WO2018194176A1 - Packaging material for batteries, method for producing same, and battery - Google Patents

Packaging material for batteries, method for producing same, and battery Download PDF

Info

Publication number
WO2018194176A1
WO2018194176A1 PCT/JP2018/016367 JP2018016367W WO2018194176A1 WO 2018194176 A1 WO2018194176 A1 WO 2018194176A1 JP 2018016367 W JP2018016367 W JP 2018016367W WO 2018194176 A1 WO2018194176 A1 WO 2018194176A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin layer
resin
packaging material
battery
Prior art date
Application number
PCT/JP2018/016367
Other languages
French (fr)
Japanese (ja)
Inventor
かおる 津森
山下 孝典
山下 力也
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201880025574.0A priority Critical patent/CN110537266B/en
Priority to JP2019502828A priority patent/JP6525119B2/en
Publication of WO2018194176A1 publication Critical patent/WO2018194176A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags

Definitions

  • the present invention relates to a packaging material for a battery, a manufacturing method thereof, and a battery.
  • a concave portion is formed by molding, and a battery element such as an electrode or an electrolytic solution is arranged in the space formed by the concave portion, and a heat-fusible resin layer A battery in which the battery element is accommodated in the battery packaging material is obtained by heat-sealing them together.
  • the battery In the process of manufacturing a battery packaging material formed by such a film-like laminate, and the process of manufacturing a battery using the battery packaging material, the battery is transported until the battery is completed.
  • Surface characteristics on the base material layer side may be deteriorated, such as scratches, heat deterioration during heat fusion, and adhesion of the electrolyte when encapsulating the electrolyte. Since the surface on the base material layer side is located outside the battery, it is required to avoid such characteristic deterioration as much as possible.
  • Patent Document 1 discloses a protective film characterized in that the adhesive strength is almost eliminated by heating or ultraviolet irradiation in advance for a laminated film having a three-layer structure in which a protective layer and a heat sealing layer are laminated on a metal foil.
  • a method has been proposed in which a battery is manufactured after affixing, and a protective film having a reduced adhesive strength is peeled off by applying heat or ultraviolet light.
  • Patent Document 1 has a problem that a layer or the like located under the protective film is deteriorated by heating or ultraviolet irradiation. In addition, it is necessary to set the heating temperature and the wavelength of ultraviolet rays, and there is also a problem that the adhesive force of the protective film does not become constant because these set values change.
  • the present invention is an invention made in view of such problems of the prior art. That is, the main object is to provide a battery packaging material that can effectively suppress deterioration of characteristics of the outer surface of the battery packaging material in the process of manufacturing the battery or the battery packaging material. Furthermore, another object of the present invention is to provide a method for producing the battery packaging material, a battery using the battery packaging material, and a method for producing the battery.
  • the present inventors have intensively studied to solve the above problems. As a result, it is composed of a laminate including at least a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order, the bonding layer includes a polyester resin,
  • the battery packaging material that can be peeled off from the laminate using an aqueous liquid does not require heating, ultraviolet irradiation, or the like that deteriorates the characteristics of the outer surface of the battery packaging material as in Patent Document 1, and is used for batteries or batteries. It has been found that the characteristic deterioration of the outer surface of the battery packaging material in the process of producing the packaging material can be effectively suppressed.
  • the present invention has been completed by further studies based on these findings.
  • this invention provides the invention of the aspect hung up below.
  • Item 1. At least, it is composed of a laminate comprising a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order,
  • the bonding layer includes a polyester resin,
  • the battery packaging material wherein the resin layer is peelable from the laminate using an aqueous liquid.
  • Item 2. In an environment of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure, the peel strength when the resin layer is peeled from the laminate without water adhering to the bonding layer is 2.0 N / 15 mm or more.
  • Item 2 The peel strength when peeling the resin layer from the laminate using the aqueous liquid in an environment of temperature 25 ° C., relative humidity 50%, and atmospheric pressure is 1.0 N / 15 mm or less, Item 2.
  • the battery packaging material according to Item 1 wherein the aqueous liquid is water.
  • Item 3. The battery packaging material according to Item 1 or 2, wherein a lubricant is present on the surface of the laminate on the resin layer side.
  • Item 4. Item 4.
  • Item 5. Item 5.
  • Item 6. The battery packaging material according to any one of Items 1 to 5, wherein a light stabilizer is contained in at least one of the resin layer, the bonding layer, and the base material layer.
  • Item 7. Item 7. The battery packaging material according to Item 6, wherein the light stabilizer is a hindered amine light stabilizer.
  • the manufacturing method of the packaging material for batteries using the said joining layer contains the polyester resin and the said resin layer can peel from the said laminated body using an aqueous liquid.
  • Item 9 A battery in which a battery element including at least a positive electrode, a negative electrode, and an electrolyte is accommodated in a package formed of the battery packaging material according to any one of Items 1 to 7.
  • a laminate comprising a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order for a battery packaging material
  • the bonding layer includes a polyester resin
  • the present invention it is possible to provide a battery packaging material that can effectively suppress the deterioration of characteristics of the outer surface of the battery packaging material in the process of manufacturing the battery or the battery packaging material. Moreover, according to this invention, the manufacturing method of the said packaging material for batteries, the battery using the said packaging material for batteries, and the manufacturing method of the said battery can also be provided.
  • the battery packaging material of the present invention is composed of a laminate including at least a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order.
  • the resin layer is characterized in that the resin layer can be peeled off from the laminate using an aqueous liquid.
  • the numerical range indicated by “to” means “above” or “below”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the battery packaging material of the present invention comprises at least a resin layer 1a, a bonding layer 1b, a base material layer 2, a barrier layer 3, and a heat as shown in FIGS. It is comprised from the laminated body which has the fusible resin layer 4 in this order.
  • the resin layer 1a is the outermost layer
  • the heat-fusible resin layer 4 is the innermost layer. That is, when the battery is assembled, the battery element is sealed by heat-sealing the heat-fusible resin layers 4 positioned at the periphery of the battery element to seal the battery element.
  • FIG. 1 to 3 show a mode in which a laminate of a resin layer 1a and a bonding layer 1b containing a polyester resin constitutes the protective layer 1.
  • FIG. The bonding layer 1b is provided for bonding (more specifically, sticking) the resin layer 1a to another layer.
  • the bonding layer 1b can be referred to as an adhesive layer.
  • an adhesive layer is formed between the base material layer 2 and the barrier layer 3 as necessary for the purpose of enhancing the adhesion between them. 5 may be provided.
  • the battery packaging material 10 of the present invention is bonded between the barrier layer 3 and the heat-fusible resin layer 4 as necessary for the purpose of improving the adhesion between them.
  • a layer 6 may be provided.
  • illustration is abbreviate
  • the resin layer 1a can be peeled off from the laminate constituting the battery packaging material 10 using an aqueous liquid. This is because the bonding layer 1b has adhesiveness due to the polyester resin.
  • the resin layer 1a can be easily peeled from the laminate constituting the battery packaging material 10 using an aqueous liquid. Further, peeling using an aqueous liquid has little effect on the base material layer 2 and the surface coating layer, and even if the base material layer 2 absorbs moisture, it only needs to be dried. Can be suppressed.
  • the term “adhesiveness” or “adhesiveness” means a property of joining a plurality of objects, and is a concept included in a broad sense of adhesion, and is a sticking property (tackiness).
  • the aqueous liquid is not particularly limited as long as it is a liquid containing water, but specific examples of the aqueous liquid include water, a hydrous polar organic solvent, and the like.
  • the hydrous polar organic solvent include aqueous solutions of polar organic solvents such as alcohol, acetone, ethyl acetate, and dimethyl ether.
  • the aqueous solution of alcohol (hydrous alcohol) include aqueous solutions of lower alcohols such as methanol and ethanol.
  • the mass ratio of water to the polar solvent (water: polar solvent) in the hydrous polar organic solvent is about 100: 1 to 100: 100.
  • the aqueous liquid may be constituted by one type of liquid or may be constituted by two or more types of liquids.
  • the fact that the resin layer 1a can be peeled from the laminate means that the resin layer 1a can be peeled from the layer in contact with the bonding layer 1b.
  • the bonding layer 1b may be peeled off from the surface on the base material layer 2 side together with the resin layer 1a, and the components of the bonding layer 1b may remain on the surface on the base material layer 2 side.
  • the upper limit of the peel strength (A) of the resin layer 1a when water is adhered to the bonding layer 1b in an environment of temperature 25 ° C., relative humidity 50%, and atmospheric pressure (1 atm) is preferably about 1.0 N. / 15 mm or less, more preferably about 0.5 N / 15 mm or less, although there is no particular lower limit, preferably about 0.0 N / 15 mm or more, more preferably about 0.01 N / 15 mm or more, and still more preferably about 0.1 N / 15 mm or more is mentioned.
  • the range of the peel strength (A) is preferably about 0.0 to 1.0 N / 15 mm, about 0.0 to 0.5 N / 15 mm, about 0.01 to 1.0 N / 15 mm, 0.01 ⁇ 0.5 N / 15 mm, 0.1 ⁇ 1.0 N / 15 mm, and 0.1 ⁇ 0.5 N / 15 mm.
  • “releasable from the laminate using an aqueous liquid” means, for example, that the resin layer 1a can be easily peeled from the laminate using an aqueous liquid.
  • Strength (A) satisfies the above value.
  • the lower limit of the peel strength (B) of the resin layer 1a when water is not adhered to the bonding layer 1b in an environment of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure (1 atm) is preferably about 2. 0 N / 15 mm or more, more preferably about 2.2 N / 15 mm or more, and there is no particular upper limit, but preferably about 30.0 N / 15 mm or less.
  • the range of the peel strength (B) is preferably about 2.0 to 30.0 N / 15 mm, more preferably about 2.2 to 30.0 N / 15 mm.
  • the peel strength (B) of the resin layer 1a when water does not adhere to the bonding layer 1b is about 2.0 N / 15 mm or more, and water adheres to the bonding layer 1b.
  • the peel strength (A) of the resin layer 1a in the case of being made is preferably about 1.0 N / 15 mm or less, the peel strength (B) is about 2.2 N / 15 mm or more, and the peel strength More preferably, (A) is about 0.5 N / 15 mm or less.
  • the resin layer 1a has high peel strength before water adheres to the bonding layer 1b, and the battery is used as the outermost layer of the laminate constituting the battery packaging material.
  • the characteristic deterioration of the packaging material is suitably suppressed, and the peel strength of the resin layer 1a is reduced by attaching an aqueous liquid to the bonding layer 1b at a desired timing. More specifically, when water adheres to the bonding layer 1b, moisture penetrates into at least one of the resin layer 1a, the bonding layer 1b, and the base material layer 2, and the adhesive strength of the bonding layer 1b decreases. The peel strength of the resin layer 1a is reduced. Thereby, the resin layer 1a can be suitably peeled from the laminated body.
  • printing may be performed on the outside of the battery from the viewpoint of battery identification.
  • the battery packaging material of the present invention until printing is performed, the deterioration of the characteristics of the surface of the battery packaging material on the substrate layer 2 side is effectively suppressed, and an aqueous liquid is used when printing is performed.
  • an aqueous liquid is used when printing is performed.
  • the resin layer 1a is peeled off from the laminate using an aqueous liquid, so that the resin layer 1a becomes a pin of the barrier layer 3
  • the resin layer 1a becomes a pin of the barrier layer 3
  • the heat-fusible resin layer 4 is heat-sealed using the battery packaging material of the present invention having the resin layer 1a, the deterioration of the base material layer 2 and the surface coating layer due to high temperature and high pressure is caused by the resin layer. It can suppress effectively by the protection by 1a.
  • the resin layer 1a when using for the battery by which heat dissipation is calculated
  • the method for measuring the peel strength of the resin layer 1a in an environment of a temperature of 25 ° C., a relative humidity of 50%, and an atmospheric pressure (1 atm) is as follows.
  • the battery packaging material is cut into a rectangular shape of 100 mm (MD: Machine Direction) ⁇ 15 mm (TD: Transverse Direction) to obtain a test sample.
  • MD Machine Direction
  • TD Transverse Direction
  • 35% hydrochloric acid is attached to the end portions of the resin layer 1a and the bonding layer 1b of the test sample, and is shown in the schematic diagram of FIG.
  • the resin layer 1a is peeled off about 30 mm in the MD direction.
  • the hydrochloric acid adhering to the test sample is wiped off and dried as it is.
  • water (W) is made to adhere to the part from which the resin layer 1a has been peeled off (the bonding layer 1b between the resin layer 1a and the base layer 2 side surface) using a dropper. At this time, water (W) is adhered to the entire boundary in the TD direction at the boundary between the resin layer 1a and the surface of the base material layer 2 side. The water is used in such an amount that the water adheres sufficiently throughout the TD direction at the boundary portion.
  • the resin layer 1a is removed from the surface of the base material layer 2 side under the measurement conditions of a distance between chucks of 50 mm, a peeling speed of 50 mm / min, and a peeling angle of 180 °.
  • the peel strength when the distance between chucks reaches 57 mm is defined as the peel strength (N / 15 mm) with water attached.
  • the thickness of the laminate constituting the battery packaging material 10 of the present invention is not particularly limited, but the battery packaging material is excellent in moldability while reducing the thickness of the battery packaging material to increase the energy density of the battery. From the viewpoint of, for example, 180 ⁇ m or less, preferably 150 ⁇ m or less, more preferably about 60 to 180 ⁇ m, and still more preferably about 60 to 150 ⁇ m.
  • each layer forming the battery packaging material [resin layer 1a and bonding layer 1b]
  • the resin layer 1a is located in the outermost layer of the battery packaging material, and can be peeled from the laminate constituting the battery packaging material using an aqueous liquid at a desired timing. Is a layer.
  • the resin layer 1a is preferably laminated with a single bonding layer 1b to form a protective layer 1 having a two-layer structure.
  • the bonding layer 1b is adhered to the base material layer 2 (a surface coating layer when a surface coating layer described later is present).
  • the resin layer 1a is located on the outermost layer side.
  • the battery packaging material or the battery is damaged during transportation, the heat deterioration during heat fusion, the adhesion of the electrolyte when encapsulating the electrolyte, etc.
  • the surface characteristics of the packaging material for the base material layer 2 may be deteriorated, and such characteristic deterioration is required to be avoided as much as possible.
  • the battery packaging material of the present invention since the specific resin layer 1a and the bonding layer 1b that can be peeled are provided, in the process of manufacturing the battery or the battery packaging material, the battery packaging as in Patent Document 1 is provided. Heating, ultraviolet irradiation, or the like that deteriorates the characteristics of the outer surface of the material is unnecessary, and the deterioration of the characteristics of the outer surface of the battery packaging material can be effectively suppressed.
  • the bonding layer 1b contains a polyester resin. Moreover, it is preferable that the joining layer 1b is a thermoplastic resin.
  • the fact that the bonding layer 1b is a thermoplastic resin means that, for example, in measuring the displacement of the probe using thermomechanical analysis, a probe is placed on the surface of the bonding layer 1b at the end of the battery packaging material (laminate) and measured. When the probe is heated from 40 ° C. to 250 ° C. under the conditions that the deflection setting of the probe at the start is ⁇ 4 V and the heating rate is 5 ° C./min, the probe position is lower than the initial value. Can be confirmed.
  • the details of the probe displacement measurement using thermomechanical analysis are the same as the method described in the resin layer 1a described later. Moreover, it can confirm that the joining layer 1b contains the polyester resin, for example by infrared spectroscopy.
  • the polyester resin contained in the bonding layer 1b is not particularly limited as long as the bonding layer 1b can be peeled and adhered to a layer adjacent to the bonding layer 1b by contacting the aqueous liquid. Until the bonding layer 1b comes into contact with the aqueous liquid, it adheres firmly to the layer adjacent to the bonding layer 1b, and easily peels off from the layer adjacent to the bonding layer 1b when the bonding layer 1b comes into contact with the aqueous liquid. From the viewpoint of enabling, a polyester elastomer is preferable as a specific example of the polyester resin. Since the polyester elastomer is polyester, the heat resistance is good.
  • the polyester elastomer is polyester, the polarity is high and the wettability of the aqueous liquid is good, and it is easy to peel off using the aqueous liquid. Elastomers have many low molecular weight components and are easy to peel off.
  • the resin layer contains a polyester resin, the polyester elastomer has good adhesion to the polyester base material. Therefore, when the resin layer is peeled off, the bonding layer is peeled off together with the resin layer, and the base material layer 2 side. This is preferable because the components of the bonding layer hardly remain.
  • the polyester elastomer is not particularly limited, but is preferably a saturated polyester elastomer, and more preferably a saturated polyester elastomer containing a polyalkylene ether glycol segment.
  • a saturated polyester-based elastomer containing a polyalkylene ether glycol segment for example, a block copolymer composed of an aromatic polyester as a hard segment and a polyalkylene ether glycol or an aliphatic polyester as a soft segment is preferable.
  • the polyester polyether block copolymer which has polyalkylene ether glycol as a soft segment is more preferable.
  • the polyester polyether block copolymer includes (i) an aliphatic and / or alicyclic diol having 2 to 12 carbon atoms, and (ii) an aromatic dicarboxylic acid or an alkyl ester thereof and / or an aliphatic dicarboxylic acid or
  • the alkyl ester and (iii) polyalkylene ether glycol are used as raw materials, and those obtained by polycondensing oligomers obtained by esterification reaction or transesterification reaction are preferred.
  • the joining layer 1b contains an elastomer, for example by having tack property (viscosity) at normal temperature.
  • aliphatic and / or alicyclic diol having 2 to 12 carbon atoms for example, those generally used as a raw material for polyester, particularly as a raw material for polyester elastomer, can be used.
  • Specific examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like.
  • 1,4-butanediol or ethylene glycol is preferable, and 1,4-butanediol is particularly preferable.
  • These diols may be used alone or in combination of two or more.
  • aromatic dicarboxylic acid those generally used as raw materials for polyester, particularly polyester-based elastomers, can be used. Specific examples include terephthalic acid, isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid. Among these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is particularly preferable. These aromatic dicarboxylic acids may be used alone or in combination of two or more.
  • alkyl ester of aromatic dicarboxylic acid examples include dimethyl ester and diethyl ester of aromatic dicarboxylic acid. Among these, dimethyl terephthalate and 2,6-dimethyl naphthalene dicarboxylate are preferable.
  • aliphatic dicarboxylic acid cyclohexane dicarboxylic acid and the like are preferable, and as the alkyl ester, dimethyl ester and diethyl ester are preferable.
  • a small amount of a trifunctional alcohol, tricarboxylic acid or an ester thereof may be copolymerized, and an aliphatic dicarboxylic acid such as adipic acid or a dialkyl ester thereof may be used as a copolymerization component.
  • polyalkylene ether glycol examples include polyethylene glycol, poly (1,2- and / or 1,3-propylene ether) glycol, poly (tetramethylene ether) glycol compound, poly (hexamethylene ether) glycol compound, etc. Is mentioned. Of these, poly (tetramethylene ether) glycol compounds are preferred.
  • the poly (tetramethylene ether) glycol-based compound includes poly (tetramethylene ether) glycol and its related compounds.
  • the poly (hexamethylene ether) glycol-based compound includes poly (hexamethylene ether) glycol and its related compounds.
  • the preferable lower limit of the number average molecular weight of the polyalkylene ether glycol is about 400 or more, and the preferable upper limit is about 6000 or less.
  • the block property of the copolymer is increased, and by setting the upper limit to about 6000 or less, phase separation in the system hardly occurs and polymer physical properties are easily developed.
  • a more preferred lower limit is about 500 or more, a more preferred upper limit is about 4000 or less, a still more preferred lower limit is about 600 or more, and a still more preferred upper limit is about 3000 or less.
  • a number average molecular weight means what was measured by the gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the measurement of the number average molecular weight by GPC is a standard polymer (polystyrene) conversion molecular weight.
  • the lower limit of the content of the polyalkylene ether glycol component is preferably about 5% by mass or more, more preferably About 30 mass% or more, More preferably, about 55 mass% or more is mentioned, Preferably an upper limit becomes like this. Preferably about 90 mass% or less, More preferably, about 80 mass% or less is mentioned.
  • the content of the polyalkylene ether glycol component can be calculated using nuclear magnetic resonance spectroscopy (H 1 -NMR measurement) based on the chemical shift of the hydrogen atom and its integrated value.
  • the polyester elastomer is preferably a modified polyester elastomer modified with a modifier.
  • the modification reaction for obtaining the modified polyester elastomer is carried out, for example, by reacting the polyester elastomer with an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid as a modifier.
  • a graft reaction in which an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid or a derivative thereof is added to a polyester elastomer mainly occurs, but a decomposition reaction also occurs.
  • the modified polyester elastomer may have a lower molecular weight and a lower melt viscosity.
  • a transesterification reaction or the like usually occurs as another reaction, and the obtained reaction product is generally a composition containing unreacted raw materials.
  • the content of the modified polyester elastomer in the obtained reaction product is about 10% by mass or more, more preferably about 30% by mass or more, and the content of the modified polyester elastomer is about 100% by mass. Further preferred.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid used as the modifier include unsaturated carboxylic acids such as acrylic acid, maleic acid, fumaric acid, tetrahydrofumaric acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid.
  • unsaturated carboxylic acids such as acrylic acid, maleic acid, fumaric acid, tetrahydrofumaric acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid.
  • Unsaturated carboxylic acids such as oct-5-ene-2,3-dicarboxylic acid anhydride and bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic acid anhydride Anhydrides are mentioned. Of these, acid anhydrides are preferred because of their high reactivity.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid can be appropriately selected according to the copolymer containing the polyalkylene ether glycol segment to be modified and the modification conditions, and two or more types may be used in combination. .
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid can also be used after being dissolved in an organic solvent.
  • radical generator examples include t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-bis (t -Butylperoxy) hexane, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxybenzoate, benzoyl peroxide, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene
  • Organic and inorganic peroxides such as dibutyl peroxide, methyl ethyl ketone peroxide, potassium peroxide, hydrogen peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (isobutylamide) dihalide, 2,2'-azobis [2-methyl-N- (2-hydroxy Ethyl) propionamide], azo compounds such as azodi -t- butan
  • the radical generator can be appropriately selected according to the type of polyester elastomer used in the modification reaction, the type of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid and the modification conditions, and two or more types can be used in combination. Also good. Furthermore, the radical generator can be used by dissolving in an organic solvent.
  • the preferable lower limit of the blending amount of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid is about 0.01 parts by mass or more and the preferable upper limit is about 30.0 parts by mass or less with respect to 100 parts by mass of the polyester elastomer.
  • the amount is about 0.01 parts by mass or more, the modification reaction can be sufficiently performed, and when the amount is about 30.0 parts by mass or less, it is economically advantageous.
  • a more preferred lower limit is about 0.05 parts by mass or more, a more preferred upper limit is about 5.0 parts by mass or less, a further preferred lower limit is about 0.10 parts by mass or more, and a more preferred upper limit is about 1.0 part by mass or less.
  • the preferable lower limit of the blending amount of the radical generator is about 0.001 part by mass or more with respect to 100 parts by mass of the polyester elastomer, and the preferable upper limit is about 3.00 part by mass or less.
  • the preferable upper limit is about 3.00 part by mass or less.
  • a more preferred lower limit is about 0.005 parts by mass or more
  • a more preferred upper limit is about 0.50 parts by mass or less
  • a still more preferred lower limit is about 0.010 parts by mass or more
  • a more preferred upper limit is about 0.20 parts by mass or less.
  • a particularly preferred upper limit is about 0.10 parts by mass or less.
  • reaction methods such as a melt-kneading reaction method, a solution reaction method, and a suspension-dispersion reaction can be used. Reaction methods are preferred.
  • the above-described components are uniformly mixed at a predetermined blending ratio and then melt kneaded.
  • Henschel mixer, ribbon blender, V-type blender, etc. can be used for mixing each component, and Banbury mixer, kneader, roll, uniaxial or biaxial multi-screw kneading extruder etc. are used for melt-kneading. can do.
  • the preferred lower limit of the kneading temperature when melt kneading is about 100 ° C. or more, and the preferred upper limit is about 300 ° C. or less. By setting it within the above range, thermal deterioration of the resin can be prevented.
  • a more preferred lower limit is about 120 ° C. or more, a more preferred upper limit is about 280 ° C. or less, a still more preferred lower limit is about 150 ° C. or more, and a still more preferred upper limit is about 250 ° C. or less.
  • the preferable lower limit of the modification rate (graft amount) of the modified polyester elastomer is about 0.01% by mass or more, and the preferable upper limit is about 10.0% by mass or less.
  • the content is about 0.01% by mass or more, the affinity with the polyester is increased, and when the content is about 10.0% by mass or less, a decrease in strength due to molecular degradation during modification can be reduced.
  • a more preferred lower limit is about 0.03% by mass or more, a more preferred upper limit is about 7.0% by mass or less, a still more preferred lower limit is about 0.05% by mass or more, and a further more preferred upper limit is about 5.0% by mass or less. is there.
  • the modification rate (graft amount) of the modified polyester elastomer can be determined from the spectrum obtained by H 1 -NMR measurement.
  • the material constituting the resin layer 1a is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin, and preferably a thermoplastic resin. Although it does not restrict
  • the resin layer 1a is preferably made of a biaxially stretched polyester film. The biaxially stretched polyester film has enhanced orientation and is excellent in moldability, tensile strength, and puncture strength.
  • the resin constituting the resin layer 1a may be only one type or two or more types.
  • polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and copolyester.
  • the polyester resin may be composed of only one type or may be composed of two or more types.
  • the polyester resin may contain, for example, polyethylene terephthalate as a main component (the content is, for example, 90% by mass or more, 95% by mass or more, 99% by mass or more), and polybutylene terephthalate may be included as a subcomponent.
  • the resin constituting the resin layer 1a preferably has a higher melting point than the resin constituting the base material layer 2. Due to the high melting point of the resin constituting the resin layer 1a, the deterioration of the base material layer 2 due to high temperature and high pressure when the heat-fusible resin layer 4 of the battery packaging material is heat-sealed is caused by the resin layer 1a. It can suppress effectively by protection by. As an aspect in which the deterioration suppressing effect of the base material layer 2 by the resin layer 1a is particularly effectively exhibited, there is an aspect in which the resin layer 1a is made of a polyester resin and the base material layer 2 is made of polyamide.
  • the probe in the resin layer 1a, in the probe displacement measurement using thermomechanical analysis, the probe is placed on the surface of the resin layer 1a at the end of the battery packaging material (laminate), and the probe at the start of measurement
  • the probe is heated from 40 ° C. to 220 ° C. under the condition that the deflection is set to -4V and the temperature raising rate is 5 ° C./min
  • the position of the probe is preferably not lower than the initial value. .
  • the probe In measuring the displacement of the probe, first, the probe is placed on the surface of the resin layer 1a at the end of the battery packaging material (laminated body).
  • the edge part at this time is a part where the cross section of the resin layer 1a obtained by cutting in the thickness direction so as to pass through the central part of the battery packaging material is exposed. Cutting can be performed using a commercially available rotary microtome or the like.
  • the amount of displacement is measured for battery packaging materials used in batteries encapsulating electrolytes, etc., the portions where the heat-fusible resin layers of the battery packaging materials are heat-sealed together. , Measure.
  • a cantilever with a heating mechanism for example, an afm plus system manufactured by ANASIS INSTRUMENTS is used, and a cantilever ThermoLever AN2-200 manufactured by ANASYS INSTRUMENTS is used as a probe (spring constant 0.5 to 3 N / m). ) Can be used.
  • the probe tip radius is 30 nm or less, the probe deflection setting is ⁇ 4 V, and the temperature rise rate is 5 ° C./min.
  • the probe position is the initial value (position when the probe temperature is 40 ° C.).
  • the heating temperature is further increased, the resin layer 1a is softened, the probe is pierced into the resin layer 1a, and the position of the probe is lowered.
  • the probe displacement measurement using an atomic force microscope including a nanothermal microscope composed of a cantilever with a heating mechanism the battery packaging material to be measured is in a room temperature (25 ° C.) environment. A probe heated to ° C is placed on the surface of the resin layer 1a, and measurement is started.
  • the set value of the deflection of the probe at the start of measurement is ⁇ 4 V, and the temperature rising rate is 5 ° C./min.
  • the position of the probe installed on the surface of the resin layer 1a is not lowered below the initial value (position when the probe temperature is 40 ° C.). It is more preferable that the position of the probe placed on the surface of the resin layer 1a does not decrease when heated from 200C to 200C.
  • the step of heat-sealing the heat-fusible resin layers of the battery packaging material to seal the battery element is usually performed by heating at about 160 ° C. to 200 ° C.
  • the battery packaging material in which the position of the probe installed on the surface of the resin layer 1a does not decrease can exhibit particularly high heat resistance.
  • the position of the probe placed on the surface of the resin layer 1a is not lowered below the initial value, and further, heated from 160 ° C. to 200 ° C. More preferably, the position of the probe placed on the surface of the resin layer 1a does not decrease.
  • the thickness of the resin layer 1a is not particularly limited, but is preferably about 2 to 50 ⁇ m, more preferably about 2 to 20 ⁇ m, from the viewpoint of suppressing deterioration of surface characteristics on the base material layer 2 side of the battery packaging material. More preferably, it is about 2 to 10 ⁇ m.
  • the thickness of the bonding layer 1b is preferably about 0.2 to 10 ⁇ m, more preferably about 0.2 to 5 ⁇ m, and still more preferably about 0.2 to 3 ⁇ m.
  • the total thickness of the resin layer 1a and the bonding layer 1b is preferably about 2 to 50 ⁇ m, more preferably about 2 to 20 ⁇ m, and further preferably about 2 to 10 ⁇ m.
  • a lubricant may be present on the surface of the resin layer 1a. Since the lubricant is present on the surface of the resin layer 1a, the moldability of the battery packaging material can be improved.
  • the type of the lubricant is not particularly limited, and examples thereof include the same lubricants exemplified in the heat-fusible resin layer described later.
  • Preferable lubricants are erucic acid amide, palmitic acid amide, stearic acid amide, and oleic acid amide, and more preferable lubricant is erucic acid amide.
  • the amount of lubricant present on the surface of the resin layer 1a is preferably about 2 to 20 g / m 2 , more preferably about 3 to 17 g / m 2 , and further preferably about 3 to 8 g / m 2 .
  • the lubricant present on the surface of the resin layer 1a may be exuded from the inside of the resin layer 1a, or may be applied on the surface of the resin layer 1a.
  • the amount of lubricant present on the surface of the resin layer 1a can be confirmed by the following measuring method.
  • a battery packaging material is cut into A4 size (ISO 216) to prepare a sample.
  • the resin layer surface of each sample is washed with acetone, and the collected acetone is volatilized and dried by nitrogen blowing to obtain a solid.
  • 10 ml of chloroform was added to the solid substance to redissolve the solid substance, and a gas chromatograph (GC, for example, GC-2010 manufactured by Shimadzu Corporation, column: UltraALLOY-1 (MS / HT), detector: FID, Quantitative method: Absolute calibration curve method) is used to measure the amount of lubricant on the resin layer surface.
  • GC gas chromatograph
  • Base material layer 2 In the battery packaging material of the present invention, after the resin layer 1a is peeled off, the base material layer 2 becomes a layer located on the outermost layer side. When no other layer (for example, a surface coating layer described later) is provided between the resin layer 1a and the base material layer 2, the base material layer 2 is a layer adjacent to the bonding layer 1b.
  • the material for forming the base material layer 2 is not particularly limited as long as it has insulating properties.
  • the material for forming the base material layer 2 include resin films such as polyester resin, polyamide resin, epoxy resin, acrylic resin, fluorine resin, polyurethane resin, silicon resin, phenol resin, and mixtures and copolymers thereof. Can be mentioned. Among these, Preferably a polyester resin and a polyamide resin are mentioned, More preferably, a biaxially stretched polyester resin and a biaxially stretched polyamide resin are mentioned.
  • the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolymerized polyester, and polycarbonate.
  • polyamide resin examples include nylon 6, nylon 66, a copolymer of nylon 6 and nylon 66, nylon 6,10, polymetaxylylene adipamide (MXD6), and the like.
  • the polyamide resin may be composed of only one type or may be composed of two or more types.
  • the polyamide resin may contain, for example, nylon 6 and polymetaxylylene adipamide (MXD6).
  • the base material layer 2 may be formed from a single resin film, but may be formed from two or more resin films in order to improve pinhole resistance and insulation. Specific examples include a multilayer structure in which a polyester film and a nylon film are laminated, a multilayer structure in which a plurality of nylon films are laminated, a multilayer structure in which a plurality of polyester films are laminated, and the like.
  • the base material layer 2 has a multilayer structure, a laminate of a biaxially stretched nylon film and a biaxially stretched polyester film, a laminate of a plurality of biaxially stretched nylon films, and a laminate of a plurality of biaxially stretched polyester films The body is preferred.
  • the base material layer 2 is formed from two resin films, a configuration in which a polyester resin and a polyester resin are stacked, a configuration in which a polyamide resin and a polyamide resin are stacked, or a configuration in which a polyester resin and a polyamide resin are stacked are used. It is more preferable to use a structure in which polyethylene terephthalate and polyethylene terephthalate are laminated, a structure in which nylon and nylon are laminated, or a structure in which polyethylene terephthalate and nylon are laminated.
  • the thickness of each layer is preferably about 2 to 25 ⁇ m.
  • the two or more resin films may be laminated via an adhesive component such as an adhesive or an adhesive resin, and the type and amount of the adhesive component used. This is the same as in the case of the adhesive layer 5 described later.
  • an adhesive component such as an adhesive or an adhesive resin
  • stacking two or more resin films A well-known method can be employ
  • laminating by the dry laminating method it is preferable to use a urethane-based adhesive as the adhesive layer. At this time, the thickness of the adhesive layer is, for example, about 2 to 5 ⁇ m.
  • the thickness of the base material layer 2 is not particularly limited as long as it exhibits a function as a base material layer, and is, for example, about 3 to 50 ⁇ m, preferably about 10 to 35 ⁇ m.
  • the adhesive layer 5 is a layer provided between the base material layer 2 and the barrier layer 3 as necessary in order to firmly bond the base material layer 2 and the barrier layer 3.
  • the adhesive layer 5 is formed of an adhesive capable of bonding the base material layer 2 and the barrier layer 3 together.
  • the adhesive used for forming the adhesive layer 5 may be a two-component curable adhesive or a one-component curable adhesive.
  • the adhesive mechanism of the adhesive used for forming the adhesive layer 5 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, and a hot pressure type.
  • adhesive components that can be used to form the adhesive layer 5 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and copolyester; Polyether adhesives; Polyurethane adhesives; Epoxy resins; Phenol resin resins; Polyamide resins such as nylon 6, nylon 66, nylon 12 and copolymerized polyamides; polyolefins, carboxylic acid modified polyolefins, metal modified polyolefins, etc.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and copolyester
  • Polyether adhesives such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate
  • Polyolefin resins polyvinyl acetate resins; Cellulosic adhesives; (Meth) acrylic resins; Polyimide resins; Urea resins, melamine resins and other amino resins; Chloroprene rubber, Nitriles - arm, styrene rubbers such as butadiene rubber; and silicone resins.
  • These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type. Among these adhesive components, a polyurethane adhesive is preferable.
  • the thickness of the adhesive layer 5 is not particularly limited as long as it exhibits a function as an adhesive layer, and for example, it is about 1 to 10 ⁇ m, preferably about 2 to 5 ⁇ m.
  • An ultraviolet absorber for a layer outside the barrier layer 3 of the battery packaging material of the present invention (preferably at least one of the resin layer 1a, the bonding layer 1b, the base material layer 2 and the adhesive layer 5), It is preferable to contain at least one component among the light stabilizer and the antioxidant. By including one of these components, delamination between layers is effectively suppressed outside the barrier layer 3.
  • delamination of the layer outside the barrier layer 3 of the battery packaging material mainly means delamination between these layers.
  • GC / MS gas chromatograph mass spectrometer
  • HPLC liquid chromatography
  • the ultraviolet absorber contained in the outer layer (preferably at least one of the resin layer 1a, the bonding layer 1b, the base material layer 2, and the adhesive layer 5) of the battery packaging material of the present invention.
  • the total content of is preferably 10 to 500 ppm, more preferably about 30 to 100 ppm, and particularly preferably about 40 to 80 ppm from the viewpoint of interlayer adhesion stability.
  • the total content of the light stabilizer is preferably 10 to 500 ppm, more preferably about 100 to 200 ppm, and particularly preferably 120 to 180 ppm from the viewpoint of interlayer adhesion stability.
  • the total content of the antioxidant is preferably 10 to 1000 ppm, more preferably about 200 to 800 ppm, and particularly preferably about 420 to 600 ppm from the viewpoint of interlayer adhesion stability.
  • the type of the ultraviolet absorber is not particularly limited, but a benzotriazole-based ultraviolet absorber is preferable.
  • Specific examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-hydroxybenzophenones such as 2-; 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 -Dicumylphenyl) benzotriazole, 2,2'-methylenebis (4-tertiary o Polyethylene glycol ester of 2- (2-hydroxy-3-tert-butyl-5-carboxyphenyl) benzotriazole, 2- [2-hydroxy-3- (2-acryloyloxy) Ethyl) -5-methylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-methacryloyloxyethyl) -5-tert-butylphenyl]
  • UV absorbers examples include TINUVIN571, TINUVIN460, TINUVIN213, TINUVIN234, TINUVIN329, and TINUVIN326 manufactured by BASF, and among these, TINUVIN326 (2- [5-chloro (2H) -benzotriazole- 2-yl] -4-methyl-6- (tert-butyl) phenol) is effective.
  • UV absorbers may be used alone or in combination of two or more.
  • the type of light stabilizer is not particularly limited, but a hindered amine light stabilizer is preferable.
  • Specific examples of the light stabilizer include, for example, 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1 , 2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2, 6,6-tetramethyl-4-piperidyl) -di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,
  • TINUVIN 765 TINUVIN 770
  • TINUVIN 780 TINUVIN 780
  • TINUVIN 144 TINUVIN 144
  • TINUVIN 622LD TINUVIN 622LD manufactured by BASF
  • TINUVIN 770 bis (2,2,6,6-tetramethyl-4-piperidyl sebacate)
  • One kind of light stabilizer may be used alone, or two or more kinds may be used in combination.
  • the type of the antioxidant is not particularly limited, but preferably a hindered phenol antioxidant is used.
  • the antioxidant include Irganox 1330 (2,4,6-tris (3 ′, 5′-di-tert-butyl-4′-hydroxybenzyl) mesitylene), Irganox 1098 (N, N′-hexamethylenebis) [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanamide]), Irganox 1010 (tetrakis [3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propion Acid] pentaerythritol).
  • a layer outside the barrier layer 3 of the battery packaging material of the present invention preferably, a resin layer 1a, a bonding layer 1b, a base material
  • the total content of Irganox 1330 contained in at least one of the layer 2 and the adhesive layer 5 is preferably about 10 to 500 ppm, more preferably about 90 to 200 ppm, and particularly preferably about 110 to 170 ppm. .
  • One type of antioxidant may be used alone, or two or more types may be used in combination.
  • the barrier layer 3 is a layer having a function of preventing water vapor, oxygen, light and the like from entering the battery, in addition to improving the strength of the battery packaging material.
  • the barrier layer 3 is preferably a metal layer, that is, a layer formed of metal. Specific examples of the metal constituting the barrier layer 3 include aluminum, stainless steel, and titanium, and preferably aluminum.
  • the barrier layer 3 can be formed by, for example, a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited films, etc. Is preferable, and it is more preferable to form with an aluminum alloy foil.
  • the barrier layer is made of, for example, annealed aluminum (JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferable.
  • the thickness of the barrier layer 3 is not particularly limited as long as it functions as a barrier layer such as water vapor, but is preferably about 100 ⁇ m or less, more preferably about 10 to 100 ⁇ m from the viewpoint of reducing the thickness of the battery packaging material. More preferably, about 10 to 80 ⁇ m is mentioned.
  • the barrier layer 3 is preferably subjected to chemical conversion treatment on at least one side, preferably both sides, in order to stabilize adhesion, prevent dissolution and corrosion, and the like.
  • the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the barrier layer.
  • chromate treatment using a chromium compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acid acetyl acetate, chromium chloride, potassium sulfate chromium; Phosphoric acid treatment using a phosphoric acid compound such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; an aminated phenol polymer having a repeating unit represented by the following general formulas (1) to (4) is used And chromate treatment.
  • the repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. Also good.
  • X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 are the same or different and each represents a hydroxy group, an alkyl group, or a hydroxyalkyl group.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include straight-chain or branched alkyl groups having 1 to 4 carbon atoms such as a tert-butyl group.
  • Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- Linear or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group An alkyl group is mentioned.
  • the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having a repeating unit represented by the general formulas (1) to (4) is preferably about 500 to 1,000,000, for example, about 1,000 to 20,000. More preferred.
  • a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed therein.
  • a method of forming an acid-resistant film on the surface of the barrier layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned.
  • a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the acid resistant film.
  • examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned.
  • these cationic polymers only one type may be used, or two or more types may be used in combination.
  • examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
  • At least the surface on the inner layer side of the aluminum alloy foil is firstly immersed in an alkali soaking method, electrolytic cleaning method, acid cleaning method, electrolytic acid cleaning method.
  • Treatment liquid (aqueous solution) mainly composed of a mixture of metal salts, or treatment liquid (aqueous solution) principally composed of a non-metallic phosphate and a mixture of these non-metallic salts, or acrylic resin Coating a treatment liquid (aqueous solution) consisting of a mixture with a water-based synthetic resin such as phenolic resin or urethane resin by a well-known coating method such as roll coating, gravure printing, or dipping.
  • the acid-resistant coating For example, when treated with a chromium phosphate salt treatment solution, it becomes an acid-resistant film made of chromium phosphate, aluminum phosphate, aluminum oxide, aluminum hydroxide, aluminum fluoride, etc., and treated with a zinc phosphate salt treatment solution. In this case, an acid-resistant film made of zinc phosphate hydrate, aluminum phosphate, aluminum oxide, aluminum hydroxide, aluminum fluoride or the like is obtained.
  • an acid-resistant film for example, at least the surface on the inner layer side of the aluminum alloy foil is first subjected to an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid An acid-resistant film can be formed by performing a degreasing process by a known processing method such as an activation method and then performing a known anodizing process on the degreasing surface.
  • acid-resistant films include phosphate-based and chromic acid-based films.
  • phosphate-based and chromic acid-based films examples include zinc phosphate, iron phosphate, manganese phosphate, calcium phosphate, and chromium phosphate.
  • chromic acid system examples include chromium chromate.
  • an acid-resistant film by forming an acid-resistant film such as phosphate, chromate, fluoride, triazine thiol compound, between the aluminum and the base material layer at the time of embossing molding
  • an acid-resistant film such as phosphate, chromate, fluoride, triazine thiol compound
  • hydrogen fluoride generated by the reaction between electrolyte and moisture prevents dissolution and corrosion of the aluminum surface, especially the dissolution and corrosion of aluminum oxide present on the aluminum surface, and adhesion of the aluminum surface This improves the wettability and prevents delamination between the base material layer and aluminum at the time of heat sealing.
  • embossed type it shows the effect of preventing delamination between the base material layer and aluminum at the time of press molding.
  • an aqueous solution composed of three components of a phenol resin, a chromium (III) fluoride compound, and phosphoric acid is applied to the aluminum surface, and the dry baking treatment is good.
  • the acid-resistant film includes a layer having cerium oxide, phosphoric acid or phosphate, an anionic polymer, and a crosslinking agent that crosslinks the anionic polymer, and the phosphoric acid or phosphate is About 1 to 100 parts by mass may be blended with 100 parts by mass of cerium oxide. It is preferable that the acid-resistant film has a multilayer structure further including a layer having a cationic polymer and a crosslinking agent for crosslinking the cationic polymer.
  • the anionic polymer is poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component.
  • the said crosslinking agent is at least 1 sort (s) chosen from the group which has a functional group in any one of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
  • the phosphoric acid or the phosphate is a condensed phosphoric acid or a condensed phosphate.
  • the chemical conversion treatment only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds.
  • a chromate chromate treatment a chemical conversion treatment combining a chromium compound, a phosphoric acid compound, and an aminated phenol polymer are preferable.
  • chromium compounds chromic acid compounds are preferred.
  • the acid resistant film examples include those containing at least one of phosphate, chromate, fluoride, and triazine thiol.
  • An acid resistant film containing a cerium compound is also preferable.
  • cerium compound cerium oxide is preferable.
  • the acid resistant film examples include a phosphate film, a chromate film, a fluoride film, and a triazine thiol compound film.
  • a phosphate film As an acid-resistant film, one of these may be used, or a plurality of combinations may be used.
  • a treatment solution comprising a mixture of a metal phosphate and an aqueous synthetic resin, or a mixture of a non-metal phosphate and an aqueous synthetic resin It may be formed of a treatment liquid consisting of
  • the composition of the acid resistant film can be analyzed using, for example, time-of-flight secondary ion mass spectrometry.
  • time-of-flight secondary ion mass spectrometry for example, a peak derived from at least one of Ce + and Cr + is detected.
  • the surface of the aluminum alloy foil is provided with an acid resistant film containing at least one element selected from the group consisting of phosphorus, chromium and cerium.
  • the acid-resistant film on the surface of the aluminum alloy foil of the battery packaging material contains at least one element selected from the group consisting of phosphorus, chromium and cerium using X-ray photoelectron spectroscopy. can do. Specifically, first, in the battery packaging material, the heat-fusible resin layer, the adhesive layer, and the like laminated on the aluminum alloy foil are physically peeled off. Next, the aluminum alloy foil is put in an electric furnace, and organic components present on the surface of the aluminum alloy foil are removed at about 300 ° C. for about 30 minutes. Then, it confirms that these elements are contained using the X-ray photoelectron spectroscopy of the surface of aluminum alloy foil.
  • the amount of the acid-resistant film to be formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited.
  • the chromium compound is chromium per 1 m 2 of the surface of the barrier layer 3.
  • About 0.5 to 50 mg in terms of conversion preferably about 1.0 to 40 mg, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and about 1.0 to 40 mg of aminated phenol polymer. It is desirable that it is contained in a proportion of about 200 mg, preferably about 5.0 to 150 mg.
  • the thickness of the acid-resistant film is not particularly limited, but is preferably about 1 nm to 10 ⁇ m, more preferably 1 to 100 nm, from the viewpoint of the cohesive strength of the film and the adhesive strength with the aluminum alloy foil or the heat-fusible resin layer. About 1 to 50 nm is preferable.
  • the thickness of the acid-resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron energy loss spectroscopy.
  • a solution containing a compound used for forming an acid-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, etc., and then the temperature of the barrier layer is 70. It is performed by heating to about 200 ° C.
  • the barrier layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this manner, it is possible to more efficiently perform the chemical conversion process on the surface of the barrier layer.
  • the heat-fusible resin layer 4 corresponds to the innermost layer, and is a layer that heat-fuses the heat-fusible resin layers and seals the battery element when the battery is assembled.
  • the resin component used for the heat-fusible resin layer 4 is not particularly limited as long as it can be heat-sealed, and examples thereof include polyolefin, cyclic polyolefin, acid-modified polyolefin, and acid-modified cyclic polyolefin. That is, the heat-fusible resin layer 4 may include a polyolefin skeleton, and preferably includes a polyolefin skeleton. The fact that the heat-fusible resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • polystyrene resin examples include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, block copolymer of polypropylene (for example, block copolymer of propylene and ethylene), polypropylene Polypropylenes such as random copolymers of (for example, random copolymers of propylene and ethylene); ethylene-butene-propylene terpolymers, and the like.
  • polyethylene and polypropylene are preferable.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene. .
  • examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • a cyclic alkene is preferable, and norbornene is more preferable.
  • the acid-modified polyolefin is a polymer obtained by modifying the polyolefin by block polymerization or graft polymerization with an acid component such as carboxylic acid.
  • an acid component such as carboxylic acid.
  • the acid component used for modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
  • the acid-modified cyclic polyolefin is obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride, or by ⁇ , ⁇ - It is a polymer obtained by block polymerization or graft polymerization of an unsaturated carboxylic acid or its anhydride.
  • the cyclic polyolefin to be modified with carboxylic acid is the same as described above.
  • the carboxylic acid used for modification is the same as the acid component used for modification of the polyolefin.
  • polyolefins such as polypropylene and carboxylic acid-modified polyolefins; and more preferred are polypropylene and acid-modified polypropylene.
  • the heat-fusible resin layer 4 may be formed of one kind of resin component alone or may be formed of a blend polymer in which two or more kinds of resin components are combined. Furthermore, the heat-fusible resin layer 4 may be formed of only one layer, but may be formed of two or more layers using the same or different resin components.
  • a lubricant adheres to the surface of the heat-fusible resin layer from the viewpoint of improving the moldability of the battery packaging material.
  • an amide type lubricant is mentioned.
  • Specific examples of the amide-based lubricant include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide, and the like.
  • Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide and the like.
  • the unsaturated fatty acid amide include oleic acid amide and erucic acid amide.
  • substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like.
  • methylolamide include methylol stearamide.
  • saturated fatty acid bisamides include methylene bis stearamide, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bishydroxy stearic acid amide, ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide Etc.
  • fatty acid ester amide include stearoamidoethyl stearate.
  • aromatic bisamide include m-xylylene bis stearic acid amide, m-xylylene bishydroxy stearic acid amide, N, N′-distearyl isophthalic acid amide and the like.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • the amount of the lubricant is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably in an environment of a temperature of 24 ° C. and a relative humidity of 60%. Is about 4 to 15 mg / m 2 , more preferably about 5 to 14 mg / m 2 .
  • a lubricant may be contained in the heat-fusible resin layer 4. Further, the lubricant present on the surface of the heat-fusible resin layer 4 may be one in which a lubricant contained in the resin constituting the heat-fusible resin layer 4 is exuded, or the heat-fusible resin layer. 4 may be obtained by applying a lubricant to the surface.
  • the thickness of the heat-fusible resin layer 4 can be set according to the presence or absence of the adhesive layer 5, the thickness of the adhesive layer 5, and the like, and particularly if the function as the heat-fusible resin layer is exhibited.
  • the upper limit is, for example, about 100 ⁇ m or less, preferably about 85 ⁇ m or less, more preferably 60 ⁇ m or less
  • the lower limit is, for example, about 15 ⁇ m or more, preferably 20 ⁇ m or more. Examples thereof include about 15 to 100 ⁇ m, about 15 to 85 ⁇ m, about 15 to 60 ⁇ m, about 20 to 100 ⁇ m, about 20 to 85 ⁇ m, about 20 to 60 ⁇ m, and about 15 to 40 ⁇ m.
  • the upper limit of the thickness of the heat-fusible resin layer 4 is preferably about 85 ⁇ m or less, more preferably about 60 ⁇ m or less.
  • the lower limit is, for example, about 15 ⁇ m or more, preferably 20 ⁇ m or more, and preferable ranges include about 15 to 85 ⁇ m, about 15 to 60 ⁇ m, about 20 to 85 ⁇ m, and about 20 to 60 ⁇ m.
  • the thickness of the heat-fusible resin layer 4 is preferably about 20 ⁇ m or more, more preferably An example is about 35 to 85 ⁇ m.
  • the adhesive layer 6 is a layer provided between the barrier layer 3 and the heat-fusible resin layer 4 as necessary in order to firmly bond the barrier layer 3 and the heat-fusible resin layer 4.
  • the adhesive layer 6 is formed of a resin capable of bonding the barrier layer 3 and the heat-fusible resin layer 4.
  • the resin used for forming the adhesive layer 6 the same adhesive mechanism and the same types of adhesive components as those exemplified for the adhesive layer 5 can be used.
  • polyolefin resins such as polyolefin, cyclic polyolefin, carboxylic acid-modified polyolefin, carboxylic acid-modified cyclic polyolefin exemplified in the above-mentioned heat-fusible resin layer 4 can also be used. .
  • the polyolefin is preferably a carboxylic acid-modified polyolefin, and particularly preferably a carboxylic acid-modified polypropylene. That is, the adhesive layer 6 may include a polyolefin skeleton, and preferably includes a polyolefin skeleton. The fact that the adhesive layer 6 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 6 is a cured resin composition containing an acid-modified polyolefin and a curing agent. It may be a thing.
  • Preferred examples of the acid-modified polyolefin include the same carboxylic acid-modified polyolefin and carboxylic acid-modified cyclic polyolefin exemplified in the heat-fusible resin layer 4.
  • the curing agent is not particularly limited as long as it can cure the acid-modified polyolefin.
  • the curing agent include an epoxy curing agent, a polyfunctional isocyanate curing agent, a carbodiimide curing agent, and an oxazoline curing agent.
  • the epoxy curing agent is not particularly limited as long as it is a compound having at least one epoxy group.
  • examples of the epoxy curing agent include epoxy resins such as bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether.
  • the polyfunctional isocyanate curing agent is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of the polyfunctional isocyanate-based curing agent include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), those obtained by polymerizing or nurating these, Examples thereof include mixtures and copolymers with other polymers.
  • the carbodiimide curing agent is not particularly limited as long as it is a compound having at least one carbodiimide group (—N ⁇ C ⁇ N—).
  • a polycarbodiimide compound having at least two carbodiimide groups is preferable.
  • the oxazoline-based curing agent is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of the oxazoline-based curing agent include Epocros series manufactured by Nippon Shokubai Co., Ltd.
  • the curing agent may be composed of two or more kinds of compounds.
  • the content of the curing agent in the resin composition forming the adhesive layer 6 is preferably in the range of about 0.1 to 50% by mass, more preferably in the range of about 0.1 to 30% by mass, More preferably, it is in the range of about 0.1 to 10% by mass.
  • the thickness of the adhesive layer 6 is not particularly limited as long as it functions as an adhesive layer.
  • the adhesive exemplified in the adhesive layer 5 is used, it is preferably about 1 to 10 ⁇ m, more preferably 1 to 1 ⁇ m. For example, about 5 ⁇ m.
  • the resin exemplified in the heat-fusible resin layer 4 is used, it is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m.
  • a cured product of an acid-modified polyolefin and a curing agent it is preferably about 30 ⁇ m or less, more preferably about 0.1 to 20 ⁇ m, and still more preferably about 0.5 to 5 ⁇ m.
  • the adhesive layer 6 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, the adhesive layer 6 can be formed by applying the resin composition and curing it by heating or the like.
  • a surface coating layer is provided on the outer side of the base material layer 2 (on the side opposite to the barrier layer 3 of the base material layer 2) as necessary for the purpose of improving the design. It may be provided. When the surface coating layer is provided, the surface coating layer is located between the bonding layer 1 b and the base material layer 2.
  • the surface coating layer can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like. Of these, the surface coating layer is preferably formed of a two-component curable resin. Examples of the two-component curable resin that forms the surface coating layer include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix
  • Examples of the additive include fine particles having a particle size of about 0.5 nm to 5 ⁇ m.
  • the material of the additive is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances.
  • the shape of the additive is not particularly limited, and examples thereof include a spherical shape, a fiber shape, a plate shape, an indeterminate shape, and a balloon shape.
  • Specific additives include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high Melting
  • money, aluminum, copper, nickel etc. are mentioned.
  • additives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • silica, barium sulfate, and titanium oxide are preferably used from the viewpoint of dispersion stability and cost.
  • the surface of the additive may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment.
  • the content of the additive in the surface coating layer is not particularly limited, but is preferably about 0.05 to 1.0% by mass, more preferably about 0.1 to 0.5% by mass.
  • the method for forming the surface coating layer is not particularly limited, and examples thereof include a method of applying a two-component curable resin for forming the surface coating layer to the outer surface of the base material layer 2.
  • the additive may be added to the two-component curable resin, mixed, and then applied.
  • the thickness of the surface coating layer is not particularly limited as long as it exhibits the above function as the surface coating layer, and for example, it is about 0.5 to 10 ⁇ m, preferably about 1 to 5 ⁇ m.
  • the method for producing the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers having a predetermined composition are laminated is obtained. At least the resin layer 1a and the bonding layer 1b, the base material layer 2, the barrier layer 3, and the heat-fusible resin layer 4 are provided in this order, the bonding layer 1b contains a polyester resin, and the resin layer 1a is an aqueous liquid. The method of using what can peel from the base material layer 2 using is mentioned.
  • An example of the method for producing the battery packaging material of the present invention is as follows. First, a laminate in which the resin layer 1 a, the bonding layer 1 b, the base material layer 2, the adhesive layer 5, and the barrier layer 3 are laminated in this order (hereinafter also referred to as “laminate A”) is formed. Specifically, in the formation of the laminate A, first, the resin layer 1a, the bonding layer 1b, and the base material layer 2 are laminated by a method such as coextrusion laminating.
  • a laminated structure of the resin layer 1a and the bonding layer 1b is used, and the resin layer 1a and the base material layer 2 are adhered to each other through the bonding layer 1b, so that the resin layer 1a A laminate of the bonding layer 1b and the base material layer 2 can be formed.
  • a laminate of the resin layer 1a, the bonding layer 1b, and the base material layer 2 and the barrier layer 3 are laminated.
  • an adhesive used for forming the adhesive layer 5 is applied to the base material layer 2 or the barrier layer 3 whose surface is subjected to chemical conversion treatment as necessary, such as a gravure coating method or a roll coating method. After applying and drying by the method, it can be performed by a dry laminating method in which the barrier layer 3 or the base material layer 2 is laminated and the adhesive layer 5 is cured.
  • the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A.
  • the resin component constituting the heat-fusible resin layer 4 is applied to the barrier layer 3 of the laminate A by a gravure coating method or a roll coating method. It may be applied by such a method.
  • the adhesive layer 6 is provided between the barrier layer 3 and the heat-fusible resin layer 4, for example, (1) the adhesive layer 6 and the heat-fusible resin layer on the barrier layer 3 of the laminate A (2) Separately, a laminate in which the adhesive layer 6 and the heat-fusible resin layer 4 are laminated is formed, and this is formed as a barrier layer of the laminate A (3) A method of extruding or solution-coating an adhesive for forming the adhesive layer 6 on the barrier layer 3 of the laminate A, and drying and baking at a high temperature. And a method of laminating the heat-fusible resin layer 4 previously formed into a sheet (film) on the adhesive layer 6 by a thermal laminating method, and (4) the barrier layer 3 of the laminate A and a sheet in advance. Between the heat-fusible resin layer 4 formed into a film While pouring an adhesive layer 6 which is, and a method of bonding a laminate A and the heat-welding resin layer 4 through the adhesive layer 6 (sandwich lamination method).
  • the order in which the resin layer 1a and the bonding layer 1b are stacked is not particularly limited.
  • the bonding layer 1b and the resin are formed on the surface of the base material layer 2 side.
  • the layer 1a may be laminated.
  • a surface coating layer can be formed by apply
  • the order of the step of laminating the barrier layer 3 on the surface of the base material layer 2 and the step of laminating the surface coating layer on the surface of the base material layer 2 are not particularly limited.
  • the barrier layer 3 may be formed on the surface of the base material layer 2 opposite to the surface coating layer.
  • resin layer 1a / bonding layer 1b / surface coating layer provided as needed / base material layer 2 / adhesive layer 5 provided as needed / one or both surfaces as needed A laminate composed of the barrier layer 3 subjected to the chemical conversion treatment / the adhesive layer 6 provided as necessary / the heat-fusible resin layer 4 is formed.
  • a heat treatment such as a hot roll contact type, a hot air type, a near infrared type or a far infrared type.
  • An example of such heat treatment conditions is 150 to 250 ° C. for 1 to 5 minutes.
  • each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing of secondary products (pouching, embossing), and the like as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed. For example, by performing corona treatment on at least one surface of the base material layer, it is possible to improve or stabilize the film forming property, lamination processing, final product secondary processing suitability, and the like.
  • the above-mentioned battery packaging material provided with the resin layer 1a and the joining layer 1b is prepared, and the resin layer 1a is performed by performing the peeling process which peels the resin layer 1a from a laminated body using an aqueous liquid.
  • the battery packaging material from which la is peeled can be produced.
  • What is necessary is just to make aqueous liquid adhere to the joining layer 1b as mentioned above.
  • a printing step of performing printing with ink on the surface of the laminate constituting the battery packaging material on the substrate layer 2 side after the peeling step, a printing step of performing printing with ink on the surface of the laminate constituting the battery packaging material on the substrate layer 2 side. Furthermore, you may provide. Thereby, the packaging material for batteries by which the surface by the side of the base material layer 2 was printed can be manufactured suitably. That is, the battery packaging material of the present invention can be suitably used for applications in which the resin layer 1a is peeled off using an aqueous liquid, and the surface on the base material layer 2 side is printed with ink.
  • the step of peeling the resin layer 1a from the battery packaging material and the printing step may be performed in the battery manufacturing process using the battery packaging material.
  • the battery packaging material of the present invention including the resin layer 1a and the bonding layer 1b is subjected to molding by a mold and then subjected to the peeling step and the printing step, thereby improving the moldability improvement effect by the resin layer 1a and the bonding layer 1b. It can enjoy suitably.
  • printing may be performed on the outside of the battery from the viewpoint of battery identification.
  • the battery packaging material of the present invention until printing is performed, the deterioration of the characteristics of the surface of the battery packaging material on the substrate layer 2 side is effectively suppressed, and an aqueous liquid is used when printing is performed.
  • the surface of the battery packaging material that becomes the printing surface can be easily exposed, and the surface of the base material layer 2 or the surface coating layer can be exposed to ink. It can also be suitably applied to applications where printing is performed.
  • the battery packaging material of the present invention including the resin layer 1a and the bonding layer 1b is subjected to molding using a mold, and then the resin layer 1a is separated from the laminate using an aqueous liquid, whereby the resin layer 1a becomes a barrier.
  • the effect of suppressing the pinhole of the layer 3 and the effect of suppressing the surface of the base material layer 2 and the surface coating layer from being damaged by the mold can be suitably enjoyed.
  • the heat-fusible resin layer 4 is heat-sealed using the battery packaging material of the present invention including the resin layer 1a and the bonding layer 1b, the base material layer 2 and the surface coating layer are deteriorated due to high temperature and high pressure. Can be effectively suppressed by the protection by the resin layer 1a. Note that the timing and purpose of peeling the resin layer 1a are not limited to these.
  • the printing method using ink is not particularly limited, and for example, pad printing and ink jet printing are suitable.
  • Pad printing is a printing method as follows. First, ink is poured into a concave portion of a flat plate in which a pattern to be printed is etched. Next, the silicon pad is pressed from above the concave portion to transfer the ink to the silicon pad. Next, the ink transferred to the surface of the silicon pad is transferred to the printing object to form a print on the printing object.
  • the ink since the ink is transferred to the object to be printed using an elastic silicon pad or the like, it is easy to print on the surface of the battery packaging material after molding, and the battery element is made of the battery packaging material. After sealing, the battery can be printed.
  • ink jet printing has similar advantages.
  • the battery packaging material of the present invention is used in a package for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte. That is, a battery element including at least a positive electrode, a negative electrode, and an electrolyte can be accommodated in a package formed of the battery packaging material of the present invention to obtain a battery.
  • a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward.
  • a flange portion region where the heat-fusible resin layers are in contact with each other
  • heat-sealing the heat-fusible resin layers of the flange portion to seal the battery
  • the battery packaging material of the present invention is used so that the heat-fusible resin portion is on the inner side (surface in contact with the battery element).
  • the heat-fusible resin layer 4 When the heat-fusible resin layer 4 is heat-sealed using the battery packaging material of the present invention including the resin layer 1a and the bonding layer 1b, deterioration of the base material layer 2 and the surface coating layer due to high temperature and high pressure It can suppress effectively by the protection by the resin layer 1a.
  • the resin layer 1a In the battery packaging material of the present invention, the resin layer 1a can be peeled after the heat-fusible resin layer 4 is heat-sealed.
  • the package formed by the battery packaging material of the present invention can be formed by bending one battery packaging material and heat-sealing the edges of the opposing heat-fusible resin layers, It can also be formed by stacking two battery packaging materials so that the heat-fusible resin layers face each other and heat-sealing the edges.
  • the battery packaging material of the present invention may be used for only one of them, or the battery packaging material of the present invention may be used for both.
  • the resin layer 1a may be peeled first from one of the battery packaging materials according to the desired timing at which the surface of the base material layer 2 is desired to be protected, or the resin layer may be removed from both battery packaging materials at the same timing. 1a may be peeled off.
  • the battery of the present invention may be one in which the resin layer 1a is peeled off.
  • a battery includes, for example, a step of containing a battery element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed of the battery packaging material of the present invention, and an aqueous liquid. It can manufacture by the method provided with the peeling process which peels the layer 1a from a package. About the specific example of the method of peeling the resin layer 1a from a laminated body, it is the same as that of the above-mentioned method.
  • the method for producing a battery of the present invention further includes a printing step of performing printing with ink on the surface on the base material layer 2 side of the package constituting the battery packaging material after the peeling step. Also good.
  • the battery by which the printing was performed on the outer side of a battery can be manufactured suitably.
  • the battery manufacturing process by providing a printing process immediately after the peeling process, the outer surface (the resin layer 1a is peeled off) by the resin layer 1a until immediately before the printing process when manufacturing the battery and the battery packaging material. After that, it is possible to suitably perform printing on the battery in which the deterioration of the characteristics of the base material layer 2 and the surface coating layer (which is the outer surface of the battery) is effectively suppressed.
  • the resin layer 1a can be peeled off, but may be used as it is as a battery from which the resin layer 1a is not peeled off.
  • the resin layer 1a When the resin layer 1a is peeled from the battery including the resin layer 1a and the bonding layer 1b, the resin layer 1a can be peeled at a desired timing. Since the heat dissipation is improved by removing the resin layer 1a from the battery, when the improvement of the heat dissipation of the battery is required, the resin layer 1a is preferably used as a battery having an improved heat dissipation by peeling off the resin layer 1a. Can do. Moreover, since the thickness of the battery can be reduced by peeling the resin layer 1a from the battery, when it is required to make the battery thinner, the battery having a reduced thickness by peeling the resin layer 1a. It can be preferably used. The timing and purpose of peeling the resin layer 1a from the battery are not limited to these. As for the method of peeling the resin layer 1a from the battery, an aqueous liquid may be attached to the bonding layer 1b as described above.
  • the battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited.
  • a lithium ion battery, a lithium ion polymer battery, a lead storage battery, a nickel-hydrogen storage battery, a nickel-cadmium storage battery, a nickel- Examples include iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal-air batteries, multivalent cation batteries, capacitors, capacitors, and the like.
  • lithium ion batteries and lithium ion polymer batteries are suitable applications for the battery packaging material of the present invention.
  • Example 1 A polyethylene terephthalate film and a nylon film were laminated by coextrusion to prepare a biaxially stretched laminated film.
  • the laminated film is a laminate in which a resin layer / bonding layer / base material layer is sequentially laminated, and is biaxially stretched after co-extrusion of resin layer / bonding layer / base material layer.
  • the laminated film contains an ultraviolet absorber (TINUVIN 326), a light stabilizer (TINUVIN 770), and an antioxidant (Irganox 1330, Irganox 1098, Irganox 1010).
  • an aluminum alloy foil (thickness 40 ⁇ m) as a barrier layer was laminated on the surface of the base material layer by a dry laminating method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) is applied to one surface of an aluminum alloy foil having an acid-resistant film formed on the surface, and the adhesive is applied to the surface of the aluminum alloy foil. A layer (thickness 3 ⁇ m) was formed.
  • the resin layer / bonding layer / base material layer / adhesive layer / barrier layer are laminated in order by performing an aging treatment.
  • a laminate was prepared.
  • the aluminum foil used as the barrier layer is provided with an acid resistant film containing cerium oxide and phosphate.
  • an adhesive composed of a non-crystalline polyolefin resin having a carboxyl group and a polyfunctional isocyanate compound (with a thickness of 2 ⁇ m after curing) is formed on the barrier layer of the obtained laminate (the surface of the acid-resistant film).
  • the adhesive layer / heat-sealable resin is applied onto the barrier layer by coating and drying the barrier layer side of the resulting laminate and an unstretched polypropylene film (thickness 80 ⁇ m) through a hot roll and bonding them. The layers were laminated.
  • biaxially stretched polyethylene terephthalate film (5 ⁇ m) / bonding layer (1 ⁇ m) / biaxially stretched nylon film (20 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (40 ⁇ m) ) / Adhesive layer (2 ⁇ m) / unstretched polypropylene film (80 ⁇ m) were laminated in this order to obtain a battery packaging material.
  • Table 1 shows the layer structure of the battery packaging material.
  • a polyethylene terephthalate film (thickness 12 ⁇ m) as a resin layer and a stretched nylon film (thickness 15 ⁇ m) as a base material layer are a two-component urethane adhesive ( A material bonded with a polyol compound and an aromatic isocyanate compound (thickness: 3 ⁇ m) was prepared.
  • an aluminum alloy foil (thickness 40 ⁇ m) as a barrier layer was laminated on the surface of the base material layer by a dry laminating method, and resin layer / bonding layer / base material layer / adhesion A laminate in which the agent layer / barrier layer was sequentially laminated was produced.
  • the acid-resistant film formed on the surface of the aluminum alloy foil is roll-coated with a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry mass). It is formed by applying and baking on both surfaces of an aluminum alloy foil by the method.
  • an acid-modified polypropylene (thickness: 40 ⁇ m) as an adhesive layer and a polypropylene (thickness: 40 ⁇ m) as a heat-fusible resin layer are laminated by coextrusion laminating method to obtain a resin layer / bonding layer / base material layer.
  • the specific laminated structure is shown in Table 1.
  • an aluminum alloy foil (thickness 40 ⁇ m) as a barrier layer was laminated on the surface of the base material layer by a dry laminating method, and resin layer / bonding layer / base material layer / adhesion A laminate in which the agent layer / barrier layer was sequentially laminated was produced.
  • the acid-resistant film formed on the surface of the aluminum alloy foil is the same as in Comparative Example 1.
  • an adhesive composed of a non-crystalline polyolefin resin having a carboxyl group and a polyfunctional isocyanate compound (thickness after curing is 3 ⁇ m) on the barrier layer (surface of the acid-resistant film) of the obtained laminate.
  • the barrier layer side of the obtained laminate and an unstretched random polypropylene film are passed between hot rolls and bonded to each other, whereby a resin layer / bonding layer / base material layer /
  • a battery packaging material in which an adhesive layer / barrier layer / adhesive layer / heat-fusible resin layer was laminated in order was obtained.
  • the specific laminated structure is shown in Table 1.
  • the base material layer side of the body was bonded to obtain a battery packaging material in which a resin layer / bonding layer / base material layer / adhesive layer / barrier layer / adhesive layer / heat-sealable resin layer were sequentially laminated.
  • the specific laminated structure is shown in Table 1.
  • Comparative Example 4 In Comparative Example 3, the base layer / adhesive layer / barrier layer / adhesive layer / heat-sealable resin was the same as Comparative Example 3 except that the resin layer and the bonding layer were not laminated on the base layer. A battery packaging material in which layers were sequentially laminated was obtained. The specific laminated structure is shown in Table 1.
  • ⁇ Measurement of content of ultraviolet absorber, light stabilizer and antioxidant> About the battery packaging material of Example 1, in the same manner as in the above-described ⁇ Analysis of UV absorber, light stabilizer and antioxidant>, from the laminate of the resin layer, the bonding layer, and the base material layer, an additive component was extracted, and a sample dissolved in the measurement solvent was prepared. About the obtained sample, content of a ultraviolet absorber, a light stabilizer, and antioxidant was measured with the following gas chromatographs (GC) and liquid chromatographs (HPLC).
  • GC gas chromatographs
  • HPLC liquid chromatographs
  • the resin layer was peeled about 30 mm in the MD direction.
  • the hydrochloric acid adhering to the test sample was wiped off and dried as it was.
  • distilled water (W) was adhered to the portion where the resin layer was peeled off (bonding layer 1b between the resin layer and the base layer side surface) using a dropper.
  • distilled water (W) was adhered to the entire boundary in the TD direction at the boundary between the resin layer and the substrate layer side surface.
  • the resin layer 1a was peeled from the surface of the base material layer using a tensile tester (Autograph manufactured by Shimadzu Corporation) under the measurement conditions of a distance between chucks of 50 mm, a peeling speed of 50 mm / min, and a peeling angle of 180 °.
  • the peel strength when the distance between chucks reached 57 mm was defined as the peel strength (N / 15 mm) with distilled water attached.
  • the results are shown in Table 1.
  • the minimum of the detection limit value of the tensile tester used for the measurement of peel strength is 0.3 N / 15 mm.
  • Each battery packaging material obtained above was cut into 150 mm (TD) ⁇ 100 mm (MD) strips, which were used as test samples.
  • the MD of the battery packaging material corresponds to the rolling direction of the aluminum alloy foil
  • the TD of the battery packaging material corresponds to the TD of the aluminum alloy foil.
  • the rolling direction of the aluminum alloy foil can be confirmed by the rolling marks of the aluminum alloy foil.
  • the mold is a rectangular male mold of 30 mm (MD) ⁇ 50 mm (TD) (the surface is defined in Table 2 of Comparative Surface Roughness Standard Pieces for Reference JIS B 0659-1: 2002 Annex 1)
  • the maximum height roughness (nominal value of Rz is 1.6 ⁇ m)
  • the female mold with a clearance of 0.5 mm from this male mold (the surface is JIS B 0659-1: 2002 Annex 1 (reference) comparison)
  • a straight mold having a maximum height roughness (Rz nominal value of 3.2 ⁇ m) defined in Table 2 of the surface roughness standard piece for use was used.
  • the test sample was placed on the female mold so that the heat-fusible resin layer side was positioned on the male mold side.
  • test samples were pressed with a surface pressure of 0.1 MPa so as to have a molding depth of 5.0 mm, and cold-molded (drawn one-step molding).
  • the test samples of Example 1 and Comparative Examples 1 to 3 are molded with the resin layer and the bonding layer laminated. About the sample after cold forming, it was confirmed visually whether the wrinkle was formed in the forming part. The results are shown in Table 1.
  • the printability was evaluated according to the following criteria. The printability measurement was performed in an environment of 24 ° C. and a relative humidity of 50%. The results are shown in Table 1. A: Print missing is 2.5% or less B Print missing is more than 2.5% and 5% or less C: Print missing is more than 2.5%
  • distilled water (W) was adhered to the portion where the resin layer was peeled off (bonding layer 1b between the resin layer and the base layer side surface) using a dropper. At this time, distilled water (W) was adhered to the entire boundary in the TD direction at the boundary between the resin layer and the substrate layer side surface.
  • Table 1 shows whether the resin layer could be peeled from the base material layer by pinching the resin layer with a finger.
  • PET is a polyethylene terephthalate layer
  • Ny is a nylon layer
  • AD is a bonding layer
  • DL is an adhesive layer formed by a dry lamination method
  • ALM is an aluminum alloy foil
  • PPa is an acid-modified polypropylene layer
  • CPP means an unstretched polypropylene layer
  • PP means a polypropylene layer.
  • the numerical value described after each layer of the laminated structure means a thickness ( ⁇ m), for example, “PET (12)” means “a polyethylene terephthalate layer having a thickness of 12 ⁇ m”.
  • peeling strength is 0.3 N / 15 mm or less means that peeling strength was below a detection limit value.
  • the peel strength when peeling the resin layer from the laminate using an aqueous liquid is 1.0 N / 15 mm or less, the resin layer can be suitably peeled, and 0.5 N / 15 mm or less. If it exists, it can be said that a resin layer can be peeled off more suitably.
  • Comparative Examples 1 and 2 using urethane resin as the bonding layer had high peel strength in a state where water was not attached and peel strength in a state where water was attached. Therefore, it was difficult to peel off the resin layer even when water was attached. In addition, there was no wrinkle after molding even when molded in a state where the resin layer and the bonding layer were laminated, and no deterioration was observed even after heat sealing. The resin layer could not be peeled even when water was attached to the end face. This is considered to be because the peel strength of the urethane resin is further increased by the heat of heat fusion, and is more difficult to peel.
  • Comparative Example 3 using a silicone resin as the bonding layer had low peel strength in the state where water was not attached and peel strength in the state where water was attached. For this reason, the resin layer can be easily peeled off even when water is not attached, and there is a flaw when the protective layer is laminated, and the appearance is poor.

Abstract

Provided is a packaging material for batteries, which is capable of effectively suppressing deterioration of the characteristics of the outer surface of the packaging material for batteries during a process for producing a battery or the packaging material for batteries. A packaging material for batteries according to the present invention is configured from a laminate which sequentially comprises at least a resin layer, a bonding layer, a base material layer, a barrier layer and a thermally fusible resin layer in this order. The bonding layer contains a polyester resin; and the resin layer is able to be separated from the laminate with use of an aqueous liquid.

Description

電池用包装材料、その製造方法、及び電池Battery packaging material, manufacturing method thereof, and battery
 本発明は、電池用包装材料、その製造方法、及び電池に関する。 The present invention relates to a packaging material for a battery, a manufacturing method thereof, and a battery.
 従来、様々なタイプの電池が開発されている。これらの電池において、電極、電解質などにより構成される電池素子は、包装材料などにより封止される必要がある。電池用包装材料としては、金属製の包装材料が多用されている。 Conventionally, various types of batteries have been developed. In these batteries, a battery element composed of an electrode, an electrolyte and the like needs to be sealed with a packaging material or the like. Metal packaging materials are frequently used as battery packaging materials.
 近年、電気自動車、ハイブリッド電気自動車、パーソナルコンピュータ、カメラ、携帯電話などの高性能化に伴い、多様な形状を有する電池が求められている。また、電池には、薄型化、軽量化なども求められている。しかしながら、従来多用されている金属製の包装材料では、電池形状の多様化に追従することが困難である。また、金属製であるため、包装材料の軽量化にも限界がある。 In recent years, batteries having various shapes have been demanded with the improvement in performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones and the like. The battery is also required to be thin and light. However, it is difficult to follow the diversification of battery shapes with metal packaging materials that have been widely used in the past. Further, since it is made of metal, there is a limit to reducing the weight of the packaging material.
 そこで、多様な形状に加工が容易で、薄型化や軽量化を実現し得る電池用包装材料として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている。 Therefore, as a battery packaging material that can be easily processed into various shapes and can be made thinner and lighter, there is a film-like laminate in which a base material layer / barrier layer / heat-sealable resin layer are sequentially laminated. Proposed.
 このようなフィルム状の電池用包装材料においては、一般的に、成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの電池素子を配し、熱融着性樹脂層同士を熱融着させることにより、電池用包装材料の内部に電池素子が収容された電池が得られる。 In such a film-shaped battery packaging material, generally, a concave portion is formed by molding, and a battery element such as an electrode or an electrolytic solution is arranged in the space formed by the concave portion, and a heat-fusible resin layer A battery in which the battery element is accommodated in the battery packaging material is obtained by heat-sealing them together.
 このようなフィルム状の積層体によって形成された電池用包装材料を製造する工程や、当該電池用包装材料を用いて電池を製造する工程においては、電池が完成するまでの間に、搬送時の傷付きや、熱融着時の加熱劣化、電解液を封入する際の電解液の付着など、基材層側の表面特性が劣化することがある。基材層側の表面は、電池の外側に位置することになるため、これらの特性劣化は、可能な限り回避することが求められる。 In the process of manufacturing a battery packaging material formed by such a film-like laminate, and the process of manufacturing a battery using the battery packaging material, the battery is transported until the battery is completed. Surface characteristics on the base material layer side may be deteriorated, such as scratches, heat deterioration during heat fusion, and adhesion of the electrolyte when encapsulating the electrolyte. Since the surface on the base material layer side is located outside the battery, it is required to avoid such characteristic deterioration as much as possible.
 例えば、特許文献1には、金属箔に保護層と熱融着層を積層した3層構造のラミネートフィルムに対して、あらかじめ加熱や紫外線照射などにより接着力がほとんどなくなることを特徴とする保護フィルムを貼り付けてから電池の製造を行い、最後に加熱又は紫外線を当てることで粘着力が小さくなった保護フィルムを剥がす方法が提案されている。 For example, Patent Document 1 discloses a protective film characterized in that the adhesive strength is almost eliminated by heating or ultraviolet irradiation in advance for a laminated film having a three-layer structure in which a protective layer and a heat sealing layer are laminated on a metal foil. A method has been proposed in which a battery is manufactured after affixing, and a protective film having a reduced adhesive strength is peeled off by applying heat or ultraviolet light.
 しかしながら、特許文献1に記載された方法では、加熱又は紫外線照射によって、保護フィルムの下に位置する層などが劣化するという問題がある。また、加熱温度や紫外線の波長の設定が必要であり、これらの設定値が変化することで、保護フィルムの粘着力が一定にならないという問題もある。 However, the method described in Patent Document 1 has a problem that a layer or the like located under the protective film is deteriorated by heating or ultraviolet irradiation. In addition, it is necessary to set the heating temperature and the wavelength of ultraviolet rays, and there is also a problem that the adhesive force of the protective film does not become constant because these set values change.
特開2009-43442号公報JP 2009-43442 A
 本発明は、従来技術のこのような問題に鑑みなされた発明である。すなわち、電池又は電池用包装材料を製造する工程において、電池用包装材料の外側表面の特性劣化を効果的に抑制することができる電池用包装材料を提供することを主な目的とする。さらに、本発明は、当該電池用包装材料の製造方法、当該電池用包装材料を用いた電池、及び当該電池の製造方法を提供することも目的とする。 The present invention is an invention made in view of such problems of the prior art. That is, the main object is to provide a battery packaging material that can effectively suppress deterioration of characteristics of the outer surface of the battery packaging material in the process of manufacturing the battery or the battery packaging material. Furthermore, another object of the present invention is to provide a method for producing the battery packaging material, a battery using the battery packaging material, and a method for producing the battery.
 本発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、少なくとも、樹脂層と、接合層と、基材層と、バリア層と、熱融着性樹脂層とをこの順に備える積層体から構成され、接合層がポリエステル樹脂を含み、樹脂層が水性液体を用いて積層体から剥離可能である電池用包装材料は、特許文献1のような電池用包装材料の外側表面の特性を劣化させる加熱や紫外線照射などが不要であり、電池又は電池用包装材料を製造する工程における、電池用包装材料の外側表面の特性劣化を効果的に抑制することができることを見出した。
 本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。
The present inventors have intensively studied to solve the above problems. As a result, it is composed of a laminate including at least a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order, the bonding layer includes a polyester resin, The battery packaging material that can be peeled off from the laminate using an aqueous liquid does not require heating, ultraviolet irradiation, or the like that deteriorates the characteristics of the outer surface of the battery packaging material as in Patent Document 1, and is used for batteries or batteries. It has been found that the characteristic deterioration of the outer surface of the battery packaging material in the process of producing the packaging material can be effectively suppressed.
The present invention has been completed by further studies based on these findings.
 すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、樹脂層と、接合層と、基材層と、バリア層と、熱融着性樹脂層とをこの順に備える積層体から構成され、
 前記接合層は、ポリエステル樹脂を含み、
 前記樹脂層は、水性液体を用いて前記積層体から剥離可能である、電池用包装材料。
項2. 温度25℃、相対湿度50%、及び大気圧の環境における、前記接合層に水を付着させない状態で前記積層体から前記樹脂層を剥離する場合の剥離強度が、2.0N/15mm以上であり、かつ、
 温度25℃、相対湿度50%、及び大気圧の環境における、前記水性液体を用いて前記積層体から前記樹脂層を剥離する場合の剥離強度が、1.0N/15mm以下であり、
 前記水性液体は水である、項1に記載の電池用包装材料。
項3. 前記積層体の前記樹脂層側の表面に滑剤が存在している、項1又は2に記載の電池用包装材料。
項4. 前記樹脂層、接合層、及び基材層の少なくとも1層に、紫外線吸収剤が含まれている、項1~3のいずれかに記載の電池用包装材料。
項5. 前記紫外線吸収剤が、ベンゾトリアゾール系紫外線吸収剤である、項4に記載の電池用包装材料。
項6. 前記樹脂層、接合層、及び基材層の少なくとも1層に、光安定剤が含まれている、項1~5のいずれかに記載の電池用包装材料。
項7. 前記光安定剤が、ヒンダードアミン系光安定剤である、項6に記載の電池用包装材料。
項8. 少なくとも、樹脂層と、接合層と、基材層と、バリア層と、熱融着性樹脂層とがこの順となるように積層して積層体を得る工程を備えており、
 前記接合層がポリエステル樹脂を含んでおり、前記樹脂層が水性液体を用いて前記積層体から剥離可能なものを用いる、電池用包装材料の製造方法。
項9. 少なくとも正極、負極、及び電解質を備えた電池素子が、項1~7のいずれかに記載の電池用包装材料により形成された包装体中に収容されている、電池。
項10. 少なくとも、樹脂層と、接合層と、基材層と、バリア層と、熱融着性樹脂層とをこの順に備える積層体の電池用包装材料への使用であって、
 前記接合層は、ポリエステル樹脂を含み、
 前記樹脂層は、水性液体を用いて前記積層体から剥離可能である、前記積層体の電池用包装材料への使用。
That is, this invention provides the invention of the aspect hung up below.
Item 1. At least, it is composed of a laminate comprising a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order,
The bonding layer includes a polyester resin,
The battery packaging material, wherein the resin layer is peelable from the laminate using an aqueous liquid.
Item 2. In an environment of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure, the peel strength when the resin layer is peeled from the laminate without water adhering to the bonding layer is 2.0 N / 15 mm or more. ,And,
The peel strength when peeling the resin layer from the laminate using the aqueous liquid in an environment of temperature 25 ° C., relative humidity 50%, and atmospheric pressure is 1.0 N / 15 mm or less,
Item 2. The battery packaging material according to Item 1, wherein the aqueous liquid is water.
Item 3. Item 3. The battery packaging material according to Item 1 or 2, wherein a lubricant is present on the surface of the laminate on the resin layer side.
Item 4. Item 4. The battery packaging material according to any one of Items 1 to 3, wherein an ultraviolet absorber is contained in at least one of the resin layer, the bonding layer, and the base material layer.
Item 5. Item 5. The battery packaging material according to Item 4, wherein the ultraviolet absorber is a benzotriazole-based ultraviolet absorber.
Item 6. Item 6. The battery packaging material according to any one of Items 1 to 5, wherein a light stabilizer is contained in at least one of the resin layer, the bonding layer, and the base material layer.
Item 7. Item 7. The battery packaging material according to Item 6, wherein the light stabilizer is a hindered amine light stabilizer.
Item 8. At least a step of obtaining a laminate by laminating a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order;
The manufacturing method of the packaging material for batteries using the said joining layer contains the polyester resin and the said resin layer can peel from the said laminated body using an aqueous liquid.
Item 9. A battery in which a battery element including at least a positive electrode, a negative electrode, and an electrolyte is accommodated in a package formed of the battery packaging material according to any one of Items 1 to 7.
Item 10. At least, the use of a laminate comprising a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order for a battery packaging material,
The bonding layer includes a polyester resin,
Use of the laminate for battery packaging materials, wherein the resin layer is peelable from the laminate using an aqueous liquid.
 本発明によれば、電池又は電池用包装材料を製造する工程における電池用包装材料の外側表面の特性劣化を効果的に抑制することができる電池用包装材料を提供することができる。また、本発明によれば、当該電池用包装材料の製造方法、当該電池用包装材料を用いた電池、及び当該電池の製造方法を提供することもできる。 According to the present invention, it is possible to provide a battery packaging material that can effectively suppress the deterioration of characteristics of the outer surface of the battery packaging material in the process of manufacturing the battery or the battery packaging material. Moreover, according to this invention, the manufacturing method of the said packaging material for batteries, the battery using the said packaging material for batteries, and the manufacturing method of the said battery can also be provided.
本発明の電池用包装材料の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the packaging material for batteries of this invention. 本発明の電池用包装材料の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the packaging material for batteries of this invention. 本発明の電池用包装材料の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the packaging material for batteries of this invention. 剥離強度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of peeling strength.
 本発明の電池用包装材料は、少なくとも、樹脂層と、接合層と、基材層と、バリア層と、熱融着性樹脂層とをこの順に備える積層体から構成され、接合層は、ポリエステル樹脂を含み、樹脂層は、水性液体を用いて積層体から剥離可能であることを特徴とする。以下、図1から図3を参照しながら、本発明の電池用包装材料、当該電池用包装材料を用いた電池、及びこれらの製造方法について、詳述する。 The battery packaging material of the present invention is composed of a laminate including at least a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order. The resin layer is characterized in that the resin layer can be peeled off from the laminate using an aqueous liquid. Hereinafter, the battery packaging material of the present invention, the battery using the battery packaging material, and the manufacturing method thereof will be described in detail with reference to FIGS. 1 to 3.
 なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。 In this specification, the numerical range indicated by “to” means “above” or “below”. For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
1.電池用包装材料の積層構造と物性
 本発明の電池用包装材料は、例えば図1~図3に示すように、少なくとも、樹脂層1a、接合層1b、基材層2、バリア層3、及び熱融着性樹脂層4をこの順に有する積層体から構成されている。本発明の電池用包装材料において、樹脂層1aが最外層になり、熱融着性樹脂層4は最内層になる。即ち、電池の組み立て時に、電池素子の周縁に位置する熱融着性樹脂層4同士が熱融着して電池素子を密封することにより、電池素子が封止される。
1. Laminated structure and physical properties of battery packaging material The battery packaging material of the present invention comprises at least a resin layer 1a, a bonding layer 1b, a base material layer 2, a barrier layer 3, and a heat as shown in FIGS. It is comprised from the laminated body which has the fusible resin layer 4 in this order. In the battery packaging material of the present invention, the resin layer 1a is the outermost layer, and the heat-fusible resin layer 4 is the innermost layer. That is, when the battery is assembled, the battery element is sealed by heat-sealing the heat-fusible resin layers 4 positioned at the periphery of the battery element to seal the battery element.
 図1~図3には、樹脂層1aと、ポリエステル樹脂を含む接合層1bとの積層体が保護層1を構成している態様を示している。接合層1bは、樹脂層1aを、他の層に接合(より具体的には、粘着)させるために設けられている。接合層1bは、粘着層ということができる。 1 to 3 show a mode in which a laminate of a resin layer 1a and a bonding layer 1b containing a polyester resin constitutes the protective layer 1. FIG. The bonding layer 1b is provided for bonding (more specifically, sticking) the resin layer 1a to another layer. The bonding layer 1b can be referred to as an adhesive layer.
 本発明の電池用包装材料10には、図2及び図3に示すように、基材層2とバリア層3との間に、これらの接着性を高める目的で、必要に応じて接着剤層5が設けられていてもよい。また、本発明の電池用包装材料10には、図3に示すように、バリア層3と熱融着性樹脂層4との間に、これらの接着性を高める目的で、必要に応じて接着層6が設けられていてもよい。また、図示を省略するが、接合層1bと基材層2との間には、表面被覆層が設けられていてもよい。 In the battery packaging material 10 of the present invention, as shown in FIGS. 2 and 3, an adhesive layer is formed between the base material layer 2 and the barrier layer 3 as necessary for the purpose of enhancing the adhesion between them. 5 may be provided. In addition, as shown in FIG. 3, the battery packaging material 10 of the present invention is bonded between the barrier layer 3 and the heat-fusible resin layer 4 as necessary for the purpose of improving the adhesion between them. A layer 6 may be provided. Moreover, although illustration is abbreviate | omitted, between the joining layer 1b and the base material layer 2, the surface coating layer may be provided.
 後述の通り、樹脂層1aは、水性液体を用いて、電池用包装材料10を構成する積層体から剥離可能である。これは、接合層1bが、ポリエステル樹脂による粘着性を有しているためである。本発明の電池用包装材料において、樹脂層1aは、水性液体を用いて、電池用包装材料10を構成する積層体から容易に剥離可能である。また、水性液体を用いた剥離は、基材層2や表面被覆層への影響が少なく、基材層2などが吸湿しても、乾燥すればよいため、剥離の際の特性劣化などの影響を抑制することができる。 As will be described later, the resin layer 1a can be peeled off from the laminate constituting the battery packaging material 10 using an aqueous liquid. This is because the bonding layer 1b has adhesiveness due to the polyester resin. In the battery packaging material of the present invention, the resin layer 1a can be easily peeled from the laminate constituting the battery packaging material 10 using an aqueous liquid. Further, peeling using an aqueous liquid has little effect on the base material layer 2 and the surface coating layer, and even if the base material layer 2 absorbs moisture, it only needs to be dried. Can be suppressed.
 なお、本発明において、粘着又は粘着性とは、複数の物体同士を接合する性質を意味し、広義の接着に含まれる概念であり、粘りつく性質(タック性)である。また、水性液体としては、水を含む液体であれば、特に制限されないが、水性液体の具体例としては、水、含水極性有機溶媒などが挙げられる。含水極性有機溶媒としては、アルコール、アセトン、酢酸エチル、ジメチルエーテルなどの極性有機溶媒の水溶液が挙げられる。アルコールの水溶液(含水アルコール)としては、例えば、メタノール、エタノールなどの低級アルコールなどの水溶液が挙げられる。含水極性有機溶媒中の水と極性溶媒との質量比(水:極性溶媒)としては、100:1~100:100程度が挙げられる。水性液体は、1種類の液体によって構成されていてもよいし、2種類以上の液体によって構成されていてもよい。 In the present invention, the term “adhesiveness” or “adhesiveness” means a property of joining a plurality of objects, and is a concept included in a broad sense of adhesion, and is a sticking property (tackiness). Further, the aqueous liquid is not particularly limited as long as it is a liquid containing water, but specific examples of the aqueous liquid include water, a hydrous polar organic solvent, and the like. Examples of the hydrous polar organic solvent include aqueous solutions of polar organic solvents such as alcohol, acetone, ethyl acetate, and dimethyl ether. Examples of the aqueous solution of alcohol (hydrous alcohol) include aqueous solutions of lower alcohols such as methanol and ethanol. The mass ratio of water to the polar solvent (water: polar solvent) in the hydrous polar organic solvent is about 100: 1 to 100: 100. The aqueous liquid may be constituted by one type of liquid or may be constituted by two or more types of liquids.
 また、本発明において、樹脂層1aが積層体から剥離可能とは、樹脂層1aを接合層1bと接面している層から剥離できることを意味する。接合層1bは、樹脂層1aと共に基材層2側の表面から剥離されてもよく、接合層1bの成分が、基材層2側の表面に残っていてもよい。 In the present invention, the fact that the resin layer 1a can be peeled from the laminate means that the resin layer 1a can be peeled from the layer in contact with the bonding layer 1b. The bonding layer 1b may be peeled off from the surface on the base material layer 2 side together with the resin layer 1a, and the components of the bonding layer 1b may remain on the surface on the base material layer 2 side.
 温度25℃、相対湿度50%、及び大気圧(1atm)の環境において、接合層1bに水を付着させた場合の樹脂層1aの剥離強度(A)の上限としては、好ましくは約1.0N/15mm以下、より好ましくは約0.5N/15mm以下が挙げられ、下限としては特にないが、好ましくは約0.0N/15mm以上、より好ましくは約0.01N/15mm以上、さらに好ましくは約0.1N/15mm以上が挙げられる。当該剥離強度(A)の範囲としては、好ましくは、0.0~1.0N/15mm程度、0.0~0.5N/15mm程度、0.01~1.0N/15mm程度、0.01~0.5N/15mm程度、0.1~1.0N/15mm程度、0.1~0.5N/15mm程度が挙げられる。本発明において、「水性液体を用いて積層体から剥離可能」とは、例えば、水性液体を用いて樹脂層1aを積層体から簡単に手で剥離できることを意味し、具体例としては、前記剥離強度(A)が前記値を充足することである。 The upper limit of the peel strength (A) of the resin layer 1a when water is adhered to the bonding layer 1b in an environment of temperature 25 ° C., relative humidity 50%, and atmospheric pressure (1 atm) is preferably about 1.0 N. / 15 mm or less, more preferably about 0.5 N / 15 mm or less, although there is no particular lower limit, preferably about 0.0 N / 15 mm or more, more preferably about 0.01 N / 15 mm or more, and still more preferably about 0.1 N / 15 mm or more is mentioned. The range of the peel strength (A) is preferably about 0.0 to 1.0 N / 15 mm, about 0.0 to 0.5 N / 15 mm, about 0.01 to 1.0 N / 15 mm, 0.01 ˜0.5 N / 15 mm, 0.1˜1.0 N / 15 mm, and 0.1˜0.5 N / 15 mm. In the present invention, “releasable from the laminate using an aqueous liquid” means, for example, that the resin layer 1a can be easily peeled from the laminate using an aqueous liquid. Strength (A) satisfies the above value.
 また、温度25℃、相対湿度50%、及び大気圧(1atm)の環境において、接合層1bに水を付着させない場合の樹脂層1aの剥離強度(B)の下限としては、好ましくは約2.0N/15mm以上、より好ましくは約2.2N/15mm以上が挙げられ、上限としては特にないが、好ましくは約30.0N/15mm以下が挙げられる。当該剥離強度(B)の範囲としては、好ましくは2.0~30.0N/15mm程度、より好ましくは2.2~30.0N/15mm程度が挙げられる。 The lower limit of the peel strength (B) of the resin layer 1a when water is not adhered to the bonding layer 1b in an environment of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure (1 atm) is preferably about 2. 0 N / 15 mm or more, more preferably about 2.2 N / 15 mm or more, and there is no particular upper limit, but preferably about 30.0 N / 15 mm or less. The range of the peel strength (B) is preferably about 2.0 to 30.0 N / 15 mm, more preferably about 2.2 to 30.0 N / 15 mm.
 本発明の電池用包装材料においては、接合層1bに水を付着させない場合の樹脂層1aの前記剥離強度(B)が約2.0N/15mm以上であり、かつ、接合層1bに水を付着させた場合の樹脂層1aの前記剥離強度(A)が約1.0N/15mm以下であることが好ましく、前記剥離強度(B)が約2.2N/15mm以上であり、かつ、前記剥離強度(A)が約0.5N/15mm以下であることがより好ましい。 In the battery packaging material of the present invention, the peel strength (B) of the resin layer 1a when water does not adhere to the bonding layer 1b is about 2.0 N / 15 mm or more, and water adheres to the bonding layer 1b. The peel strength (A) of the resin layer 1a in the case of being made is preferably about 1.0 N / 15 mm or less, the peel strength (B) is about 2.2 N / 15 mm or more, and the peel strength More preferably, (A) is about 0.5 N / 15 mm or less.
 本発明の電池用包装材料においては、接合層1bに水が付着する前までは、樹脂層1aが高い剥離強度を有しており、電池用包装材料を構成する積層体の最外層として、電池用包装材料の特性劣化を好適に抑制しており、所望のタイミングにおいて、接合層1bに水性液体を付着させることにより、樹脂層1aの剥離強度が低下する。より具体的には、接合層1bに水が付着すると、樹脂層1a、接合層1b、及び基材層2の少なくとも1つの層に水分が浸透し、接合層1bの粘着力が低下して、樹脂層1aの剥離強度が低下する。これにより、樹脂層1aを好適に積層体から剥離することができる。例えば、電池の外側には、電池の識別性などの観点から、印字が施されることがある。本発明の電池用包装材料においては、印字が施されるまでは、電池用包装材料の基材層2側の表面の特性劣化を効果的に抑制し、印字を施す際に、水性液体を用いて樹脂層1aを積層体から剥離することにより、印字面となる電池用包装材料の基材層2側の表面を容易に露出させることができ、基材層2や表面被覆層の表面にインクによる印刷が施される用途にも好適に適用可能となる。また、樹脂層1aを備える本発明の電池用包装材料を金型による成形に供してから、水性液体を用いて樹脂層1aを積層体から剥離することにより、樹脂層1aがバリア層3のピンホールを抑制する効果や、基材層2や表面被覆層の表面が金型によって傷つけられることを抑制する効果があり、成形性向上効果を好適に享受することができる。また、樹脂層1aを備える本発明の電池用包装材料を用いて熱融着性樹脂層4を熱融着させた場合、高温・高圧による基材層2や表面被覆層の劣化を、樹脂層1aによる保護によって、効果的に抑制することができる。また、放熱性が求められる電池に使用される場合や、薄さが求められる電池に使用される場合には、樹脂層1aを剥離して使用することができる。なお、樹脂層1aを剥離するタイミング及び目的は、これらに限定されない。 In the battery packaging material of the present invention, the resin layer 1a has high peel strength before water adheres to the bonding layer 1b, and the battery is used as the outermost layer of the laminate constituting the battery packaging material. The characteristic deterioration of the packaging material is suitably suppressed, and the peel strength of the resin layer 1a is reduced by attaching an aqueous liquid to the bonding layer 1b at a desired timing. More specifically, when water adheres to the bonding layer 1b, moisture penetrates into at least one of the resin layer 1a, the bonding layer 1b, and the base material layer 2, and the adhesive strength of the bonding layer 1b decreases. The peel strength of the resin layer 1a is reduced. Thereby, the resin layer 1a can be suitably peeled from the laminated body. For example, printing may be performed on the outside of the battery from the viewpoint of battery identification. In the battery packaging material of the present invention, until printing is performed, the deterioration of the characteristics of the surface of the battery packaging material on the substrate layer 2 side is effectively suppressed, and an aqueous liquid is used when printing is performed. By peeling off the resin layer 1a from the laminate, the surface of the battery packaging material that becomes the printing surface can be easily exposed, and the surface of the base material layer 2 or the surface coating layer can be exposed to ink. It can also be suitably applied to applications where printing is performed. Further, after the battery packaging material of the present invention including the resin layer 1a is subjected to molding by a mold, the resin layer 1a is peeled off from the laminate using an aqueous liquid, so that the resin layer 1a becomes a pin of the barrier layer 3 There is an effect of suppressing holes and an effect of suppressing the surface of the base material layer 2 and the surface coating layer from being damaged by the mold, and the effect of improving moldability can be suitably enjoyed. Further, when the heat-fusible resin layer 4 is heat-sealed using the battery packaging material of the present invention having the resin layer 1a, the deterioration of the base material layer 2 and the surface coating layer due to high temperature and high pressure is caused by the resin layer. It can suppress effectively by the protection by 1a. Moreover, when using for the battery by which heat dissipation is calculated | required, or when using for the battery by which thinness is calculated | required, the resin layer 1a can be peeled and used. Note that the timing and purpose of peeling the resin layer 1a are not limited to these.
 温度25℃、相対湿度50%、及び大気圧(1atm)の環境における、樹脂層1aの剥離強度の測定方法は、具体的には、以下の通りである。 Specifically, the method for measuring the peel strength of the resin layer 1a in an environment of a temperature of 25 ° C., a relative humidity of 50%, and an atmospheric pressure (1 atm) is as follows.
<水を付着させた状態での剥離強度の測定方法>
 電池用包装材料を100mm(MD:Machine Direction)×15mm(TD:Transverse Direction)の矩形状に裁断して、試験サンプルとする。温度25℃、相対湿度50%、及び大気圧(1atm)の環境において、まず、試験サンプルの樹脂層1a及び接合層1bの端部に35%塩酸を付着させて、図4の模式図に示されるように、MDの方向に30mm程度、樹脂層1aを剥離する。試験サンプルに付着した塩酸を拭き取り、そのまま乾燥させる。次に、樹脂層1aが剥離した部分(樹脂層1aと基材層2側表面との間の接合層1b)に、スポイトを用いて水(W)を付着させる。このとき、樹脂層1aと基材層2側表面の境界部分において、TDの方向の全体にわたって、水(W)を付着させる。水は、当該境界部分においてTDの方向の全体にわたって水が十分に付着する量を用いる。次に、引張試験機(例えば、島津製作所製のオートグラフ)を用い、チャック間距離50mm、剥離速度50mm/min、剥離角180°の測定条件で、樹脂層1aを基材層2側表面から剥離させて、チャック間距離が57mmに至った際の剥離強度を、水を付着させた状態での剥離強度(N/15mm)とする。
<Method of measuring peel strength with water attached>
The battery packaging material is cut into a rectangular shape of 100 mm (MD: Machine Direction) × 15 mm (TD: Transverse Direction) to obtain a test sample. In an environment of a temperature of 25 ° C., a relative humidity of 50%, and an atmospheric pressure (1 atm), first, 35% hydrochloric acid is attached to the end portions of the resin layer 1a and the bonding layer 1b of the test sample, and is shown in the schematic diagram of FIG. As shown, the resin layer 1a is peeled off about 30 mm in the MD direction. The hydrochloric acid adhering to the test sample is wiped off and dried as it is. Next, water (W) is made to adhere to the part from which the resin layer 1a has been peeled off (the bonding layer 1b between the resin layer 1a and the base layer 2 side surface) using a dropper. At this time, water (W) is adhered to the entire boundary in the TD direction at the boundary between the resin layer 1a and the surface of the base material layer 2 side. The water is used in such an amount that the water adheres sufficiently throughout the TD direction at the boundary portion. Next, using a tensile tester (for example, an autograph manufactured by Shimadzu Corporation), the resin layer 1a is removed from the surface of the base material layer 2 side under the measurement conditions of a distance between chucks of 50 mm, a peeling speed of 50 mm / min, and a peeling angle of 180 °. The peel strength when the distance between chucks reaches 57 mm is defined as the peel strength (N / 15 mm) with water attached.
<水を付着させない状態での剥離強度の測定>
 樹脂層1aが剥離した部分(樹脂層1aと基材層2側表面との間の接合層1b)に、スポイトを用いて水を付着させないこと以外は、上記の<水を付着させた状態での剥離強度の測定方法>と同じ測定条件で樹脂層1aを基材層2側表面から剥離させて、チャック間距離が57mmに至った際の剥離強度を、水を付着させない状態での剥離強度(N/15mm)とする。
<Measurement of peel strength without water adhering>
In the state where <water is attached to the portion where the resin layer 1a is peeled off (bonding layer 1b between the resin layer 1a and the surface of the base material layer 2 side), except that water is not attached using a dropper. The peel strength when the resin layer 1a is peeled from the surface of the base material layer 2 side under the same measurement conditions as in the above, and when the distance between chucks reaches 57 mm, the peel strength in a state where water is not attached. (N / 15 mm).
 本発明の電池用包装材料10を構成する積層体の厚みとしては、特に制限されないが、電池用包装材料の厚みを薄くして電池のエネルギー密度を高めつつ、成形性に優れた電池用包装材料とする観点からは、例えば180μm以下、好ましくは150μm以下、より好ましくは60~180μm程度、さらに好ましくは60~150μm程度が挙げられる。 The thickness of the laminate constituting the battery packaging material 10 of the present invention is not particularly limited, but the battery packaging material is excellent in moldability while reducing the thickness of the battery packaging material to increase the energy density of the battery. From the viewpoint of, for example, 180 μm or less, preferably 150 μm or less, more preferably about 60 to 180 μm, and still more preferably about 60 to 150 μm.
2.電池用包装材料を形成する各層
[樹脂層1a及び接合層1b]
 本発明の電池用包装材料において、樹脂層1aは、電池用包装材料の最外層に位置しており、所望のタイミングで、水性液体を用いて電池用包装材料を構成する積層体から剥離可能な層である。
2. Each layer forming the battery packaging material [resin layer 1a and bonding layer 1b]
In the battery packaging material of the present invention, the resin layer 1a is located in the outermost layer of the battery packaging material, and can be peeled from the laminate constituting the battery packaging material using an aqueous liquid at a desired timing. Is a layer.
 樹脂層1aは、図1~図3の模式図に示されるように、1層の接合層1bと積層されて2層構成の保護層1を構成していることが好ましい。 As shown in the schematic diagrams of FIGS. 1 to 3, the resin layer 1a is preferably laminated with a single bonding layer 1b to form a protective layer 1 having a two-layer structure.
 接合層1bは、基材層2(後述の表面被覆層が存在する場合には、表面被覆層)と粘着している。また、樹脂層1aは、最外層側に位置する。 The bonding layer 1b is adhered to the base material layer 2 (a surface coating layer when a surface coating layer described later is present). The resin layer 1a is located on the outermost layer side.
 前述の通り、電池が完成するまでの間には、電池用包装材料又は電池の搬送時の傷付きや、熱融着時の加熱劣化、電解液を封入する際の電解液の付着など、電池用包装材料の基材層2側の表面特性が劣化することがあり、このような特性劣化は、可能な限り回避することが求められている。 As described above, until the battery is completed, the battery packaging material or the battery is damaged during transportation, the heat deterioration during heat fusion, the adhesion of the electrolyte when encapsulating the electrolyte, etc. The surface characteristics of the packaging material for the base material layer 2 may be deteriorated, and such characteristic deterioration is required to be avoided as much as possible.
 本発明の電池用包装材料においては、剥離可能な前記特定の樹脂層1aと接合層1bを備えているため、電池又は電池用包装材料を製造する工程において、特許文献1のような電池用包装材料の外側表面の特性を劣化させる加熱や紫外線照射などが不要であり、電池用包装材料の外側表面の特性劣化を効果的に抑制することができる。 In the battery packaging material of the present invention, since the specific resin layer 1a and the bonding layer 1b that can be peeled are provided, in the process of manufacturing the battery or the battery packaging material, the battery packaging as in Patent Document 1 is provided. Heating, ultraviolet irradiation, or the like that deteriorates the characteristics of the outer surface of the material is unnecessary, and the deterioration of the characteristics of the outer surface of the battery packaging material can be effectively suppressed.
 接合層1bは、ポリエステル樹脂を含んでいる。また、接合層1bは、熱可塑性樹脂であることが好ましい。接合層1bが熱可塑性樹脂であることは、例えば、熱機械分析を用いたプローブの変位量測定において、電池用包装材料(積層体)の端部の接合層1b表面にプローブを設置し、測定開始時の前記プローブのディフレクションの設定値は-4V、昇温速度5℃/分の条件で、プローブを40℃から250℃まで加熱した際に、プローブの位置が初期値よりも低下することにより確認することができる。熱機械分析を用いたプローブの変位量測定の詳細については、後述の樹脂層1aで説明した方法と同様である。また、接合層1bがポリエステル樹脂を含んでいることは、例えば赤外分光法で確認することができる。 The bonding layer 1b contains a polyester resin. Moreover, it is preferable that the joining layer 1b is a thermoplastic resin. The fact that the bonding layer 1b is a thermoplastic resin means that, for example, in measuring the displacement of the probe using thermomechanical analysis, a probe is placed on the surface of the bonding layer 1b at the end of the battery packaging material (laminate) and measured. When the probe is heated from 40 ° C. to 250 ° C. under the conditions that the deflection setting of the probe at the start is −4 V and the heating rate is 5 ° C./min, the probe position is lower than the initial value. Can be confirmed. The details of the probe displacement measurement using thermomechanical analysis are the same as the method described in the resin layer 1a described later. Moreover, it can confirm that the joining layer 1b contains the polyester resin, for example by infrared spectroscopy.
 接合層1bに含まれるポリエステル樹脂としては、接合層1bが水性液体と接触することにより、接合層1bに隣接する層と剥離可能に粘着できるものであれば、特に制限されない。接合層1bが水性液体と接触するまでは、接合層1bに隣接する層と強固に粘着し、かつ、接合層1bが水性液体と接触することにより、接合層1bに隣接する層と容易に剥離可能とする観点から、ポリエステル樹脂の好ましい具体例としては、ポリエステル系エラストマーが挙げられる。ポリエステル系エラストマーは、ポリエステル系であるため、耐熱性が良好である。また、ポリエステル系エラストマーは、ポリエステル系であるため、極性が高く水性液体の濡れ性が良好であり、水性液体を用いて剥離しやすい。また、エラストマーは低分子量成分が多く、剥離しやすい。また、樹脂層がポリエステル樹脂を含んでいる場合、ポリエステル系エラストマーはポリエステル基材と密着性がよいため、樹脂層を剥離したときに、接合層が樹脂層と共に剥離され、基材層2側に接合層の成分が残りにくい点から好ましい。ポリエステル系エラストマーとしては、特に制限されないが、飽和ポリエステル系エラストマーであることが好ましく、ポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系エラストマーであることがより好ましい。ポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系エラストマーとしては、例えば、ハードセグメントである芳香族ポリエステルと、ソフトセグメントであるポリアルキレンエーテルグリコールや脂肪族ポリエステルとからなるブロック共重合体が好ましい。さらに、ソフトセグメントとしてポリアルキレンエーテルグリコールを有するポリエステルポリエーテルブロック共重合体がより好ましい。 The polyester resin contained in the bonding layer 1b is not particularly limited as long as the bonding layer 1b can be peeled and adhered to a layer adjacent to the bonding layer 1b by contacting the aqueous liquid. Until the bonding layer 1b comes into contact with the aqueous liquid, it adheres firmly to the layer adjacent to the bonding layer 1b, and easily peels off from the layer adjacent to the bonding layer 1b when the bonding layer 1b comes into contact with the aqueous liquid. From the viewpoint of enabling, a polyester elastomer is preferable as a specific example of the polyester resin. Since the polyester elastomer is polyester, the heat resistance is good. Further, since the polyester elastomer is polyester, the polarity is high and the wettability of the aqueous liquid is good, and it is easy to peel off using the aqueous liquid. Elastomers have many low molecular weight components and are easy to peel off. In addition, when the resin layer contains a polyester resin, the polyester elastomer has good adhesion to the polyester base material. Therefore, when the resin layer is peeled off, the bonding layer is peeled off together with the resin layer, and the base material layer 2 side. This is preferable because the components of the bonding layer hardly remain. The polyester elastomer is not particularly limited, but is preferably a saturated polyester elastomer, and more preferably a saturated polyester elastomer containing a polyalkylene ether glycol segment. As the saturated polyester-based elastomer containing a polyalkylene ether glycol segment, for example, a block copolymer composed of an aromatic polyester as a hard segment and a polyalkylene ether glycol or an aliphatic polyester as a soft segment is preferable. Furthermore, the polyester polyether block copolymer which has polyalkylene ether glycol as a soft segment is more preferable.
 ポリエステルポリエーテルブロック共重合体としては、(i)炭素原子数2~12の脂肪族及び/又は脂環族ジオールと、(ii)芳香族ジカルボン酸又はそのアルキルエステル及び/又は脂肪族ジカルボン酸又はそのアルキルエステルと、(iii)ポリアルキレンエーテルグリコールとを原料とし、エステル化反応又はエステル交換反応により得られたオリゴマーを重縮合させたものが好ましい。なお、接合層1bがエラストマーを含んでいることは、例えば、常温でタック性(粘性)を有することにより確認することができる。 The polyester polyether block copolymer includes (i) an aliphatic and / or alicyclic diol having 2 to 12 carbon atoms, and (ii) an aromatic dicarboxylic acid or an alkyl ester thereof and / or an aliphatic dicarboxylic acid or The alkyl ester and (iii) polyalkylene ether glycol are used as raw materials, and those obtained by polycondensing oligomers obtained by esterification reaction or transesterification reaction are preferred. In addition, it can confirm that the joining layer 1b contains an elastomer, for example by having tack property (viscosity) at normal temperature.
 炭素原子数2~12の脂肪族及び/又は脂環族ジオールとしては、例えば、ポリエステルの原料、特にポリエステル系エラストマーの原料として一般に用いられるものを用いることができる。具体的には、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらの中では、1,4-ブタンジオール又はエチレングリコールが好ましく、特に1,4-ブタンジオールが好ましい。これらのジオールは、単独で用いてもよく、2種以上を併用してもよい。 As the aliphatic and / or alicyclic diol having 2 to 12 carbon atoms, for example, those generally used as a raw material for polyester, particularly as a raw material for polyester elastomer, can be used. Specific examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like. Among these, 1,4-butanediol or ethylene glycol is preferable, and 1,4-butanediol is particularly preferable. These diols may be used alone or in combination of two or more.
 芳香族ジカルボン酸としては、ポリエステルの原料、特にポリエステル系エラストマーの原料として一般的に用いられているものを用いることができる。具体的には、例えば、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸などが挙げられる。これらの中では、テレフタル酸又は2,6-ナフタレンジカルボン酸が好ましく、特にテレフタル酸が好ましい。これらの芳香族ジカルボン酸は単独で用いてもよく、2種以上を併用してもよい。 As the aromatic dicarboxylic acid, those generally used as raw materials for polyester, particularly polyester-based elastomers, can be used. Specific examples include terephthalic acid, isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid. Among these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is particularly preferable. These aromatic dicarboxylic acids may be used alone or in combination of two or more.
 芳香族ジカルボン酸のアルキルエステルとしては、芳香族ジカルボン酸のジメチルエステルやジエチルエステルなどが挙げられる。これらの中でも、ジメチルテレフタレート及び2,6-ジメチルナフタレンジカルボキシレートが好ましい。 Examples of the alkyl ester of aromatic dicarboxylic acid include dimethyl ester and diethyl ester of aromatic dicarboxylic acid. Among these, dimethyl terephthalate and 2,6-dimethyl naphthalene dicarboxylate are preferable.
 脂肪族ジカルボン酸としては、シクロヘキサンジカルボン酸などが好ましく、そのアルキルエステルとしては、ジメチルエステルやジエチルエステルなどが好ましい。また、上記の成分以外に3官能のアルコールやトリカルボン酸又はそのエステルを少量共重合させてもよく、さらに、アジピン酸などの脂肪族ジカルボン酸又はそのジアルキルエステルを共重合成分として用いてもよい。 As the aliphatic dicarboxylic acid, cyclohexane dicarboxylic acid and the like are preferable, and as the alkyl ester, dimethyl ester and diethyl ester are preferable. In addition to the above components, a small amount of a trifunctional alcohol, tricarboxylic acid or an ester thereof may be copolymerized, and an aliphatic dicarboxylic acid such as adipic acid or a dialkyl ester thereof may be used as a copolymerization component.
 ポリアルキレンエーテルグリコールとしては、例えば、ポリエチレングリコール、ポリ(1,2-及び/又は1,3-プロピレンエーテル)グリコール、ポリ(テトラメチレンエーテル)グリコール系化合物、ポリ(ヘキサメチレンエーテル)グリコール系化合物などが挙げられる。これらの中でも、ポリ(テトラメチレンエーテル)グリコール系化合物が好ましい。なお、ポリ(テトラメチレンエーテル)グリコール系化合物は、ポリ(テトラメチレンエーテル)グリコール及びその類縁化合物を含む。また、ポリ(ヘキサメチレンエーテル)グリコール系化合物は、ポリ(ヘキサメチレンエーテル)グリコール及びその類縁化合物を含む。 Examples of the polyalkylene ether glycol include polyethylene glycol, poly (1,2- and / or 1,3-propylene ether) glycol, poly (tetramethylene ether) glycol compound, poly (hexamethylene ether) glycol compound, etc. Is mentioned. Of these, poly (tetramethylene ether) glycol compounds are preferred. The poly (tetramethylene ether) glycol-based compound includes poly (tetramethylene ether) glycol and its related compounds. The poly (hexamethylene ether) glycol-based compound includes poly (hexamethylene ether) glycol and its related compounds.
 ポリアルキレンエーテルグリコールの数平均分子量の好ましい下限は約400以上、好ましい上限は約6000以下である。下限を約400以上とすることで、共重合体のブロック性が高くなり、上限を約6000以下とすることで、系内での相分離が起こり難く、ポリマー物性が発現しやすくなる。より好ましい下限は約500以上、より好ましい上限は約4000以下、さらに好ましい下限は約600以上、さらに好ましい上限は約3000以下が挙げられる。 The preferable lower limit of the number average molecular weight of the polyalkylene ether glycol is about 400 or more, and the preferable upper limit is about 6000 or less. By setting the lower limit to about 400 or more, the block property of the copolymer is increased, and by setting the upper limit to about 6000 or less, phase separation in the system hardly occurs and polymer physical properties are easily developed. A more preferred lower limit is about 500 or more, a more preferred upper limit is about 4000 or less, a still more preferred lower limit is about 600 or more, and a still more preferred upper limit is about 3000 or less.
 なお、本明細書において、数平均分子量とは、ゲル浸透クロマトグラフィー(GPC)で測定されたものをいう。なお、GPCによる数平均分子量の測定は、標準ポリマー(ポリスチレン)換算分子量である。 In addition, in this specification, a number average molecular weight means what was measured by the gel permeation chromatography (GPC). In addition, the measurement of the number average molecular weight by GPC is a standard polymer (polystyrene) conversion molecular weight.
 ポリエステル系エラストマーとして、ポリエステルとポリアルキレンエーテルグリコールとからなるポリエステルポリエーテルブロック共重合体を用いる場合、ポリアルキレンエーテルグリコール成分の含有量としては、下限は、好ましくは約5質量%以上、より好ましくは約30質量%以上、さらに好ましくは約55質量%以上が挙げられ、上限は、好ましくは約90質量%以下、より好ましくは約80質量%以下が挙げられる。なお、ポリアルキレンエーテルグリコール成分の含有量は核磁気共鳴分光法(H1-NMR測定)を用い、水素原子の化学シフトとその積分値に基づいて算出することができる。 When a polyester polyether block copolymer composed of polyester and polyalkylene ether glycol is used as the polyester elastomer, the lower limit of the content of the polyalkylene ether glycol component is preferably about 5% by mass or more, more preferably About 30 mass% or more, More preferably, about 55 mass% or more is mentioned, Preferably an upper limit becomes like this. Preferably about 90 mass% or less, More preferably, about 80 mass% or less is mentioned. The content of the polyalkylene ether glycol component can be calculated using nuclear magnetic resonance spectroscopy (H 1 -NMR measurement) based on the chemical shift of the hydrogen atom and its integrated value.
 ポリエステル系エラストマーは、変性剤により変性された、変性ポリエステル系エラストマーであることが好ましい。変性ポリエステル系エラストマーを得るための変性反応は、例えば、ポリエステル系エラストマーに、変性剤としてのα,β-エチレン性不飽和カルボン酸を反応させることによって行われる。変性反応に際しては、ラジカル発生剤を使用することが好ましい。変性反応においては、ポリエステル系エラストマーにα,β-エチレン性不飽和カルボン酸やその誘導体が付加するグラフト反応が主として起こるが、分解反応も起こる。その結果、変性ポリエステル系エラストマーは、分子量が低下して溶融粘度が低くなる場合がある。また、変性反応においては、通常、他の反応として、エステル交換反応なども起こるものと考えられ、得られる反応物は、一般的には、未反応原料などを含む組成物となる。このような場合、得られる反応物中の変性ポリエステル系エラストマーの含有率は約10質量%以上、より好ましくは約30質量%以上、変性ポリエステル系エラストマーの含有率が約100質量%であることがさらに好ましい。 The polyester elastomer is preferably a modified polyester elastomer modified with a modifier. The modification reaction for obtaining the modified polyester elastomer is carried out, for example, by reacting the polyester elastomer with an α, β-ethylenically unsaturated carboxylic acid as a modifier. In the modification reaction, it is preferable to use a radical generator. In the modification reaction, a graft reaction in which an α, β-ethylenically unsaturated carboxylic acid or a derivative thereof is added to a polyester elastomer mainly occurs, but a decomposition reaction also occurs. As a result, the modified polyester elastomer may have a lower molecular weight and a lower melt viscosity. Further, in the modification reaction, it is considered that a transesterification reaction or the like usually occurs as another reaction, and the obtained reaction product is generally a composition containing unreacted raw materials. In such a case, the content of the modified polyester elastomer in the obtained reaction product is about 10% by mass or more, more preferably about 30% by mass or more, and the content of the modified polyester elastomer is about 100% by mass. Further preferred.
 変性剤として使用されるα,β-エチレン性不飽和カルボン酸としては、例えば、アクリル酸、マレイン酸、フマル酸、テトラヒドロフマル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸などの不飽和カルボン酸;コハク酸2-オクテン-1-イル無水物、コハク酸2-ドデセン-1-イル無水物、コハク酸2-オクタデセン-1-イル無水物、マレイン酸無水物、2,3-ジメチルマレイン酸無水物、ブロモマレイン酸無水物、ジクロロマレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、1-ブテン-3,4-ジカルボン酸無水物、1-シクロペンテン-1,2-ジカルボン酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、exo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、endo-ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸無水物などの不飽和カルボン酸無水物が挙げられる。これらの中でも、反応性が高いことから、酸無水物が好ましい。α,β-エチレン性不飽和カルボン酸は、変性すべきポリアルキレンエーテルグリコールセグメントを含有する共重合体や変性条件に応じて適宜選択することができ、また、2種以上を併用してもよい。なお、α,β-エチレン性不飽和カルボン酸は、有機溶剤などに溶解して使用することもできる。 Examples of the α, β-ethylenically unsaturated carboxylic acid used as the modifier include unsaturated carboxylic acids such as acrylic acid, maleic acid, fumaric acid, tetrahydrofumaric acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid. Acid; 2-octen-1-yl succinic anhydride, 2-dodecen-1-yl succinic anhydride, 2-octadecen-1-yl succinic anhydride, maleic anhydride, 2,3-dimethylmaleic acid Anhydride, bromomaleic anhydride, dichloromaleic anhydride, citraconic anhydride, itaconic anhydride, 1-butene-3,4-dicarboxylic anhydride, 1-cyclopentene-1,2- dicarboxylic anhydride 1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, exo-3,6- epoxy 1,2,3,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride, endo-bicyclo [2.2. 2] Unsaturated carboxylic acids such as oct-5-ene-2,3-dicarboxylic acid anhydride and bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic acid anhydride Anhydrides are mentioned. Of these, acid anhydrides are preferred because of their high reactivity. The α, β-ethylenically unsaturated carboxylic acid can be appropriately selected according to the copolymer containing the polyalkylene ether glycol segment to be modified and the modification conditions, and two or more types may be used in combination. . The α, β-ethylenically unsaturated carboxylic acid can also be used after being dissolved in an organic solvent.
 ラジカル発生剤としては、例えば、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルへキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、3,5,5-トリメチルへキサノイルパーオキサイド、t-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、ジクミルパーオキサイド、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、ジブチルパーオキサイド、メチルエチルケトンパーオキサイド、過酸化カリウム、過酸化水素などの有機及び無機の過酸化物、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(イソブチルアミド)ジハライド、2,2′-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、アゾジ-t-ブタンなどのアゾ化合物、ジクミルなどの炭素ラジカル発生剤などが挙げられる。 Examples of the radical generator include t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-bis (t -Butylperoxy) hexane, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxybenzoate, benzoyl peroxide, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene Organic and inorganic peroxides such as dibutyl peroxide, methyl ethyl ketone peroxide, potassium peroxide, hydrogen peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (isobutylamide) dihalide, 2,2'-azobis [2-methyl-N- (2-hydroxy Ethyl) propionamide], azo compounds such as azodi -t- butane, and carbon radical generators such as dicumyl.
 ラジカル発生剤は、変性反応に使用するポリエステル系エラストマーの種類、α,β-エチレン性不飽和カルボン酸の種類及び変性条件に応じて適宜選択することができ、また、2種以上を併用してもよい。さらに、ラジカル発生剤は有機溶剤などに溶解して使用することもできる。 The radical generator can be appropriately selected according to the type of polyester elastomer used in the modification reaction, the type of α, β-ethylenically unsaturated carboxylic acid and the modification conditions, and two or more types can be used in combination. Also good. Furthermore, the radical generator can be used by dissolving in an organic solvent.
 α,β-エチレン性不飽和カルボン酸の配合量の好ましい下限は、ポリエステル系エラストマー100質量部に対して約0.01質量部以上、好ましい上限は約30.0質量部以下である。約0.01質量部以上とすることで、変性反応を充分に行うことができ、約30.0質量部以下とすることで、経済的に有利なものとなる。より好ましい下限は約0.05質量部以上、より好ましい上限は約5.0質量部以下、さらに好ましい下限は約0.10質量部以上、さらに好ましい上限は約1.0質量部以下である。 The preferable lower limit of the blending amount of the α, β-ethylenically unsaturated carboxylic acid is about 0.01 parts by mass or more and the preferable upper limit is about 30.0 parts by mass or less with respect to 100 parts by mass of the polyester elastomer. When the amount is about 0.01 parts by mass or more, the modification reaction can be sufficiently performed, and when the amount is about 30.0 parts by mass or less, it is economically advantageous. A more preferred lower limit is about 0.05 parts by mass or more, a more preferred upper limit is about 5.0 parts by mass or less, a further preferred lower limit is about 0.10 parts by mass or more, and a more preferred upper limit is about 1.0 part by mass or less.
 ラジカル発生剤の配合量の好ましい下限は、ポリエステル系エラストマー100質量部に対して約0.001質量部以上、好ましい上限は約3.00質量部以下である。約0.001質量部以上とすることで、変性反応が起きやすくなり、約3.00質量部以下とすることで、変性時の低分子量化(粘度低下)による材料強度の低下が起こりにくくなる。より好ましい下限は約0.005質量部以上、より好ましい上限は約0.50質量部以下、さらに好ましい下限は約0.010質量部以上、さらに好ましい上限は約0.20質量部以下であり、特に好ましい上限は約0.10質量部以下である。 The preferable lower limit of the blending amount of the radical generator is about 0.001 part by mass or more with respect to 100 parts by mass of the polyester elastomer, and the preferable upper limit is about 3.00 part by mass or less. When it is about 0.001 part by mass or more, a modification reaction is likely to occur, and when it is about 3.00 part by mass or less, a decrease in material strength due to low molecular weight (decrease in viscosity) at the time of modification hardly occurs. . A more preferred lower limit is about 0.005 parts by mass or more, a more preferred upper limit is about 0.50 parts by mass or less, a still more preferred lower limit is about 0.010 parts by mass or more, and a more preferred upper limit is about 0.20 parts by mass or less. A particularly preferred upper limit is about 0.10 parts by mass or less.
 上記変性ポリエステル系エラストマーを得るための変性反応としては、溶融混練反応法、溶液反応法、懸濁分散反応などの公知の反応方法を使用することができるが、通常は安価であることから溶融混練反応法が好ましい。 As the modification reaction for obtaining the modified polyester-based elastomer, known reaction methods such as a melt-kneading reaction method, a solution reaction method, and a suspension-dispersion reaction can be used. Reaction methods are preferred.
 溶融混練反応法による方法では、上述した各成分を所定の配合比にて均一に混合した後、溶融混練を行う。各成分の混合には、ヘンシェルミキサー、リボンブレンダー、V型ブレンダーなどを使用することができ、溶融混練には、バンバリーミキサー、ニーダー、ロール、一軸又は二軸などの多軸混練押出機などを使用することができる。 In the method based on the melt kneading reaction method, the above-described components are uniformly mixed at a predetermined blending ratio and then melt kneaded. Henschel mixer, ribbon blender, V-type blender, etc. can be used for mixing each component, and Banbury mixer, kneader, roll, uniaxial or biaxial multi-screw kneading extruder etc. are used for melt-kneading. can do.
 溶融混練を行う場合の混練温度の好ましい下限は約100℃以上、好ましい上限は約300℃以下である。上記範囲内とすることで、樹脂の熱劣化を防止することができる。より好ましい下限は約120℃以上、より好ましい上限は約280℃以下、さらに好ましい下限は約150℃以上、さらに好ましい上限は約250℃以下である。 The preferred lower limit of the kneading temperature when melt kneading is about 100 ° C. or more, and the preferred upper limit is about 300 ° C. or less. By setting it within the above range, thermal deterioration of the resin can be prevented. A more preferred lower limit is about 120 ° C. or more, a more preferred upper limit is about 280 ° C. or less, a still more preferred lower limit is about 150 ° C. or more, and a still more preferred upper limit is about 250 ° C. or less.
 変性ポリエステル系エラストマーの変性率(グラフト量)の好ましい下限は約0.01質量%以上、好ましい上限は約10.0質量%以下である。約0.01質量%以上であることで、ポリエステルとの親和性が高くなり、約10.0質量%以下であることで、変性時の分子劣化による強度低下を小さくすることができる。より好ましい下限は約0.03質量%以上、より好ましい上限は約7.0質量%以下であり、さらに好ましい下限は約0.05質量%以上、さらに好ましい上限は約5.0質量%以下である。 The preferable lower limit of the modification rate (graft amount) of the modified polyester elastomer is about 0.01% by mass or more, and the preferable upper limit is about 10.0% by mass or less. When the content is about 0.01% by mass or more, the affinity with the polyester is increased, and when the content is about 10.0% by mass or less, a decrease in strength due to molecular degradation during modification can be reduced. A more preferred lower limit is about 0.03% by mass or more, a more preferred upper limit is about 7.0% by mass or less, a still more preferred lower limit is about 0.05% by mass or more, and a further more preferred upper limit is about 5.0% by mass or less. is there.
 変性ポリエステル系エラストマーの変性率(グラフト量)は、H1-NMR測定により得られるスペクトルから求めることができる。 The modification rate (graft amount) of the modified polyester elastomer can be determined from the spectrum obtained by H 1 -NMR measurement.
 樹脂層1aを構成する素材としては、特に制限されず、熱可塑性樹脂及び熱硬化性樹脂が挙げられ、好ましくは熱可塑性樹脂が挙げられる。熱可塑性樹脂としては、特に制限されないが、電池用包装材料の基材層2側の表面特性の劣化を抑制する観点からは、好ましくは、ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂などが挙げられ、これらの中でも、ポリエステル樹脂がより好ましい。特に、樹脂層1aの機械的強度を高めて、樹脂層1aを好適に剥離する観点から、樹脂層1aは、2軸延伸ポリエステルフィルムにより構成されていることが好ましい。2軸延伸ポリエステルフィルムは、配向性が高められており、成形性、引張強度、突刺し強度に優れている。なお、樹脂層1aを構成する樹脂は、1種類のみであってもよいし、2種類以上であってもよい。 The material constituting the resin layer 1a is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin, and preferably a thermoplastic resin. Although it does not restrict | limit especially as a thermoplastic resin, From a viewpoint of suppressing deterioration of the surface characteristic by the side of the base material layer 2 of a battery packaging material, Preferably, a polyester resin, a polyamide resin, an acrylic resin, a polyolefin resin, a polycarbonate resin Among these, among these, a polyester resin is more preferable. In particular, from the viewpoint of increasing the mechanical strength of the resin layer 1a and suitably separating the resin layer 1a, the resin layer 1a is preferably made of a biaxially stretched polyester film. The biaxially stretched polyester film has enhanced orientation and is excellent in moldability, tensile strength, and puncture strength. The resin constituting the resin layer 1a may be only one type or two or more types.
 ポリエステル樹脂としては、好ましくは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステルなどが挙げられる。ポリエステル樹脂は、1種類のみで構成されていてもよいし、2種類以上により構成されていてもよい。ポリエステル樹脂は、例えば、ポリエチレンテレフタレートを主成分(含有量が例えば90質量%以上、95質量%以上、99質量%以上など)とし、ポリブチレンテレフタレートが副成分として含まれていてもよい。 Preferred examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and copolyester. The polyester resin may be composed of only one type or may be composed of two or more types. The polyester resin may contain, for example, polyethylene terephthalate as a main component (the content is, for example, 90% by mass or more, 95% by mass or more, 99% by mass or more), and polybutylene terephthalate may be included as a subcomponent.
 また、樹脂層1aを構成している樹脂は、基材層2を構成している樹脂よりも融点が高いことが好ましい。樹脂層1aを構成している樹脂の融点が高いことにより、電池用包装材料の熱融着性樹脂層4を熱融着させる際の高温・高圧による基材層2の劣化を、樹脂層1aによる保護によって、効果的に抑制することができる。樹脂層1aによる基材層2の劣化抑制効果を特に有効に発揮させる態様としては、樹脂層1aがポリエステル樹脂により構成されており、基材層2がポリアミドより構成されている態様が挙げられる。 The resin constituting the resin layer 1a preferably has a higher melting point than the resin constituting the base material layer 2. Due to the high melting point of the resin constituting the resin layer 1a, the deterioration of the base material layer 2 due to high temperature and high pressure when the heat-fusible resin layer 4 of the battery packaging material is heat-sealed is caused by the resin layer 1a. It can suppress effectively by protection by. As an aspect in which the deterioration suppressing effect of the base material layer 2 by the resin layer 1a is particularly effectively exhibited, there is an aspect in which the resin layer 1a is made of a polyester resin and the base material layer 2 is made of polyamide.
 本発明において、樹脂層1aは、熱機械分析を用いたプローブの変位量測定において、電池用包装材料(積層体)の端部の樹脂層1a表面にプローブを設置し、測定開始時の前記プローブのディフレクション(Deflection)の設定値は-4V、昇温速度5℃/分の条件で、プローブを40℃から220℃まで加熱した際に、プローブの位置が初期値よりも低下しないことが好ましい。これにより、電池用包装材料の熱融着性樹脂層4を熱融着させる際の高温・高圧による基材層2の劣化を、樹脂層1aによる保護によって、効果的に抑制することができる。 In the present invention, in the resin layer 1a, in the probe displacement measurement using thermomechanical analysis, the probe is placed on the surface of the resin layer 1a at the end of the battery packaging material (laminate), and the probe at the start of measurement When the probe is heated from 40 ° C. to 220 ° C. under the condition that the deflection is set to -4V and the temperature raising rate is 5 ° C./min, the position of the probe is preferably not lower than the initial value. . Thereby, degradation of the base material layer 2 due to high temperature and high pressure when the heat-fusible resin layer 4 of the battery packaging material is heat-sealed can be effectively suppressed by the protection by the resin layer 1a.
 プローブの変位量測定においては、まず、電池用包装材料(積層体)の端部の樹脂層1aの表面にプローブを設置する。このときの端部は、電池用包装材料の中心部を通るように厚み方向に切断して得られた、樹脂層1aの断面が露出した部分である。切断は、市販品の回転式ミクロトームなどを用いて行うことができる。なお、電解質などが封入された電池に使用されている電池用包装材料について、変位量測定を行う場合には、電池用包装材料の熱融着性樹脂層が互いに熱融着されている部分について、測定を行う。加熱機構付きのカンチレバーを取り付けられる原子間力顕微鏡としては、例えば、ANASIS INSTRUMENTS社製のafm plusシステムを用い、プローブとしてはANASYS INSTRUMENTS社製カンチレバーThermaLever AN2-200(ばね定数0.5~3N/m)を使用することができる。プローブの先端半径は30nm以下、プローブのディフレクション(Deflection)の設定値は-4V、昇温速度5℃/分とする。次に、この状態でプローブを加熱すると、プローブからの熱により、樹脂層1a表面が膨張して、プローブが押し上げられ、プローブの位置が初期値(プローブの温度が40℃である時の位置)よりも上昇する。さらに加熱温度が上昇すると、樹脂層1aが軟化し、プローブが樹脂層1aに突き刺さり、プローブの位置が下がる。なお、加熱機構付きのカンチレバーから構成されたナノサーマル顕微鏡を備える原子間力顕微鏡を用いたプローブの変位量測定においては、測定対象となる電池用包装材料は室温(25℃)環境にあり、40℃に加熱されたプローブを樹脂層1a表面に設置して、測定を開始する。 In measuring the displacement of the probe, first, the probe is placed on the surface of the resin layer 1a at the end of the battery packaging material (laminated body). The edge part at this time is a part where the cross section of the resin layer 1a obtained by cutting in the thickness direction so as to pass through the central part of the battery packaging material is exposed. Cutting can be performed using a commercially available rotary microtome or the like. When the amount of displacement is measured for battery packaging materials used in batteries encapsulating electrolytes, etc., the portions where the heat-fusible resin layers of the battery packaging materials are heat-sealed together. , Measure. As an atomic force microscope to which a cantilever with a heating mechanism can be attached, for example, an afm plus system manufactured by ANASIS INSTRUMENTS is used, and a cantilever ThermoLever AN2-200 manufactured by ANASYS INSTRUMENTS is used as a probe (spring constant 0.5 to 3 N / m). ) Can be used. The probe tip radius is 30 nm or less, the probe deflection setting is −4 V, and the temperature rise rate is 5 ° C./min. Next, when the probe is heated in this state, the surface of the resin layer 1a is expanded by the heat from the probe, the probe is pushed up, and the probe position is the initial value (position when the probe temperature is 40 ° C.). Than to rise. When the heating temperature is further increased, the resin layer 1a is softened, the probe is pierced into the resin layer 1a, and the position of the probe is lowered. In the probe displacement measurement using an atomic force microscope including a nanothermal microscope composed of a cantilever with a heating mechanism, the battery packaging material to be measured is in a room temperature (25 ° C.) environment. A probe heated to ° C is placed on the surface of the resin layer 1a, and measurement is started.
 本発明の電池用包装材料においては、絶縁性及び耐久性をより一層高める観点から、測定開始時の前記プローブのディフレクション(Deflection)の設定値は-4V、昇温速度5℃/分の条件で、プローブを40℃から220℃まで加熱した際に、樹脂層1a表面に設置したプローブの位置が初期値(プローブの温度が40℃である時の位置)よりも低下せず、さらに、160℃から200℃まで加熱した際に、樹脂層1a表面に設置したプローブの位置が低下しないことがより好ましい。電池用包装材料の熱融着性樹脂層同士をヒートシールして電池素子を封止する工程は、通常、160℃から200℃程度に加熱して行われる。このため、プローブを160℃から200℃まで加熱した際に、樹脂層1a表面に設置したプローブの位置が低下しない電池用包装材料は、特に高い耐熱性を発揮することができる。耐熱性をより一層高める観点から、プローブを40℃から250℃まで加熱した際に、樹脂層1a表面に設置したプローブの位置が初期値よりも低下せず、さらに、160℃から200℃まで加熱した際に、樹脂層1a表面に設置したプローブの位置が低下しないことがさらに好ましい。 In the battery packaging material of the present invention, from the viewpoint of further improving the insulation and durability, the set value of the deflection of the probe at the start of measurement is −4 V, and the temperature rising rate is 5 ° C./min. Thus, when the probe is heated from 40 ° C. to 220 ° C., the position of the probe installed on the surface of the resin layer 1a is not lowered below the initial value (position when the probe temperature is 40 ° C.). It is more preferable that the position of the probe placed on the surface of the resin layer 1a does not decrease when heated from 200C to 200C. The step of heat-sealing the heat-fusible resin layers of the battery packaging material to seal the battery element is usually performed by heating at about 160 ° C. to 200 ° C. For this reason, when the probe is heated from 160 ° C. to 200 ° C., the battery packaging material in which the position of the probe installed on the surface of the resin layer 1a does not decrease can exhibit particularly high heat resistance. From the viewpoint of further increasing the heat resistance, when the probe is heated from 40 ° C. to 250 ° C., the position of the probe placed on the surface of the resin layer 1a is not lowered below the initial value, and further, heated from 160 ° C. to 200 ° C. More preferably, the position of the probe placed on the surface of the resin layer 1a does not decrease.
 樹脂層1aの厚みとしては、特に制限されないが、電池用包装材料の基材層2側の表面特性の劣化を抑制する観点からは、好ましくは2~50μm程度、より好ましくは2~20μm程度、さらに好ましくは2~10μm程度が挙げられる。 The thickness of the resin layer 1a is not particularly limited, but is preferably about 2 to 50 μm, more preferably about 2 to 20 μm, from the viewpoint of suppressing deterioration of surface characteristics on the base material layer 2 side of the battery packaging material. More preferably, it is about 2 to 10 μm.
 同様の観点から、接合層1bの厚みは、好ましくは0.2~10μm程度、より好ましくは0.2~5μm程度、さらに好ましくは0.2~3μm程度が挙げられる。同様の観点から、樹脂層1aと接合層1bとの合計厚みとしては、好ましくは2~50μm程度、より好ましくは2~20μm程度、さらに好ましくは2~10μm程度が挙げられる。 From the same viewpoint, the thickness of the bonding layer 1b is preferably about 0.2 to 10 μm, more preferably about 0.2 to 5 μm, and still more preferably about 0.2 to 3 μm. From the same viewpoint, the total thickness of the resin layer 1a and the bonding layer 1b is preferably about 2 to 50 μm, more preferably about 2 to 20 μm, and further preferably about 2 to 10 μm.
 樹脂層1aの表面には、滑剤が存在していてもよい。樹脂層1aの表面には、滑剤が存在していることにより、電池用包装材料の成形性を高めることができる。滑剤の種類としては、特に制限されず、例えば、後述の熱融着性樹脂層で例示する滑剤と同じものが挙げられる。好ましい滑剤としては、エルカ酸アミド、パルミチン酸アミド、ステアリン酸アミド、オレイン酸アミドであり、より好ましい滑剤はエルカ酸アミドである。樹脂層1aの表面における滑剤の存在量としては、好ましくは2~20g/m2程度、より好ましくは3~17g/m2程度、さらに好ましくは3~8g/m2程度が挙げられる。樹脂層1aの表面に存在する滑剤は、樹脂層1aの内部から滲出させたものであってもよいし、樹脂層1aの表面に塗布したものでもよい。なお、樹脂層1aの表面に存在する滑剤量は、以下の測定方法により確認することができる。 A lubricant may be present on the surface of the resin layer 1a. Since the lubricant is present on the surface of the resin layer 1a, the moldability of the battery packaging material can be improved. The type of the lubricant is not particularly limited, and examples thereof include the same lubricants exemplified in the heat-fusible resin layer described later. Preferable lubricants are erucic acid amide, palmitic acid amide, stearic acid amide, and oleic acid amide, and more preferable lubricant is erucic acid amide. The amount of lubricant present on the surface of the resin layer 1a is preferably about 2 to 20 g / m 2 , more preferably about 3 to 17 g / m 2 , and further preferably about 3 to 8 g / m 2 . The lubricant present on the surface of the resin layer 1a may be exuded from the inside of the resin layer 1a, or may be applied on the surface of the resin layer 1a. The amount of lubricant present on the surface of the resin layer 1a can be confirmed by the following measuring method.
(滑剤量の測定)
 電池用包装材料をA4サイズ(ISO216)に裁断してサンプルを作製する。次に、各サンプルの樹脂層表面を、アセトンで洗浄し、回収したアセトンを窒素ブローにて揮発・乾燥させて固形物を得る。次に、固形物にクロロホルム10mlを加えて、固形物を再溶解し、ガスクロマトグラフ(GC、例えば、島津製作所製のGC-2010、カラム:UltraALLOY-1(MS/HT)、検出器:FID、定量法:絶対検量線法)を用いて、樹脂層表面の滑剤量を測定する。
(Measurement of lubricant amount)
A battery packaging material is cut into A4 size (ISO 216) to prepare a sample. Next, the resin layer surface of each sample is washed with acetone, and the collected acetone is volatilized and dried by nitrogen blowing to obtain a solid. Next, 10 ml of chloroform was added to the solid substance to redissolve the solid substance, and a gas chromatograph (GC, for example, GC-2010 manufactured by Shimadzu Corporation, column: UltraALLOY-1 (MS / HT), detector: FID, Quantitative method: Absolute calibration curve method) is used to measure the amount of lubricant on the resin layer surface.
[基材層2]
 本発明の電池用包装材料において、樹脂層1aを剥離した後は、基材層2は最外層側に位置する層となる。樹脂層1aと基材層2との間に他の層(例えば、後述の表面被覆層など)を設けない場合には、基材層2は接合層1bに隣接する層である。
[Base material layer 2]
In the battery packaging material of the present invention, after the resin layer 1a is peeled off, the base material layer 2 becomes a layer located on the outermost layer side. When no other layer (for example, a surface coating layer described later) is provided between the resin layer 1a and the base material layer 2, the base material layer 2 is a layer adjacent to the bonding layer 1b.
 基材層2を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層2を形成する素材としては、例えば、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン樹脂、珪素樹脂、フェノール樹脂、及びこれらの混合物や共重合物などの樹脂フィルムが挙げられる。これらの中でも、好ましくはポリエステル樹脂、ポリアミド樹脂が挙げられ、より好ましくは2軸延伸ポリエステル樹脂、2軸延伸ポリアミド樹脂が挙げられる。ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステル、ポリカーボネートなどが挙げられる。また、ポリアミド樹脂としては、具体的には、ナイロン6、ナイロン66、ナイロン6とナイロン66との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)などが挙げられる。ポリアミド樹脂は、1種類のみで構成されていてもよいし、2種類以上により構成されていてもよい。ポリアミド樹脂は、例えば、ナイロン6とポリメタキシリレンアジパミド(MXD6)とを含んでいてもよい。 The material for forming the base material layer 2 is not particularly limited as long as it has insulating properties. Examples of the material for forming the base material layer 2 include resin films such as polyester resin, polyamide resin, epoxy resin, acrylic resin, fluorine resin, polyurethane resin, silicon resin, phenol resin, and mixtures and copolymers thereof. Can be mentioned. Among these, Preferably a polyester resin and a polyamide resin are mentioned, More preferably, a biaxially stretched polyester resin and a biaxially stretched polyamide resin are mentioned. Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolymerized polyester, and polycarbonate. Specific examples of the polyamide resin include nylon 6, nylon 66, a copolymer of nylon 6 and nylon 66, nylon 6,10, polymetaxylylene adipamide (MXD6), and the like. The polyamide resin may be composed of only one type or may be composed of two or more types. The polyamide resin may contain, for example, nylon 6 and polymetaxylylene adipamide (MXD6).
 基材層2は、1層の樹脂フィルムから形成されていてもよいが、耐ピンホール性や絶縁性を向上させるために、2層以上の樹脂フィルムで形成されていてもよい。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造、ナイロンフィルムを複数層積層させた多層構造、ポリエステルフィルムを複数層積層させた多層構造などが挙げられる。基材層2が多層構造である場合、2軸延伸ナイロンフィルムと2軸延伸ポリエステルフィルムの積層体、2軸延伸ナイロンフィルムを複数積層させた積層体、2軸延伸ポリエステルフィルムを複数積層させた積層体が好ましい。例えば、基材層2を2層の樹脂フィルムから形成する場合、ポリエステル樹脂とポリエステル樹脂を積層する構成、ポリアミド樹脂とポリアミド樹脂を積層する構成、又はポリエステル樹脂とポリアミド樹脂を積層する構成にすることが好ましく、ポリエチレンテレフタレートとポリエチレンテレフタレートを積層する構成、ナイロンとナイロンを積層する構成、又はポリエチレンテレフタレートとナイロンを積層する構成にすることがより好ましい。基材層2を多層構造とする場合、各層の厚みとして、好ましくは2~25μm程度が挙げられる。 The base material layer 2 may be formed from a single resin film, but may be formed from two or more resin films in order to improve pinhole resistance and insulation. Specific examples include a multilayer structure in which a polyester film and a nylon film are laminated, a multilayer structure in which a plurality of nylon films are laminated, a multilayer structure in which a plurality of polyester films are laminated, and the like. When the base material layer 2 has a multilayer structure, a laminate of a biaxially stretched nylon film and a biaxially stretched polyester film, a laminate of a plurality of biaxially stretched nylon films, and a laminate of a plurality of biaxially stretched polyester films The body is preferred. For example, when the base material layer 2 is formed from two resin films, a configuration in which a polyester resin and a polyester resin are stacked, a configuration in which a polyamide resin and a polyamide resin are stacked, or a configuration in which a polyester resin and a polyamide resin are stacked are used. It is more preferable to use a structure in which polyethylene terephthalate and polyethylene terephthalate are laminated, a structure in which nylon and nylon are laminated, or a structure in which polyethylene terephthalate and nylon are laminated. When the base material layer 2 has a multilayer structure, the thickness of each layer is preferably about 2 to 25 μm.
 基材層2を多層の樹脂フィルムで形成する場合、2以上の樹脂フィルムは、接着剤又は接着性樹脂などの接着成分を介して積層させればよく、使用される接着成分の種類や量などについては、後述する接着剤層5の場合と同様である。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着層としてウレタン系接着剤を用いることが好ましい。このとき、接着層の厚みとしては、例えば2~5μm程度が挙げられる。 When the base material layer 2 is formed of a multilayer resin film, the two or more resin films may be laminated via an adhesive component such as an adhesive or an adhesive resin, and the type and amount of the adhesive component used. This is the same as in the case of the adhesive layer 5 described later. In addition, it does not restrict | limit especially as a method of laminating | stacking two or more resin films, A well-known method can be employ | adopted, for example, a dry lamination method, a sandwich lamination method, etc. are mentioned, Preferably the dry lamination method is mentioned. When laminating by the dry laminating method, it is preferable to use a urethane-based adhesive as the adhesive layer. At this time, the thickness of the adhesive layer is, for example, about 2 to 5 μm.
 基材層2の厚みについては、基材層としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。 The thickness of the base material layer 2 is not particularly limited as long as it exhibits a function as a base material layer, and is, for example, about 3 to 50 μm, preferably about 10 to 35 μm.
[接着剤層5]
 本発明の電池用包装材料10において、接着剤層5は、基材層2とバリア層3を強固に接着させるために、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 5]
In the battery packaging material 10 of the present invention, the adhesive layer 5 is a layer provided between the base material layer 2 and the barrier layer 3 as necessary in order to firmly bond the base material layer 2 and the barrier layer 3.
 接着剤層5は、基材層2とバリア層3とを接着可能である接着剤によって形成される。接着剤層5の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。さらに、接着剤層5の形成に使用される接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型などのいずれであってもよい。 The adhesive layer 5 is formed of an adhesive capable of bonding the base material layer 2 and the barrier layer 3 together. The adhesive used for forming the adhesive layer 5 may be a two-component curable adhesive or a one-component curable adhesive. Further, the adhesive mechanism of the adhesive used for forming the adhesive layer 5 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, and a hot pressure type.
 接着剤層5の形成に使用できる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、共重合ポリエステルなどのポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミドなどのポリアミド系樹脂;ポリオレフィン、カルボン酸変性ポリオレフィン、金属変性ポリオレフィンなどのポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;尿素樹脂、メラミン樹脂などのアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴムなどのゴム;シリコーン系樹脂などが挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン系接着剤が挙げられる。 Specific examples of adhesive components that can be used to form the adhesive layer 5 include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and copolyester; Polyether adhesives; Polyurethane adhesives; Epoxy resins; Phenol resin resins; Polyamide resins such as nylon 6, nylon 66, nylon 12 and copolymerized polyamides; polyolefins, carboxylic acid modified polyolefins, metal modified polyolefins, etc. Polyolefin resins, polyvinyl acetate resins; Cellulosic adhesives; (Meth) acrylic resins; Polyimide resins; Urea resins, melamine resins and other amino resins; Chloroprene rubber, Nitriles - arm, styrene rubbers such as butadiene rubber; and silicone resins. These adhesive components may be used individually by 1 type, and may be used in combination of 2 or more type. Among these adhesive components, a polyurethane adhesive is preferable.
 接着剤層5の厚みについては、接着層としての機能を発揮すれば特に制限されないが、例えば、1~10μm程度、好ましくは2~5μm程度が挙げられる。 The thickness of the adhesive layer 5 is not particularly limited as long as it exhibits a function as an adhesive layer, and for example, it is about 1 to 10 μm, preferably about 2 to 5 μm.
 本発明の電池用包装材料のバリア層3よりも外側の層(好ましくは、樹脂層1a、接合層1b、基材層2、及び接着剤層5のうち少なくとも1層)に、紫外線吸収剤、光安定剤、及び酸化防止剤のうち少なくとも1成分を含んでいることが好ましい。これらのうち1成分が含まれていることにより、バリア層3の外側において、層間のデラミネーションが効果的に抑制される。 An ultraviolet absorber for a layer outside the barrier layer 3 of the battery packaging material of the present invention (preferably at least one of the resin layer 1a, the bonding layer 1b, the base material layer 2 and the adhesive layer 5), It is preferable to contain at least one component among the light stabilizer and the antioxidant. By including one of these components, delamination between layers is effectively suppressed outside the barrier layer 3.
 なお、本発明において、電池用包装材料のバリア層3よりも外側の層のデラミネーションとは、主に、これらの層間の剥離を意味している。 In the present invention, delamination of the layer outside the barrier layer 3 of the battery packaging material mainly means delamination between these layers.
 本発明の電池用包装材料のバリア層3よりも外側の層にこれらの成分が含まれることは、例えば、ガスクロマトグラフ質量分析計(GC/MS)を用いて分析することができる。微量でありGC/MSでは検出されない場合、例えば、液体クロマトグラフ(HPLC)で分析することができる。前処理は、以下のようにして行う。 The presence of these components in the outer layer of the barrier layer 3 of the battery packaging material of the present invention can be analyzed using, for example, a gas chromatograph mass spectrometer (GC / MS). When it is trace amount and cannot be detected by GC / MS, it can be analyzed by, for example, liquid chromatography (HPLC). Pre-processing is performed as follows.
 基材層(樹脂層と接合層が積層されている)とバリア層との間を、溶剤を使わずに物理的に剥離させる。次に、樹脂層、接合層、及び基材層の積層体について、各層中の添加剤成分の抽出効率を高めるために、各層間の密着が小さくなるようにステンレス製メッシュと共に巻き、抽出を行う。次に、抽出溶媒にクロロホルムを用い、ソックスレー抽出を10時間行い、添加剤成分を抽出する。溶媒を留去した後、測定溶媒に溶解し分析に供する。 ∙ Physically peel the substrate layer (the resin layer and the bonding layer are laminated) and the barrier layer without using a solvent. Next, in order to increase the extraction efficiency of the additive component in each layer, the laminate of the resin layer, the bonding layer, and the base material layer is wound and extracted with a stainless steel mesh so that the adhesion between the layers is reduced. . Next, using chloroform as the extraction solvent, Soxhlet extraction is performed for 10 hours to extract the additive components. After distilling off the solvent, it is dissolved in the measurement solvent and used for analysis.
 本発明の電池用包装材料のバリア層3よりも外側の層(好ましくは、樹脂層1a、接合層1b、基材層2、及び接着剤層5のうち少なくとも1層)に含まれる紫外線吸収剤の合計含有量としては、層間の接着安定性の観点から、好ましくは10~500ppm、より好ましくは30~100ppm程度、特に好ましくは40~80ppm程度が挙げられる。また、光安定剤の合計含有量としては、層間の接着安定性の観点から、好ましくは10~500ppm、より好ましくは100~200ppm程度、特に好ましくは120~180ppmが挙げられる。また、酸化防止剤の合計含有量としては、層間の接着安定性の観点から、好ましくは10~1000ppm、より好ましくは200~800ppm程度、特に好ましくは420~600ppm程度が挙げられる。 The ultraviolet absorber contained in the outer layer (preferably at least one of the resin layer 1a, the bonding layer 1b, the base material layer 2, and the adhesive layer 5) of the battery packaging material of the present invention. The total content of is preferably 10 to 500 ppm, more preferably about 30 to 100 ppm, and particularly preferably about 40 to 80 ppm from the viewpoint of interlayer adhesion stability. Further, the total content of the light stabilizer is preferably 10 to 500 ppm, more preferably about 100 to 200 ppm, and particularly preferably 120 to 180 ppm from the viewpoint of interlayer adhesion stability. The total content of the antioxidant is preferably 10 to 1000 ppm, more preferably about 200 to 800 ppm, and particularly preferably about 420 to 600 ppm from the viewpoint of interlayer adhesion stability.
 紫外線吸収剤の種類としては、特に制限されないが、好ましくはベンゾトリアゾール系紫外線吸収剤が挙げられる。紫外線吸収剤の具体例としては、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-第三オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3-第三ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-第三オクチル-6-ベンゾトリアゾリルフェノール)、2-(2-ヒドロキシ-3-第三ブチル-5-カルボキシフェニル)ベンゾトリアゾールのポリエチレングリコールエステル、2-〔2-ヒドロキシ-3-(2-アクリロイルオキシエチル)-5-メチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三ブチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三オクチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三ブチルフェニル〕-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三ブチル-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三アミル-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三ブチル-5-(3-メタクリロイルオキシプロピル)フェニル〕-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-4-(2-メタクリロイルオキシメチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-4-(3-メタクリロイルオキシプロピル)フェニル〕ベンゾトリアゾール等の2-(2-ヒドロキシフェニル)ベンゾトリアゾール類;2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ヘキシロキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-〔2-ヒドロキシ-4-(3-C12~13混合アルコキシ-2-ヒドロキシプロポキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-〔2-ヒドロキシ-4-(2-アクリロイルオキシエトキシ)フェニル〕-4,6-ビス(4-メチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシ-3-アリルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-ヘキシロキシフェニル)-1,3,5-トリアジン等の2-(2-ヒドロキシフェニル)-4,6-ジアリール-1,3,5-トリアジン類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、オクチル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ドデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、テトラデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ヘキサデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、オクタデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ベヘニル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β,β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;各種の金属塩、又は金属キレート、特にニッケル、クロムの塩、又はキレート類等が挙げられる。紫外線吸収剤の市販品としては、BASF社製のTINUVIN571、TINUVIN460、TINUVIN213、TINUVIN234、TINUVIN329、TINUVIN326などが挙げられ、これらの中でも、特に、TINUVIN326(2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール)が有効である。 The type of the ultraviolet absorber is not particularly limited, but a benzotriazole-based ultraviolet absorber is preferable. Specific examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone). 2-hydroxybenzophenones such as 2-; 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 -Dicumylphenyl) benzotriazole, 2,2'-methylenebis (4-tertiary o Polyethylene glycol ester of 2- (2-hydroxy-3-tert-butyl-5-carboxyphenyl) benzotriazole, 2- [2-hydroxy-3- (2-acryloyloxy) Ethyl) -5-methylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-methacryloyloxyethyl) -5-tert-butylphenyl] benzotriazole, 2- [2-hydroxy-3- (2- Methacryloyloxyethyl) -5-tert-octylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-methacryloyloxyethyl) -5-tert-butylphenyl] -5-chlorobenzotriazole, 2- [2 -Hydroxy-5- (2-methacryloyloxyethyl) phenyl] benzo Riazole, 2- [2-hydroxy-3-tert-butyl-5- (2-methacryloyloxyethyl) phenyl] benzotriazole, 2- [2-hydroxy-3-tert-amyl-5- (2-methacryloyloxyethyl) ) Phenyl] benzotriazole, 2- [2-hydroxy-3-tert-butyl-5- (3-methacryloyloxypropyl) phenyl] -5-chlorobenzotriazole, 2- [2-hydroxy-4- (2-methacryloyl) Oxymethyl) phenyl] benzotriazole, 2- [2-hydroxy-4- (3-methacryloyloxy-2-hydroxypropyl) phenyl] benzotriazole, 2- [2-hydroxy-4- (3-methacryloyloxypropyl) phenyl ] 2- (2-hydroxyphenyl) such as benzotriazole Benzotriazoles; 2- (2-hydroxy-4-methoxyphenyl) -4,6-diphenyl-1,3,5-triazine, 2- (2-hydroxy-4-hexyloxyphenyl) -4,6-diphenyl -1,3,5-triazine, 2- (2-hydroxy-4-octoxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [2- Hydroxy-4- (3-C12-13 mixed alkoxy-2-hydroxypropoxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [2-hydroxy- 4- (2-acryloyloxyethoxy) phenyl] -4,6-bis (4-methylphenyl) -1,3,5-triazine, 2- (2,4-dihydroxy-3-allylphenyl)- , 6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-hexyloxyphenyl) -1,3,5- 2- (2-hydroxyphenyl) -4,6-diaryl-1,3,5-triazines such as triazine; phenyl salicylate, resorcinol monobenzoate, 2,4-ditertiarybutylphenyl-3,5-diter Tributyl-4-hydroxybenzoate, octyl (3,5-ditert-butyl-4-hydroxy) benzoate, dodecyl (3,5-ditert-butyl-4-hydroxy) benzoate, tetradecyl (3,5-ditert Tributyl-4-hydroxy) benzoate, hexadecyl (3,5-ditert-butyl-4-hydroxy) benzoate, octadecyl (3,5-ditert-butyl) Benzoates such as ru-4-hydroxy) benzoate and behenyl (3,5-ditert-butyl-4-hydroxy) benzoate; 2-ethyl-2′-ethoxyoxanilide, 2-ethoxy-4′-dodecyloxy Substituted oxanilides such as zanilides; cyanoacrylates such as ethyl-α-cyano-β, β-diphenyl acrylate, methyl-2-cyano-3-methyl-3- (p-methoxyphenyl) acrylate; various metal salts Or metal chelates, especially nickel, chromium salts, or chelates. Examples of commercially available ultraviolet absorbers include TINUVIN571, TINUVIN460, TINUVIN213, TINUVIN234, TINUVIN329, and TINUVIN326 manufactured by BASF, and among these, TINUVIN326 (2- [5-chloro (2H) -benzotriazole- 2-yl] -4-methyl-6- (tert-butyl) phenol) is effective.
 紫外線吸収剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 UV absorbers may be used alone or in combination of two or more.
 光安定剤の種類としては、特に制限されないが、好ましくはヒンダードアミン系光安定剤が挙げられる。光安定剤の具体例としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、ビス{4-(1-オクチルオキシ-2,2,6,6-テトラメチル)ピペリジル}デカンジオナート、ビス{4-(2,2,6,6-テトラメチル-1-ウンデシルオキシ)ピペリジル)カーボナート等が挙げられる。これらの中でも、ピペリジンの1位の位置と連結するものが、N-オキシアルキル又はN-メチルである化合物が好ましい。また、光安定剤の市販品としては、BASF社製のTINUVIN765、TINUVIN770、TINUVIN780、TINUVIN144、TINUVIN622LDが挙げられ、特にTINUVIN770(セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル))が有効である。 The type of light stabilizer is not particularly limited, but a hindered amine light stabilizer is preferable. Specific examples of the light stabilizer include, for example, 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1 , 2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2, 6,6-tetramethyl-4-piperidyl) -di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) Di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,4,4-pentamethyl-4-piperidyl) -2-butyl-2- (3,5-di Tributyl-4-hydroxybenzyl) malonate, 1- (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-piperidinol / diethyl succinate polycondensate, 1,6-bis (2 , 2,6,6-Tetramethyl-4-piperidylamino) hexane / 2,4-dichloro-6-morpholino-s-triazine polycondensate, 1,6-bis (2,2,6,6-tetramethyl -4-piperidylamino) hexane / 2,4-dichloro-6-tert-octylamino-s-triazine polycondensate, 1,5,8,12-tetrakis [2,4-bis (N-butyl-N- (2,2,6,6-tetra Til-4-piperidyl) amino) -s-triazin-6-yl] -1,5,8,12-tetraazadodecane, 1,5,8,12-tetrakis [2,4-bis (N-butyl-) N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino) -s-triazin-6-yl] -1,5,8-12-tetraazadodecane, 1,6,11-tris [2,4-bis (N-butyl-N- (2,2,6,6-tetramethyl-4-piperidyl) amino) -s-triazin-6-yl] aminoundecane, 1,6,11-tris [2,4-bis (N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino) -s-triazin-6-yl] aminoundecane, bis {4- (1 -Octyloxy-2,2,6,6-tetramethyl) piperi Zil} decanedionate, bis {4- (2,2,6,6-tetramethyl-1-undecyloxy) piperidyl) carbonate and the like. Among these, compounds in which the one linked to the position 1 of piperidine is N-oxyalkyl or N-methyl are preferable. Commercially available light stabilizers include TINUVIN 765, TINUVIN 770, TINUVIN 780, TINUVIN 144, and TINUVIN 622LD manufactured by BASF, and particularly TINUVIN 770 (bis (2,2,6,6-tetramethyl-4-piperidyl sebacate)). ) Is effective.
 光安定剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 光 One kind of light stabilizer may be used alone, or two or more kinds may be used in combination.
 また、酸化防止剤の種類としては、特に制限されないが、好ましくはヒンダードフェノール系酸化防止剤が挙げられる。酸化防止剤の具体例としては、Irganox1330(2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレン)、Irganox1098(N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド])、Irganox1010(テトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオン酸]ペンタエリトリトール)が挙げられる。酸化防止剤として、Irganox1330が含まれる場合、層間の接着安定性の観点から、本発明の電池用包装材料のバリア層3よりも外側の層(好ましくは、樹脂層1a、接合層1b、基材層2、及び接着剤層5のうち少なくとも1層)に含まれるIrganox1330の合計含有量としては、好ましくは10~500ppm程度、より好ましくは90~200ppm程度、特に好ましくは110~170ppm程度が挙げられる。 Further, the type of the antioxidant is not particularly limited, but preferably a hindered phenol antioxidant is used. Specific examples of the antioxidant include Irganox 1330 (2,4,6-tris (3 ′, 5′-di-tert-butyl-4′-hydroxybenzyl) mesitylene), Irganox 1098 (N, N′-hexamethylenebis) [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanamide]), Irganox 1010 (tetrakis [3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propion Acid] pentaerythritol). When Irganox 1330 is included as an antioxidant, from the viewpoint of adhesion stability between layers, a layer outside the barrier layer 3 of the battery packaging material of the present invention (preferably, a resin layer 1a, a bonding layer 1b, a base material) The total content of Irganox 1330 contained in at least one of the layer 2 and the adhesive layer 5) is preferably about 10 to 500 ppm, more preferably about 90 to 200 ppm, and particularly preferably about 110 to 170 ppm. .
 酸化防止剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 One type of antioxidant may be used alone, or two or more types may be used in combination.
[バリア層3]
 電池用包装材料において、バリア層3は、電池用包装材料の強度向上の他、電池内部に水蒸気、酸素、光などが侵入することを防止する機能を有する層である。バリア層3は、金属層、すなわち、金属で形成されている層であることが好ましい。バリア層3を構成する金属としては、具体的には、アルミニウム、ステンレス、チタンなどが挙げられ、好ましくはアルミニウムが挙げられる。バリア層3は、例えば、金属箔や金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどにより形成することができ、金属箔により形成することが好ましく、アルミニウム合金箔により形成することがさらに好ましい。電池用包装材料の製造時に、バリア層3にしわやピンホールが発生することを防止する観点からは、バリア層は、例えば、焼きなまし処理済みのアルミニウム(JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム合金箔により形成することがより好ましい。
[Barrier layer 3]
In the battery packaging material, the barrier layer 3 is a layer having a function of preventing water vapor, oxygen, light and the like from entering the battery, in addition to improving the strength of the battery packaging material. The barrier layer 3 is preferably a metal layer, that is, a layer formed of metal. Specific examples of the metal constituting the barrier layer 3 include aluminum, stainless steel, and titanium, and preferably aluminum. The barrier layer 3 can be formed by, for example, a metal foil, a metal vapor-deposited film, an inorganic oxide vapor-deposited film, a carbon-containing inorganic oxide vapor-deposited film, a film provided with these vapor-deposited films, etc. Is preferable, and it is more preferable to form with an aluminum alloy foil. From the viewpoint of preventing the generation of wrinkles and pinholes in the barrier layer 3 during the production of the battery packaging material, the barrier layer is made of, for example, annealed aluminum (JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, JIS H4000: 2014 A8079P-O) and the like are more preferable.
 バリア層3の厚みは、水蒸気などのバリア層としての機能を発揮すれば特に制限されないが、電池用包装材料の厚みを薄くする観点からは、好ましくは約100μm以下、より好ましくは10~100μm程度、さらに好ましくは10~80μm程度が挙げられる。 The thickness of the barrier layer 3 is not particularly limited as long as it functions as a barrier layer such as water vapor, but is preferably about 100 μm or less, more preferably about 10 to 100 μm from the viewpoint of reducing the thickness of the battery packaging material. More preferably, about 10 to 80 μm is mentioned.
 また、バリア層3は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層の表面に耐酸性皮膜を形成する処理をいう。化成処理としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどのクロム化合物を用いたクロメート処理;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などのリン酸化合物を用いたリン酸処理;下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。 The barrier layer 3 is preferably subjected to chemical conversion treatment on at least one side, preferably both sides, in order to stabilize adhesion, prevent dissolution and corrosion, and the like. Here, the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of the barrier layer. As the chemical conversion treatment, for example, chromate treatment using a chromium compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acid acetyl acetate, chromium chloride, potassium sulfate chromium; Phosphoric acid treatment using a phosphoric acid compound such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; an aminated phenol polymer having a repeating unit represented by the following general formulas (1) to (4) is used And chromate treatment. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. Also good.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基又はベンジル基を示す。また、R1及びR2は、それぞれ同一又は異なって、ヒドロキシ基、アルキル基、又はヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖又は分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖又は分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基又はヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. R 1 and R 2 are the same or different and each represents a hydroxy group, an alkyl group, or a hydroxyalkyl group. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include straight-chain or branched alkyl groups having 1 to 4 carbon atoms such as a tert-butyl group. Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- Linear or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group An alkyl group is mentioned. In the general formulas (1) to (4), the alkyl group and hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having a repeating unit represented by the general formulas (1) to (4) is preferably about 500 to 1,000,000, for example, about 1,000 to 20,000. More preferred.
 また、バリア層3に耐食性を付与する化成処理方法として、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをコーティングし、150℃以上で焼付け処理を行うことにより、バリア層3の表面に耐酸性皮膜を形成する方法が挙げられる。また、耐酸性皮膜の上には、カチオン性ポリマーを架橋剤で架橋させた樹脂層をさらに形成してもよい。ここで、カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミン又はその誘導体、アミノフェノールなどが挙げられる。これらのカチオン性ポリマーとしては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。また、架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシル基、及びオキサゾリン基よりなる群から選ばれた少なくとも1種の官能基を有する化合物、シランカップリング剤などが挙げられる。これらの架橋剤としては、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。 Further, as a chemical conversion treatment method for imparting corrosion resistance to the barrier layer 3, a phosphoric acid is coated with a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed therein. A method of forming an acid-resistant film on the surface of the barrier layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned. Further, a resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be further formed on the acid resistant film. Here, examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine graft acrylic resin obtained by graft polymerization of a primary amine on an acrylic main skeleton, and polyallylamine. Or the derivative, aminophenol, etc. are mentioned. As these cationic polymers, only one type may be used, or two or more types may be used in combination. Examples of the crosslinking agent include a compound having at least one functional group selected from the group consisting of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. As these crosslinking agents, only one type may be used, or two or more types may be used in combination.
 また、耐酸性皮膜を具体的に設ける方法としては、たとえば、一つの例として、少なくともアルミニウム合金箔の内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法などの周知の処理方法で脱脂処理を行い、その後脱脂処理面にリン酸クロム塩、リン酸チタン塩、リン酸ジルコニウム塩、リン酸亜鉛塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液(水溶液)、あるいは、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液(水溶液)、あるいは、これらとアクリル系樹脂ないしフェノール系樹脂ないしウレタン系樹脂などの水系合成樹脂との混合物からなる処理液(水溶液)をロールコート法、グラビア印刷法、浸漬法などの周知の塗工法で塗工することにより、耐酸性皮膜を形成することができる。たとえば、リン酸クロム塩系処理液で処理した場合は、リン酸クロム、リン酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、フッ化アルミニウムなどからなる耐酸性皮膜となり、リン酸亜鉛塩系処理液で処理した場合は、リン酸亜鉛水和物、リン酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、フッ化アルミニウムなどからなる耐酸性皮膜となる。 In addition, as a method for specifically providing an acid-resistant film, for example, as an example, at least the surface on the inner layer side of the aluminum alloy foil is firstly immersed in an alkali soaking method, electrolytic cleaning method, acid cleaning method, electrolytic acid cleaning method. , Degreased by a known treatment method such as an acid activation method, and then a phosphoric acid metal salt such as chromium phosphate salt, titanium phosphate salt, zirconium phosphate salt, zinc phosphate salt and the like Treatment liquid (aqueous solution) mainly composed of a mixture of metal salts, or treatment liquid (aqueous solution) principally composed of a non-metallic phosphate and a mixture of these non-metallic salts, or acrylic resin Coating a treatment liquid (aqueous solution) consisting of a mixture with a water-based synthetic resin such as phenolic resin or urethane resin by a well-known coating method such as roll coating, gravure printing, or dipping. More, it is possible to form the acid-resistant coating. For example, when treated with a chromium phosphate salt treatment solution, it becomes an acid-resistant film made of chromium phosphate, aluminum phosphate, aluminum oxide, aluminum hydroxide, aluminum fluoride, etc., and treated with a zinc phosphate salt treatment solution. In this case, an acid-resistant film made of zinc phosphate hydrate, aluminum phosphate, aluminum oxide, aluminum hydroxide, aluminum fluoride or the like is obtained.
 また、耐酸性皮膜を設ける具体的方法の他の例としては、たとえば、少なくともアルミニウム合金箔の内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法などの周知の処理方法で脱脂処理を行い、その後脱脂処理面に周知の陽極酸化処理を施すことにより、耐酸性皮膜を形成することができる。 In addition, as another example of a specific method for providing an acid-resistant film, for example, at least the surface on the inner layer side of the aluminum alloy foil is first subjected to an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid An acid-resistant film can be formed by performing a degreasing process by a known processing method such as an activation method and then performing a known anodizing process on the degreasing surface.
 また、耐酸性皮膜の他の一例としては、リン酸塩系、クロム酸系の皮膜が挙げられる。リン酸塩系としては、リン酸亜鉛、リン酸鉄、リン酸マンガン、リン酸カルシウム、リン酸クロムなどが挙げられ、クロム酸系としては、クロム酸クロムなどが挙げられる。 Also, other examples of acid-resistant films include phosphate-based and chromic acid-based films. Examples of the phosphate system include zinc phosphate, iron phosphate, manganese phosphate, calcium phosphate, and chromium phosphate. Examples of the chromic acid system include chromium chromate.
 また、耐酸性皮膜の他の一例としては、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物などの耐酸性皮膜を形成することによって、エンボス成形時のアルミニウムと基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、アルミニウム表面の溶解、腐食、特にアルミニウムの表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、アルミニウム表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とアルミニウムとのデラミネーション防止、エンボスタイプにおいてはプレス成形時の基材層とアルミニウムとのデラミネーション防止の効果を示す。耐酸性皮膜を形成する物質のなかでも、フェノール樹脂、フッ化クロム(III)化合物、リン酸の3成分から構成された水溶液をアルミニウム表面に塗布し、乾燥焼付けの処理が良好である。 In addition, as another example of the acid-resistant film, by forming an acid-resistant film such as phosphate, chromate, fluoride, triazine thiol compound, between the aluminum and the base material layer at the time of embossing molding Prevention of delamination, hydrogen fluoride generated by the reaction between electrolyte and moisture prevents dissolution and corrosion of the aluminum surface, especially the dissolution and corrosion of aluminum oxide present on the aluminum surface, and adhesion of the aluminum surface This improves the wettability and prevents delamination between the base material layer and aluminum at the time of heat sealing. In the embossed type, it shows the effect of preventing delamination between the base material layer and aluminum at the time of press molding. Among substances that form an acid-resistant film, an aqueous solution composed of three components of a phenol resin, a chromium (III) fluoride compound, and phosphoric acid is applied to the aluminum surface, and the dry baking treatment is good.
 また、耐酸性皮膜は、酸化セリウムと、リン酸又はリン酸塩と、アニオン性ポリマーと、該アニオン性ポリマーを架橋させる架橋剤とを有する層を含み、前記リン酸又はリン酸塩が、前記酸化セリウム100質量部に対して、1~100質量部程度配合されていてもよい。耐酸性皮膜が、カチオン性ポリマー及び該カチオン性ポリマーを架橋させる架橋剤を有する層をさらに含む多層構造であることが好ましい。 The acid-resistant film includes a layer having cerium oxide, phosphoric acid or phosphate, an anionic polymer, and a crosslinking agent that crosslinks the anionic polymer, and the phosphoric acid or phosphate is About 1 to 100 parts by mass may be blended with 100 parts by mass of cerium oxide. It is preferable that the acid-resistant film has a multilayer structure further including a layer having a cationic polymer and a crosslinking agent for crosslinking the cationic polymer.
 さらに、前記アニオン性ポリマーが、ポリ(メタ)アクリル酸又はその塩、あるいは(メタ)アクリル酸又はその塩を主成分とする共重合体であることが好ましい。また、前記架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。 Furthermore, it is preferable that the anionic polymer is poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component. Moreover, it is preferable that the said crosslinking agent is at least 1 sort (s) chosen from the group which has a functional group in any one of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
 また、前記リン酸又は前記リン酸塩が、縮合リン酸又は縮合リン酸塩であることが好ましい。 Moreover, it is preferable that the phosphoric acid or the phosphate is a condensed phosphoric acid or a condensed phosphate.
 化成処理は、1種類の化成処理のみを行ってもよいし、2種類以上の化成処理を組み合わせて行ってもよい。さらに、これらの化成処理は、1種の化合物を単独で使用して行ってもよく、また2種以上の化合物を組み合わせて使用して行ってもよい。化成処理の中でも、クロム酸クロメート処理や、クロム化合物、リン酸化合物、及びアミノ化フェノール重合体を組み合わせた化成処理などが好ましい。クロム化合物の中でも、クロム酸化合物が好ましい。 As the chemical conversion treatment, only one type of chemical conversion treatment may be performed, or two or more types of chemical conversion processing may be performed in combination. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds. Among the chemical conversion treatments, a chromate chromate treatment, a chemical conversion treatment combining a chromium compound, a phosphoric acid compound, and an aminated phenol polymer are preferable. Of the chromium compounds, chromic acid compounds are preferred.
 耐酸性皮膜の具体例としては、リン酸塩、クロム酸塩、フッ化物、及びトリアジンチオールのうち少なくとも1種を含むものが挙げられる。また、セリウム化合物を含む耐酸性皮膜も好ましい。セリウム化合物としては、酸化セリウムが好ましい。 Specific examples of the acid resistant film include those containing at least one of phosphate, chromate, fluoride, and triazine thiol. An acid resistant film containing a cerium compound is also preferable. As the cerium compound, cerium oxide is preferable.
 また、耐酸性皮膜の具体例としては、リン酸塩系皮膜、クロム酸塩系皮膜、フッ化物系皮膜、トリアジンチオール化合物皮膜なども挙げられる。耐酸性皮膜としては、これらのうち1種類であってもよいし、複数種類の組み合わせであってもよい。さらに、耐酸性皮膜としては、アルミニウム合金箔の化成処理面を脱脂処理した後に、リン酸金属塩と水系合成樹脂との混合物からなる処理液、又はリン酸非金属塩と水系合成樹脂との混合物からなる処理液で形成されたものであってもよい。 Specific examples of the acid resistant film include a phosphate film, a chromate film, a fluoride film, and a triazine thiol compound film. As an acid-resistant film, one of these may be used, or a plurality of combinations may be used. Furthermore, as an acid-resistant film, after degreasing the chemical conversion treatment surface of the aluminum alloy foil, a treatment solution comprising a mixture of a metal phosphate and an aqueous synthetic resin, or a mixture of a non-metal phosphate and an aqueous synthetic resin It may be formed of a treatment liquid consisting of
 なお、耐酸性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。飛行時間型2次イオン質量分析法を用いた耐酸性皮膜の組成の分析により、例えば、Ce+及びCr+の少なくとも一方に由来するピークが検出される。 The composition of the acid resistant film can be analyzed using, for example, time-of-flight secondary ion mass spectrometry. By analyzing the composition of the acid-resistant film using time-of-flight secondary ion mass spectrometry, for example, a peak derived from at least one of Ce + and Cr + is detected.
 アルミニウム合金箔の表面に、リン、クロム及びセリウムからなる群より選択される少なくとも1種の元素を含む耐酸性皮膜を備えていることが好ましい。なお、電池用包装材料のアルミニウム合金箔の表面の耐酸性被膜中に、リン、クロム及びセリウムからなる群より選択される少なくとも1種の元素が含まれることは、X線光電子分光を用いて確認することができる。具体的には、まず、電池用包装材料において、アルミニウム合金箔に積層されている熱融着性樹脂層、接着剤層などを物理的に剥離する。次に、アルミニウム合金箔を電気炉に入れ、約300℃、約30分間で、アルミニウム合金箔の表面に存在している有機成分を除去する。その後、アルミニウム合金箔の表面のX線光電子分光を用いて、これら元素が含まれることを確認する。 It is preferable that the surface of the aluminum alloy foil is provided with an acid resistant film containing at least one element selected from the group consisting of phosphorus, chromium and cerium. Note that the acid-resistant film on the surface of the aluminum alloy foil of the battery packaging material contains at least one element selected from the group consisting of phosphorus, chromium and cerium using X-ray photoelectron spectroscopy. can do. Specifically, first, in the battery packaging material, the heat-fusible resin layer, the adhesive layer, and the like laminated on the aluminum alloy foil are physically peeled off. Next, the aluminum alloy foil is put in an electric furnace, and organic components present on the surface of the aluminum alloy foil are removed at about 300 ° C. for about 30 minutes. Then, it confirms that these elements are contained using the X-ray photoelectron spectroscopy of the surface of aluminum alloy foil.
 化成処理においてバリア層3の表面に形成させる耐酸性皮膜の量については、特に制限されないが、例えば、上記のクロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム化合物がクロム換算で0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the acid-resistant film to be formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited. For example, if the above chromate treatment is performed, the chromium compound is chromium per 1 m 2 of the surface of the barrier layer 3. About 0.5 to 50 mg in terms of conversion, preferably about 1.0 to 40 mg, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and about 1.0 to 40 mg of aminated phenol polymer. It is desirable that it is contained in a proportion of about 200 mg, preferably about 5.0 to 150 mg.
 耐酸性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、アルミニウム合金箔や熱融着性樹脂層との密着力の観点から、好ましくは1nm~10μm程度、より好ましくは1~100nm程度、さらに好ましくは1~50nm程度が挙げられる。なお、耐酸性皮膜の厚みは、透過電子顕微鏡による観察、又は、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。 The thickness of the acid-resistant film is not particularly limited, but is preferably about 1 nm to 10 μm, more preferably 1 to 100 nm, from the viewpoint of the cohesive strength of the film and the adhesive strength with the aluminum alloy foil or the heat-fusible resin layer. About 1 to 50 nm is preferable. The thickness of the acid-resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron energy loss spectroscopy.
 化成処理は、耐酸性皮膜の形成に使用する化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。 In the chemical conversion treatment, a solution containing a compound used for forming an acid-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, etc., and then the temperature of the barrier layer is 70. It is performed by heating to about 200 ° C. In addition, before the chemical conversion treatment is performed on the barrier layer, the barrier layer may be previously subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing process in this manner, it is possible to more efficiently perform the chemical conversion process on the surface of the barrier layer.
[熱融着性樹脂層4]
 本発明の電池用包装材料において、熱融着性樹脂層4は、最内層に該当し、電池の組み立て時に熱融着性樹脂層同士が熱融着して電池素子を密封する層である。
[Heat-fusion resin layer 4]
In the battery packaging material of the present invention, the heat-fusible resin layer 4 corresponds to the innermost layer, and is a layer that heat-fuses the heat-fusible resin layers and seals the battery element when the battery is assembled.
 熱融着性樹脂層4に使用される樹脂成分については、熱融着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンが挙げられる。すなわち、熱融着性樹脂層4は、ポリオレフィン骨格を含んでいてもよく、ポリオレフィン骨格を含んでいることが好ましい。熱融着性樹脂層4がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin component used for the heat-fusible resin layer 4 is not particularly limited as long as it can be heat-sealed, and examples thereof include polyolefin, cyclic polyolefin, acid-modified polyolefin, and acid-modified cyclic polyolefin. That is, the heat-fusible resin layer 4 may include a polyolefin skeleton, and preferably includes a polyolefin skeleton. The fact that the heat-fusible resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the acid modification degree is low, the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレンなどのポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)などのポリプロピレン;エチレン-ブテン-プロピレンのターポリマーなどが挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。 Specific examples of the polyolefin include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, block copolymer of polypropylene (for example, block copolymer of propylene and ethylene), polypropylene Polypropylenes such as random copolymers of (for example, random copolymers of propylene and ethylene); ethylene-butene-propylene terpolymers, and the like. Among these polyolefins, polyethylene and polypropylene are preferable.
 前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレンなどが挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネンなどの環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエンなどの環状ジエンなどが挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene. . Examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these polyolefins, a cyclic alkene is preferable, and norbornene is more preferable.
 前記酸変性ポリオレフィンとは、前記ポリオレフィンをカルボン酸などの酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸などのカルボン酸又はその無水物が挙げられる。 The acid-modified polyolefin is a polymer obtained by modifying the polyolefin by block polymerization or graft polymerization with an acid component such as carboxylic acid. Examples of the acid component used for modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
 前記酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。カルボン酸変性される環状ポリオレフィンについては、前記と同様である。また、変性に使用されるカルボン酸としては、前記ポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified cyclic polyolefin is obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the α, β-unsaturated carboxylic acid or its anhydride, or by α, β- It is a polymer obtained by block polymerization or graft polymerization of an unsaturated carboxylic acid or its anhydride. The cyclic polyolefin to be modified with carboxylic acid is the same as described above. The carboxylic acid used for modification is the same as the acid component used for modification of the polyolefin.
 これらの樹脂成分の中でも、好ましくはポリプロピレンなどのポリオレフィン、カルボン酸変性ポリオレフィン;さらに好ましくはポリプロピレン、酸変性ポリプロピレンが挙げられる。 Among these resin components, preferred are polyolefins such as polypropylene and carboxylic acid-modified polyolefins; and more preferred are polypropylene and acid-modified polypropylene.
 熱融着性樹脂層4は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで成されていてもよいが、同一又は異なる樹脂成分によって2層以上で形成されていてもよい。 The heat-fusible resin layer 4 may be formed of one kind of resin component alone or may be formed of a blend polymer in which two or more kinds of resin components are combined. Furthermore, the heat-fusible resin layer 4 may be formed of only one layer, but may be formed of two or more layers using the same or different resin components.
 本発明において、電池用包装材料の成形性を高める観点からは、熱融着性樹脂層の表面には、滑剤が付着していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族系ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the present invention, it is preferable that a lubricant adheres to the surface of the heat-fusible resin layer from the viewpoint of improving the moldability of the battery packaging material. Although it does not restrict | limit especially as a lubricant, Preferably an amide type lubricant is mentioned. Specific examples of the amide-based lubricant include saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide, and the like. Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide and the like. Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide. Specific examples of the substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like. Specific examples of methylolamide include methylol stearamide. Specific examples of saturated fatty acid bisamides include methylene bis stearamide, ethylene biscapric amide, ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bishydroxy stearic acid amide, ethylene bisbehenic acid amide, hexamethylene bis stearic acid amide. And acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, N, N′-distearyl adipic acid amide, N, N′-distearyl sebacic acid amide, and the like. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sebacic acid amide Etc. Specific examples of the fatty acid ester amide include stearoamidoethyl stearate. Specific examples of the aromatic bisamide include m-xylylene bis stearic acid amide, m-xylylene bishydroxy stearic acid amide, N, N′-distearyl isophthalic acid amide and the like. One type of lubricant may be used alone, or two or more types may be used in combination.
 熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、温度24℃、相対湿度60%の環境において、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。 When a lubricant is present on the surface of the heat-fusible resin layer 4, the amount of the lubricant is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably in an environment of a temperature of 24 ° C. and a relative humidity of 60%. Is about 4 to 15 mg / m 2 , more preferably about 5 to 14 mg / m 2 .
 熱融着性樹脂層4の中には、滑剤が含まれていてもよい。また、熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。 A lubricant may be contained in the heat-fusible resin layer 4. Further, the lubricant present on the surface of the heat-fusible resin layer 4 may be one in which a lubricant contained in the resin constituting the heat-fusible resin layer 4 is exuded, or the heat-fusible resin layer. 4 may be obtained by applying a lubricant to the surface.
 また、熱融着性樹脂層4の厚みとしては、接着層5の有無や、接着層5の厚みなどに応じて設定することができ、熱融着性樹脂層としての機能を発揮すれば特に制限されないが、上限については、例えば約100μm以下、好ましくは約85μm以下、より好ましくは60μm以下が挙げられ、下限については、例えば約15μm以上、好ましくは20μm以上が挙げられ、好ましい範囲としては、15~100μm程度、15~85μm程度、15~60μm程度、20~100μm程度、20~85μm程度、20~60μm程度、15~40μm程度が挙げられる。とりわけ、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、上限については、好ましくは約85μm以下、より好ましくは約60μm以下が挙げられ、下限については、例えば約15μm以上、好ましくは20μm以上が挙げられ、好ましい範囲としては、15~85μm程度、15~60μm程度、20~85μm程度、20~60μm程度が挙げられる。また、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。 The thickness of the heat-fusible resin layer 4 can be set according to the presence or absence of the adhesive layer 5, the thickness of the adhesive layer 5, and the like, and particularly if the function as the heat-fusible resin layer is exhibited. Although not limited, the upper limit is, for example, about 100 μm or less, preferably about 85 μm or less, more preferably 60 μm or less, and the lower limit is, for example, about 15 μm or more, preferably 20 μm or more. Examples thereof include about 15 to 100 μm, about 15 to 85 μm, about 15 to 60 μm, about 20 to 100 μm, about 20 to 85 μm, about 20 to 60 μm, and about 15 to 40 μm. In particular, for example, when the thickness of the adhesive layer 5 described later is 10 μm or more, the upper limit of the thickness of the heat-fusible resin layer 4 is preferably about 85 μm or less, more preferably about 60 μm or less. The lower limit is, for example, about 15 μm or more, preferably 20 μm or more, and preferable ranges include about 15 to 85 μm, about 15 to 60 μm, about 20 to 85 μm, and about 20 to 60 μm. For example, when the thickness of the adhesive layer 5 described later is less than 10 μm or when the adhesive layer 5 is not provided, the thickness of the heat-fusible resin layer 4 is preferably about 20 μm or more, more preferably An example is about 35 to 85 μm.
[接着層6]
 本発明の電池用包装材料において、接着層6は、バリア層3と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesive layer 6]
In the battery packaging material of the present invention, the adhesive layer 6 is a layer provided between the barrier layer 3 and the heat-fusible resin layer 4 as necessary in order to firmly bond the barrier layer 3 and the heat-fusible resin layer 4.
 接着層6は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層6の形成に使用される樹脂としては、その接着機構、接着剤成分の種類などは、接着剤層5で例示した接着剤と同様のものが使用できる。また、接着層6の形成に使用される樹脂としては、前述の熱融着性樹脂層4で例示したポリオレフィン、環状ポリオレフィン、カルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンなどのポリオレフィン系樹脂も使用できる。バリア層3と熱融着性樹脂層4との密着性に優れる観点から、ポリオレフィンとしては、カルボン酸変性ポリオレフィンが好ましく、カルボン酸変性ポリプロピレンが特に好ましい。すなわち、接着層6は、ポリオレフィン骨格を含んでいてもよく、ポリオレフィン骨格を含んでいることが好ましい。接着層6がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The adhesive layer 6 is formed of a resin capable of bonding the barrier layer 3 and the heat-fusible resin layer 4. As the resin used for forming the adhesive layer 6, the same adhesive mechanism and the same types of adhesive components as those exemplified for the adhesive layer 5 can be used. Further, as the resin used for forming the adhesive layer 6, polyolefin resins such as polyolefin, cyclic polyolefin, carboxylic acid-modified polyolefin, carboxylic acid-modified cyclic polyolefin exemplified in the above-mentioned heat-fusible resin layer 4 can also be used. . From the viewpoint of excellent adhesion between the barrier layer 3 and the heat-fusible resin layer 4, the polyolefin is preferably a carboxylic acid-modified polyolefin, and particularly preferably a carboxylic acid-modified polypropylene. That is, the adhesive layer 6 may include a polyolefin skeleton, and preferably includes a polyolefin skeleton. The fact that the adhesive layer 6 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, etc., and the analysis method is not particularly limited. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the acid modification degree is low, the peak may be small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 さらに、電池用包装材料の厚みを薄くしつつ、成形後の形状安定性に優れた電池用包装材料とする観点からは、接着層6は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であってもよい。酸変性ポリオレフィンとしては、好ましくは、熱融着性樹脂層4で例示したカルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンと同じものが例示できる。 Furthermore, from the viewpoint of making the battery packaging material excellent in shape stability after molding while reducing the thickness of the battery packaging material, the adhesive layer 6 is a cured resin composition containing an acid-modified polyolefin and a curing agent. It may be a thing. Preferred examples of the acid-modified polyolefin include the same carboxylic acid-modified polyolefin and carboxylic acid-modified cyclic polyolefin exemplified in the heat-fusible resin layer 4.
 また、硬化剤としては、酸変性ポリオレフィンを硬化させるものであれば、特に限定されない。硬化剤としては、例えば、エポキシ系硬化剤、多官能イソシアネート系硬化剤、カルボジイミド系硬化剤、オキサゾリン系硬化剤などが挙げられる。 Further, the curing agent is not particularly limited as long as it can cure the acid-modified polyolefin. Examples of the curing agent include an epoxy curing agent, a polyfunctional isocyanate curing agent, a carbodiimide curing agent, and an oxazoline curing agent.
 エポキシ系硬化剤は、少なくとも1つのエポキシ基を有する化合物であれば、特に限定されない。エポキシ系硬化剤としては、例えば、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどのエポキシ樹脂が挙げられる。 The epoxy curing agent is not particularly limited as long as it is a compound having at least one epoxy group. Examples of the epoxy curing agent include epoxy resins such as bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether.
 多官能イソシアネート系硬化剤は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。 The polyfunctional isocyanate curing agent is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate-based curing agent include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), those obtained by polymerizing or nurating these, Examples thereof include mixtures and copolymers with other polymers.
 カルボジイミド系硬化剤は、カルボジイミド基(-N=C=N-)を少なくとも1つ有する化合物であれば、特に限定されない。カルボジイミド系硬化剤としては、カルボジイミド基を少なくとも2つ以上有するポリカルボジイミド化合物が好ましい。 The carbodiimide curing agent is not particularly limited as long as it is a compound having at least one carbodiimide group (—N═C═N—). As the carbodiimide curing agent, a polycarbodiimide compound having at least two carbodiimide groups is preferable.
 オキサゾリン系硬化剤は、オキサゾリン骨格を有する化合物であれば、特に限定されない。オキサゾリン系硬化剤としては、具体的には、日本触媒社製のエポクロスシリーズなどが挙げられる。 The oxazoline-based curing agent is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the oxazoline-based curing agent include Epocros series manufactured by Nippon Shokubai Co., Ltd.
 接着層6によるバリア層3と熱融着性樹脂層4との密着性を高めるなどの観点から、硬化剤は、2種類以上の化合物により構成されていてもよい。 From the viewpoint of improving the adhesion between the barrier layer 3 and the heat-fusible resin layer 4 by the adhesive layer 6, the curing agent may be composed of two or more kinds of compounds.
 接着層6を形成する樹脂組成物における硬化剤の含有量は、0.1~50質量%程度の範囲にあることが好ましく、0.1~30質量%程度の範囲にあることがより好ましく、0.1~10質量%程度の範囲にあることがさらに好ましい。 The content of the curing agent in the resin composition forming the adhesive layer 6 is preferably in the range of about 0.1 to 50% by mass, more preferably in the range of about 0.1 to 30% by mass, More preferably, it is in the range of about 0.1 to 10% by mass.
 接着層6の厚みについては、接着層としての機能を発揮すれば特に制限されないが、接着剤層5で例示した接着剤を用いる場合であれば、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。また、酸変性ポリオレフィンと硬化剤との硬化物である場合であれば、好ましくは約30μm以下、より好ましくは0.1~20μm程度、さらに好ましくは0.5~5μm程度が挙げられる。なお、接着層6が酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、当該樹脂組成物を塗布し、加熱などにより硬化させることにより、接着層6を形成することができる。 The thickness of the adhesive layer 6 is not particularly limited as long as it functions as an adhesive layer. However, when the adhesive exemplified in the adhesive layer 5 is used, it is preferably about 1 to 10 μm, more preferably 1 to 1 μm. For example, about 5 μm. Further, when the resin exemplified in the heat-fusible resin layer 4 is used, it is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. In the case of a cured product of an acid-modified polyolefin and a curing agent, it is preferably about 30 μm or less, more preferably about 0.1 to 20 μm, and still more preferably about 0.5 to 5 μm. When the adhesive layer 6 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, the adhesive layer 6 can be formed by applying the resin composition and curing it by heating or the like.
[表面被覆層]
 本発明の電池用包装材料においては、意匠性の向上などを目的として、必要に応じて、基材層2の外側(基材層2のバリア層3とは反対側)に、表面被覆層を設けてもよい。表面被覆層を設ける場合、表面被覆層は、接合層1bと基材層2との間に位置する。
[Surface coating layer]
In the battery packaging material of the present invention, a surface coating layer is provided on the outer side of the base material layer 2 (on the side opposite to the barrier layer 3 of the base material layer 2) as necessary for the purpose of improving the design. It may be provided. When the surface coating layer is provided, the surface coating layer is located between the bonding layer 1 b and the base material layer 2.
 表面被覆層は、例えば、ポリ塩化ビニリデン、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂などにより形成することができる。表面被覆層は、これらの中でも、2液硬化型樹脂により形成することが好ましい。表面被覆層を形成する2液硬化型樹脂としては、例えば、2液硬化型ウレタン樹脂、2液硬化型ポリエステル樹脂、2液硬化型エポキシ樹脂などが挙げられる。また、表面被覆層には、添加剤を配合してもよい。 The surface coating layer can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like. Of these, the surface coating layer is preferably formed of a two-component curable resin. Examples of the two-component curable resin that forms the surface coating layer include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix | blend an additive with a surface coating layer.
 添加剤としては、例えば、粒径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物などが挙げられる。また、添加剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状などが挙げられる。添加剤として、具体的には、タルク、シリカ、グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。これらの添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施しておいてもよい。 Examples of the additive include fine particles having a particle size of about 0.5 nm to 5 μm. The material of the additive is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances. The shape of the additive is not particularly limited, and examples thereof include a spherical shape, a fiber shape, a plate shape, an indeterminate shape, and a balloon shape. Specific additives include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, Neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, high Melting | fusing point nylon, crosslinked acryl, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold | metal | money, aluminum, copper, nickel etc. are mentioned. These additives may be used individually by 1 type, and may be used in combination of 2 or more type. Among these additives, silica, barium sulfate, and titanium oxide are preferably used from the viewpoint of dispersion stability and cost. In addition, the surface of the additive may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment.
 表面被覆層中の添加剤の含有量としては、特に制限されないが、好ましくは0.05~1.0質量%程度、より好ましくは0.1~0.5質量%程度が挙げられる。 The content of the additive in the surface coating layer is not particularly limited, but is preferably about 0.05 to 1.0% by mass, more preferably about 0.1 to 0.5% by mass.
 表面被覆層を形成する方法としては、特に制限されないが、例えば、表面被覆層を形成する2液硬化型樹脂を基材層2の外側の表面に塗布する方法が挙げられる。添加剤を配合する場合には、2液硬化型樹脂に添加剤を添加して混合した後、塗布すればよい。 The method for forming the surface coating layer is not particularly limited, and examples thereof include a method of applying a two-component curable resin for forming the surface coating layer to the outer surface of the base material layer 2. When blending the additive, the additive may be added to the two-component curable resin, mixed, and then applied.
 表面被覆層の厚みとしては、表面被覆層としての上記の機能を発揮すれば特に制限されないが、例えば、0.5~10μm程度、好ましくは1~5μm程度が挙げられる。 The thickness of the surface coating layer is not particularly limited as long as it exhibits the above function as the surface coating layer, and for example, it is about 0.5 to 10 μm, preferably about 1 to 5 μm.
3.電池用包装材料の製造方法
 本発明の電池用包装材料の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、樹脂層1aと、接合層1bと、基材層2と、バリア層3と、熱融着性樹脂層4とをこの順に積層する工程を備えており、接合層1bがポリエステル樹脂を含んでおり、樹脂層1aが水性液体を用いて基材層2から剥離可能なものを用いる方法が挙げられる。
3. Method for producing battery packaging material The method for producing the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers having a predetermined composition are laminated is obtained. At least the resin layer 1a and the bonding layer 1b, the base material layer 2, the barrier layer 3, and the heat-fusible resin layer 4 are provided in this order, the bonding layer 1b contains a polyester resin, and the resin layer 1a is an aqueous liquid. The method of using what can peel from the base material layer 2 using is mentioned.
 本発明の電池用包装材料の製造方法の一例としては、以下の通りである。まず、樹脂層1a、接合層1b、基材層2、接着剤層5、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、まず、樹脂層1aと接合層1bと基材層2とを共押出しラミネート法などの方法により積層する。この際、前述のように、例えば樹脂層1aと接合層1bとの積層構造とし、前述の接合層1bを介して、樹脂層1aと基材層2とが粘着するようにして、樹脂層1aと接合層1bと基材層2との積層体を形成することができる。また、それぞれ、フィルム状の樹脂層1aに積層された接合層1bの粘着性表面側と、フィルム状の基材層2とを圧着させて積層体を得てもよい。 An example of the method for producing the battery packaging material of the present invention is as follows. First, a laminate in which the resin layer 1 a, the bonding layer 1 b, the base material layer 2, the adhesive layer 5, and the barrier layer 3 are laminated in this order (hereinafter also referred to as “laminate A”) is formed. Specifically, in the formation of the laminate A, first, the resin layer 1a, the bonding layer 1b, and the base material layer 2 are laminated by a method such as coextrusion laminating. At this time, as described above, for example, a laminated structure of the resin layer 1a and the bonding layer 1b is used, and the resin layer 1a and the base material layer 2 are adhered to each other through the bonding layer 1b, so that the resin layer 1a A laminate of the bonding layer 1b and the base material layer 2 can be formed. Moreover, you may pressure-bond the adhesive surface side of the joining layer 1b laminated | stacked on the film-form resin layer 1a, respectively, and the film-form base material layer 2, and may obtain a laminated body.
 次に、樹脂層1a、接合層1b、及び基材層2の積層体と、バリア層3とを積層する。この積層は、例えば、基材層2又は必要に応じて表面が化成処理されたバリア層3に、接着剤層5の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布・乾燥した後に、当該バリア層3又は基材層2を積層させて接着剤層5を硬化させるドライラミネート法によって行うことができる。以上の工程により、樹脂層1a、接合層1b、基材層2、接着剤層5、バリア層3が順に積層された積層体Aが得られる。 Next, a laminate of the resin layer 1a, the bonding layer 1b, and the base material layer 2 and the barrier layer 3 are laminated. In this lamination, for example, an adhesive used for forming the adhesive layer 5 is applied to the base material layer 2 or the barrier layer 3 whose surface is subjected to chemical conversion treatment as necessary, such as a gravure coating method or a roll coating method. After applying and drying by the method, it can be performed by a dry laminating method in which the barrier layer 3 or the base material layer 2 is laminated and the adhesive layer 5 is cured. Through the above steps, a laminate A in which the resin layer 1a, the bonding layer 1b, the base material layer 2, the adhesive layer 5, and the barrier layer 3 are sequentially laminated is obtained.
 次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4を構成する樹脂成分をグラビアコート法、ロールコート法などの方法により塗布すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層6を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層6及び熱融着性樹脂層4を共押出しすることにより積層する方法(共押出しラミネート法)、(2)別途、接着層6と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3上に、接着層6を形成させるための接着剤を押出し法や溶液コーティングし、高温で乾燥さらには焼き付ける方法などにより積層させ、この接着層6上に予めシート(フィルム)状に製膜した熱融着性樹脂層4をサーマルラミネート法により積層する方法、(4)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層6を流し込みながら、接着層6を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)などが挙げられる。 Next, the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A. When the heat-fusible resin layer 4 is directly laminated on the barrier layer 3, the resin component constituting the heat-fusible resin layer 4 is applied to the barrier layer 3 of the laminate A by a gravure coating method or a roll coating method. It may be applied by such a method. When the adhesive layer 6 is provided between the barrier layer 3 and the heat-fusible resin layer 4, for example, (1) the adhesive layer 6 and the heat-fusible resin layer on the barrier layer 3 of the laminate A (2) Separately, a laminate in which the adhesive layer 6 and the heat-fusible resin layer 4 are laminated is formed, and this is formed as a barrier layer of the laminate A (3) A method of extruding or solution-coating an adhesive for forming the adhesive layer 6 on the barrier layer 3 of the laminate A, and drying and baking at a high temperature. And a method of laminating the heat-fusible resin layer 4 previously formed into a sheet (film) on the adhesive layer 6 by a thermal laminating method, and (4) the barrier layer 3 of the laminate A and a sheet in advance. Between the heat-fusible resin layer 4 formed into a film While pouring an adhesive layer 6 which is, and a method of bonding a laminate A and the heat-welding resin layer 4 through the adhesive layer 6 (sandwich lamination method).
 なお、樹脂層1a及び接合層1bを積層する順序は、特に制限されず、例えば、基材層2とバリア層3とを積層させてから、基材層2側の表面に接合層1bと樹脂層1aを積層してもよい。また、熱融着性樹脂層4などを積層した後、最後に基材層2側に接合層1bと樹脂層1aを積層して、電池用包装材料を得てもよい。 The order in which the resin layer 1a and the bonding layer 1b are stacked is not particularly limited. For example, after the base material layer 2 and the barrier layer 3 are stacked, the bonding layer 1b and the resin are formed on the surface of the base material layer 2 side. The layer 1a may be laminated. Moreover, after laminating | stacking the heat-fusible resin layer 4 etc., you may finally laminate | stack the joining layer 1b and the resin layer 1a on the base material layer 2 side, and may obtain the packaging material for batteries.
 表面被覆層を設ける場合には、例えば、基材層2のバリア層3とは反対側の表面に、表面被覆層を積層してから、接合層1b及び樹脂層1aを表面被覆層の上に積層する。表面被覆層は、例えば表面被覆層を形成する上記の樹脂を基材層2の表面に塗布することにより形成することができる。なお、基材層2の表面にバリア層3を積層する工程と、基材層2の表面に表面被覆層を積層する工程の順番は、特に制限されない。例えば、基材層2の表面に表面被覆層を形成した後、基材層2の表面被覆層とは反対側の表面にバリア層3を形成してもよい。 When providing the surface coating layer, for example, after laminating the surface coating layer on the surface of the base material layer 2 opposite to the barrier layer 3, the bonding layer 1b and the resin layer 1a are placed on the surface coating layer. Laminate. A surface coating layer can be formed by apply | coating said resin which forms a surface coating layer on the surface of the base material layer 2, for example. The order of the step of laminating the barrier layer 3 on the surface of the base material layer 2 and the step of laminating the surface coating layer on the surface of the base material layer 2 are not particularly limited. For example, after forming the surface coating layer on the surface of the base material layer 2, the barrier layer 3 may be formed on the surface of the base material layer 2 opposite to the surface coating layer.
 上記のようにして、樹脂層1a/接合層1b/必要に応じて設けられる表面被覆層/基材層2/必要に応じて設けられる接着剤層5/必要に応じて片方又は両方の表面が化成処理されたバリア層3/必要に応じて設けられる接着層6/熱融着性樹脂層4からなる積層体が形成される。必要に応じて設けられる接着剤層5及び接着層6の接着性を強固にするために、さらに、熱ロール接触式、熱風式、近赤外線式又は遠赤外線式などの加熱処理に供してもよい。このような加熱処理の条件としては、例えば150~250℃で1~5分間が挙げられる。 As described above, resin layer 1a / bonding layer 1b / surface coating layer provided as needed / base material layer 2 / adhesive layer 5 provided as needed / one or both surfaces as needed A laminate composed of the barrier layer 3 subjected to the chemical conversion treatment / the adhesive layer 6 provided as necessary / the heat-fusible resin layer 4 is formed. In order to strengthen the adhesiveness of the adhesive layer 5 and the adhesive layer 6 provided as necessary, they may be further subjected to a heat treatment such as a hot roll contact type, a hot air type, a near infrared type or a far infrared type. . An example of such heat treatment conditions is 150 to 250 ° C. for 1 to 5 minutes.
 本発明の電池用包装材料において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性などを向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施していてもよい。例えば、基材層の少なくとも一方の表面にコロナ処理を施すことにより、製膜性、積層化加工、最終製品2次加工適性などを向上又は安定化させ得る。 In the battery packaging material of the present invention, each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing of secondary products (pouching, embossing), and the like as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed. For example, by performing corona treatment on at least one surface of the base material layer, it is possible to improve or stabilize the film forming property, lamination processing, final product secondary processing suitability, and the like.
 また、本発明においては、樹脂層1a及び接合層1bを備える前述の電池用包装材料を用意し、水性液体を用いて、樹脂層1aを積層体から剥離する剥離工程を行うことにより、樹脂層1aが剥離された電池用包装材料を製造することができる。積層体から樹脂層1aを剥離する方法については、前述のように、水性液体を接合層1bに付着させればよい。 Moreover, in this invention, the above-mentioned battery packaging material provided with the resin layer 1a and the joining layer 1b is prepared, and the resin layer 1a is performed by performing the peeling process which peels the resin layer 1a from a laminated body using an aqueous liquid. The battery packaging material from which la is peeled can be produced. About the method of peeling the resin layer 1a from a laminated body, what is necessary is just to make aqueous liquid adhere to the joining layer 1b as mentioned above.
 さらに、本発明の電池用包装材料の製造方法においては、当該剥離工程の後、電池用包装材料を構成している積層体の基材層2側の表面に、インクによる印刷を施す印刷工程をさらに備えていてもよい。これにより、基材層2側の表面に印刷が施された電池用包装材料を好適に製造することができる。すなわち、本発明の電池用包装材料は、水性液体を用いて樹脂層1aを剥離し、基材層2側の表面にインクによる印刷が施される用途に好適に用いることができる。 Furthermore, in the method for producing a battery packaging material of the present invention, after the peeling step, a printing step of performing printing with ink on the surface of the laminate constituting the battery packaging material on the substrate layer 2 side. Furthermore, you may provide. Thereby, the packaging material for batteries by which the surface by the side of the base material layer 2 was printed can be manufactured suitably. That is, the battery packaging material of the present invention can be suitably used for applications in which the resin layer 1a is peeled off using an aqueous liquid, and the surface on the base material layer 2 side is printed with ink.
 なお、後述の通り、電池用包装材料からの樹脂層1aの剥離工程、さらに印刷工程は、電池用包装材料を用いた電池の製造工程において行ってもよい。樹脂層1a及び接合層1bを備える本発明の電池用包装材料を金型による成形に供してから、当該剥離工程や印刷工程を行うことにより、樹脂層1a及び接合層1bによる成形性向上効果を好適に享受することができる。例えば、電池の外側には、電池の識別性などの観点から、印字が施されることがある。本発明の電池用包装材料においては、印字が施されるまでは、電池用包装材料の基材層2側の表面の特性劣化を効果的に抑制し、印字を施す際に、水性液体を用いて樹脂層1aを積層体から剥離することにより、印字面となる電池用包装材料の基材層2側の表面を容易に露出させることができ、基材層2や表面被覆層の表面にインクによる印刷が施される用途にも好適に適用可能となる。また、樹脂層1a及び接合層1bを備える本発明の電池用包装材料を金型による成形に供してから、水性液体を用いて樹脂層1aを積層体から剥離することにより、樹脂層1aがバリア層3のピンホールを抑制する効果や、基材層2や表面被覆層の表面が金型によって傷つけられることを抑制する効果があり、成形性向上効果を好適に享受することができる。また、樹脂層1a及び接合層1bを備える本発明の電池用包装材料を用いて熱融着性樹脂層4を熱融着させた場合、高温・高圧による基材層2や表面被覆層の劣化を、樹脂層1aによる保護によって、効果的に抑制することができる。なお、樹脂層1aを剥離するタイミング及び目的は、これらに限定されない。 As will be described later, the step of peeling the resin layer 1a from the battery packaging material and the printing step may be performed in the battery manufacturing process using the battery packaging material. The battery packaging material of the present invention including the resin layer 1a and the bonding layer 1b is subjected to molding by a mold and then subjected to the peeling step and the printing step, thereby improving the moldability improvement effect by the resin layer 1a and the bonding layer 1b. It can enjoy suitably. For example, printing may be performed on the outside of the battery from the viewpoint of battery identification. In the battery packaging material of the present invention, until printing is performed, the deterioration of the characteristics of the surface of the battery packaging material on the substrate layer 2 side is effectively suppressed, and an aqueous liquid is used when printing is performed. By peeling off the resin layer 1a from the laminate, the surface of the battery packaging material that becomes the printing surface can be easily exposed, and the surface of the base material layer 2 or the surface coating layer can be exposed to ink. It can also be suitably applied to applications where printing is performed. Further, the battery packaging material of the present invention including the resin layer 1a and the bonding layer 1b is subjected to molding using a mold, and then the resin layer 1a is separated from the laminate using an aqueous liquid, whereby the resin layer 1a becomes a barrier. The effect of suppressing the pinhole of the layer 3 and the effect of suppressing the surface of the base material layer 2 and the surface coating layer from being damaged by the mold can be suitably enjoyed. Further, when the heat-fusible resin layer 4 is heat-sealed using the battery packaging material of the present invention including the resin layer 1a and the bonding layer 1b, the base material layer 2 and the surface coating layer are deteriorated due to high temperature and high pressure. Can be effectively suppressed by the protection by the resin layer 1a. Note that the timing and purpose of peeling the resin layer 1a are not limited to these.
 インクによる印刷法としては、特に制限されず、例えば、パッド印刷、インクジェット印刷などが好適である。なお、パッド印刷とは、次のような印刷方法である。まず、印字したいパターンがエッチングされた平板の凹部にインクを流し込む。次に、当該凹部の上からシリコンパッドを押し当てて、シリコンパッドにインクを転移させる。次に、シリコンパッド表面に転移されたインクを印刷対象物に転写して、印刷対象物に印字を形成する。このようなパッド印刷は、弾性のあるシリコンパッドなどを用いてインクが印刷対象物に転写されるため、成形後の電池用包装材料の表面にも印刷しやすく、電池素子を電池用包装材料で封止した後に、電池に印字することができるという利点を有する。また、インクジェット印刷においても同様の利点を有する。 The printing method using ink is not particularly limited, and for example, pad printing and ink jet printing are suitable. Pad printing is a printing method as follows. First, ink is poured into a concave portion of a flat plate in which a pattern to be printed is etched. Next, the silicon pad is pressed from above the concave portion to transfer the ink to the silicon pad. Next, the ink transferred to the surface of the silicon pad is transferred to the printing object to form a print on the printing object. In such pad printing, since the ink is transferred to the object to be printed using an elastic silicon pad or the like, it is easy to print on the surface of the battery packaging material after molding, and the battery element is made of the battery packaging material. After sealing, the battery can be printed. In addition, ink jet printing has similar advantages.
4.電池用包装材料の用途
 本発明の電池用包装材料は、正極、負極、電解質などの電池素子を密封して収容するための包装体に使用される。すなわち、本発明の電池用包装材料によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた電池素子を収容して、電池とすることができる。
4). Application of Battery Packaging Material The battery packaging material of the present invention is used in a package for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte. That is, a battery element including at least a positive electrode, a negative electrode, and an electrolyte can be accommodated in a package formed of the battery packaging material of the present invention to obtain a battery.
 具体的には、少なくとも正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材料で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、電池用包装材料を使用した電池が提供される。なお、本発明の電池用包装材料を用いて電池素子を収容する場合、本発明の電池用包装材料の熱融着性樹脂部分が内側(電池素子と接する面)になるようにして用いられる。樹脂層1a及び接合層1bを備える本発明の電池用包装材料を用いて熱融着性樹脂層4を熱融着させた場合、高温・高圧による基材層2や表面被覆層の劣化を、樹脂層1aによる保護によって、効果的に抑制することができる。本発明の電池用包装材料においては、熱融着性樹脂層4を熱融着させた後に、樹脂層1aを剥離することができる。 Specifically, a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward. By covering the periphery of the element so that a flange portion (region where the heat-fusible resin layers are in contact with each other) can be formed, and heat-sealing the heat-fusible resin layers of the flange portion to seal the battery A battery using the packaging material is provided. In addition, when accommodating a battery element using the battery packaging material of the present invention, the battery packaging material of the present invention is used so that the heat-fusible resin portion is on the inner side (surface in contact with the battery element). When the heat-fusible resin layer 4 is heat-sealed using the battery packaging material of the present invention including the resin layer 1a and the bonding layer 1b, deterioration of the base material layer 2 and the surface coating layer due to high temperature and high pressure It can suppress effectively by the protection by the resin layer 1a. In the battery packaging material of the present invention, the resin layer 1a can be peeled after the heat-fusible resin layer 4 is heat-sealed.
 本発明の電池用包装材料によって形成される包装体は、1枚の電池用包装材料を折り曲げて、対向する熱融着性樹脂層の縁部をヒートシールすることによって形成することもできるし、2枚の電池用包装材料を熱融着性樹脂層同士が対向するように重ねて、縁部をヒートシールすることによって形成することもできる。また、2枚の電池用包装材料を用いる場合、一方にのみ本発明の電池用包装材料を使用してもよいし、両方に本発明の電池用包装材料を使用してもよい。さらに、基材層2側表面を保護したい所望のタイミングに応じて、一方の電池用包装材料から先に樹脂層1aを剥離してもよいし、両方の電池用包装材料から同じタイミングで樹脂層1aを剥離してもよい。 The package formed by the battery packaging material of the present invention can be formed by bending one battery packaging material and heat-sealing the edges of the opposing heat-fusible resin layers, It can also be formed by stacking two battery packaging materials so that the heat-fusible resin layers face each other and heat-sealing the edges. When two battery packaging materials are used, the battery packaging material of the present invention may be used for only one of them, or the battery packaging material of the present invention may be used for both. Furthermore, the resin layer 1a may be peeled first from one of the battery packaging materials according to the desired timing at which the surface of the base material layer 2 is desired to be protected, or the resin layer may be removed from both battery packaging materials at the same timing. 1a may be peeled off.
 さらに、本発明の電池は、樹脂層1aが剥離されたものであってもよい。このような電池は、例えば、本発明の電池用包装材料により形成された包装体中に、少なくとも正極、負極、及び電解質を備えた電池素子を収容する工程と、水性液体を用いて、前記樹脂層1aを包装体から剥離する剥離工程とを備える方法によって製造することができる。樹脂層1aを積層体から剥離する方法の具体例については、前述の方法と同様である。 Furthermore, the battery of the present invention may be one in which the resin layer 1a is peeled off. Such a battery includes, for example, a step of containing a battery element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed of the battery packaging material of the present invention, and an aqueous liquid. It can manufacture by the method provided with the peeling process which peels the layer 1a from a package. About the specific example of the method of peeling the resin layer 1a from a laminated body, it is the same as that of the above-mentioned method.
 さらに、本発明の電池の製造方法においては、剥離工程の後、電池用包装材料を構成している包装体の基材層2側の表面に、インクによる印刷を施す印刷工程をさらに備えていてもよい。これにより、電池の外側に印刷が施された電池を好適に製造することができる。特に、電池の製造工程において、剥離工程の直後に、印刷工程を設けることにより、電池及び電池用包装材料を製造する際の印刷工程直前まで、樹脂層1aによって、外側表面(樹脂層1aを剥離した後に電池の外側表面となる、基材層2や表面被覆層の表面)の特性劣化が効果的に抑制された電池に対して、好適に印刷を施すことが可能となる。 Furthermore, the method for producing a battery of the present invention further includes a printing step of performing printing with ink on the surface on the base material layer 2 side of the package constituting the battery packaging material after the peeling step. Also good. Thereby, the battery by which the printing was performed on the outer side of a battery can be manufactured suitably. In particular, in the battery manufacturing process, by providing a printing process immediately after the peeling process, the outer surface (the resin layer 1a is peeled off) by the resin layer 1a until immediately before the printing process when manufacturing the battery and the battery packaging material. After that, it is possible to suitably perform printing on the battery in which the deterioration of the characteristics of the base material layer 2 and the surface coating layer (which is the outer surface of the battery) is effectively suppressed.
 本発明においては、樹脂層1aは剥離可能ではあるが、樹脂層1aが剥離されていない電池として、そのまま利用してもよい。 In the present invention, the resin layer 1a can be peeled off, but may be used as it is as a battery from which the resin layer 1a is not peeled off.
 樹脂層1a及び接合層1bを備える電池から樹脂層1aを剥離する場合、所望のタイミングで樹脂層1aを剥離することができる。樹脂層1aを電池から剥離することにより、放熱性が向上するため、電池の放熱性の向上が求められる場合には、樹脂層1aを剥離して放熱性を向上した電池として好適に使用することができる。また、樹脂層1aを電池から剥離することにより、電池の厚さを薄くすることができるため、電池を薄くすることが求められる場合には、樹脂層1aを剥離して厚みを低減した電池として好適に使用することができる。樹脂層1aを電池から剥離するタイミング及び目的については、これらに限定されない。また、電池から樹脂層1aを剥離する方法については、前述のように、水性液体を接合層1bに付着させればよい。 When the resin layer 1a is peeled from the battery including the resin layer 1a and the bonding layer 1b, the resin layer 1a can be peeled at a desired timing. Since the heat dissipation is improved by removing the resin layer 1a from the battery, when the improvement of the heat dissipation of the battery is required, the resin layer 1a is preferably used as a battery having an improved heat dissipation by peeling off the resin layer 1a. Can do. Moreover, since the thickness of the battery can be reduced by peeling the resin layer 1a from the battery, when it is required to make the battery thinner, the battery having a reduced thickness by peeling the resin layer 1a. It can be preferably used. The timing and purpose of peeling the resin layer 1a from the battery are not limited to these. As for the method of peeling the resin layer 1a from the battery, an aqueous liquid may be attached to the bonding layer 1b as described above.
 本発明の電池用包装材料は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本発明の電池用包装材料が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシターなどが挙げられる。これらの二次電池の中でも、本発明の電池用包装材料の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery. The type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited. For example, a lithium ion battery, a lithium ion polymer battery, a lead storage battery, a nickel-hydrogen storage battery, a nickel-cadmium storage battery, a nickel- Examples include iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal-air batteries, multivalent cation batteries, capacitors, capacitors, and the like. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries are suitable applications for the battery packaging material of the present invention.
 以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
<電池用包装材料の製造>
(実施例1)
 ポリエチレンテレフタレートフィルムとナイロンフィルムとが共押出しにより積層され、2軸延伸した積層フィルムを用意した。当該積層フィルムにおいて、2軸延伸ポリエチレンテレフタレートフィルム(厚さ5μm)と2軸延伸ナイロンフィルム(厚さ20μm)との間は、ポリエステル樹脂(ポリ(テトラメチレンエーテル)グリコール系樹脂)により構成された接合層(厚さ1μm)により接着されている。当該積層フィルムは、樹脂層/接合層/基材層が順に積層された積層体であり、樹脂層/接合層/基材層の3層共押出し後に、2軸延伸されたものである。また、当該積層フィルム中には、紫外線吸収剤(TINUVIN326)、光安定剤(TINUVIN770)、及び酸化防止剤(Irganox1330、Irganox1098、Irganox1010)が配合されている。次に、基材層の表面に、バリア層としてのアルミニウム合金箔(厚さ40μm)をドライラミネート法により積層させた。具体的には、耐酸性皮膜が表面に形成されたアルミニウム合金箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、アルミニウム合金箔の表面に接着剤層(厚さ3μm)を形成した。次いで、バリア層上の接着剤層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、樹脂層/接合層/基材層/接着剤層/バリア層が順に積層された積層体を作製した。なお、バリア層として使用したアルミニウム箔は、酸化セリウムとリン酸塩を含む耐酸性皮膜を備える。
<Manufacture of battery packaging materials>
Example 1
A polyethylene terephthalate film and a nylon film were laminated by coextrusion to prepare a biaxially stretched laminated film. In the laminated film, a joint formed of a polyester resin (poly (tetramethylene ether) glycol-based resin) between the biaxially stretched polyethylene terephthalate film (thickness 5 μm) and the biaxially stretched nylon film (thickness 20 μm). Bonded by layers (1 μm thick). The laminated film is a laminate in which a resin layer / bonding layer / base material layer is sequentially laminated, and is biaxially stretched after co-extrusion of resin layer / bonding layer / base material layer. In addition, the laminated film contains an ultraviolet absorber (TINUVIN 326), a light stabilizer (TINUVIN 770), and an antioxidant (Irganox 1330, Irganox 1098, Irganox 1010). Next, an aluminum alloy foil (thickness 40 μm) as a barrier layer was laminated on the surface of the base material layer by a dry laminating method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) is applied to one surface of an aluminum alloy foil having an acid-resistant film formed on the surface, and the adhesive is applied to the surface of the aluminum alloy foil. A layer (thickness 3 μm) was formed. Next, after laminating the adhesive layer and the base material layer on the barrier layer by the dry laminating method, the resin layer / bonding layer / base material layer / adhesive layer / barrier layer are laminated in order by performing an aging treatment. A laminate was prepared. The aluminum foil used as the barrier layer is provided with an acid resistant film containing cerium oxide and phosphate.
 次に、得られた積層体のバリア層の上(耐酸性皮膜の表面)に、カルボキシル基を有する非結晶性ポリオレフィン樹脂と、多官能イソシアネート化合物からなる接着剤(硬化後の厚みが2μm)を塗布し、乾燥させ、得られた積層体のバリア層側と、未延伸ポリプロピレンフィルム(厚み80μm)とを熱ロール間を通過させ接着することにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングすることにより、2軸延伸ポリエチレンテレフタレートフィルム(5μm)/接合層(1μm)/2軸延伸ナイロンフィルム(20μm)/接着剤層(3μm)/バリア層(40μm)/接着層(2μm)/未延伸ポリプロピレンフィルム(80μm)がこの順に積層された電池用包装材料を得た。電池用包装材料の層構成を表1に示す。 Next, an adhesive composed of a non-crystalline polyolefin resin having a carboxyl group and a polyfunctional isocyanate compound (with a thickness of 2 μm after curing) is formed on the barrier layer of the obtained laminate (the surface of the acid-resistant film). The adhesive layer / heat-sealable resin is applied onto the barrier layer by coating and drying the barrier layer side of the resulting laminate and an unstretched polypropylene film (thickness 80 μm) through a hot roll and bonding them. The layers were laminated. Next, by aging the obtained laminate, biaxially stretched polyethylene terephthalate film (5 μm) / bonding layer (1 μm) / biaxially stretched nylon film (20 μm) / adhesive layer (3 μm) / barrier layer (40 μm) ) / Adhesive layer (2 μm) / unstretched polypropylene film (80 μm) were laminated in this order to obtain a battery packaging material. Table 1 shows the layer structure of the battery packaging material.
(比較例1)
 樹脂層、接合層及び基材層の積層体として、樹脂層としてのポリエチレンテレフタレートフィルム(厚さ12μm)と、基材層としての延伸ナイロンフィルム(厚さ15μm)とが2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物、厚さ3μm)により接着されたものを用意した。次に、実施例1と同様にして、基材層の表面に、バリア層としてのアルミニウム合金箔(厚さ40μm)をドライラミネート法により積層させて、樹脂層/接合層/基材層/接着剤層/バリア層が順に積層された積層体を作製した。アルミニウム合金箔の表面に形成された耐酸性皮膜は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム合金箔の両面に塗布し、焼付けすることにより形成されたものである。次に、接着層としての酸変性ポリプロピレン(厚さ40μm)及び熱融着性樹脂層としてのポリプロピレン(厚さ40μm)を共押出しラミネート法により積層することにより、樹脂層/接合層/基材層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された電池用包装材料を得た。具体的な積層構成は表1に示す。
(Comparative Example 1)
As a laminate of a resin layer, a bonding layer, and a base material layer, a polyethylene terephthalate film (thickness 12 μm) as a resin layer and a stretched nylon film (thickness 15 μm) as a base material layer are a two-component urethane adhesive ( A material bonded with a polyol compound and an aromatic isocyanate compound (thickness: 3 μm) was prepared. Next, in the same manner as in Example 1, an aluminum alloy foil (thickness 40 μm) as a barrier layer was laminated on the surface of the base material layer by a dry laminating method, and resin layer / bonding layer / base material layer / adhesion A laminate in which the agent layer / barrier layer was sequentially laminated was produced. The acid-resistant film formed on the surface of the aluminum alloy foil is roll-coated with a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry mass). It is formed by applying and baking on both surfaces of an aluminum alloy foil by the method. Next, an acid-modified polypropylene (thickness: 40 μm) as an adhesive layer and a polypropylene (thickness: 40 μm) as a heat-fusible resin layer are laminated by coextrusion laminating method to obtain a resin layer / bonding layer / base material layer. A battery packaging material in which / adhesive layer / barrier layer / adhesive layer / heat-fusible resin layer was laminated in this order was obtained. The specific laminated structure is shown in Table 1.
(比較例2)
 樹脂層、接合層、及び基材層の積層体として、樹脂層としてのポリエチレンテレフタレートフィルム(厚さ12μm)と、基材層としての延伸ナイロンフィルム(厚さ15μm)とが2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物、厚さ3μm)により接着されたものを用意した。次に、実施例1と同様にして、基材層の表面に、バリア層としてのアルミニウム合金箔(厚さ40μm)をドライラミネート法により積層させて、樹脂層/接合層/基材層/接着剤層/バリア層が順に積層された積層体を作製した。アルミニウム合金箔の表面に形成された耐酸性皮膜は、比較例1と同様である。次に、得られた積層体のバリア層の上(耐酸性皮膜の表面)に、カルボキシル基を有する非結晶性ポリオレフィン樹脂と、多官能イソシアネート化合物からなる接着剤(硬化後の厚みが3μm)を塗布し、乾燥させ、得られた積層体のバリア層側と、未延伸のランダムポリプロピレンフィルム(厚み80μm)とを熱ロール間を通過させ接着することにより、樹脂層/接合層/基材層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された電池用包装材料を得た。具体的な積層構成は表1に示す。
(Comparative Example 2)
As a laminate of a resin layer, a bonding layer, and a base material layer, a polyethylene terephthalate film (thickness 12 μm) as a resin layer and a stretched nylon film (thickness 15 μm) as a base material layer are a two-component urethane adhesive What was adhered by (polyol compound and aromatic isocyanate compound, thickness 3 μm) was prepared. Next, in the same manner as in Example 1, an aluminum alloy foil (thickness 40 μm) as a barrier layer was laminated on the surface of the base material layer by a dry laminating method, and resin layer / bonding layer / base material layer / adhesion A laminate in which the agent layer / barrier layer was sequentially laminated was produced. The acid-resistant film formed on the surface of the aluminum alloy foil is the same as in Comparative Example 1. Next, an adhesive composed of a non-crystalline polyolefin resin having a carboxyl group and a polyfunctional isocyanate compound (thickness after curing is 3 μm) on the barrier layer (surface of the acid-resistant film) of the obtained laminate. By applying and drying, the barrier layer side of the obtained laminate and an unstretched random polypropylene film (thickness 80 μm) are passed between hot rolls and bonded to each other, whereby a resin layer / bonding layer / base material layer / A battery packaging material in which an adhesive layer / barrier layer / adhesive layer / heat-fusible resin layer was laminated in order was obtained. The specific laminated structure is shown in Table 1.
(比較例3)
 基材層としての延伸ナイロンフィルム(厚さ25μm)の表面に、バリア層としてのアルミニウム合金箔(厚さ40μm)をドライラミネート法により積層させて、基材層/接着剤層/バリア層が順に積層された積層体を作製した。アルミニウム合金箔の表面に形成された耐酸性皮膜は、比較例1と同様である。次に、比較例1と同様にして、接着層としての酸変性ポリプロピレン(厚さ23μm)及び熱融着性樹脂層としてのポリプロピレン(厚さ23μm)を共押出しラミネート法により積層した。次に、樹脂層としてのポリエチレンテレフタレートフィルム(厚さ50μm)とシリコーン樹脂(シリコーン系エラストマー)により構成された接合層(厚さ1μm)を積層した樹脂層の接合層側と、上記で作成した積層体の基材層側を貼り合せて、樹脂層/接合層/基材層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された電池用包装材料を得た。具体的な積層構成は表1に示す。
(Comparative Example 3)
An aluminum alloy foil (thickness 40 μm) as a barrier layer is laminated on the surface of a stretched nylon film (thickness 25 μm) as a base material layer by a dry laminating method, and the base material layer / adhesive layer / barrier layer in this order. A laminated body was produced. The acid-resistant film formed on the surface of the aluminum alloy foil is the same as in Comparative Example 1. Next, in the same manner as in Comparative Example 1, acid-modified polypropylene (thickness: 23 μm) as an adhesive layer and polypropylene (thickness: 23 μm) as a heat-fusible resin layer were laminated by coextrusion laminating. Next, the joining layer side of the resin layer obtained by laminating a polyethylene terephthalate film (thickness 50 μm) as a resin layer and a joining layer (thickness 1 μm) composed of a silicone resin (silicone elastomer), and the laminate created above The base material layer side of the body was bonded to obtain a battery packaging material in which a resin layer / bonding layer / base material layer / adhesive layer / barrier layer / adhesive layer / heat-sealable resin layer were sequentially laminated. The specific laminated structure is shown in Table 1.
(比較例4)
 比較例3において、基材層に樹脂層及び接合層を積層しなかったこと以外は、比較例3と同様にして、基材層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された電池用包装材料を得た。具体的な積層構成は表1に示す。
(Comparative Example 4)
In Comparative Example 3, the base layer / adhesive layer / barrier layer / adhesive layer / heat-sealable resin was the same as Comparative Example 3 except that the resin layer and the bonding layer were not laminated on the base layer. A battery packaging material in which layers were sequentially laminated was obtained. The specific laminated structure is shown in Table 1.
<紫外線吸収剤、光安定剤及び酸化防止剤の分析>
 実施例1の電池用包装材料の基材層とバリア層との間を、溶剤を使わずに物理的に10gほど剥離させた。次に、樹脂層、接合層、及び基材層の積層体について、各層中の添加剤成分の抽出効率を高めるために、各層間の密着が小さくなるようにステンレス製メッシュと共に巻き、抽出を行った。次に、抽出溶媒にクロロホルムを用い、ソックスレー抽出を10時間行い、添加剤成分を抽出する。溶媒を留去した後、測定溶媒に溶解し分析に供した。GC/MSで、Irganox1330、Irganox1098、TINUVIN326、TINUVIN770が検出された。HPLCでIrganox1010が検出された。
<Analysis of UV absorber, light stabilizer and antioxidant>
About 10 g was physically peeled between the base material layer and the barrier layer of the battery packaging material of Example 1 without using a solvent. Next, in order to increase the extraction efficiency of the additive component in each layer, the laminate of the resin layer, the bonding layer, and the base material layer is wound and extracted with a stainless steel mesh so that the adhesion between the layers is reduced. It was. Next, using chloroform as the extraction solvent, Soxhlet extraction is performed for 10 hours to extract the additive components. After distilling off the solvent, it was dissolved in a measurement solvent and subjected to analysis. In GC / MS, Irganox 1330, Irganox 1098, TINUVIN 326, and TINUVIN 770 were detected. Irganox 1010 was detected by HPLC.
[GC/MS(ガスクロマトグラフ質量分析)による分析]
(装置、測定条件)
装置 :株式会社島津製作所製ガスクロマトグラフ GC/MS-QP2010 Ultra
カラム:フロンティア・ラボ製UltraALLOY+-1(MS/HT)、df=0.15μm、0.25mmI.D.×15m
カラム温度:80~390℃ 11℃/min hold
キャリアー:He 1.1mL/min
注入法:スプリット法
注入量:1μL
イオン化法:EI法 70eV
試料調整:2mLのクロロホルム/メタノール(1/1;v/v)混合溶媒に溶解
[Analysis by GC / MS (Gas Chromatograph Mass Spectrometry)]
(Apparatus, measurement conditions)
Apparatus: Gas chromatograph manufactured by Shimadzu Corporation GC / MS-QP2010 Ultra
Column: Ultra ALLOY + -1 (MS / HT) manufactured by Frontier Lab, df = 0.15 μm, 0.25 mm I.D. D. × 15m
Column temperature: 80-390 ° C. 11 ° C./min hold
Carrier: He 1.1mL / min
Injection method: Split method Injection volume: 1 μL
Ionization method: EI method 70 eV
Sample preparation: Dissolved in 2 mL of chloroform / methanol (1/1; v / v) mixed solvent
[HPLC(液体クロマトグラフ)による分析]
(装置、測定条件)
装置 :日本分光製HPLC PU-2085型
カラム:UnisonUK-C18 3μm、4.6mmI.D.×100mm
カラム温度:80~390℃ 11℃/min hold
キャリアー:He 1.1mL/min
注入法:スプリット法 1:12
注入量:1μL
定量法:絶対検量線法
測定試料:2mLのクロロホルム/メタノール(1/1;v/v)混合溶媒に溶解
[Analysis by HPLC (liquid chromatograph)]
(Apparatus, measurement conditions)
Apparatus: HPLC PU-2085 type column manufactured by JASCO Corporation: Unison UK-C18 3 μm, 4.6 mm I.D. D. × 100mm
Column temperature: 80-390 ° C. 11 ° C./min hold
Carrier: He 1.1mL / min
Injection method: Split method 1:12
Injection volume: 1 μL
Quantitative method: Absolute calibration curve method Sample: Dissolved in 2 mL of chloroform / methanol (1/1; v / v) mixed solvent
<紫外線吸収剤、光安定剤及び酸化防止剤の含有量の測定>
 実施例1の電池用包装材料について、前記の<紫外線吸収剤、光安定剤及び酸化防止剤の分析>と同様にして、樹脂層、接合層、及び基材層の積層体から、添加剤成分を抽出し、測定溶媒に溶解したサンプルを用意した。得られたサンプルについて、以下のガスクロマトグラフ(GC)及び液体クロマトグラフ(HPLC)により、紫外線吸収剤、光安定剤及び酸化防止剤の含有量を測定した。その結果、HPLCによって、Irganox1098が370ppm、TINUVIN326が60ppm、Irganox1010が30ppm、Irganox1330が130ppm含まれていることが確認された。また、GCよって、TINUVIN770が140ppm含まれていることが確認された。
<Measurement of content of ultraviolet absorber, light stabilizer and antioxidant>
About the battery packaging material of Example 1, in the same manner as in the above-described <Analysis of UV absorber, light stabilizer and antioxidant>, from the laminate of the resin layer, the bonding layer, and the base material layer, an additive component Was extracted, and a sample dissolved in the measurement solvent was prepared. About the obtained sample, content of a ultraviolet absorber, a light stabilizer, and antioxidant was measured with the following gas chromatographs (GC) and liquid chromatographs (HPLC). As a result, it was confirmed by HPLC that Irganox 1098 contained 370 ppm, TINUVIN 326 contained 60 ppm, Irganox 1010 contained 30 ppm, and Irganox 1330 contained 130 ppm. In addition, it was confirmed by GC that TINUVIN 770 was contained at 140 ppm.
[GC(ガスクロマトグラフ)による含有量の測定]
(装置、測定条件)
装置 :株式会社島津製作所製ガスクロマトグラフ GC-2010
カラム:株式会社島津製作所製MXT-1、df=0.15μm、0.25mmI.D.×15m
カラム温度:80~390℃ 11℃/min hold
キャリアー:He 1.1mL/min
注入法:スプリット法 1:12
注入量:1μL
定量法:絶対検量線法
測定試料:2mLのクロロホルム/メタノール(1/1;v/v)混合溶媒に溶解
[Measurement of content by GC (gas chromatograph)]
(Apparatus, measurement conditions)
Apparatus: Gas chromatograph GC-2010 manufactured by Shimadzu Corporation
Column: MXT-1 manufactured by Shimadzu Corporation, df = 0.15 μm, 0.25 mm I.D. D. × 15m
Column temperature: 80-390 ° C. 11 ° C./min hold
Carrier: He 1.1mL / min
Injection method: Split method 1:12
Injection volume: 1 μL
Quantitative method: Absolute calibration curve method Sample: Dissolved in 2 mL of chloroform / methanol (1/1; v / v) mixed solvent
[HPLC(液体クロマトグラフ)による含有量の測定]
(装置、測定条件)
装置 :日本分光製HPLC PU-2085型
カラム:UnisonUK-C18 3μm、4.6mmI.D.×100mm
カラム温度:80~390℃ 11℃/min hold
キャリアー:He 1.1mL/min
注入法:スプリット法 1:12
注入量:1μL
定量法:絶対検量線法
測定試料:2mLのクロロホルム/メタノール(1/1;v/v)混合溶媒に溶解
[Measurement of content by HPLC (liquid chromatograph)]
(Apparatus, measurement conditions)
Apparatus: HPLC PU-2085 type column manufactured by JASCO Corporation: Unison UK-C18 3 μm, 4.6 mm I.D. D. × 100mm
Column temperature: 80-390 ° C. 11 ° C./min hold
Carrier: He 1.1mL / min
Injection method: Split method 1:12
Injection volume: 1 μL
Quantitative method: Absolute calibration curve method Sample: Dissolved in 2 mL of chloroform / methanol (1/1; v / v) mixed solvent
<水を付着させた状態での剥離強度の測定>
 実施例1及び比較例1~3で得られた各電池用包装材料について、最表面に位置するポリエチレンテレフタレートフィルムの基材層側表面に水を付着させた状態における、当該ポリエチレンテレフタレートフィルムの剥離強度を、以下の測定方法によって測定した。電池用包装材料を100mm(MD)×15mm(TD)の矩形状に裁断して、試験サンプルとした。温度25℃、相対湿度50%、及び大気圧(1atm)の環境において、まず、試験サンプルの樹脂層と接合層の端部に35%塩酸を付着させて、図4の模式図に示すように、MDの方向に30mm程度、樹脂層を剥離した。試験サンプルに付着した塩酸を拭き取り、そのまま乾燥させた。次に、樹脂層が剥離した部分(樹脂層と基材層側表面との間の接合層1b)に、スポイトを用いて蒸留水(W)を付着させた。このとき、樹脂層と基材層側表面の境界部分において、TDの方向の全体にわたって、蒸留水(W)を付着させた。次に、引張試験機(島津製作所製のオートグラフ)を用い、チャック間距離50mm、剥離速度50mm/min、剥離角180°の測定条件で、樹脂層1aを基材層の表面から剥離させて、チャック間距離が57mmに至った際の剥離強度を、蒸留水を付着させた状態での剥離強度(N/15mm)とした。結果を表1に示す。なお、剥離強度の測定に用いた引張試験機の検出限界値の下限は、0.3N/15mmである。
<Measurement of peel strength with water attached>
For each battery packaging material obtained in Example 1 and Comparative Examples 1 to 3, the peel strength of the polyethylene terephthalate film in a state where water was adhered to the surface of the polyethylene terephthalate film located on the outermost surface. Was measured by the following measurement method. The battery packaging material was cut into a rectangular shape of 100 mm (MD) × 15 mm (TD) to obtain a test sample. In an environment of a temperature of 25 ° C., a relative humidity of 50%, and an atmospheric pressure (1 atm), first, 35% hydrochloric acid is adhered to the end portions of the resin layer and the bonding layer of the test sample, as shown in the schematic diagram of FIG. The resin layer was peeled about 30 mm in the MD direction. The hydrochloric acid adhering to the test sample was wiped off and dried as it was. Next, distilled water (W) was adhered to the portion where the resin layer was peeled off (bonding layer 1b between the resin layer and the base layer side surface) using a dropper. At this time, distilled water (W) was adhered to the entire boundary in the TD direction at the boundary between the resin layer and the substrate layer side surface. Next, the resin layer 1a was peeled from the surface of the base material layer using a tensile tester (Autograph manufactured by Shimadzu Corporation) under the measurement conditions of a distance between chucks of 50 mm, a peeling speed of 50 mm / min, and a peeling angle of 180 °. The peel strength when the distance between chucks reached 57 mm was defined as the peel strength (N / 15 mm) with distilled water attached. The results are shown in Table 1. In addition, the minimum of the detection limit value of the tensile tester used for the measurement of peel strength is 0.3 N / 15 mm.
<水を付着させない状態での剥離強度の測定>
 樹脂層が剥離した部分(樹脂層と基材層側表面との間の接合層1b)に、スポイトを用いて蒸留水を付着させないこと以外は、上記の<水を付着させた状態での剥離強度の測定>と同じ測定条件で樹脂層を基材層の表面から剥離させて、チャック間距離が57mmに至った際の剥離強度を、水を付着させない状態での剥離強度(N/15mm)とした。結果を表1に示す。
<Measurement of peel strength without water adhering>
Except that the distilled water is not attached to the part where the resin layer is peeled off (bonding layer 1b between the resin layer and the substrate layer side surface) using the dropper, the above <Peeling with the water attached The peel strength when the resin layer is peeled off from the surface of the base material layer under the same measurement conditions as in the measurement of strength and the chuck-to-chuck distance reaches 57 mm is the peel strength (N / 15 mm) with no water attached. It was. The results are shown in Table 1.
<成形性の評価>
 上記で得られた各電池用包装材料を裁断して、150mm(TD)×100mm(MD)の短冊片を作製し、これを試験サンプルとした。なお、電池用包装材料のMDが、アルミニウム合金箔の圧延方向に対応し、電池用包装材料のTDが、アルミニウム合金箔のTDに対応する。アルミニウム合金箔の圧延方向は、アルミニウム合金箔の圧延痕によって確認することができる。金型は、30mm(MD)×50mm(TD)の矩形状の雄型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである)、この雄型とのクリアランスが0.5mmの雌型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである)からなるストレート金型を用いた。雄型側に熱融着性樹脂層側が位置するように、雌型上に上記試験サンプルを載置した。それぞれ、成形深さ5.0mmとなるように、当該試験サンプルを0.1MPaの面圧で押えて、冷間成形(引き込み1段成形)した。実施例1及び比較例1~3の試験サンプルは、樹脂層及び接合層が積層された状態で成形されている。冷間成形後のサンプルについて、成形部に皺が形成されているか否かを目視で確認した。結果を表1に示す。
<Evaluation of formability>
Each battery packaging material obtained above was cut into 150 mm (TD) × 100 mm (MD) strips, which were used as test samples. The MD of the battery packaging material corresponds to the rolling direction of the aluminum alloy foil, and the TD of the battery packaging material corresponds to the TD of the aluminum alloy foil. The rolling direction of the aluminum alloy foil can be confirmed by the rolling marks of the aluminum alloy foil. The mold is a rectangular male mold of 30 mm (MD) × 50 mm (TD) (the surface is defined in Table 2 of Comparative Surface Roughness Standard Pieces for Reference JIS B 0659-1: 2002 Annex 1) The maximum height roughness (nominal value of Rz is 1.6 μm), the female mold with a clearance of 0.5 mm from this male mold (the surface is JIS B 0659-1: 2002 Annex 1 (reference) comparison) A straight mold having a maximum height roughness (Rz nominal value of 3.2 μm) defined in Table 2 of the surface roughness standard piece for use was used. The test sample was placed on the female mold so that the heat-fusible resin layer side was positioned on the male mold side. Each of the test samples was pressed with a surface pressure of 0.1 MPa so as to have a molding depth of 5.0 mm, and cold-molded (drawn one-step molding). The test samples of Example 1 and Comparative Examples 1 to 3 are molded with the resin layer and the bonding layer laminated. About the sample after cold forming, it was confirmed visually whether the wrinkle was formed in the forming part. The results are shown in Table 1.
<基材層表面への印字性評価>
 前記の<水を付着させた状態での剥離強度の測定>で樹脂層を剥離した試験サンプルの基材層の表面にパッド印刷で図柄を印刷した。なお、比較例4においては、樹脂層及び接合層を設けていないため、そのまま基材層の表面にパッド印刷で図柄を印刷した。パッド印刷機は、ミシマ株式会社製SPACE PAD 6GXを使用し、インキはナビタス株式会社製のUVインキPJU-A黒色を使用した。また、アズワン製のハンディーUVランプ SUV-4で紫外線波長:254nmにて10cmの距離からUVを30秒間照射してインキを硬化させた。以下の基準により印字性を評価した。なお、印字適性測定は24℃で相対湿度50%の環境にて行った。結果を表1に示す。
A:印字の抜けが2.5%以下である
B 印字の抜けが2.5%より多く5%以下である
C:印字の抜けが2.5%より大きい
<Evaluation of printability on substrate surface>
The design was printed by pad printing on the surface of the base material layer of the test sample from which the resin layer was peeled in the above <Measurement of peel strength with water attached>. In Comparative Example 4, since the resin layer and the bonding layer were not provided, the design was printed on the surface of the base material layer as it was by pad printing. The pad printer used was SPACE PAD 6GX manufactured by Mishima Corporation, and the ink used was UV ink PJU-A black manufactured by Navitas Co., Ltd. Further, the ink was cured by irradiating UV for 30 seconds from a distance of 10 cm at an ultraviolet wavelength of 254 nm with a handy UV lamp SUV-4 manufactured by ASONE. The printability was evaluated according to the following criteria. The printability measurement was performed in an environment of 24 ° C. and a relative humidity of 50%. The results are shown in Table 1.
A: Print missing is 2.5% or less B Print missing is more than 2.5% and 5% or less C: Print missing is more than 2.5%
<熱融着時の基材層の劣化の評価>
 実施例1及び比較例1~4で得られた各電池用包装材料について、それぞれ、熱融着性樹脂層同士を対向するように2つ折りにし、加熱されたシールバー(金属板)を用いて基材層側から挟み込み、熱融着性樹脂層同士を熱融着させた。熱融着の条件は、シールバーの加熱温度が220℃、面圧が1.0MPa、時間1秒間の条件とした。熱融着後の各電池用包装材料の樹脂層の上から基材層を観察して、以下の基準により評価した。結果を表1に示す。
A:基材層に溶融、変形、変色、発泡などが見られない
C:基材層に溶融、変形、変色、発泡などが見られる
<Evaluation of deterioration of base material layer during heat fusion>
About each battery packaging material obtained in Example 1 and Comparative Examples 1 to 4, the heat-fusible resin layers were folded in two so as to face each other, and a heated seal bar (metal plate) was used. It was inserted from the base material layer side, and the heat-fusible resin layers were heat-sealed. The heat sealing conditions were a seal bar heating temperature of 220 ° C., a surface pressure of 1.0 MPa, and a time of 1 second. The base material layer was observed from the top of the resin layer of each battery packaging material after heat fusion, and evaluated according to the following criteria. The results are shown in Table 1.
A: No melting, deformation, discoloration, foaming or the like is observed in the base material layer C: Melting, deformation, discoloration, foaming or the like is observed in the base material layer
<熱融着後の樹脂層の剥離性の評価>
 前記の<熱融着時の基材層の劣化の評価>で得られた熱融着後の各電池用包装材料を試験サンプルとし、前記の<水を付着させた状態での剥離強度の測定>と同様にして、温度25℃、相対湿度50%、及び大気圧(1atm)の環境において、まず、試験サンプルの樹脂層と接合層の端部に35%塩酸を付着させて、MDの方向に30mm程度、樹脂層を剥離した。試験サンプルに付着した塩酸を拭き取り、そのまま乾燥させた。次に、樹脂層が剥離した部分(樹脂層と基材層側表面との間の接合層1b)に、スポイトを用いて蒸留水(W)を付着させた。このとき、樹脂層と基材層側表面の境界部分において、TDの方向の全体にわたって、蒸留水(W)を付着させた。次に、それぞれの試験サンプルについて、指で樹脂層をつまんで、樹脂層を基材層から剥離可能であった否かを表1に示す。
<Evaluation of releasability of resin layer after heat sealing>
Using each battery packaging material after heat fusion obtained in <Evaluation of degradation of base material layer during heat fusion> as a test sample, <Measurement of peel strength with water attached> In the same manner as above, in an environment of a temperature of 25 ° C., a relative humidity of 50%, and an atmospheric pressure (1 atm), first, 35% hydrochloric acid is adhered to the end portions of the resin layer and the bonding layer of the test sample, and the direction of MD The resin layer was peeled off by about 30 mm. The hydrochloric acid adhering to the test sample was wiped off and dried as it was. Next, distilled water (W) was adhered to the portion where the resin layer was peeled off (bonding layer 1b between the resin layer and the base layer side surface) using a dropper. At this time, distilled water (W) was adhered to the entire boundary in the TD direction at the boundary between the resin layer and the substrate layer side surface. Next, for each test sample, Table 1 shows whether the resin layer could be peeled from the base material layer by pinching the resin layer with a finger.
<熱融着前の樹脂層の剥離性の評価>
 熱融着させる前の各電池用包装材料を試験サンプルとしたこと以外は、前記の<熱融着後の樹脂層の剥離性の評価>と同様にして、熱融着前の樹脂層の剥離性を評価した。結果を表1に示す。
<Evaluation of peelability of resin layer before heat sealing>
Except that each battery packaging material before heat fusion was used as a test sample, in the same manner as in the above <Evaluation of releasability of resin layer after heat fusion>, peeling of the resin layer before heat fusion Sex was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示す積層構成において、PETはポリエチレンテレフタレート層、Nyはナイロン層、ADは接合層、DLはドライラミネート法によって形成された接着剤層、ALMはアルミニウム合金箔、PPaは酸変性ポリプロピレン層、CPPは未延伸ポリプロピレン層、PPはポリプロピレン層を意味する。また、積層構成の各層の後ろに記載された数値は、厚さ(μm)を意味し、例えは、「PET(12)」は、「厚さ12μmのポリエチレンテレフタレート層」を意味する。また、剥離強度が0.3N/15mm以下との結果は、剥離強度が検出限界値以下であったことを意味している。 In the laminated structure shown in Table 1, PET is a polyethylene terephthalate layer, Ny is a nylon layer, AD is a bonding layer, DL is an adhesive layer formed by a dry lamination method, ALM is an aluminum alloy foil, PPa is an acid-modified polypropylene layer, CPP means an unstretched polypropylene layer and PP means a polypropylene layer. Further, the numerical value described after each layer of the laminated structure means a thickness (μm), for example, “PET (12)” means “a polyethylene terephthalate layer having a thickness of 12 μm”. Moreover, the result that peeling strength is 0.3 N / 15 mm or less means that peeling strength was below a detection limit value.
 樹脂層にポリエステル樹脂を含む接合層を設けた実施例1は、水を付着させない状態での剥離強度が高く、水を付着させた状態での剥離強度は非常に低かった。そのため、水を付着させた状態では容易に樹脂層を剥離することができた。また、樹脂層と接合層を積層させた状態で成形しても成形後の皴が無く、外観が良好であった。さらに、樹脂層と接合層を積層させた状態で熱融着を行っても、基材層に劣化が観られず、熱融着前後に樹脂層と接合層の端面に水を付着させることにより、樹脂層を容易に剥離することができた。この結果から、水性液体を用いて積層体から樹脂層を剥離する場合の剥離強度が1.0N/15mm以下であれば、樹脂層を好適に剥離することができ、0.5N/15mm以下であれば、樹脂層をより好適に剥離することができるといえる。 Example 1 in which a bonding layer containing a polyester resin was provided on the resin layer had high peel strength when no water was attached, and very low peel strength when water was attached. Therefore, the resin layer could be easily peeled off with water attached. Moreover, even if it molded in the state which laminated | stacked the resin layer and the joining layer, there was no wrinkle after shaping | molding and the external appearance was favorable. Furthermore, even when heat sealing is performed in a state where the resin layer and the bonding layer are laminated, no deterioration is observed in the base material layer, and water is adhered to the end surfaces of the resin layer and the bonding layer before and after the heat bonding. The resin layer could be easily peeled off. From this result, if the peel strength when peeling the resin layer from the laminate using an aqueous liquid is 1.0 N / 15 mm or less, the resin layer can be suitably peeled, and 0.5 N / 15 mm or less. If it exists, it can be said that a resin layer can be peeled off more suitably.
 一方、接合層としてウレタン樹脂を用いた比較例1,2は、水を付着させない状態での剥離強度も水を付着させた状態での剥離強度も高かった。そのため、水を付着させた状態でも樹脂層を剥離することが困難であった。また、樹脂層と接合層を積層させた状態で成形しても成形後の皴が無く、熱融着を行っても劣化が観られなかったものの、熱融着前後に樹脂層と接合層の端面に水を付着させても樹脂層を剥離することができなかった。これは、熱融着の熱により、ウレタン樹脂の剥離強度がさらに高くなり、より剥離しにくくなったものと考えられる。 On the other hand, Comparative Examples 1 and 2 using urethane resin as the bonding layer had high peel strength in a state where water was not attached and peel strength in a state where water was attached. Therefore, it was difficult to peel off the resin layer even when water was attached. In addition, there was no wrinkle after molding even when molded in a state where the resin layer and the bonding layer were laminated, and no deterioration was observed even after heat sealing. The resin layer could not be peeled even when water was attached to the end face. This is considered to be because the peel strength of the urethane resin is further increased by the heat of heat fusion, and is more difficult to peel.
 接合層としてシリコーン樹脂を用いた比較例3は、水を付着させない状態での剥離強度も水を付着させた状態での剥離強度も低かった。そのため、水を付着させない状態でも容易に樹脂層を剥離でき、保護層を積層させた状態で成形すると皴が有り、外観が不良であった。 Comparative Example 3 using a silicone resin as the bonding layer had low peel strength in the state where water was not attached and peel strength in the state where water was attached. For this reason, the resin layer can be easily peeled off even when water is not attached, and there is a flaw when the protective layer is laminated, and the appearance is poor.
 保護層を設けなかった比較例4は、熱融着を行うことにより、基材層が溶けて熱融着に用いたシールバーにナイロン樹脂が付着してしまった。 In Comparative Example 4 in which the protective layer was not provided, the base layer was melted and the nylon resin adhered to the seal bar used for the thermal fusion by performing the thermal fusion.
1…保護層
1a…樹脂層
1b…接合層
2…基材層
3…バリア層
4…熱融着性樹脂層
5…接着剤層
6…接着層
10…電池用包装材料
W…水
DESCRIPTION OF SYMBOLS 1 ... Protective layer 1a ... Resin layer 1b ... Bonding layer 2 ... Base material layer 3 ... Barrier layer 4 ... Heat-fusible resin layer 5 ... Adhesive layer 6 ... Adhesive layer 10 ... Battery packaging material W ... Water

Claims (9)

  1.  少なくとも、樹脂層と、接合層と、基材層と、バリア層と、熱融着性樹脂層とをこの順に備える積層体から構成され、
     前記接合層は、ポリエステル樹脂を含み、
     前記樹脂層は、水性液体を用いて前記積層体から剥離可能である、電池用包装材料。
    At least, it is composed of a laminate comprising a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order,
    The bonding layer includes a polyester resin,
    The battery packaging material, wherein the resin layer is peelable from the laminate using an aqueous liquid.
  2.  温度25℃、相対湿度50%、及び大気圧の環境における、前記接合層に水を付着させない状態で前記積層体から前記樹脂層を剥離する場合の剥離強度が、2.0N/15mm以上であり、かつ、
     温度25℃、相対湿度50%、及び大気圧の環境における、前記水性液体を用いて前記積層体から前記樹脂層を剥離する場合の剥離強度が、1.0N/15mm以下であり、
     前記水性液体は水である、請求項1に記載の電池用包装材料。
    In an environment of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure, the peel strength when the resin layer is peeled from the laminate without water adhering to the bonding layer is 2.0 N / 15 mm or more. ,And,
    The peel strength when peeling the resin layer from the laminate using the aqueous liquid in an environment of temperature 25 ° C., relative humidity 50%, and atmospheric pressure is 1.0 N / 15 mm or less,
    The battery packaging material according to claim 1, wherein the aqueous liquid is water.
  3.  前記積層体の前記樹脂層側の表面に滑剤が存在している、請求項1又は2に記載の電池用包装材料。 The battery packaging material according to claim 1 or 2, wherein a lubricant is present on the surface of the laminate on the resin layer side.
  4.  前記樹脂層、接合層、及び基材層の少なくとも1層に、紫外線吸収剤が含まれている、請求項1~3のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 3, wherein an ultraviolet absorber is contained in at least one of the resin layer, the bonding layer, and the base material layer.
  5.  前記紫外線吸収剤が、ベンゾトリアゾール系紫外線吸収剤である、請求項4に記載の電池用包装材料。 The battery packaging material according to claim 4, wherein the ultraviolet absorbent is a benzotriazole ultraviolet absorbent.
  6.  前記樹脂層、接合層、及び基材層の少なくとも1層に、光安定剤が含まれている、請求項1~5のいずれかに記載の電池用包装材料。 The battery packaging material according to any one of claims 1 to 5, wherein a light stabilizer is contained in at least one of the resin layer, the bonding layer, and the base material layer.
  7.  前記光安定剤が、ヒンダードアミン系光安定剤である、請求項6に記載の電池用包装材料。 The battery packaging material according to claim 6, wherein the light stabilizer is a hindered amine light stabilizer.
  8.  少なくとも、樹脂層と、接合層と、基材層と、バリア層と、熱融着性樹脂層とがこの順となるように積層して積層体を得る工程を備えており、
     前記接合層がポリエステル樹脂を含んでおり、前記樹脂層が水性液体を用いて前記積層体から剥離可能なものを用いる、電池用包装材料の製造方法。
    At least a step of obtaining a laminate by laminating a resin layer, a bonding layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order;
    The manufacturing method of the packaging material for batteries using the said joining layer contains the polyester resin and the said resin layer can peel from the said laminated body using an aqueous liquid.
  9.  少なくとも正極、負極、及び電解質を備えた電池素子が、請求項1~7のいずれかに記載の電池用包装材料により形成された包装体中に収容されている、電池。 A battery in which a battery element including at least a positive electrode, a negative electrode, and an electrolyte is accommodated in a package formed of the battery packaging material according to any one of claims 1 to 7.
PCT/JP2018/016367 2017-04-20 2018-04-20 Packaging material for batteries, method for producing same, and battery WO2018194176A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880025574.0A CN110537266B (en) 2017-04-20 2018-04-20 Battery packaging material, method for producing same, and battery
JP2019502828A JP6525119B2 (en) 2017-04-20 2018-04-20 Packaging material for battery, method for producing the same, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-083735 2017-04-20
JP2017083735 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018194176A1 true WO2018194176A1 (en) 2018-10-25

Family

ID=63855871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016367 WO2018194176A1 (en) 2017-04-20 2018-04-20 Packaging material for batteries, method for producing same, and battery

Country Status (3)

Country Link
JP (1) JP6525119B2 (en)
CN (1) CN110537266B (en)
WO (1) WO2018194176A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119710A (en) * 2019-01-22 2020-08-06 大日本印刷株式会社 Power storage device, exterior member for power storage device, power storage device aggregate, electrically-driven automobile and manufacturing method of power storage device
JP2020119709A (en) * 2019-01-22 2020-08-06 大日本印刷株式会社 Power storage device, exterior member for power storage device, power storage device aggregate, electrically-driven automobile and manufacturing method of power storage device
JP2020140775A (en) * 2019-02-26 2020-09-03 Dic株式会社 Battery packaging film and battery
US11384337B2 (en) 2018-04-27 2022-07-12 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
JP7435471B2 (en) 2018-12-28 2024-02-21 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, and power storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098628A (en) * 2005-09-30 2007-04-19 Panac Co Ltd Laminated film for minute boring
JP2011216356A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Packaging material for electrochemical cell, and electrochemical cell using the same
JP2012212544A (en) * 2011-03-31 2012-11-01 Dainippon Printing Co Ltd Packaging material for electrochemical cell
JP2015176764A (en) * 2014-03-14 2015-10-05 凸版印刷株式会社 Exterior material for power storage device
JP2017001401A (en) * 2016-09-26 2017-01-05 三菱樹脂株式会社 Laminate film
JP2017069000A (en) * 2015-09-29 2017-04-06 東洋インキScホールディングス株式会社 Packaging material for power storage device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228360B2 (en) * 2007-04-12 2013-07-03 ソニー株式会社 Battery pack
JP4539742B2 (en) * 2008-03-18 2010-09-08 Tdk株式会社 Electrochemical devices
KR101395497B1 (en) * 2011-12-05 2014-05-14 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing apparatus for electrical device with film covering
JP6366964B2 (en) * 2014-03-13 2018-08-01 昭和電工パッケージング株式会社 Exterior material for electrochemical device and electrochemical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098628A (en) * 2005-09-30 2007-04-19 Panac Co Ltd Laminated film for minute boring
JP2011216356A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Packaging material for electrochemical cell, and electrochemical cell using the same
JP2012212544A (en) * 2011-03-31 2012-11-01 Dainippon Printing Co Ltd Packaging material for electrochemical cell
JP2015176764A (en) * 2014-03-14 2015-10-05 凸版印刷株式会社 Exterior material for power storage device
JP2017069000A (en) * 2015-09-29 2017-04-06 東洋インキScホールディングス株式会社 Packaging material for power storage device
JP2017001401A (en) * 2016-09-26 2017-01-05 三菱樹脂株式会社 Laminate film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384337B2 (en) 2018-04-27 2022-07-12 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11866688B2 (en) 2018-04-27 2024-01-09 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
JP7435471B2 (en) 2018-12-28 2024-02-21 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2020119710A (en) * 2019-01-22 2020-08-06 大日本印刷株式会社 Power storage device, exterior member for power storage device, power storage device aggregate, electrically-driven automobile and manufacturing method of power storage device
JP2020119709A (en) * 2019-01-22 2020-08-06 大日本印刷株式会社 Power storage device, exterior member for power storage device, power storage device aggregate, electrically-driven automobile and manufacturing method of power storage device
JP7225825B2 (en) 2019-01-22 2023-02-21 大日本印刷株式会社 Power storage device, exterior member for power storage device, power storage device assembly, electric vehicle, and method for manufacturing power storage device
JP7225826B2 (en) 2019-01-22 2023-02-21 大日本印刷株式会社 Power storage device, exterior member for power storage device, power storage device assembly, electric vehicle, and method for manufacturing power storage device
JP2020140775A (en) * 2019-02-26 2020-09-03 Dic株式会社 Battery packaging film and battery
JP7243287B2 (en) 2019-02-26 2023-03-22 Dic株式会社 Battery packaging films and batteries

Also Published As

Publication number Publication date
JP6525119B2 (en) 2019-06-05
CN110537266B (en) 2022-06-17
JPWO2018194176A1 (en) 2019-06-27
CN110537266A (en) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2018194176A1 (en) Packaging material for batteries, method for producing same, and battery
EP3188278B1 (en) Packaging material for battery
WO2015083657A1 (en) Battery-packaging material
WO2017209218A1 (en) Battery packaging material, production method therefor, battery, and polyester film
WO2017131155A1 (en) Packaging material and cell
JP7238403B2 (en) BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY
JP7205547B2 (en) Aluminum alloy foil, exterior material for power storage device, method for producing the same, and power storage device
JP6579279B2 (en) Battery packaging material, manufacturing method thereof, and battery
WO2016047389A1 (en) Battery packaging material
JP6555454B1 (en) Battery packaging material, manufacturing method thereof, battery and aluminum alloy foil
WO2017188445A1 (en) Battery packaging material and battery
JP7104136B2 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP7104137B2 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP6769581B2 (en) Packaging materials for power storage devices, power storage devices, and methods for manufacturing them.
WO2016047416A1 (en) Batrery packaging material
JP6690800B1 (en) Power storage device exterior material, manufacturing method thereof, and power storage device
JP2016072211A (en) Battery packaging material
JP2016072211A5 (en)
JP2016162558A (en) Packaging material for battery and battery
US20230223620A1 (en) Outer packaging for electrical storage devices, method for manufacturing said outer packaging, and electrical storage device
JP6596870B2 (en) Method for producing molded body for battery packaging material
WO2021215538A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device
WO2023042885A1 (en) Exterior material for power storage device, production method therefor, film, and power storage device
JP2022078059A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2021182550A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502828

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788007

Country of ref document: EP

Kind code of ref document: A1