WO2018192425A1 - 太阳能组件及其制作方法和地面发电系统 - Google Patents

太阳能组件及其制作方法和地面发电系统 Download PDF

Info

Publication number
WO2018192425A1
WO2018192425A1 PCT/CN2018/083038 CN2018083038W WO2018192425A1 WO 2018192425 A1 WO2018192425 A1 WO 2018192425A1 CN 2018083038 W CN2018083038 W CN 2018083038W WO 2018192425 A1 WO2018192425 A1 WO 2018192425A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar module
plate
solar
back plate
sheet
Prior art date
Application number
PCT/CN2018/083038
Other languages
English (en)
French (fr)
Inventor
胡志刚
李德林
Original Assignee
深圳首创新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳首创新能源股份有限公司 filed Critical 深圳首创新能源股份有限公司
Publication of WO2018192425A1 publication Critical patent/WO2018192425A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of solar cell technologies, and in particular, to a solar module, a method for fabricating the same, and a ground power generation system.
  • solar power generation is the largest utilization area of solar energy, and it mainly adopts a large-scale ground photovoltaic power station and a distributed power station.
  • Large-scale photovoltaic power plants need to occupy a large area of land, so they are generally located in the northwestern region with good light conditions and vast land.
  • the local power generation cannot be consumed and it needs to be transported over long distances.
  • Distributed power plants have grown rapidly in recent years, typically on commercial roofs, industrial roofs, corporate roofs, home roofs or rural roofs. In terms of roof resources, in theory, China has 20 to 30 billion square meters of roof resources, but it can achieve less economic value. 1 kW of photovoltaic system needs to occupy 8 to 10 square meters of area.
  • the biggest problem in installing photovoltaic power generation equipment is how to coordinate the use of public space on the roof with residents in the same building. Also faced with how to assign problems.
  • ground resources of highways, urban roads, sidewalks, squares, greenways, and flyovers far exceed the roof resources. If these ground-floor solar modules form a ground-based solar power generation system, solar power generation can be realized without affecting the original ground function, and the generated electricity can be consumed in the vicinity. Then, the solar module has the advantages of simple installation, convenient construction, low maintenance cost, and no need to consider the problem of the base bearing. Therefore, the solar module has high practicality and economic value.
  • the special use environment and function of the solar module are inevitably different from the conventional conventional solar components such as the double-glass solar module, which requires higher compressive strength, better waterproof performance, and the surface must have sufficient friction. Anti-slip function.
  • tempered glass with a thickness of 2mm ⁇ 3mm on the back side.
  • the compressive strength of tempered glass is more than 2400Pa, but the compressive strength of the current solar double-glass components is far from the resistance required for people's vehicle pressure.
  • the compressive strength ( ⁇ 50MPa) at the same time, in order to improve the light transmittance of the front tempered glass, the smooth tempered glass is selected, the friction is very small, it is easy to slip, and it is not suitable for laying on the road surface.
  • the Chinese invention patent application with the application number 201610200328.7 discloses a novel double-glass solar module and an edge sealing method.
  • the specific edging is located around the assembly, and the filling material overflowing during the lamination process automatically forms the edging, that is, the blister edge.
  • the above sealing method can meet the requirements for conventional solar modules without water immersion, but it is not enough for the ground solar tiles with higher waterproof requirements.
  • the specific performance is that the EVA functioning as a sealing edge is immersed in water for a long time and exposed to the air. In the ultraviolet, temperature, humidity, oxygen, and high and low temperature cycles alternating around day and night, chemical reactions occur, and performance continues to decline.
  • the conventional double-glass solar module prepared by the method of sealing around after lamination cannot satisfy the problem of being used in a water storage environment and failing to satisfy the pedestrian or vehicle rolling, and the like, and provides a solar module.
  • the present invention also provides a method of fabricating a solar module.
  • the present invention also provides a ground power generation system.
  • a solar module includes a back plate, and a surface of the back plate is provided with a plurality of grooves;
  • first encapsulation layer a solar cell sheet, and a second encapsulation layer which are sequentially stacked outward from the recess, wherein the solar cell sheets in each of the grooves are connected in series;
  • the front plate is further disposed on the back plate and covers the groove;
  • the first encapsulation layer bonds the back sheet and the solar cell sheet to each other, and the second encapsulation layer causes the solar cell sheet and the front sheet to adhere to each other;
  • a sealant is disposed around the solar module, and the solar module is sealed by the sealant;
  • a cell junction box disposed on the backplane, the cell junction box being coupled to the solar cell via a wire.
  • the manufacturing method of the above solar module comprises at least the following steps:
  • a first encapsulation layer, a solar cell sheet, and a second encapsulation layer are sequentially stacked from the recess of the backplane;
  • the semi-finished product obtained by the step 2) is placed in a sealing device, vacuum-treated, and heated in a vacuum environment to melt the first encapsulating layer and the second encapsulating layer, and pressure is applied to make the laminations adhere. Formed as a whole to obtain solar modules;
  • a ground power generation system including a solar module, a controller, an inverter, and an energy storage device, wherein the battery junction box of the solar module is electrically connected to the controller through a wire, The controller is electrically connected to the energy storage device through a wire or the controller is electrically connected to the inverter through a wire, and the inverter is electrically connected to the power grid;
  • the solar module includes a back plate, and a surface of the back plate is provided with a plurality of grooves;
  • first encapsulation layer a solar cell sheet, and a second encapsulation layer, which are sequentially stacked outwardly from the recess, wherein the solar cell sheets in the recess are connected in series;
  • the front plate is further disposed on the back plate and covers the groove;
  • the first encapsulation layer bonds the back sheet and the solar cell sheet to each other, and the second encapsulation layer causes the solar cell sheet and the front sheet to adhere to each other;
  • a sealant is disposed around the solar module, and the solar module is sealed by the sealant;
  • a cell junction box disposed on the backplane, the cell junction box being coupled to the solar cell via a wire.
  • the solar module provided by the present invention through the bonding of the first sealing layer and the second sealing layer, makes the components inside the solar module closely adhere to each other, and discharges the air existing inside, thereby avoiding the solar component.
  • the design makes the compressive strength of the solar module reach 50 MPa or more and the solar cell piece is not crushed and crushed, which greatly improves the bearing capacity of the pedestrian or the vehicle, and can be installed on the ground to form a solar power generation facility.
  • the preparation method of the solar component provided by the invention has the advantages of simple process, completely internalizing and filling the solar component, no air and no moisture inside the component, no bacteria growth, and the solar component produced has stable performance and good consistency, and is suitable for mass production. .
  • the ground power generation system comprises the inner components of the solar module closely contacting each other, discharging the air existing inside, avoiding the storage of moisture inside the solar component, and applying the sealant around the solar energy to prevent the interior of the solar component from contacting the water. At the same time, it can not touch the air, which greatly enhances the waterproof and water-blocking performance of the components, thereby prolonging the service life of the solar modules.
  • the design of the back plate groove structure makes the compressive strength of the solar modules reach 50 MPa or more and the solar cells are not crushed. Pressure crushing greatly improves the ability to withstand pedestrians or vehicles. It is suitable for laying on the ground, and the generated electric energy can be used to supply electricity to the city.
  • FIG. 1 is a top plan view of a solar module according to an embodiment of the present invention.
  • FIG. 2 is an exploded view of a solar module according to an embodiment of the present invention.
  • FIG. 3 is a top view of a backplane of a solar module according to an embodiment of the present invention.
  • FIG. 4 is a top plan view of a backplane of a solar module according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a backplane B-B of a solar module according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view of a solar module according to an embodiment of the present invention, taken along line A-A;
  • FIG. 7 is a cross-sectional view of the front panel arched structure of the solar module according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a solar module according to another embodiment of the present invention, taken along line A-A;
  • FIG. 9 is a cross-sectional view of the front panel arched structure of the solar module according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a solar module according to still another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing the front plate arched structure of the solar module according to still another embodiment of the present invention.
  • FIG. 12 is a top plan view of a solar module including a sealing frame according to an embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a solar module including a sealing frame according to an embodiment of the present invention.
  • FIG. 14 is a cross-sectional view along line C-C of the solar module including the sealing frame and the front plate arched structure according to an embodiment of the present invention.
  • an embodiment of the present invention provides a solar module, including a backplane 1, a first encapsulation layer 2, a plurality of solar cell sheets 3 connected in series, a second encapsulation layer 4, a front panel 5, and a sealant 6. And the battery junction box 7.
  • FIG. 3 As shown in FIG. 3, FIG. 4 and FIG. 5, a plurality of grooves 11 are formed on a surface of the back plate 1; the first encapsulation layer 2, the solar cell sheet 3, and the second encapsulation layer 4 are sequentially stacked on the back plate 1 The front plate 5 is stacked on the back plate 1 and the groove 11 is covered;
  • the cell junction box 7 is connected to the solar cell sheet 3 via a wire 9;
  • a sealant 6 is disposed around the solar module, and the solar module is sealed by the sealant 6.
  • the backing plate 1 and the first encapsulating layer 2 are each provided with a through hole for passing through the wire 9 and for communicating the solar cell sheet 3 and the cell junction box 7.
  • the groove 11 of the back plate 1 is an array of grooves 11 , as shown in FIG. 3 or FIG. 4 , the structure of the groove 11 is designed to prevent the pressure generated by pedestrians or vehicles from directly acting on the solar cell sheet 3 . , improve the bearing capacity of solar modules.
  • the back sheet 1 designed by the present invention can also produce the back sheet 1 having different groove arrays 11 according to actual road surface requirements.
  • the backboard 1 is any one of a metal plate, a polymer plate, a wood board, a marble board, a granite board, a tile board, a concrete board, a clay sintered board, and a tempered glass, and the back board has a thickness of 10 mm. ⁇ 50mm.
  • the concrete slab of the present invention includes a concrete slab having no reinforced concrete in the concrete slab, and a concrete slab having a built-in steel bar.
  • the groove array 11 has a convex portion 12 that abuts against the front plate 5 such that when the current plate 5 is subjected to a force, the force received by the solar module does not directly act on the solar cell. 3.
  • the solar cell sheet 3 is protected from being deformed or even damaged by the solar cell sheet 3, and the convex portion 12 can also enable the solar module to withstand greater pressure. When the solar module is laid on the ground, it can withstand pedestrians or heavy vehicles.
  • the first encapsulation layer 2 and the second encapsulation layer 4 are each of a PVB layer, a POE layer, and an EVA layer.
  • the first encapsulating layer 2 and the second encapsulating layer 4 are subjected to a melting treatment so that the respective encapsulating layers are in close contact with other adjacent components. After the melting treatment, the first encapsulation layer 2 and the second encapsulation layer 4 fill the interior of the solar module, excluding the air inside the solar module, and leaving no empty space, so that the interior of the solar module remains dry without water or water. .
  • the first encapsulation layer 2 is used for passing through the through holes of the wires 9, meaning that the first encapsulation layer 2 is melted and attached to the surface of the wires 9, thereby forming a through hole.
  • the solar cell sheet 3 is a crystalline silicon battery sheet, an amorphous silicon battery sheet, a copper indium gallium selenide battery sheet, a copper zinc selenide sulfur battery sheet, a perovskite battery sheet, a cadmium telluride battery sheet, an organic thin film battery sheet, Any of the gallium arsenide cell sheets.
  • the front plate 5 is a tempered glass having a concave-convex point or a pattern on the surface, and the concave-convex dots are at least one of a dot shape, an island shape, a linear shape, a block shape, a spherical shape, and a hemispherical shape;
  • the thickness is 5mm ⁇ 40mm.
  • the surface of the front panel 5 is designed to have a concave-convex dot or a pattern, and the frictional force on the surface of the front panel 5 can be increased to prevent the pedestrian or the vehicle from slipping.
  • the front surface of the front plate 5 opposite to the groove 11 is an arched structure.
  • the surface of the front plate 5 opposite to the groove 11 is curved upward to form a dome shape, and the front plate 5 is designed into an arch structure, so that the load on the front plate 5 is tightly pressed against the entire solar energy.
  • the pores between the various components inside the solar module are completely filled, the air and moisture between the components are completely removed, and the bacteria and the bacteria may occur in the solar module due to the presence of air and moisture inside.
  • the back panel 1 and the front panel 5 are the same size, and the back panel 1 is opened at the edge portion where the back panel 1 and the front panel 5 are adjacent to each other.
  • the front plate 5 In the shape of a boss, the front plate 5 just covers the process boss of the back plate 1, so that a horizontal recess is formed at the position where the back plate 1 and the front plate 5 are in contact with each other, and the sealant 6 is filled on the process boss. It is filled in the horizontal recess, as shown in Figures 8 and 9.
  • the outer edge of the upper end of the back plate 1 forms a platform, and in the case where both the back plate 1 and the front plate 5 are flush, the position where the back plate 1 and the front plate 5 are in contact with each other is formed in the horizontal direction.
  • the trapped notch makes the solar module in a vertical section have a "concave” structure on the outer circumference; then, the sealant 6 is filled in the "concave” type structure, and the filled sealant 6 has a "convex" structure.
  • the convex portion 12 of the recess 11 of the back plate 1 has a convex height higher than the edge of the back plate 1, and when the front plate 5 is attached to the back plate 1, the front portion The plate 5 is in direct contact with the raised portion 12 such that the edge of the back plate 1 forms a gap with the front plate 5, and then the sealant 6 is filled with the notched portion.
  • the backboard 1 is processed into an upright "mountain” type structure.
  • the middle vertical of the "mountain” type structure may be vertical or vertical, but the vertical ratio in the middle is the vertical height of the outermost sides.
  • the front plate 5 When assembled, the front plate 5 is covered directly above the "mountain” type, and the lamination is completed, and a horizontal groove groove is formed at the edge of the front plate 5 and the back plate 1 to cover, that is, the concave solar module is formed vertically.
  • the notch of the straight shaft is sealed with a sealant 6.
  • the solar module further includes a sealing frame 8 as a base, and the sealing frame 8 is stacked on the upper surface of the backing plate 1 to form a square.
  • the sealing frame 8 is stacked on the upper surface of the backing plate 1 to form a square.
  • the front panel 5 is stacked and mounted in a box space surrounded by the back panel 1 and the sealing frame 8.
  • the sealing frame 8 and the backing plate 1, the front plate 5, and other components are adjacent to each other to form a notch gap, and the formed notch gap is filled with the sealant 6.
  • the cell junction box 7 is fixed to the bottom surface, the side surface of the back plate 1 or embedded inside the back plate 1.
  • the solar cell sheet 3 is connected to the cell junction box 7 through the wires 9, and the cell junction box 7 is filled with a sealant 6 to prevent moisture and air from entering the interior of the solar module along the wiring.
  • the encapsulation layer is attached to the surface of each component, and moisture or the like cannot enter the interior of the solar module, and the water blocking effect is superior.
  • the optimized package structure and sealant make the solar module maintain good performance even in the long-term immersion in water and can be used normally in water.
  • the solar module provided by the embodiment of the invention has good water blocking and waterproof functions, and adopts a front plate and a back plate with high compressive strength, the front plate also has excellent friction force, and is suitable for laying on highways and urban roads. , the sidewalks, squares, greenways and other exposed ground.
  • the back plate 1 of the embodiment of the present invention is designed as a groove structure or the back plate 1 is designed as a groove structure, and the front plate 5 is designed as an arch structure, the structure of the solar module is more compact and structured. It is more robust and greatly enhances the load-bearing capacity of solar modules.
  • the embodiment of the present invention further provides a method for fabricating the solar module according to the solar module provided by the above embodiment.
  • the method for fabricating the solar module includes at least the following steps:
  • the first encapsulation layer 2 and the second encapsulation layer 4 are melted and adhered to the inner pores of the solar module, so that there is no void inside the solar module.
  • an embodiment of the present invention further provides a ground power generation system.
  • a ground power generation system includes a solar module, a controller, an inverter, and an energy storage device as described above, and a cell junction box of the solar module is electrically connected to the controller through a wire,
  • the controller is electrically connected to the energy storage device via a wire or the controller is electrically connected to the inverter via a wire, the inverter being electrically connected to the grid.
  • the energy storage device is an energy storage power source.
  • the ground power generation system can effectively utilize the terrain and convert sunlight that is irradiated to the ground into electric energy, which greatly improves the utilization rate of solar energy.
  • the solar cell sheet 3 is connected in series by six pieces of 156*156 mm polycrystalline silicon solar cells. The following describes the manufacturing process:
  • the back plate 1 is made of a 12 mm thick porcelain tile, and is designed as a structure having six groove arrays 11 as shown in FIG. 4, each groove 11 has a square of 160 mm in length, and the groove wall of the groove 11 is opened. a through hole for connecting the six solar cells 3 in series with the wires 9 and on one of the grooves 11 to open a through hole penetrating the back plate 1;
  • the solar cell sheet 3 is placed on the upper surface of each of the EVA films 2, and the solar cell sheets 3 are connected in series by the wires 9, and the wires 9 of the tandem solar cell sheets 3 are taken out to extend the wires 9 to the back sheet.
  • each of the solar cell sheets 3 is coated with a thickness of 0.5 mm, a side length of 160 mm square EVA film 4;
  • the well-made solar modules have a compressive strength of 50 MPa, which can meet pedestrian pressure and vehicle rolling.

Abstract

一种太阳能组件,包括背板(1),背板(1)一表面开设有若干凹槽(11);以及包括自凹槽(11)向外依次叠设的第一封装层(2)、太阳能电池片(3)、第二封装层(4),各个凹槽(11)中的太阳能电池片(3)相互串联;还包括前板(5),前板(5)叠设于背板(1)上,并封盖凹槽(11);第一封装层(2)使得背板(1)和太阳能电池片(3)相互粘结,第二封装层(4)使得太阳能电池片(3)和前板(5)相互粘结;太阳能组件四周设有密封胶,通过密封胶将太阳能组件进行密封;还包括设置在背板上的电池片接线盒(7),电池片接线盒(7)通过导线(9)与太阳能电池片(3)连接。本太阳能组件具有良好的阻水、防水功能,很强的抗压及耐磨性能,适用于铺设在高速公路、城市道路、人行道、广场、绿道等露天空旷的地面。

Description

太阳能组件及其制作方法和地面发电系统 技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种太阳能组件及其制作方法和地面发电系统。
背景技术
太阳能是一种取之不尽,用之不竭的绿色能源。在人类的生存和发展过程中,在太阳能的利用方面,已经取得了辉煌的成就。
目前太阳能发电是太阳能最大的利用领域,其主要采取大型地面光伏电站和分布式电站的方式。大型光伏电站需要占用大片的土地,所以一般选址在光照条件好,土地辽阔的西北地区,但所发电量当地消耗不掉,需并网长距离输送。分布式电站近年来发展迅速,一般是安装在商业屋顶、工业屋顶、企业屋顶、家庭屋顶或农村屋顶。在屋顶资源方面,理论上我国有200~300亿平方米的屋顶资源,但是真正能实现经济价值的较少。1千瓦的光伏系统需要占8至10平方米的面积,对于住公寓楼的居民来说,安装光伏发电设备最大的难题就是如何与同楼的居民协调楼顶公共空间使用问题,一旦出现经济效益又面临如何分配难题。
而高速公路、城市道路、人行道、广场、绿道、天桥等露天空旷的地面资源远远超过屋顶资源。如果这些地面铺上太阳能组件形成地面太阳能发电系统,在不影响原有地面功能的基础上实现太阳能发电,所产生的电量还能就近消耗掉。那么,所述太阳能组件具有安装简单、施工方便、维护成本低,不需要考虑基座承重问题的优点。因此所述太阳能组件具有很高的实用性和经济价值。
所述太阳能组件特殊的使用环境和功能必然与现在的常规太阳能组件如双玻太阳能组件有很大的区别,其需要更高的抗压强度,更好的防水性能,表面要具有满足足够摩擦力的防滑功能。
现在的常规太阳能双玻组件正背面采用厚度为2mm~3mm的钢化玻璃,钢化玻璃抗压强度大于2400Pa,但是目前的太阳能双玻组件的抗压强度远远不能满足人走车压所需的抗压强度(≥50MPa),同时,正面的钢化玻璃为了提高光透过率,选用的是光面钢化玻璃,摩擦力非常小,容易打滑,不适合铺设在路面上。
同时,太阳能电池组件铺设在地面上时,相比架空和倾斜铺设的常规太阳能组件需要有更好的防水性能,因为一旦下雨,路面积水渗入,存留,太阳能组件将会长时间浸泡在水中,如果防水不佳的话,其性能将会迅速下降。
申请号为201610200328.7的中国发明专利申请公开了一种新型的双玻太阳能组件及封边方法。具体包边位于组件的四周,层压过程中溢出的填充材料自动形成所述包边,即溢胶包边。上述密封方法对没有积水浸泡的常规太阳能组件能很好地满足要求,但对于防水要求更高的地面太阳能地砖还不够,具体表现为起封边作用的EVA长时间浸泡在水中和暴露在空气中,在紫外线、温度、湿度氧气和昼夜交替的高低温循环下发生化学反应,性能不断地衰退。
技术问题
针对层压后四周密封的方法制备的常规双玻太阳能组件无法满足浸泡在积水环境中使用以及无法满足行人或车辆碾压等问题,本发明提供一种太阳能组件。
进一步地,本发明还提供了一种太阳能组件的制作方法。
更进一步地,本发明还提供一种地面发电系统。
技术解决方案
为了实现上述发明目的,本发明采用的技术方案如下:
为了达到上述发明目的,本发明采用了如下的技术方案:
一种太阳能组件,包括背板,所述背板一表面开设有若干凹槽;
以及包括自所述凹槽向外依次叠设的第一封装层、太阳能电池片、第二封装层,各个所述凹槽中的所述太阳能电池片相互串联;
还包括前板,所述前板叠设于所述背板上,并封盖所述凹槽;
所述第一封装层使得所述背板和太阳能电池片相互粘结,所述第二封装层使得所述太阳能电池片和前板相互粘结;
所述太阳能组件四周设有密封胶,通过所述密封胶将太阳能组件进行密封;
还包括设置在所述背板上的电池片接线盒,所述电池片接线盒通过导线与所述太阳能电池片连接。
相应地,上述太阳能组件的制作方法,至少包括以下步骤:
1)自背板的凹槽向外,依次叠设第一封装层、太阳能电池片、第二封装层;
2)用导线将所述太阳能电池片与电池片接线盒连接,盖上前板;
3)将步骤2)处理后得到的半成品置于密封设备中,进行抽真空处理,并于真空环境中加热使所述第一封装层、第二封装层熔化,同时施加压力使各叠层粘结成整体,得到太阳能组件;
4)降温处理,待温度降到室温后,在所述太阳能组件四周涂覆密封胶;
5)向所述电池片接线盒灌入密封胶。
进一步地,提供一种地面发电系统,所述地面发电系统包括太阳能组件、控制器、逆变器和储能设备,所述太阳能组件的电池片接线盒通过导线与所述控制器电连接,所述控制器通过导线与所述储能设备电连接或所述控制器通过导线与所述逆变器电连接,所述逆变器与电网电连接;
其中,所述太阳能组件包括背板,所述背板一表面开设有若干凹槽;
以及包括自所述凹槽向外依次叠设的第一封装层、太阳能电池片、第二封装层,所述凹槽内的所述太阳能电池片相互串联;
还包括前板,所述前板叠设于所述背板上,并封盖所述凹槽;
所述第一封装层使得所述背板和太阳能电池片相互粘结,所述第二封装层使得所述太阳能电池片和前板相互粘结;
所述太阳能组件四周设有密封胶,通过所述密封胶将太阳能组件进行密封;
还包括设置在所述背板上的电池片接线盒,所述电池片接线盒通过导线与所述太阳能电池片连接。
有益效果
相对于现有技术,本发明提供的太阳能组件,通过第一密封层和第二密封层的粘结作用,使得太阳能组件内部各部件之间相互紧贴,排出内部存在的空气,避免了太阳能组件内部储存水分,同时在太阳能四周涂覆密封胶,避免太阳能组件内部接触水,同时不能接触到空气,大大增强了组件的防水阻水性能,从而延长太阳能组件的使用寿命;背板凹槽结构的设计使得太阳能组件的抗压强度达到50MPa以上而太阳能电池片不会被碾压破碎,极大的提高了对行人或者车辆的承受能力,能够安装在地面组成太阳能发电设施。
本发明提供的太阳能组件的制备方法,工艺简单,太阳能组件内部完全被粘结和填充,组件内部无空气无水分,不会滋生细菌,制作的太阳能组件性能稳定而且一致性良好,适合大规模生产。
本发明提供的地面发电系统,包含的太阳能组件内部各部件之间相互紧贴,排出内部存在的空气,避免了太阳能组件内部储存水分,同时在太阳能四周涂覆密封胶,避免太阳能组件内部接触水,同时不能接触到空气,大大增强了组件的防水阻水性能,从而延长太阳能组件的使用寿命,背板凹槽结构的设计使得太阳能组件的抗压强度达到50MPa以上而太阳能电池片不会被碾压破碎,极大的提高了对行人或者车辆的承受能力,适合铺设于地面,并且产生的电能可以就近补给城市用电。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例提供的太阳能组件的俯视示意图;
图2为本发明实施例提供的太阳能组件的分解图;
图3为本发明实施例提供的太阳能组件的背板俯视图;
图4为本发明另一实施例提供的太阳能组件的背板俯视图;
图5为本发明实施例提供的太阳能组件的背板B-B剖视图;
图6为本发明一实施例提供的太阳能组件的A-A剖视图;
图7为本发明一实施例提供的太阳能组件的前板成拱形结构的A-A剖视图;
图8为本发明另一实施例提供的太阳能组件的A-A剖视图;
图9为本发明另一实施例提供的太阳能组件的前板成拱形结构的A-A剖视图;
图10为本发明又一实施例提供的太阳能组件的A-A剖视图;
图11为本发明又一实施例提供的太阳能组件的前板成拱形结构的A-A剖视图;
图12为本发明实施例提供的太阳能组件包含密封框的俯视示意图;
图13为本发明实施例提供的太阳能组件包含密封框的C-C剖视图;
图14为本发明实施例提供的太阳能组件包含密封框且前板成拱形结构的C-C剖视图。
图中标号:1-背板、11-凹槽、12-凸起部位;2-第一封装层;3-太阳能电池片;4-第二封装层;5-前板;6-密封胶;7-电池片接线盒;8-密封框;9-导线。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1、2所示,本发明实施例提供一种太阳能组件,包括背板1、第一封装层2、若干串联的太阳能电池片3、第二封装层4、前板5、密封胶6和电池片接线盒7。
其中,如图3、4及图5所示,背板1一表面开设有若干凹槽11;第一封装层2、太阳能电池片3、第二封装层4依次层叠设置在背板1的凹槽11内;前板5叠设于背板1上,并将所述凹槽11进行封盖;
所述电池片接线盒7通过导线9与所述太阳能电池片3连接;
所述太阳能组件四周设有密封胶6,通过密封胶6将太阳能组件进行密封。
背板1、第一封装层2均开设有用于穿过导线9且用于将太阳能电池片3和电池片接线盒7进行连通的通孔。
优选地,背板1的凹槽11为凹槽阵列11,具体可以如图3或图4所示,凹槽11的结构设计,可以避免行人或者车辆产生的压力直接作用于太阳能电池片3上,提高了太阳能组件的承载力。当然,本发明设计的背板1也可以根据实际的路面需求,生产具有不同凹槽阵列11的背板1。
优选地,所述背板1为金属板、高分子板、木板、大理石板、花岗岩板、瓷砖板、混凝土板、黏土烧结板、钢化玻璃中的任一种,所述背板的厚度为10mm~50mm。
值得注意的是,本发明的混凝土板,包括混凝土板不内置钢筋的混凝土板,还包括内置有钢筋的混凝土板。
进一步优选地,所述凹槽阵列11具有凸起部位12,所述凸起部位12抵住所述前板5,使得当前板5受到作用力时,太阳能组件承受的力不直接作用于太阳能电池片3,保护了太阳能电池片3,避免太阳能电池片3受力变形甚至损坏,同时凸起部位12也能使得太阳能组件能够承受更大的压力。如将太阳能组件铺设于地面上时,可以承受行人或者载重车辆等。
优选地,第一封装层2和第二封装层4均为PVB层、POE层、EVA层中的任一种。
为了达到密封的效果,第一封装层2、第二封装层4经过熔融处理,使各个封装层紧贴各自临近的其他部件。熔融处理后,第一封装层2和第二封装层4填充太阳能组件的内部,排除了太阳能组件内部的空气,并且不留空余空间,使得太阳能组件内部保持干燥而不进水,也不储存水。
另外,第一封装层2用于通过导线9的通孔,指的是第一封装层2熔融后贴附于所述导线9表面,从而形成一道通孔。
优选地,太阳能电池片3为晶硅电池片、非晶硅电池片、铜铟镓硒电池片、铜锌硒硫电池片、钙钛矿电池片、碲化镉电池片、有机薄膜电池片、砷化镓电池片中的任一种。
优选地,前板5为表面具有凹凸点或者花纹的钢化玻璃,所述凹凸点呈点状、岛状、线状、块状、球状、半球状中的至少一种;所述前板5的厚度为5mm~40mm。将前板5的表面设计成具有凹凸点或者花纹的结构,能够增大前板5表面的摩擦力,防止行人或者车辆打滑。
进一步优选地,如图7、9、11、14所示,所述前板5与所述凹槽11正相对的表面为拱形结构。换一句话就是,与凹槽11正相对的前板5的表面向上弯拱,形成穹顶形状,将前板5设计成拱形结构,使得前板5所承受的负重会紧紧压在整个太阳能组件的构造上,所有的力均匀传输并分布于太阳能组件各个部位,并进一步传递到地基上,从而减轻了太阳能组件板面的受力;并且所述前板5与所述凹槽阵列11的凸起部位12正相对的部位开设有限位槽,所述限位槽与所述凹槽阵列11的凸起部位12相互卡接,避免了长期使用时受力过大而出现前板5走位(也说错位)甚至与其他部位分离,不仅提高了整个太阳能组件的结构紧凑性,而且还提高了整个太阳能组件的牢固度,使得太阳能组件使用寿命更长。在上述的结构特征下,彻底将太阳能组件内部各个部件之间的孔隙完全填充,除尽部件之间的空气和水分,尽可能降低由于内部存在空气和水分而可能在太阳能组件内滋生细菌或者发生腐蚀的可能性,同时使得整个太阳能组件结构更加紧凑、牢固,能够承受更大的力。
为了更好地实现阻水、防水效果,在一优选实施例中,背板1和前板5的尺寸相同,背板1和前板5正相接的边缘部位上,背板1开设成工艺凸台状,前板5刚好盖住背板1的工艺凸台,使得背板1和前板5相接位置出现一个向水平方向的凹口,密封胶6则填充于工艺凸台上,也就是填充于水平方向的凹口上,具体如图8、9所示。换一句话就是背板1的上端外边缘形成一个平台,而背板1和前板5两者摆放平齐的情况下,在背板1和前板5接触的位置,在水平方向形成内陷的缺口,使得竖直剖太阳能组件时,在外周呈“凹”型结构;那么,密封胶6则填充于“凹”型结构内,填充后的密封胶6呈“凸”状结构。
如图10、11所示,另一优选实施例中,背板1凹槽11的凸起部位12的凸起高度高于背板1边沿,当前板5盖合于背板1上时,前板5与凸起部位12直接接触,从而背板1边沿与前板5形成缺口,那么,密封胶6则填充与所述缺口部位。换一句话,就是,背板1加工成正立的“山”型结构,“山”型结构的中间竖可以是多竖,也可以是单竖,但是中间的竖比最外两边的竖高,组装时,前板5则盖合在该“山”型正上方,层压结束,在前板5和背板1盖合的边沿形成水平方向的凹槽缺口,也就是形成凹向太阳能组件竖直轴的缺口,该缺口部位采用密封胶6进行密封。
如图12、13、14所示,又一优选实施例中,所述太阳能组件还包括一密封框8,背板1作为底座,密封框8叠设于背板1的上表面从而形成一方框,而第一封装层2、太阳能电池片3、第二封装层4依次叠设于凹槽11后,前板5叠设安装于由背板1和密封框8围成的方框空间内,密封框8和背板1、前板5以及其他部件相互靠近形成缺口缝隙,形成的缺口缝隙内则填满密封胶6。
优选地,所述电池片接线盒7固定于所述背板1的底表面、侧面或者镶嵌在所述背板1的内部。
在安装过程中,通过导线9将太阳能电池片3与电池片接线盒7进行接通,电池片接线盒7内填充密封胶6,以防止水分、空气沿着接线进入太阳能组件内部。
本发明上述实施例提供的太阳能组件,由于在太能样组件层间设置有两层的封装层,封装层贴附于各部件的表面,水分等无法进入到太阳能组件内部,阻水效果优越,同时采用优化的封装结构和密封胶,使得太阳能组件即使长期浸泡在水中也能保持良好的性能并且在水中也能正常使用。
由于本发明实施例提供的太阳能组件具有良好的阻水、防水功能,而且采用了抗压强度大的前板和背板,前板还有优良的摩擦力,适用于铺设在高速公路、城市道路、人行道、广场、绿道等露天空旷的地面。
更进一步地,由于本发明实施例的背板1设计成凹槽结构或者背板1设计成凹槽结构的前提下并将前板5设计成拱形结构,使得太阳能组件的结构更加紧凑、结构更加牢固,也极大的提高太阳能组件的承重能力。
相应地,在上述实施例提供的太阳能组件的基础上,本发明实施例还进一步提供了该太阳能组件的制作方法。
如图2~6所示,在一优选实施例中,该太阳能组件的制作方法至少包括以下步骤:
1)自背板1的凹槽11向外,依次叠设第一封装层2、太阳能电池片3、第二封装层4;
2)用导线9将太阳能电池片3与电池片接线盒7连接,盖上前板5;
3)将步骤2)处理后得到的半成品置于密封设备中,进行抽真空处理,并于真空环境中加热使所述第一封装层2、第二封装层4熔化,同时施加压力使各叠层粘结成整体,获得太阳能组件;
4)降温处理,待温度降到室温后,在所述太阳能组件四周涂覆密封胶6;
5)向所述电池片接线盒7灌入密封胶6。
其中,所述第一封装层2、第二封装层4熔化后粘合填充于所述太阳能组件的内部孔隙,使得太阳能组件内部不存在空隙。
更进一步地,本发明实施例还提供一种地面发电系统。
在一实施例中,地面发电系统,包括如上所述的太阳能组件、控制器、逆变器和储能设备,所述太阳能组件的电池片接线盒通过导线与所述控制器电连接,所述控制器通过导线与所述储能设备电连接或所述控制器通过导线与所述逆变器电连接,所述逆变器与电网电连接。
优选地,所述储能设备为储能电源。
本地面发电系统,可以有效的利用地势,将照射到地面的太阳光转化为电能,极大的提高了太阳能的利用率。
下面通过一实施例对本发明做进一步的解释说明。
实施例1
如附图1所示的太阳能组件。
其中,太阳能电池片3由六片156*156mm的多晶硅太阳能电池片串联,下面说明其制作过程:
1)背板1采用12mm厚的瓷板砖,设计成如图4所示的具有六个凹槽阵列11的结构,每个凹槽11的边长160mm的正方形,凹槽11的槽壁开设有通孔,用于通过将六片太阳能电池片3进行串联的导线9,并在其中一个凹槽11上,开设一个穿透背板1的通孔;
2)在背板1的每个凹槽11内铺上一层厚度为0.5mm,边长为160mm正方形的EVA膜2;
3)在每片EVA膜2上表面铺上太阳能电池片3,同时采用导线9将太阳能电池片3进行串联,并将串联后的太阳能电池片3的导线9引出,使导线9延伸至背板1的外表面;
4)在每片太阳能电池片3的上表面铺上一层厚度为0.5mm,边长为160mm正方形的EVA膜4;
5)在EVA膜4的上表面(也就是在背板1上表面盖合上)铺上10mm厚的高透光的防滑钢化玻璃5(作为前板5);
6)叠层和穿线完成后放入层压机内,先常温抽真空,再加温使EVA膜2、EVA膜4熔化,使各层黏合在一起,温度降到常温后,在太阳能组件四周涂覆上密封胶6,通过导线9将太阳能电池片3与电池片接线盒7进行接通,同时将密封胶6灌满电池片接线盒7,所述太阳能组件制作完毕。
制作好的太阳能组件,抗压强度达到50MPa,能满足行人压力和车辆碾压。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (27)

  1. 一种太阳能组件,其特征在于:包括背板,所述背板一表面开设有若干凹槽;
    以及包括自所述凹槽向外依次叠设的第一封装层、太阳能电池片、第二封装层;各个所述凹槽中的所述太阳能电池片相互串联;
    还包括前板,所述前板叠设于所述背板上,并封盖所述凹槽;
    所述第一封装层使得所述背板和所述太阳能电池片相互粘结,所述第二封装层使得所述太阳能电池片和所述前板相互粘结;
    所述太阳能组件四周设有密封胶,通过所述密封胶将太阳能组件进行密封;
    还包括设置在所述背板上的电池片接线盒,所述电池片接线盒通过导线与所述太阳能电池片连接。
  2. 如权利要求1所述的太阳能组件,其特征在于:所述前板为表面具有凹凸点或者花纹的钢化玻璃,所述凹凸点呈点状、岛状、线状、块状、球状、半球状中的至少一种;所述前板的厚度为5mm~40mm。
  3. 如权利要求1所述的太阳能组件,其特征在于:所述凹槽呈阵列分布。
  4. 如权利要求3所述的太阳能组件,其特征在于:所述凹槽阵列具有凸起部位,所述凸起部位抵住所述前板。
  5. 如权利要求4所述的太阳能组件,其特征在于:所述前板与所述凹槽正相对的表面设成拱形结构,并且与所述凹槽阵列的凸起部位正相对的部位开设有限位槽,所述限位槽与所述凹槽阵列的凸起部位相互卡接。
  6. 如权利要求1所述的太阳能组件,其特征在于:所述背板为金属板、高分子板、木板、大理石板、花岗岩板、瓷砖板、混凝土板、黏土烧结板、钢化玻璃中的任一种,所述背板的厚度为10mm~50mm。
  7. 如权利要求1所述的太阳能组件,其特征在于:所述第一封装层、第二封装层为PVB层、POE层或EVA层中的任一种。
  8. 如权利要求1所述的太阳能组件,其特征在于:所述太阳能电池片为晶硅电池片、非晶硅电池片、铜铟镓硒电池片、铜锌硒硫电池片、钙钛矿电池片、碲化镉电池片、有机薄膜电池片、砷化镓电池片中的任一种。
  9. 如权利要求1所述的太阳能组件,其特征在于:所述电池片接线盒固定于所述背板底表面、侧面或者镶嵌在所述背板内部。
  10. 如权利要求1~9任一项所述的太阳能组件,其特征在于:所述背板和所述前板正相接的外边缘部位开设成工艺凸台状,所述密封胶填充于凸台状上,使得所述密封胶填充成“凸”状。
  11. 如权利要求3~9任一项所述的太阳能组件,其特征在于:所述背板凹槽表面的凸起部位的凸起高度高于所述背板边沿,所述密封胶填充于所述前板和所述背板相互盖合形成的缺口部位。
  12. 如权利要求1~9任一项所述的太阳能组件,其特征在于:所述太阳能组件还包括密封框,所述密封框叠设于所述背板上,所述前板叠设安装于所述背板和所述密封框形成的框格内,并与所述密封框形成缺口,所述密封胶填充于所述密封框与所述前板形成的缺口内。
  13. 如权利要求1~12任一项所述的太阳能组件的制作方法,其特征在于,至少包括以下步骤:
    1)自背板的凹槽向外,依次叠设第一封装层、太阳能电池片、第二封装层;
    2)用导线将所述太阳能电池片与电池片接线盒连接,盖上前板;
    3)将步骤2)处理后得到的半成品置于密封设备中,进行抽真空处理,并于真空环境中加热使所述第一封装层、第二封装层熔化,同时施加压力使各叠层粘结成整体,获得太阳能组件;
    4)降温处理,待温度降到室温后,在所述太阳能组件四周涂覆密封胶;
    5)向所述电池片接线盒灌入密封胶。
  14. 如权利要求13所述的太阳能组件的制作方法,其特征在于:所述第一封装层、第二封装层熔化后填充于所述太阳能组件的内部孔隙,使各叠层粘结成整体。
  15. 一种地面发电系统,其特征在于:包括太阳能组件、控制器、逆变器和储能设备;所述太阳能组件的电池片接线盒通过导线与所述控制器电连接,所述控制器通过导线与所述储能设备电连接或所述控制器通过导线与所述逆变器电连接,所述逆变器与电网电连接;
    其中,所述太阳能组件包括背板,所述背板一表面开设有若干凹槽;
    以及包括自所述凹槽向外依次叠设的第一封装层、太阳能电池片、第二封装层,所述凹槽内的所述太阳能电池片相互串联;
    还包括前板,所述前板叠设于所述背板上,并封盖所述凹槽;
    所述第一封装层使得所述背板和太阳能电池片相互粘结,所述第二封装层使得所述太阳能电池片和前板相互粘结;
    所述太阳能组件四周设有密封胶,通过所述密封胶将太阳能组件进行密封;
    还包括设置在所述背板上的电池片接线盒,所述电池片接线盒通过导线与所述太阳能电池片连接。
  16. 如权利要求15所述的地面发电系统,其特征在于:所述前板为表面具有凹凸点或者花纹的钢化玻璃,所述凹凸点呈点状、岛状、线状、块状、球状、半球状中的至少一种;所述前板的厚度为5mm~40mm。
  17. 如权利要求15所述的地面发电系统,其特征在于:所述凹槽呈阵列分布。
  18. 如权利要求17所述的地面发电系统,其特征在于:所述凹槽阵列具有凸起部位,所述凸起部位抵住所述前板。
  19. 如权利要求15所述的地面发电系统,其特征在于:所述前板与所述凹槽正相对的表面为拱形结构,并且与所述凹槽阵列的凸起部位正相对的部位开设有限位槽,所述限位槽与所述凹槽阵列的凸起部位相互卡接。
  20. 如权利要求15所述的地面发电系统,其特征在于:所述背板为金属板、高分子板、木板、大理石板、花岗岩板、瓷砖板、混凝土板、黏土烧结板、钢化玻璃中的任一种,所述背板的厚度为10mm~50mm。
  21. 如权利要求15所述的地面发电系统,其特征在于:所述第一封装层、第二封装层为PVB层、POE层或EVA层中的任一种。
  22. 如权利要求15所述的地面发电系统,其特征在于:所述太阳能电池片为晶硅电池片、非晶硅电池片、铜铟镓硒电池片、铜锌硒硫电池片、钙钛矿电池片、碲化镉电池片、有机薄膜电池片、砷化镓电池片中的任一种。
  23. 如权利要求15所述的地面发电系统,其特征在于:所述电池片接线盒固定于所述背板底表面、侧面或者镶嵌在所述背板内部。
  24. 如权利要求15~23所述的地面发电系统,其特征在于:所述背板和所述前板正相接的外边缘部位上,所述背板开设成工艺凸台状,所述密封胶填充于凸台状上,使得所述密封胶填充成“凸”状。
  25. 如权利要求15~23所述的地面发电系统,其特征在于:所述背板凹槽表面的凸起部位的凸起高度高于所述背板边沿,所述密封胶填充于所述前板和所述背板相互盖合形成的缺口部位。
  26. 如权利要求15~23所述的地面发电系统,其特征在于:所述太阳能组件还包括密封框,所述密封框叠设于所述背板上,所述前板叠设安装于所述背板和所述密封框形成的框格内,并与所述密封框形成缺口,所述密封胶填充于所述密封框与所述前板形成的缺口中。
  27. 如权利要求15所述的地面发电系统,其特征在于:所述储能设备为储能电源。
PCT/CN2018/083038 2017-04-21 2018-04-13 太阳能组件及其制作方法和地面发电系统 WO2018192425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710266751.1 2017-04-21
CN201710266751.1A CN108735836B (zh) 2017-04-21 2017-04-21 太阳能组件及其制作方法和地面发电系统

Publications (1)

Publication Number Publication Date
WO2018192425A1 true WO2018192425A1 (zh) 2018-10-25

Family

ID=63856408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083038 WO2018192425A1 (zh) 2017-04-21 2018-04-13 太阳能组件及其制作方法和地面发电系统

Country Status (2)

Country Link
CN (1) CN108735836B (zh)
WO (1) WO2018192425A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707745A (zh) * 2021-10-26 2021-11-26 浙江晶科能源有限公司 一种光伏组件
US11968847B2 (en) 2021-10-26 2024-04-23 Zhejiang Jinko Solar Co., Ltd. Photovoltaic module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545874A (zh) * 2018-11-15 2019-03-29 上海交通大学 太阳能光伏地板砖
CN109411557A (zh) * 2018-11-26 2019-03-01 蒋尧 一种复合材料太阳能电池板及其制备方法
CN111952389A (zh) * 2019-04-30 2020-11-17 汉能移动能源控股集团有限公司 太阳能路面结构单元、制作方法及太阳能路面发电系统
JP7290897B1 (ja) 2022-11-07 2023-06-14 株式会社エネルギーギャップ 太陽電池ユニット及び太陽電池ユニットの設置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359700A (zh) * 2008-09-19 2009-02-04 广东工业大学 铝合金背板太阳电池组件
CN101877548A (zh) * 2009-04-28 2010-11-03 新疆新能源股份有限公司 用于光伏并网发电的三相四桥臂逆变器及光伏并网发电系统
US20130147050A1 (en) * 2011-12-12 2013-06-13 Advanced Cooling Technologies, Inc. Semiconductor having integrally-formed enhanced thermal management
CN204991732U (zh) * 2015-07-30 2016-01-20 江苏东昇光伏科技有限公司 一种具有散热功能的太阳能光伏组件
CN207097841U (zh) * 2017-04-21 2018-03-13 深圳首创新能源股份有限公司 太阳能组件及地面发电系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203038949U (zh) * 2012-12-06 2013-07-03 深圳市鑫鸿联太阳能有限公司 一种新型太阳能电池板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359700A (zh) * 2008-09-19 2009-02-04 广东工业大学 铝合金背板太阳电池组件
CN101877548A (zh) * 2009-04-28 2010-11-03 新疆新能源股份有限公司 用于光伏并网发电的三相四桥臂逆变器及光伏并网发电系统
US20130147050A1 (en) * 2011-12-12 2013-06-13 Advanced Cooling Technologies, Inc. Semiconductor having integrally-formed enhanced thermal management
CN204991732U (zh) * 2015-07-30 2016-01-20 江苏东昇光伏科技有限公司 一种具有散热功能的太阳能光伏组件
CN207097841U (zh) * 2017-04-21 2018-03-13 深圳首创新能源股份有限公司 太阳能组件及地面发电系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707745A (zh) * 2021-10-26 2021-11-26 浙江晶科能源有限公司 一种光伏组件
US11968847B2 (en) 2021-10-26 2024-04-23 Zhejiang Jinko Solar Co., Ltd. Photovoltaic module

Also Published As

Publication number Publication date
CN108735836A (zh) 2018-11-02
CN108735836B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2018192425A1 (zh) 太阳能组件及其制作方法和地面发电系统
US9590556B1 (en) Substantially two-dimensional construction element
US8733038B2 (en) Roofing and siding products having receptor zones and photovoltaic roofing and siding elements and systems using them
US8966850B2 (en) Roofing products, photovoltaic roofing elements and systems using them
US8438796B2 (en) Photovoltaic roofing elements including tie layer systems, and roofs using them, and methods for making them
US20140150843A1 (en) Shingle-like photovoltaic modules
WO2018103316A1 (zh) 多功能太阳能景观路面系统
CN205077355U (zh) 自清洗太阳能砖
CN206697498U (zh) 一种太阳能组件和地面发电系统
CN206672949U (zh) 太阳能组件及地面发电系统
US20200144442A1 (en) Method for manufacturing a hollow building panel with integrated photovoltaic cells
CN206697499U (zh) 一种太阳能组件和地面发电系统
CN207097841U (zh) 太阳能组件及地面发电系统
NL2027258B1 (en) Integrated photovoltaic roof element
CN102306671A (zh) 一体化太阳能薄膜电池组件、其背板及改性方法
CN103321360A (zh) 一种复合太阳能电池屋顶面板及其生产方法
CN206820692U (zh) 一种瓦片式光伏组件
CN104158477A (zh) 光伏建材构件及使用该构件的光伏建筑一体化结构
CN108735835A (zh) 一种太阳能组件及其制作方法和地面发电系统
CN201738511U (zh) 一种可发电太阳能瓷砖
CN109687815B (zh) 一种防水光伏瓦片结构
CN209375533U (zh) 一种防水光伏瓦片结构
CN102315304A (zh) 光伏建筑一体化用太阳能电池组件、其背板及改性方法
KR102005694B1 (ko) 아파트 및 박공형 공용주택의 태양광 필름 시공방법
CN202280219U (zh) 太阳能光伏p-n结构墙面砖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787150

Country of ref document: EP

Kind code of ref document: A1