WO2018193754A1 - Robot apparatus and electronic device production method - Google Patents

Robot apparatus and electronic device production method Download PDF

Info

Publication number
WO2018193754A1
WO2018193754A1 PCT/JP2018/009766 JP2018009766W WO2018193754A1 WO 2018193754 A1 WO2018193754 A1 WO 2018193754A1 JP 2018009766 W JP2018009766 W JP 2018009766W WO 2018193754 A1 WO2018193754 A1 WO 2018193754A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
unit
linear member
robot
support
Prior art date
Application number
PCT/JP2018/009766
Other languages
French (fr)
Japanese (ja)
Inventor
進一 竹山
弘邦 別府
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2019513267A priority Critical patent/JP7052791B2/en
Priority to CN201880025022.XA priority patent/CN110520255B/en
Publication of WO2018193754A1 publication Critical patent/WO2018193754A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators

Definitions

  • the present technology relates to a robot apparatus used for manufacturing an electronic device having a flexible linear member such as a cable, and an electronic device manufacturing method.
  • JP 2010-69587 A Japanese Patent Application Laid-Open No. 2014-176917
  • a linear member such as a cable may be connected to a connector part while spanning between a plurality of supports in the equipment.
  • the linear member may become loose in an unintended area, which may cause problems in the subsequent assembly process or reduce the electrical characteristics of the device. There is.
  • an object of the present technology is to provide a robot apparatus and a method for manufacturing an electronic apparatus that can suppress the occurrence of slack in an unintended region due to variations in the length of linear members. .
  • a robot apparatus includes a first robot, a second robot, and a control unit.
  • the first robot includes a first articulated arm, a first hand unit, and a force sensor.
  • the first hand portion is attached to the first articulated arm and configured to support a flexible linear member.
  • the force sensor is arranged between the first articulated arm and the first hand unit, and is configured to detect an external force acting on the first hand unit.
  • the second robot has a second articulated arm and a second hand unit.
  • the second hand portion is attached to the second articulated arm and configured to hold the linear member.
  • the control unit is configured to determine a holding position of the linear member by the second hand unit, and the linear shape held by the second hand unit based on an output of the force sensor.
  • a distance calculating unit that calculates a sliding distance of the first hand unit relative to the member.
  • each region of the linear member can be accurately guided to a predetermined holding position, it is possible to suppress the occurrence of slack in the unintended region due to the variation in the length of the linear member.
  • the distance calculation unit is configured to further calculate a relative movement distance of the linear member held by the first hand unit with respect to the second hand unit based on an output of the force sensor. Also good. Thereby, it can adjust to the suitable length between the arbitrary fixed positions of a linear member.
  • the first hand unit may include a clamp mechanism and an elevating member.
  • the clamp mechanism is configured to be able to grip the linear member in a uniaxial direction.
  • the elevating member is configured to be movable relative to the clamp mechanism, and is configured to be able to press the linear member held by the clamp mechanism in another axial direction orthogonal to the one axial direction.
  • the clamp mechanism may include a first clamp claw, a second clamp claw, a protruding portion, and a storage portion.
  • the second clamp pawl is configured to be movable relative to the first clamp pawl in the uniaxial direction.
  • the protrusion is provided on the first clamp claw and extends toward the second clamp claw.
  • the accommodating portion is provided between the protruding portion and the distal end portions of the first and second clamp claws, and is configured to be able to slidably support the linear member. Thereby, a linear member can be appropriately supported by the 1st hand part.
  • the second robot may further include a camera that captures an end portion of the linear member supported by the first hand unit.
  • the control unit may further include a posture determination unit that determines a posture of the tip portion with respect to the first hand unit based on image information acquired by the camera. Thereby, the front-end
  • a method of manufacturing an electronic device includes a base substrate having a connection portion, and first and second erected on the base substrate having a terminal portion connected to the connection portion at a tip.
  • a method for manufacturing an electronic device including a flexible linear member spanned between the support members, the method including gripping the linear member with a first hand portion of a first robot. By moving the first hand part to the first support, the first region of the linear member is supported by the first support. The linear member is held by the second hand portion of the second robot. The first hand portion is slid with respect to the linear member from the first region toward the terminal portion toward the second region separated by the first line length, and then the first hand portion is moved. The second area is gripped by the hand portion. The second region is supported by the second support by moving the first hand part to the second support.
  • the method for manufacturing the electronic device may further include sliding the first hand portion relative to the linear member from the second region to a contact position with the terminal portion. By moving the first hand portion together with the terminal portion in a direction away from the second support body, the second region is extended from the second support body by a second line length. By moving the first hand part to the connection part, the terminal part is connected to the connection part.
  • the method for manufacturing the electronic device may further include acquiring an image including posture information of the terminal unit with the camera of the second robot before connecting the terminal unit to the connection unit. Based on the posture information, the gripping position of the terminal unit by the first hand unit is changed.
  • the linear member may be an antenna cable or a wiring cable.
  • FIG. 1 is a schematic side view showing an electronic apparatus manufacturing apparatus (robot apparatus) according to an embodiment of the present technology.
  • robot apparatus an electronic apparatus manufacturing apparatus
  • FIG. 1 an application example of the present technology to an automatic connection process of a cable member, which is one manufacturing process of an electronic device, will be described.
  • the robot apparatus 1 includes a work table that supports an assembly robot 100 (first robot), an auxiliary robot 200 (second robot), and a semi-finished product (hereinafter also referred to as a workpiece W) of an electronic device. 2 and a controller 3 (control unit) that controls driving of the assembly robot 100 and the auxiliary robot 200.
  • the assembly robot 100 includes a hand unit 101 (first hand unit), and a multi-joint arm 102 (first multi-joint arm) capable of moving the hand unit 101 to an arbitrary coordinate position with six-axis freedom.
  • the auxiliary robot 200 includes a hand unit 201 (second hand unit), a multi-joint arm 202 (second multi-joint arm) capable of moving the hand unit 201 to an arbitrary coordinate position with six axes of freedom.
  • the multi-joint arms 102 and 202 are respectively connected to the work table 2 or a drive source (not shown) arranged in the vicinity of the work table 2.
  • the controller 3 is typically composed of a computer having a CPU (Central Processing Unit) and a memory, and is configured to control the driving of the assembly robot 100 and the auxiliary robot 200 in accordance with a program stored in the memory. An example of control of the robots 100 and 200 by the controller 3 will be described later.
  • CPU Central Processing Unit
  • FIGS. 2A and 2B are schematic diagrams illustrating an example of a workpiece W and a processing procedure of the robot apparatus 1 for the workpiece W.
  • an X axis, a Y axis, and a Z axis indicate triaxial directions orthogonal to each other, and the Z axis corresponds to a height direction.
  • the workpiece W includes a base substrate Wa, circuit units Wb and Wc disposed on the base substrate Wa, a plurality of supports Wd (Wd1 to Wd4) standing at appropriate positions on the base substrate Wa, a cable member F and so on.
  • Examples of the base substrate Wa include a part of a case of an electronic device or a plate-like support disposed in the case.
  • the circuit units Wb and Wc are configured by a circuit board in which various electronic components are mounted on a printed wiring board, or an electronic unit having a built-in computer configured by a CPU, a memory, etc. constituting one function of the electronic device.
  • the plurality of support bodies Wd are for routing the cable member F along a predetermined path on the base substrate Wa, and have a plate shape with a predetermined thickness having a support portion Wds for supporting the cable F as shown in FIG. 3A.
  • the support portion Wds is formed in a groove shape with an open top, and the groove width is formed to be equal to or slightly larger than the outer diameter of the cable F.
  • the cable member F is formed of a flexible wire having a circular cross section having one end connected to the circuit unit Wb and the other end (tip) having a terminal portion Fa.
  • the cable member F typically has a core material F1 made of a conductive material and an insulating coating F2 covering the surface thereof, and is configured as a wiring member such as a wiring cable or an antenna cable.
  • the cross section of the cable F is circular, but is not limited thereto, and may be formed in a rectangular shape.
  • the terminal part Fa of the cable member F has a stepped disk shape having a large diameter part Fa1 and a small diameter part Fa2, as schematically shown in FIG. 3B, and the small diameter part Fa2 constitutes a connection surface.
  • the terminal portion Fa is incorporated into the connection portion Wf on the base substrate Wa with the small diameter portion Fa2 facing downward (see FIG. 2B).
  • Work W is placed on the work table 2 with one end of the cable member F connected to the circuit unit Wc.
  • the robot apparatus 1 controls the assembly robot 100 and the auxiliary robot 200 in a coordinated manner, bridges the cable member F between the plurality of support bodies Wd through a predetermined path, and then connects the terminal portion Fa to the connection portion. Connect to Wf.
  • the cable member F may be loosened in an unintended region, which may cause problems in the subsequent assembly process, or may deteriorate the electrical characteristics of the device.
  • the robot apparatus 1 uses the path between the support Wd2 and the support Wd3 as an extra length region of the cable member F, and a cable between the support Wd4 and the connection portion Wf.
  • the cable member F can be assembled so that the line length of the member F is constant. Details of the robot apparatus 1 will be described below.
  • FIG. 4 is a schematic front view showing the configuration of the hand unit 101
  • FIGS. 5A to 5C are enlarged front views for explaining an operation example of the clamp mechanism
  • FIG. 6 is a schematic side view of the main part of the hand unit 101.
  • the x-axis, y-axis, and z-axis indicate triaxial directions orthogonal to each other.
  • the hand unit 101 has a clamp mechanism CL1 (first clamp mechanism) that can grip (clamp) the cable member F in one axis direction (x-axis direction).
  • the hand unit 101 further includes a base block 14, a force sensor 15, a camera 16, a lift unit 17, a plurality of illuminators 18, a suction unit 19, and the like.
  • the base block 14 supports the clamp mechanism CL1, the camera 16 (imaging unit), the lifting unit 17, the plurality of illuminators 18, and the suction unit 19.
  • the camera 16 is configured to be able to photograph the cable member F sandwiched by the clamp mechanism CL1.
  • the image signal acquired by the camera 16 is output to the controller 3.
  • the plurality of illuminators 18 are light sources for illuminating the clamp mechanism CL ⁇ b> 1 and the vicinity thereof when the camera 16 is photographing.
  • the force sensor 15 is provided between the hand unit 101 and the articulated arm 102, and is configured to detect an external force acting on the hand unit 101 and a reaction force of the clamp mechanism CL1. A detection signal from the force sensor 15 is output to the controller 3.
  • the clamp mechanism CL1 supports the first clamp claw 11, the second clamp claw 12, and the first and second clamp claws 11, 12 so that they can move relative to each other in the uniaxial direction (x-axis direction). And a drive unit 13.
  • Each of the first and second clamp claws 11 and 12 may be configured to be movable in the x-axis direction, or one of them may be configured to be movable in the x-axis direction.
  • claws 11 and 12 have hook part 11a, 12a which protrudes in the direction which mutually opposes each front-end
  • claw 11 has the protrusion part 110 provided in the position right above the hook part 11a.
  • the distance between the protruding part 110 and the hook part 11a is set to be larger than the diameter of the cable member F.
  • the protrusion 110 has a substantially triangular plate shape extending toward the second clamp claw 12. As shown in FIGS. 5B and 5C, the protruding portion 110 overlaps the tip end portion of the second clamp claw 12 in the y-axis direction when the first clamp claw 11 is moved relative to the second clamp claw 12. Configured.
  • the clamp mechanism CL1 has the accommodating part 101c formed when the space
  • the accommodating portion 101c is a space portion that is formed between the hook portions 11a and 12a and the protruding portion 110 and penetrates in the y-axis direction.
  • the drive unit 13 adjusts the distance between the hook units 11a and 12a to support the cable member F so as to be slidable in the y-axis direction in the housing unit 101c, or to hold the cable member F so as not to slide. Configured to be able to.
  • the elevating unit 17 has an elevating member 171 connected to a drive rod R ⁇ b> 1 of a drive cylinder installed in the base block 14.
  • the elevating member 171 is configured to be movable relative to the clamp mechanism CL1 in the z-axis direction.
  • the elevating member 171 can move linearly between an ascending position indicated by a solid line and a descending position indicated by a two-dot chain line in FIG. 6, and the cable member F supported by the accommodating portion 101c at the lowered position can It can be pressed in the direction (see FIG. 10).
  • the suction unit 19 has a suction tool 191 that can move in the z-axis direction, as shown in FIG.
  • the suction tool 191 has a suction hole for vacuum suction at the tip thereof, and can move linearly between an ascending position indicated by a solid line and a descending position indicated by a two-dot chain line in FIG.
  • the cable member F on the workpiece W can be sucked.
  • the suction unit 19 is used by the clamp mechanism CL2 to remount the cable member F, and may be omitted as necessary.
  • FIG. 7 is a schematic front view showing the configuration of the hand unit 201.
  • the a-axis, b-axis, and c-axis indicate triaxial directions orthogonal to each other.
  • the hand unit 201 includes a clamp mechanism CL2 (second clamp mechanism) that can grip (clamp) the cable member F in one axis direction (a-axis direction).
  • the hand unit 201 further includes a base block 24, a force sensor 25, a camera 26, a plurality of illuminators 28, and the like.
  • the base block 24 supports the clamp mechanism CL2, the camera 26 (imaging unit), and a plurality of illuminators 28.
  • the camera 26 is configured to be able to take an image of the cable member F sandwiched by the clamp mechanism CL2.
  • the image signal acquired by the camera 26 is output to the controller 3.
  • the plurality of illuminators 28 are light sources for illuminating the clamp mechanism CL ⁇ b> 2 and the vicinity thereof when the camera 26 captures images.
  • the force sensor 25 is provided between the hand unit 201 and the articulated arm 202, and is configured to detect an external force acting on the hand unit 201 and a reaction force of the clamp mechanism CL2. A detection signal of the force sensor 25 is output to the controller 3.
  • the clamp mechanism CL2 supports the first clamp claw 21, the second clamp claw 22, and the first and second clamp claws 21, 22 so that they can move relative to each other in the uniaxial direction (a-axis direction). And a drive unit 23.
  • Each of the first and second clamp claws 21 and 22 may be configured to be movable in the a-axis direction, or one of them may be configured to be movable in the a-axis direction.
  • FIG. 8 is a functional block diagram of the robot apparatus 1 including the controller 3.
  • the controller 3 is typically composed of a computer including a CPU (Central Processing Unit) and a memory.
  • the controller 3 is configured to control the operation of each part of the assembly robot 100 and the auxiliary robot 200 by executing a program stored in the memory.
  • CPU Central Processing Unit
  • the controller 3 includes a position determination unit 31, a distance calculation unit 32, a drive signal generation unit 33, a storage unit 34, and an attitude determination unit 35.
  • the position determination unit 31 uses the access points of the assembly robot 100 (first hand unit 101) and the auxiliary robot 200 (second hand unit 201) for the workpiece W placed on the work table 2 (see FIG. 1). decide. Specifically, the position of each part on the base substrate Wa (the positions of the circuit units Wb, Wc, the support Wd, the connection part Wf, etc.) is recognized, and the movement trajectory of the first and second hand parts 101, 102 The moving height from the work table 2 is determined.
  • the distance calculation unit 32 mainly calculates the movement distance of the first hand unit 101. More specifically, the distance calculation unit 32 has a relative movement distance (sliding distance) of the first hand unit 101 with respect to the cable member F and a second hand unit 201 of the first hand unit 101 that holds the cable member F. It is configured to calculate a relative movement distance or the like. The distance calculation unit 32 calculates the distances based on the output of the force sensor 15.
  • the drive signal generation unit 33 generates a drive signal for controlling the driving of the hand units 101 and 201 and the articulated arms 102 and 202 of the robots 100 and 200 based on outputs from the position determination unit 31, the distance calculation unit 32, and the like. Configured as follows.
  • the storage unit 34 is typically composed of a semiconductor memory or the like.
  • the storage unit 34 is necessary for calculation in each unit in addition to a program for controlling the operation of each unit of the robot apparatus 1 including programs for executing the functions of the position determination unit 31, the distance calculation unit 32, and the drive signal generation unit 33. Parameters, image signals of the cameras 16 and 26 output from the hand units 101 and 201, detection signals of the force sensors 15 and 25, and the like can be stored.
  • the posture determination unit 35 determines the posture of the terminal portion Fa with respect to the first hand unit 101 based on image information acquired by the camera 16 of the assembly robot 100 or the camera 26 of the auxiliary robot 200. Thereby, the terminal part Fa can be converted into a posture suitable for connection to the connection part Wf.
  • the posture determination unit 35 uses a posture (see FIG. 13B) in which the small-diameter portion Fa2 of the terminal portion Fa is downward and the connection surface is horizontal as a reference posture, and a terminal from the reference posture. The angular deviation of the posture of the part Fa is calculated.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure executed by the controller 3, and includes operation commands for the hand units 101 and 102.
  • the cable member F is gripped by the first hand unit 101 (step 101).
  • the controller 3 first determines the position of the cable member F, the supports Wd1 to Wd4, and the support members Wd1 to Wd4 based on the image signal of the workpiece W imaged by the camera 16 of the first hand unit 101 or the camera 26 of the second hand unit 201. Information on the position of the connecting portion Wf is acquired. Then, the position determining unit 31 determines the access point (XYZ coordinate position) of the hand units 101 and 102.
  • the drive signal generation unit 33 generates a drive signal for moving the first hand unit 101 to a position where the cable member F is gripped based on the position information set in the position determination unit 31 and outputs the drive signal to the assembly robot 100. .
  • the assembly robot 100 moves the first hand unit 101 to the gripping position of the cable member F via the multi-joint arm 102 and executes the gripping process of the cable member F.
  • a process of moving the cable member F to the gripping position by the suction unit 19 may be executed.
  • the first hand unit 101 moves to a position immediately above a predetermined gripping position of the cable member F, and maintains the clamp mechanism CL1 in the open state shown in FIG. 5A. And the 1st hand part 101 descend
  • the cable member F is accommodated in the accommodating portion 101c. Thereby, the cable member F can be appropriately accommodated in the accommodating part 101c.
  • the gripping force of the cable member F by the clamp mechanism CL1 is set to an appropriate strength that allows the clamp mechanism CL1 to slide relative to the cable member F when a predetermined tension or more is applied to the cable member F. Can do. Thereby, the stress added to the cable member F can be reduced.
  • the gripping force of the clamp mechanism CL1 can be controlled based on the output of the force sensor 15.
  • control such as movement of the hand units 101 and 102 is executed based on outputs from the position determination unit 31 and the drive signal generation unit 33, and detailed description thereof is omitted.
  • the first hand unit 101 is used in the sense of the clamp mechanism CL1
  • the second hand unit 201 is used in the sense of the clamp mechanism CL2.
  • the cable member F is sequentially supported on the supports Wd1 and Wd2 by the first hand unit 101 (step 102).
  • the controller 3 adjusts so that the gripping position of the cable member F by the clamp mechanism CL1 is a support region for the support body Wd1. Thereby, an appropriate cable length (S01) from the circuit unit Wc to the support body Wd1 is ensured.
  • the hand unit 101 pulls the gripping position of the cable member F with a predetermined tension via the clamp mechanism CL1, and the distance from the gripping position and the connection end of the circuit unit Wc has a predetermined size. Check if it exists. If the distance is not a predetermined size, the gripping force is weakened and the clamp mechanism CL1 is slid with respect to the cable member F to re-hold at the position where the distance is a predetermined size.
  • the controller 3 moves the first hand unit 101 to the support body Wd1, thereby supporting the vicinity of the grip region of the cable member F on the support body Wd1.
  • the first hand portion 101 descends to a position where the target support Wd is sandwiched between the clamp mechanism CL1 and the elevating member 171 and the cable member F is supported by the support portion of the support Wd. Engage with Wds.
  • the elevating member 171 is lowered, and the support member F immediately below is pressed against the upper surface of the base substrate Wa with a predetermined pressure.
  • the cable member F can be engaged with the support portion Wds in an appropriate posture.
  • the first hand unit 101 After the operation of engaging the cable member F with the support body Wd1, the first hand unit 101 is raised by a predetermined distance, and the cable member F is supported in a state in which the cable member F is accommodated in the accommodating part 101c by weakening the gripping force of the clamp mechanism CL1 It moves in the direction of the body Wd2.
  • the clamp mechanism CL1 slides and moves relative to the cable member F while supporting the cable member F, changes the gripping position to the support region of the support Wd2, and connects the cable to the support Wd2 in the same procedure as described above.
  • the member F is supported.
  • the slide length of the clamp mechanism CL1 at this time is set to the cable length (S12) corresponding to the distance between the support body Wd1 and the support body Wd2.
  • the controller 3 moves the cable member F to a position immediately above the cable member F in the vicinity of the support Wd by the second hand unit 201, and the base member Wa at a predetermined pressure at the tip of the clamp mechanism CL2. Press and hold up. Thereby, the slack of the cable member F accompanying the movement of the 1st hand part 101 and the drop-off
  • the predetermined pressure can be controlled based on the output of the force sensor 25 of the second hand unit 201.
  • the first hand unit 101 slides a predetermined distance with respect to the cable member F (steps 103 and 104).
  • the cable member F supported by the support body Wd2 by the second hand unit 201 is held.
  • the first hand unit 101 has a first line from the region (first region) gripped when the cable member F is supported by the support body Wd2 toward the terminal portion Fa of the cable member F. After sliding with respect to the cable member F to the area (second area) separated by the length S, the area (second area) is gripped.
  • the first line length S is set to a length (S230) larger than the appropriate cable surplus length (S23) between the support body Wd2 and the support body Wd3. That is, in this step, the support Wd2 is such that the cable length (S34) from the support Wd3 to the support Wd4 and the cable length (S45) from the support Wd4 to the connection portion Wf are within a predetermined range. A surplus length region of the cable member F is formed between the support member Wd3 and the support member Wd3.
  • the cable member F is supported by the support body Wd3 by the first hand unit 101 (step 105).
  • the controller 3 moves the first hand unit 101 to the support Wd3, thereby supporting the second region on the support Wd3.
  • region of the cable member F is formed between the support body Wd2 and the support body Wd3 (refer FIG. 12B).
  • the cable member F is fed out from the support Wd3 by a predetermined distance by the first hand unit 101 (step 106).
  • the first hand unit is held in a state in which the second hand unit 201 holds the support region (second region) of the cable member F on the support Wd3 or the vicinity thereof. 101 is slid with respect to the cable member from the region (second region) to a contact position with the terminal portion Fa of the cable member F.
  • the holding force of the cable member F by the second hand portion 201 is weakened, and the first hand portion 101 is moved together with the terminal portion Fa in a direction away from the support body Wd3 (leftward in the Y-axis direction in FIG. 12C).
  • the cable member F (second region) is slid with respect to the second hand unit 201, the cable member F is extended from the support Wd3 by the second line length.
  • the second line length corresponds to a part of the extra length of the cable member F between the support body Wd2 and the support body Wd3. Specifically, the line length (S230), the line length (S23), It is the length corresponding to the difference of. Thereby, an appropriate cable length (a length corresponding to the sum of S34 and S45) from the support body Wd3 to the connection portion Wf is ensured.
  • the cable member F is supported by the support body Wd4 by the first hand unit 101 (step 107). And the terminal part Fa of the cable member F is connected to the connection part Wf by moving the 1st hand part 101 to the connection part Wf.
  • a step of converting the terminal portion Fa into an appropriate posture is performed, and then the terminal portion Fa is connected to the connection portion Wf (step 108, 109).
  • the cable connecting portion Fb (see FIG. 3B) in the vicinity of the terminal portion Fa is held by the first hand portion 101, and the second robot 200 An image including the orientation information of the terminal portion Fa is acquired by the camera 26. And based on the said attitude
  • the small-diameter portion Fa2 of the terminal portion Fa is directed downward from the image of the terminal portion Fa acquired by the camera 26, and the connection surface thereof is The controller 3 calculates the angle error from the horizontal proper posture. Then, after the clamp mechanism CL2 of the second hand unit 201 grips the terminal portion Fa instead of the first hand unit 101 (clamp mechanism CL1), the first hand unit 101 has an angle corresponding to the angle error. Rotate and re-clamp the cable connection Fb. As a result, as shown in FIG. 13B, the terminal portion Fa is held in an appropriate posture by the first hand unit 101.
  • the first hand unit 101 moves to a position directly above the connection part Wf, lowers the terminal part Fa, and connects to the connection part Wf with a predetermined pressure. Thereby, the routing operation of the cable member F and the connection operation of the terminal portion Fa to the connection portion Wf between the plurality of support bodies Wd by the robot apparatus 1 are completed.
  • each region of the cable member F can be accurately guided to a predetermined holding position, so that occurrence of slack in an unintended region due to variation in the length of the cable member F is suppressed. be able to.
  • the assembly robot 100 and the auxiliary robot 200 include the force sensors 15 and 25, it is possible to adjust an appropriate gripping force and feeding length for the cable member F, and a terminal for the connection portion Wf. An appropriate pushing pressure of the portion Fa can be realized.
  • the flexible cable member F can be connected to the device while being routed along a predetermined route while creating a desired extra length region. it can.
  • the cable member F is provided between the surplus length region support body Wd2 and the support body Wd3.
  • the present invention is not limited to this, and the surplus length region may be set in another section.
  • the routing route of the cable member F and the structure of the support body Wd are not limited to the above-described example, and can be appropriately changed according to the type of the workpiece W or the like.
  • the auxiliary robot 200 performs a predetermined holding action by pressing the tip of the clamp mechanism CL2 against the cable member F.
  • the auxiliary robot 200 is predetermined by clamping the cable member F with the clamp mechanism CL2. The holding action may be performed.
  • the routing of the cable member F is realized by cooperative control of the assembly robot 100 and the auxiliary robot 200.
  • the present invention is not limited to this, and depending on the structure of the support and the routing route, the assembly robot 100 alone may be used. You may go.
  • this technique can also take the following structures.
  • a first multi-joint arm, a first hand unit attached to the first multi-joint arm and capable of supporting a flexible linear member, and the first multi-joint arm A first robot having a force sensor arranged between the first hand unit and capable of detecting an external force acting on the first hand unit;
  • a second robot having a second articulated arm and a second hand unit attached to the second articulated arm and capable of holding the linear member;
  • a position determining unit that determines a holding position of the linear member by the second hand unit, and the first relative to the linear member held by the second hand unit based on an output of the force sensor.
  • a robot apparatus comprising: a distance calculating unit that calculates a sliding distance of the hand unit; (2) The robot apparatus according to (1) above, The distance calculation unit further calculates a relative movement distance of the linear member held by the first hand unit with respect to the second hand unit based on an output of the force sensor. (3) The robot apparatus according to (1) or (2) above, The first hand unit includes: A clamp mechanism capable of gripping the linear member in a uniaxial direction; A robot apparatus configured to be movable relative to the clamp mechanism and capable of pressing the linear member gripped by the clamp mechanism in another axial direction perpendicular to the one axial direction.
  • the clamping mechanism is A first clamping claw; A second clamp claw movable relative to the first clamp claw in the uniaxial direction; A protrusion provided on the first clamp pawl and extending toward the second clamp pawl; A robot apparatus, comprising: a housing portion provided between the projecting portion and the distal end portions of the first and second clamp claws and capable of slidably supporting the linear member.
  • the second robot further includes a camera that photographs the tip of the linear member supported by the first hand unit,
  • the control unit further includes a posture determination unit that determines a posture of the tip portion with respect to the hand unit based on image information acquired by the camera.
  • a method of manufacturing an electronic device including a linear member of Grasping the linear member with the first hand portion of the first robot, By moving the first hand portion to the first support, the first region of the linear member is supported by the first support, Holding the linear member by the second hand portion of the second robot; The first hand part is slid relative to the linear member from the first area toward the terminal part to a second area separated by a first line length, and then the first hand part Holding the second region with the hand part; The manufacturing method of the electronic device which makes the said 2nd support body support the said 2nd area
  • the method for manufacturing the electronic device according to (6) further comprising: Sliding the first hand part relative to the linear member from the second region to a contact position with the terminal part; By moving the first hand portion together with the terminal portion in a direction away from the second support, the second region is extended from the second support by a second line length, A method of manufacturing an electronic device, wherein the terminal portion is connected to the connection portion by moving the first hand portion to the connection portion.
  • the method for manufacturing an electronic device according to (7) further comprising: Before connecting the terminal unit to the connection unit, obtain an image including posture information of the terminal unit with the camera of the second robot, A method for manufacturing an electronic device, wherein a gripping position of the terminal unit by the first hand unit is changed based on the posture information.
  • the linear member is an antenna cable or a wiring cable.

Abstract

The robot apparatus of one embodiment of the present technology is provided with a first robot (100), a second robot (200) and a control unit (3). The first robot has a first hand part (101) and a force sensor (15). The first hand part is configured so as to be capable of supporting a flexible linear member. The force sensor detects external forces acting on the first hand part. The second robot has a second hand part (201). The second hand part is configured so as to be capable of holding the linear member. The control unit has a position-determining section (31) for determining the position at which the second hand part holds the linear member, and a distance-calculating section (32) for calculating, on the basis of the output of the force sensor, the sliding distance of the first hand part relative to the linear member held by the second hand part.

Description

ロボット装置および電子機器の製造方法Robot apparatus and electronic device manufacturing method
 本技術は、例えばケーブル等の柔軟性の線状部材を有する電子機器の製造に用いられるロボット装置及び電子機器の製造方法に関する。 The present technology relates to a robot apparatus used for manufacturing an electronic device having a flexible linear member such as a cable, and an electronic device manufacturing method.
 例えば、電子機器の製造においては電子部品の組み立てに産業用ロボットが広く用いられている。例えば、ケーブル等の線状部材とコネクタ部品との接続工程を自動で行う技術が知られている(例えば特許文献1,2参照)。 For example, in the manufacture of electronic equipment, industrial robots are widely used for assembling electronic components. For example, a technique for automatically performing a connection process between a linear member such as a cable and a connector part is known (see, for example, Patent Documents 1 and 2).
特開2010-69587号公報JP 2010-69587 A 特開2014-176917号公報Japanese Patent Application Laid-Open No. 2014-176917
 電子機器の製造分野においては、ケーブル等の線状部材を、機器内の複数の支持体間を掛け渡しながらコネクタ部品へ接続する場合がある。しかしながら、線状部材の長さのバラツキによって、意図しない領域で線状部材に大きな弛みが生じ、これが原因で、その後の組み立て工程に支障が生じたり、機器の電気的特性を低下させたりすることがある。 In the field of manufacturing electronic equipment, a linear member such as a cable may be connected to a connector part while spanning between a plurality of supports in the equipment. However, due to variations in the length of the linear member, the linear member may become loose in an unintended area, which may cause problems in the subsequent assembly process or reduce the electrical characteristics of the device. There is.
 以上のような事情に鑑み、本技術の目的は、線状部材の長さのバラツキによる意図しない領域での弛みの発生を抑えることができるロボット装置及び電子機器の製造方法を提供することにある。 In view of the circumstances as described above, an object of the present technology is to provide a robot apparatus and a method for manufacturing an electronic apparatus that can suppress the occurrence of slack in an unintended region due to variations in the length of linear members. .
 本技術の一形態に係るロボット装置は、第1のロボットと、第2のロボットと、制御部とを具備する。
 上記第1のロボットは、第1の多関節アームと、第1のハンド部と、力覚センサとを有する。上記第1のハンド部は、上記第1の多関節アームに取り付けられ、柔軟性の線状部材を支持することが可能に構成される。上記力覚センサは、上記第1の多関節アームと上記第1のハンド部との間に配置され、上記第1のハンド部に作用する外力を検出することが可能に構成される。
 上記第2のロボットは、第2の多関節アームと、第2のハンド部とを有する。上記第2のハンド部は、上記第2の多関節アームに取り付けられ、上記線状部材を保持することが可能に構成される。
 上記制御部は、上記第2のハンド部による上記線状部材の保持位置を決定する位置決定部と、上記力覚センサの出力に基づいて、上記第2のハンド部に保持された上記線状部材に対する上記第1のハンド部のスライド距離を算出する距離算出部と、を有する。
A robot apparatus according to an embodiment of the present technology includes a first robot, a second robot, and a control unit.
The first robot includes a first articulated arm, a first hand unit, and a force sensor. The first hand portion is attached to the first articulated arm and configured to support a flexible linear member. The force sensor is arranged between the first articulated arm and the first hand unit, and is configured to detect an external force acting on the first hand unit.
The second robot has a second articulated arm and a second hand unit. The second hand portion is attached to the second articulated arm and configured to hold the linear member.
The control unit is configured to determine a holding position of the linear member by the second hand unit, and the linear shape held by the second hand unit based on an output of the force sensor. A distance calculating unit that calculates a sliding distance of the first hand unit relative to the member.
 上記ロボット装置によれば、線状部材の各領域を所定の保持位置に的確に導くことができるため、線状部材の長さのバラツキによる意図しない領域での弛みの発生を抑えることができる。 According to the robot apparatus, since each region of the linear member can be accurately guided to a predetermined holding position, it is possible to suppress the occurrence of slack in the unintended region due to the variation in the length of the linear member.
 上記距離算出部は、上記力覚センサの出力に基づいて、上記第1のハンド部に把持された上記線状部材の上記第2のハンド部に対する相対移動距離をさらに算出するように構成されてもよい。
 これにより、線状部材の任意の固定位置の間を適切な長さに調整することができる。
The distance calculation unit is configured to further calculate a relative movement distance of the linear member held by the first hand unit with respect to the second hand unit based on an output of the force sensor. Also good.
Thereby, it can adjust to the suitable length between the arbitrary fixed positions of a linear member.
 上記第1のハンド部は、クランプ機構と、昇降部材とを有してもよい。
 上記クランプ機構は、上記線状部材を一軸方向に把持することが可能に構成される。上記昇降部材は、上記クランプ機構に対して相対移動可能に構成され、上記クランプ機構に把持された上記線状部材を上記一軸方向と直交する他の軸方向に押圧可能に構成される。
 これにより、線状部材の任意の領域を所定の保持位置へ適切に組み付けることができる。
The first hand unit may include a clamp mechanism and an elevating member.
The clamp mechanism is configured to be able to grip the linear member in a uniaxial direction. The elevating member is configured to be movable relative to the clamp mechanism, and is configured to be able to press the linear member held by the clamp mechanism in another axial direction orthogonal to the one axial direction.
Thereby, the arbitrary area | regions of a linear member can be assembled | attached appropriately to a predetermined holding position.
 上記クランプ機構は、第1のクランプ爪と、第2のクランプ爪と、突出部と、収容部とを有してもよい。
 上記第2のクランプ爪は、上記第1のクランプ爪に対して上記一軸方向に相対移動可能に構成される。上記突出部は、上記第1のクランプ爪に設けられ、上記第2のクランプ爪に向かって延びる。上記収容部は、上記突出部と上記第1及び第2のクランプ爪の先端部との間に設けられ、上記線状部材をスライド自在に支持することが可能に構成される。
 これにより、第1のハンド部によって線状部材を適切に支持することができる。
The clamp mechanism may include a first clamp claw, a second clamp claw, a protruding portion, and a storage portion.
The second clamp pawl is configured to be movable relative to the first clamp pawl in the uniaxial direction. The protrusion is provided on the first clamp claw and extends toward the second clamp claw. The accommodating portion is provided between the protruding portion and the distal end portions of the first and second clamp claws, and is configured to be able to slidably support the linear member.
Thereby, a linear member can be appropriately supported by the 1st hand part.
 上記第2のロボットは、上記第1のハンド部で支持された上記線状部材の先端部を撮影するカメラをさらに有してもよい。上記制御部は、上記カメラで取得した画像情報に基づいて上記第1のハンド部に対する上記先端部の姿勢を判定する姿勢判定部をさらに有してもよい。
 これにより、線状部材の先端部を接続対象物への接続に適した姿勢に変換することができる。
The second robot may further include a camera that captures an end portion of the linear member supported by the first hand unit. The control unit may further include a posture determination unit that determines a posture of the tip portion with respect to the first hand unit based on image information acquired by the camera.
Thereby, the front-end | tip part of a linear member can be converted into the attitude | position suitable for the connection to a connection target object.
 本技術の一形態に係る電子機器の製造方法は、接続部を有するベース基板と、上記接続部に接続される端子部を先端に有し上記ベース基板上に立設された第1及び第2の支持体の間に架け渡される柔軟性の線状部材とを含む電子機器の製造方法であって、第1のロボットの第1のハンド部で上記線状部材を把持することを含む。
 第1のハンド部を第1の支持体に移動させることで、上記線状部材の第1の領域が上記第1の支持体に支持される。
 第2のロボットの第2のハンド部で上記線状部材が保持される。
 上記第1のハンド部を、上記第1の領域から上記端子部に向かって第1の線長だけ離間した第2の領域へ上記線状部材に対してスライド移動させた後、上記第1のハンド部で上記第2の領域が把持される。
 上記第1のハンド部を第2の支持体に移動させることで、上記第2の領域が上記第2の支持体に支持される。
A method of manufacturing an electronic device according to an aspect of the present technology includes a base substrate having a connection portion, and first and second erected on the base substrate having a terminal portion connected to the connection portion at a tip. A method for manufacturing an electronic device including a flexible linear member spanned between the support members, the method including gripping the linear member with a first hand portion of a first robot.
By moving the first hand part to the first support, the first region of the linear member is supported by the first support.
The linear member is held by the second hand portion of the second robot.
The first hand portion is slid with respect to the linear member from the first region toward the terminal portion toward the second region separated by the first line length, and then the first hand portion is moved. The second area is gripped by the hand portion.
The second region is supported by the second support by moving the first hand part to the second support.
 上記電子機器の製造方法は、さらに、上記第1のハンド部を上記第2の領域から上記端子部との当接位置まで上記線状部材に対してスライド移動させることを含んでもよい。
 上記第1のハンド部を上記端子部と共に上記第2の支持体から離間する方向へ移動させることで、上記第2の領域が上記第2の支持体から第2の線長だけ繰り出される。
 上記第1のハンド部を上記接続部に移動させることで、上記端子部が上記接続部に接続される。
The method for manufacturing the electronic device may further include sliding the first hand portion relative to the linear member from the second region to a contact position with the terminal portion.
By moving the first hand portion together with the terminal portion in a direction away from the second support body, the second region is extended from the second support body by a second line length.
By moving the first hand part to the connection part, the terminal part is connected to the connection part.
 上記電子機器の製造方法は、さらに、上記端子部を上記接続部に接続する前に、上記第2のロボットのカメラで上記端子部の姿勢情報を含む画像を取得することを含んでもよい。
 上記姿勢情報に基づいて、上記第1のハンド部による上記端子部の把持位置が変更される。
The method for manufacturing the electronic device may further include acquiring an image including posture information of the terminal unit with the camera of the second robot before connecting the terminal unit to the connection unit.
Based on the posture information, the gripping position of the terminal unit by the first hand unit is changed.
 上記線状部材は、アンテナケーブル又は配線ケーブルであってもよい。 The linear member may be an antenna cable or a wiring cable.
 以上のように、本技術によれば、線状部材の長さのバラツキによる意図しない領域での弛みの発生を抑えることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
As described above, according to the present technology, it is possible to suppress the occurrence of slack in an unintended region due to the variation in the length of the linear member.
Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の一実施形態に係る電子機器の製造装置(ロボット装置)を示す概略側面図である。It is a schematic side view which shows the manufacturing apparatus (robot apparatus) of the electronic device which concerns on one Embodiment of this technique. 線状部材に対する上記ロボット装置の処理の手順を説明する概略図である。It is the schematic explaining the procedure of the process of the said robot apparatus with respect to a linear member. 上記線状部材の支持形態と先端部の形態の一例を示す斜視図である。It is a perspective view which shows an example of the support form of the said linear member, and the form of a front-end | tip part. 上記ロボット装置における第1のロボットのハンド部の構成を示す概略正面図である。It is a schematic front view which shows the structure of the hand part of the 1st robot in the said robot apparatus. 上記ハンド部におけるクランプ機構の動作例を説明する拡大正面図である。It is an enlarged front view explaining the operation example of the clamp mechanism in the said hand part. 上記ハンド部の要部の概略側面図である。It is a schematic side view of the principal part of the said hand part. 上記ロボット装置における第2のロボットのハンド部の構成を示す概略正面図である。It is a schematic front view which shows the structure of the hand part of the 2nd robot in the said robot apparatus. 上記ロボット装置の機能ブロック図である。It is a functional block diagram of the robot apparatus. 上記ロボット装置における制御部により実行される処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence performed by the control part in the said robot apparatus. 上記線状部材の支持方法を説明する概略側断面図である。It is a schematic sectional side view explaining the support method of the said linear member. 上記第2のロボットによる上記線状部材の保持方法を説明する概略側断面図である。It is a schematic sectional side view explaining the holding method of the said linear member by the said 2nd robot. 本技術の一形態に係る電子機器の製造方法を説明する概略平面図である。It is a schematic plan view explaining the manufacturing method of the electronic device which concerns on one form of this technique. 上記ロボット装置による上記線状部材の先端部の姿勢変換工程を説明する概略正面図である。It is a schematic front view explaining the attitude | position conversion process of the front-end | tip part of the said linear member by the said robot apparatus.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present technology will be described with reference to the drawings.
 図1は、本技術の一実施形態に係る電子機器の製造装置(ロボット装置)を示す概略側面図である。本実施形態では、電子機器の一製造工程であるケーブル部材の自動接続工程への本技術への適用例について説明する。 FIG. 1 is a schematic side view showing an electronic apparatus manufacturing apparatus (robot apparatus) according to an embodiment of the present technology. In this embodiment, an application example of the present technology to an automatic connection process of a cable member, which is one manufacturing process of an electronic device, will be described.
[ロボット装置の概略構成]
 本実施形態のロボット装置1は、組立ロボット100(第1のロボット)と、補助ロボット200(第2のロボット)と、電子機器の半完成品(以下、ワークWともいう)を支持する作業台2と、組立ロボット100及び補助ロボット200の駆動を制御するコントローラ3(制御部)とを備える。
[Schematic configuration of robotic device]
The robot apparatus 1 according to the present embodiment includes a work table that supports an assembly robot 100 (first robot), an auxiliary robot 200 (second robot), and a semi-finished product (hereinafter also referred to as a workpiece W) of an electronic device. 2 and a controller 3 (control unit) that controls driving of the assembly robot 100 and the auxiliary robot 200.
 組立ロボット100は、ハンド部101(第1のハンド部)と、ハンド部101を6軸自由度で任意の座標位置へ移動させることが可能な多関節アーム102(第1の多関節アーム)とを有する。
 補助ロボット200は、ハンド部201(第2のハンド部)と、ハンド部201を6軸自由度で任意の座標位置へ移動させることが可能な多関節アーム202(第2の多関節アーム)とを有する。
 多関節アーム102,202は、作業台2又は作業台2に近接して配置された図示しない駆動源にそれぞれ接続される。
The assembly robot 100 includes a hand unit 101 (first hand unit), and a multi-joint arm 102 (first multi-joint arm) capable of moving the hand unit 101 to an arbitrary coordinate position with six-axis freedom. Have
The auxiliary robot 200 includes a hand unit 201 (second hand unit), a multi-joint arm 202 (second multi-joint arm) capable of moving the hand unit 201 to an arbitrary coordinate position with six axes of freedom. Have
The multi-joint arms 102 and 202 are respectively connected to the work table 2 or a drive source (not shown) arranged in the vicinity of the work table 2.
 コントローラ3は、典型的には、CPU(Central Processing Unit)やメモリを有するコンピュータで構成され、組立ロボット100及び補助ロボット200の駆動を上記メモリに格納されたプログラムに従って制御するように構成される。
 コントローラ3による各ロボット100,200の制御例については後述する。
The controller 3 is typically composed of a computer having a CPU (Central Processing Unit) and a memory, and is configured to control the driving of the assembly robot 100 and the auxiliary robot 200 in accordance with a program stored in the memory.
An example of control of the robots 100 and 200 by the controller 3 will be described later.
 図2A,Bは、ワークWの一例及びワークWに対するロボット装置1の処理の手順を説明する概略図である。
 なお図において、X軸、Y軸及びZ軸は、相互に直交する3軸方向を示しており、Z軸は高さ方向に相当する。
2A and 2B are schematic diagrams illustrating an example of a workpiece W and a processing procedure of the robot apparatus 1 for the workpiece W.
In the figure, an X axis, a Y axis, and a Z axis indicate triaxial directions orthogonal to each other, and the Z axis corresponds to a height direction.
 ワークWは、ベース基板Wa、ベース基板Waの上に配置された回路ユニットWb,Wc、ベース基板Waの上の適宜の位置に立設された複数の支持体Wd(Wd1~Wd4)、ケーブル部材F等を有する。 The workpiece W includes a base substrate Wa, circuit units Wb and Wc disposed on the base substrate Wa, a plurality of supports Wd (Wd1 to Wd4) standing at appropriate positions on the base substrate Wa, a cable member F and so on.
 ベース基板Waとしては、例えば、電子機器のケースの一部、あるいは当該ケース内に配置される板状の支持体等が挙げられる。回路ユニットWb,Wcは、プリント配線基板上に各種電子部品が搭載された回路基板、あるいは、電子機器の一機能を構成するCPUやメモリ等で構成されたコンピュータを内蔵する電子ユニット等で構成される。 Examples of the base substrate Wa include a part of a case of an electronic device or a plate-like support disposed in the case. The circuit units Wb and Wc are configured by a circuit board in which various electronic components are mounted on a printed wiring board, or an electronic unit having a built-in computer configured by a CPU, a memory, etc. constituting one function of the electronic device. The
 複数の支持体Wdは、ケーブル部材Fをベース基板Wa上で所定の経路で引き回すためのもので、図3Aに示すように、ケーブルFを支持する支持部Wdsを有する所定厚みの板形状を有する。支持部Wdsは、上部が開口した溝状に形成され、その溝幅は、ケーブルFの外径と同等又はそれより若干大きい寸法で形成される。 The plurality of support bodies Wd are for routing the cable member F along a predetermined path on the base substrate Wa, and have a plate shape with a predetermined thickness having a support portion Wds for supporting the cable F as shown in FIG. 3A. . The support portion Wds is formed in a groove shape with an open top, and the groove width is formed to be equal to or slightly larger than the outer diameter of the cable F.
 ケーブル部材Fは、一端が回路ユニットWbに接続され、他端(先端)に端子部Faを有する断面円形の柔軟性のある線材で構成される。ケーブル部材Fは、典型的には、導電材料で構成された芯材F1とその表面を被覆する絶縁被膜F2を有し、配線ケーブルやアンテナケーブル等の配線部材として構成される。図3Aに示すようにケーブルFの断面は円形であるが、これに限られず、矩形状に形成されてもよい。 The cable member F is formed of a flexible wire having a circular cross section having one end connected to the circuit unit Wb and the other end (tip) having a terminal portion Fa. The cable member F typically has a core material F1 made of a conductive material and an insulating coating F2 covering the surface thereof, and is configured as a wiring member such as a wiring cable or an antenna cable. As shown in FIG. 3A, the cross section of the cable F is circular, but is not limited thereto, and may be formed in a rectangular shape.
 ケーブル部材Fの端子部Faは、図3Bに模式的に示すように、大径部Fa1と小径部Fa2とを有する段付き円盤形状を有し、その小径部Fa2が接続面を構成する。端子部Faは、その小径部Fa2を下向きにして、ベース基板Wa上の接続部Wfに組み込まれる(図2B参照)。 The terminal part Fa of the cable member F has a stepped disk shape having a large diameter part Fa1 and a small diameter part Fa2, as schematically shown in FIG. 3B, and the small diameter part Fa2 constitutes a connection surface. The terminal portion Fa is incorporated into the connection portion Wf on the base substrate Wa with the small diameter portion Fa2 facing downward (see FIG. 2B).
 ワークWは、ケーブル部材Fの一端が回路ユニットWcに接続された状態で作業台2の上に載置される。ロボット装置1は、後述するように、組立ロボット100と補助ロボット200とを協調制御して、ケーブル部材Fを複数の支持体Wd間に所定の経路で架け渡した後、端子部Faを接続部Wfに接続する。 Work W is placed on the work table 2 with one end of the cable member F connected to the circuit unit Wc. As will be described later, the robot apparatus 1 controls the assembly robot 100 and the auxiliary robot 200 in a coordinated manner, bridges the cable member F between the plurality of support bodies Wd through a predetermined path, and then connects the terminal portion Fa to the connection portion. Connect to Wf.
 ここで、ケーブル部材Fの長さのバラツキによっては、意図しない領域でケーブル部材Fに大きな弛みが生じ、これが原因で、その後の組み立て工程に支障が生じたり、機器の電気的特性を低下させたりすることがある。
 本実施形態においてロボット装置1は、図2Bに示すように、支持体Wd2と支持体Wd3との間の経路をケーブル部材Fの余長領域とし、支持体Wd4と接続部Wfとの間のケーブル部材Fの線長が一定となるようにケーブル部材Fを組み付けることが可能に構成される。
 以下、ロボット装置1の詳細について説明する。
Here, depending on the variation in the length of the cable member F, the cable member F may be loosened in an unintended region, which may cause problems in the subsequent assembly process, or may deteriorate the electrical characteristics of the device. There are things to do.
In the present embodiment, as shown in FIG. 2B, the robot apparatus 1 uses the path between the support Wd2 and the support Wd3 as an extra length region of the cable member F, and a cable between the support Wd4 and the connection portion Wf. The cable member F can be assembled so that the line length of the member F is constant.
Details of the robot apparatus 1 will be described below.
[第1のロボット]
 図4は、ハンド部101の構成を示す概略正面図、図5A~Cは、そのクランプ機構の動作例を説明する拡大正面図、図6は、ハンド部101の要部の概略側面図である。
 なお、各図においてx軸、y軸及びz軸は、相互に直交する3軸方向を示している。
[First robot]
FIG. 4 is a schematic front view showing the configuration of the hand unit 101, FIGS. 5A to 5C are enlarged front views for explaining an operation example of the clamp mechanism, and FIG. 6 is a schematic side view of the main part of the hand unit 101. .
In each figure, the x-axis, y-axis, and z-axis indicate triaxial directions orthogonal to each other.
 ハンド部101は、ケーブル部材Fを一軸方向(x軸方向)に把持(挟持)することが可能なクランプ機構CL1(第1のクランプ機構)を有する。ハンド部101はさらに、ベースブロック14、力覚センサ15、カメラ16、昇降ユニット17、複数の照明器18、吸着ユニット19等を有する。 The hand unit 101 has a clamp mechanism CL1 (first clamp mechanism) that can grip (clamp) the cable member F in one axis direction (x-axis direction). The hand unit 101 further includes a base block 14, a force sensor 15, a camera 16, a lift unit 17, a plurality of illuminators 18, a suction unit 19, and the like.
 ベースブロック14は、クランプ機構CL1と、カメラ16(撮影部)と、昇降ユニット17と、複数の照明器18と、吸着ユニット19とを支持する。
 カメラ16は、クランプ機構CL1で挟持されたケーブル部材Fを撮影することが可能に構成される。カメラ16で取得された画像信号は、コントローラ3へ出力される。
 複数の照明器18は、カメラ16の撮影時にクランプ機構CL1及びその近傍を照明するための光源である。
The base block 14 supports the clamp mechanism CL1, the camera 16 (imaging unit), the lifting unit 17, the plurality of illuminators 18, and the suction unit 19.
The camera 16 is configured to be able to photograph the cable member F sandwiched by the clamp mechanism CL1. The image signal acquired by the camera 16 is output to the controller 3.
The plurality of illuminators 18 are light sources for illuminating the clamp mechanism CL <b> 1 and the vicinity thereof when the camera 16 is photographing.
 力覚センサ15は、ハンド部101と多関節アーム102との間に設けられ、ハンド部101に作用する外力やクランプ機構CL1の反力を検出することが可能に構成される。力覚センサ15の検出信号は、コントローラ3へ出力される。 The force sensor 15 is provided between the hand unit 101 and the articulated arm 102, and is configured to detect an external force acting on the hand unit 101 and a reaction force of the clamp mechanism CL1. A detection signal from the force sensor 15 is output to the controller 3.
 クランプ機構CL1は、第1のクランプ爪11と、第2のクランプ爪12と、第1及び第2のクランプ爪11,12を相互に上記一軸方向(x軸方向)に相対移動可能に支持する駆動部13とを有する。第1及び第2のクランプ爪11,12は、各々がx軸方向に移動可能に構成されてもよいし、いずれか一方がx軸方向に移動可能に構成されてもよい。 The clamp mechanism CL1 supports the first clamp claw 11, the second clamp claw 12, and the first and second clamp claws 11, 12 so that they can move relative to each other in the uniaxial direction (x-axis direction). And a drive unit 13. Each of the first and second clamp claws 11 and 12 may be configured to be movable in the x-axis direction, or one of them may be configured to be movable in the x-axis direction.
 第1及び第2のクランプ爪11,12は、各々の先端部に相互に対向する方向に突出するフック部11a,12aを有する。第1のクランプ爪11は、フック部11aの直上位置に設けられた突出部110を有する。突出部110とフック部11aとの間の距離は、ケーブル部材Fの直径以上の大きさとされる。 1st and 2nd clamp nail | claws 11 and 12 have hook part 11a, 12a which protrudes in the direction which mutually opposes each front-end | tip part. The 1st clamp nail | claw 11 has the protrusion part 110 provided in the position right above the hook part 11a. The distance between the protruding part 110 and the hook part 11a is set to be larger than the diameter of the cable member F.
 突出部110は、第2のクランプ爪12に向かって延びる概略三角形状の板形状を有する。突出部110は、図5B,Cに示すように、第2のクランプ爪12に対する第1のクランプ爪11の相対移動時において第2のクランプ爪12の先端部とy軸方向にオーバラップするように構成される。 The protrusion 110 has a substantially triangular plate shape extending toward the second clamp claw 12. As shown in FIGS. 5B and 5C, the protruding portion 110 overlaps the tip end portion of the second clamp claw 12 in the y-axis direction when the first clamp claw 11 is moved relative to the second clamp claw 12. Configured.
 そして、クランプ機構CL1は、図5Cに示すようにフック部11a,12aの先端どうしの間隔がケーブル部材Fの直径以下のときに形成される収容部101cを有する。収容部101cは、フック部11a,12aと突出部110との間に形成されたy軸方向に貫通する空間部である。駆動部13は、フック部11a,12a間の距離を調整することで、収容部101c内においてケーブル部材Fをy軸方向にスライド自在に支持したり、ケーブル部材Fをスライドさせないように把持したりすることが可能に構成される。 And the clamp mechanism CL1 has the accommodating part 101c formed when the space | interval of the front-end | tips of the hook parts 11a and 12a is below the diameter of the cable member F, as shown to FIG. 5C. The accommodating portion 101c is a space portion that is formed between the hook portions 11a and 12a and the protruding portion 110 and penetrates in the y-axis direction. The drive unit 13 adjusts the distance between the hook units 11a and 12a to support the cable member F so as to be slidable in the y-axis direction in the housing unit 101c, or to hold the cable member F so as not to slide. Configured to be able to.
 昇降ユニット17は、図6に示すように、ベースブロック14に設置された駆動シリンダの駆動ロッドR1に連結された昇降部材171を有している。昇降部材171は、クランプ機構CL1に対してz軸方向に相対移動可能に構成される。昇降部材171は、図6において実線で示す上昇位置と二点鎖線で示す下降位置との間を直線的に移動可能であり、その下降位置において収容部101cに支持されたケーブル部材Fをz軸方向に押圧することが可能に構成される(図10参照)。 As shown in FIG. 6, the elevating unit 17 has an elevating member 171 connected to a drive rod R <b> 1 of a drive cylinder installed in the base block 14. The elevating member 171 is configured to be movable relative to the clamp mechanism CL1 in the z-axis direction. The elevating member 171 can move linearly between an ascending position indicated by a solid line and a descending position indicated by a two-dot chain line in FIG. 6, and the cable member F supported by the accommodating portion 101c at the lowered position can It can be pressed in the direction (see FIG. 10).
 吸着ユニット19は、図4に示すように、z軸方向に移動可能な吸着具191を有する。吸着具191は、その先端部に真空吸着用の吸着孔を有し、図4において実線で示す上昇位置と二点鎖線で示す下降位置との間を直線的に移動可能であり、その下降位置においてワークW上のケーブル部材Fを吸着することが可能に構成される。吸着ユニット19は、クランプ機構CL2がケーブル部材Fを載置し直すために用いられるもので、必要に応じて省略されてもよい。 The suction unit 19 has a suction tool 191 that can move in the z-axis direction, as shown in FIG. The suction tool 191 has a suction hole for vacuum suction at the tip thereof, and can move linearly between an ascending position indicated by a solid line and a descending position indicated by a two-dot chain line in FIG. The cable member F on the workpiece W can be sucked. The suction unit 19 is used by the clamp mechanism CL2 to remount the cable member F, and may be omitted as necessary.
[第2のロボット]
 図7は、ハンド部201の構成を示す概略正面図である。
 なお、各図においてa軸、b軸及びc軸は、相互に直交する3軸方向を示している。
[Second robot]
FIG. 7 is a schematic front view showing the configuration of the hand unit 201.
In each figure, the a-axis, b-axis, and c-axis indicate triaxial directions orthogonal to each other.
 ハンド部201は、ケーブル部材Fを一軸方向(a軸方向)に把持(挟持)することが可能なクランプ機構CL2(第2のクランプ機構)を有する。ハンド部201はさらに、ベースブロック24、力覚センサ25、カメラ26、複数の照明器28等を有する。 The hand unit 201 includes a clamp mechanism CL2 (second clamp mechanism) that can grip (clamp) the cable member F in one axis direction (a-axis direction). The hand unit 201 further includes a base block 24, a force sensor 25, a camera 26, a plurality of illuminators 28, and the like.
 ベースブロック24は、クランプ機構CL2と、カメラ26(撮影部)と、複数の照明器28とを支持する。
 カメラ26は、クランプ機構CL2で挟持されたケーブル部材Fを撮影することが可能に構成される。カメラ26で取得された画像信号は、コントローラ3へ出力される。
 複数の照明器28は、カメラ26の撮影時にクランプ機構CL2及びその近傍を照明するための光源である。
The base block 24 supports the clamp mechanism CL2, the camera 26 (imaging unit), and a plurality of illuminators 28.
The camera 26 is configured to be able to take an image of the cable member F sandwiched by the clamp mechanism CL2. The image signal acquired by the camera 26 is output to the controller 3.
The plurality of illuminators 28 are light sources for illuminating the clamp mechanism CL <b> 2 and the vicinity thereof when the camera 26 captures images.
 力覚センサ25は、ハンド部201と多関節アーム202との間に設けられ、ハンド部201に作用する外力やクランプ機構CL2の反力を検出することが可能に構成される。力覚センサ25の検出信号は、コントローラ3へ出力される。 The force sensor 25 is provided between the hand unit 201 and the articulated arm 202, and is configured to detect an external force acting on the hand unit 201 and a reaction force of the clamp mechanism CL2. A detection signal of the force sensor 25 is output to the controller 3.
 クランプ機構CL2は、第1のクランプ爪21と、第2のクランプ爪22と、第1及び第2のクランプ爪21,22を相互に上記一軸方向(a軸方向)に相対移動可能に支持する駆動部23とを有する。第1及び第2のクランプ爪21,22は、各々がa軸方向に移動可能に構成されてもよいし、いずれか一方がa軸方向に移動可能に構成されてもよい。 The clamp mechanism CL2 supports the first clamp claw 21, the second clamp claw 22, and the first and second clamp claws 21, 22 so that they can move relative to each other in the uniaxial direction (a-axis direction). And a drive unit 23. Each of the first and second clamp claws 21 and 22 may be configured to be movable in the a-axis direction, or one of them may be configured to be movable in the a-axis direction.
[コントローラ]
 図8は、コントローラ3を含むロボット装置1の機能ブロック図である。
 コントローラ3は、典型的には、CPU(Central Processing Unit)やメモリを含むコンピュータで構成される。コントローラ3は、上記メモリに格納されたプログラムを実行することで、組立ロボット100及び補助ロボット200の各部の動作を制御するように構成される。
[controller]
FIG. 8 is a functional block diagram of the robot apparatus 1 including the controller 3.
The controller 3 is typically composed of a computer including a CPU (Central Processing Unit) and a memory. The controller 3 is configured to control the operation of each part of the assembly robot 100 and the auxiliary robot 200 by executing a program stored in the memory.
 コントローラ3は、位置決定部31と、距離算出部32と、駆動信号生成部33と、記憶部34と、姿勢判定部35とを有する。 The controller 3 includes a position determination unit 31, a distance calculation unit 32, a drive signal generation unit 33, a storage unit 34, and an attitude determination unit 35.
 位置決定部31は、作業台2(図1参照)上に載置されたワークWに対する組立ロボット100(第1のハンド部101)および補助ロボット200(第2のハンド部201)のアクセスポイントを決定する。具体的には、ベース基板Wa上の各部の位置(回路ユニットWb,Wc、支持体Wd、接続部Wfの位置など)を認識し、第1及び第2のハンド部101,102の移動軌跡や作業台2からの移動高さ等を決定するように構成される。 The position determination unit 31 uses the access points of the assembly robot 100 (first hand unit 101) and the auxiliary robot 200 (second hand unit 201) for the workpiece W placed on the work table 2 (see FIG. 1). decide. Specifically, the position of each part on the base substrate Wa (the positions of the circuit units Wb, Wc, the support Wd, the connection part Wf, etc.) is recognized, and the movement trajectory of the first and second hand parts 101, 102 The moving height from the work table 2 is determined.
 距離算出部32は、主として、第1のハンド部101の移動距離を算出する。より具体的に、距離算出部32は、ケーブル部材Fに対する第1のハンド部101の相対移動距離(スライド距離)、ケーブル部材Fを把持する第1のハンド部101の第2のハンド部201に対する相対移動距離等を算出するように構成される。距離算出部32は、力覚センサ15の出力に基づいて、上記各距離を算出する。 The distance calculation unit 32 mainly calculates the movement distance of the first hand unit 101. More specifically, the distance calculation unit 32 has a relative movement distance (sliding distance) of the first hand unit 101 with respect to the cable member F and a second hand unit 201 of the first hand unit 101 that holds the cable member F. It is configured to calculate a relative movement distance or the like. The distance calculation unit 32 calculates the distances based on the output of the force sensor 15.
 駆動信号生成部33は、位置決定部31、距離算出部32等の出力に基づき、各ロボット100,200のハンド部101,201および多関節アーム102,202の駆動を制御する駆動信号を生成するように構成される。 The drive signal generation unit 33 generates a drive signal for controlling the driving of the hand units 101 and 201 and the articulated arms 102 and 202 of the robots 100 and 200 based on outputs from the position determination unit 31, the distance calculation unit 32, and the like. Configured as follows.
 記憶部34は、典型的には、半導体メモリ等で構成される。記憶部34は、位置決定部31、距離算出部32および駆動信号生成部33の機能を実行するためのプログラムを含むロボット装置1の各部の動作を制御するプログラムのほか、各部における演算に必要なパラメータ、ハンド部101,201から出力されるカメラ16,26の画像信号、力覚センサ15,25の検出信号等を記憶することが可能に構成される。 The storage unit 34 is typically composed of a semiconductor memory or the like. The storage unit 34 is necessary for calculation in each unit in addition to a program for controlling the operation of each unit of the robot apparatus 1 including programs for executing the functions of the position determination unit 31, the distance calculation unit 32, and the drive signal generation unit 33. Parameters, image signals of the cameras 16 and 26 output from the hand units 101 and 201, detection signals of the force sensors 15 and 25, and the like can be stored.
 姿勢判定部35は、組立ロボット100のカメラ16あるいは補助ロボット200のカメラ26で取得した画像情報に基づいて、第1のハンド部101に対する端子部Faの姿勢を判定する。これにより、端子部Faを接続部Wfへの接続に適した姿勢に変換することができる。 The posture determination unit 35 determines the posture of the terminal portion Fa with respect to the first hand unit 101 based on image information acquired by the camera 16 of the assembly robot 100 or the camera 26 of the auxiliary robot 200. Thereby, the terminal part Fa can be converted into a posture suitable for connection to the connection part Wf.
 本実施形態において姿勢判定部35は、後述するように、端子部Faの小径部Fa2が下向きで、かつその接続面が水平な姿勢(図13B参照)を基準姿勢とし、当該基準姿勢からの端子部Faの姿勢の角度ずれを算出する。 In this embodiment, as will be described later, the posture determination unit 35 uses a posture (see FIG. 13B) in which the small-diameter portion Fa2 of the terminal portion Fa is downward and the connection surface is horizontal as a reference posture, and a terminal from the reference posture. The angular deviation of the posture of the part Fa is calculated.
[電子機器の製造方法]
 続いて、コントローラ3の詳細について、ロボット装置1の典型的な動作例とともに説明する。
 図9は、コントローラ3により実行される処理手順の一例を示すフローチャートであり、ハンド部101,102に対する動作指令を含む。
[Manufacturing method of electronic equipment]
Subsequently, details of the controller 3 will be described together with a typical operation example of the robot apparatus 1.
FIG. 9 is a flowchart illustrating an example of a processing procedure executed by the controller 3, and includes operation commands for the hand units 101 and 102.
 最初に、第1のハンド部101によってケーブル部材Fが把持される(ステップ101)。 First, the cable member F is gripped by the first hand unit 101 (step 101).
 コントローラ3は、まず、第1のハンド部101のカメラ16または第2のハンド部201のカメラ26によって撮像されたワークWの画像信号に基づいて、ケーブル部材Fの位置や支持体Wd1~Wd4および接続部Wfの位置に関する情報を取得する。そして、位置決定部31は、ハンド部101,102のアクセスポイント(XYZ座標位置)を決定する。 The controller 3 first determines the position of the cable member F, the supports Wd1 to Wd4, and the support members Wd1 to Wd4 based on the image signal of the workpiece W imaged by the camera 16 of the first hand unit 101 or the camera 26 of the second hand unit 201. Information on the position of the connecting portion Wf is acquired. Then, the position determining unit 31 determines the access point (XYZ coordinate position) of the hand units 101 and 102.
 駆動信号生成部33は、位置決定部31において設定された位置情報を基に、ケーブル部材Fを把持する位置へ第1のハンド部101を移動させる駆動信号を生成し、組立ロボット100へ出力する。これにより、組立ロボット100は多関節アーム102を介して第1のハンド部101をケーブル部材Fの把持位置へ移動させ、ケーブル部材Fの把持処理を実行する。ケーブル部材Fの把持に先立って、吸着ユニット19でケーブル部材Fを把持位置へ移動させる処理が実行されてもよい。 The drive signal generation unit 33 generates a drive signal for moving the first hand unit 101 to a position where the cable member F is gripped based on the position information set in the position determination unit 31 and outputs the drive signal to the assembly robot 100. . As a result, the assembly robot 100 moves the first hand unit 101 to the gripping position of the cable member F via the multi-joint arm 102 and executes the gripping process of the cable member F. Prior to gripping the cable member F, a process of moving the cable member F to the gripping position by the suction unit 19 may be executed.
 なお、ケーブル部材Fの把持工程において、第1のハンド部101は、ケーブル部材Fの所定の把持位置の直上に移動し、クランプ機構CL1を図5Aに示す開放状態に維持する。そして、第1のハンド部101は、ケーブル部材Fに向かって下降し、突出部110の下縁にケーブル部材Fを当接させた後、クランプ機構CL1を図5Cに示す閉止位置へ駆動することで、収容部101c内にケーブル部材Fを収容する。これにより、収容部101cにケーブル部材Fを適切に収容することができる。 Note that, in the gripping process of the cable member F, the first hand unit 101 moves to a position immediately above a predetermined gripping position of the cable member F, and maintains the clamp mechanism CL1 in the open state shown in FIG. 5A. And the 1st hand part 101 descend | falls toward the cable member F, after making the cable member F contact | abut on the lower edge of the protrusion part 110, it drives the clamp mechanism CL1 to the closed position shown to FIG. 5C. Thus, the cable member F is accommodated in the accommodating portion 101c. Thereby, the cable member F can be appropriately accommodated in the accommodating part 101c.
 また、クランプ機構CL1によるケーブル部材Fの把持力は、ケーブル部材Fに所定以上の張力が加わったときにクランプ機構CL1がケーブル部材Fに対してスライド移動することが可能な適宜の強さとすることができる。これにより、ケーブル部材Fに加わる応力を低減することができる。クランプ機構CL1の把持力は、力覚センサ15の出力に基づいて制御することができる。 Further, the gripping force of the cable member F by the clamp mechanism CL1 is set to an appropriate strength that allows the clamp mechanism CL1 to slide relative to the cable member F when a predetermined tension or more is applied to the cable member F. Can do. Thereby, the stress added to the cable member F can be reduced. The gripping force of the clamp mechanism CL1 can be controlled based on the output of the force sensor 15.
 以下、特に説明する場合を除き、ハンド部101,102の移動等の制御は、位置決定部31および駆動信号生成部33の出力に基づいて実行されるものとしてその詳細な説明は省略する。また、特に説明する場合を除き、第1のハンド部101をクランプ機構CL1のという意味で用いるものとし、同様に、第2のハンド部201をクランプ機構CL2という意味で用いるものとする。 Hereinafter, unless specifically described, control such as movement of the hand units 101 and 102 is executed based on outputs from the position determination unit 31 and the drive signal generation unit 33, and detailed description thereof is omitted. Unless otherwise specified, the first hand unit 101 is used in the sense of the clamp mechanism CL1, and similarly, the second hand unit 201 is used in the sense of the clamp mechanism CL2.
 続いて、第1のハンド部101によってケーブル部材Fが支持体Wd1、Wd2へ順に支持される(ステップ102)。 Subsequently, the cable member F is sequentially supported on the supports Wd1 and Wd2 by the first hand unit 101 (step 102).
 この処理では、まず、コントローラ3は、クランプ機構CL1によるケーブル部材Fの把持位置が、支持体Wd1への支持領域となるように調整する。これにより、回路ユニットWcから支持体Wd1までの適切なケーブル長(S01)が確保される。 In this process, first, the controller 3 adjusts so that the gripping position of the cable member F by the clamp mechanism CL1 is a support region for the support body Wd1. Thereby, an appropriate cable length (S01) from the circuit unit Wc to the support body Wd1 is ensured.
 この調整工程は、例えば、ハンド部101がクランプ機構CL1を介してケーブル部材Fの把持位置を所定の張力で引っ張り、当該把持位置と回路ユニットWcの接続端部からの距離が所定の大きさであるかどうかを確認する。そして、上記距離が所定の大きさにない場合は、把持力を弱めてクランプ機構CL1をケーブル部材Fに対してスライド移動させて、上記距離が所定の大きさとなる位置で把持し直す。 In this adjustment process, for example, the hand unit 101 pulls the gripping position of the cable member F with a predetermined tension via the clamp mechanism CL1, and the distance from the gripping position and the connection end of the circuit unit Wc has a predetermined size. Check if it exists. If the distance is not a predetermined size, the gripping force is weakened and the clamp mechanism CL1 is slid with respect to the cable member F to re-hold at the position where the distance is a predetermined size.
 続いて、コントローラ3は、図10に示すように、第1のハンド部101を支持体Wd1に移動させることで、ケーブル部材Fの把持領域の近傍を支持体Wd1に支持させる。同図に示すように、第1のハンド部101は、クランプ機構CL1と昇降部材171との間に対象とする支持体Wdを挟む位置に下降して、ケーブル部材Fを支持体Wdの支持部Wdsに係合させる。その後、昇降部材171を降下させて、直下の支持部材Fをベース基板Waの上面に所定圧力で押し付ける。これにより、支持部Wdsへケーブル部材Fを適切な姿勢で係合させることが可能となる。 Subsequently, as shown in FIG. 10, the controller 3 moves the first hand unit 101 to the support body Wd1, thereby supporting the vicinity of the grip region of the cable member F on the support body Wd1. As shown in the figure, the first hand portion 101 descends to a position where the target support Wd is sandwiched between the clamp mechanism CL1 and the elevating member 171 and the cable member F is supported by the support portion of the support Wd. Engage with Wds. Thereafter, the elevating member 171 is lowered, and the support member F immediately below is pressed against the upper surface of the base substrate Wa with a predetermined pressure. As a result, the cable member F can be engaged with the support portion Wds in an appropriate posture.
 支持体Wd1へのケーブル部材Fの係合操作の後、第1のハンド部101は所定距離上昇し、クランプ機構CL1の把持力を弱めてケーブル部材Fを収容部101c内へ収容した状態で支持体Wd2の方向へ移動する。これによりクランプ機構CL1は、ケーブル部材Fを支持しつつケーブル部材Fに対してスライド移動し、支持体Wd2での支持領域に把持位置を変更し、上述と同様な手順で、支持体Wd2へケーブル部材Fを支持させる。このときのクランプ機構CL1のスライド長は、支持体Wd1と支持体Wd2との間の距離に相当するケーブル長(S12)に設定される。 After the operation of engaging the cable member F with the support body Wd1, the first hand unit 101 is raised by a predetermined distance, and the cable member F is supported in a state in which the cable member F is accommodated in the accommodating part 101c by weakening the gripping force of the clamp mechanism CL1 It moves in the direction of the body Wd2. As a result, the clamp mechanism CL1 slides and moves relative to the cable member F while supporting the cable member F, changes the gripping position to the support region of the support Wd2, and connects the cable to the support Wd2 in the same procedure as described above. The member F is supported. The slide length of the clamp mechanism CL1 at this time is set to the cable length (S12) corresponding to the distance between the support body Wd1 and the support body Wd2.
 一方、コントローラ3は、図11に示すように第2のハンド部201により支持体Wd近傍のケーブル部材Fの直上に移動させ、そのクランプ機構CL2の先端でケーブル部材Fを所定圧力でベース基板Wa上に押し付けて保持する。これにより、第1のハンド部101の移動に伴うケーブル部材Fの弛みや支持体Wd1からの脱落が防止される。上記所定圧力は、第2のハンド部201の力覚センサ25の出力に基づき制御可能である。 On the other hand, as shown in FIG. 11, the controller 3 moves the cable member F to a position immediately above the cable member F in the vicinity of the support Wd by the second hand unit 201, and the base member Wa at a predetermined pressure at the tip of the clamp mechanism CL2. Press and hold up. Thereby, the slack of the cable member F accompanying the movement of the 1st hand part 101 and the drop-off | omission from the support body Wd1 are prevented. The predetermined pressure can be controlled based on the output of the force sensor 25 of the second hand unit 201.
 続いて、支持体Wd2へのケーブル部材Fの支持が完了した後、ケーブル部材Fに対して第1のハンド部101が所定距離スライドする(ステップ103,104)。 Subsequently, after the support of the cable member F to the support body Wd2 is completed, the first hand unit 101 slides a predetermined distance with respect to the cable member F (steps 103 and 104).
 この工程では、図12Aに示すように、第2のハンド部201で支持体Wd2に支持されたケーブル部材Fが保持される。この状態で、第1のハンド部101は、支持体Wd2へケーブル部材Fを支持させる際に把持していた領域(第1の領域)からケーブル部材Fの端子部Faに向かって第1の線長Sだけ離間した領域(第2の領域)へケーブル部材Fに対してスライド移動した後、当該領域(第2の領域)を把持する。 In this step, as shown in FIG. 12A, the cable member F supported by the support body Wd2 by the second hand unit 201 is held. In this state, the first hand unit 101 has a first line from the region (first region) gripped when the cable member F is supported by the support body Wd2 toward the terminal portion Fa of the cable member F. After sliding with respect to the cable member F to the area (second area) separated by the length S, the area (second area) is gripped.
 第1の線長Sは、支持体Wd2と支持体Wd3との間の適正なケーブル余長(S23)よりも大きい長さ(S230)に設定される。つまり、この工程は、支持体Wd3から支持体Wd4までのケーブル長(S34)と、支持体Wd4から接続部Wfまでのケーブル長(S45)とがそれぞれ所定の範囲となるように、支持体Wd2と支持体Wd3との間にケーブル部材Fの余長領域を形成する。 The first line length S is set to a length (S230) larger than the appropriate cable surplus length (S23) between the support body Wd2 and the support body Wd3. That is, in this step, the support Wd2 is such that the cable length (S34) from the support Wd3 to the support Wd4 and the cable length (S45) from the support Wd4 to the connection portion Wf are within a predetermined range. A surplus length region of the cable member F is formed between the support member Wd3 and the support member Wd3.
 続いて、第1のハンド部101によってケーブル部材Fが支持体Wd3に支持される(ステップ105)。 Subsequently, the cable member F is supported by the support body Wd3 by the first hand unit 101 (step 105).
 この工程では、コントローラ3は、第1のハンド部101を支持体Wd3に移動させることで、上記第2の領域を支持体Wd3に支持させる。これにより、支持体Wd2と支持体Wd3との間に、ケーブル部材Fの余長領域が形成される(図12B参照)。 In this step, the controller 3 moves the first hand unit 101 to the support Wd3, thereby supporting the second region on the support Wd3. Thereby, the extra length area | region of the cable member F is formed between the support body Wd2 and the support body Wd3 (refer FIG. 12B).
 次に、第1のハンド部101によりケーブル部材Fが支持体Wd3から所定距離繰り出される(ステップ106)。 Next, the cable member F is fed out from the support Wd3 by a predetermined distance by the first hand unit 101 (step 106).
 この工程では、図12Cに示すように、第2のハンド部201でケーブル部材Fの支持体Wd3での支持領域(第2の領域)又はその近傍位置を保持した状態で、第1のハンド部101を当該領域(第2の領域)からケーブル部材Fの端子部Faとの当接位置までケーブル部材に対してスライド移動させる。次いで、第2のハンド部201によるケーブル部材Fの保持力を弱め、第1のハンド部101を端子部Faと共に支持体Wd3から離間する方向(図12CではY軸方向左方)に移動させる。そして、ケーブル部材F(第2の領域)を第2のハンド部201に対してスライド移動させながら、支持体Wd3から第2の線長だけ繰り出す。 In this step, as shown in FIG. 12C, the first hand unit is held in a state in which the second hand unit 201 holds the support region (second region) of the cable member F on the support Wd3 or the vicinity thereof. 101 is slid with respect to the cable member from the region (second region) to a contact position with the terminal portion Fa of the cable member F. Next, the holding force of the cable member F by the second hand portion 201 is weakened, and the first hand portion 101 is moved together with the terminal portion Fa in a direction away from the support body Wd3 (leftward in the Y-axis direction in FIG. 12C). Then, while the cable member F (second region) is slid with respect to the second hand unit 201, the cable member F is extended from the support Wd3 by the second line length.
 上記第2の線長は、支持体Wd2と支持体Wd3との間のケーブル部材Fの余長分の一部に相当し、具体的には、線長(S230)と線長(S23)との差分に相当する長さである。これにより、支持体Wd3から接続部Wfまでの適正なケーブル長(S34とS45の和に相当する長さ)が確保される。 The second line length corresponds to a part of the extra length of the cable member F between the support body Wd2 and the support body Wd3. Specifically, the line length (S230), the line length (S23), It is the length corresponding to the difference of. Thereby, an appropriate cable length (a length corresponding to the sum of S34 and S45) from the support body Wd3 to the connection portion Wf is ensured.
 続いて、第1のハンド部101によってケーブル部材Fが支持体Wd4に支持される(ステップ107)。そして、第1のハンド部101を接続部Wfに移動させることで、ケーブル部材Fの端子部Faを接続部Wfに接続する。本実施形態では、端子部Faを接続部Wfに接続する前に、端子部Faを適正な姿勢に変換する工程が実施され、その後、端子部Faが接続部Wfに接続される(ステップ108,109)。 Subsequently, the cable member F is supported by the support body Wd4 by the first hand unit 101 (step 107). And the terminal part Fa of the cable member F is connected to the connection part Wf by moving the 1st hand part 101 to the connection part Wf. In the present embodiment, before connecting the terminal portion Fa to the connection portion Wf, a step of converting the terminal portion Fa into an appropriate posture is performed, and then the terminal portion Fa is connected to the connection portion Wf (step 108, 109).
 端子部Faの姿勢変換工程では、図13Aに示すように、第1のハンド部101で端子部Fa近傍のケーブル接続部Fb(図3B参照)が把持された状態で、第2のロボット200のカメラ26で端子部Faの姿勢情報を含む画像が取得される。そして、上記姿勢情報に基づいて、第1のハンド部101による端子部Faの把持位置が変更される。 In the posture changing process of the terminal portion Fa, as shown in FIG. 13A, the cable connecting portion Fb (see FIG. 3B) in the vicinity of the terminal portion Fa is held by the first hand portion 101, and the second robot 200 An image including the orientation information of the terminal portion Fa is acquired by the camera 26. And based on the said attitude | position information, the holding position of the terminal part Fa by the 1st hand part 101 is changed.
 第1のハンド部101による端子部Faの把持位置の変更に際しては、まず、カメラ26により取得された端子部Faの画像から端子部Faの小径部Fa2が下向きであり、かつ、その接続面が水平となる適正姿勢からの角度誤差分をコントローラ3において算出する。そして、第2のハンド部201のクランプ機構CL2が第1のハンド部101(クランプ機構CL1)に代わって端子部Faを把持した後、第1のハンド部101が上記角度誤差分に相当する角度回転してケーブル接続部Fbを把持し直す。これにより図13Bに示すように、第1のハンド部101により端子部Faが適正姿勢で把持される。 When changing the holding position of the terminal portion Fa by the first hand unit 101, first, the small-diameter portion Fa2 of the terminal portion Fa is directed downward from the image of the terminal portion Fa acquired by the camera 26, and the connection surface thereof is The controller 3 calculates the angle error from the horizontal proper posture. Then, after the clamp mechanism CL2 of the second hand unit 201 grips the terminal portion Fa instead of the first hand unit 101 (clamp mechanism CL1), the first hand unit 101 has an angle corresponding to the angle error. Rotate and re-clamp the cable connection Fb. As a result, as shown in FIG. 13B, the terminal portion Fa is held in an appropriate posture by the first hand unit 101.
 その後、第1のハンド部101が接続部Wfの直上位置に移動し、端子部Faを下降させて接続部Wfに所定圧力で接続する。これにより、ロボット装置1による複数の支持体Wd間におけるケーブル部材Fの引き回し作業および接続部Wfへの端子部Faの接続作業が完了する。 Thereafter, the first hand unit 101 moves to a position directly above the connection part Wf, lowers the terminal part Fa, and connects to the connection part Wf with a predetermined pressure. Thereby, the routing operation of the cable member F and the connection operation of the terminal portion Fa to the connection portion Wf between the plurality of support bodies Wd by the robot apparatus 1 are completed.
 以上のように本実施形態によれば、ケーブル部材Fの各領域を所定の保持位置に的確に導くことができるため、ケーブル部材Fの長さのバラツキによる意図しない領域での弛みの発生を抑えることができる。 As described above, according to the present embodiment, each region of the cable member F can be accurately guided to a predetermined holding position, so that occurrence of slack in an unintended region due to variation in the length of the cable member F is suppressed. be able to.
 また本実施形態によれば、組立ロボット100および補助ロボット200が力覚センサ15、25を備えているため、ケーブル部材Fに対する適切な把持力や繰り出し長の調整が可能となり、接続部Wfに対する端子部Faの適正な押し込み圧力を実現できる。 Further, according to the present embodiment, since the assembly robot 100 and the auxiliary robot 200 include the force sensors 15 and 25, it is possible to adjust an appropriate gripping force and feeding length for the cable member F, and a terminal for the connection portion Wf. An appropriate pushing pressure of the portion Fa can be realized.
 さらに本実施形態によれば、組立ロボット100および補助ロボット200の協調作業によって、柔軟性を有するケーブル部材Fを所望とする余長領域を作りつつ、所定の経路で引き回しながら機器へ接続することができる。 Furthermore, according to the present embodiment, by the cooperative operation of the assembly robot 100 and the auxiliary robot 200, the flexible cable member F can be connected to the device while being routed along a predetermined route while creating a desired extra length region. it can.
<変形例>
 例えば以上の実施形態では、ケーブル部材Fの余長領域支持体Wd2と支持体Wd3との間に設けたが、これに限られず、余長領域は他の区間に設定されてもよい。また、ケーブル部材Fの引き回し経路や支持体Wdの構造も上述の例に限られず、ワークWの種類等に応じて適宜変更することが可能である。
<Modification>
For example, in the above embodiment, the cable member F is provided between the surplus length region support body Wd2 and the support body Wd3. However, the present invention is not limited to this, and the surplus length region may be set in another section. Further, the routing route of the cable member F and the structure of the support body Wd are not limited to the above-described example, and can be appropriately changed according to the type of the workpiece W or the like.
 また、以上の実施形態では、補助ロボット200は、クランプ機構CL2の先端をケーブル部材Fに押し付けることで所定の保持作用を行うようにしたが、クランプ機構CL2でケーブル部材Fをクランプすることで所定の保持作用を行うようにしてもよい。 In the above embodiment, the auxiliary robot 200 performs a predetermined holding action by pressing the tip of the clamp mechanism CL2 against the cable member F. However, the auxiliary robot 200 is predetermined by clamping the cable member F with the clamp mechanism CL2. The holding action may be performed.
 さらに、以上の実施形態では、ケーブル部材Fの引き回しを組立ロボット100と補助ロボット200との協調制御で実現したが、これに限られず、支持体の構造や引き回し経路によっては、組立ロボット100単独で行ってもよい。 Furthermore, in the above embodiment, the routing of the cable member F is realized by cooperative control of the assembly robot 100 and the auxiliary robot 200. However, the present invention is not limited to this, and depending on the structure of the support and the routing route, the assembly robot 100 alone may be used. You may go.
 なお、本技術は以下のような構成もとることができる。
(1) 第1の多関節アームと、前記第1の多関節アームに取り付けられ、柔軟性の線状部材を支持することが可能な第1のハンド部と、前記第1の多関節アームと前記第1のハンド部との間に配置され前記第1のハンド部に作用する外力を検出することが可能な力覚センサと、を有する第1のロボットと、
 第2の多関節アームと、前記第2の多関節アームに取り付けられ、前記線状部材を保持することが可能な第2のハンド部と、を有する第2のロボットと、
 前記第2のハンド部による前記線状部材の保持位置を決定する位置決定部と、前記力覚センサの出力に基づいて、前記第2のハンド部に保持された前記線状部材に対する前記第1のハンド部のスライド距離を算出する距離算出部と、を有する制御部と
 を具備するロボット装置。
(2)上記(1)に記載のロボット装置であって、
 前記距離算出部は、前記力覚センサの出力に基づいて、前記第1のハンド部に把持された前記線状部材の前記第2のハンド部に対する相対移動距離をさらに算出する
 ロボット装置。
(3)上記(1)又は(2)に記載のロボット装置であって、
 前記第1のハンド部は、
 前記線状部材を一軸方向に把持することが可能なクランプ機構と、
 前記クランプ機構に対して相対移動可能に構成され、前記クランプ機構に把持された前記線状部材を前記一軸方向と直交する他の軸方向に押圧可能な昇降部材と、を有する
 ロボット装置。
(4)上記(3)に記載のロボット装置であって、
 前記クランプ機構は、
 第1のクランプ爪と、
 前記第1のクランプ爪に対して前記一軸方向に相対移動可能な第2のクランプ爪と、
 前記第1のクランプ爪に設けられ、前記第2のクランプ爪に向かって延びる突出部と、
 前記突出部と前記第1及び第2のクランプ爪の先端部との間に設けられ前記線状部材をスライド自在に支持することが可能な収容部と、を有する
 ロボット装置。
(5)上記(1)~(4)のいずれか1つに記載のロボット装置であって、
 前記第2のロボットは、前記第1のハンド部で支持された前記線状部材の先端部を撮影するカメラをさらに有し、
 前記制御部は、前記カメラで取得した画像情報に基づいて前記ハンド部に対する前記先端部の姿勢を判定する姿勢判定部をさらに有する
 ロボット装置。
(6) 接続部を有するベース基板と、前記接続部に接続される端子部を先端に有し前記ベース基板上に立設された第1及び第2の支持体の間に架け渡される柔軟性の線状部材とを含む電子機器の製造方法であって、
 第1のロボットの第1のハンド部で前記線状部材を把持し、
 第1のハンド部を第1の支持体に移動させることで、前記線状部材の第1の領域を前記第1の支持体に支持させ、
 第2のロボットの第2のハンド部で前記線状部材を保持し、
 前記第1のハンド部を、前記第1の領域から前記端子部に向かって第1の線長だけ離間した第2の領域へ前記線状部材に対してスライド移動させた後、前記第1のハンド部で前記第2の領域を把持し、
 前記第1のハンド部を第2の支持体に移動させることで、前記第2の領域を前記第2の支持体に支持させる
 電子機器の製造方法。
(7)上記(6)に記載の電子機器の製造方法であって、さらに、
 前記第1のハンド部を前記第2の領域から前記端子部との当接位置まで前記線状部材に対してスライド移動させ、
 前記第1のハンド部を前記端子部と共に前記第2の支持体から離間する方向へ移動させることで、前記第2の領域を前記第2の支持体から第2の線長だけ繰り出し、
 前記第1のハンド部を前記接続部に移動させることで、前記端子部を前記接続部に接続する
 電子機器の製造方法。
(8)上記(7)に記載の電子機器の製造方法であって、さらに、
 前記端子部を前記接続部に接続する前に、前記第2のロボットのカメラで前記端子部の姿勢情報を含む画像を取得し、
 前記姿勢情報に基づいて、前記第1のハンド部による前記端子部の把持位置を変更する
 電子機器の製造方法。
(9)上記(6)~(8)のいずれか1つに記載の電子機器の製造方法であって、
 前記線状部材は、アンテナケーブル又は配線ケーブルである
 電子機器の製造方法。
In addition, this technique can also take the following structures.
(1) a first multi-joint arm, a first hand unit attached to the first multi-joint arm and capable of supporting a flexible linear member, and the first multi-joint arm A first robot having a force sensor arranged between the first hand unit and capable of detecting an external force acting on the first hand unit;
A second robot having a second articulated arm and a second hand unit attached to the second articulated arm and capable of holding the linear member;
A position determining unit that determines a holding position of the linear member by the second hand unit, and the first relative to the linear member held by the second hand unit based on an output of the force sensor. A robot apparatus comprising: a distance calculating unit that calculates a sliding distance of the hand unit;
(2) The robot apparatus according to (1) above,
The distance calculation unit further calculates a relative movement distance of the linear member held by the first hand unit with respect to the second hand unit based on an output of the force sensor.
(3) The robot apparatus according to (1) or (2) above,
The first hand unit includes:
A clamp mechanism capable of gripping the linear member in a uniaxial direction;
A robot apparatus configured to be movable relative to the clamp mechanism and capable of pressing the linear member gripped by the clamp mechanism in another axial direction perpendicular to the one axial direction.
(4) The robot apparatus according to (3) above,
The clamping mechanism is
A first clamping claw;
A second clamp claw movable relative to the first clamp claw in the uniaxial direction;
A protrusion provided on the first clamp pawl and extending toward the second clamp pawl;
A robot apparatus, comprising: a housing portion provided between the projecting portion and the distal end portions of the first and second clamp claws and capable of slidably supporting the linear member.
(5) The robot device according to any one of (1) to (4) above,
The second robot further includes a camera that photographs the tip of the linear member supported by the first hand unit,
The control unit further includes a posture determination unit that determines a posture of the tip portion with respect to the hand unit based on image information acquired by the camera.
(6) Flexibility to be bridged between a first base plate having a connection portion and a first support and a second support member standing on the base substrate having a terminal portion connected to the connection portion at the tip. A method of manufacturing an electronic device including a linear member of
Grasping the linear member with the first hand portion of the first robot,
By moving the first hand portion to the first support, the first region of the linear member is supported by the first support,
Holding the linear member by the second hand portion of the second robot;
The first hand part is slid relative to the linear member from the first area toward the terminal part to a second area separated by a first line length, and then the first hand part Holding the second region with the hand part;
The manufacturing method of the electronic device which makes the said 2nd support body support the said 2nd area | region by moving a said 1st hand part to a 2nd support body.
(7) The method for manufacturing the electronic device according to (6), further comprising:
Sliding the first hand part relative to the linear member from the second region to a contact position with the terminal part;
By moving the first hand portion together with the terminal portion in a direction away from the second support, the second region is extended from the second support by a second line length,
A method of manufacturing an electronic device, wherein the terminal portion is connected to the connection portion by moving the first hand portion to the connection portion.
(8) The method for manufacturing an electronic device according to (7), further comprising:
Before connecting the terminal unit to the connection unit, obtain an image including posture information of the terminal unit with the camera of the second robot,
A method for manufacturing an electronic device, wherein a gripping position of the terminal unit by the first hand unit is changed based on the posture information.
(9) The method for manufacturing an electronic device according to any one of (6) to (8) above,
The linear member is an antenna cable or a wiring cable.
 1…ロボット装置
 3…コントローラ
 11…第1のクランプ爪
 12…第2のクランプ爪
 15,25…力覚センサ
 16、26…カメラ
 31…位置決定部
 32…距離算出部
 100…組立ロボット
 101…第1のハンド
 101c…収容部
 102…第1の多関節アーム
 110…突出部
 171…昇降部材
 200…補助ロボット
 201…第2のハンド
 202…第2の多関節アーム
 CL1,CL2…クランプ機構
 F…ケーブル部材
 Fa…端子部
 W…ワーク
 Wf…接続部
DESCRIPTION OF SYMBOLS 1 ... Robot apparatus 3 ... Controller 11 ... 1st clamp nail 12 ... 2nd clamp nail | claw 15, 25 ... Force sensor 16, 26 ... Camera 31 ... Position determination part 32 ... Distance calculation part 100 ... Assembly robot 101 ... 1st 1 hand 101c ... accommodating portion 102 ... first articulated arm 110 ... protruding portion 171 ... lifting member 200 ... auxiliary robot 201 ... second hand 202 ... second articulated arm CL1, CL2 ... clamp mechanism F ... cable Member Fa ... Terminal part W ... Work Wf ... Connection part

Claims (9)

  1.  第1の多関節アームと、前記第1の多関節アームに取り付けられ、柔軟性の線状部材を支持することが可能な第1のハンド部と、前記第1の多関節アームと前記第1のハンド部との間に配置され前記第1のハンド部に作用する外力を検出することが可能な力覚センサと、を有する第1のロボットと、
     第2の多関節アームと、前記第2の多関節アームに取り付けられ、前記線状部材を保持することが可能な第2のハンド部と、を有する第2のロボットと、
     前記第2のハンド部による前記線状部材の保持位置を決定する位置決定部と、前記力覚センサの出力に基づいて、前記第2のハンド部に保持された前記線状部材に対する前記第1のハンド部のスライド距離を算出する距離算出部と、を有する制御部と
     を具備するロボット装置。
    A first multi-joint arm; a first hand portion attached to the first multi-joint arm and capable of supporting a flexible linear member; the first multi-joint arm and the first A force sensor that is arranged between the hand part and capable of detecting an external force acting on the first hand part; and
    A second robot having a second articulated arm and a second hand unit attached to the second articulated arm and capable of holding the linear member;
    A position determining unit that determines a holding position of the linear member by the second hand unit, and the first relative to the linear member held by the second hand unit based on an output of the force sensor. A robot apparatus comprising: a distance calculating unit that calculates a sliding distance of the hand unit;
  2.  請求項1に記載のロボット装置であって、
     前記距離算出部は、前記力覚センサの出力に基づいて、前記第1のハンド部に把持された前記線状部材の前記第2のハンド部に対する相対移動距離をさらに算出する
     ロボット装置。
    The robot apparatus according to claim 1,
    The distance calculation unit further calculates a relative movement distance of the linear member held by the first hand unit with respect to the second hand unit based on an output of the force sensor.
  3.  請求項1に記載のロボット装置であって、
     前記第1のハンド部は、
     前記線状部材を一軸方向に把持することが可能なクランプ機構と、
     前記クランプ機構に対して相対移動可能に構成され、前記クランプ機構に把持された前記線状部材を前記一軸方向と直交する他の軸方向に押圧可能な昇降部材と、を有する
     ロボット装置。
    The robot apparatus according to claim 1,
    The first hand unit includes:
    A clamp mechanism capable of gripping the linear member in a uniaxial direction;
    A robot apparatus configured to be movable relative to the clamp mechanism and capable of pressing the linear member gripped by the clamp mechanism in another axial direction perpendicular to the one axial direction.
  4.  請求項3に記載のロボット装置であって、
     前記クランプ機構は、
     第1のクランプ爪と、
     前記第1のクランプ爪に対して前記一軸方向に相対移動可能な第2のクランプ爪と、
     前記第1のクランプ爪に設けられ、前記第2のクランプ爪に向かって延びる突出部と、
     前記突出部と前記第1及び第2のクランプ爪の先端部との間に設けられ前記線状部材をスライド自在に支持することが可能な収容部と、を有する
     ロボット装置。
    The robot apparatus according to claim 3, wherein
    The clamping mechanism is
    A first clamping claw;
    A second clamp claw movable relative to the first clamp claw in the uniaxial direction;
    A protrusion provided on the first clamp pawl and extending toward the second clamp pawl;
    A robot apparatus, comprising: a housing portion provided between the projecting portion and the distal end portions of the first and second clamp claws and capable of slidably supporting the linear member.
  5.  請求項1に記載のロボット装置であって、
     前記第2のロボットは、前記第1のハンド部で支持された前記線状部材の先端部を撮影するカメラをさらに有し、
     前記制御部は、前記カメラで取得した画像情報に基づいて前記第1のハンド部に対する前記先端部の姿勢を判定する姿勢判定部をさらに有する
     ロボット装置。
    The robot apparatus according to claim 1,
    The second robot further includes a camera that photographs the tip of the linear member supported by the first hand unit,
    The control unit further includes a posture determination unit that determines a posture of the tip with respect to the first hand unit based on image information acquired by the camera.
  6.  接続部を有するベース基板と、前記接続部に接続される端子部を先端に有し前記ベース基板上に立設された第1及び第2の支持体の間に架け渡される柔軟性の線状部材とを含む電子機器の製造方法であって、
     第1のロボットの第1のハンド部で前記線状部材を把持し、
     第1のハンド部を第1の支持体に移動させることで、前記線状部材の第1の領域を前記第1の支持体に支持させ、
     第2のロボットの第2のハンド部で前記線状部材を保持し、
     前記第1のハンド部を、前記第1の領域から前記端子部に向かって第1の線長だけ離間した第2の領域へ前記線状部材に対してスライド移動させた後、前記第1のハンド部で前記第2の領域を把持し、
     前記第1のハンド部を第2の支持体に移動させることで、前記第2の領域を前記第2の支持体に支持させる
     電子機器の製造方法。
    A flexible linear shape that spans between a base substrate having a connection portion and a first support and a second support member standing on the base substrate having a terminal portion connected to the connection portion at the tip. A method for manufacturing an electronic device including a member,
    Grasping the linear member with the first hand portion of the first robot,
    By moving the first hand portion to the first support, the first region of the linear member is supported by the first support,
    Holding the linear member by the second hand portion of the second robot;
    The first hand part is slid relative to the linear member from the first area toward the terminal part to a second area separated by a first line length, and then the first hand part Holding the second region with the hand part;
    The manufacturing method of the electronic device which makes the said 2nd support body support the said 2nd area | region by moving a said 1st hand part to a 2nd support body.
  7.  請求項6に記載の電子機器の製造方法であって、さらに、
     前記第1のハンド部を前記第2の領域から前記端子部との当接位置まで前記線状部材に対してスライド移動させ、
     前記第1のハンド部を前記端子部と共に前記第2の支持体から離間する方向へ移動させることで、前記第2の領域を前記第2の支持体から第2の線長だけ繰り出し、
     前記第1のハンド部を前記接続部に移動させることで、前記端子部を前記接続部に接続する
     電子機器の製造方法。
    The method for manufacturing an electronic device according to claim 6, further comprising:
    Sliding the first hand part relative to the linear member from the second region to a contact position with the terminal part;
    By moving the first hand portion together with the terminal portion in a direction away from the second support, the second region is extended from the second support by a second line length,
    A method of manufacturing an electronic device, wherein the terminal portion is connected to the connection portion by moving the first hand portion to the connection portion.
  8.  請求項7に記載の電子機器の製造方法であって、さらに、
     前記端子部を前記接続部に接続する前に、前記第2のロボットのカメラで前記端子部の姿勢情報を含む画像を取得し、
     前記姿勢情報に基づいて、前記第1のハンド部による前記端子部の把持位置を変更する
     電子機器の製造方法。
    The method for manufacturing an electronic device according to claim 7, further comprising:
    Before connecting the terminal unit to the connection unit, obtain an image including posture information of the terminal unit with the camera of the second robot,
    A method for manufacturing an electronic device, wherein a gripping position of the terminal unit by the first hand unit is changed based on the posture information.
  9.  請求項6に記載の電子機器の製造方法であって、
     前記線状部材は、アンテナケーブル又は配線ケーブルである
     電子機器の製造方法。
    It is a manufacturing method of the electronic device of Claim 6, Comprising:
    The linear member is an antenna cable or a wiring cable.
PCT/JP2018/009766 2017-04-21 2018-03-13 Robot apparatus and electronic device production method WO2018193754A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019513267A JP7052791B2 (en) 2017-04-21 2018-03-13 Manufacturing methods for robots and electronic devices
CN201880025022.XA CN110520255B (en) 2017-04-21 2018-03-13 Robot device and method for manufacturing electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017084177 2017-04-21
JP2017-084177 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018193754A1 true WO2018193754A1 (en) 2018-10-25

Family

ID=63855749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009766 WO2018193754A1 (en) 2017-04-21 2018-03-13 Robot apparatus and electronic device production method

Country Status (3)

Country Link
JP (1) JP7052791B2 (en)
CN (1) CN110520255B (en)
WO (1) WO2018193754A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138292A (en) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 Robot system and control method
JP2020138293A (en) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 Robot system and control method
JP2020146812A (en) * 2019-03-14 2020-09-17 ファナック株式会社 Work tool holding workpiece including connector and robot device including work tool
WO2022215308A1 (en) * 2021-04-07 2022-10-13 三菱電機株式会社 Automatic wiring device, wiring substrate manufacturing method, and substrate for automatic wiring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223179A (en) * 1994-02-04 1995-08-22 Toshiba Corp Double arm robot
JP2005011580A (en) * 2003-06-17 2005-01-13 Fanuc Ltd Connector holding device, and connector inspection system and connector connection system equipped therewith
JP2010069587A (en) * 2008-09-19 2010-04-02 Yaskawa Electric Corp Robot system
JP2014176917A (en) * 2013-03-14 2014-09-25 Yaskawa Electric Corp Robot device
JP2016219473A (en) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Component extracting device, component extracting method and component mounting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4249789B2 (en) * 2007-07-23 2009-04-08 ファナック株式会社 Flexible work assembly method
JP6379687B2 (en) * 2014-06-02 2018-08-29 セイコーエプソン株式会社 Robot, robot system, control device, and control method
US20160184996A1 (en) * 2014-12-24 2016-06-30 Seiko Epson Corporation Robot, robot system, control apparatus, and control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223179A (en) * 1994-02-04 1995-08-22 Toshiba Corp Double arm robot
JP2005011580A (en) * 2003-06-17 2005-01-13 Fanuc Ltd Connector holding device, and connector inspection system and connector connection system equipped therewith
JP2010069587A (en) * 2008-09-19 2010-04-02 Yaskawa Electric Corp Robot system
JP2014176917A (en) * 2013-03-14 2014-09-25 Yaskawa Electric Corp Robot device
JP2016219473A (en) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Component extracting device, component extracting method and component mounting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138292A (en) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 Robot system and control method
JP2020138293A (en) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 Robot system and control method
CN111618844A (en) * 2019-02-28 2020-09-04 精工爱普生株式会社 Robot system and control method
US11654567B2 (en) 2019-02-28 2023-05-23 Seiko Epson Corporation Robot system and control method
JP2020146812A (en) * 2019-03-14 2020-09-17 ファナック株式会社 Work tool holding workpiece including connector and robot device including work tool
JP7015265B2 (en) 2019-03-14 2022-02-02 ファナック株式会社 A robot device equipped with a work tool for gripping a work including a connector and a work tool.
US11413758B2 (en) 2019-03-14 2022-08-16 Fanuc Corporation Operation tool for grasping workpiece including connector and robot apparatus including operation tool
WO2022215308A1 (en) * 2021-04-07 2022-10-13 三菱電機株式会社 Automatic wiring device, wiring substrate manufacturing method, and substrate for automatic wiring

Also Published As

Publication number Publication date
CN110520255B (en) 2022-11-01
JPWO2018193754A1 (en) 2020-03-05
JP7052791B2 (en) 2022-04-12
CN110520255A (en) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2018193754A1 (en) Robot apparatus and electronic device production method
US11581690B2 (en) Robot apparatus for producing electronic apparatus
US10059001B2 (en) Robot control device, robot system, and robot
CN109996653B (en) Working position correction method and working robot
US10532461B2 (en) Robot and robot system
US9563601B2 (en) Force sensor correcting method
EP2783806A2 (en) Robot system, calibration method, and method for producing to-be-processed material
EP2511055B1 (en) Robot system and method for operating robot system
JP2012055999A (en) System and method for gripping object, program and robot system
CN111618843B (en) Robot system and control method
EP3542973B1 (en) Work robot and work position correction method
KR20120104939A (en) Robot and method for operating a robot
JP2020066067A (en) Robot hand and robot system
US20170274539A1 (en) End effector, robot, and robot control apparatus
JP5917380B2 (en) Work positioning method using an articulated robot and work mounting method using an articulated robot using the work positioning method
KR20070122271A (en) System for controlling position of robot and method for controlling thereof
US20200068719A1 (en) Component mounting device and method of controlling the same
CN111618844A (en) Robot system and control method
JP2016203282A (en) Robot with mechanism for changing end effector attitude
JP2020138294A (en) Robot system
JP3218328B2 (en) Bending type three-dimensional structure circuit device
JP7294144B2 (en) ROBOT DEVICE AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP2019010700A (en) Robot, robot system, and control method thereof
JP6278621B2 (en) Active compliance equipment
JP2015085500A (en) Robot, robot system, and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787100

Country of ref document: EP

Kind code of ref document: A1