WO2018194003A1 - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
WO2018194003A1
WO2018194003A1 PCT/JP2018/015635 JP2018015635W WO2018194003A1 WO 2018194003 A1 WO2018194003 A1 WO 2018194003A1 JP 2018015635 W JP2018015635 W JP 2018015635W WO 2018194003 A1 WO2018194003 A1 WO 2018194003A1
Authority
WO
WIPO (PCT)
Prior art keywords
trunnion
roller
continuously variable
variable transmission
shaft
Prior art date
Application number
PCT/JP2018/015635
Other languages
French (fr)
Japanese (ja)
Inventor
平岩 一美
Original Assignee
株式会社Finemech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Finemech filed Critical 株式会社Finemech
Priority to JP2019513620A priority Critical patent/JPWO2018194003A1/en
Publication of WO2018194003A1 publication Critical patent/WO2018194003A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces

Definitions

  • the present invention relates to a toroidal type continuously variable transmission (CVT), and more particularly to a continuously variable transmission using a double roller traction drive.
  • CVT continuously variable transmission
  • the control member for changing the transmission ratio is arranged on the outer side in the radial direction of the input disk and the output disk.
  • it has a problem that it is limited.
  • an object of the present invention is to provide a continuously variable transmission in which a control member is disposed within the outer diameter of an input disk and an output disk, the manufacturing cost is low, and the applicability to a vehicle such as a bicycle is improved. There is.
  • a continuously variable transmission according to the present invention is disposed between an input disk connected to an input shaft, an output disk connected to an output shaft, and an input disk and an output disk, each including a first roller and a second roller.
  • a plurality of trunnions that rotatably support the first roller and the second roller are provided.
  • the first roller of each trunnion forms a first friction surface that contacts the first toroidal surface formed on the input disk at point A
  • the first roller and the second roller of each trunnion contact each other at point B.
  • Two friction surfaces are formed, and the second roller of each trunnion forms a first friction surface that abuts at a point C on a second toroidal surface formed on the output disk.
  • points A, B and C The points are arranged so as to be aligned substantially in a straight line.
  • a fixed shaft coaxial with the input disk and the output disk is disposed at the center.
  • Each trunnion is supported in a tiltable manner by a stator provided integrally with the fixed shaft, and the control shaft provided within the outer diameter of the input disk and the output disk is rotated coaxially with the fixed shaft, so that point A
  • the trunnion is tilted by changing the point C and the point B in the radial direction around the point B.
  • each trunnion is configured to be tiltable by rotating the control shaft and to be twisted about the B point.
  • the guide sleeve further includes a guide sleeve provided radially inward of each trunnion.
  • the guide sleeve has a guide groove or a guide protrusion on an outer peripheral surface, and the protrusions or holes provided radially inward of the plurality of trunnions.
  • the guide groove of the guide sleeve is a helical groove
  • the guide sleeve is fixed to a fixed shaft so as not to move in the axial direction, and is configured to rotate with the control shaft in the circumferential direction.
  • the guide sleeve and the control shaft are connected to each other via a helical spline, and the control shaft or an intermediate portion provided between the control shaft and the guide sleeve by the thrust generated in the helical spline by the torque that drives the guide sleeve. It is also preferable that the member is configured to move in the axial direction to twist each trunnion.
  • Protrusions are provided at positions away from point B in both the radial direction and circumferential direction in each trunnion, and a shifter connected to the control shaft by a helical spline is provided outside the control shaft in the radial direction. It is also preferable that each trunnion is tilted and / or twisted by pressing the protrusion in the axial direction when the shifter moves in the axial direction by rotation.
  • a thrust sleeve is provided radially outside the input disk and the output disk, and the thrust sleeve is configured to receive an axial load acting between the input disk and the output disk.
  • a hub shell constituting the output shaft is provided, and the hub shell and a cover integrated with the hub shell are arranged so as to surround the input disk and the output disk.
  • a control shaft is provided within the outer diameter of the input disk and the output disk, and the trunnion can be tilted by rotating the control shaft.
  • the continuously variable transmission of the present invention can constitute a compact continuously variable transmission centering on a fixed shaft, it can be applied to a bicycle or the like at a low cost.
  • FIG. 3 is a cross-sectional view showing a main part of the continuously variable transmission according to the first embodiment of the present invention, and is a cross-sectional view taken along the line EE of FIG. It is the external view which looked at the principal part of the continuously variable transmission which concerns on embodiment of FIG. 1 from the right direction. It is sectional drawing which shows the other operating state of a part of continuously variable transmission which concerns on embodiment of FIG. It is operation
  • FIG. 10 is a cross-sectional view showing a main part of a continuously variable transmission according to a third embodiment of the present invention, and is a cross-sectional view taken along the line FF of FIG.
  • FIG. 7 is a cross-sectional view of a main part of the continuously variable transmission according to the embodiment of FIG. 6, and is a cross-sectional view along the line GG of FIG. 6. It is sectional drawing which showed the principal part of the continuously variable transmission which concerns on the 4th Embodiment of this invention. It is sectional drawing which showed the principal part of the continuously variable transmission which concerns on the 5th Embodiment of this invention. It is a skeleton figure of the continuously variable transmission which concerns on the 6th Embodiment of this invention.
  • FIG. 1 shows a main part of the continuously variable transmission according to the first embodiment of the present invention in a section taken along line EE of FIG.
  • FIG. 2 shows an external view of the main part of the continuously variable transmission of FIG. 1 as viewed from the right.
  • FIG. 2 is shown with the input disk 20, the control shaft 12, the guide sleeve 38, the intermediate member 44, and the like to be described later removed.
  • FIG. 3 shows a cross section of a part of the continuously variable transmission of FIG. 1, in which the upper side from the center of the shaft is depicted with the gear ratio changed.
  • FIG. 4 illustrates the operation when changing the gear ratio described later.
  • the first embodiment relates to a small toroidal type automatic transmission provided in a hub shell portion of a driving wheel of a bicycle.
  • a hub shaft 1 constitutes a fixed shaft of the present invention, and both ends thereof are fixed to a frame 2 such as a bicycle.
  • the continuously variable transmission of the present invention is configured around the hub shaft 1.
  • the input shaft 10 is supported by a bearing 10a via a control shaft 12 with respect to the hub shaft 1, and is configured integrally with a sprocket 10b driven by a chain (not shown).
  • the details of the control shaft 12 rotatably supported by the hub shaft 1 will be described later.
  • the hub shell 14 constitutes an output shaft of the present invention, is integrally formed with the cover 16, is rotatably supported by the hub shaft 1 by a bearing 14a, and is also supported by the input shaft 10 on the bearing 16a. It is supported rotatably by.
  • flanges 14 d having a plurality of holes 14 c that engage with the spokes 3 are formed on both sides in the axial direction on the outer periphery of the hub shell 14.
  • the spoke 3 is drawn only in one place of the engaging part in FIG. Although not shown, the spoke 3 constitutes a part of a bicycle wheel (drive wheel).
  • an oil seal or the like is provided between the hub shaft 1, the input shaft 10, the control shaft 12, the hub shell 14, and the cover 16 as necessary.
  • the oil-tight member is provided so that hydraulic oil, which will be described later, leaks from the inside of the continuously variable transmission to the outside, and conversely, foreign matter enters from the outside to the inside.
  • a first roller 24 and a second roller 26 are provided between an input disk 20 connected to the input shaft 10 and an output disk 22 disposed opposite to the hub disk 14 and connected to the hub shell 14. It has been.
  • the first roller 24 and the second roller 26 are configured to contact the input disk 20 and the output disk 22, respectively.
  • the input disk 20 is connected to the input shaft 10 with a loading mechanism 28 interposed therebetween.
  • the loading mechanism 28 is configured to generate a thrust according to the transmission torque from the input shaft 10 to the input disk 20, and by this thrust, the input disk 20 moves leftward in FIG. 1, that is, the first roller 24. It is pressed in the direction of Further, a spring 30 is provided between the input disk 20 and the input shaft 10, and the input disk 20 is always pressed with a constant thrust in the left direction in FIG. 1.
  • a first toroidal surface 20 a is formed on the left side surface of the input disk 20 in FIG. 1, and the first toroidal surface 20 a is in contact with the first roller 24.
  • An output disk 22 disposed opposite to the input disk 20 is connected to the hub shell 14 via a one-way clutch 32.
  • the one-way clutch 32 is a so-called free wheel used for a general bicycle. This freewheel transmits drive torque in the direction of advancing the bicycle from the output disk 22 to the hub shell 14, but the reverse is free.
  • a second toroidal surface 22 a facing the input disc 20 is formed on the right side surface of the output disc 22 in FIG. 1, and the second toroidal surface 22 a is in contact with the second roller 26.
  • the 1st toroidal surface 20a and the 2nd toroidal surface 22a have the cross-sectional shape comprised by the circular arc centering on the B point mentioned later.
  • the first roller 24 and the second roller 26 have the same shape, and when the hub shaft 1 side is the radially inner side and the opposite side is the radially outer side, the first roller 24 and the second roller 26
  • the radially inner side constitutes first friction surfaces 24a and 26a having cross-sectional shapes along the arcs of the first toroidal surface 20a and the second toroidal surface 22a, respectively.
  • the radially outer sides of the first roller 24 and the second roller 26 constitute conical second friction surfaces 24b and 26b, respectively, so that the first roller 24 and the second roller 26 are in contact with each other to transmit power. .
  • the center of contact between the first toroidal surface 20a of the input disk 20 and the first friction surface 24a of the first roller 24 is point A
  • the second friction surface 24b of the first roller 24 and the second of the second roller 26 are second.
  • the center of the contact point with the friction surface 26b is defined as point B
  • the center of the contact point between the second toroidal surface 22a of the output disk 22 and the first friction surface 26a of the second roller 26 is defined as point C.
  • the straight line L in FIG. 1 the three points A, B, and C are aligned on a straight line.
  • the gear ratio is changed, the radial positions of the points A and C change, but the position of the point B is unchanged, and the fact that these three points are aligned is basically unchanged. .
  • the input disk 20 and the output disk 22 are connected by a thrust sleeve 34. That is, the thrust sleeve 34 is configured to receive the thrust of the input shaft 10 via the bearing 34a on the right side in FIG. 1 and to transmit the thrust to the output disk 22 by the left snap ring 34b in FIG. . For this reason, the thrust corresponding to the transmission torque generated by the loading mechanism 28 is transmitted to the output disk 22 via the first roller 24 and the second roller 26 on the one hand and to the output disk 22 via the thrust sleeve 34 on the other hand. Acting on 22 cancels each other out.
  • the thrust according to the transmission torque basically does not act other than these.
  • the bearing 15 is disposed between the output disk 22 and the hub shell 14, the thrust described above does not act on the bearing 15.
  • the trunnion 36 that rotatably supports the first roller 24 and the second roller 26 is configured such that the second friction surface 24b of the first roller 24 and the second friction surface 26b of the second roller 26 are in contact with each other.
  • the roller 24 and the second roller 26 are supported.
  • the trunnion 36 has a protrusion 36a on the radially inner side, and this protrusion 36a is engaged with a helical groove 38a of a guide sleeve 38 to be described later.
  • the trunnion 36 has a first pin 36b and a second pin 36c extending in the left and right directions in the circumferential direction, and the center lines of the first pin 36b and the second pin 36c are also shown in FIG. It passes the point B shown.
  • the circumferential tip 36d of the first pin 36b and the circumferential tip 36e of the second pin 36c are configured to be a part of a spherical surface centered at point B, and abut against a stator 40 described later.
  • three sets of the trunnion 36, the first roller 24, and the second roller 26 (FIG. 1) are arranged at equal intervals in the circumferential direction.
  • the stator 40 supports the first pin 36b and the second pin 36c so that the trunnion 36 can be tilted and twisted as will be described later. That is, a total of six grooves 40a with which the tip portions of the first pin 36b and the second pin 36c are engaged are formed, and the tip 40d and the second pin in the circumferential direction of the first pin 36b are formed in these grooves 40a. A bottom surface 40b is formed on which the circumferential tip 36e of 36c abuts.
  • the stator 40 has three support pins 40d for supporting a control lever 42, which will be described later, and a check groove 40e for positioning the control lever 42.
  • FIG. 3 shows a state in which the posture of the trunnion 36 is tilted most with respect to the state of FIG.
  • FIG. 4 schematically shows the first roller 24 and the second roller 26 sandwiched between the first toroidal surface 20a and the second toroidal surface 22a as viewed from the outer side in the circumferential direction.
  • the solid line shows a state where a straight line L connecting the points A and C is parallel to the center line of the input shaft 10, and the broken line is a slight amount of the straight line L counterclockwise around the B point. Shows the rotated state.
  • the posture change of the trunnion 36 that moves with the rotation of the straight line L is defined as “twist”.
  • the control shaft 12 and the guide sleeve 38 provided outside the hub shaft 1 can rotate in the circumferential direction, but cannot move because they are integrated with the hub shaft 1 in the axial direction. That is, the stator 40, the control shaft 12, and the guide sleeve 38 are arranged in the axial direction so as to sandwich the flange portion 1a formed on the hub shaft 1, and these shafts are disposed by the washers 12a and 38b and the snap rings 12b, 38c, and 40c. Directional movement is restricted.
  • Three helical grooves 38a are formed on the outer circumferential surface of the guide sleeve 38, and the projections 36a of the trunnion 36 are engaged with the helical grooves 38a as described above. Therefore, the tilt of the trunnion 36 and the rotation of the guide sleeve 38 are basically linked. Note that the shapes of both the helical groove 38a and the protrusion 36a are appropriately formed so that they are in surface contact as much as possible.
  • Three notches 38d are formed at both ends of the outer circumferential surface of the guide sleeve 38, and these notches 38d are configured to serve as stoppers when the trunnion 36 is tilted to the maximum extent. ing.
  • the trunnion 36 and the guide sleeve 38 are shown in a slightly separated state. However, as the tilting further proceeds, the trunnion 36 comes into contact with the guide sleeve 38.
  • the guide sleeve 38 also has a function of always aligning the tilt angles of the three trunnions 36.
  • a control arm 12c is provided integrally with the control shaft 12 at the right end in FIG. 1 of the control shaft 12, and the control shaft 12 can be rotated by manual operation of a cyclist or operation of an actuator (not shown). It is configured as follows.
  • the control arm 12c may be a pulley or a gear.
  • An intermediate member 44 is interposed between the control shaft 12 and the guide sleeve 38 to transmit the rotation of the control shaft 12 to the guide sleeve 38. That is, helical splines 12d and 44a and helical splines 44b and 38e are formed between the control shaft 12 and the intermediate member 44, and between the intermediate member 44 and the guide sleeve 38, respectively.
  • One or both of the helical splines 12d and 44a and the helical splines 44b and 38e function as a helical spline. For this reason, in the process in which the rotation operation of the control shaft 12 is transmitted to the guide sleeve 38, the thrust (thrust) generated by these helical splines acts to move the intermediate member 44 in the axial direction.
  • a groove 44c is formed in the intermediate member 44, and the end portion 42a of the control lever 42 described above is engaged with the groove 44c.
  • three control levers 42 are arranged, and when these end portions 42a move along with the movement of the intermediate member 44, the control lever 42 slightly swings around the support pin 40d.
  • a ball 42 c provided in a hole 42 b formed in the control lever 42 is pressed by a spring 42 d and locked in a check groove 40 e of the stator 40. Therefore, when the control lever 42 swings, the ball 42c moves slightly against the tension of the spring 42d.
  • the control lever 42 is formed with a first cam 42e and a second cam 42f on both sides in the circumferential direction, respectively.
  • the first cam 42e and the second cam 42f are described above by the swinging of the control lever 42. It acts to press one of the first pin 36b and the second pin 36c of the trunnion 36 and to release the other from the pressing. That is, the first cam 42e and the second cam 42f have shapes opposite to each other in the circumferential direction, and are configured to perform actions opposite to each other when the control lever 42 swings. In FIG.
  • the first pin 36b when viewed from the center of one trunnion 36, the first pin 36b is configured such that the first cam 42e of the control lever 42 adjacent to the left in the circumferential direction in the drawing is in contact with the second pin 36c.
  • the second cam 42f of the control lever 42 adjacent to the right in the circumferential direction is configured to abut. Since the control levers 42 adjacent to each other in the circumferential direction swing in the same direction, the trunnion 36 is twisted between the first pin 36b and the second pin 36c of one trunnion 36 by the first cam 42e or the second cam 42f. Pressed or released from the press. The direction of the torsion is determined depending on whether the axial movement of the intermediate member 44 is the right side or the left side in FIG.
  • the continuously variable transmission shown in FIG. 1 can include various sensors, a controller, and the like, and the following operations may be automatically performed based on instructions from the controller.
  • the continuously variable transmission according to the first embodiment uses appropriate hydraulic oil that also serves as a lubricant.
  • the rotation direction in the following description indicates a case when viewed from the right side in FIG. 1, that is, when viewed from the input shaft 10 side.
  • the input disk 20 rotates the first roller 24 clockwise.
  • the input disk 20 obtains the thrust corresponding to the driving torque of the input shaft 10 together with the urging force of the spring 30 from the loading mechanism 28, so that the first toroidal surface 20 a changes the first friction surface 24 a of the first roller 24.
  • the first roller 24 is rotated while being pressed in the left direction.
  • the first roller 24 transmits the thrust received from the input disk 20 from the second friction surface 24b to the second friction surface 26b of the second roller 26, thereby rotating the second roller 26 counterclockwise.
  • the second roller 26 transmits the thrust received from the first roller 24 from the first friction surface 26a to the second toroidal surface 22a of the output disk 22, thereby rotating the output disk 22 clockwise.
  • the output disk 22 drives the hub shell 14, which is also an output shaft, via the one-way clutch 32 to rotate clockwise (forward direction).
  • the gear ratio at this time (the rotational speed of the input disk 20 / the rotational speed of the output disk 22) is Rc / Ra, where Ra is the radius of point A and Rc is the radius of point C.
  • the state shown in FIG. 1 is the value with the smallest speed ratio, that is, the acceleration state. However, when the trunnion 36 is tilted as shown in FIG. 3, the value with the largest speed ratio, that is, the deceleration state is obtained. It becomes.
  • the control shaft 12 is rotated by operating the control arm 12c.
  • the rotation of the control shaft 12 causes the guide sleeve 38 to rotate via the intermediate member 44, thereby driving the protrusion 36 a engaged with the helical groove 38 a of the guide sleeve 38, and the trunnion 36 is connected to the first pin 36 b and It tilts around the central axis of the second pin 36c, that is, around the point B.
  • the driving torque of the input shaft 10 is small, the trunnion 36 can be easily tilted.
  • the point A of the first roller 24 and the C of the second roller 26 Since the pressing force acting on the point increases, a large force is required to tilt the trunnion 36.
  • the straight line L connecting the points A, B, and C is parallel to the center line of the input shaft 10 as described above.
  • the ball 42c pushed by 42d is in a state of being locked in the check groove 40e.
  • the moment that tilts the trunnion 36 with the torque transmission from the input disk 20 to the output disk 22 does not act.
  • the contact point between the input disk 20 and the first roller 24, and the output disk 22 and the second roller At the contact point 26, moments for tilting the trunnion 36 act, that is, the trunnion 36 tilts due to the transmission torque from the input disk 20 to the output disk 22.
  • the direction of tilting of the trunnion 36 is determined by the direction of twisting of the trunnion 36, the twisting direction of the helical groove 38a of the guide sleeve 38 and the first cam 42e and the second cam 42f of the control lever 42 are determined.
  • the gear ratio is changed in the direction aimed by the rotation operation of the control shaft 12, and when the target gear ratio is reached, twisting is stopped and the change in the gear ratio is stopped. That is, the rotation angle of the control shaft 12 and the gear ratio can be controlled in correspondence.
  • the control member such as the control shaft 12 can be disposed within the outer diameter range of the input disk and the output disk. It can be applied to a step transmission. Furthermore, the continuously variable transmission according to the first embodiment has a simple structure as a whole, and can reduce the manufacturing cost as well as the weight and size.
  • the bearing 34a on which thrust for power transmission acts has the basic advantage that the power transmission efficiency is high with little loss due to rotation because the input shaft 10 and the output disk 22 are in the same rotational direction. And according to 1st Embodiment, while being able to change a gear ratio steplessly according to the will of a cyclist, control of a gear ratio and detection of a gear ratio can be performed only by rotation of the control shaft 12. Therefore, it has desirable characteristics as a continuously variable transmission for bicycles.
  • FIG. 5 shows a cross section corresponding to FIG. 1 of a continuously variable transmission according to the second embodiment of the present invention.
  • the description will focus on the parts that are different from the configuration of the continuously variable transmission according to the first embodiment, and the components that are substantially the same as the configuration of the continuously variable transmission according to the first embodiment are denoted by the same reference numerals. A description thereof will be omitted.
  • control shaft 12 and the intermediate member 44 in the continuously variable transmission of the first embodiment are integrally configured. It is that. That is, the control shaft 12 is formed with a groove 12e for engaging the control lever 42.
  • the control shaft 12 and the guide sleeve 38 are connected by the helical splines 12d and 38e, and the control shaft 12 itself is axially connected. It is configured to be slightly movable left and right. Other configurations are the same as those in the first embodiment.
  • the operation and effect of the continuously variable transmission according to the second embodiment are basically the same as those of the first embodiment. However, as described above, when the speed ratio is changed, only the control shaft 12 itself moves slightly in the axial direction. In the second embodiment, in addition to the above-described effects of the first embodiment, an effect that the structure is simpler than that of the first embodiment can be obtained.
  • FIG. 6 shows a main part of a continuously variable transmission according to the third embodiment of the present invention in a section taken along line FF in FIG.
  • FIG. 7 shows a main part of the continuously variable transmission of FIG. 6 in a section taken along the line GG of FIG.
  • the description will focus on the parts that are different from the configuration of the continuously variable transmission according to the first embodiment, and the components that are substantially the same as the configuration of the continuously variable transmission according to the first embodiment are denoted by the same reference numerals. A description thereof will be omitted.
  • the first difference between the third embodiment and the first embodiment is that the configuration between the control shaft 12 and the guide sleeve 38 is different.
  • the second difference is that there are four sets of trunnions 36 including the first roller 24 and the second roller 26.
  • the trunnion 36 is represented in a tilted state where the straight line L is parallel to the input shaft 10, but the configuration of the other parts is represented in the same manner as in FIG. 1.
  • the third embodiment differs from the continuously variable transmission according to the first embodiment in that a hole 36g is formed in the trunnion 36 instead of the projection 36a in the first embodiment, and the hole 36g
  • the guide protrusion 38f of the guide sleeve 38 is engaged.
  • the guide sleeve 38 is configured to be freely movable in the axial direction. Therefore, the function of the guide sleeve 38 is to keep the tilt angles of the four trunnions 36 the same.
  • the control shaft 12 is provided between the hub shaft 1 and the input shaft 10 and is configured to be capable of only rotating operation without moving in the axial direction.
  • the control shaft 12 and the intermediate member 44 (corresponding to the shifter of the present invention) are connected to each other by helical splines 12d and 44a, and the intermediate member 44 can be moved in the axial direction when the control shaft 12 rotates. It is configured.
  • An operation arm 44d is formed on the radially outer side of the intermediate member 44, and a tip end portion 44e is formed on the radially outer side of the operation arm 44d. As shown in FIG. 7, four tip portions 44e of the operation arm 44d are formed along the circumferential direction.
  • the tip portions 44e engage with the guide grooves 40f of the stator 40, and the intermediate member 44 does not rotate. It is configured as follows. In FIG. 7, all of the tip portions 44e of the four operation arms 44d are engaged with the guide groove 40f, but may be engaged at only one place.
  • An operation groove 44g is formed in the operation arm 44d, and the operation groove 44g is engaged with an arm 36h (corresponding to the protrusion of the present invention) of the trunnion 36.
  • the contact point between the operation groove 44g and the arm 36h is offset from the point B in both the radial direction and the circumferential direction. Therefore, when the intermediate member 44 moves in the axial direction, both the tilting and twisting forces act on the trunnion 36.
  • a recess 36f is formed in the tip surface of the second pin 36c of the trunnion 36, and the recess 36f is provided in a hole 40g formed in the bottom surface 40b of the groove 40a of the stator 40 and is pressed by a spring 40h.
  • the ball 40i is engaged.
  • the functions of the recess 36f and the ball 40i are the same as the functions of the check groove 40e and the ball 42c in the continuously variable transmission according to the first embodiment.
  • Other configurations of the continuously variable transmission of the third embodiment are the same as those of the first embodiment.
  • the control system is different except that there are four sets of trunnions 36 including the first roller 24 and the second roller 26.
  • the control systems will be described.
  • the intermediate member 44 moves in the axial direction and presses the arm 36h of the trunnion 36 in the axial direction, so that the trunnion 36 is tilted and twisted. Since the tilt angles of the four trunnions 36 are aligned by the operation of the guide sleeve 38, the four trunnions 36 inevitably operate with the same twist angle. Therefore, although the configuration is different, the point that the trunnion 36 performs both tilting and twisting operations by the rotation of the control shaft 12 is the same as in the case of the first embodiment. Since other operations in the third embodiment are basically the same as those in the first embodiment, description thereof will be omitted.
  • the effect of the continuously variable transmission according to the third embodiment is basically the same as that of the first embodiment.
  • the number of sets of the first roller 24 and the second roller 26 is as many as four, if the transmission torque is the same, the size can be reduced as compared with the case of the first embodiment.
  • FIG. 8 shows a cross section corresponding to FIG. 1 of a continuously variable transmission according to a fourth embodiment of the present invention.
  • parts different from the configuration of the continuously variable transmission according to the first embodiment and the third embodiment will be mainly described, and the substantially same parts as those of the continuously variable transmission are denoted by the same reference numerals. The description is omitted.
  • the difference between the fourth embodiment and the first and third embodiments is that the configuration between the control shaft 12 and the trunnion 36 is different. That is, in the fourth embodiment, there are three sets of trunnions 36 including the first roller 24 and the second roller 26.
  • the straight line L is represented by the tilted state of the trunnion 36 parallel to the input shaft 10, but the configuration of the other parts is represented in the same manner as in FIG. 1.
  • a gear 12f is coaxially formed on the control shaft 12, and the gear 12f meshes with a gear 46a of a screw 46 provided rotatably on the stator 40. ing. Since the screw 46 is regulated by the stator 40, it does not move in the axial direction.
  • a helical spline 46 b is formed on the screw 46, and this helical spline 46 b is engaged with the helical spline 48 a of the nut 48.
  • the front end portion 48b of the nut 48 is engaged with the guide groove 40f of the stator 40, and is configured to be movable in the axial direction.
  • three sets of screws 46 and nuts 48 are provided in the same manner as the trunnion 36.
  • the groove 48c formed in the nut 48 is engaged with the arm 36h of the trunnion 36 as in the case of the third embodiment. Accordingly, the screw 46 is rotated together with the rotation of the control shaft 12, the nut 48 is moved in the axial direction by the action of the helical spline 46b and the helical spline 48a, and the trunnion 36 is tilted and twisted as in the case of the third embodiment. To do.
  • the operation of the continuously variable transmission according to the fourth embodiment is that the difference between the configuration of the fourth embodiment and the configuration of the third embodiment is that the rotation of the control shaft 12 is tilted and twisted. This is basically the same as the operation of the third embodiment because only the configuration of the portion to be transmitted to is different. Therefore, detailed description regarding the operation is omitted. Moreover, since the effect of the continuously variable transmission according to the fourth embodiment is basically the same as that of the first embodiment, description thereof is omitted.
  • FIG. 9 shows a cross section corresponding to FIG. 1 of a continuously variable transmission according to a fifth embodiment of the present invention.
  • the description will focus on parts that are different from the configuration of the continuously variable transmission according to the first embodiment, and parts that are substantially the same as the configuration of the continuously variable transmission are denoted by the same reference numerals and description thereof is omitted. .
  • the thrust sleeve 34 that connects the input disk 20 and the output disk 22 in the first embodiment is provided in the fifth embodiment. It is not. Accordingly, the thrust generated by the loading mechanism 28 is transmitted to the hub shell 14 via the bearing 34a and the cover 16, and further transmitted from the hub shell 10 to the output disk 22 via the bearing 15, and from the output disk 22 to the second roller 26 and By acting on the input disk 20 via the first roller 24, they cancel each other and cancel each other.
  • the operation of the continuously variable transmission according to the fifth embodiment is different from the configuration of the fifth embodiment and the configuration of the first embodiment in that the configuration of the circulation path of the thrust generated by the loading mechanism 28 is the same. Since only the difference is made and there is no difference in the operation of the continuously variable transmission, the detailed description regarding the operation is omitted.
  • FIG. 10 shows the framework of a continuously variable transmission according to the sixth embodiment of the present invention, and only the upper half of the axial center of the main part corresponding to FIG. 1 is shown. Although details of the control system and the like are not shown, they are basically the same as those in the first embodiment. Here, the description will focus on parts that are different from the configuration of the continuously variable transmission according to the first embodiment, and description of substantially the same parts as those of the continuously variable transmission will be omitted.
  • the effect of the continuously variable transmission according to the sixth embodiment is the same as that of the first embodiment, in addition to the effects of the first embodiment, such as a vehicle such as an automobile using an engine as a power source, or a general machine using an electric motor as a power source. It exists in the point which can be used as a continuously variable transmission.
  • the continuously variable transmissions according to the first to sixth embodiments of the present invention can compactly combine the elements of the operation system that change the gear ratio, so that bicycles, automobiles, and the like It can be used as a transmission for general machinery.
  • the configuration is simple, and it is possible to reduce the size and weight, and it is possible to provide at low cost.

Abstract

The purpose of the present invention is to compact a double roller toroidal type continuously variable transmission, including a control member. The continuously variable transmission according to the present invention includes a plurality of trunnions 36 which is disposed between an input disk 20 and an output disk 22 and each of which rotatably supports a first roller 24 and a second roller 26. The first roller 24 of each trunnion 36 forms a first friction surface 24a which is in contact, at a point A, with a first toroidal surface 20a formed on the input disk 20, and the first roller 24 and the second roller 26 of each trunnion 36 form second friction surfaces 24b which are in contact with each other at a point B. The second roller 26 of each trunnion 36 forms a first friction surface 26a which is in contact, at a point C, with the second toroidal surface 22a formed on the output disk 22. The points A, B and C are arranged substantially on a straight line. Each trunnion 36 is tiltably supported by a stator 40 provided integrally with a fixed shaft 1, such that the point A and the point C change radially about the point B, and each trunnion 36 can be tilted by rotating a control shaft 12 provided within the outer diameter of the input disk 20 and the output disk 22.

Description

無段変速機Continuously variable transmission
 本発明は、トロイダル型の無段変速機(CVT)に関し、特に、ダブルローラ式トラクションドライブを用いた無段変速機に関する。 The present invention relates to a toroidal type continuously variable transmission (CVT), and more particularly to a continuously variable transmission using a double roller traction drive.
 この種の無段変速機としては、入力ディスク及び出力ディスクの互いに対向配置されたトロイダル状の曲面に当接する2つのローラが回転自在にトラニオンに支持されて1つのセットを構成し、このローラセットを複数用いて入力ディスク及び出力ディスク間で動力を伝達し、トラニオンが傾転することで無段階の速度比を得るように構成した無段変速機が知られている(例えば、特許文献1)。 As this type of continuously variable transmission, two rollers that contact the toroidal curved surfaces of the input disk and output disk that face each other are rotatably supported by a trunnion to form one set. There is known a continuously variable transmission configured to transmit a power between an input disk and an output disk by using a plurality of gears and to obtain a stepless speed ratio by tilting a trunnion (for example, Patent Document 1). .
 また、このような無段変速機をよりコンパクトな構成とするために、入力ディスク及び出力ディスクの互いに対向配置されたトロイダル状の曲面に当接する2つのローラの一方を他方のローラから得られる反力によってこれらローラの回転軸が支持されかつローラがディスクに接する2点を含む平面内の静止位置に移動するように構成された無段変速機が提案されている(例えば、特許文献2)。 In order to make such a continuously variable transmission more compact, one of the two rollers contacting the toroidal curved surfaces of the input disk and the output disk that are arranged to face each other is obtained from the other roller. There has been proposed a continuously variable transmission configured such that the rotational shafts of these rollers are supported by force and the rollers are moved to a stationary position in a plane including two points in contact with the disk (for example, Patent Document 2).
米国特許第2,595,367号公報U.S. Pat. No. 2,595,367 米国特許第8,827,864号公報U.S. Pat. No. 8,827,864
 しかしながら、特許文献1及び2に記載されているような従来のトロイダル型無段変速機は、入力ディスク及び出力ディスクの径方向外側に制御部材を配置しているため、無段変速機全体の寸法が大きくなり、例えば自転車用の変速機などに適用するのが困難であった。 However, since the conventional toroidal type continuously variable transmissions described in Patent Documents 1 and 2 have control members arranged on the radially outer sides of the input disk and the output disk, the dimensions of the entire continuously variable transmission For example, it has been difficult to apply to a bicycle transmission.
 即ち、従来のトロイダル型無段変速機は、変速比を変化させるための制御部材を入力ディスク及び出力ディスクの径方向外側に配置しているので、変速装置全体の寸法が大きくなり、適用する用途が限定されてしまうという問題点を有していた。 That is, in the conventional toroidal type continuously variable transmission, the control member for changing the transmission ratio is arranged on the outer side in the radial direction of the input disk and the output disk. However, it has a problem that it is limited.
 従って、本発明の目的は、制御部材を入力ディスク及び出力ディスクの外径内に配置すると共に製造コストが安価であり、かつ自転車などの車両への適用性が向上した無段変速機を提供することにある。 Accordingly, an object of the present invention is to provide a continuously variable transmission in which a control member is disposed within the outer diameter of an input disk and an output disk, the manufacturing cost is low, and the applicability to a vehicle such as a bicycle is improved. There is.
 本発明の無段変速機は、入力軸に連結された入力ディスクと、出力軸に連結された出力ディスクと、入力ディスク及び出力ディスク間に配置され、各々が第1ローラ及び第2ローラを含むと共にこれら第1ローラ及び第2ローラを回転自在に支持する、複数のトラニオンとを備えている。各トラニオンの第1ローラは入力ディスクに形成した第1トロイダル面にA点で当接する第1摩擦面を形成しており、各トラニオンの第1ローラ及び第2ローラは互いにB点で当接する第2摩擦面をそれぞれ形成しており、各トラニオンの第2ローラは出力ディスクに形成した第2トロイダル面にC点で当接する第1摩擦面を形成しており、これらA点、B点及びC点がほぼ一直線上に並ぶように構成されている。入力ディスク及び出力ディスクと同軸の固定軸が中心部に配置されている。固定軸と一体的に設けられたステータにより各トラニオンが傾転可能に支持されており、入力ディスク及び出力ディスクの外径内に設けられた制御軸を固定軸と同軸回転させることによって、A点及びC点をB点を中心として径方向に変化させ各トラニオンが傾転するように構成されている。 A continuously variable transmission according to the present invention is disposed between an input disk connected to an input shaft, an output disk connected to an output shaft, and an input disk and an output disk, each including a first roller and a second roller. In addition, a plurality of trunnions that rotatably support the first roller and the second roller are provided. The first roller of each trunnion forms a first friction surface that contacts the first toroidal surface formed on the input disk at point A, and the first roller and the second roller of each trunnion contact each other at point B. Two friction surfaces are formed, and the second roller of each trunnion forms a first friction surface that abuts at a point C on a second toroidal surface formed on the output disk. These points A, B and C The points are arranged so as to be aligned substantially in a straight line. A fixed shaft coaxial with the input disk and the output disk is disposed at the center. Each trunnion is supported in a tiltable manner by a stator provided integrally with the fixed shaft, and the control shaft provided within the outer diameter of the input disk and the output disk is rotated coaxially with the fixed shaft, so that point A In addition, the trunnion is tilted by changing the point C and the point B in the radial direction around the point B.
 各トラニオンを、制御軸を回転させることによって傾転可能とすると共に、B点を中心に捻転可能に構成されていることが好ましい。 It is preferable that each trunnion is configured to be tiltable by rotating the control shaft and to be twisted about the B point.
 各トラニオンの径方向内側に設けられたガイドスリーブをさらに備えており、このガイドスリーブは外周面にガイド溝又はガイド突起を有しており、複数のトラニオンの径方向内側に設けられた突起又は孔が、ガイド溝又はガイド突起に係合するように構成されていることも好ましい。 The guide sleeve further includes a guide sleeve provided radially inward of each trunnion. The guide sleeve has a guide groove or a guide protrusion on an outer peripheral surface, and the protrusions or holes provided radially inward of the plurality of trunnions. However, it is also preferable to be configured to engage with the guide groove or the guide protrusion.
 ガイドスリーブのガイド溝がヘリカル溝であり、ガイドスリーブは軸方向へ移動しないように固定軸に固定されており、周方向には制御軸と共に回転するように構成されていることも好ましい。 It is also preferable that the guide groove of the guide sleeve is a helical groove, the guide sleeve is fixed to a fixed shaft so as not to move in the axial direction, and is configured to rotate with the control shaft in the circumferential direction.
 ガイドスリーブと制御軸とがヘリカルスプラインを介して互いに連結されており、制御軸がガイドスリーブを駆動するトルクによりヘリカルスプラインに生ずる推力によって、制御軸又は制御軸とガイドスリーブとの間に設けた中間部材が、軸方向に移動して各トラニオンを捻転させるように構成されていることも好ましい。 The guide sleeve and the control shaft are connected to each other via a helical spline, and the control shaft or an intermediate portion provided between the control shaft and the guide sleeve by the thrust generated in the helical spline by the torque that drives the guide sleeve. It is also preferable that the member is configured to move in the axial direction to twist each trunnion.
 各トラニオンにおける径方向及び周方向共にB点から離れた位置に突起体が設けられており、制御軸の径方向外側にヘリカルスプラインによって制御軸と連結されたシフタが設けられており、制御軸の回転によってシフタが軸方向に移動する際に、突起体を軸方向に押圧することによって各トラニオンを傾転及び/又は捻転させるように構成されていることも好ましい。 Protrusions are provided at positions away from point B in both the radial direction and circumferential direction in each trunnion, and a shifter connected to the control shaft by a helical spline is provided outside the control shaft in the radial direction. It is also preferable that each trunnion is tilted and / or twisted by pressing the protrusion in the axial direction when the shifter moves in the axial direction by rotation.
 入力ディスク及び出力ディスクの径方向外側に推力スリーブが設けられており、推力スリーブは入力ディスク及び出力ディスク間に作用する軸方向の荷重を受けるように構成されていることも好ましい。 It is also preferable that a thrust sleeve is provided radially outside the input disk and the output disk, and the thrust sleeve is configured to receive an axial load acting between the input disk and the output disk.
 出力軸を構成するハブシェルが設けられており、このハブシェルとハブシェルに一体化されたカバーとが、入力ディスク及び出力ディスクを囲うように配置されていることも好ましい。 It is also preferable that a hub shell constituting the output shaft is provided, and the hub shell and a cover integrated with the hub shell are arranged so as to surround the input disk and the output disk.
 本発明の無段変速機は、入力ディスクと出力ディスクとの外径内に制御軸を設け、この制御軸を回転させることで、トラニオンを傾転可能とした。 In the continuously variable transmission of the present invention, a control shaft is provided within the outer diameter of the input disk and the output disk, and the trunnion can be tilted by rotating the control shaft.
 従って、本発明の無段変速機は、固定軸を中心としたコンパクトな無段変速機を構成することができるので、安価な費用で自転車などに適用することが可能となる。 Therefore, since the continuously variable transmission of the present invention can constitute a compact continuously variable transmission centering on a fixed shaft, it can be applied to a bicycle or the like at a low cost.
本発明の第1の実施形態に係る無段変速機の主要部を示した断面図であり、図2のE-E線に沿った断面図である。FIG. 3 is a cross-sectional view showing a main part of the continuously variable transmission according to the first embodiment of the present invention, and is a cross-sectional view taken along the line EE of FIG. 図1の実施形態に係る無段変速機の要部を右方向から見た外観図である。It is the external view which looked at the principal part of the continuously variable transmission which concerns on embodiment of FIG. 1 from the right direction. 図1の実施形態に係る無段変速機の一部の他の作動状態を示す断面図である。It is sectional drawing which shows the other operating state of a part of continuously variable transmission which concerns on embodiment of FIG. 図1の実施形態に係る無段変速機の作動説明図である。It is operation | movement explanatory drawing of the continuously variable transmission which concerns on embodiment of FIG. 本発明の第2の実施形態に係る無段変速機の主要部を示した断面図である。It is sectional drawing which showed the principal part of the continuously variable transmission which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る無段変速機の主要部を示した断面図であり、図7のF-F線に沿った断面図である。FIG. 10 is a cross-sectional view showing a main part of a continuously variable transmission according to a third embodiment of the present invention, and is a cross-sectional view taken along the line FF of FIG. 図6の実施形態に係る無段変速機の要部の断面図であり、図6のG-G線に沿った断面図である。FIG. 7 is a cross-sectional view of a main part of the continuously variable transmission according to the embodiment of FIG. 6, and is a cross-sectional view along the line GG of FIG. 6. 本発明の第4の実施形態に係る無段変速機の主要部を示した断面図である。It is sectional drawing which showed the principal part of the continuously variable transmission which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る無段変速機の主要部を示した断面図である。It is sectional drawing which showed the principal part of the continuously variable transmission which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る無段変速機のスケルトン図である。It is a skeleton figure of the continuously variable transmission which concerns on the 6th Embodiment of this invention.
 以下、本発明の各実施形態に係る無段変速機について図面を参照して説明する。なお、以下の説明において、「軸方向」、「径方向」、及び「周方向」という表現は、特段の断りがない場合は、ハブ軸の軸方向、ハブ軸の径方向、及びハブ軸の周方向をそれぞれ示している。 Hereinafter, the continuously variable transmission according to each embodiment of the present invention will be described with reference to the drawings. In the following description, the expressions “axial direction”, “radial direction”, and “circumferential direction” are the axial direction of the hub shaft, the radial direction of the hub shaft, and the hub shaft unless otherwise specified. Each circumferential direction is shown.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る無段変速機の主要部を、図2のE-E線に沿った断面で示している。図2は、図1の無段変速機の要部を右方向から見た外観を示している。ただし、図2は、後述の入力ディスク20、制御軸12、ガイドスリーブ38、及び中間メンバ44などを取り外した状態で示されている。また、図3は、図1の無段変速機の一部分の断面を示しており、変速比を変化させた状態で軸中心より上側を描いてある。図4は、後述の変速比を変化させる際の作動を説明している。なお、この第1の実施形態は、自転車の駆動輪のハブシェルの部分に設けられた小型のトロイダル型自動変速機に関する。
(First embodiment)
FIG. 1 shows a main part of the continuously variable transmission according to the first embodiment of the present invention in a section taken along line EE of FIG. FIG. 2 shows an external view of the main part of the continuously variable transmission of FIG. 1 as viewed from the right. However, FIG. 2 is shown with the input disk 20, the control shaft 12, the guide sleeve 38, the intermediate member 44, and the like to be described later removed. FIG. 3 shows a cross section of a part of the continuously variable transmission of FIG. 1, in which the upper side from the center of the shaft is depicted with the gear ratio changed. FIG. 4 illustrates the operation when changing the gear ratio described later. The first embodiment relates to a small toroidal type automatic transmission provided in a hub shell portion of a driving wheel of a bicycle.
 図1において、ハブ軸1は本発明の固定軸を構成しており、その両端部が自転車などのフレーム2に固定されている。このハブ軸1を中心にして本発明の無段変速機が構成されている。入力軸10は、ハブ軸1に対して制御軸12を介してベアリング10aにより支持されていると共に、図示しないチェーンにより駆動されるスプロケット10bと一体的に構成されている。なお、ハブ軸1に回転可能に支持された制御軸12の詳細については後述する。 In FIG. 1, a hub shaft 1 constitutes a fixed shaft of the present invention, and both ends thereof are fixed to a frame 2 such as a bicycle. The continuously variable transmission of the present invention is configured around the hub shaft 1. The input shaft 10 is supported by a bearing 10a via a control shaft 12 with respect to the hub shaft 1, and is configured integrally with a sprocket 10b driven by a chain (not shown). The details of the control shaft 12 rotatably supported by the hub shaft 1 will be described later.
 ハブシェル14は、本発明の出力軸を構成しており、カバー16と一体的に構成されていると共に、ハブ軸1にベアリング14aにより回転自在に支持されており、また、入力軸10にベアリング16aにより回転自在に支持されている。また、ハブシェル14の外周にはスポーク3と係合する複数の孔14cを有するフランジ14dが軸方向の両側に形成されている。なお、スポーク3は、図1では、係合部分の1カ所のみが描かれている。図示は省略されているが、スポーク3は、自転車の車輪(駆動輪)の一部を構成している。また、符号を付しての説明は省略されているが、上述したハブ軸1、入力軸10、制御軸12、ハブシェル14、及びカバー16のそれぞれの間には、必要に応じてオイルシールなどの油密部材が設けられており、無段変速機の内部から後述の作動油が外部に漏れることや、逆に外部から内部への異物の侵入を防ぐように構成されている。 The hub shell 14 constitutes an output shaft of the present invention, is integrally formed with the cover 16, is rotatably supported by the hub shaft 1 by a bearing 14a, and is also supported by the input shaft 10 on the bearing 16a. It is supported rotatably by. In addition, flanges 14 d having a plurality of holes 14 c that engage with the spokes 3 are formed on both sides in the axial direction on the outer periphery of the hub shell 14. In addition, the spoke 3 is drawn only in one place of the engaging part in FIG. Although not shown, the spoke 3 constitutes a part of a bicycle wheel (drive wheel). Although description with reference numerals is omitted, an oil seal or the like is provided between the hub shaft 1, the input shaft 10, the control shaft 12, the hub shell 14, and the cover 16 as necessary. The oil-tight member is provided so that hydraulic oil, which will be described later, leaks from the inside of the continuously variable transmission to the outside, and conversely, foreign matter enters from the outside to the inside.
 ハブシェル14の内部において、入力軸10と連結した入力ディスク20と、これに対向して配置されハブシェル14に連結されている出力ディスク22との間に、第1ローラ24及び第2ローラ26が設けられている。これら第1ローラ24及び第2ローラ26は入力ディスク20及び出力ディスク22とそれぞれ当接するように構成されている。図1に示すように、入力ディスク20は、間にローディング機構28を介在させて入力軸10と連結されている。このローディング機構28は、入力軸10から入力ディスク20への伝達トルクに応じた推力を発生するように構成されており、この推力により、入力ディスク20が図1において左側方向、即ち第1ローラ24の方向へ押圧される。また、入力ディスク20と入力軸10との間にはスプリング30が設けられており、これにより入力ディスク20が図1において左側方向へ常に一定の推力で押圧されている。 Inside the hub shell 14, a first roller 24 and a second roller 26 are provided between an input disk 20 connected to the input shaft 10 and an output disk 22 disposed opposite to the hub disk 14 and connected to the hub shell 14. It has been. The first roller 24 and the second roller 26 are configured to contact the input disk 20 and the output disk 22, respectively. As shown in FIG. 1, the input disk 20 is connected to the input shaft 10 with a loading mechanism 28 interposed therebetween. The loading mechanism 28 is configured to generate a thrust according to the transmission torque from the input shaft 10 to the input disk 20, and by this thrust, the input disk 20 moves leftward in FIG. 1, that is, the first roller 24. It is pressed in the direction of Further, a spring 30 is provided between the input disk 20 and the input shaft 10, and the input disk 20 is always pressed with a constant thrust in the left direction in FIG. 1.
 入力ディスク20の図1において左側面には、第1トロイダル面20aが形成されており、この第1トロイダル面20aは第1ローラ24と接している。入力ディスク20に対向配置された出力ディスク22は、ワンウエイクラッチ32を介してハブシェル14と連結されている。ワンウエイクラッチ32は、一般的な自転車に用いられるフリーホィールと呼ばれものである。このフリーホィールは、出力ディスク22からハブシェル14へ自転車を前進させる方向の駆動トルクを伝達するが、その逆はフリーとなる。 A first toroidal surface 20 a is formed on the left side surface of the input disk 20 in FIG. 1, and the first toroidal surface 20 a is in contact with the first roller 24. An output disk 22 disposed opposite to the input disk 20 is connected to the hub shell 14 via a one-way clutch 32. The one-way clutch 32 is a so-called free wheel used for a general bicycle. This freewheel transmits drive torque in the direction of advancing the bicycle from the output disk 22 to the hub shell 14, but the reverse is free.
 出力ディスク22の図1において右側面には、入力ディスク20に対向する第2トロイダル面22aが形成されており、この第2トロイダル面22aは第2ローラ26と接している。第1トロイダル面20aと第2トロイダル面22aとは、後述するB点を中心とする円弧で構成された断面形状を有している。 A second toroidal surface 22 a facing the input disc 20 is formed on the right side surface of the output disc 22 in FIG. 1, and the second toroidal surface 22 a is in contact with the second roller 26. The 1st toroidal surface 20a and the 2nd toroidal surface 22a have the cross-sectional shape comprised by the circular arc centering on the B point mentioned later.
 第1ローラ24及び第2ローラ26は同じ形状を有しており、ハブ軸1側を径方向内側とすると共にその反対側を径方向外側とした場合、第1ローラ24及び第2ローラ26の径方向内側は、第1トロイダル面20a及び第2トロイダル面22aの円弧に沿った断面形状の第1摩擦面24a及び26aをそれぞれ構成している。第1ローラ24及び第2ローラ26の径方向外側は、第1ローラ24及び第2ローラ26同士が接して動力伝達するように、円錐形状の第2摩擦面24b及び26bをそれぞれ構成している。 The first roller 24 and the second roller 26 have the same shape, and when the hub shaft 1 side is the radially inner side and the opposite side is the radially outer side, the first roller 24 and the second roller 26 The radially inner side constitutes first friction surfaces 24a and 26a having cross-sectional shapes along the arcs of the first toroidal surface 20a and the second toroidal surface 22a, respectively. The radially outer sides of the first roller 24 and the second roller 26 constitute conical second friction surfaces 24b and 26b, respectively, so that the first roller 24 and the second roller 26 are in contact with each other to transmit power. .
 ここで、入力ディスク20の第1トロイダル面20aと第1ローラ24の第1摩擦面24aとの接点の中心をA点、第1ローラ24の第2摩擦面24bと第2ローラ26の第2摩擦面26bとの接点の中心をB点、出力ディスク22の第2トロイダル面22aと第2ローラ26の第1摩擦面26aとの接点の中心をC点とそれぞれ定義する。図1の直線Lに示すように、A、B、及びCの3点は、一直線上に並んでいる。後述するように、変速比を変化させた場合、A点及びC点の径方向位置は変化するが、B点の位置は不変であり、これら3点が一直線に並ぶことは基本的に変化しない。 Here, the center of contact between the first toroidal surface 20a of the input disk 20 and the first friction surface 24a of the first roller 24 is point A, and the second friction surface 24b of the first roller 24 and the second of the second roller 26 are second. The center of the contact point with the friction surface 26b is defined as point B, and the center of the contact point between the second toroidal surface 22a of the output disk 22 and the first friction surface 26a of the second roller 26 is defined as point C. As shown by the straight line L in FIG. 1, the three points A, B, and C are aligned on a straight line. As will be described later, when the gear ratio is changed, the radial positions of the points A and C change, but the position of the point B is unchanged, and the fact that these three points are aligned is basically unchanged. .
 入力ディスク20と出力ディスク22とは、推力スリーブ34で結ばれている。即ち、推力スリーブ34は、図1において右側でベアリング34aを介して入力軸10の推力を受けると共に、その推力は図1において左側のスナップリング34bで出力ディスク22に伝達するように構成されている。このため、前述のローディング機構28で発生する伝達トルクに応じた推力は、一方で第1ローラ24及び第2ローラ26を介して出力ディスク22に伝達され、他方で推力スリーブ34を介して出力ディスク22に作用することにより互いに打ち消し合って相殺される。伝達トルクに応じた推力は基本的にこれら以外に作用することはない。なお、出力ディスク22とハブシェル14との間にベアリング15が配置されているが、このベアリング15にも上述した推力は作用しない。 The input disk 20 and the output disk 22 are connected by a thrust sleeve 34. That is, the thrust sleeve 34 is configured to receive the thrust of the input shaft 10 via the bearing 34a on the right side in FIG. 1 and to transmit the thrust to the output disk 22 by the left snap ring 34b in FIG. . For this reason, the thrust corresponding to the transmission torque generated by the loading mechanism 28 is transmitted to the output disk 22 via the first roller 24 and the second roller 26 on the one hand and to the output disk 22 via the thrust sleeve 34 on the other hand. Acting on 22 cancels each other out. The thrust according to the transmission torque basically does not act other than these. Although the bearing 15 is disposed between the output disk 22 and the hub shell 14, the thrust described above does not act on the bearing 15.
 第1ローラ24及び第2ローラ26を回転自在に支持するトラニオン36は、第1ローラ24の第2摩擦面24bと第2ローラ26の第2摩擦面26bとが互いに当接するようにこれら第1ローラ24及び第2ローラ26を支持している。トラニオン36は、径方向内側に突起36aを有しており、この突起36aは後述するガイドスリーブ38のヘリカル溝38aに係合している。 The trunnion 36 that rotatably supports the first roller 24 and the second roller 26 is configured such that the second friction surface 24b of the first roller 24 and the second friction surface 26b of the second roller 26 are in contact with each other. The roller 24 and the second roller 26 are supported. The trunnion 36 has a protrusion 36a on the radially inner side, and this protrusion 36a is engaged with a helical groove 38a of a guide sleeve 38 to be described later.
 図2に示すように、トラニオン36は周方向左右に伸びる第1ピン36bと第2ピン36cとを有しており、これら第1ピン36b及び第2ピン36cの中心線は、図1にも示すB点を通る。第1ピン36bの周方向の先端36d及び第2ピン36cの周方向の先端36eは、B点を中心とする球面の一部となるように構成されており、後述するステータ40に当接している。なお、図2に示すように、トラニオン36と第1ローラ24と第2ローラ26(図1)とのセットが3つ、周方向に等間隔となるように配置されている。 As shown in FIG. 2, the trunnion 36 has a first pin 36b and a second pin 36c extending in the left and right directions in the circumferential direction, and the center lines of the first pin 36b and the second pin 36c are also shown in FIG. It passes the point B shown. The circumferential tip 36d of the first pin 36b and the circumferential tip 36e of the second pin 36c are configured to be a part of a spherical surface centered at point B, and abut against a stator 40 described later. Yes. 2, three sets of the trunnion 36, the first roller 24, and the second roller 26 (FIG. 1) are arranged at equal intervals in the circumferential direction.
 図1及び図2に示すステータ40は、スナップリング40cによってハブ軸1に固定されている。ステータ40は、トラニオン36の後述する傾転及び捻転が可能となるように第1ピン36b及び第2ピン36cを支持している。即ち、第1ピン36b及び第2ピン36cの先端部が係合する溝40aが計6カ所形成してあり、これら溝40a内には、第1ピン36bの周方向の先端36d及び第2ピン36cの周方向の先端36eがそれぞれ当接する底面40bが形成されている。また、ステータ40は、後述する制御レバー42を支持するための支持ピン40dを3つ有すると共に、制御レバー42の位置決めのためにチェック溝40eを有している。 1 and 2 are fixed to the hub shaft 1 by a snap ring 40c. The stator 40 supports the first pin 36b and the second pin 36c so that the trunnion 36 can be tilted and twisted as will be described later. That is, a total of six grooves 40a with which the tip portions of the first pin 36b and the second pin 36c are engaged are formed, and the tip 40d and the second pin in the circumferential direction of the first pin 36b are formed in these grooves 40a. A bottom surface 40b is formed on which the circumferential tip 36e of 36c abuts. The stator 40 has three support pins 40d for supporting a control lever 42, which will be described later, and a check groove 40e for positioning the control lever 42.
 ここで、前述したA、B、及びCの3点を結んだ直線Lが、B点を中心にA点及びC点の径方向位置が変化する場合のトラニオン36の姿勢変化を「傾転」と定義する。図3は、トラニオン36の姿勢が図1の状態に対して最も大きく傾転した状態を示している。また、図4は、第1トロイダル面20aと第2トロイダル面22aとに挟まれた第1ローラ24及び第2ローラ26について、周方向外側から見た状態を模式的に示している。図4において、実線はA点とC点とを結んだ直線Lが入力軸10の中心線と平行となった状態を示しており、破線は直線LがB点を中心に反時計回りにわずかに回転した状態を示している。なお、図4にはトラニオン36が表されていないが、直線Lの回転と共に動くトラニオン36の姿勢変化を「捻転」と定義する。これらの傾転と捻転は同時に行われることも単独で行われることもあるが、いずれの場合も、ステータ40に支持された第1ピン36bと第2ピン36cとが、溝40a内で、B点を中心に回転移動する。 Here, the straight line L connecting the three points A, B, and C described above “tilts” the posture change of the trunnion 36 when the radial positions of the points A and C change around the point B. It is defined as FIG. 3 shows a state in which the posture of the trunnion 36 is tilted most with respect to the state of FIG. FIG. 4 schematically shows the first roller 24 and the second roller 26 sandwiched between the first toroidal surface 20a and the second toroidal surface 22a as viewed from the outer side in the circumferential direction. In FIG. 4, the solid line shows a state where a straight line L connecting the points A and C is parallel to the center line of the input shaft 10, and the broken line is a slight amount of the straight line L counterclockwise around the B point. Shows the rotated state. Although the trunnion 36 is not shown in FIG. 4, the posture change of the trunnion 36 that moves with the rotation of the straight line L is defined as “twist”. These tilting and twisting may be performed at the same time or independently, but in either case, the first pin 36b and the second pin 36c supported by the stator 40 are formed in the groove 40a with B Rotate around a point.
 ハブ軸1の外側に設けられている前述した制御軸12及びガイドスリーブ38は、周方向へは回転可能であるが、軸方向へはハブ軸1と一体化されているので移動不能である。即ち、ハブ軸1に形成した鍔部1aを挟むようにステータ40と制御軸12とガイドスリーブ38とが軸方向に並べて配置され、ワッシャー12a及び38bやスナップリング12b、38c及び40cによりこれらの軸方向の移動が規制されている。 The control shaft 12 and the guide sleeve 38 provided outside the hub shaft 1 can rotate in the circumferential direction, but cannot move because they are integrated with the hub shaft 1 in the axial direction. That is, the stator 40, the control shaft 12, and the guide sleeve 38 are arranged in the axial direction so as to sandwich the flange portion 1a formed on the hub shaft 1, and these shafts are disposed by the washers 12a and 38b and the snap rings 12b, 38c, and 40c. Directional movement is restricted.
 ガイドスリーブ38の周方向の外面には3つのヘリカル溝38aが形成され、これらヘリカル溝38aには前述のようにトラニオン36の突起36aがそれぞれ係合している。従って、トラニオン36の傾転とガイドスリーブ38の回転は基本的に連動する。なお、ヘリカル溝38aと突起36aとができるだけ面接触されるように両者の形状が適切に形成されている。 Three helical grooves 38a are formed on the outer circumferential surface of the guide sleeve 38, and the projections 36a of the trunnion 36 are engaged with the helical grooves 38a as described above. Therefore, the tilt of the trunnion 36 and the rotation of the guide sleeve 38 are basically linked. Note that the shapes of both the helical groove 38a and the protrusion 36a are appropriately formed so that they are in surface contact as much as possible.
 ガイドスリーブ38の周方向の外面の両端部には3つの切り欠き38dがそれぞれ形成されており、これら切り欠き38dはトラニオン36が最大限に傾転した場合のストッパの役目を果たすように構成されている。図1及び図3においては、トラニオン36及びガイドスリーブ38がわずかに離隔した状態で表されているが、さらに傾転が進むと、トラニオン36はガイドスリーブ38に当接する。また、ガイドスリーブ38は3つのトラニオン36の傾転の角度が常に揃うようにする機能をも有している。 Three notches 38d are formed at both ends of the outer circumferential surface of the guide sleeve 38, and these notches 38d are configured to serve as stoppers when the trunnion 36 is tilted to the maximum extent. ing. In FIGS. 1 and 3, the trunnion 36 and the guide sleeve 38 are shown in a slightly separated state. However, as the tilting further proceeds, the trunnion 36 comes into contact with the guide sleeve 38. The guide sleeve 38 also has a function of always aligning the tilt angles of the three trunnions 36.
 制御軸12の図1において右端部には制御アーム12cがこの制御軸12と一体的に設けられており、サイクリストの手動操作又は図示しないアクチュエータの動作により、制御軸12を回転操作することができるように構成されている。なお、制御アーム12cはプーリーや歯車であってもよい。制御軸12とガイドスリーブ38との間に中間メンバ44を介在させて、制御軸12の回転をガイドスリーブ38に伝えるように構成されている。即ち、制御軸12及び中間メンバ44の間、並びに中間メンバ44及びガイドスリーブ38の間には、ヘリカルスプライン12d及び44a並びにヘリカルスプライン44b及び38eがそれぞれ形成されている。これらヘリカルスプライン12d及び44aと、ヘリカルスプライン44b及び38eとの一方又は両方が、ヘリカルスプラインとして機能する。このため、制御軸12の回転操作がガイドスリーブ38に伝わる過程で、それらヘリカルスプラインで生じる推力(スラスト)が中間メンバ44を軸方向に移動させるように作用する。 A control arm 12c is provided integrally with the control shaft 12 at the right end in FIG. 1 of the control shaft 12, and the control shaft 12 can be rotated by manual operation of a cyclist or operation of an actuator (not shown). It is configured as follows. The control arm 12c may be a pulley or a gear. An intermediate member 44 is interposed between the control shaft 12 and the guide sleeve 38 to transmit the rotation of the control shaft 12 to the guide sleeve 38. That is, helical splines 12d and 44a and helical splines 44b and 38e are formed between the control shaft 12 and the intermediate member 44, and between the intermediate member 44 and the guide sleeve 38, respectively. One or both of the helical splines 12d and 44a and the helical splines 44b and 38e function as a helical spline. For this reason, in the process in which the rotation operation of the control shaft 12 is transmitted to the guide sleeve 38, the thrust (thrust) generated by these helical splines acts to move the intermediate member 44 in the axial direction.
 中間メンバ44には溝44cが形成されており、この溝44cには前述した制御レバー42の端部42aが係合している。制御レバー42は、図2に示すように3つ配置されており、これらの端部42aが中間メンバ44の移動と共に動くことで、制御レバー42は支持ピン40dを中心にしてわずかに揺動する。一方、制御レバー42に形成された孔42b内に設けられたボール42cがスプリング42dによって押圧されてステータ40のチェック溝40eに係止している。従って、制御レバー42が揺動する際にボール42cがスプリング42dの張力に抗して若干移動する。 A groove 44c is formed in the intermediate member 44, and the end portion 42a of the control lever 42 described above is engaged with the groove 44c. As shown in FIG. 2, three control levers 42 are arranged, and when these end portions 42a move along with the movement of the intermediate member 44, the control lever 42 slightly swings around the support pin 40d. . On the other hand, a ball 42 c provided in a hole 42 b formed in the control lever 42 is pressed by a spring 42 d and locked in a check groove 40 e of the stator 40. Therefore, when the control lever 42 swings, the ball 42c moves slightly against the tension of the spring 42d.
 制御レバー42にはその周方向の両側に第1カム42e及び第2カム42fがそれぞれ形成されており、これら第1カム42e及び第2カム42fは、制御レバー42が揺動することで前述したトラニオン36の第1ピン36b及び第2ピン36cの一方を押圧し、他方を押圧から解放するように作用する。即ち、第1カム42eと第2カム42fとは、周方向で互いに逆の形状を有しており、制御レバー42の揺動で互いに逆の作用を行うように構成されている。図2において、1つのトラニオン36を中心に見ると、第1ピン36bには図において周方向左隣の制御レバー42の第1カム42eが当接するように構成されており、第2ピン36cには図において周方向右隣の制御レバー42の第2カム42fが当接するように構成されている。周方向両隣の制御レバー42が同じ方向に揺動することから、1つのトラニオン36の第1ピン36bと第2ピン36cとは、第1カム42e又は第2カム42fにより、トラニオン36が捻転するように押圧されるか又は押圧から解放される。その捻転の方向は、中間メンバ44の軸方向移動が図1において軸方向右側か左側であるかに応じて定まる。 The control lever 42 is formed with a first cam 42e and a second cam 42f on both sides in the circumferential direction, respectively. The first cam 42e and the second cam 42f are described above by the swinging of the control lever 42. It acts to press one of the first pin 36b and the second pin 36c of the trunnion 36 and to release the other from the pressing. That is, the first cam 42e and the second cam 42f have shapes opposite to each other in the circumferential direction, and are configured to perform actions opposite to each other when the control lever 42 swings. In FIG. 2, when viewed from the center of one trunnion 36, the first pin 36b is configured such that the first cam 42e of the control lever 42 adjacent to the left in the circumferential direction in the drawing is in contact with the second pin 36c. In the figure, the second cam 42f of the control lever 42 adjacent to the right in the circumferential direction is configured to abut. Since the control levers 42 adjacent to each other in the circumferential direction swing in the same direction, the trunnion 36 is twisted between the first pin 36b and the second pin 36c of one trunnion 36 by the first cam 42e or the second cam 42f. Pressed or released from the press. The direction of the torsion is determined depending on whether the axial movement of the intermediate member 44 is the right side or the left side in FIG.
 次に、図1及び図2に示した第1の実施形態に係る無段変速機の動作を、図3及び図4を共に用いて説明する。なお、図示は省略するが、図1に示した無段変速機は各種センサやコントローラなどを備えることができ、以下の作動はコントローラの指示に基づいて自動的に行ってもよい。第1の実施形態に係る無段変速機には潤滑を兼ねた適切な作動油が用いられる。以下の説明における回転方向は、図1において右側から見た場合、即ち入力軸10側から見た場合を示す。 Next, the operation of the continuously variable transmission according to the first embodiment shown in FIGS. 1 and 2 will be described with reference to FIGS. Although not shown, the continuously variable transmission shown in FIG. 1 can include various sensors, a controller, and the like, and the following operations may be automatically performed based on instructions from the controller. The continuously variable transmission according to the first embodiment uses appropriate hydraulic oil that also serves as a lubricant. The rotation direction in the following description indicates a case when viewed from the right side in FIG. 1, that is, when viewed from the input shaft 10 side.
 入力軸10がサイクリストのペダリングによってスプロケット10bを介して前進方向(時計回り)に駆動されると、入力ディスク20が第1ローラ24を時計回りに回転する。これにより、入力ディスク20は、スプリング30の付勢力と共に入力軸10の駆動トルクに応じた推力をローディング機構28から得ることによってその第1トロイダル面20aが第1ローラ24の第1摩擦面24aを図1において左側方向へ押圧した状態で、第1ローラ24を回転させる。第1ローラ24は、入力ディスク20から受けた推力を、第2摩擦面24bから第2ローラ26の第2摩擦面26bへ伝えることにより、第2ローラ26を反時計回りに回転させる。第2ローラ26は、第1ローラ24から受けた推力を、その第1摩擦面26aから出力ディスク22の第2トロイダル面22aに伝え、これによって出力ディスク22を時計回りに回転させる。出力ディスク22はワンウエイクラッチ32を介して出力軸でもあるハブシェル14を時計回り(前進方向)に回転駆動する。 When the input shaft 10 is driven forward by the cyclist pedaling via the sprocket 10b (clockwise), the input disk 20 rotates the first roller 24 clockwise. As a result, the input disk 20 obtains the thrust corresponding to the driving torque of the input shaft 10 together with the urging force of the spring 30 from the loading mechanism 28, so that the first toroidal surface 20 a changes the first friction surface 24 a of the first roller 24. In FIG. 1, the first roller 24 is rotated while being pressed in the left direction. The first roller 24 transmits the thrust received from the input disk 20 from the second friction surface 24b to the second friction surface 26b of the second roller 26, thereby rotating the second roller 26 counterclockwise. The second roller 26 transmits the thrust received from the first roller 24 from the first friction surface 26a to the second toroidal surface 22a of the output disk 22, thereby rotating the output disk 22 clockwise. The output disk 22 drives the hub shell 14, which is also an output shaft, via the one-way clutch 32 to rotate clockwise (forward direction).
 このときの変速比(入力ディスク20の回転速度/出力ディスク22の回転速度)は、A点の半径をRaとし、C点の半径をRcとすると、Rc/Raである。図1に示した状態は、変速比が最も小さい値、つまり増速状態、となるが、トラニオン36を傾転させて図3に示したようにすると、変速比が最も大きな値、つまり減速状態となる。 The gear ratio at this time (the rotational speed of the input disk 20 / the rotational speed of the output disk 22) is Rc / Ra, where Ra is the radius of point A and Rc is the radius of point C. The state shown in FIG. 1 is the value with the smallest speed ratio, that is, the acceleration state. However, when the trunnion 36 is tilted as shown in FIG. 3, the value with the largest speed ratio, that is, the deceleration state is obtained. It becomes.
 次に、トラニオン36を傾転させて変速比を変化させる場合の動作について、図4をも参照しながら説明する。トラニオン36を傾転させるには、制御アーム12cを操作して制御軸12を回転させる。制御軸12の回転により、中間メンバ44を介してガイドスリーブ38が回転し、これによってガイドスリーブ38のヘリカル溝38aに係合している突起36aが駆動され、トラニオン36が、第1ピン36b及び第2ピン36cの中心軸の回り、つまりB点を中心に傾転する。このとき、入力軸10の駆動トルクが小さい場合はトラニオン36を容易に傾転することができるが、入力軸10の駆動トルクが大きい場合は第1ローラ24のA点と第2ローラ26のC点とに作用する押圧力が大きくなるため、トラニオン36の傾転に大きな力を要する。 Next, the operation when the gear ratio is changed by tilting the trunnion 36 will be described with reference to FIG. To tilt the trunnion 36, the control shaft 12 is rotated by operating the control arm 12c. The rotation of the control shaft 12 causes the guide sleeve 38 to rotate via the intermediate member 44, thereby driving the protrusion 36 a engaged with the helical groove 38 a of the guide sleeve 38, and the trunnion 36 is connected to the first pin 36 b and It tilts around the central axis of the second pin 36c, that is, around the point B. At this time, when the driving torque of the input shaft 10 is small, the trunnion 36 can be easily tilted. However, when the driving torque of the input shaft 10 is large, the point A of the first roller 24 and the C of the second roller 26 Since the pressing force acting on the point increases, a large force is required to tilt the trunnion 36.
 前述したように、制御軸12の回転をガイドスリーブ38に伝える過程で中間メンバ44を軸方向に移動させる力が生じ、制御レバー42を揺動させて第1カム42e及び第2カム42fの一方がトラニオン36の第1ピン36b及び第2ピン36c(本発明の突起体に対応する)の一方を軸方向に押圧する。この押圧力によりトラニオン36が捻転する。 As described above, in the process of transmitting the rotation of the control shaft 12 to the guide sleeve 38, a force for moving the intermediate member 44 in the axial direction is generated, and the control lever 42 is swung to move one of the first cam 42e and the second cam 42f. Presses one of the first pin 36b and the second pin 36c (corresponding to the protrusion of the present invention) of the trunnion 36 in the axial direction. The trunnion 36 is twisted by this pressing force.
 図4に実線で示した第1ローラ24及び第2ローラ26のように、A点、B点及びC点を結ぶ直線Lが入力軸10の中心線と平行となった状態は、前述のスプリング42dに押されたボール42cがチェック溝40eに係止した状態である。このように、直線Lが入力軸10の中心線と平行となった状態にあっては、入力ディスク20から出力ディスク22へのトルク伝達に伴ってトラニオン36を傾転させるモーメントは作用しない。しかしながら、破線で示すように、スプリング42dの張力に抗してトラニオン36を捻転させ、直線Lが傾いた場合は、入力ディスク20と第1ローラ24との接点、及び出力ディスク22と第2ローラ26との接点において、トラニオン36を傾転させるモーメントがそれぞれ作用する、即ち入力ディスク20から出力ディスク22への伝達トルクによってトラニオン36が傾転する。 As in the case of the first roller 24 and the second roller 26 shown by the solid lines in FIG. 4, the straight line L connecting the points A, B, and C is parallel to the center line of the input shaft 10 as described above. The ball 42c pushed by 42d is in a state of being locked in the check groove 40e. Thus, in a state where the straight line L is parallel to the center line of the input shaft 10, the moment that tilts the trunnion 36 with the torque transmission from the input disk 20 to the output disk 22 does not act. However, as shown by the broken line, when the trunnion 36 is twisted against the tension of the spring 42d and the straight line L is inclined, the contact point between the input disk 20 and the first roller 24, and the output disk 22 and the second roller. At the contact point 26, moments for tilting the trunnion 36 act, that is, the trunnion 36 tilts due to the transmission torque from the input disk 20 to the output disk 22.
 詳細な説明は省略するが、トラニオン36の捻転の方向によってトラニオン36の傾転の方向が決まるので、ガイドスリーブ38のヘリカル溝38aの捻れ方向と制御レバー42の第1カム42e及び第2カム42fの仕様とを適切に設定することにより、制御軸12の回転操作が目指した方向に変速比が変化し、目標の変速比に達したところで捻転がなくなって変速比の変化が止まる。即ち、制御軸12の回転角と変速比とを対応させて制御することができる。なお、これも詳細の説明を省略するが、入力ディスク20から出力ディスク22への伝達トルクによって、トラニオン36を捻転させるようなモーメントが作用するので、それらも見込んだうえで、チェック溝40eの溝角やスプリング42dの張力を適切に設定し、さらに制御軸12に若干の操作力を常にかけるなど設定することが望ましい。 Although a detailed description is omitted, since the direction of tilting of the trunnion 36 is determined by the direction of twisting of the trunnion 36, the twisting direction of the helical groove 38a of the guide sleeve 38 and the first cam 42e and the second cam 42f of the control lever 42 are determined. The gear ratio is changed in the direction aimed by the rotation operation of the control shaft 12, and when the target gear ratio is reached, twisting is stopped and the change in the gear ratio is stopped. That is, the rotation angle of the control shaft 12 and the gear ratio can be controlled in correspondence. Although the detailed description is also omitted here, a moment that twists the trunnion 36 acts by the torque transmitted from the input disk 20 to the output disk 22, so that the groove of the check groove 40e is also taken into account. It is desirable to set the angle and the tension of the spring 42d appropriately, and to apply a slight operating force to the control shaft 12 at all times.
 上述したように、第1の実施形態における無段変速機によれば、制御軸12などの制御部材を入力ディスク及び出力ディスクの外径の範囲内に配置可能であるため、例えば自転車等の無段変速機に適用することが可能となる。さらに、この第1の実施形態における無段変速機は、全体として構造が簡単であり、重量及び大きさの低減化はもとより、製造コストを安価とすることができる。 As described above, according to the continuously variable transmission according to the first embodiment, the control member such as the control shaft 12 can be disposed within the outer diameter range of the input disk and the output disk. It can be applied to a step transmission. Furthermore, the continuously variable transmission according to the first embodiment has a simple structure as a whole, and can reduce the manufacturing cost as well as the weight and size.
 また、動力伝達のための推力が作用するベアリング34aは、入力軸10と出力ディスク22とが同じ回転方向であるため、回転に伴うロスが少なく動力伝達効率が高いという基本的な良さがある。そして、第1の実施形態によれば、サイクリストの意に応じて無段階に変速比を変化させることができると共に、制御軸12の回転のみで変速比の制御と変速比の検出を行うことができるので、自転車用の無段変速機として好ましい特性を有している。 Also, the bearing 34a on which thrust for power transmission acts has the basic advantage that the power transmission efficiency is high with little loss due to rotation because the input shaft 10 and the output disk 22 are in the same rotational direction. And according to 1st Embodiment, while being able to change a gear ratio steplessly according to the will of a cyclist, control of a gear ratio and detection of a gear ratio can be performed only by rotation of the control shaft 12. Therefore, it has desirable characteristics as a continuously variable transmission for bicycles.
(第2の実施形態)
 図5は、本発明の第2の実施形態に係る無段変速機の、図1に対応する断面を示している。ここでは、第1の実施形態に係る無段変速機の構成と異なる部分を中心に説明し、第1の実施形態に係る無段変速機の構成と実質的に同じ部分については、同じ符号を付しそれらの説明を省略する。
(Second Embodiment)
FIG. 5 shows a cross section corresponding to FIG. 1 of a continuously variable transmission according to the second embodiment of the present invention. Here, the description will focus on the parts that are different from the configuration of the continuously variable transmission according to the first embodiment, and the components that are substantially the same as the configuration of the continuously variable transmission according to the first embodiment are denoted by the same reference numerals. A description thereof will be omitted.
 第2の実施形態と第1の実施形態との相違点は、第2の実施形態においては、第1の実施形態の無段変速機における制御軸12と中間メンバ44とが一体的に構成されていることである。つまり、制御軸12には制御レバー42が係合する溝12eが形成されており、制御軸12とガイドスリーブ38とは、ヘリカルスプライン12d及び38eで連結されると共に、制御軸12自体が軸方向左右に若干移動可能に構成されている。その他の構成は、第1の実施形態の場合と同様である。 The difference between the second embodiment and the first embodiment is that in the second embodiment, the control shaft 12 and the intermediate member 44 in the continuously variable transmission of the first embodiment are integrally configured. It is that. That is, the control shaft 12 is formed with a groove 12e for engaging the control lever 42. The control shaft 12 and the guide sleeve 38 are connected by the helical splines 12d and 38e, and the control shaft 12 itself is axially connected. It is configured to be slightly movable left and right. Other configurations are the same as those in the first embodiment.
 第2の実施形態に係る無段変速機の作用及び効果は、基本的には、第1の実施形態の場合と同様である。ただし、上述したように、変速比を変化させる際に、制御軸12自体が軸方向に若干移動することのみが異なる。この第2の実施形態においては、第1の実施形態の前述した効果に加え、第1の実施形態の場合より構造がより簡単になるという効果が得られる。 The operation and effect of the continuously variable transmission according to the second embodiment are basically the same as those of the first embodiment. However, as described above, when the speed ratio is changed, only the control shaft 12 itself moves slightly in the axial direction. In the second embodiment, in addition to the above-described effects of the first embodiment, an effect that the structure is simpler than that of the first embodiment can be obtained.
(第3の実施形態)
 図6は、本発明の第3の実施形態に係る無段変速機の主要部を、図7のF-F線に沿った断面で示している。図7は、図6の無段変速機の要部を図6のG-G線に沿った断面で示している。ここでは、第1の実施形態に係る無段変速機の構成と異なる部分を中心に説明し、第1の実施形態に係る無段変速機の構成と実質的に同じ部分については、同じ符号を付しそれらの説明を省略する。
(Third embodiment)
FIG. 6 shows a main part of a continuously variable transmission according to the third embodiment of the present invention in a section taken along line FF in FIG. FIG. 7 shows a main part of the continuously variable transmission of FIG. 6 in a section taken along the line GG of FIG. Here, the description will focus on the parts that are different from the configuration of the continuously variable transmission according to the first embodiment, and the components that are substantially the same as the configuration of the continuously variable transmission according to the first embodiment are denoted by the same reference numerals. A description thereof will be omitted.
 第3の実施形態と第1の実施形態との第1の相違点は、制御軸12とガイドスリーブ38との間の構成が異なる点である。第2の相違点は、第1ローラ24及び第2ローラ26を含むトラニオン36が4セットある点である。なお、図6においては、トラニオン36が、直線Lが入力軸10と平行な傾転状態で表されているが、他の部分の構成は図1の場合と同様に表されている。 The first difference between the third embodiment and the first embodiment is that the configuration between the control shaft 12 and the guide sleeve 38 is different. The second difference is that there are four sets of trunnions 36 including the first roller 24 and the second roller 26. In FIG. 6, the trunnion 36 is represented in a tilted state where the straight line L is parallel to the input shaft 10, but the configuration of the other parts is represented in the same manner as in FIG. 1.
 最初に、この第3の実施形態に係る無段変速機のトラニオン36とガイドスリーブ38との関係を説明する。第3の実施形態の、第1の実施形態に係る無段変速機との違いは、第1の実施形態における突起36aに代えてトラニオン36に孔36gが形成されており、この孔36gにはガイドスリーブ38のガイド突起38fが係合していることにある。ガイドスリーブ38は軸方向に自由に動くことができるように構成されており、従って、ガイドスリーブ38の機能は4つのトラニオン36の傾転角を同一に保つことである。 First, the relationship between the trunnion 36 and the guide sleeve 38 of the continuously variable transmission according to the third embodiment will be described. The third embodiment differs from the continuously variable transmission according to the first embodiment in that a hole 36g is formed in the trunnion 36 instead of the projection 36a in the first embodiment, and the hole 36g The guide protrusion 38f of the guide sleeve 38 is engaged. The guide sleeve 38 is configured to be freely movable in the axial direction. Therefore, the function of the guide sleeve 38 is to keep the tilt angles of the four trunnions 36 the same.
 次に、制御軸12と中間メンバ44との関係を説明する。制御軸12は、ハブ軸1と入力軸10との間に設けられており、軸方向には移動せず回転操作のみが可能に構成されている。この制御軸12と中間メンバ44(本発明のシフタに対応する)とはヘリカルスプライン12d及び44aで互いに連結されており、制御軸12が回転することにより、中間メンバ44が軸方向に移動可能に構成されている。中間メンバ44の径方向外側には操作アーム44dが形成されており、この操作アーム44dの径方向外側には先端部44eが形成されている。操作アーム44dの先端部44eは、図7に示すように周方向に沿って4つ形成されており、これら先端部44eはステータ40のガイド溝40fに係合して、中間メンバ44が回転しないように構成されている。図7では4つの操作アーム44dの先端部44eの全てがガイド溝40fに係合しているが、1カ所のみの係合であってもよい。 Next, the relationship between the control shaft 12 and the intermediate member 44 will be described. The control shaft 12 is provided between the hub shaft 1 and the input shaft 10 and is configured to be capable of only rotating operation without moving in the axial direction. The control shaft 12 and the intermediate member 44 (corresponding to the shifter of the present invention) are connected to each other by helical splines 12d and 44a, and the intermediate member 44 can be moved in the axial direction when the control shaft 12 rotates. It is configured. An operation arm 44d is formed on the radially outer side of the intermediate member 44, and a tip end portion 44e is formed on the radially outer side of the operation arm 44d. As shown in FIG. 7, four tip portions 44e of the operation arm 44d are formed along the circumferential direction. The tip portions 44e engage with the guide grooves 40f of the stator 40, and the intermediate member 44 does not rotate. It is configured as follows. In FIG. 7, all of the tip portions 44e of the four operation arms 44d are engaged with the guide groove 40f, but may be engaged at only one place.
 操作アーム44dには操作溝44gが形成されており、操作溝44gはトラニオン36のアーム36h(本発明の突起体に対応する)と係合している。この操作溝44gとアーム36hとの当接点は、B点に対して径方向及び周方向共にオフセットしている。従って、中間メンバ44が軸方向に移動する際に、トラニオン36には傾転と捻転との両方の力が作用することとなる。 An operation groove 44g is formed in the operation arm 44d, and the operation groove 44g is engaged with an arm 36h (corresponding to the protrusion of the present invention) of the trunnion 36. The contact point between the operation groove 44g and the arm 36h is offset from the point B in both the radial direction and the circumferential direction. Therefore, when the intermediate member 44 moves in the axial direction, both the tilting and twisting forces act on the trunnion 36.
 トラニオン36の第2ピン36cの先端面には窪み36fが形成されており、この窪み36fには、ステータ40の溝40aの底面40bに形成された孔40g内に設けられスプリング40hによって押圧されたボール40iが係合している。この窪み36f及びボール40iの機能は、第1の実施形態の無段変速機におけるチェック溝40e及びボール42cの機能と同じである。第3の実施形態の無段変速機におけるその他の構成は、第1の実施形態の場合と同様である。 A recess 36f is formed in the tip surface of the second pin 36c of the trunnion 36, and the recess 36f is provided in a hole 40g formed in the bottom surface 40b of the groove 40a of the stator 40 and is pressed by a spring 40h. The ball 40i is engaged. The functions of the recess 36f and the ball 40i are the same as the functions of the check groove 40e and the ball 42c in the continuously variable transmission according to the first embodiment. Other configurations of the continuously variable transmission of the third embodiment are the same as those of the first embodiment.
 次に、第3の実施形態に係る無段変速機の動作を説明する。上述したように、第3の実施形態と第1の実施形態との相違点は、第1ローラ24及び第2ローラ26を含むトラニオン36が4セットあることを除いて制御系の相違であるため、以下、この制御系の相違点についてのみ説明する。 Next, the operation of the continuously variable transmission according to the third embodiment will be described. As described above, the difference between the third embodiment and the first embodiment is that the control system is different except that there are four sets of trunnions 36 including the first roller 24 and the second roller 26. Hereinafter, only the differences between the control systems will be described.
 前述したように、制御軸12が回転すると、中間メンバ44が軸方向に移動し、トラニオン36のアーム36hを軸方向に押圧するので、トラニオン36が傾転されると共に捻転される。4つのトラニオン36の傾転角は、ガイドスリーブ38の動作で揃っているので、必然的に捻転角も4つのトラニオン36は揃って動作することになる。従って、構成は異なるが、制御軸12が回転することでトラニオン36が傾転と捻転との両方の動作をする点は第1の実施形態の場合と同様である。第3の実施形態におけるその他の動作は第1の実施形態の場合と基本的に同様であるので、説明を省略する。 As described above, when the control shaft 12 rotates, the intermediate member 44 moves in the axial direction and presses the arm 36h of the trunnion 36 in the axial direction, so that the trunnion 36 is tilted and twisted. Since the tilt angles of the four trunnions 36 are aligned by the operation of the guide sleeve 38, the four trunnions 36 inevitably operate with the same twist angle. Therefore, although the configuration is different, the point that the trunnion 36 performs both tilting and twisting operations by the rotation of the control shaft 12 is the same as in the case of the first embodiment. Since other operations in the third embodiment are basically the same as those in the first embodiment, description thereof will be omitted.
 第3の実施形態に係る無段変速機の効果は、基本的には、第1の実施形態の場合と同様である。ただし、上述したように、第1ローラ24及び第2ローラ26のセット数が4つと多いことから、同じ伝達トルクとすれば、第1の実施形態の場合に較べて小型化することができる。 The effect of the continuously variable transmission according to the third embodiment is basically the same as that of the first embodiment. However, as described above, since the number of sets of the first roller 24 and the second roller 26 is as many as four, if the transmission torque is the same, the size can be reduced as compared with the case of the first embodiment.
(第4の実施形態)
 図8は、本発明の第4の実施形態に係る無段変速機の、図1に対応する断面を示している。ここでは、第1の実施形態及び第3の実施形態に係る無段変速機の構成と異なる部分を中心に説明し、これら無段変速機の構成と実質的に同じ部分については、同じ符号を付し説明を省略する。
(Fourth embodiment)
FIG. 8 shows a cross section corresponding to FIG. 1 of a continuously variable transmission according to a fourth embodiment of the present invention. Here, parts different from the configuration of the continuously variable transmission according to the first embodiment and the third embodiment will be mainly described, and the substantially same parts as those of the continuously variable transmission are denoted by the same reference numerals. The description is omitted.
 第4の実施形態と第1の実施形態及び第3の実施形態との相違点は、制御軸12とトラニオン36と間の構成が異なっていることにある。即ち、第4の実施形態においては、第1ローラ24及び第2ローラ26を含むトラニオン36が3セットある。なお、図8においては、直線Lが入力軸10と平行なトラニオン36の傾転状態で表されているが、他の部分の構成は図1の場合と同様に表されている。 The difference between the fourth embodiment and the first and third embodiments is that the configuration between the control shaft 12 and the trunnion 36 is different. That is, in the fourth embodiment, there are three sets of trunnions 36 including the first roller 24 and the second roller 26. In FIG. 8, the straight line L is represented by the tilted state of the trunnion 36 parallel to the input shaft 10, but the configuration of the other parts is represented in the same manner as in FIG. 1.
 この第4の実施形態に係る無段変速機においては、制御軸12に歯車12fが同軸に形成されており、この歯車12fはステータ40に回転自在に設けられたスクリュー46の歯車46aと噛合している。スクリュー46はステータ40に規制されているため、軸方向へは移動しない。スクリュー46にはヘリカルスプライン46bが形成されており、このヘリカルスプライン46bはナット48のヘリカルスプライン48aと係合している。 In the continuously variable transmission according to the fourth embodiment, a gear 12f is coaxially formed on the control shaft 12, and the gear 12f meshes with a gear 46a of a screw 46 provided rotatably on the stator 40. ing. Since the screw 46 is regulated by the stator 40, it does not move in the axial direction. A helical spline 46 b is formed on the screw 46, and this helical spline 46 b is engaged with the helical spline 48 a of the nut 48.
 このナット48は、その先端部48bがステータ40のガイド溝40fと係合しており、軸方向に移動可能に構成されている。なお、スクリュー46及びナット48はトラニオン36と同様に3セット設けられている。ナット48に形成されている溝48cは、第3の実施形態の場合と同様にトラニオン36のアーム36hと係合している。従って、制御軸12の回転と共にスクリュー46が回転し、ヘリカルスプライン46b及びヘリカルスプライン48aの作用によってナット48は軸方向に移動し、第3の実施形態の場合と同様にトラニオン36が傾転及び捻転する。 The front end portion 48b of the nut 48 is engaged with the guide groove 40f of the stator 40, and is configured to be movable in the axial direction. Note that three sets of screws 46 and nuts 48 are provided in the same manner as the trunnion 36. The groove 48c formed in the nut 48 is engaged with the arm 36h of the trunnion 36 as in the case of the third embodiment. Accordingly, the screw 46 is rotated together with the rotation of the control shaft 12, the nut 48 is moved in the axial direction by the action of the helical spline 46b and the helical spline 48a, and the trunnion 36 is tilted and twisted as in the case of the third embodiment. To do.
 第4の実施形態に係る無段変速機の動作は、この第4の実施形態の構成と第3の実施形態の構成との相違点が、制御軸12の回転をトラニオン36の傾転及び捻転に伝える部分の構成が相違するのみであることから、第3の実施形態の動作と基本的に同じである。従って、動作に関する詳細な説明は省略する。また、第4の実施形態に係る無段変速機の効果は、基本的に第1の実施形態の場合と同様であるため、説明は省略する。 The operation of the continuously variable transmission according to the fourth embodiment is that the difference between the configuration of the fourth embodiment and the configuration of the third embodiment is that the rotation of the control shaft 12 is tilted and twisted. This is basically the same as the operation of the third embodiment because only the configuration of the portion to be transmitted to is different. Therefore, detailed description regarding the operation is omitted. Moreover, since the effect of the continuously variable transmission according to the fourth embodiment is basically the same as that of the first embodiment, description thereof is omitted.
(第5の実施形態)
 図9は、本発明の第5の実施形態に係る無段変速機の、図1に対応する断面を示している。ここでは、第1の実施形態に係る無段変速機の構成と異なる部分を中心に説明し、これら無段変速機の構成と実質的に同じ部分については、同じ符号を付し説明を省略する。
(Fifth embodiment)
FIG. 9 shows a cross section corresponding to FIG. 1 of a continuously variable transmission according to a fifth embodiment of the present invention. Here, the description will focus on parts that are different from the configuration of the continuously variable transmission according to the first embodiment, and parts that are substantially the same as the configuration of the continuously variable transmission are denoted by the same reference numerals and description thereof is omitted. .
 第5の実施形態と第1の実施形態との相違点は、第1の実施形態において入力ディスク20と出力ディスク22とを結んでいた推力スリーブ34が、この第5の実施形態では設けられていないことである。従って、ローディング機構28で発生する推力は、ベアリング34a及びカバー16を経てハブシェル14に伝えられ、さらに、ハブシェル10からベアリング15を介して出力ディスク22に伝えられ、出力ディスク22から第2ローラ26及び第1ローラ24を介して入力ディスク20に作用することにより互いに打ち消し合って相殺される。 The difference between the fifth embodiment and the first embodiment is that the thrust sleeve 34 that connects the input disk 20 and the output disk 22 in the first embodiment is provided in the fifth embodiment. It is not. Accordingly, the thrust generated by the loading mechanism 28 is transmitted to the hub shell 14 via the bearing 34a and the cover 16, and further transmitted from the hub shell 10 to the output disk 22 via the bearing 15, and from the output disk 22 to the second roller 26 and By acting on the input disk 20 via the first roller 24, they cancel each other and cancel each other.
 第5の実施形態に係る無段変速機の動作は、この第5の実施形態の構成と第1の実施形態の構成との相違点が、ローディング機構28で発生する推力の循環経路の構成が相違するのみであり、無段変速の作動そのものに相違点はないので、動作に関する詳細な説明は省略する。 The operation of the continuously variable transmission according to the fifth embodiment is different from the configuration of the fifth embodiment and the configuration of the first embodiment in that the configuration of the circulation path of the thrust generated by the loading mechanism 28 is the same. Since only the difference is made and there is no difference in the operation of the continuously variable transmission, the detailed description regarding the operation is omitted.
 第5の実施形態に係る無段変速機の効果について説明する。この第5の実施形態においては、前述した推力がベアリング15を経由して伝達されるため、出力軸1とハブシェル14との間で回転速度差に応じてベアリングのロスが第1の実施形態の場合から変化し、変速比1の近傍を除いて動力伝達効率がやや悪化する。一方、第1の実施形態における推力スリーブ34がないので、重量及び寸法の低減化並びに製造コストが安価となるという効果が得られる。 The effect of the continuously variable transmission according to the fifth embodiment will be described. In the fifth embodiment, since the thrust described above is transmitted via the bearing 15, the bearing loss is reduced according to the rotational speed difference between the output shaft 1 and the hub shell 14 in the first embodiment. The power transmission efficiency slightly deteriorates except in the vicinity of the gear ratio 1. On the other hand, since there is no thrust sleeve 34 in the first embodiment, the effects of reducing the weight and size and reducing the manufacturing cost can be obtained.
(第6の実施形態)
 図10は、本発明の第6の実施形態に係る無段変速機の骨組みを表しており、図1に対応する要部の軸中心より上半分のみが示されている。なお、制御系などの詳細は、図示を省略しているが、第1の実施形態の場合と基本的に同様である。ここでは、第1の実施形態に係る無段変速機の構成と異なる部分を中心に説明し、これら無段変速機の構成と実質的に同じ部分については説明を省略する。
(Sixth embodiment)
FIG. 10 shows the framework of a continuously variable transmission according to the sixth embodiment of the present invention, and only the upper half of the axial center of the main part corresponding to FIG. 1 is shown. Although details of the control system and the like are not shown, they are basically the same as those in the first embodiment. Here, the description will focus on parts that are different from the configuration of the continuously variable transmission according to the first embodiment, and description of substantially the same parts as those of the continuously variable transmission will be omitted.
 第6の実施形態と第1の実施形態との大きな相違点は、入力軸10が図において左側に配置されていると共に出力軸18が図において右側に配置され、この出力軸18に出力歯車18aが一体的に構成されていることにある。出力歯車18aは図示しない相手歯車を駆動可能である。なお、出力歯車18aはプーリーやスプロケットであってもよい。また、固定軸4がケース5に固定されている。制御軸12は、固定軸4と出力軸18及び出力ディスク22の間に配置されている。なお、図10におけるトラニオン36の姿勢は、変速比が最も大きくなる状態で表されている。この第6の実施形態におけるその他の構成は、図示及び説明を省略する。第6の実施形態における動作も第1の実施形態の場合と基本的に同様である。また、ローディング機構28は、第6の実施形態におけるローディング機構28と同様に機械的な構成で示されているが、これを油圧式に置き換えることも可能である。 The major difference between the sixth embodiment and the first embodiment is that the input shaft 10 is arranged on the left side in the drawing and the output shaft 18 is arranged on the right side in the drawing, and the output gear 18a is connected to the output shaft 18. Is formed integrally. The output gear 18a can drive a counter gear (not shown). The output gear 18a may be a pulley or a sprocket. Further, the fixed shaft 4 is fixed to the case 5. The control shaft 12 is disposed between the fixed shaft 4, the output shaft 18 and the output disk 22. Note that the posture of the trunnion 36 in FIG. 10 is shown in a state where the gear ratio is the largest. The illustration and description of other configurations in the sixth embodiment are omitted. The operation in the sixth embodiment is basically the same as that in the first embodiment. Further, the loading mechanism 28 is shown in a mechanical configuration like the loading mechanism 28 in the sixth embodiment, but it can be replaced with a hydraulic type.
 第6の実施形態に係る無段変速機の効果は、第1の実施形態の効果に加え、エンジンを動力源とする自動車などの車両や、電気モータなどを動力源とする一般的な機械の無段変速機として用いることができる点にある。 The effect of the continuously variable transmission according to the sixth embodiment is the same as that of the first embodiment, in addition to the effects of the first embodiment, such as a vehicle such as an automobile using an engine as a power source, or a general machine using an electric motor as a power source. It exists in the point which can be used as a continuously variable transmission.
 以上詳細に説明したように、本発明の第1~第6の実施形態に係る無段変速機は、変速比を変化させる操作系の要素をコンパクトにまとめることができるので、特に自転車や自動車及び一般機械の変速機として用いることができる。いずれの場合にも、構成が簡素で小型化及び軽量化が可能であり、低コストで提供できるという効果を有している。 As described above in detail, the continuously variable transmissions according to the first to sixth embodiments of the present invention can compactly combine the elements of the operation system that change the gear ratio, so that bicycles, automobiles, and the like It can be used as a transmission for general machinery. In any case, the configuration is simple, and it is possible to reduce the size and weight, and it is possible to provide at low cost.
 以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。即ち、本発明の無段変速機は、当業者の一般的な知識に基づいて、前述の構成や形状にとらわれることなく、用途に応じた改良や工夫をこらした態様で実施することができる。本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。 The embodiments described above are all illustrative of the present invention and are not intended to be limiting, and the present invention can be implemented in other various modifications and changes. In other words, the continuously variable transmission according to the present invention can be implemented in a mode in which improvements and contrivances according to applications are made without being limited by the above-described configuration and shape based on general knowledge of those skilled in the art. The scope of the present invention is defined only by the claims and their equivalents.
 本発明の無段変速機は、特に動力伝達効率が高く小型であることを要求される自転車や、自動車及び一般機械の変速機として用いることができる。 The continuously variable transmission of the present invention can be used as a transmission for bicycles, automobiles and general machines that are particularly required to have high power transmission efficiency and a small size.
 1  ハブ軸(固定軸)
 1a 鍔部
 2 フレーム
 3 スポーク
 4 固定軸
 5 ケース
 10 入力軸
 10a、14a、15、16a、34a ベアリング
 10b スプロケット
 12 制御軸
 12a、38b ワッシャー
 12b、34b、38c、40c スナップリング
 12c 制御アーム
 12d、38e、44a、44b、46b、48a ヘリカルスプライン
 12f、46a 歯車
 14 ハブシェル(出力軸)
 14c、36g、40g、42b 孔
 14d フランジ
 16 カバー
 18 出力軸
 18a 出力歯車
 20 入力ディスク
 20a 第1トロイダル面
 22 出力ディスク
 22a 第2トロイダル面
 24 第1ローラ
 24a、26a 第1摩擦面
 24b、26b 第2摩擦面
 26 第2ローラ
 28 ローディング機構
 30、40h、42d スプリング
 32 ワンウエイクラッチ
 34 推力スリーブ
 36 トラニオン
 36a 突起
 36b 第1ピン
 36c 第2ピン
 36d、36e 先端
 36f 窪み
 36h アーム
 38 ガイドスリーブ
 38a ヘリカル溝
 38d 切り欠き
 38f ガイド突起
 40 ステータ
 40a、44c 溝
 40b 底面
 40d 支持ピン
 40e チェック溝
 40f ガイド溝
 40i、42c ボール
 42 制御レバー
 42a 端部
 42e 第1カム
 42f 第2カム
 44 中間メンバ
 44d 操作アーム
 44e 先端部
 44g 操作溝
 46 スクリュー
 48 ナット
 48c 溝
1 Hub shaft (fixed shaft)
1a collar 2 frame 3 spoke 4 fixed shaft 5 case 10 input shaft 10a, 14a, 15, 16a, 34a bearing 10b sprocket 12 control shaft 12a, 38b washer 12b, 34b, 38c, 40c snap ring 12c control arm 12d, 38e, 44a, 44b, 46b, 48a Helical spline 12f, 46a Gear 14 Hub shell (output shaft)
14c, 36g, 40g, 42b Hole 14d Flange 16 Cover 18 Output shaft 18a Output gear 20 Input disc 20a First toroidal surface 22 Output disc 22a Second toroidal surface 24 First roller 24a, 26a First friction surface 24b, 26b Second Friction surface 26 Second roller 28 Loading mechanism 30, 40h, 42d Spring 32 One-way clutch 34 Thrust sleeve 36 Trunnion 36a Protrusion 36b First pin 36c Second pin 36d, 36e Tip 36f Recess 36h Arm 38 Guide sleeve 38a Helical groove 38d Notch 38f Guide projection 40 Stator 40a, 44c Groove 40b Bottom surface 40d Support pin 40e Check groove 40f Guide groove 40i, 42c Ball 42 Control lever 42a End 42e First cam 42f Second cam 44 Intermediate member 44d Operation arm 44e Tip 44g Operation groove 46 Screw 48 Nut 48c Groove

Claims (8)

  1.  入力軸に連結された入力ディスクと、出力軸に連結された出力ディスクと、前記入力ディスク及び前記出力ディスク間に配置され、各々が第1ローラ及び第2ローラを含むと共に該第1ローラ及び該第2ローラを回転自在に支持する、複数のトラニオンとを備えており、前記各トラニオンの前記第1ローラは前記入力ディスクに形成した第1トロイダル面にA点で当接する第1摩擦面を形成しており、前記各トラニオンの前記第1ローラ及び前記第2ローラは互いにB点で当接する第2摩擦面をそれぞれ形成しており、前記各トラニオンの前記第2ローラは前記出力ディスクに形成した第2トロイダル面にC点で当接する第1摩擦面を形成しており、前記A点、B点及びC点がほぼ一直線上に並ぶように構成されている無段変速機であって、
     前記入力ディスク及び前記出力ディスクと同軸の固定軸が中心部に配置されており、前記固定軸と一体的に設けられたステータにより前記各トラニオンが傾転可能に支持されており、前記入力ディスク及び前記出力ディスクの外径内に設けられた制御軸を前記固定軸と同軸回転させることによって、前記A点及び前記C点を前記B点を中心として径方向に変化させ前記各トラニオンが傾転するように構成されていることを特徴とする無段変速機。
    An input disk coupled to the input shaft, an output disk coupled to the output shaft, and disposed between the input disk and the output disk, each including a first roller and a second roller and the first roller and the A plurality of trunnions that rotatably support the second roller, and the first rollers of each trunnion form a first friction surface that abuts at a point A on a first toroidal surface formed on the input disk. The first roller and the second roller of each trunnion form a second friction surface that abuts each other at point B, and the second roller of each trunnion is formed on the output disk. A continuously variable transmission that forms a first friction surface that contacts the second toroidal surface at a point C, and is configured such that the points A, B, and C are arranged substantially in a straight line;
    A fixed shaft coaxial with the input disk and the output disk is disposed at the center, and each trunnion is supported to be tiltable by a stator provided integrally with the fixed shaft, and the input disk and By rotating the control shaft provided in the outer diameter of the output disk coaxially with the fixed shaft, the points A and C are changed in the radial direction around the point B, and each trunnion tilts. A continuously variable transmission that is configured as described above.
  2.  前記各トラニオンを、前記制御軸を回転させることによって傾転可能とすると共に、前記B点を中心に捻転可能に構成されていることを特徴とする請求項1に記載の無段変速機。 The continuously variable transmission according to claim 1, wherein each trunnion is configured to be tiltable by rotating the control shaft and to be twisted about the point B.
  3.  前記各トラニオンの径方向内側に設けられたガイドスリーブをさらに備えており、該ガイドスリーブは外周面にガイド溝又はガイド突起を有しており、前記複数のトラニオンの径方向内側に設けられた突起又は孔が、前記ガイド溝又は前記ガイド突起に係合するように構成されていることを特徴とする請求項1又は2に記載の無段変速機。 The guide sleeve further includes a guide sleeve provided radially inward of each trunnion, the guide sleeve has a guide groove or a guide protrusion on an outer peripheral surface, and the protrusion provided radially inward of the plurality of trunnions The continuously variable transmission according to claim 1, wherein a hole is configured to engage with the guide groove or the guide protrusion.
  4.  前記ガイドスリーブの前記ガイド溝がヘリカル溝であり、該ガイドスリーブは軸方向へ移動しないように前記固定軸に固定されており、周方向には前記制御軸と共に回転するように構成されていることを特徴とする請求項3に記載の無段変速機。 The guide groove of the guide sleeve is a helical groove, the guide sleeve is fixed to the fixed shaft so as not to move in the axial direction, and is configured to rotate with the control shaft in the circumferential direction. The continuously variable transmission according to claim 3.
  5.  前記ガイドスリーブと前記制御軸とがヘリカルスプラインを介して互いに連結されており、前記制御軸が前記ガイドスリーブを駆動するトルクにより前記ヘリカルスプラインに生ずる推力によって、前記制御軸又は前記制御軸と前記ガイドスリーブとの間に設けた中間部材が、軸方向に移動して前記各トラニオンを捻転させるように構成されていることを特徴とする請求項3又は4に記載の無段変速機。 The guide sleeve and the control shaft are connected to each other via a helical spline, and the control shaft or the control shaft and the guide are driven by a thrust generated in the helical spline by torque that the control shaft drives the guide sleeve. The continuously variable transmission according to claim 3 or 4, wherein an intermediate member provided between the sleeve and the sleeve is configured to move in the axial direction to twist each trunnion.
  6.  前記各トラニオンにおける径方向及び周方向共に前記B点から離れた位置に突起体が設けられており、前記制御軸の径方向外側にヘリカルスプラインによって前記制御軸と連結されたシフタが設けられており、前記制御軸の回転によって前記シフタが軸方向に移動する際に、前記突起体を軸方向に押圧することによって前記各トラニオンを傾転及び/又は捻転させるように構成されていることを特徴とする請求項1から5のいずれか1項に記載の無段変速機。 A protrusion is provided at a position away from the point B in each radial direction and circumferential direction in each trunnion, and a shifter connected to the control shaft by a helical spline is provided outside the control shaft in the radial direction. When the shifter moves in the axial direction by rotation of the control shaft, the trunnions are tilted and / or twisted by pressing the protrusions in the axial direction. The continuously variable transmission according to any one of claims 1 to 5.
  7.  前記入力ディスク及び前記出力ディスクの径方向外側に推力スリーブが設けられており、該推力スリーブは前記入力ディスク及び前記出力ディスク間に作用する軸方向の荷重を受けるように構成されていることを特徴とする請求項1から6のいずれか1項に記載の無段変速機。 A thrust sleeve is provided radially outside the input disk and the output disk, and the thrust sleeve is configured to receive an axial load acting between the input disk and the output disk. The continuously variable transmission according to any one of claims 1 to 6.
  8.  前記出力軸を構成するハブシェルが設けられており、該ハブシェルと該ハブシェルに一体化されたカバーとが、前記入力ディスク及び前記出力ディスクを囲うように配置されていることを特徴とする請求項1から7のいずれか1項に記載の無段変速機。 2. A hub shell constituting the output shaft is provided, and the hub shell and a cover integrated with the hub shell are arranged so as to surround the input disk and the output disk. 8. The continuously variable transmission according to any one of 1 to 7.
PCT/JP2018/015635 2017-04-21 2018-04-16 Continuously variable transmission WO2018194003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019513620A JPWO2018194003A1 (en) 2017-04-21 2018-04-16 Continuously variable transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017084785 2017-04-21
JP2017-084785 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018194003A1 true WO2018194003A1 (en) 2018-10-25

Family

ID=63856352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015635 WO2018194003A1 (en) 2017-04-21 2018-04-16 Continuously variable transmission

Country Status (2)

Country Link
JP (1) JPWO2018194003A1 (en)
WO (1) WO2018194003A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR796188A (en) * 1935-10-04 1936-03-31 Friction shifting
US20150211632A1 (en) * 2012-08-16 2015-07-30 Ultimate Transmissions Pty Ltd Modulated clamping force generator for toroidal cvt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR796188A (en) * 1935-10-04 1936-03-31 Friction shifting
US20150211632A1 (en) * 2012-08-16 2015-07-30 Ultimate Transmissions Pty Ltd Modulated clamping force generator for toroidal cvt

Also Published As

Publication number Publication date
JPWO2018194003A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5146537B2 (en) Continuously variable transmission
WO2012111562A1 (en) Toroidal type continuously variable transmission
RU2483233C2 (en) Drive mechanism for stepless transmission
WO2011114494A1 (en) Continuously variable transmission
JP6880189B2 (en) Automotive traction transmission and drive unit
US5902208A (en) Dual cavity toroidal type continuously variable transmission
WO2018194003A1 (en) Continuously variable transmission
JP3651929B2 (en) Toroidal continuously variable transmission
JP5234015B2 (en) Continuously variable transmission
JP2015218778A (en) Toroidal continuously variable transmission
WO2006003887A1 (en) Toroidal type continuously variable transmission for four-wheel drive car
WO2015122291A1 (en) Toroidal continuously variable transmission
JP2021173389A (en) Vehicular differential device
US6960151B2 (en) Toroidal continuously variable transmission
JP2013167344A (en) Toroidal type continuously variable transmission
JP4158320B2 (en) Continuously variable transmission
KR20140113091A (en) Continuously Variable Transmission
KR101552179B1 (en) Continuously variable transmission
JP6488566B2 (en) Toroidal continuously variable transmission
JP6183163B2 (en) Toroidal continuously variable transmission
JP5516858B2 (en) Toroidal continuously variable transmission
JP2016205562A (en) Continuously variable transmission
JP4815785B2 (en) Toroidal continuously variable transmission
JP4771117B2 (en) Toroidal continuously variable transmission
JP2014058988A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788207

Country of ref document: EP

Kind code of ref document: A1