WO2018192561A1 - 一种车辆及角行程电控执行器 - Google Patents

一种车辆及角行程电控执行器 Download PDF

Info

Publication number
WO2018192561A1
WO2018192561A1 PCT/CN2018/083845 CN2018083845W WO2018192561A1 WO 2018192561 A1 WO2018192561 A1 WO 2018192561A1 CN 2018083845 W CN2018083845 W CN 2018083845W WO 2018192561 A1 WO2018192561 A1 WO 2018192561A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
electronically controlled
controlled actuator
transmitting unit
housing
Prior art date
Application number
PCT/CN2018/083845
Other languages
English (en)
French (fr)
Inventor
罗杰
邹世超
朱雷
李明
徐鲲鹏
Original Assignee
中原内配(上海)电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中原内配(上海)电子科技有限公司 filed Critical 中原内配(上海)电子科技有限公司
Publication of WO2018192561A1 publication Critical patent/WO2018192561A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such

Definitions

  • the present invention relates to the field of electronically controlled actuators, and in particular to a quarter-turn electronically controlled actuator. It also relates to a vehicle comprising the angular travel electronically controlled actuator.
  • An electronically controlled actuator is an actuator that uses electricity as an energy source in a control system.
  • a quarter-turn electronically controlled actuator is one of electronically controlled actuators.
  • the angular travel electronically controlled actuator is divided into two categories: angled sensor and angleless sensor.
  • the angular-stroke electronically controlled actuator mainly includes a housing 2, a shaft 1, and a gear 3. , angle sensor 4 and circuit.
  • the shaft 1 is rotatably coupled to the shaft hole of the housing 2; the gear 3 is fixed to the shaft 1; the angle sensor 4 mainly includes a signal transmitting unit 41 and a signal receiving unit 42, and the signal transmitting unit 41 is usually fixed at the end of the rotating shaft 1.
  • the signal receiving unit 42 is fixed on the casing 2, and is disposed close to the shaft end of the rotating shaft 1 where the signal transmitting unit 41 is located, the position is fixed, the signal receiving unit 42 and the circuit
  • the signal transmitting unit 41 is angularly displaced with respect to the signal receiving unit 42, and the signal receiving unit 42 is configured to receive, process, and output an angle signal.
  • the main force receiving portion of the support rotary shaft 1 is the rotary shaft hole of the housing 2.
  • Such a quarter-turn electronically controlled actuator requires the housing 2 to have a higher strength material, which is costly, and the shaft hole of the fixed shaft 1 must be deep enough to ensure the stability of the operation of the shaft 1.
  • the present invention provides the following technical solutions:
  • An angular stroke electronically controlled actuator comprising a rotating shaft assembly, a housing 2 and an angle sensor, the angle sensor comprising an information transmitting unit and an information receiving unit; both ends of the rotating shaft assembly are rotatably supported on the housing,
  • the information transmitting unit is disposed on the non-axis end of the rotating shaft assembly, the information receiving unit is fixed on the housing and close to a position where the information transmitting unit is located, the information transmitting unit and the information receiving unit Both are located between the two pivotal support points of the housing.
  • the rotating shaft assembly includes a rotating shaft and a gear, both ends of the rotating shaft are rotatably supported on the housing, and the gear is fixed on the rotating shaft, and The gear is located between two rotational support points of the housing, and the information transmitting unit is disposed on the non-shaft end of the shaft or on the gear.
  • the information transmitting unit is an axis symmetrical structure with respect to the rotating shaft.
  • the magnet of the information transmitting unit is provided with a holding connection portion, and the magnet is fitted and fixed to the gear through the holding connection portion.
  • the holding connection portion has a zigzag structure.
  • the spindle assembly is rotatably supported on the housing by a sliding bearing or a rolling bearing.
  • the shaft hole of the housing and the rotating shaft assembly is a plastic structure.
  • the present invention also provides a vehicle comprising a quarter-turn electronically controlled actuator, the angular-stroke electronically controlled actuator being the angular-stroke electronically controlled actuator of any of the above.
  • both ends of the rotating shaft assembly are rotatably supported on the housing, and correspondingly, the information transmitting unit is disposed on the non-shaft end of the rotating shaft assembly, and the information receiving unit is fixed on the housing and close to The location where the information transmitting unit is located, and the information transmitting unit and the information receiving unit are both located between the two rotational support points of the housing.
  • the rotating shaft assembly is supported by the two-point rotation of the housing. Therefore, the rotation of the rotating shaft assembly is more stable, and there is no need to provide a deep rotating shaft hole on the housing, so that the structural design of the housing is not limited, and the rotating shaft assembly is adopted.
  • the two ends are rotatably supported on the housing to optimize the force of the housing.
  • the housing does not need to use a relatively high cost metal, which increases the radial strength of the shaft assembly. On this basis, due to space constraints The information transmitting unit and the information receiving unit cannot be disposed at the shaft end of the rotating shaft assembly, and can only be disposed at the non-shaft end.
  • the angular-stroke electronically controlled actuator of the application is adopted, so that the arrangement of the angular-stroke electronically controlled actuator is more convenient, and the vehicle operation is more reliable.
  • FIG. 1 is a schematic structural view of a corner-stroke electronically controlled actuator in the prior art
  • FIG. 2 is a schematic structural diagram of a corner-stroke electronically controlled actuator according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a mounting structure of a signal transmitting unit of a quarter-turn electronically controlled actuator according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a magnetic circuit simulation of a quarter-turn electronically controlled actuator according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of force analysis of a rotating shaft electronically controlled actuator according to an embodiment of the present invention.
  • 1 is a rotating shaft
  • 2 is a casing
  • 3 is a gear
  • 4 is an angle sensor
  • 41 is an information transmitting unit
  • 411 is a lifting magnet
  • 412 is a zigzag connecting portion
  • 42 is an information receiving unit.
  • the core of the invention is to provide a quarter-turn electronically controlled actuator, which reduces the cost and optimizes the stress of the housing, so that the structural design is not limited.
  • an embodiment of the present invention provides a quarter-turn electronically controlled actuator including a rotating shaft assembly, a housing 2, and an angle sensor 4.
  • the two ends of the rotating shaft assembly are rotatably supported on the housing 2, and two rotating shaft holes are formed in the housing 2 for respectively rotating and engaging with the two ends of the rotating shaft assembly;
  • the angle sensor 4 includes an information transmitting unit 41 and information receiving
  • the information transmitting unit 41 is disposed on the non-shaft end of the rotating shaft assembly.
  • the information receiving unit 42 is fixed on the housing 2 and close to the position where the information transmitting unit 41 is located, and the information transmitting unit 41 and the information receiving unit 42 are both Located between the two rotational support points A and B of the housing 2, that is, between the two shaft holes.
  • the rotating shaft assembly rotates relative to the housing 2
  • the information transmitting unit 41 rotates with the rotating shaft assembly
  • the information receiving unit 42 remains relatively stationary with respect to the housing 2
  • the information transmitting unit 41 and the information receiving unit 42 A relative angular displacement occurs so that the angle value can be measured and output.
  • the structural design of the housing 2 is not limited, and the two ends of the rotating shaft assembly are rotatably supported on the housing 2, and the force of the housing 2 is optimized.
  • the housing 2 does not need to be high in strength but high in cost.
  • the material increases the radial force of the shaft assembly.
  • the information transmitting unit 41 and the information receiving unit 42 cannot be disposed at the axial end of the rotating shaft assembly, and can only be disposed at the non-axial end.
  • the force analysis of the rotating assembly is as shown in FIG. 5, and a force F is applied to one end of the rotating shaft 1, and the two rotating supporting points A and B respectively require supporting forces F A and F B , and the applied points of the acting force F are
  • the distance between the rotation support points A is L1
  • the distance between the rotation support points A and B is L2.
  • the length of L1 is limited by the application environment of the product, generally a fixed value, and it is judged according to the formula. If the L2 is larger, the smaller the F A is, the smaller the supporting force required to rotate the support point A, the F B is also Have the same result. With the two-point support, the force of the housing 2 can be optimized.
  • the information transmitting unit 41 and the information receiving unit 42 of the angle sensor 4 of the present invention are not disposed at the shaft end, and the magnetic circuit of the information transmitting unit 41 of the angle sensor 4 changes correspondingly to achieve The linear output of the actuator signal is required.
  • the magnetic induction intensity in the X direction of the magnetic field is Bx
  • the intensity of magnetic induction in the Y direction is By
  • the magnetic induction in the Z direction is Bz.
  • the angle sensor 4 obtains a tangent to the magnetic intensities Bx and By in the different directions of the magnetic field, and obtains a relative angle with which the information transmitting unit 41 rotates with respect to the information receiving unit 42.
  • Bx basically satisfies the sinusoidal curve
  • Byr basically satisfies the cosine curve, and the linearity of the signal output and the angle relationship is good, which can meet the requirements of normal use.
  • the rotating shaft assembly includes a rotating shaft 1 and a gear 3.
  • the two ends of the rotating shaft 1 are rotatably supported on the casing 2, the gear 3 is fixed on the rotating shaft 1, and the gear 3 is located at two rotating support points of the casing 2.
  • the gear 3 drives the rotating shaft 1 to rotate relative to the housing 2;
  • the information transmitting unit 41 is disposed on the non-shaft end of the rotating shaft 1 or on the gear 3, that is, the information transmitting unit 41 is disposed on the shaft wall of the rotating shaft 1, or is disposed at On either side of the gear 3.
  • the information receiving unit 42 is disposed on the side wall of the casing 2 parallel to the axis of the rotating shaft 1. It suffices that the information transmitting unit 41 and the information receiving unit 42 can be angularly displaced and the angle information can be received and output.
  • the information transmitting unit 41 is an axis symmetrical structure with respect to the rotating shaft 1, and the information transmitting unit 41 is symmetrically disposed on the rotating shaft 1 to make the rotating shaft 1 run more smoothly.
  • the information transmitting unit 41 can also be an asymmetric structure.
  • the magnet 411 of the information transmitting unit 41 is injection molded, that is, processed on the magnet 411.
  • the specific holding connection portion 412 such as the sawtooth structure shown in FIG. 3, or the holding connection portion 412 is a structure having a plurality of axial projections, and the holding connection portion 412 of the magnet 411 is injected with the gear 3 when the gear 3 is injection molded.
  • the magnet 411 is fixedly mounted on the gear 3 by the holding connection portion 412. This structure has the advantages of high precision, good robustness, and low cost.
  • the rotating shaft assembly is rotatably supported on the housing 2 by a sliding bearing or a rolling bearing, so that the rotating shaft assembly rotates smoothly.
  • the rotating shaft assembly can also be rotatably supported on the housing 2 by other rotational connection, such as a sleeve. Turn the fit and so on.
  • the rotating shaft hole of the housing 2 and the rotating shaft assembly is a plastic structure. Since both ends of the rotating shaft assembly are rotatably supported on the housing 2, the force of the housing 2 is optimized. Under the same radial force, the housing 2 is partially plastic, and can fully withstand the strength of the force, so that it is not necessary to use a higher cost metal, which reduces the cost.
  • the embodiment of the present invention further provides a vehicle, including a quarter-turn electronically controlled actuator, and the angular-stroke electronically controlled actuator is any of the above embodiments.
  • the described angular travel electronically controlled actuator Since the structure of the angular stroke electronically controlled actuator is not limited, the arrangement of the angular stroke electronically controlled actuator can be more convenient, and the force of the housing of the angular stroke electronically controlled actuator is optimized, and the rotating shaft 1 runs smoothly, thereby The vehicle is running more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Abstract

一种角行程电控执行器,包括转轴组件、壳体(2)和角度传感器(4),角度传感器(4)包括信息发射单元(41)和信息接收单元(42);转轴组件的两端转动支撑于壳体(2)上,信息发射单元(41)设置在转轴组件的非轴端上,信息接收单元(42)固定于壳体(2)上且靠近信息发射单元(41)所在的位置,信息发射单元(41)和信息接收单元(42)均位于壳体(2)的两个转动支撑点之间。该执行器的转轴组件转动平稳,壳体的结构设计不受局限,并且优化了壳体的受力情况,增加了转轴组件的径向受力强度。

Description

一种车辆及角行程电控执行器
本申请要求于2017年04月20日提交中国专利局、申请号为201720421221.5、实用新型名称为“一种车辆及角行程电控执行器”的中国专利申请的优先权;
本申请要求于2017年05月23日提交中国专利局、申请号为201710368027.X、发明名称为“一种车辆及角行程电控执行器”的中国专利优先权;
本申请要求于2017年05月23日提交中国专利局、申请号为201720577613.0、实用新型名称为“一种车辆及角行程电控执行器”的中国专利优先权,以上全部内容通过引用结合在本申请中。
技术领域
本发明涉及电控执行器技术领域,特别涉及一种角行程电控执行器。还涉及一种包含该角行程电控执行器的车辆。
背景技术
电控执行器是指在控制系统中以电为能源的一种执行器,角行程电控执行器属于电控执行器中的一种。角行程电控执行器又分为带角度传感器和不带角度传感器两大类。
对于带角度传感器的角行程电控执行器,当应用到车辆中时,通常采用非接触式角度传感器,如图1所示,角行程电控执行器主要包括壳体2、转轴1、齿轮3、角度传感器4和电路。其中,转轴1转动连接于壳体2的转轴孔中;齿轮3固定于转轴1上;角度传感器4主要包括信号发射单元41和信号接收单元42,信号发射单元41通常固定在转轴1的末端,随转轴1一起转动,用于持续发射信号,辨别角度;信号接收单元42固定在壳体2上,且靠近信号发射单元41所在转轴1轴端设置,位置固定不动,信号接收单元42与电路相连,工作时,信号发射单元41相对信号接收单元42发生角位移,信号接收单元42用于接收、处理 并输出角度信号。
在此情况下,当转轴1的输出端受到如图1所示的径向力F时,支撑转轴1的主要受力部分为壳体2的转轴孔。这种角行程电控执行器就要求壳体2采用强度较高的材质,成本较高,且固定转轴1的转轴孔必须足够深,才能保证转轴1运行的稳定性。
综上所述,如何解决现有角行程电控执行器的成本高,壳体受力不合理导致的结构设计受限的问题,成为了本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种角行程电控执行器,以降低其成本,同时优化壳体受力情况,使结构设计不受限制。
为达到上述目的,本发明提供以下技术方案:
一种角行程电控执行器,包括转轴组件、壳体2和角度传感器,所述角度传感器包括信息发射单元和信息接收单元;所述转轴组件的两端转动支撑于所述壳体上,所述信息发射单元设置于所述转轴组件的非轴端上,所述信息接收单元固定于所述壳体上且靠近所述信息发射单元所在的位置,所述信息发射单元和所述信息接收单元均位于所述壳体的两个转动支撑点之间。
优选的,在上述的角行程电控执行器中,所述转轴组件包括转轴和齿轮,所述转轴的两端转动支撑于所述壳体上,所述齿轮固定于所述转轴上,且所述齿轮位于所述壳体的两个转动支撑点之间,所述信息发射单元设置于所述转轴的非轴端上或齿轮上。
优选的,在上述的角行程电控执行器中,所述信息发射单元为相对所述转轴的轴线对称结构。
优选的,在上述的角行程电控执行器中,所述信息发射单元的磁铁上设置有保持连接部,所述磁铁通过所述保持连接部嵌装固定于所述齿轮上。
优选的,在上述的角行程电控执行器中,所述保持连接部为锯齿状结构。
优选的,在上述的角行程电控执行器中,所述转轴组件通过滑动轴承或滚 动轴承转动支撑于所述壳体上。
优选的,在上述的角行程电控执行器中,所述壳体与所述转轴组件转动配合的转轴孔处为塑料结构。
本发明还提供了一种车辆,包括角行程电控执行器,所述角行程电控执行器为如以上任一项所述的角行程电控执行器。
与现有技术相比,本发明的有益效果是:
本发明提供的角行程电控执行器中,转轴组件的两端转动支撑于壳体上,相应地,信息发射单元设置于转轴组件的非轴端上,信息接收单元固定于壳体上且靠近信息发射单元所在的位置,且信息发射单元和信息接收单元均位于壳体的两个转动支撑点之间。可见,转轴组件通过壳体进行两点转动支撑,因此,转轴组件的转动更加平稳,且不需要在壳体上设置较深的转轴孔,从而壳体的结构设计不受局限,且采用转轴组件的两端转动支撑于壳体上,优化了壳体的受力情况,壳体不需要采用成本较高的金属,增加了转轴组件的径向受力强度,在此基础上,由于空间的限制,信息发射单元和信息接收单元不能设置在转轴组件的轴端,只能设置在非轴端。
本发明提供的车辆中,采用了该申请中的角行程电控执行器,因此,更加方便角行程电控执行器的布置,车辆运行更加可靠。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有技术中的一种角行程电控执行器的结构示意图;
图2为本发明实施例提供的一种角行程电控执行器的结构示意图;
图3为本发明实施例提供的一种角行程电控执行器的信号发射单元的安装结构示意图;
图4为本发明实施例提供的一种角行程电控执行器的磁路模拟示意图;
图5为本发明实施例提供的一种角行程电控执行器的转轴受力分析示意图。
其中,1为转轴、2为壳体、3为齿轮、4为角度传感器、41为信息发射单元、411为提磁铁、412为锯齿状连接部、42为信息接收单元。
具体实施方式
本发明的核心是提供了一种角行程电控执行器,降低了其成本,同时优化了壳体受力情况,使结构设计不受限制。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图2,本发明实施例提供了一种角行程电控执行器,包括转轴组件、壳体2和角度传感器4。其中,转轴组件的两端转动支撑于壳体2上,壳体2上开设有两个转轴孔,分别用于与转轴组件的两端转动配合连接;角度传感器4包括信息发射单元41和信息接收单元42,信息发射单元41设置于转轴组件的非轴端上,对应地,信息接收单元42固定于壳体2上且靠近信息发射单元41所在的位置,信息发射单元41和信息接收单元42均位于壳体2的两个转动支撑点A和B之间,即位于两个转轴孔之间。
工作时,转轴组件相对壳体2做旋转运动,信息发射单元41随转轴组件旋转,而信息接收单元42相对壳体2保持相对静止,则在此过程中,信息发射单元41和信息接收单元42发生相对角位移,从而可以测量并输出角度值。
由于本申请中的角行程电控执行器的转轴组件的端部通过壳体2进行两点转动支撑,因此,转轴组件的转动更加平稳,且不需要在壳体2上设置较深的转轴孔,从而壳体2的结构设计不受局限,且采用转轴组件的两端转动支撑于壳体2上,优化了壳体2的受力情况,壳体2不需要采用强度高但成本较高的材质,增加了转轴组件的径向受力强度。在此基础上,由于空间的限制,信 息发射单元41和信息接收单元42不能设置在转轴组件的轴端,只能设置在非轴端。
具体地,转动组件的受力分析如图5所示,在转轴1的一端施加作用力F,两个转动支撑点A和B分别需要支撑力F A和F B,作用力F的施加点与转动支撑点A之间的距离为L1,转动支撑点A和B之间的距离为L2。则存在以下等式:
F A=F+F B
F*L1=F B*L2;
求解的F A=F(L1/L2+1)。
其中,L1的长度由产品应用环境限制,一般为定值,则根据公式判断得出,如果L2越大,那么F A越小,即转动支撑点A所需要的支撑力越小,F B也具有同样的结果。采用两点支撑,能够优化壳体2的受力情况。
与现有的角度传感器相比,本发明的角度传感器4的信息发射单元41和信息接收单元42并不是布置在轴端,则角度传感器4的信息发射单元41的磁路相应发生变化,以达到执行器信号线性输出的要求。
具体地,磁场的X方向的磁感应强度为Bx,Y方向的磁感应的强度为By,Z方向的磁感应强度为Bz。角度传感器4对磁场不同方向的磁感应强度Bx、By强度求正切,可获得信息发射单元41相对于信息接收单元42转过的相对角度。
从图4的磁路模拟上来看,Bx基本满足正弦曲线,By基本满足余弦曲线,可得信号输出和角度关系的线性度较好,能满足正常使用要求。
在本实施例中,转轴组件包括转轴1和齿轮3,转轴1的两端转动支撑于壳体2上,齿轮3固定于转轴1上,且齿轮3位于壳体2的两个转动支撑点之间,齿轮3带动转轴1相对壳体2做旋转运动;信息发射单元41设置于转轴1的非轴端上或齿轮3上,即信息发射单元41设置于转轴1的轴壁上,或者设置在齿轮3的任意一端侧面上。相应地,信息接收单元42设置在壳体2的平行于转轴1轴线的侧壁上。只要能够使信息发射单元41和信息接收单元42发生相对角位移并接受、输出角度信息即可。
进一步地,在本实施例中,信息发射单元41为相对转轴1的轴线对称结构,信息发射单元41对称设置于转轴1上能够使转轴1运行更加平稳。当然,信息发射单元41也可以为非对称结构。
如图3所示,为了实现信息发射单元41的磁铁同轴布置于转轴1的圆周上,在本实施例中,信息发射单元41的磁铁411采用嵌件注塑的方式,即在磁铁411上加工特定的保持连接部412,如图3中所示的锯齿状结构,或者保持连接部412为具有多个轴向凸起的结构,磁铁411的保持连接部412在齿轮3注塑的时候与齿轮3一体成型,磁铁411通过保持连接部412嵌装固定于齿轮3上,这种结构具有精度高,鲁棒性好,成本低等优势。
在本实施例中,转轴组件通过滑动轴承或滚动轴承转动支撑于壳体2上,从而使转轴组件转动平顺,当然,转轴组件还可以通过其它转动连接方式转动支撑于壳体2上,如轴套转动配合等。
在本实施例中,壳体2与转轴组件转动配合的转轴孔处为塑料结构,由于转轴组件的两端转动支撑于壳体2上,因此,壳体2的受力情况得到优化,因此,在相同径向力条件下,壳体2部分采用塑料结构,完全能够承受受力强度,从而可以不需要采用成本较高的金属,降低了成本。
基于以上任一实施例所描述的角行程电控执行器,本发明实施例还提供了一种车辆,包括角行程电控执行器,且该角行程电控执行器为以上任一实施例所描述的角行程电控执行器。由于角行程电控执行器的结构不受限制,从而可以更加方便角行程电控执行器的布置,且该角行程电控执行器的壳体受力情况得到优化,转轴1运行平稳,从而使车辆运行更加可靠。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种角行程电控执行器,包括转轴组件、壳体(2)和角度传感器(4),所述角度传感器(4)包括信息发射单元(41)和信息接收单元(42);其特征在于,所述转轴组件的两端转动支撑于所述壳体(2)上,所述信息发射单元(41)设置于所述转轴组件的非轴端上,所述信息接收单元(42)固定于所述壳体(2)上且靠近所述信息发射单元(41)所在的位置,所述信息发射单元(41)和所述信息接收单元(42)均位于所述壳体(2)的两个转动支撑点之间。
  2. 根据权利要求1所述的角行程电控执行器,其特征在于,所述转轴组件包括转轴(1)和齿轮(3),所述转轴(1)的两端转动支撑于所述壳体(2)上,所述齿轮(3)固定于所述转轴(1)上,且所述齿轮(3)位于所述壳体(2)的两个转动支撑点之间,所述信息发射单元(41)设置于所述转轴(1)的非轴端上或齿轮(3)上。
  3. 根据权利要求2所述的角行程电控执行器,其特征在于,所述信息发射单元(41)为相对所述转轴(1)的轴线对称的结构。
  4. 根据权利要求2或3所述的角行程电控执行器,其特征在于,所述信息发射单元(41)的磁铁(411)上设置有保持连接部(412),所述磁铁(411)通过所述保持连接部(412)嵌装固定于所述齿轮(3)上。
  5. 根据权利要求4所述的角行程电控执行器,其特征在于,所述保持连接部(412)为锯齿状结构。
  6. 根据权利要求1-3任一项所述的角行程电控执行器,其特征在于,所述转轴组件通过滑动轴承或滚动轴承转动支撑于所述壳体(2)上。
  7. 根据权利要求1-3任一项所述的角行程电控执行器,其特征在于,所述壳体(2)与所述转轴组件转动配合的转轴孔处为塑料结构。
  8. 一种车辆,包括角行程电控执行器,其特征在于,所述角行程电控执行器为如权利要求1-7任一项所述的角行程电控执行器。
PCT/CN2018/083845 2017-04-20 2018-04-20 一种车辆及角行程电控执行器 WO2018192561A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201720421221 2017-04-20
CN201720421221.5 2017-04-20
CN201720577613.0U CN206813092U (zh) 2017-04-20 2017-05-23 一种车辆及角行程电控执行器
CN201710368027.X 2017-05-23
CN201720577613.0 2017-05-23
CN201710368027.XA CN106976478B (zh) 2017-04-20 2017-05-23 一种车辆及角行程电控执行器

Publications (1)

Publication Number Publication Date
WO2018192561A1 true WO2018192561A1 (zh) 2018-10-25

Family

ID=59343235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083845 WO2018192561A1 (zh) 2017-04-20 2018-04-20 一种车辆及角行程电控执行器

Country Status (2)

Country Link
CN (2) CN106976478B (zh)
WO (1) WO2018192561A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106976478B (zh) * 2017-04-20 2020-12-15 中原内配(上海)电子科技有限公司 一种车辆及角行程电控执行器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269281A (ja) * 2006-03-31 2007-10-18 Jtekt Corp ステアリング装置
US7604087B2 (en) * 2005-11-29 2009-10-20 Showa Corporation Motor-driven power steering apparatus
CN201472452U (zh) * 2009-08-12 2010-05-19 武汉捷隆汽车电动转向系统有限公司 一种带角度传感器的转向管柱
CN104053589A (zh) * 2011-11-21 2014-09-17 柏恩氏股份有限公司 旋转角度传感器
CN204264264U (zh) * 2014-11-25 2015-04-15 北京汽车股份有限公司 一种方向盘转动角度显示装置
CN204750276U (zh) * 2015-06-05 2015-11-11 江苏陆地方舟新能源电动汽车有限公司 一种电动汽车转向系统省电结构
CN105322723A (zh) * 2014-07-31 2016-02-10 株式会社电装 驱动单元和包括驱动单元的电动助力转向装置
CN106976478A (zh) * 2017-04-20 2017-07-25 中原内配(上海)电子科技有限公司 一种车辆及角行程电控执行器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604087B2 (en) * 2005-11-29 2009-10-20 Showa Corporation Motor-driven power steering apparatus
JP2007269281A (ja) * 2006-03-31 2007-10-18 Jtekt Corp ステアリング装置
CN201472452U (zh) * 2009-08-12 2010-05-19 武汉捷隆汽车电动转向系统有限公司 一种带角度传感器的转向管柱
CN104053589A (zh) * 2011-11-21 2014-09-17 柏恩氏股份有限公司 旋转角度传感器
CN105322723A (zh) * 2014-07-31 2016-02-10 株式会社电装 驱动单元和包括驱动单元的电动助力转向装置
CN204264264U (zh) * 2014-11-25 2015-04-15 北京汽车股份有限公司 一种方向盘转动角度显示装置
CN204750276U (zh) * 2015-06-05 2015-11-11 江苏陆地方舟新能源电动汽车有限公司 一种电动汽车转向系统省电结构
CN106976478A (zh) * 2017-04-20 2017-07-25 中原内配(上海)电子科技有限公司 一种车辆及角行程电控执行器
CN206813092U (zh) * 2017-04-20 2017-12-29 中原内配(上海)电子科技有限公司 一种车辆及角行程电控执行器

Also Published As

Publication number Publication date
CN106976478B (zh) 2020-12-15
CN206813092U (zh) 2017-12-29
CN106976478A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
CN104428646A (zh) 磁式负载传感器以及电动制动装置
WO2018192561A1 (zh) 一种车辆及角行程电控执行器
CN103222020B (zh) 一种旋转变压器
CN201344070Y (zh) 摩托车数字节气门位置传感器
CN202696333U (zh) 一种转子轴向固定结构
CN209344954U (zh) 一种具有限位结构的微型永磁同步电机
WO2023179408A1 (zh) 一种高速轴承
CN208872442U (zh) 旋转扭矩传感器
CN203180724U (zh) 使用于电动自行车的轮毂马达的磁性编码器
CN101119059B (zh) 涡电流减速装置
CN209689644U (zh) 一种用于rs422数字信号输出的磁敏传感器
CN101907501A (zh) 非接触相位差式扭矩传感器
CN202218142U (zh) 开关磁阻电机用的高可靠性磁位置传感器
CN206364647U (zh) 一种转子结构以及具有其的电机
CN206248101U (zh) 无内置轴承电容式旋转编码器
CN213367583U (zh) 外转子永磁同步伺服电机及一体式电滚筒
CN210608716U (zh) 一种无刷直流电机
CN209627119U (zh) 盘式电机及其转子固定结构
CN204286395U (zh) 位移测试装置
CN216622657U (zh) 一种磁阻传感器安装结构
CN209833981U (zh) 一种一体化渐开线摇臂电动舵机
CN203416118U (zh) 一种伺服电机中的编码器限位结构
CN103427561A (zh) 一种变频电动机编码器安装装置
CN202178680U (zh) 一种浮动轴承温度可测的双转子电机
CN201083755Y (zh) 一种变速箱转速测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788157

Country of ref document: EP

Kind code of ref document: A1