WO2018192553A1 - 子设备定位方法及系统 - Google Patents

子设备定位方法及系统 Download PDF

Info

Publication number
WO2018192553A1
WO2018192553A1 PCT/CN2018/083790 CN2018083790W WO2018192553A1 WO 2018192553 A1 WO2018192553 A1 WO 2018192553A1 CN 2018083790 W CN2018083790 W CN 2018083790W WO 2018192553 A1 WO2018192553 A1 WO 2018192553A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
detection signal
signal
resistor
device positioning
Prior art date
Application number
PCT/CN2018/083790
Other languages
English (en)
French (fr)
Inventor
宋晶
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018192553A1 publication Critical patent/WO2018192553A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/102Program control for peripheral devices where the programme performs an interfacing function, e.g. device driver
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus

Definitions

  • the present disclosure relates to, but is not limited to, the field of location detection, and in particular, to a method and system for positioning a sub-device.
  • the first step of system management is to determine and locate the sub-units or sub-devices of the subordinates, and then perform corresponding control and management on the sub-units or sub-devices of the subordinates.
  • Judgment and positioning can be realized by hardware dialing: a dialing code can set the high and low two-digit addresses, and determine the address by setting the multi-digit dialing code in the sub-unit or sub-device, and simultaneously input with the main device/ The output port reads this address.
  • a port signal can read a signal of one dial code (ie two states).
  • the hardware dialing method is simple and direct, it does not require too many hardware circuits.
  • a large number of subunits and sub-devices need to be configured with multiple dialing codes, occupying multiple signal ports, and at the same time causing connectors between the master device and the subunits and sub-devices. The number of pins has increased.
  • the present disclosure provides a seed device positioning method and system, which can avoid the following situations: the main device input/output port cannot be effectively utilized, and the number of connector pins connected to the main device and the sub device is large, thereby causing the connector to be bulky.
  • the present disclosure provides a seed device positioning method, including:
  • the child device receives the detection signal sent by the master device
  • the above sub-device positioning information is fed back to the main device.
  • processing the foregoing detection signal to obtain sub-device positioning information includes:
  • the detection signal is configured to be connected to a high level, and the corresponding sub-device positioning information is at a high level;
  • the detection signal is configured to be connected to a low level, and the corresponding sub-device positioning information is a low level;
  • the detection signal configuration is suspended, and the corresponding sub-device positioning information is high and low.
  • the present disclosure also provides a seed device positioning method, including:
  • the main device sends the detection signal to the sub-device, and the detection signal is used to instruct the sub-device to obtain the sub-device positioning information according to the detection signal.
  • the method before the foregoing sending, by the master device, the detection signal to the child device, the method further includes:
  • the master device converts a signal having a high-low level change into the above-described detection signal by the detection judging module in the above-mentioned master device.
  • the above signal having a high low level change includes a master operating indication signal.
  • the detection determining module includes: a main device signal isolation circuit, a detection signal driving circuit, and a detection signal output isolation circuit.
  • the master device signal isolation circuit includes:
  • the first resistor is configured to be connected to the signal having the high and low level changes and the base of the first transistor
  • the first triode is disposed such that a base of the first triode is connected to a first capacitor and a reference ground through a second resistor, and an emission stage of the first triode is connected to the reference ground, the first three
  • the collector of the pole tube is connected to the second resistor, and the detected signal after the isolation is output through the second resistor.
  • the detection signal driving circuit includes:
  • the first diode is configured to: the positive end of the first diode is connected to the detection signal output by the signal isolation circuit of the main device, and is connected to the power source through the fourth resistor;
  • the negative terminal of the first diode is connected to the base of the second transistor, and the reference ground is connected through the fifth resistor.
  • the second transistor is disposed such that an emitter of the second transistor is connected to the reference ground, a collector of the second transistor is connected to a power source through a sixth resistor, and a collector of the second transistor Connecting to the power source through a seventh resistor and a first light emitting diode;
  • the detecting signal output isolation circuit includes:
  • the optocoupler is configured to: the primary input end of the optocoupler is connected to the detection signal driven by the detection signal driving circuit, and the primary side output end of the optocoupler is connected to the reference ground;
  • the positive side output terminal of the optocoupler connects the detection signal to the external power source through the eighth resistor, and is connected to the negative side output terminal of the optocoupler through the negative terminal of the second diode;
  • the secondary side negative output of the above optocoupler is connected to the external reference ground.
  • the present disclosure also provides a seed device positioning system, including a child device and a master device, wherein
  • the master device is configured to: send a detection signal to the foregoing sub-device;
  • the sub-device is configured to: receive a detection signal sent by the main device; process the detection signal to obtain sub-device positioning information; and feed back the sub-device positioning information to the main device.
  • the foregoing sub-device is further configured to:
  • the detection signal is configured to be connected to a high level, and the corresponding sub-device positioning information is at a high level;
  • the detection signal is configured to be connected to a low level, and the corresponding sub-device positioning information is a low level;
  • the detection signal configuration is suspended, and the corresponding sub-device positioning information is high and low.
  • the master device is further configured to convert a signal having a high-low level change into the detection signal by the detection determination module in the master device.
  • the detection determining module includes: a main device signal isolation circuit, a detection signal driving circuit, and a detection signal output isolation circuit.
  • the master device signal isolation circuit includes:
  • the first resistor is configured to be connected to the signal having the high and low level changes and the base of the first transistor
  • the first triode is disposed such that a base of the first triode is connected to a first capacitor and a reference ground through a second resistor, and an emission stage of the first triode is connected to the reference ground, the first three
  • the collector of the pole tube is connected to the second resistor, and the detected signal after the isolation is output through the second resistor.
  • the detection signal driving circuit includes:
  • the first diode is configured to: the positive end of the first diode is connected to the detection signal output by the signal isolation circuit of the main device, and is connected to the power source through the fourth resistor;
  • the negative terminal of the first diode is connected to the base of the second transistor, and is connected to the reference ground through the fifth resistor;
  • the second transistor is disposed such that an emitter of the second transistor is connected to the reference ground, a collector of the second transistor is connected to a power source through a sixth resistor, and a collector of the second transistor
  • the power source is connected to the power source through a seventh resistor and a first light emitting diode.
  • the detecting signal output isolation circuit includes:
  • the optocoupler is configured to: the primary input end of the optocoupler is connected to the detection signal driven by the detection signal driving circuit, and the primary side output end of the optocoupler is connected to the reference ground;
  • the positive side output terminal of the optocoupler connects the detection signal to the external power source through the eighth resistor, and is connected to the negative side output terminal of the optocoupler through the negative terminal of the second diode;
  • the secondary side negative output of the above optocoupler is connected to the external reference ground.
  • the embodiment of the present disclosure further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • the sub-device receives the detection signal sent by the main device, processes the detection signal to obtain the sub-device positioning information, and feeds back the sub-device positioning information to the main device, thereby preventing the main device input/output port from being effectively utilized.
  • the number of connector pins connected to the master device and the child device is large, which results in a large connector size, which saves the number of pins connected between the master device and the child unit and the child device, thereby reducing the corresponding connector volume; Master device port resource utilization.
  • FIG. 1 is a flowchart of a sub device positioning method according to a first embodiment of the present disclosure
  • FIG. 2 is a flowchart of a sub device positioning method according to a second embodiment of the present disclosure
  • FIG. 3 is a circuit diagram of a detection and determination module in a sub-device positioning method according to an alternative embodiment of the present disclosure
  • FIG. 4 is a structural block diagram of a sub device positioning system according to a third embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram of a sub device positioning system according to a fourth embodiment of the present disclosure.
  • 6-1 is a structural block diagram of a sub-device in a sub-device positioning system according to an alternative embodiment of the present disclosure
  • 6-2 is a structural block diagram of a sub-device in a sub-device positioning system according to another alternative embodiment of the present disclosure.
  • 6-3 is a structural block diagram of a sub-device in a sub-device positioning system according to still another alternative embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a sub device positioning method according to the first embodiment of the present disclosure. As shown in FIG. 1, the process may include the following steps:
  • Step S102 the child device receives the detection signal sent by the master device
  • the master device may send the detection signal to the child device, where the detection signal is used to instruct the sub-device to obtain the sub-device positioning information according to the detection signal, and receive the sub-device positioning information fed back by the sub-device.
  • the method may further include: the master device converting the signal having the high-low level change into the detection signal by using the detection determining module in the master device.
  • the above signal having a high low level change may include a master operating indication signal.
  • the above detection and determination module may include: a main device signal isolation circuit, a detection signal driving circuit, and a detection signal output isolation circuit.
  • the main device signal isolation circuit may include: a first resistor, configured to: connect to the signal having the high and low level changes and the base of the first triode; and the first triode is configured as: the first three poles
  • the base of the tube is connected to the reference ground through the second resistor, the emitter of the first transistor is connected to the reference ground, and the collector of the first transistor is connected to the second resistor.
  • the two resistors output the detected signal after isolation processing.
  • the detection signal driving circuit may include: a first diode, wherein: a positive end of the first diode is connected to a detection signal output by the signal isolation circuit of the main device, and is connected to a power source through a fourth resistor; a negative terminal of a diode is connected to a base of the second transistor, and a reference ground is connected through a fifth resistor; the second transistor is disposed such that an emitter of the second transistor is connected to the reference ground, The collector of the second transistor is connected to the power source through the sixth resistor, and the collector of the second transistor is connected to the power source through the seventh resistor and the first light emitting diode.
  • the detection signal output isolation circuit may include: an optocoupler, wherein: the primary side positive input end of the optocoupler is connected to the detection signal driven by the detection signal driving circuit, and the primary side output end of the optocoupler is connected to a reference ground; The positive output terminal of the coupled side connects the detection signal to the external power source through the eighth resistor, and is connected to the negative output terminal of the secondary side of the optocoupler through the negative terminal of the second diode; the negative output terminal of the secondary side of the optocoupler Connect to the external reference ground.
  • Step S104 processing the detection signal to obtain sub-device positioning information.
  • Step S104 may include: configuring the detection signal to be connected to a high level, and the corresponding sub-device positioning information is a high level; or configuring the detection signal to be connected to a low level, and the corresponding sub-device positioning information is a low level; Alternatively, the detection signal configuration is suspended, and the corresponding sub-device positioning information is high and low.
  • Step S106 feeding back the sub-device positioning information to the main device.
  • the main device can detect and locate the sub-device, and perform corresponding control and operation on the sub-device; thus, the main device can detect three states by using one port signal. Function, which saves the number of port connections between the child device and the master device and improves the utilization of the central processing unit (CPU) port of the master device.
  • CPU central processing unit
  • the sub-device receives the detection signal sent by the main device, processes the detection signal to obtain the sub-device positioning information, and feeds back the sub-device positioning information to the main device.
  • the disclosure discloses an increase in the number of occupied main device ports caused by an increase in functional units and sub-devices integrated in the communication system, an increase in the number of connectors connected to the sub-units and sub-devices, an increase in the size of the connector, and a communication device.
  • the contradiction between miniaturization and effective utilization of the main device port providing a low-cost method and system for sub-unit and sub-device positioning detection.
  • the original one-port signal can only detect the high and low states, it is improved to detect three states by using one port signal; not only the number of pins connected between the master device and the sub-units and sub-devices can be saved. , thereby reducing the corresponding connector volume; can also improve the master device port resource utilization.
  • the method is simple and efficient, and involves few devices; the software judgment mechanism is simple and effective, which greatly reduces the complexity and cost of the positioning detection function, improves the reliability, and has simple use method and high application flexibility.
  • FIG. 2 is a flowchart of a sub device positioning method according to a second embodiment of the present disclosure. As shown in FIG. 2, the process may include the following steps:
  • the running indication signal RUN (generally the running indicator signal of the system) with high and low levels in the main device can be connected to the detection and judgment module.
  • a positioning detection signal TEST (which may also be simply referred to as a signal TEST) having the same high and low levels is obtained.
  • the positioning detection signal TEST and the original RUN signal can be isolated, so as not to affect the normal operation of the RUN signal.
  • the operation indication signal RUN becomes a positioning detection signal TEST after being processed and changed in the detection determination module, and the TEST signal is sent to the signal positioning and delivery module in the subunit or the sub-device through the port connection;
  • the TEST signal can be connected to the sub-unit or the sub-device's signal to be sent to the module through the interface terminal (occupying one pin).
  • the TEST signal can be processed differently in the signal positioning module; it can be pulled up to a high level, can be pulled down to the reference ground level, and can be left floating; there can be three processing methods.
  • the signal positioning and sending module of the sub-device passes the positioning detection signal TEST sent by the detection and determination module, processes it as its own positioning detection signal, and passes the positioning detection signal of the sub-device itself (ie, the TEST signal of the sub-device itself)
  • the same port is connected to the CPU in the master device.
  • the TEST signal that is processed to be pulled up to a high level although the original RUN signal is high and low, it can be always pulled up to a high level signal (see sub-device B in Figure 2); the same principle is treated as The TEST signal pulled down to the reference ground can also always be in a low state (see sub-device A in Figure 2); only the TEST signal that is processed to be floating can still maintain the state of the high-low signal (see Figure 2 for the neutron).
  • Equipment C ).
  • the CPU in the master device performs subsequent control and operation on the subunit or the sub-device after performing the positioning judgment according to the TEST signal sent back by the sub-device;
  • Another sub-device positioning method in the field may be implemented by means of communication: for example, by RS485, Controller Area Network (CAN), Ethernet, etc., to obtain address information stored in a functional unit or a sub-device.
  • the advantage of this method is that the address information of multiple units or devices can be obtained; however, the premise is as follows: 1.
  • the storage unit exists in the subunit or the sub-device, and the address information has been programmed in advance;
  • the communication unit and the processing unit circuit are present in the subunit or the sub-device, and the address information can be read, processed, and uploaded.
  • this method requires high hardware conditions for subunits or sub-devices, and the storage unit, communication unit and processing unit circuit are often costly and complicated; this makes many subunits or sub-devices that do not have these circuits themselves. These circuit units need to be added when using this method, which greatly increases the complexity and cost of the hardware circuit.
  • this method needs to burn the address information in advance, some urgent on-site requirements, maintenance, and rectification environments often fail to provide software programming conditions, which necessitates the transportation of these subunits and sub-devices into a flammable environment. Processing; not only delays the timing, but also brings waste of labor costs, etc., so this method also has great constraints on the flexibility of application.
  • the original one-port signal can only detect the high and low states
  • it is improved to detect three states by using one port signal; not only the main device and the sub-unit can be saved, The number of pins connected between the child devices, thereby reducing the corresponding connector volume; and also improving the resource utilization of the master device port.
  • the program involves few devices, the software judgment mechanism is simple and effective, greatly reduces the complexity of the positioning detection function and the hardware and labor costs, and improves the system reliability; thus, to promote system miniaturization and product cost reduction, improve products. The contribution of market competitiveness.
  • a circuit diagram of a detection and determination module in a seed device positioning method is provided.
  • the detection and determination module can be implemented by using a circuit with a triode as a core device; the signal positioning and sending module can be pulled up to The power supply VDD, pull-down to the reference ground GNDD and floating mode is realized.
  • the detection and judgment module can also be divided into three but not limited to the RUN signal isolation circuit (ie, the main device signal isolation circuit), the TEST signal drive circuit (ie, the detection signal drive circuit), and the TEST signal output isolation circuit (ie, the detection signal output isolation circuit).
  • the module is shown in Figure 3.
  • the main device signal isolation circuit in this embodiment may be a RUN signal isolation circuit, including: a first resistor R1 having one end connected to the main device operation signal RUN signal and the other end connected to the base of the first triode VT1.
  • the base of the first VT1 is also connected to the reference ground GND through the second resistor R2 and the first capacitor C1.
  • the emitter of the first VT1 is connected to the reference ground GND.
  • the collector of the first VT1 can be connected to one end of the third resistor R3; the other end of the R3 can output the isolated RUN-T signal.
  • the triode VT1 can be set to: isolate the RUN signal, prevent the subsequent operation of the TEST signal from affecting the normal operation of the RUN signal; R1 and R3 respectively serve as the base and collector current limiting resistors, which can be set to: adjust and control the VT1 base.
  • the RUN signal indicating the running status (usually the running indicator signal of the system) can be a signal with high and low levels; when it is high level (1), the transistor VT1 can be turned on, RUN- The T signal is pulled down to a low level; when the RUN signal is low (0), the triode VT1 can be turned off, and the RUN-T signal is in a high impedance state.
  • each device has enough margin; the Uceo of the triode VT1 needs to be more than 1.5 times the supply voltage, and the current limiting resistors R1, R3 and the base of the VT1, The collector current also needs to match each other.
  • the detection signal driving circuit in this embodiment may be a TEST signal driving circuit, including: a first diode VD1, the positive end of the first diode VD1 is connected with the RUN-T signal output by the RUN signal isolation circuit, and is also passed The fourth resistor R4 is pulled up to the power source VCC.
  • the negative terminal of the first VD1 may be connected to the base of the second transistor VT2 while being connected to the reference ground GND through the fifth resistor R5.
  • the emitter of the second VT2 can be connected to GND.
  • the collector of the second VT2 can output the TEST-T signal while being pulled up to VCC through the sixth resistor R6 and the seventh resistor R7 and the first LED HL1, respectively.
  • the TEST-T signal can be sent to the post-stage TEST signal output isolation circuit.
  • VD1 can be set to: raise the turn-on voltage of the VT2 base to prevent VT2 malfunction due to interference of the RUN-T signal or low level of the RUN-T signal.
  • VT2 can be roughly set to: signal drive, to ensure that the TEST-T signal can output a valid high level signal (VCC) and low level signal (GND).
  • HL1 can be set here to: indicate the state of the TEST-T signal, which is convenient for observation during debugging.
  • VT2 When the RUN-T signal sent by the current level RUN signal isolation circuit is low, VT2 may not be turned on, and the TEST-T signal is pulled to the high level VCC(1) by the pull-up resistor R6; when the RUN-T signal is high impedance In the state, the base of VT2 can be divided by R4 and R5 to obtain a higher voltage, turn on VT2, and the TEST-T signal is pulled down to low level (0).
  • the TEST-T signal can be output as a high and low level signal isolated from the RUN signal.
  • the remaining amount of each device is reserved when using this circuit; the Uceo of the triode VT2 needs to be more than 1.5 times the supply voltage, and the collector current of the current limiting resistor R6 and the VT2 also need to cooperate with each other; VD1 The turn-on voltage drop cannot be too large, so that the VT2 malfunction cannot be turned on when RUN-T is high.
  • the TEST signal output isolation circuit can include:
  • the optocoupler D1 is set to: the primary input terminal (1 pin) of the optocoupler D1 is connected to the TEST-T signal outputted by the TEST signal driving circuit, and the primary side output terminal (2 pins) of the optocoupler D1 is connected to the reference ground GND. .
  • the secondary output of the optocoupler D1 (four-pin) outputs the TEST signal, and is pulled up to the external power supply VDD through the eighth resistor R8 and connected to the negative terminal of the second diode VD2.
  • the secondary side negative output terminal (3 pins) of the optocoupler D1 can be connected to the external reference ground GNDD and can be connected to the positive terminal of the second diode VD2.
  • the optocoupler D1 can play an isolation function to prevent circuit function problems caused by different reference grounds. If the sub-device or sub-board is the same as the reference ground and power supply of the main device, VDD can be connected to VCC and GNDD can be connected to GND. VD2 can be set to port protect the TEST signal output to the sub-device or sub-unit.
  • the sub-board can belong to the energy field, and the sub-board can have multiple; the sub-device can also belong to the energy field, and the sub-device can also have multiple.
  • the primary side of the optocoupler D1 When the TEST-T signal is in a high state, the primary side of the optocoupler D1 can be turned on, and the secondary side TEST signal is pulled low to a low level GNDD(0); when the TEST-T signal is in a low state, The primary side of the optocoupler D1 can be turned off, and the secondary side TEST signal is pulled up to a high level VDD(1) by R8.
  • the TEST signal can also be a signal with a high and low level.
  • the signal In addition to being sent back to the main device CPU, the signal can also be sent to the module through the signal sent from the external port to the subunit and the sub-device.
  • the remaining amount of each device is reserved when using this circuit; the U CE of the secondary side of the optocoupler D1 should be able to satisfy the external power supply VDD while leaving a margin; the parameters of VD2 also need to be matched with VDD. .
  • the third embodiment and the fourth embodiment further provide a seed device positioning system, and the following devices are configured to implement the foregoing embodiments and optional implementation manners, which have not been described again.
  • the term "module” may implement a combination of software or hardware of a predetermined function.
  • the apparatus described in the following embodiments is optionally implemented in software, and in addition, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 4 is a structural block diagram of a child device positioning system according to a third embodiment of the present disclosure. As shown in FIG. 4, the device may include: a child device 42 and a master device 44. ,among them,
  • the master device 44 is configured to: send a detection signal to the foregoing sub-device;
  • the foregoing sub-device is further configured to: configure the detection signal to be connected to a high level, and the corresponding sub-device positioning information is a high level; or configure the detection signal to be connected to a low level, and the corresponding sub-device positioning The information is low level; or the above detection signal is configured to be suspended, and the corresponding sub-device positioning information is high and low.
  • the master device is further configured to: convert the signal having the high-low level change into the foregoing detection signal by using the detection determining module in the master device.
  • the foregoing detection and determination module comprises: a main device signal isolation circuit, a detection signal driving circuit, and a detection signal output isolation circuit.
  • the foregoing main device signal isolation circuit includes:
  • the first triode is disposed such that a base of the first triode is connected to a first capacitor and a reference ground through a second resistor, and an emission stage of the first triode is connected to the reference ground, the first three
  • the collector of the pole tube is connected to the second resistor, and the detected signal after the isolation is output through the second resistor.
  • the foregoing detection signal driving circuit includes:
  • the first diode is configured to: the positive end of the first diode is connected to the detection signal output by the signal isolation circuit of the main device, and is connected to the power source through the fourth resistor;
  • the negative terminal of the first diode is connected to the base of the second transistor, and is connected to the reference ground through the fifth resistor;
  • the second transistor is disposed such that an emitter of the second transistor is connected to the reference ground, a collector of the second transistor is connected to a power source through a sixth resistor, and a collector of the second transistor
  • the power source is connected to the power source through a seventh resistor and a first light emitting diode.
  • the foregoing detection signal output isolation circuit comprises:
  • the optocoupler is configured to: the primary input end of the optocoupler is connected to the detection signal driven by the detection signal driving circuit, and the primary side output end of the optocoupler is connected to the reference ground;
  • the sub-device receives the detection signal sent by the main device; processes the detection signal to obtain the sub-device positioning information; and feeds the sub-device positioning information to the main device. .
  • the original one-port signal can only detect the high and low states, it is improved to detect three states by using one port signal; not only the number of pins connected between the master device and the sub-units and sub-devices can be saved. , thereby reducing the corresponding connector volume; can also improve the master device port resource utilization.
  • the method is simple and efficient, and involves few devices; the software judgment mechanism is simple and effective, which greatly reduces the complexity and cost of the positioning detection function, improves the reliability, and has simple use method and high application flexibility.
  • FIG. 5 is a structural block diagram of a child device positioning system according to a fourth embodiment of the present disclosure. As shown in FIG. 5, the device may include:
  • the main device CPU 52 performs corresponding control and operation on the subunits and sub-devices after detecting and positioning them;
  • the signal positioning uploading module 56 responds to the signal sent by the detecting and determining module 54 and sends the positioning information.
  • the main device CPU 52 and the detection and determination module 54 may be located in the main device, and the signal positioning and sending module 56 may be located in the subunit or the sub device.
  • FIG. 6-1, FIG. 6-2, and FIG. 6-3 are structural block diagrams of the sub-devices in the sub-device positioning system according to an alternative embodiment of the present disclosure, as shown in FIG. 6-1, FIG. 6-2, and FIG.
  • the TEST signal sent by the master device through the port is detected by the master device.
  • Figure 6-1 is about to connect the TEST signal to the high battery.
  • the TEST signal After the TEST signal is connected to the high level VDD, although the RUN signal is high and low, the TEST signal is always set to a high level signal (1); after the TEST signal is connected to the ground GND, although the RUN signal is high and low. Flat, but the TEST signal is always pulled low (0); TEST is only high and low when the TEST signal is left floating.
  • the CPU can perform three subunits or sub-devices according to whether the TEST signal is high (1), or low level (0), or high and low change level (10). Positioning judgment. The action of the judgment can be processed once at the time of system startup, and the processing can be stopped later, thereby saving the workload of the software.
  • the triode, the pull-up mode, the optocoupler, and the like are only one form of the detection and determination module and the signal positioning and delivery module, and are not used.
  • any device that can achieve state detection and isolation and pull-up, in addition to the above-mentioned transistors, such as relays, optocouplers, metal-oxide (Oxide)-semiconductor field effect transistors (MOS transistors) ), switching devices, dialing devices, etc. are all within the scope of application of the disclosed method.
  • the embodiment of the present disclosure further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices, optionally They may be implemented by program code executable by the computing device such that they may be stored in the storage device for execution by the computing device and, in some cases, may be performed in a different order than that illustrated herein. Or the steps described, either as separate circuit modules, or as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media include, but are not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), and Electrically Erasable Programmable Read-only Memory (EEPROM). Flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical disc storage, magnetic cassette, magnetic tape, disk storage or other magnetic storage device, or Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the sub-device receives the detection signal sent by the main device, processes the detection signal to obtain the sub-device positioning information, and feeds back the sub-device positioning information to the main device, thereby preventing the main device input/output port from being effectively utilized.
  • the number of connector pins connected to the master device and the child device is large, which results in a large connector size, which saves the number of pins connected between the master device and the child unit and the child device, thereby reducing the corresponding connector volume; Master device port resource utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种设备定位方法包括:子设备接收主设备发送的检测信号;对上述检测信号进行处理,得到子设备定位信息;将上述子设备定位信息反馈给主设备。

Description

子设备定位方法及系统 技术领域
本公开涉及但不限于定位检测领域,尤其是一种子设备定位方法及系统。
背景技术
随着世界范围内通信网络技术的普及和蓬勃发展,网络覆盖的广泛性和功能要求的全面性日益凸显;随之而来的,纳入系统综合管理的功能子单元、子设备也越来越多。对主设备而言,系统管理的第一步是判断和定位下属的子单元或子设备,然后再对下属的子单元或子设备进行相应的控制管理。判断和定位可通过硬件拨码方式实现:一位拨码可以设置高、低两位地址,通过在子单元或子设备对多位拨码的设置来确定其地址,同时用主设备的输入/输出端口来读取这个地址。一个端口信号可以读取一位拨码(即两个状态)的信号。
硬件拨码方式虽然简单、直接,无需过多硬件电路,但是大量的子单元、子设备的采用需配置多个拨码、占用多个信号端口,同时导致主设备和子单元、子设备间连接器引脚数量的增加。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
随着通讯设备越来越趋近于小型化,需要提高主设备输入/输出端口的有效利用率以及减少主设备与子设备相连的连接器引脚数量、缩小连接器体积。
本公开提供了一种子设备定位方法及系统,能够避免出现如下情况:主设备输入/输出端口不能有效利用,主设备与子设备相连的连接器引脚数量多,从而导致连接器体积大。
本公开提供了一种子设备定位方法,包括:
子设备接收主设备发送的检测信号;
对上述检测信号进行处理,得到子设备定位信息;
将上述子设备定位信息反馈给主设备。
在一种示例性实施方式中,对上述检测信号进行处理,得到子设备定位信息,包括:
将上述检测信号配置连接高电平,对应的上述子设备定位信息为高电平;或者
将上述检测信号配置连接低电平,对应的上述子设备定位信息为低电平;或者
将上述检测信号配置悬空,对应的上述子设备定位信息为高低电平。
本公开还提供了一种子设备定位方法,包括:
主设备将检测信号发送给子设备,上述检测信号用于指示上述子设备根据上述检测信号处理得到子设备定位信息;
接收上述子设备反馈的上述子设备定位信息。
在一种示例性实施方式中,在上述主设备将检测信号发送给子设备之前,上述方法还包括:
主设备通过上述主设备中的检测判断模块将具有高低电平变化的信号转换为上述检测信号。
在一种示例性实施方式中,上述具有高低电平变化的信号包括主设备运行指示信号。
在一种示例性实施方式中,上述检测判断模块包括:主设备信号隔离电路、检测信号驱动电路和检测信号输出隔离电路。
在一种示例性实施方式中,上述主设备信号隔离电路包括:
第一电阻,设置为:与上述具有高低电平变化的信号及第一三极管的基极相连;
上述第一三极管设置为:上述第一三极管的基级通过第二电阻与第一电容与参考地相连,上述第一三极管的发射级与上述参考地相连,上述第一三极管的集电极与第二电阻相连,通过上述第二电阻输出隔离处理后的检测信号。
在一种示例性实施方式中,上述检测信号驱动电路包括:
第一二极管,设置为:上述第一二极管的正端与上述主设备信号隔离电路输出的检测信号相连,同时通过第四电阻连接至电源;
上述第一二极管的负端与第二三极管的基极相连,同时通过第五电阻连接参考地。
上述第二三极管设置为:上述第二三极管的发射极连接上述参考地,上述第二三极管的集电极通过第六电阻连接至电源,同时上述第二三极管的集电极通过第七电阻和第一发光二极管连接至上述电源;
在一种示例性实施方式中,上述检测信号输出隔离电路包括:
光耦,设置为:上述光耦的原边正输入端连接上述检测信号驱动电路驱动后的检测信号,上述光耦的原边输出端连接参考地;
上述光耦的副边正输出端将检测信号通过第八电阻连接至对外电源,同时通过第二二极管的负端连接至上述光耦的副边负输出端;
上述光耦的副边负输出端连接对外参考地。
本公开还提供了一种子设备定位系统,包括子设备和主设备,其中,
上述主设备,设置为:将检测信号发送给上述子设备;
上述子设备,设置为:接收主设备发送的检测信号;对上述检测信号进行处理,得到子设备定位信息;将上述子设备定位信息反馈给上述主设备。
在一种示例性实施方式中,上述子设备还设置为:
将上述检测信号配置连接高电平,对应的上述子设备定位信息为高电平;或者
将上述检测信号配置连接低电平,对应的上述子设备定位信息为低电平;或者
将上述检测信号配置悬空,对应的上述子设备定位信息为高低电平。
在一种示例性实施方式中,上述主设备还设置为:通过上述主设备中的检测判断模块将具有高低电平变化的信号转换为上述检测信号。
在一种示例性实施方式中,上述检测判断模块包括:主设备信号隔离电路、检测信号驱动电路和检测信号输出隔离电路。
在一种示例性实施方式中,上述主设备信号隔离电路包括:
第一电阻,设置为:与上述具有高低电平变化的信号及第一三极管的基极相连;
上述第一三极管设置为:上述第一三极管的基级通过第二电阻与第一电容与参考地相连,上述第一三极管的发射级与上述参考地相连,上述第一三极管的集电极与第二电阻相连,通过上述第二电阻输出隔离处理后的检测信号。
在一种示例性实施方式中,上述检测信号驱动电路包括:
第一二极管,设置为:上述第一二极管的正端与上述主设备信号隔离电路输出的检测信号相连,同时通过第四电阻连接至电源;
上述第一二极管的负端与第二三极管的基极相连,同时通过第五电阻连接参考地;
上述第二三极管设置为:上述第二三极管的发射极连接上述参考地,上述第二三极管的集电极通过第六电阻连接至电源,同时上述第二三极管的集电极通过第七电阻和第一发光二极管连接至上述电源。
在一种示例性实施方式中,上述检测信号输出隔离电路包括:
光耦,设置为:上述光耦的原边正输入端连接上述检测信号驱动电路驱动后的检测信号,上述光耦的原边输出端连接参考地;
上述光耦的副边正输出端将检测信号通过第八电阻连接至对外电源,同时通过第二二极管的负端连接至上述光耦的副边负输出端;
上述光耦的副边负输出端连接对外参考地。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述子设备定位方法。
通过本公开,子设备接收主设备发送的检测信号;对上述检测信号进行处理,得到子设备定位信息;将上述子设备定位信息反馈给主设备,避免了主设备输入/输出端口不能有效利用,主设备与子设备相连的连接器引脚数量多,从而导致连接器体积大的情况,节约主设备与子单元、子设备间连接的引脚数量,从而缩小对应的连接器体积;还能够提高主设备端口资源利用率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是根据本公开第一实施例的子设备定位方法的流程图;
图2是根据本公开第二实施例的子设备定位方法的流程图;
图3是根据本公开一可选实施例的子设备定位方法中检测判断模块的电路图;
图4是根据本公开第三实施例的子设备定位系统的结构框图;
图5是根据本公开第四实施例的子设备定位系统的结构框图;
图6-1是根据本公开一可选实施例的子设备定位系统中子设备的结构框图;
图6-2是根据本公开另一可选实施例的子设备定位系统中子设备的结构框图;
图6-3是根据本公开又一可选实施例的子设备定位系统中子设备的结构框图。
本公开的较佳实施方式
下面结合附图对本公开的实施方式进行描述。
值得说明的是,本文中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
第一实施例:
在本实施例中提供了一种子设备定位方法,图1是根据本公开第一实施例的子设备定位方法的流程图,如图1所示,该流程可包括如下步骤:
步骤S102,子设备接收主设备发送的检测信号;
与步骤S102对应,主设备可将检测信号发送给子设备,上述检测信号用于指示上述子设备根据上述检测信号处理得到子设备定位信息;接收上述子设备反馈的上述子设备定位信息。在上述主设备将检测信号发送给子设备之前,上述方法还可包括:主设备通过上述主设备中的检测判断模块将具有高低电平变化的信号转换为上述检测信号。上述具有高低电平变化的信号可包括主设备运行指示信号。上述检测判断模块可包括:主设备信号隔离电路、 检测信号驱动电路和检测信号输出隔离电路。
上述主设备信号隔离电路可包括:第一电阻,设置为:与上述具有高低电平变化的信号及第一三极管的基极相连;上述第一三极管设置为:上述第一三极管的基级通过第二电阻与第一电容与参考地相连,上述第一三极管的发射级与上述参考地相连,上述第一三极管的集电极与第二电阻相连,通过上述第二电阻输出隔离处理后的检测信号。上述检测信号驱动电路可包括:第一二极管,设置为:上述第一二极管的正端与上述主设备信号隔离电路输出的检测信号相连,同时通过第四电阻连接至电源;上述第一二极管的负端与第二三极管的基极相连,同时通过第五电阻连接参考地;上述第二三极管设置为:上述第二三极管的发射极连接上述参考地,上述第二三极管的集电极通过第六电阻连接至电源,同时上述第二三极管的集电极通过第七电阻和第一发光二极管连接至上述电源。上述检测信号输出隔离电路可包括:光耦,设置为:上述光耦的原边正输入端连接上述检测信号驱动电路驱动后的检测信号,上述光耦的原边输出端连接参考地;上述光耦的副边正输出端将检测信号通过第八电阻连接至对外电源,同时通过第二二极管的负端连接至上述光耦的副边负输出端;上述光耦的副边负输出端连接对外参考地。
步骤S104,对上述检测信号进行处理,得到子设备定位信息。
步骤S104可包括:将上述检测信号配置连接高电平,对应的上述子设备定位信息为高电平;或者将上述检测信号配置连接低电平,对应的上述子设备定位信息为低电平;或者将上述检测信号配置悬空,对应的上述子设备定位信息为高低电平。
步骤S106,将上述子设备定位信息反馈给主设备。
子设备将上述子设备定位信息反馈给主设备后,主设备可对子设备进行检测定位,对子设备进行相应的控制和操作;这样主设备可以实现利用一位端口信号检测出三种状态的功能,从而节约子设备与主设备的端口连线数并提高主设备中央处理器(Central Processing Unit,CPU)端口的利用率。
本公开实施例所使用的方法,子设备接收主设备发送的检测信号;对上述检测信号进行处理,得到子设备定位信息;将上述子设备定位信息反馈给主设备。本公开针对通讯系统综合管理的功能单元、子设备增多所导致的占 用主设备端口资源增多,主设备与子单元、子设备相连的连接器引脚数量增加、体积增大的情况,与通讯设备小型化、主设备端口有效利用率提高之间的矛盾;提供一种低成本的子单元、子设备定位检测的方法和系统。其在原来一位端口信号仅能够检测高、低两种状态的基础上,改进为利用一位端口信号检测出三种状态;不仅能够节约主设备与子单元、子设备间连接的引脚数量,从而缩小对应的连接器体积;还能够提高主设备端口资源利用率。同时,该方法实现方式简洁高效,涉及器件少;软件判断机制简单有效,大大降低了定位检测功能实现的复杂程度和成本,提高了可靠性;且使用方法简单,应用灵活性高。
第二实施例:
基于上述第一实施例的技术方案,以下结合第二实施例对上述技术方案进行详细说明。
在本实施例中提供了一种子设备定位方法,图2是根据本公开第二实施例的子设备定位方法的流程图,如图2所示,该流程可包括如下步骤:
首先,系统正常工作上电后,主设备中具有高低电平的运行指示信号RUN(一般为系统的运行指示灯信号)可接入检测判断模块。在检测判断模块中,经过处理,可得到同样具有高低电平的定位检测信号TEST(亦可简称为信号TEST)。同时,定位检测信号TEST与原RUN信号可以是隔离的,从而不会影响RUN信号的正常工作。
其次,运行指示信号RUN在检测判断模块中进行处理变化后成为定位检测信号TEST,并将TEST信号通过端口连线送入子单元或子设备中的信号定位上送模块中;
TEST信号可通过接口端子(占用一个引脚)接入子单元或子设备的信号定位上送模块中。在不同的子单元或子设备中,TEST信号在信号定位上送模块中处理方式可不同;可以上拉至高电平,可以下拉到参考地电平,还可以悬空;可以有三种处理方式。
第三,子设备中信号定位上送模块根据检测判断模块送入的定位检测信号TEST,处理为自身的定位检测信号,并将子设备自身的定位检测信号(即子设备自身的TEST信号)通过同一根端口连线送回主设备中的CPU;
被处理为上拉至高电平的TEST信号,尽管原RUN信号为高低电平,但其可被始终上拉为高电平信号(参见图2中子设备B);同样的原理,被处理为下拉至参考地的TEST信号,也可始终呈现为低电平状态(参见图2中子设备A);只有处理为悬空的TEST信号,仍然可保持高低电平信号的状态(参见图2中子设备C)。
第四,主设备中的CPU根据子设备送回的TEST信号进行定位判断后,对子单元或子设备进行后续的控制和操作;
这样,通过一个端口(占用1个引脚),便可以检测出三种状态信息,从而获取三个子单元或子设备的定位信息;以此类推,通过两个端口(占用2个引脚)可检测六种状态信息,而一般应用只能检测四种状态信息;通过三个端口(占用3个引脚)可检测九种状态信息,而一般应用只能检测六种状态信息,等等。子单元、子设备越多,越能凸显出本公开的实用性;从而节约与主设备之间连接的引脚数量,缩小对应的连接器体积,大大提高了主设备端口资源利用率。同时,软件只需进行回读工作,对高电平(1)、低电平(0)和高低电平(10)进行判断,无需任何协议或解码编程工作,大大简化了软件的工作量。
本领域中的另外一种子设备定位方式可以是通过通讯方式实现:如通过RS485、控制器局域网络(Controller Area Network,CAN)、以太网等形式,来获取功能单元或子设备中存储的地址信息。这种方式的优势在于可获取多个单元或设备的地址信息;但前提是实现以下几点:1、在子单元或子设备中存在存储单元,并已提前烧写好地址信息;2、在子单元或子设备中存在通讯单元和处理单元电路,可实现对地址信息的读取和处理、上传。可见,该方式对子单元或子设备的硬件条件要求很高,而存储单元、通讯单元和处理单元电路往往成本很高且电路复杂;这使得许多本身不带有这些电路的子单元或子设备,在使用该方法时需增加这些电路单元,大大提高了硬件电路的复杂性和成本。同时,由于该方式需提前烧写好地址信息,一些紧急的现场需求、维护、整改环境往往不能够提供软件烧写条件,导致需要将这些子单元、子设备运输到可以烧写的环境中先进行处理;不仅延误时机,同时带来人力成本等的浪费,因此该方式在应用的灵活性上也存在很大制约。
通过本公开实施例提供的方案,在原来一位端口信号仅能够检测高、低两种状态的基础上,改进为利用一位端口信号检测出三种状态;不仅能够节约主设备与子单元、子设备之间连接的引脚数量,从而缩小对应的连接器体积;还能够提高主设备端口资源利用率。同时,该方案涉及器件少,软件判断机制简单有效,大大降低了定位检测功能实现的复杂程度和硬件、人力成本,提高了系统可靠性;从而为促进系统小型化和产品成本的降低,提高产品的市场竞争力做出贡献。
一可选实施例:
基于上述第一、第二实施例的技术方案,以下结合一可选实施例对上述技术方案进行详细说明。
在本实施例中提供了一种子设备定位方法中检测判断模块的电路图,如图3所示,检测判断模块可通过以三极管为核心器件的电路来实现;信号定位上送模块可以通过上拉至电源VDD、下拉至参考地GNDD以及悬空的方式实现。
检测判断模块还可以划分为但不限于RUN信号隔离电路(即主设备信号隔离电路)、TEST信号驱动电路(即检测信号驱动电路)以及TEST信号输出隔离电路(即检测信号输出隔离电路)三个子模块,如图3所示。
本实施例中的主设备信号隔离电路可为RUN信号隔离电路,包括:第一电阻R1,其一端与主设备运行信号RUN信号相连,另一端与第一三极管VT1的基极相连。第一VT1的基极同时还通过第二电阻R2和第一电容C1接入参考地GND。第一VT1的发射极连接到参考地GND。第一VT1的集电极可连接到第三电阻R3的一端;R3的另一端可输出隔离处理后的RUN-T信号。
三极管VT1可设置为:隔离RUN信号,防止后续对TEST信号进行处理时影响了RUN信号的正常工作;R1和R3分别作为基极、集电极的限流电阻,可设置为:调节和控制VT1基极、集电极的电流;R2是VT1发射极的反馈电阻;C1可设置为:对RUN信号进行滤波。
系统上电后,表示运行状态的RUN信号(通常为系统的运行指示灯信号)正常可为具有高低电平的信号;当其为高电平(1)时,三极管VT1可 导通,RUN-T信号被下拉为低电平;当RUN信号为低电平(0)时,三极管VT1可截止,RUN-T信号为高阻状态。
在使用本电路时可以注意的是,从可靠性角度出发,每个器件留够足够的余量;三极管VT1的Uceo需大于供电电压1.5倍以上,限流电阻R1、R3与VT1的基极、集电极电流也需相互配合。
本实施例中的检测信号驱动电路可为TEST信号驱动电路,包括:第一二极管VD1,第一二极管VD1的正端与RUN信号隔离电路输出的RUN-T信号相连,同时还通过第四电阻R4上拉至电源VCC。第一VD1的负端可与第二三极管VT2的基极相连,同时通过第五电阻R5接入参考地GND。第二VT2的发射极可接入GND。第二VT2的集电极可输出TEST-T信号,同时分别通过第六电阻R6和第七电阻R7、第一发光二极管HL1上拉至VCC。TEST-T信号可送入后级TEST信号输出隔离电路。
VD1可设置为:抬升VT2基极的导通电压,防止由于RUN-T信号受到干扰或RUN-T信号的低电平不够低时引起VT2误动作。VT2大致可设置为:进行信号驱动,保证TEST-T信号能输出有效的高电平信号(VCC)和低电平信号(GND)。HL1在这里可设置为:指示TEST-T信号的状态,方便调试时进行观察。
当前一级RUN信号隔离电路送来的RUN-T信号为低电平时,VT2可不导通,TEST-T信号被上拉电阻R6拉至高电平VCC(1);当RUN-T信号为高阻状态时,VT2的基极可经R4、R5分压后得到一个较高的电压,导通VT2,TEST-T信号被下拉至低电平(0)。
总之,TEST-T信号可输出为一个隔离于RUN信号的高低电平信号。
可以注意的是,在使用本电路时预留够每个器件的余量;三极管VT2的Uceo需大于供电电压1.5倍以上,限流电阻R6等与VT2的集电极电流也需相互配合;VD1的导通压降不能取值太大,以导致RUN-T为高电平时也无法导通VT2的误动作发生。
TEST信号输出隔离电路可包括:
光耦D1,设置为:光耦D1的原边正输入端(1脚)接入TEST信号驱 动电路输出的TEST-T信号,光耦D1的原边输出端(2脚)接入参考地GND。光耦D1的副边正输出端(4脚)输出TEST信号,同时通过第八电阻R8上拉至对外电源VDD,并连接到第二二极管VD2的负端。光耦D1的副边负输出端(3脚)可接入对外参考地GNDD,同时可连接到第二二极管VD2的正端。
当子设备或子单元与主设备不是同一个电源、参考地时,光耦D1可以起到隔离作用,防止由于参考地不同导致的电路功能问题。如果子设备或子单板与主设备参考地、电源均相同,这里VDD可以接VCC,GNDD可以接GND。VD2可设置为:对输出到子设备或子单元上的TEST信号进行端口防护。子单板可以属于能源领域,子单板可以有多个;子设备也可以属于能源领域,子设备也可以有多个。
当TEST-T信号为高电平状态时,光耦D1的原边可导通,副边TEST信号被拉低至低电平GNDD(0);当TEST-T信号为低电平状态时,光耦D1的原边可截止,副边TEST信号被R8上拉至高电平VDD(1)。总之,TEST信号也可以是一个具有高低电平的信号。该信号除送回至主设备CPU外,还可通过对外端口下送至子单元、子设备的信号定位上送模块。
可以注意的是,在使用本电路时预留够每个器件的余量;光耦D1副边的U CE要能够满足对外电源VDD并同时留有余量;VD2的参数也需和VDD相配合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据实施例的方法可借助软件加所需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,本公开的技术方案本质上或者说对本领域做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开每个实施例的方法。
第三、第四实施例还提供了一种子设备定位系统,下述装置设置为实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件或硬件的组合。以下实施例所描述的 装置可选地以软件来实现,此外,硬件,或者软件和硬件的组合的实现也是可能并被构想的。
第三实施例:
在本示例中还提供了一种子设备定位系统,图4是根据本公开第三实施例的子设备定位系统的结构框图,如图4所示,该装置可包括:子设备42和主设备44,其中,
上述主设备44,设置为:将检测信号发送给上述子设备;
上述子设备42,设置为:与主设备44相连,接收主设备发送的检测信号;对上述检测信号进行处理,得到子设备定位信息;将上述子设备定位信息反馈给上述主设备。
可选地,上述子设备还设置为:将上述检测信号配置连接高电平,对应的上述子设备定位信息为高电平;或者将上述检测信号配置连接低电平,对应的上述子设备定位信息为低电平;或者将上述检测信号配置悬空,对应的上述子设备定位信息为高低电平。
可选地,上述主设备还设置为:通过上述主设备中的检测判断模块将具有高低电平变化的信号转换为上述检测信号。
可选地,上述检测判断模块包括:主设备信号隔离电路、检测信号驱动电路和检测信号输出隔离电路。
可选地,上述主设备信号隔离电路包括:
第一电阻,设置为:与上述具有高低电平变化的信号及第一三极管的基极相连;
上述第一三极管设置为:上述第一三极管的基级通过第二电阻与第一电容与参考地相连,上述第一三极管的发射级与上述参考地相连,上述第一三极管的集电极与第二电阻相连,通过上述第二电阻输出隔离处理后的检测信号。
可选地,上述检测信号驱动电路包括:
第一二极管,设置为:上述第一二极管的正端与上述主设备信号隔离电路输出的检测信号相连,同时通过第四电阻连接至电源;
上述第一二极管的负端与第二三极管的基极相连,同时通过第五电阻连接参考地;
上述第二三极管设置为:上述第二三极管的发射极连接上述参考地,上述第二三极管的集电极通过第六电阻连接至电源,同时上述第二三极管的集电极通过第七电阻和第一发光二极管连接至上述电源。
可选地,上述检测信号输出隔离电路包括:
光耦,设置为:上述光耦的原边正输入端连接上述检测信号驱动电路驱动后的检测信号,上述光耦的原边输出端连接参考地;
上述光耦的副边正输出端将检测信号通过第八电阻连接至对外电源,同时通过第二二极管的负端连接至上述光耦的副边负输出端;
上述光耦的副边负输出端连接对外参考地。
通过本装置,根据子设备42和主设备44的综合作用,实现子设备接收主设备发送的检测信号;对上述检测信号进行处理,得到子设备定位信息;将上述子设备定位信息反馈给主设备。其在原来一位端口信号仅能够检测高、低两种状态的基础上,改进为利用一位端口信号检测出三种状态;不仅能够节约主设备与子单元、子设备间连接的引脚数量,从而缩小对应的连接器体积;还能够提高主设备端口资源利用率。同时,该方法实现方式简洁高效,涉及器件少;软件判断机制简单有效,大大降低了定位检测功能实现的复杂程度和成本,提高了可靠性;且使用方法简单,应用灵活性高。
第四实施例:
在本实施例中还提供了一种子设备定位系统,图5是根据本公开第四实施例的子设备定位系统的结构框图,如图5所示,该装置可包括:
主设备CPU 52,对子单元、子设备进行检测定位后,对其进行相应的控制和操作;
检测判断模块54,对子单元或子设备的信号定位上送模块发出检测信号TEST,同时回送该信号给上位的主设备CPU 52,由CPU进行定位信息判断;
信号定位上送模块56,响应检测判断模块54所发出的信号,并将定位信息上送。
其中、主设备CPU52、检测判断模块54均可位于主设备中,信号定位上送模块56可位于子单元或子设备中。
可选地,图6-1、图6-2、6-3分别是根据本公开可选实施例的子设备定位系统中子设备的结构框图,如图6-1、图6-2、6-3所示,由主设备检测判断模块通过端口送来的TEST信号,在子单元或子设备的信号定位上送模块中可以有三中处理模式:如图6-1即将TEST信号接入高电平VDD,或如图6-2将TEST信号接入参考地GNDD,或如图6-3将TEST信号直接悬空。将TEST信号接入至高电平VDD后,尽管RUN信号为高低电平,但TEST信号被始终置为高电平信号(1);将TEST信号接入参考地GND后,尽管RUN信号为高低电平,但TEST信号被始终拉至低电平信号(0);只有在将TEST信号悬空的情况下,TEST才为高低变化的信号。
将TEST信号上送至主设备的CPU后,CPU可根据该TEST信号为高电平(1)、或低电平(0)、或高低变化电平(10)来进行三个子单元或子设备的定位判断。判断的动作可在系统启动时处理一次,后期可以不再继续处理,从而节约了软件的工作量。
以上所述仅为本公开的可选实施例而已,可以说明的是,在这里的三极管、上下拉方式、光耦等仅为实现检测判断模块、信号定位上送模块的一种形式,并不用于限制本公开;任何可以实现状态检测和隔离以及上下拉的器件,除上述三极管外,比如继电器、光耦、金属(Metal)—氧化物(Oxide)—半导体(Semiconductor)场效应晶体管(MOS管)、开关类器件、拨码类器件等,都在本公开方法所包含的应用范围内。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述子设备定位方法。
本领域的技术人员可以明白,上述的本公开的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成不同集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(RAM,Random Access Memory)、只读存储器(ROM,Read-Only Memory)、电可擦除只读存储器(EEPROM,Electrically Erasable Programmable Read-only Memory)、闪存或其他存储器技术、光盘只读存储器(CD-ROM,Compact Disc Read-Only Memory)、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本领域的普通技术人员可以理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求范围当中。
工业实用性
通过本公开,子设备接收主设备发送的检测信号;对上述检测信号进行处理,得到子设备定位信息;将上述子设备定位信息反馈给主设备,避免了主设备输入/输出端口不能有效利用,主设备与子设备相连的连接器引脚数量多,从而导致连接器体积大的情况,节约主设备与子单元、子设备间连接的引脚数量,从而缩小对应的连接器体积;还能够提高主设备端口资源利用率。

Claims (16)

  1. 一种子设备定位方法,包括:
    子设备接收主设备发送的检测信号;
    对所述检测信号进行处理,得到子设备定位信息;
    将所述子设备定位信息反馈给主设备。
  2. 根据权利要求1所述的子设备定位方法,其中,所述对所述检测信号进行处理,得到子设备定位信息,包括:
    将所述检测信号配置连接高电平,对应的所述子设备定位信息为高电平;或者
    将所述检测信号配置连接低电平,对应的所述子设备定位信息为低电平;或者
    将所述检测信号配置悬空,对应的所述子设备定位信息为高低电平。
  3. 一种子设备定位方法,包括:
    主设备将检测信号发送给子设备,所述检测信号用于指示所述子设备根据所述检测信号处理得到子设备定位信息;
    接收所述子设备反馈的所述子设备定位信息。
  4. 根据权利要求3所述的子设备定位方法,在所述主设备将检测信号发送给子设备之前,所述方法还包括:
    主设备通过所述主设备中的检测判断模块将具有高低电平变化的信号转换为所述检测信号。
  5. 根据权利要求4所述的子设备定位方法,其中,所述具有高低电平变化的信号包括主设备运行指示信号。
  6. 根据权利要求4或5所述的子设备定位方法,其中,所述检测判断模块包括:主设备信号隔离电路、检测信号驱动电路和检测信号输出隔离电路。
  7. 根据权利要求6所述的子设备定位方法,其中,所述主设备信号隔离电路包括:
    第一电阻,设置为:与所述具有高低电平变化的信号及第一三极管的基 极相连;
    第一三极管设置为:所述第一三极管的基级通过第二电阻与第一电容与参考地相连,所述第一三极管的发射级与所述参考地相连,所述第一三极管的集电极与第二电阻相连,通过所述第二电阻输出隔离处理后的检测信号。
  8. 根据权利要求6所述的子设备定位方法,其中,所述检测信号驱动电路包括:
    第一二极管,设置为:所述第一二极管的正端与所述主设备信号隔离电路输出的检测信号相连,同时通过第四电阻连接至电源;
    所述第一二极管的负端与第二三极管的基极相连,同时通过第五电阻连接参考地;
    所述第二三极管设置为:所述第二三极管的发射极连接所述参考地,所述第二三极管的集电极通过第六电阻连接至电源,同时所述第二三极管的集电极通过第七电阻和第一发光二极管连接至所述电源。
  9. 根据权利要求6所述的子设备定位方法,其中,所述检测信号输出隔离电路包括:
    光耦,设置为:所述光耦的原边正输入端连接所述检测信号驱动电路驱动后的检测信号,所述光耦的原边输出端连接参考地;
    所述光耦的副边正输出端将检测信号通过第八电阻连接至对外电源,同时通过第二二极管的负端连接至所述光耦的副边负输出端;
    所述光耦的副边负输出端连接对外参考地。
  10. 一种子设备定位系统,包括子设备和主设备,其中,
    所述主设备,设置为:将检测信号发送给所述子设备;
    所述子设备,设置为:接收主设备发送的检测信号;对所述检测信号进行处理,得到子设备定位信息;将所述子设备定位信息反馈给所述主设备。
  11. 根据权利要求10所述的子设备定位系统,所述子设备还设置为:
    将所述检测信号配置连接高电平,对应的所述子设备定位信息为高电平;或者
    将所述检测信号配置连接低电平,对应的所述子设备定位信息为低电平;或者
    将所述检测信号配置悬空,对应的所述子设备定位信息为高低电平。
  12. 根据权利要求10所述的子设备定位系统,所述主设备还设置为:通过所述主设备中的检测判断模块将具有高低电平变化的信号转换为所述检测信号。
  13. 根据权利要求12所述的子设备定位系统,其中,所述检测判断模块包括:主设备信号隔离电路、检测信号驱动电路和检测信号输出隔离电路。
  14. 根据权利要求13所述的子设备定位系统,其中,所述主设备信号隔离电路包括:
    第一电阻,设置为:与所述具有高低电平变化的信号及第一三极管的基极相连;
    所述第一三极管设置为:所述第一三极管的基级通过第二电阻与第一电容与参考地相连,所述第一三极管的发射级与所述参考地相连,所述第一三极管的集电极与第二电阻相连,通过所述第二电阻输出隔离处理后的检测信号。
  15. 根据权利要求13所述的子设备定位系统,其中,所述检测信号驱动电路包括:
    第一二极管,设置为:所述第一二极管的正端与所述主设备信号隔离电路输出的检测信号相连,同时通过第四电阻连接至电源;
    所述第一二极管的负端与第二三极管的基极相连,同时通过第五电阻连接参考地;
    所述第二三极管设置为:所述第二三极管的发射极连接所述参考地,所述第二三极管的集电极通过第六电阻连接至电源,同时所述第二三极管的集电极通过第七电阻和第一发光二极管连接至所述电源。
  16. 根据权利要求13所述的子设备定位系统,其中,所述检测信号输出隔离电路包括:
    光耦,设置为:所述光耦的原边正输入端连接所述检测信号驱动电路驱 动后的检测信号,所述光耦的原边输出端连接参考地;
    所述光耦的副边正输出端将检测信号通过第八电阻连接至对外电源,同时通过第二二极管的负端连接至所述光耦的副边负输出端;
    所述光耦的副边负输出端连接对外参考地。
PCT/CN2018/083790 2017-04-20 2018-04-19 子设备定位方法及系统 WO2018192553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710265049.3A CN108733587A (zh) 2017-04-20 2017-04-20 子设备定位方法及系统
CN201710265049.3 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018192553A1 true WO2018192553A1 (zh) 2018-10-25

Family

ID=63856335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083790 WO2018192553A1 (zh) 2017-04-20 2018-04-19 子设备定位方法及系统

Country Status (2)

Country Link
CN (1) CN108733587A (zh)
WO (1) WO2018192553A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022040996A1 (zh) * 2020-08-26 2022-03-03 深圳欣锐科技股份有限公司 板内通信电路及板内通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043533B2 (en) * 2001-12-06 2006-05-09 Sun Microsystems, Inc. Method and apparatus for arbitrating master-slave transactions
CN101630298A (zh) * 2009-07-28 2010-01-20 中兴通讯股份有限公司 串行总线从设备地址设置系统
CN104881382A (zh) * 2015-06-15 2015-09-02 刘晓辉 一种主从设备连接装置及其地址识别方法
CN205068372U (zh) * 2015-06-15 2016-03-02 刘晓辉 一种主从设备连接装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011864B2 (ja) * 1976-04-19 1985-03-28 ソニー株式会社 信号伝達装置
CN102708077B (zh) * 2012-05-25 2015-04-29 华为终端有限公司 状态识别方法及设备
CN103391090B (zh) * 2013-07-15 2016-05-11 上海华兴数字科技有限公司 一种实现输入信号三种状态识别的电路
CN105224429A (zh) * 2015-08-03 2016-01-06 深圳市美贝壳科技有限公司 一种检测usb设备挂载信息方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043533B2 (en) * 2001-12-06 2006-05-09 Sun Microsystems, Inc. Method and apparatus for arbitrating master-slave transactions
CN101630298A (zh) * 2009-07-28 2010-01-20 中兴通讯股份有限公司 串行总线从设备地址设置系统
CN104881382A (zh) * 2015-06-15 2015-09-02 刘晓辉 一种主从设备连接装置及其地址识别方法
CN205068372U (zh) * 2015-06-15 2016-03-02 刘晓辉 一种主从设备连接装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022040996A1 (zh) * 2020-08-26 2022-03-03 深圳欣锐科技股份有限公司 板内通信电路及板内通信装置

Also Published As

Publication number Publication date
CN108733587A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
US8773236B2 (en) Systems and methods for a communication protocol between a local controller and a master controller
WO2016187790A1 (zh) 一种otg外设、供电方法、终端及系统
US9218259B2 (en) Computing device and method for testing SOL function of a motherboard of the computing device
US8806252B2 (en) Server cluster and control mechanism thereof
US11256225B2 (en) Data transmission apparatus of circuit breaker controller
US20130283028A1 (en) Adapter identification system and method for computer
CN102915209B (zh) 一种存储控制芯片、存储设备及其系统数据写入方法
WO2018192553A1 (zh) 子设备定位方法及系统
WO2016110000A1 (zh) 单板掉电重启的调整方法、装置及系统
US20210365101A1 (en) Control system for controlling intelligent system to reduce power consumption based on bluetooth device
US20140292384A1 (en) Methods of multi-protocol system and integrated circuit for multi-protocol communication on single wire
CN112363966B (zh) 串口转换电路、基站、电路转换方法及计算机存储介质
CN106301804A (zh) 一种实现网络唤醒的服务器、系统及方法
US20220109401A1 (en) Method for determining a characteristic curve of a photovoltaic (pv) string, dc/dc converter, and photovoltaic system suitable for carrying out the method
CN205827184U (zh) 一种基于fpga外扩设备的通信管理机
WO2022205821A1 (zh) 数字量输出电路、数字量输出设备及数字量输出系统
WO2018214262A1 (zh) 一种编码芯片和电池监控单元
CN112306536B (zh) 一种主板及其芯片以及芯片升级方法
US11476506B2 (en) Daisy-chain battery cells system with differential communication interfaces
CN114328080A (zh) 一种固件状态检测的方法及装置、电子设备
WO2019007112A1 (zh) NAND Flash数据保护电路
CN102193609B (zh) 电源锁定的设定方法及其电子装置
WO2020062306A1 (zh) 一种指令时间的测试方法和系统、及计算机存储介质
CN105659546A (zh) 自主地控制处理器的缓冲器
CN105224059A (zh) 远端存取数据的方法以及本地端装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787698

Country of ref document: EP

Kind code of ref document: A1