成分量的示意图,如附图3所示。
在实施例3中,本发明中的所述用户设备在所述第一时间单元中发送第一无线信号。其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率。所述T是正整数,所述X1是小于所述T的正整数。所述第一时间单元包括的所述多载波符号的数量大于所述T。所述第二功率小于所述第一功率。
在附图3中,左斜线填充的方框表示所述X1个所述多载波符号,右斜线填充的方框表示所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号,白色填充的方框表示所述第一时间单元中的所述T个多载波符号以外的所述多载波符号。
所述第一功率是{第一限制功率,第一参考功率}中最小的一个,所述第一参考功率分别和{第一分量,第二分量,第三分量,第六分量,第七分量,第九分量}线性相关。所述第一参考功率和{所述第一分量,所述第二分量,所述第三分量,所述第六分量,所述第七分量,所述第九分量}之间的线性系数分别是1。所述第二功率是{第二限制功率,第二参考功率}中最小的一个,所述第二参考功率分别和{第八分量,所述第二分量,所述第三分量,所述第六分量,所述第七分量,所述第九分量}线性相关。所述第二参考功率和{所述第八分量,所述第二分量,所述第三分量,所述第六分量,所述第七分量,所述第九分量}之间的线性系数分别是1。 即:
Figure PCTCN2017081798-appb-000003
Figure PCTCN2017081798-appb-000004
其中,10log10(MPUCCH,c(i))和ΔTF,c(i)分别是所述第六分量和所述第七分量。所述10log10(MPUCCH,c(i))和所述ΔTF,c(i)的详细的定义参考TS36.213。
作为实施例3的子实施例1,所述第一无线信号对应的PUCCH格式(format)属于{4,5}。
作为实施例3的子实施例2,所述第一时间单元中对应上行传输方向的所述多载波符号的数量大于所述T。
作为实施例3的子实施例2的一个子实施例,附图3中白色填充的方框表示的所述多载波符号对应的所述传输方向是上行。
作为实施例3的子实施例3,所述第一时间单元中的所有所述多载波符号对应相同的所述传输方向。
实施例4
实施例4示例了第一时间单元的结构示意图和{第一功率,第二功率}的组成分量的示意图,如附图4所示。
在实施例4中,本发明中的所述用户设备在所述第一时间单元中发送第一无线信号。其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率。所述T是正整数,所述X1是小于所述T的正整数。所述第一时间单元包括的所述多载波符号的数量大于所述T。所述第二功率小于所述第一功率。所述第一无线信号被第一天线端口组和第二天线端口组分别发送。R个第一信令分别被用于确定R个第一偏移量。所述第一信令包括第一域,{R1个所述第一偏移量的和,R2个所述第一偏移量的和}被用于确定所述第一功率和 所述第二功率。R1个所述第一信令分别被用于确定所述R1个所述第一偏移量,R2个所述第一信令分别被用于确定所述R2个所述第一偏移量,所述R1个所述第一信令包括的所述第一域的值都等于第一索引,所述R2个所述第一信令包括的所述第一域的值都等于第二索引。所述第一索引和所述第二索引分别和所述第一天线端口组和所述第二天线端口组对应。所述R是正整数,所述R1和所述R2分别是不大于所述R的正整数。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
在附图4中,左斜线填充的方框表示所述X1个所述多载波符号,右斜线填充的方框表示所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号,白色填充的方框和小点填充的方框共同表示所述第一时间单元中的所述T个多载波符号以外的所述多载波符号。
所述第一功率是{第一限制功率,第一参考功率}中最小的一个,所述第一参考功率分别和{第一分量,第三分量,第四分量,第五分量,第十分量}线性相关。所述第一参考功率和{所述第一分量,所述第三分量,所述第四分量,所述第五分量,所述第十分量}之间的线性系数分别是1。所述第二功率是{第二限制功率,第二参考功率}中最小的一个,所述第二参考功率分别和{第八分量,所述第三分量,所述第四分量,所述第五分量,所述第十分量}线性相关。所述第二参考功率和{所述第八分量,所述第三分量,所述第四分量,所述第五分量,所述第十分量}之间的线性系数分别是1。即:
Figure PCTCN2017081798-appb-000005
Figure PCTCN2017081798-appb-000006
其中,
Figure PCTCN2017081798-appb-000007
是所述第十分量。所述PLc_1,所述PLc_2,所述g1(i)和所述g2(i)分别是第一路损,第二路损,所述R1个所述第一偏 移量的和,所述R2个所述第一偏移量的和。针对第一参考信号的测量被用于确定所述第一路损。所述第一参考信号的发送者是所述第一无线信号的目标接收者,所述第一参考信号的目标接收者是所述第一无线信号的发送者,所述第一天线端口组对应的波束赋型向量被用于接收所述第一参考信号。针对第二参考信号的测量被用于确定所述第二路损。所述第二参考信号的发送者是所述第一无线信号的目标接收者,所述第二参考信号的目标接收者是所述第一无线信号的发送者,所述第一天线端口组对应的波束赋型向量被用于接收所述第二参考信号。
作为实施例4的子实施例1,所述第一路损等于所述第一参考信号的发送功率减去所述第一无线信号的发送者测量到的所述第一参考信号的RSRP。
作为实施例4的子实施例2,所述第二路损等于所述第二参考信号的发送功率减去所述第一无线信号的发送者测量到的所述第二参考信号的RSRP。
作为实施例4的子实施例3,所述天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述天线端口的映射系数组成波束赋型向量。所述波束赋型向量是由一个模拟波束赋型向量和一个数字波束赋型向量的Kronecker积所构成的。
作为实施例4的子实施例4,所述第一天线端口组内的不同所述天线端口对应相同的所述模拟波束赋型向量,所述第二天线端口组内的不同所述天线端口对应相同的所述模拟波束赋型向量。
作为实施例4的子实施例4的一个子实施例,所述第一天线端口组对应的所述模拟波束赋型向量被用于接收所述第一参考信号。
作为实施例4的子实施例4的一个子实施例,所述第二天线端口组对应的所述模拟波束赋型向量被用于接收所述第二参考信号。
作为实施例4的子实施例4的一个子实施例,所述第一天线端口组包括一个所述天线端口,所述第一天线端口组对应的所述波束赋型向量被用于接收所述第一参考信号。
作为实施例4的子实施例4的一个子实施例,所述第二天线端口组包括一个所述天线端口,所述第二天线端口组对应的所述波束赋型向量被用于接收所述第二参考信号。
作为实施例4的子实施例5,所述第一天线端口组和所述第二天线端口组对应不同的所述模拟波束赋型向量。
作为实施例4的子实施例6,所述第一天线端口组内的不同所述天线端口对应不同的所述数字波束赋型向量,所述第二天线端口组内的不同所述天线端口对应不同的所述数字波束赋型向量。
作为实施例4的子实施例7,所述第一天线端口组包括1个所述天线端口,所述第一天线端口组对应的所述波束赋型向量等于所述第一天线端口组对应的所述模拟波束赋型向量。
作为实施例4的子实施例8,所述第一天线端口组包括多个所述天线端口。
作为实施例4的子实施例9,所述第二天线端口组包括1个所述天线端口,所述第二天线端口组对应的所述波束赋型向量等于所述第二天线端口组对应的所述模拟波束赋型向量。
作为实施例4的子实施例10,所述第二天线端口组包括多个所述天线端口。
作为实施例4的子实施例11,所述R个第一信令调度同一个载波。
作为实施例4的子实施例12,所述第一信令是用于下行授予(Downlink Grant)的动态信令。
作为实施例4的子实施例13,所述第一偏移量是由对应的所述第一信令中的TPC域所指示的。
作为实施例4的子实施例14,所述第一索引和所述第二索引分别是非负整数。
作为实施例4的子实施例15,{所述第一索引,所述第二索引}分别是{第一天线虚拟化向量,第二天线虚拟化向量}在Q1个天线虚拟化向量中的索引。所述Q1是大于1的正整数。
作为实施例4的子实施例15的一个子实施例,所述第一天线端口组对应的所述模拟波束赋型向量等于所述第一天线虚拟化向量。
作为实施例4的子实施例15的一个子实施例,所述第二天线端口组对应的所述模拟波束赋型向量等于所述第二天线虚拟化向量。
作为实施例4的子实施例15的一个子实施例,所述第一天线端口组包括一个所述天线端口,所述第一天线端口组对应的所述波束赋型向 量等于所述第一天线虚拟化向量。
作为实施例4的子实施例15的一个子实施例,所述第二天线端口组包括一个所述天线端口,所述第二天线端口组对应的所述波束赋型向量等于所述第二天线虚拟化向量。
作为实施例4的子实施例16,{所述第一索引,所述第二索引}分别是{第一天线虚拟化向量组,第二天线虚拟化向量组}在Q2个天线虚拟化向量组中的索引,所述天线虚拟化向量组包括正整数个天线虚拟化向量。所述Q2是大于1的正整数。
作为实施例4的子实施例16的一个子实施例,所述第一天线端口组对应的所述模拟波束赋型向量属于所述第一天线虚拟化向量组。
作为实施例4的子实施例16的一个子实施例,所述第二天线端口组对应的所述模拟波束赋型向量属于所述第二天线虚拟化向量组。
作为实施例4的子实施例16的一个子实施例,所述第一天线端口组包括一个所述天线端口,所述第一天线端口组对应的所述波束赋型向量属于所述第一天线虚拟化向量组。
作为实施例4的子实施例16的一个子实施例,所述第二天线端口组包括一个所述天线端口,所述第二天线端口组对应的所述波束赋型向量属于所述第二天线虚拟化向量组。
作为实施例4的子实施例17,所述第一无线信号对应的PUCCH格式(format)属于{1,1a,1b,2,2a,2b,3}。
作为实施例4的子实施例18,所述第一时间单元中对应上行传输方向的所述多载波符号的数量大于所述T。
作为实施例4的子实施例18的一个子实施例,附图4中小点填充的方框表示的所述多载波符号对应的所述传输方向是上行。
作为实施例4的子实施例19,所述第一时间单元中至少有两个所述多载波符号对应不同的所述传输方向。
作为实施例4的子实施例19的一个子实施例,附图4中白色填充的方框表示的所述多载波符号对应的所述传输方向是下行,其他方框表示的所述多载波符号对应的所述传输方向都是上行。
实施例5
实施例5示例了{第一时频资源,第二时频资源,第三时频资源,第四时频资源}在时频域上资源映射的示意图,如附图5所示。
在实施例5中,本发明中的所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在所述第一时频资源,所述第二时频资源,所述第三时频资源和所述第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}在时域上分别占用正整数个连续的本发明中的所述多载波符号占用的时域资源,在频域上分别占用正整数个连续的频率单元。
作为实施例5的子实施例1,{所述第一子信号,所述第二子信号,所述第三子信号,所述第四子信号}分别携带第一比特块,所述第一比特块包括正整数个比特,所述第一比特块包括UCI。
作为实施例5的子实施例1的一个子实施例,给定无线信号携带给定比特块是指:所述给定无线信号是所述给定比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后的输出。
作为实施例5的子实施例1的一个子实施例,给定无线信号携带给定比特块是指:所述给定无线信号是所述给定比特块依次经过信道编码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
作为实施例5的子实施例1的一个子实施例,给定无线信号携带给定比特块是指:所述给定比特块被用于生成所述给定无线信号。
作为实施例5的子实施例2,所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的。
作为实施例5的子实施例2的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:被第一天线端口发送的信号所经历的无线信道的小尺度特性不能被用于推断被第二天线端口发送的信号所经历的无线信道的小尺度特性。所述第一天线端口和所述第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的任意一个所述天线端口,所述小尺度特性包括信道冲激响应。
作为实施例5的子实施例2的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:不能利用第一天线端口发送的参考信号和第二天线端口发送的参考信号执行联合信道估计。所述第一天线端口和所述第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的任意一个所述天线端口。
作为实施例5的子实施例2的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:第一天线端口所对应的波束赋型向量和第二天线端口所对应的波束赋型向量不能被假定是相同的。所述第一天线端口和所述第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的任意一个所述天线端口。
作为实施例5的子实施例2的一个子实施例,所述所述第一天线端口组中的任一所述天线端口和所述第二天线端口组中的任一所述天线端口不能被假定是相同的是指:所述第一天线端口组对应的所述模拟波束赋型向量和所述第二天线端口组对应的所述模拟波束赋型向量不能被假定是相同的。
作为实施例5的子实施例3,所述频率单元是一个子载波占据的带宽。
作为实施例5的子实施例4,所述第一时频资源,所述第二时频资源,所述第三时频资源和所述第四时频资源在时域占用的所述多载波符 号的数量是相等的。
作为实施例5的子实施例5,所述第一时频资源和所述第三时频资源在时域占用的所述多载波符号的数量是不相等的,所述第二时频资源和所述第四时频资源在时域占用的所述多载波符号的数量是不相等的。
作为实施例5的子实施例6,所述第一时频资源,所述第二时频资源,所述第三时频资源和所述第四时频资源在频域上占用所述频率单元的数量是相等的。
实施例6
实施例6示例了{第一时频资源,第二时频资源,第三时频资源,第四时频资源}在时频域上资源映射的示意图,如附图6所示。
在实施例6中,本发明中的所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在所述第一时频资源,所述第二时频资源,所述第三时频资源和所述第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}在时域上分别占用正整数个不连续的本发明中的所述多载波符号占用的时域资源,在频域上分别占用正整数个不连续的频率单元。
实施例7
实施例7示例了Y1个子信号和Z1个子信号在时频域上的资源映射的示意图,如附图7所示。
在实施例7中,本发明中的所述第一无线信号在本发明中的所述X1 个所述多载波符号中占用Y1个所述多载波符号,在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
在附图7中,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。所述Y1个子信号是所述第一子信号位于所述X1个所述多载波符号之内的部分,所述Z1个子信号所述第一子信号位于所述X1个所述多载波符号之外的部分。{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}在时域上分别占用正整数个不连续的所述多载波符号占用的时域资源,在频域上占用正整数个连续的频率单元。
作为实施例7的子实施例1,所述Y1个元素依次组成第一序列,所述第一序列是K个候选序列中的一个所述候选序列,所述K个候选序列两两正交。所述Y1是不大于所述X1的正整数,所述K是大于1的正整数,所述Y1个元素中的任意一个所述元素是复数。
作为实施例7的子实施例1的一个子实施例,所述候选序列是OCC。
作为实施例7的子实施例2,所述Y1个子信号分别在所述Y1个所述多载波符号上发送。
作为实施例7的子实施例3,所述Z1个子信号分别在所述Z1个所述多载波符号上发送。
作为实施例7的子实施例4,所述Y1大于1。
作为实施例7的子实施例5,所述Y1小于所述X1。
作为实施例7的子实施例6,所述Y1等于所述X1除以2,所述X1是偶数。
作为实施例7的子实施例7,所述Y1等于所述X1减1后再除以2,所述X1是奇数。
作为实施例7的子实施例8,所述Y1等于所述X1加1后再除以2,所述X1是奇数。
作为实施例7的子实施例9,所述Z1是不大于所述T和所述X1的差的非负整数。
作为实施例7的子实施例10,所述Y1个所述多载波符号在时域上是连续分布的。
作为实施例7的子实施例11,所述Z1个所述多载波符号在时域上是连续分布的。
作为实施例7的子实施例12,所述参考子信号携带第一比特块,所述第一比特块包括UCI。
作为实施例7的子实施例13,所述Y1个子信号分别被所述第一天线端口组发送。
作为实施例7的子实施例14,所述Z1个子信号分别被所述第一天线端口组发送。
作为实施例7的子实施例15,所述Z1个子信号中的任意一个所述子信号携带第一比特块,所述第一比特块包括UCI。
作为实施例7的子实施例16,所述Z1个子信号中的任意一个所述子信号是所述参考子信号。
作为实施例7的子实施例17,所述Y1个子信号和所述Z1个子信号占用的频域资源是重叠的。
实施例8
实施例8示例了Y1个子信号和Z1个子信号在时频域上的资源映射的示意图,如附图8所示。
在实施例8中,本发明中的所述第一无线信号在本发明中的所述X1个所述多载波符号中占用Y1个所述多载波符号,在所述X1个所述多载 波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
在附图8中,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。所述Y1个子信号是所述第一子信号位于所述X1个所述多载波符号之内的部分,所述Z1个子信号所述第一子信号位于所述X1个所述多载波符号之外的部分。{所述第一时频资源,所述第二时频资源,所述第三时频资源,所述第四时频资源}在时域上分别占用正整数个不连续的所述多载波符号占用的时域资源,在频域上占用正整数个不连续的频率单元。
作为实施例8的子实施例1,所述Y1个子信号和所述Z1个子信号占用的频域资源是正交的。
实施例9
实施例9示例了Y1个子信号和Z1个子信号在时频域上的资源映射的示意图,如附图9所示。
在实施例9中,本发明中的所述第一无线信号在本发明中的所述X1个所述多载波符号中占用Y1个所述多载波符号,在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。所述第一无线信号在所述Z1个所述多载 波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
在附图9中,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。所述第一时频资源在时频域上包括第一子资源,第二子资源,第三子资源和第四子资源,其中所述第一子资源和所述第二子资源位于所述X1个所述多载波符号之内,所述第三子资源和所述第四子资源位于所述X1个所述多载波符号之外。所述第一子资源和所述第二子资源占用的频域资源是正交的,所述第三子资源和所述第四子资源占用的频域资源是正交的。所述Y1个子信号是所述第一子信号位于所述第一子资源内的部分,所述Z1个子信号所述第一子信号位于所述第三子资源内的部分。
作为实施例9的子实施例1,所述Y1等于所述X1除以4再取整。
实施例10
实施例10示例了用于用户设备中的处理装置的结构框图,如附图10所示。
在附图10中,用户设备中的处理装置200主要由第一处理模块201组成。
第一处理模块201用于在第一时间单元中发送第一无线信号。
在实施例10中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1 个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
作为实施例10的子实施例1,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
作为实施例10的子实施例2,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
作为实施例10的子实施例3,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
作为实施例10的子实施例4,所述第一处理模块201还用于接收R个第一信令。其中,其中,所述R个第一信令分别被所述第一处理模块201用于确定R个第一偏移量,所述R个第一偏移量被所述第一处理模块201用于确定所述第一功率和所述第二功率。所述R是正整数。
作为实施例10的子实施例5,所述第一处理模块201还用于接收第一下行信息。其中,所述第一下行信息被所述第一处理模块201用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}中的至少之一,所述配 置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),PUCCH格式(PUCCH format),UCI内容}中的至少之一。
作为实施例10的子实施例6,所述第一处理模块201还用于接收第二下行信息。其中,所述第二下行信息被所述第一处理模块201用于确定所述T。
作为实施例10的子实施例7,所述第一处理模块还用于接收第二信令。其中,所述第二信令被用于触发所述第一无线信号的发送。
实施例11
实施例11示例了用于基站中的处理装置的结构框图,如附图11所示。
在附图11中,基站装置300主要由第二处理模块301组成。
第二处理模块301用于在第一时间单元中接收第一无线信号。
在实施例11中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
作为实施例11的子实施例1,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端 口。
作为实施例11的子实施例2,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
作为实施例11的子实施例3,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
作为实施例11的子实施例4,所述第二处理模块301还用于发送R个第一信令。其中,所述R个第一信令分别被用于确定R个第一偏移量,所述R个第一偏移量被用于确定所述第一功率和所述第二功率。所述R是正整数。
作为实施例11的子实施例5,所述第二处理模块301还用于发送第一下行信息。其中,所述第一下行信息被用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}中的至少之一,所述配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),PUCCH格式(PUCCH format),UCI内容}中的至少之一。
作为实施例11的子实施例6,所述第二处理模块301还用于发送第二下行信息。其中,所述第二下行信息被用于确定所述T。
作为实施例11的子实施例7,所述第二处理模块301还用于发送第二信令。其中,所述第二信令被用于触发所述第一无线信号的发送。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中 的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,物联网通信模块,车载通信设备,NB-IOT终端,eMTC终端等无线通信设备。本发明中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种被用于无线通信的用户设备中的方法,其中,包括如下步骤:
    -步骤A.在第一时间单元中发送第一无线信号。
    其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
  4. 根据权利要求1、2或3所述的方法,其特征在于,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于, 所述步骤A还包括如下步骤:
    -步骤A0.接收R个第一信令。
    其中,所述R个第一信令分别被用于确定R个第一偏移量,所述R个第一偏移量被用于确定所述第一功率和所述第二功率。所述R是正整数。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述步骤A还包括如下两个步骤中的至少之一:
    -步骤A1.接收第一下行信息;
    -步骤A2.接收第二下行信息。
    其中,所述第一下行信息被用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}中的至少之一,所述配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),PUCCH格式(PUCCH format),UCI内容}中的至少之一。所述第二下行信息被用于确定所述T。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,所述步骤A还包括如下步骤
    -步骤A3.接收第二信令。
    其中,所述第二信令被用于触发所述第一无线信号的发送。
  8. 一种被用于无线通信的基站中的方法,其中,包括如下步骤:
    -步骤A.在第一时间单元中接收第一无线信号。
    其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述第一无线信号包括第一子信号,第二子信号,第三子信号和第四子信号。所述第一子信号,所述第二子信号,所述第三子信号和所述第四子信号分别在第一 时频资源,第二时频资源,第三时频资源和第四时频资源中发送。所述第一时频资源和所述第二时频资源在时域上是重叠的,在频域上是正交的。所述第三时频资源和所述第四时频资源在时域上是重叠的,在频域上是正交的。所述第一时频资源和所述第三时频资源在时域上是正交的,在频域上是重叠的。所述第二时频资源和所述第四时频资源在时域上是正交的,在频域上是重叠的。所述第一子信号和所述第四子信号分别被第一天线端口组发送,所述第二子信号和所述第三子信号分别被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括正整数个天线端口。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一无线信号在所述X1个所述多载波符号中占用Y1个所述多载波符号。所述第一无线信号在所述Y1个所述多载波符号上分别包括Y1个子信号,所述Y1个子信号分别等于参考子信号和Y1个元素的乘积。
  11. 根据权利要求8、9或10所述的方法,其特征在于,所述第一无线信号在所述X1个所述多载波符号之外占用Z1个所述多载波符号。所述第一无线信号在所述Z1个所述多载波符号上分别包括Z1个子信号,所述Z1个子信号是相同的。
  12. 根据权利要求8至11中任一权利要求所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.发送R个第一信令。
    其中,所述R个第一信令分别被用于确定R个第一偏移量,所述R个第一偏移量被用于确定所述第一功率和所述第二功率。所述R是正整数。
  13. 根据权利要求8至12中任一权利要求所述的方法,其特征在于,所述步骤A还包括如下两个步骤中的至少之一:
    -步骤A1.发送第一下行信息;
    -步骤A2.发送第二下行信息。
    其中,所述第一下行信息被用于确定{所述X1,所述X1个所述多载波符号占用的时域资源在所述第一时间单元中的位置,所述第一无线信号的配置信息}中的至少之一,所述配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift), OCC(Orthogonal Cover Code,正交掩码),PUCCH格式(PUCCH format),UCI内容}中的至少之一。所述第二下行信息被用于确定所述T。
  14. 根据权利要求8至13中任一权利要求所述的方法,其特征在于,所述步骤A还包括如下步骤
    -步骤A3.发送第二信令。
    其中,所述第二信令被用于触发所述第一无线信号的发送。
  15. 一种被用于无线通信的用户设备,其中,包括如下模块:
    第一处理模块:用于在第一时间单元中发送第一无线信号。
    其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
  16. 一种被用于无线通信的基站设备,其中,包括如下模块:
    第二处理模块:用于在第一时间单元中接收第一无线信号。
    其中,所述第一无线信号在一个物理层控制信道中传输,所述第一无线信号占用T个多载波符号。如果所述T大于X1,所述第一无线信号在所述T个多载波符号中的X1个所述多载波符号上的发送功率是第一功率,所述第一无线信号在所述T个多载波符号中的所述X1个所述多载波符号之外的所述多载波符号上的发送功率是第二功率;否则所述第一无线信号在所述T个多载波符号中的发送功率是第一功率。所述T和所述X1分别是正整数。
PCT/CN2017/081798 2017-04-25 2017-04-25 一种被用于无线通信的用户、基站中的方法和装置 WO2018195753A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/081798 WO2018195753A1 (zh) 2017-04-25 2017-04-25 一种被用于无线通信的用户、基站中的方法和装置
CN201780088309.2A CN110431890B (zh) 2017-04-25 2017-04-25 一种被用于无线通信的用户、基站中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081798 WO2018195753A1 (zh) 2017-04-25 2017-04-25 一种被用于无线通信的用户、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2018195753A1 true WO2018195753A1 (zh) 2018-11-01

Family

ID=63918075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081798 WO2018195753A1 (zh) 2017-04-25 2017-04-25 一种被用于无线通信的用户、基站中的方法和装置

Country Status (2)

Country Link
CN (1) CN110431890B (zh)
WO (1) WO2018195753A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378341A (zh) * 2011-11-17 2012-03-14 电信科学技术研究院 一种上行功率控制方法及装置
CN105407524A (zh) * 2015-10-30 2016-03-16 上海华为技术有限公司 Phr的发送方法和用户终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213538B2 (en) * 2007-05-29 2012-07-03 Qualcomm Incorporated Methods and apparatus for improved utilization of air link resources in a wireless communications system
US9226248B2 (en) * 2011-05-05 2015-12-29 Qualcomm Incorporated Managing reserved cells and user equipments in an MBSFN environment within a wireless communication system
US10588114B2 (en) * 2015-06-20 2020-03-10 Ofinno, Llc Uplink power control for a secondary cell in carrier aggregation
CN106332260A (zh) * 2015-07-06 2017-01-11 哈尔滨工业大学 功率分配方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378341A (zh) * 2011-11-17 2012-03-14 电信科学技术研究院 一种上行功率控制方法及装置
CN105407524A (zh) * 2015-10-30 2016-03-16 上海华为技术有限公司 Phr的发送方法和用户终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "3GPP TSG RAN WG1 Meeting #88", RL-1701647, LONG DURATION PUCCH DESIGN, 7 February 2017 (2017-02-07), XP051220839 *
LG ELECTRONICS: "3GPP TSG RAN WG1 NR Ad-Hoc Meeting", RL-1700505, DESIGN OF LONG DURATION NR-PUCCH FORMAT, 16 January 2017 (2017-01-16), XP051208036 *

Also Published As

Publication number Publication date
CN110431890B (zh) 2022-03-29
CN110431890A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN110521137B (zh) 用于利用dl和ul参考信号的信道状态信息(csi)获取的方法和设备
US10313073B2 (en) Transmission of reference signals
CN110719156B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
CN105191194B (zh) 信道质量指示的配置方法和装置
KR20190119917A (ko) 무선통신시스템에서 신호를 송수신하는 방법 및 장치
CN108155925B (zh) 一种用于功率调整的ue、基站中的方法和装置
WO2018130125A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2019196801A1 (zh) 数据传输的方法、通信装置及系统
WO2020029861A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
KR102230746B1 (ko) 통신 방법, 네트워크 디바이스, 단말 디바이스, 컴퓨터 판독 가능형 저장 매체, 컴퓨터 프로그램 제품, 프로세싱 장치 및 통신 시스템
CN107005981A (zh) 在所确定的第三时频资源集合中的传输和接收
EP3800945B1 (en) Power allocation method and related device
WO2016041570A1 (en) Downlink control channel for single carrier transmission
US10778388B2 (en) Method and apparatus for resource management in wireless communication systems
WO2020024783A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN115699659A (zh) 多个trp上基于单个coreset的pdcch分集
CN108401524B (zh) 一种被用于功率调整的用户设备、基站中的方法和装置
KR20220152789A (ko) 무선 통신 시스템에서 상향링크 채널을 전송하기 위한 방법 및 장치
WO2017181996A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2020143840A1 (zh) 一种确定传输块大小的方法及装置
WO2018195753A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN114698104A (zh) 一种指示天线端口的方法、装置与系统
CN108271240B (zh) 一种用于功率调整的ue、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907505

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17907505

Country of ref document: EP

Kind code of ref document: A1