WO2018192809A1 - Dispositif et procédé pour un système microfluidique servant à analyser un échantillon - Google Patents

Dispositif et procédé pour un système microfluidique servant à analyser un échantillon Download PDF

Info

Publication number
WO2018192809A1
WO2018192809A1 PCT/EP2018/059217 EP2018059217W WO2018192809A1 WO 2018192809 A1 WO2018192809 A1 WO 2018192809A1 EP 2018059217 W EP2018059217 W EP 2018059217W WO 2018192809 A1 WO2018192809 A1 WO 2018192809A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
reagent
liquid reagent
cartridge
flexible membrane
Prior art date
Application number
PCT/EP2018/059217
Other languages
German (de)
English (en)
Inventor
Julian Kassel
Daniel Czurratis
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018192809A1 publication Critical patent/WO2018192809A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • B01L3/523Containers specially adapted for storing or dispensing a reagent with means for closing or opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0672Integrated piercing tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • B01L2400/0683Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber

Definitions

  • the invention is based on a device or a method according to the preamble of the independent claims.
  • the subject of the present invention is also a computer program.
  • a liquid reagent for a chip laboratory cartridge can be stored for long-term stability and reproducibly provided if necessary by the method of a mechanical element, such as a plunger, this process being independent of the orientation or inclination of the chip laboratory cartridge. It will be a chip laboratory cartridge for a microfluidic system for
  • the chip cartridge having the following features: a reagent receptacle having a multilayer structure, wherein an integrated cavity and a flexible membrane are arranged in the multi-layer structure, the flexible membrane at least two (polymer) ) Separates substrate layers from each other; an insert disposed in the integrated cavity, wherein the
  • Insert contains a liquid reagent and is sealed with a barrier film; and a plunger for releasing the liquid reagent from the insert, wherein the plunger is disposed opposite to the reagent receptacle, wherein an end face of the plunger has at least one planar portion for pressing the flexible membrane.
  • a chip laboratory cartridge may be a microfluidic device in which a liquid reagent is provided or transported on a chip.
  • the chip laboratory cartridge may be suitable for so-called lab-on-chip products and medical devices which receive samples of diagnostic or diagnostic material and
  • the diagnostic material may be analytical material for complex biological, chemical or physical processes.
  • liquid reagents such as saline solutions, ethanol-containing solutions, aqueous solutions
  • Reagents can be manually pipetted onto the chip laboratory cartridge or pre-stored on the cartridge. The latter brings advantages in terms of automation, contamination risks, user friendliness and transportability of chip laboratory cartridges.
  • the chip laboratory cartridge can furthermore be a chip which has a multilayer construction, that is to say it is composed of at least two layers, which are made of polymer-based substrates.
  • Substrate layers may be separated by a flexible membrane.
  • the flexible membrane is adapted to be deflected upon pressure on the same.
  • the flexible membrane is designed tear-resistant, d. H. it is so stable that it does not tear when pressed by the plunger.
  • the multi-layer structure of the chip may include cavities in the form of chambers and channels.
  • the (polymer) substrate layer can be made of plastics with high barrier properties, such as COP, COC, PP, PE or PET. Concepts based on such plastics can be integrated directly into the material system of the chip laboratory cartridge or can be fluidly connected to the chip laboratory cartridge by means of a joining process such as gluing, welding or clamping.
  • the insert may be an injection molded chamber within a sealed cavity in the (polymeric) substrate layer, the insert containing a liquid reagent for analysis of the material to be tested.
  • the insert can be glued, clamped, welded or integrated by other joining methods in the chip laboratory cartridge, which eliminates process steps in the production and / or simplified.
  • the insert may be sealed with a barrier film.
  • a barrier film By means of such a barrier film, the liquid reagent can be stored safely in the fluid chamber and can be selectively released only when required by introducing the stamp unit or the plunger into the barrier film.
  • the insert may be formed so that it can be accommodated accurately in the reagent receptacle, wherein the material of the insert may have a higher barrier property with respect to the liquid reagent, as the (polymer) substrate layer.
  • the insert may now be configured angular to an existing
  • Reagent receptacle have at least one breakthrough.
  • the breakthrough serves as a window to give the plunger an entry way into the
  • the plunger may be cylindrically shaped. By a simple cylindrically designed shape of the plunger forces required to break the barrier film are reduced, which
  • the circular segment-shaped recess in the plunger is in particular that after the tearing of the barrier film, the flexible membrane according to the design of the ram sets and thus the fluidic path can not be blocked. At the same time it is ensured by the advantageous circular segment-shaped recess of the plunger that just in this area the torn barrier film can not block the fluidic path as well, so that the liquid reagent can be efficiently expressed from the insert.
  • the end face of the plunger a
  • the obliquely extending end face of the plunger then has, for example, an angle between 0.1 ° and 30 ° with respect to a
  • the plunger may have a projection adjacent to the end face.
  • the plunger with an adjacent projection on the front side is advantageously suitable for pressing out the liquid reagent in the edge regions of the insert as well as for a multi-stage process for pressing out the liquid reagent. So can the ram with projection
  • Liquid reagent is emptied efficiently.
  • the flexible membrane can tear during
  • the flexible membrane allows a complete fluidic separation between the liquid reagent and the
  • the flexible membrane also allows a reproducible displacement of the liquid in the adjacent cavity with high transfer efficiency.
  • Liquid reagent of the plunger from the reagent receptacle initially retracted and then pressed again into the reagent receptacle.
  • Reagent release can be significantly increased.
  • the manipulation of the fluidic preferred direction also allows a reagent release at angles from 0 ° to 90 °. This allows for enormous degrees of freedom in the design and processing of the entire chip laboratory cartridge.
  • Liquid reagent of the plunger are rotated along its axis of movement.
  • the emptying efficiency can be further increased, in particular for a highly viscous liquid reagent.
  • This method can be implemented, for example, in software or hardware or in a mixed form of software and hardware, for example in a control unit.
  • the approach presented here also provides a control unit which is designed to implement the steps of a variant of a method presented here
  • control unit can have at least one arithmetic unit for processing signals or data, at least one memory unit for storing Signals or data, at least one interface to a sensor or an actuator for reading sensor signals from the sensor or for outputting control signals to the actuator and / or at least one
  • the arithmetic unit may be, for example, a signal processor, a microcontroller or the like, wherein the memory unit may be a flash memory, an EEPROM or a magnetic memory unit.
  • the communication interface can be designed to read or output data wirelessly and / or by line, wherein a communication interface that can read or output line-bound data, for example, electrically or optically read this data from a corresponding data transmission line or output in a corresponding data transmission line.
  • a control device can be understood as meaning an electrical device which processes sensor signals and outputs control and / or data signals in dependence thereon.
  • the control unit may have an interface, which may be formed in hardware and / or software. In a hardware training, the interfaces may for example be part of a so-called system ASICs, the various functions of the
  • Control unit includes.
  • the interfaces are their own integrated circuits or at least partially consist of discrete components.
  • the interfaces may be software modules that are present, for example, on a microcontroller in addition to other software modules.
  • a computer program product or computer program with program code which can be stored on a machine-readable carrier or storage medium such as a semiconductor memory, a hard disk memory or an optical memory and for the implementation, implementation and / or
  • FIG. 1 shows a schematic representation of a chip laboratory cartridge with a plunger according to an embodiment
  • Fig. 2 is a schematic representation of a cylindrical plunger penetrating into a reagent receptacle, according to one embodiment
  • Fig. 3 is a schematic representation of a plunger with an adjacent projection on its end face, which penetrates into a Reagenzability disposer, according to an embodiment
  • Fig. 4 is a schematic representation of a plunger having a tapered surface penetrating into a reagent receptacle, according to one embodiment
  • Fig. 5 is a schematic representation of a plunger with a
  • Reagent receptacles penetrate according to one embodiment
  • Fig. 6 is a schematic representation of a plunger, in a
  • Reagent receptacle penetrates, according to an embodiment
  • FIG. 7 shows a schematic sequence of a cylindrically shaped plunger which penetrates into a chip laboratory cartridge according to an embodiment
  • Liquid reagent using the chip laboratory cartridge according to an embodiment.
  • FIG. 1 shows a schematic representation of a chip laboratory cartridge 100 with an opposing tappet 102 according to one exemplary embodiment.
  • the plunger 102 and its orientation relative to a Reagenzability mattersers 104 are shown in a multi-layer structure at an angle of 90 °.
  • the plunger 102 and its orientation with respect to the reagent receptacle 104 are shown at an angle of 30 °.
  • the geometry of the plunger 102 used and on the other hand the procedure such as a method direction, a process speed and a rotation of the
  • Pestle 102 of importance. In addition, it may be in terms of
  • the reagent release in the multi-layer structure should be performed at different angles from 0 ° to 90 °.
  • the decreasing part of the gravity-driven evacuation may be achieved by an advantageous
  • FIG. 2 shows a schematic representation of a cylindrical plunger 102 which penetrates into a reagent receptacle 104 of a chip laboratory cartridge 100 according to an exemplary embodiment.
  • the illustration shows four individual
  • Chiplabor- cartridge 100 retracts.
  • the chip laboratory cartridge 100 comprises a reagent receptacle 104, which in turn is composed of a multi-layer structure.
  • the multilayer structure consists of at least two (polymer) substrate layers
  • Multilayer construction is additionally integrated with at least one cavity 108.
  • At least one of the (polymer) substrate layers 106 is connected to a flexible membrane 110 and another (polymer) substrate layer 106. At least one (polymer) substrate layer 106 has at least one Breakthrough 112 in which the flexible membrane 110 is not connected to the (polymer) substrate layer 106 and therefore is movable. The aperture 112 is formed through an opening of one of the substrate layers 106. In at least one (polymer) substrate layer 106 are located in a recess an additional insert 114, which ideally has higher barrier properties compared to the liquid reagent than the surrounding (polymer)
  • Substrate layer 106 and thus a long-term stable storage of a
  • Liquid reagent 116 is guaranteed.
  • the insert 114 contains the liquid reagent 116 and is provided with a barrier film
  • FIG. 3 shows a schematic representation of a plunger 102 with an adjacent projection 304 on its end face 302, which in one of the
  • Reagent receptacle 102 of the chip laboratory cartridge 100 penetrates.
  • the illustration shows four individual images, of which the left-hand illustration shows a plan view of the tappet 102 and the remaining three images each show a transverse view in a sequence of the tappet 102 as it is inserted into the reagent receptacle 104 of the chip laboratory.
  • Cartridge 100 retracts.
  • Embodiment of the mechanical plunger 102 is provided with a projection 304 on the end face 302 in order to promote the tearing of the barrier film 118 in the region of the fluidic path 120.
  • a projection 304 on the end face 302 in order to promote the tearing of the barrier film 118 in the region of the fluidic path 120.
  • this increases the emptying efficiency of the liquid reagent 116 from the insert 114 and on the other hand it prevents any possible crosstalk of adjacent chambers in a chamber structure that are fluidly interconnected.
  • FIGS. 4 shows a schematic representation of a tappet 102 with an inclined surface 402, which penetrates into a reagent receptacle 102 of a chip laboratory cartridge 100 according to one exemplary embodiment.
  • the illustration shows four individual images, of which the left-hand illustration shows a plan view of the plunger 102 and the remaining three images each show a transverse view in a sequence of the plunger 102, as shown in FIGS.
  • Reagent receptacle 104 of the chip laboratory cartridge 100 retracts.
  • the end face 302 of the plunger is provided, for example, at an angle of 0.1 ° to 30 ° with respect to a movement axis of the plunger 102.
  • the obliquely extending on the flexible membrane 110 surface 402 leads to a
  • FIG. 5 shows a schematic representation of a plunger 102 with a circular segment-shaped recess 502 in the end face 302, which penetrates into the reagent receptacle 104 of a chip laboratory cartridge 100 according to one exemplary embodiment.
  • the illustration shows four individual images, of which the left-hand illustration shows a plan view of the plunger 102 and the remaining three images each show a transverse view in a sequence of the plunger 102 as it enters the reagent receptacle 104 of the chip laboratory cartridge 100.
  • the plunger 102 is designed so that in the end face 302 of the plunger 102 is a semicircular or
  • This recess 502 extends along a portion of a side wall of the plunger 102.
  • the end face 302 of the plunger 102 can additionally with a
  • the advantage of the semicircular recess 502 of the end face 302 of the plunger 102 is, in particular, that after the tearing of the barrier film 118 on the formation of the end face 302 of the plunger 102 corresponding to the flexible membrane 110 sets around the plunger 102 thus the fluidic path 120 is not blocked can be.
  • the advantageous semicircular or circular segment-shaped recess 502 of the end face 302 of the tappet 102 ensures that precisely in this region the torn barrier foil 118 likewise can not block the fluidic path 120 or the probability of a blockage is reduced.
  • Fig. 6 shows a schematic representation of a plunger, which in a
  • Reagent receptacle 104 a chip laboratory cartridge 100 according to an embodiment penetrates.
  • the illustration shows four individual figures, which show a transverse view of a sequence of the plunger 102, as this in the
  • Reagent receptacle 104 of the chip laboratory cartridge 100 retracts.
  • the procedure of the mechanical plunger 102 plays a crucial role for a reproducible and efficient reagent release.
  • the procedure of the mechanical plunger 102 plays a crucial role for a reproducible and efficient reagent release.
  • the procedure of the mechanical plunger 102 plays a crucial role for a reproducible and efficient reagent release.
  • Retracting the plunger 102 to be beneficial For example, after the tearing foil 118 tears, the tappet 102 is returned to its original position. On the one hand, by the retraction of the plunger 102, depending on the angle of the system, already a gravity-driven
  • FIG. 7 shows a schematic representation of a cylindrically shaped plunger 102, which penetrates into a reagent receptacle 104 of a chip laboratory cartridge 100 according to one exemplary embodiment.
  • the illustration shows six individual images, of which the left-hand illustration shows a plan view of the plunger 102 and the remaining five images each show a transverse view in a sequence of the plunger 102, as shown in FIGS.
  • Reagent receptacle 104 of the chip laboratory cartridge 100 retracts.
  • the stored remplissigreagenz 116 can also before the actual
  • a liquid reagent 116 such as a soap-like solution, brine, or detergent, in which solids may precipitate or settle over time.
  • a liquid reagent 116 such as a soap-like solution, brine, or detergent, in which solids may precipitate or settle over time.
  • the plunger 102 initially only partially into the integrated cavity 108 and on the flexible membrane
  • FIG. 8 shows a flowchart of a method 800 for releasing a liquid reagent using the chip laboratory cartridge according to an exemplary embodiment.
  • the plunger is used, which can penetrate through at least one opening in the (polymer) substrate layer of the reagent container by a translational, rotating or a combination of both in the chip laboratory cartridge.
  • the flexible membrane is deflected by the plunger without tearing.
  • a force is applied by the plunger, which leads to tearing of the barrier film.
  • the fluidic path for the liquid reagent is now opened.
  • an exemplary embodiment comprises an "and / or" link between a first feature and a second feature, then this is to be read so that the embodiment according to an embodiment is both the first feature as well as the second feature and according to another embodiment, either only the first feature or only the second feature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

L'invention concerne une cartouche à labopuce (100) pour un système microfluidique servant à analyser un échantillon. La cartouche à labopuce (100) possède un réservoir d'accueil de réactif (104) ayant une structure multicouche. Une cavité intégrée (108) et une membrane flexible (110) sont disposées dans la structure multicouche. La membrane flexible (100) sépare au moins deux couches de substrat (106) l'une de l'autre. La cartouche à labopuce (100) comporte en outre une partie d'insertion (114) qui est disposée dans la cavité intégrée (108). La partie d'insertion (114) contient un réactif liquide (116) et elle est scellée par un film formant barrière (118). La cartouche à labopuce (100) comporte finalement un poussoir (102) servant à libérer le réactif liquide (116) hors de la partie d'insertion (114). Le poussoir (102) est disposé à l'opposé par rapport au réservoir d'accueil de réactif (104). Un côté frontal du poussoir (102) possède au moins une portion partielle plane servant à enfoncer la membrane flexible (110).
PCT/EP2018/059217 2017-04-18 2018-04-11 Dispositif et procédé pour un système microfluidique servant à analyser un échantillon WO2018192809A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017206489.7 2017-04-18
DE102017206489.7A DE102017206489A1 (de) 2017-04-18 2017-04-18 Vorrichtung und Verfahren für ein mikrofluidisches System zum Analysieren einer Probe

Publications (1)

Publication Number Publication Date
WO2018192809A1 true WO2018192809A1 (fr) 2018-10-25

Family

ID=61952725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/059217 WO2018192809A1 (fr) 2017-04-18 2018-04-11 Dispositif et procédé pour un système microfluidique servant à analyser un échantillon

Country Status (2)

Country Link
DE (1) DE102017206489A1 (fr)
WO (1) WO2018192809A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022207608A1 (de) 2022-07-26 2024-02-01 Robert Bosch Gesellschaft mit beschränkter Haftung Fluidriegel für eine mikrofluidische Vorrichtung, Tank für eine mikrofluidische Vorrichtung, mikrofluidische Vorrichtung und Verfahren zum Betreiben einer mikrofluidischen Vorrichtung
DE102022207706A1 (de) 2022-07-27 2024-02-01 Robert Bosch Gesellschaft mit beschränkter Haftung Analysegerät zum Analysieren einer in einer Kartusche enthaltenen Probe und Verfahren zum Betreiben eines Analysegerätes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060275852A1 (en) * 2005-06-06 2006-12-07 Montagu Jean I Assays based on liquid flow over arrays
US20070224084A1 (en) * 2006-03-24 2007-09-27 Holmes Elizabeth A Systems and Methods of Sample Processing and Fluid Control in a Fluidic System
US20110186466A1 (en) * 2008-06-19 2011-08-04 Boehringer Ingelheim Microparts Gmbh Fluid metering container
DE102012222719A1 (de) * 2012-12-11 2014-06-12 Robert Bosch Gmbh Folienbeutel zum Bevorraten eines Fluids und Vorrichtung zum Bereitstellen eines Fluids
US20140283945A1 (en) * 2011-11-10 2014-09-25 Biofire Diagnostics, Llc Loading vials
US20160236196A1 (en) * 2013-09-30 2016-08-18 Hitachi, Ltd. Reagent Holding Container, Liquid Delivery Device, Reagent Discharge Method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015226417A1 (de) * 2015-12-22 2017-06-22 Robert Bosch Gmbh Mikrofluidische Vorrichtung, Verfahren zum Herstellen und Verfahren zum Betreiben einer mikrofluidischen Vorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060275852A1 (en) * 2005-06-06 2006-12-07 Montagu Jean I Assays based on liquid flow over arrays
US20070224084A1 (en) * 2006-03-24 2007-09-27 Holmes Elizabeth A Systems and Methods of Sample Processing and Fluid Control in a Fluidic System
US20110186466A1 (en) * 2008-06-19 2011-08-04 Boehringer Ingelheim Microparts Gmbh Fluid metering container
US20140283945A1 (en) * 2011-11-10 2014-09-25 Biofire Diagnostics, Llc Loading vials
DE102012222719A1 (de) * 2012-12-11 2014-06-12 Robert Bosch Gmbh Folienbeutel zum Bevorraten eines Fluids und Vorrichtung zum Bereitstellen eines Fluids
US20160236196A1 (en) * 2013-09-30 2016-08-18 Hitachi, Ltd. Reagent Holding Container, Liquid Delivery Device, Reagent Discharge Method

Also Published As

Publication number Publication date
DE102017206489A1 (de) 2018-10-18

Similar Documents

Publication Publication Date Title
EP2413138B1 (fr) Dispositif et procédé de séparation de composants d'un liquide d'échantillon
DE19947495C2 (de) Mikrofluidischer Mikrochip
DE102011004125A1 (de) Vorrichtung zur hermetisch abgeschlossenen Bevorratung von Flüssigkeiten für ein mikrofluidisches System
EP2654955B1 (fr) Procédé de mélange d'au moins une solution d'échantillon avec des réactifs
DE102014200483B4 (de) Verfahren zum Betreiben eines mikrofluidischen Chips und mikrofluidischer Chip
DE102009023430B4 (de) Vorrichtung und Verfahren zum Steuern von Fluidströmen in Lab-on-a-Chip-Systemen sowie Verfahren zum Herstellen der Vorrichtung
DE112018007590B3 (de) Anwendungsspezifisch ausgestaltbare mikrofluidik-einheit mit programmierbaren mikrofluidik-knoten
WO2017108387A1 (fr) Dispositif microfluidique, et procédé de production ainsi que procédé de fonctionnement d'un dispositif microfluidique
DE102012206042B4 (de) Verfahren und Vorrichtung zur gezielten Prozessführung in einem Mikrofluidik-Prozessor mit integrierten aktiven Elementen
WO2018192809A1 (fr) Dispositif et procédé pour un système microfluidique servant à analyser un échantillon
DE102009043226B4 (de) Flachkörper nach Art einer Chip-Karte zur biochemischen Analyse und Verfahren zu dessen Verwendung
WO2017055039A1 (fr) Dispositif et procédé de stockage et de vidage de contenants remplis de fluide dans des dispositifs microfluidiques
DE102016222032A1 (de) Mikrofluidische Vorrichtung und Verfahren zur Analyse von Nukleinsäuren
DE102013219502A1 (de) Analyseeinheit zum Durchführen einer Polymerasekettenreaktion, Verfahren zum Betreiben einer solchen Analyseeinheit und Verfahren zum Herstellen einer solchen Analyseeinheit
DE102018111822A1 (de) Fluidisches System zur Aufnahme, Abgabe und Bewegung von Flüssigkeiten, Verfahren zur Verarbeitung von Fluiden in einem fluidischen System
DE102015205906A1 (de) Bevorratungseinheit, Verfahren zum Herstellen einer Bevorratungseinheit und Verfahren zum Freisetzen eines in einer Bevorratungseinheit gelagerten Fluids
EP3263215B1 (fr) Dispositif comprenant un cellule comprenant un dispositif de stockage de reactif
DE102011079698B4 (de) Mikrofluidische Vorrichtung mit einer Kammer zur Lagerung einer Flüssigkeit
DE10222478A1 (de) Verteilelement für Flüssigkeiten und Gase, Lab-on-a-Cip, Lab-on-a-Card
DE102013222283B3 (de) Vorrichtung und Verfahren zur Handhabung von Reagenzien
EP4196270A1 (fr) Cuve à circulation pour intégrer une unité de traitement dans un dispositif microfluidique et procédé de traitement d'un fluide échantillon
WO2019137783A1 (fr) Procédé servant à fournir une solution de la substance dans un dispositif microfluidique
DE102022207797A1 (de) Probenaufnahmevorrichtung
WO2022218603A1 (fr) Cartouche en forme de l
WO2022218688A1 (fr) Chambre d'introduction pour l'introduction d'un dispositif d'échantillonnage dans un dispositif micro-fluidique, dispositif micro-fluidique, procédé de fonctionnement et procédé de production d'un dispositif micro-fluidique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18717041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18717041

Country of ref document: EP

Kind code of ref document: A1