WO2018190662A2 - Binder composition, article, and method for manufacturing article - Google Patents

Binder composition, article, and method for manufacturing article Download PDF

Info

Publication number
WO2018190662A2
WO2018190662A2 PCT/KR2018/004308 KR2018004308W WO2018190662A2 WO 2018190662 A2 WO2018190662 A2 WO 2018190662A2 KR 2018004308 W KR2018004308 W KR 2018004308W WO 2018190662 A2 WO2018190662 A2 WO 2018190662A2
Authority
WO
WIPO (PCT)
Prior art keywords
binder composition
polylysine
weight
parts
peak
Prior art date
Application number
PCT/KR2018/004308
Other languages
French (fr)
Korean (ko)
Other versions
WO2018190662A3 (en
Inventor
김지은
이창석
문준옥
양영렬
오창엽
노항덕
심도용
조광명
최진우
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180007895A external-priority patent/KR101922644B1/en
Priority to CA3059688A priority Critical patent/CA3059688C/en
Priority to CN201880024991.3A priority patent/CN110520477B/en
Priority to NZ759003A priority patent/NZ759003B2/en
Priority to BR112019021452-6A priority patent/BR112019021452B1/en
Priority to UAA201910613A priority patent/UA123976C2/en
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to AU2018251522A priority patent/AU2018251522B2/en
Priority to JP2019555677A priority patent/JP6928759B2/en
Priority to MYPI2019006031A priority patent/MY191048A/en
Priority to US16/604,988 priority patent/US10961390B2/en
Priority to EP18783720.8A priority patent/EP3611225A4/en
Priority to RU2019134450A priority patent/RU2721572C1/en
Publication of WO2018190662A2 publication Critical patent/WO2018190662A2/en
Publication of WO2018190662A3 publication Critical patent/WO2018190662A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/04Polyamides derived from alpha-amino carboxylic acids

Definitions

  • a binder composition comprising polylysine, an article bound by thermosetting of the binder composition, and a method for producing the article.
  • Articles such as nonwoven fiber insulation and plywood include binders such as urea-formaldehyde resin (UF resin) and phenol-formaldehyde resin (PF resin), as well as fibers and wood powder.
  • binders such as urea-formaldehyde resin (UF resin) and phenol-formaldehyde resin (PF resin), as well as fibers and wood powder.
  • the mixture mixed with the substrates can be produced by molding and thermosetting.
  • Conventional binders are obtained from fossil fuels and release harmful volatile organic compounds (VOCs), such as formaldehyde, even during the manufacture of binders and articles. Therefore, research is being conducted on binders that provide excellent physical properties without using fossil fuels and releasing hazardous substances.
  • VOCs volatile organic compounds
  • the present invention provides a binder composition derived from nature that exhibits excellent physical properties without releasing harmful volatile organic compounds such as formaldehyde.
  • One aspect of the present application is a polylysine; And one or more reducing sugars or derivatives thereof, wherein the polylysine comprises a first peak at 3.2 ppm to 3.4 ppm and a second peak at 3.8 ppm to 4.0 ppm in a 1 H NMR spectrum It is providing the binder composition whose ratio (A: B) of (A) and 2nd peak area (B) is 70: 30-98: 2.
  • Example 1 is a chemical formula and 1H NMR spectrum of polylysine in which an amino group linked to an alpha position used in Example 1 simultaneously contains a repeating unit used for polymerization and a lysine repeating unit linked to an epsilon position.
  • Figure 2 is a graph showing the pH change with time of the aqueous solution containing the thermosetting of the binder composition prepared in Examples 1 to 4.
  • the binder composition according to one aspect of the present application is polylysine; And one or more reducing sugars or derivatives thereof, wherein the polylysine comprises, in the 1 H NMR spectrum, a first peak at 3.2 ppm to 3.4 ppm and a second peak at 3.8 ppm to 4.0 ppm;
  • the ratio (A: B) of A) and the second peak area B is 70:30 to 98: 2
  • the strength and water resistance of the water-insoluble polymer which is a thermosetting binder composition may be improved.
  • the binder composition and its thermosetting water-insoluble polymer can be environmentally friendly as they do not release harmful organic volatiles such as formamide.
  • the ratio (A: B) of the first peak area (A) and the second peak area (B) is 75: 25 to 98: 2, 80: 20 to 98: 2, 85: 15 To 98: 2, 90: 10 to 98: 2, or 95: 5 to 98: 2.
  • Polylysine includes one polylysine or a mixture of two or more polylysines.
  • the polylysine content is 15 to 60 parts by weight, 25 to 60 parts by weight, 35 to 60 parts by weight, 40 to 60 parts by weight, 15 to 50 parts by weight, 25 to 50 parts by weight, 35 to 50 parts by weight of the binder composition solids 50 parts by weight, or 40 to 50 parts by weight. If the polylysine content is too low, excessive amounts of unreacted reducing sugar may remain in the article manufactured using the binder composition, thereby lowering the physical properties of the article. If the polylysine content is too high, the curing of the binder composition may be incomplete, thereby deteriorating the physical properties of the article manufactured using the binder composition.
  • the polylysine may be at least one condensation polymer selected from the group consisting of L-lysine and DL-lysine.
  • the polylysine may be L-polylysine polymerized using only L-lysine as a monomer.
  • the polylysine may be DL-polylysine polymerized using only DL-lysine as a monomer.
  • Another exemplary polylysine may be a polylysine polymerized using L-lysine and DL-lysine as monomers.
  • polylysine polymerized by including DL-lysine as a monomer may be more suitable than polylysine polymerized using only L-lysine as a monomer.
  • the molecular weight of the polylysine may be at least 4,000 g / mol, at least 5,000 g / mol, at least 6,000 g / mol, at least 7,000 g / mol, at least 8,000 g / mol, at least 9,000 g / mol, or at least 10,000 g / mol.
  • the molecular weight of polylysine can be measured using Gel Permeation Chromatography (GPC) as a value relative to the PEG / PEO standard sample.
  • Polylysine may be the result obtained by condensation polymerization of lysine at 130 to 150 ° C. temperature for 6 to 48 hours.
  • Alpha ( ⁇ ) in polylysine is a repeating unit in which an amino group connected to the alpha ( ⁇ ) position carbon of lysine is used for polymerization, and epsilon ( ⁇ ) in polylysine is an amino group linked to the epsilon ( ⁇ ) position carbon of lysine.
  • the repeat unit used is a repeating unit in which an amino group connected to the alpha ( ⁇ ) position carbon of lysine is used for polymerization, and epsilon ( ⁇ ) in polylysine is an amino group linked to the epsilon ( ⁇ ) position carbon of lysine.
  • the alpha ( ⁇ ): epsilon ( ⁇ ) composition ratio in polylysine is from 3.2 ppm to 1M NMR spectrum of polylysine derived from methine (-CH) of repeating units in which the amino group linked to the alpha ( ⁇ ) position is used for polymerization.
  • the first peak area (A) at 3.4 ppm and the amino group linked to the epsilon ( ⁇ ) position are from 3.8 ppm to 4.0 ppm derived from methine (-CH, a carbon in FIG. 1) of the repeating unit used for polymerization. It is determined by the ratio of the 2 peak area B.
  • the ratio (A: B) of the first and second peak areas A and B may be adjusted.
  • the amino group linked to the alpha ( ⁇ ) position of the lysine in the polylysine increases in the content of the repeating unit used for polymerization, i.e., the ⁇ -polylysine repeating unit, in the 1H NMR spectrum of the polylysine at 3.2 ppm to 3.4 ppm
  • the first peak area A of may increase.
  • the content of the repeating units used for polymerization in the amino group linked to the epsilon ( ⁇ ) position of the lysine in the polylysine i.e., the ⁇ -polylysine repeating unit
  • the ⁇ -polylysine repeating unit increases in the 1H NMR spectrum of the polylysine, from 3.8 ppm to 4.0
  • the second peak area B in ppm may increase.
  • the reducing sugar or derivative thereof may have one or more selected from aldehyde groups and ketone groups.
  • the aldehyde group and / or the ketone group may react with the amine group of the polylysine to form an imine bond upon thermosetting of the binder composition including the reducing sugar. And, this imine bond can be cured by reacting with the hydroxyl group of another reducing sugar, and the curing mechanism can be an irreversible reaction.
  • the content of the reducing sugar or derivative thereof is 40 to 85 parts by weight, 40 to 75 parts by weight, 40 to 65 parts by weight, 40 to 60 parts by weight, 50 to 85 parts by weight, 50 to 75 parts by weight based on 100 parts by weight of the binder composition solids. , 50 to 65 parts by weight, or 50 to 60 parts by weight. If the content of the reducing sugar is too high, unreacted reducing sugar may remain in the article manufactured using the binder composition, thereby lowering the physical properties of the article. When the content of the reducing sugar is too low, the curing of the binder composition may be incomplete, thereby lowering the physical properties of the article manufactured using the binder composition.
  • Reducing sugars may be used monosaccharides and disaccharides or combinations thereof, such as maltose, fructose, galactose, lactose, genthiobiose, lutinose, glucose, xylose, but not necessarily within the scope of the present invention It is not limited to these.
  • the reducing sugar may be glucose, xylose, or a combination thereof.
  • the reducing sugar may include glucose in terms of strength and water resistance.
  • the solid content in the binder composition may be 15 to 80 parts by weight, 15 to 75 parts by weight, 15 to 70 parts by weight, 15 to 65 parts by weight, 15 to 60 parts by weight, or 15 to 55 parts by weight based on 100 parts by weight of the binder composition. have.
  • Solids in the binder composition may be water, polylysine and reducing sugars and components other than solids are diluents. If the solid content is too high, the viscosity of the binder composition is increased to reduce workability, and the binder content may be excessively increased in an article manufactured using the binder composition. If the solids content is too low, excess energy may be consumed to remove the water.
  • the binder composition may further comprise one or more additives.
  • Additives include water repellents to increase the water resistance of thermosets, rust preventives to prevent corrosion of thermosets, anti-vibration oils to reduce dust incidence of thermosets, buffers to control pH of thermosets, and couples to improve adhesion of binder compositions. It may be a ring agent and the like, but is not limited thereto, and any additives that can be used for improving physical properties of the binder composition and the thermoset in the art are possible.
  • the content of the additive is 0.1 to 10 parts by weight, 0.1 to 8 parts by weight, 0.1 to 6 parts by weight, 0.1 to 5 parts by weight, 0.1 to 4 parts by weight, 0.1 to 3 parts by weight of 100 parts by weight of the total amount of polylysine and reducing sugar. It may be part by weight, 0.1 to 2 parts by weight, 0.1 to 1 part by weight, or 0.1 to 0.5 parts by weight, but is not necessarily limited to this range and may be adjusted according to the required physical properties.
  • thermoset of the binder composition described above An article according to another aspect of the present application is bound by the thermoset of the binder composition described above.
  • the thermoset of the binder composition described above strongly binds the article as a water-insoluble polymer, thereby improving the strength and water resistance of the article.
  • the article bound by the thermosetting of the binder composition has an absorption thickness expansion ratio of 40% or less, 38% or less, 36% or less, 34% or less, 33% or less, 30% or less, 25% as measured by a test method according to KSF3200. Up to 20%, up to 15%, or up to 12%. An article bound by the thermoset of the binder composition may have excellent water resistance.
  • the article bound by the thermosetting of the binder composition has an internal bond strength of at least 1.4 N / mm 2, at least 1.5 N / mm 2, at least 1.6 N / mm 2 , 1.7 N / measured by the test method according to KSF3200 mm 2 or more, 1.8 N / mm 2 or more, 1.9 N / mm 2 or more, or 2.0 N / mm 2 or more.
  • An article bound by the thermoset of the binder composition may have good internal bond strengths.
  • the article bound by the thermoset of the binder composition may be a heat insulating material, plywood, etc., but is not necessarily limited to these, any article that is bound in a certain form using the binder composition is possible.
  • An article manufacturing method comprises the steps of preparing the binder composition; And thermally curing the binder composition at a temperature of 120 ° C. or higher. Articles made by the above-described article manufacturing method have excellent water resistance and strength.
  • the binder composition may further include one or more selected from fibrous materials and powdery materials.
  • the fibrous material may be inorganic fiber such as rock wool, glass wool, ceramic fiber, etc., short fiber aggregates such as fibers obtained from natural and synthetic resins, and the like, but is not necessarily limited thereto, and any fibrous material may be used as the fibrous material in the art.
  • the powdery material may be wood powder or the like, but is not necessarily limited thereto, and any powdery material may be used as long as it can be used as a powdery material in the art.
  • the fibrous or powdery material is bound by the thermosetting of the binder composition by the thermal curing of the mixture further comprising at least one selected from the fibrous material and the powdery material in the binder composition at a temperature of 120 ° C. or higher.
  • Heat treatment temperature for thermal curing may be 120 ⁇ 300 °C, 130 ⁇ 250 °C, 140 ⁇ 200 °C, or 150 ⁇ 180 °C. If the heat treatment temperature is too low, uncuring occurs, and if the heat treatment temperature is too high, overcure may occur and dust may be generated.
  • the heat treatment time for thermal curing may be 1 to 60 minutes, 5 to 40 minutes, 10 to 30 minutes, or 12 to 18 minutes.
  • the binder composition is thermoset at a temperature of 120 ° C. or higher, a water-insoluble polymer is formed through various curing reactions, such as a Maillard reaction between an aldehyde group / ketone group of a reducing sugar and an amine group of a polylysine, and properties such as water resistance and strength. It can act as an excellent adhesive.
  • Pressing and molding may be performed simultaneously or sequentially during thermosetting to control the properties and shape of the article to be produced.
  • the pressure and time applied during the pressurization are not particularly limited and may be adjusted according to the required density of the article.
  • Polylysine used in the preparation of the binder composition has a number average molecular weight (Mn) of 6,000 g / mol, a weight average molecular weight (Mw) of 8,000 g / mol, and as shown in the 1 H NMR spectrum of FIG.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • FIG. 1 When 400 MHz NMR was measured using deuterium oxide (D 2 O) as a solvent, 3.2 derived from methine (-CH, FIG. At 3.8 ppm to 4.0 ppm derived from methine (-CH, a carbon in FIG. 1) of the repeating unit used in the polymerization, where the amino group linked to the first peak area (A) and the epsilon ( ⁇ ) position at ppm to 3.4 ppm is used.
  • the ratio of the second peak area (B) of 9 was 9: 1.
  • the first peak is denoted c and the second peak is denoted a.
  • the molecular weight of polylysine was measured in gel permeation chromography (GPC) using PEG / PEO standard samples.
  • the ratio of the area (A) of the first peak to the area (B) of the second peak in the 1 H NMR spectrum of the polylysine used to prepare the binder composition was 9: 1, and the number average molecular weight (Mn) 6,000 g / mol, The weight average molecular weight (Mw) is 8,000 g / mol level.
  • the ratio of the area (A) of the first peak to the area (B) of the second peak in the 1 H NMR spectrum of the polylysine used to prepare the binder composition was 9: 1, and the number average molecular weight (Mn) 6,000 g / mol, The weight average molecular weight (Mw) is 8,000 g / mol level.
  • the ratio of the area (A) of the first peak to the area (B) of the second peak in the 1 H NMR spectrum of the polylysine used to prepare the binder composition was 9: 1, and the number average molecular weight (Mn) 6,000 g / mol, The weight average molecular weight (Mw) is 8,000 g / mol level.
  • Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
  • Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
  • Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
  • polylysine and 14.14 g glucose were dissolved in 28.28 g distilled water except that the polylysine was a mixture of L-polylysine and commercially available ⁇ -polylysine (manufactured by Zhengzhou Bainafo Bioengineering Co., Ltd.) of Example 1.
  • the ratio of the area (A) of the first peak to the area (B) of the second peak in the 1 H NMR spectrum of the polylysine was 7: 3, and the number average molecular weight (Mn) was 6,000 g / mol and the weight average molecular weight (Mw). ) 8,000 g / mol level.
  • Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
  • Binder composition (50% solids content, polylysine: 50% solids content) in the same manner as in Example 1 except that 30 g L-polylysine and 150 g xylose were dissolved in 360 g distilled water and then stirred at 80 ° C. for 1 hour and 30 minutes.
  • Xylose 1: 5 weight ratio).
  • Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
  • Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
  • Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
  • the polylysine is a mixture of L-polylysine and commercially available ⁇ -polylysine (manufactured by Zhengzhou Bainafo Bioengineering Co., Ltd.) of Example 1, and the area (A) of the first peak in the 1 H NMR spectrum of the polylysine The ratio of the area B of the second peak was 5: 5.
  • the polylysine is a mixture of L-polylysine and commercially available ⁇ -polylysine (manufactured by Zhengzhou Bainafo Bioengineering Co., Ltd.) of Example 1, and the area (A) of the first peak in the 1 H NMR spectrum of the polylysine The ratio of the area B of the second peak was 3: 7.
  • the ratio of the area A of the first peak to the area B of the second peak in the 1 H NMR spectrum of the polylysine used for preparing the binder composition was 0:10.
  • a commercial medium density fiberboard (manufactured by Hansol Home Deco, interior grade GI 18) was used.
  • a commercial medium density fiber board (manufactured by Hansol Home Deco Co., Ltd., super light grade GSL 18) was used.
  • the filter paper on which the water-insoluble polymer prepared in Examples 1 to 4 was formed was immersed in distilled water at room temperature for 10 minutes to measure color change and pH change, and the results are shown in Table 1 and FIG. 2, respectively.
  • Color change was measured by APHA value and yellow saturation (b *) through a spectrophotometer.
  • Example 1 Example 2
  • Example 3 Example 4
  • APHA 20 84 119 223 Yellow Saturation (b *) 0.64 2.68 3.78 7.09
  • the binder composition of Example 1 having the same content of polylysine and glucose as the water-insoluble polymer obtained using the binder composition of Examples 2 to 4 having a higher glucose content than that of polylysine was used.
  • the water-insoluble polymer obtained by the reaction showed little change in pH and color even after immersion for a certain time. Accordingly, it was confirmed that the water-insoluble polymer obtained using the binder composition of Example 1 is improved in water resistance compared to the water-insoluble polymer obtained using the binder compositions of Examples 2 to 4.
  • Specimens were each prepared using the binder compositions prepared in Examples 5-7.
  • a mixture was prepared by mixing 85 parts by weight of wood fibers (mixing material such as wood fiber, Pinus rigida, and Radius pine) and 15 parts by weight of the binder composition.
  • the prepared mixture was molded under a temperature of 160 ° C. and a pressure of 200 kg / cm 2 . Molding was repeated twice for 30 seconds and three minutes of depressurization. The gas generated during curing was removed and cured by sea pressure. The molded specimen was cured by standing at 160 ° C. for 1 hour.
  • the width and thickness of the specimens were measured in micrometers, and at room temperature using a universal testing machine (UTM). Compressive strength was measured by compressing at a rate of 50 mm per minute and the results are shown in Table 2 below. In addition, the appearance, density and solids content of the binder composition used to prepare the specimens are also shown in Table 2.
  • Example 6 Comparative Example 1 Specimen Properties Exterior Maroon Opaque Maroon Opaque Brown and transparent - Solid content (%) 50 50 50 - Density (kg / m 3 ) 667 741 667 - Flexural Strength (N / mm 2 ) 9.72 4.40 2.50 0.34
  • the specimen prepared using the binder composition of Example 5 having a similar content ratio of polylysine and glucose had a higher flexural strength than the specimen prepared using the binder compositions of Examples 6 to 7 having different content ratios of polylysine and glucose. It could be confirmed that further improvement.
  • Specimens were each prepared using the binder compositions prepared in Examples 5, 8 and Comparative Examples 2-4.
  • a mixture was prepared by mixing 85 parts by weight of wood fibers (mixing material such as wood fiber, Pinus rigida, and Radius pine) and 15 parts by weight of the binder composition.
  • the prepared mixture was molded under a temperature of 160 ° C. and a pressure of 200 kg / cm 2 . Molding was repeated twice for 30 seconds and three minutes of depressurization. The gas generated during curing was removed and cured by sea pressure. The molded specimen was cured by standing at 160 ° C. for 1 hour.
  • the width and thickness of the specimens were measured using a micrometer, and were tested by a universal testing machine (UTM). By compressing at room temperature at a rate of 50 mm per minute using flexural strength was measured and the results are shown in Table 3 below. In addition, the appearance, density and solids content of the binder composition used to prepare the specimens are also shown in Table 3.
  • Curing temperature was measured using a rheometer (Rheometer, Anton Paar Physica). Place specimens between parallel plates with 0.5 mm gap and equilibrate the plates with a constant shear rate of 1.0 s -1 while raising the temperature at a rate of 2 ° C / min in the temperature range of 30 to 160 ° C. One of them was rotated. Curing temperature was measured from the behavior of the specimen material and the results are shown in Table 3 below.
  • the width and thickness of the specimens were measured using a micrometer, and the specimens were immersed in a beaker filled with distilled water. After leaving time, the thickness change of the specimen was measured and the results are shown in Table 3 below.
  • the thickness expansion rate was calculated from the following equation.
  • Thickness Expansion Rate (%) [TT 0 ] / T 0 ⁇ 100
  • T is the thickness of the specimen after immersion for 24 hours
  • T 0 is the initial thickness of the specimen
  • Example 5 For the specimen prepared using the binder composition prepared in Example 5 and Comparative Examples 2 to 4, the weight of the specimen was measured, the sample was immersed in a beaker filled with distilled water, and the weight of the specimen was measured after 24 hours. The temperature of the distilled water was maintained at room temperature, and when measuring the moisture content, as soon as it was taken out of the beaker, only the moisture on the surface of the specimen was removed and the mass was measured. The water absorption rate was calculated from the following equation.
  • W is the thickness of the specimen after immersion for 24 hours and W 0 is the initial thickness of the specimen.
  • W is the weight of the specimen after immersion for 24 hours
  • W 0 is the initial weight of the specimen
  • Example 8 Comparative Example 2 Comparative Example 3 Comparative Example 4 Specimen Properties Exterior Maroon Opaque Reddish brown and transparent Reddish brown and transparent Brown and transparent Yellow and transparent Density (kg / m 3 ) 667 667 667 500 571 Flexural Strength (N / mm 2 ) 9.72 6.71 5.91 3.76 3.29 Curing temperature (°C) 116.37 117.94 118.35 119.56 129.44 Thickness Expansion Rate (%) 51.28 55.34 75.06 80.89 86.67
  • Example 5 As a result of measuring the water absorption of Example 5 and Comparative Examples 2 to 4, the water absorption of Example 5 was measured as 93.54%, while the water absorption of Comparative Examples 2 to 4, respectively, 276.36%, 281.23 %, And 285.36%. That is, as the alpha ( ⁇ ) binding in polylysine increases, the water absorption rate was confirmed to decrease.
  • Evaluation example 3 Measurement of physical properties according to reducing sugars
  • the binder composition prepared in Examples 9 to 11 was mixed with 64.7 kg / m 3 of wood fiber (wood fiber), and then the mixture was press cured for several seconds under a temperature condition of 220 ° C. (MDF). , Medium-Density Fiberboard) specimens were prepared. That is, 64.7 kg of the binder composition was mixed with respect to 1 m 3 of wood fibers.
  • Comparative Example 5 a medium density fiberboard specimen was prepared in the same manner as in Example 8 except that a commercially available UF resin was used.
  • Example 10 Example 11 Comparative Example 5 Specimen Properties Exterior maroon maroon maroon milk white Density (kg / m 3 ) 717 709 802 740 Thickness (mm) 3.03 2.98 2.87 2.74 Internal bonding strength (N / mm 2 ) 1.72 2.04 2.4 1.3 Thickness Expansion Rate (%) 38 32.8 30 40
  • the medium density fiberboard specimens prepared using the binder compositions of Examples 9 to 11 had improved internal bond strength and thickness compared to the medium density fiberboard specimens prepared using the commercially available resins of Comparative Example 5. The expansion rate decreased.
  • the internal bond strength was increased and the thickness expansion rate was decreased after the specimen preparation compared to the binder composition containing the xylose of Example 10, and thus the physical properties were relatively improved. .
  • Specimens were each prepared using the binder compositions prepared in Examples 11-12 and Comparative Example 5.
  • a mixture was prepared by mixing 85 parts by weight of wood fibers (mixing material such as wood fiber, Pinus rigida, and Radius pine) and 15 parts by weight of the binder composition.
  • the prepared mixture was molded under a temperature of 160 ° C. and a pressure of 200 kg / cm 2 . Molding was repeated twice for 30 seconds and three minutes of depressurization. The gas generated during curing was removed and cured by sea pressure. The molded specimen was cured by standing at 160 ° C. for 1 hour.
  • Comparative Example 5 a medium-density fiberboard specimen was prepared in the same manner as in Example 11 except that a commercially available UF resin was used.
  • the physical property measuring method is the same as the physical property measuring method of the said Table 3.
  • the internal bonding strength of the medium density fiberboard specimens prepared using the binder compositions of Examples 11 and 12 provided similar flexural strength to that of the medium density fiberboard specimens prepared using the commercial resin of Comparative Example 5 It was confirmed that the water resistance was improved as the thickness expansion rate and water absorption rate were decreased.
  • the medium density fiberboard specimens according to Examples 11 and 12 have improved flexural strength and a decrease in water absorption compared to the commercial medium density fiberboard specimens of Comparative Examples 6 and 7 to further improve physical properties.
  • Example 11 when comparing Example 11 and Example 12, it was confirmed that the DL-polylysine polymerized by including DL-lysine as a monomer has better water resistance than L-polylysine polymerized using only L-lysine as a monomer. It was.
  • the binder composition of the present invention may have improved strength and water resistance after thermosetting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Materials For Medical Uses (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a binder composition comprising polylysine, and at least one reducing sugar or a derivative thereof, wherein the polylysine has, in the 1H NMR spectrum, a first peak at 3.2 ppm to 3.4 ppm and a second peak at 3.8 ppm to 4.0 ppm, wherein the ratio (A: B) of the area of the first peak (A) to the area of the second peak is 70:30 to 98:2.

Description

바인더 조성물, 물품 및 물품 제조방법Binder Compositions, Articles, and Methods of Making Articles
폴리라이신을 포함하는 바인더 조성물, 바인더 조성물의 열경화물에 의하여 결속되는 물품 및 물품 제조방법에 관한 것이다.A binder composition comprising polylysine, an article bound by thermosetting of the binder composition, and a method for producing the article.
부직 섬유 단열재, 합판과 같은 물품은 우레아-포름알데히드 수지(UF resin, Urea-Form aldehyde resin), 페놀-포름알데히드 수지(PF resin, Phenol-Form aldehyde resin) 등의 바인더와 섬유, 목재 분말 등의 기재를 혼합한 혼합물을 성형 및 열경화시켜 제조할 수 있다. 종래의 바인더는 화석 연료에서 얻어지며 바인더 제조 과정 및 물품의 제조 후에도 포름알데하이드와 같은 유해한 휘발성 유기 화합물(VOC, Volatile Organic Compound)을 방출한다. 따라서, 화석 연료를 사용하지 않으며 유해 물질도 방출하지 않으면서 우수한 물성을 제공하는 바인더에 대한 연구가 진행되고 있다.Articles such as nonwoven fiber insulation and plywood include binders such as urea-formaldehyde resin (UF resin) and phenol-formaldehyde resin (PF resin), as well as fibers and wood powder. The mixture mixed with the substrates can be produced by molding and thermosetting. Conventional binders are obtained from fossil fuels and release harmful volatile organic compounds (VOCs), such as formaldehyde, even during the manufacture of binders and articles. Therefore, research is being conducted on binders that provide excellent physical properties without using fossil fuels and releasing hazardous substances.
본 발명은 포름알데히드와 같은 유해한 휘발성 유기 화합물을 방출하지 않으면서, 우수한 물성을 발현하는 천연 유래의 바인더 조성물을 제공하는 것이다. The present invention provides a binder composition derived from nature that exhibits excellent physical properties without releasing harmful volatile organic compounds such as formaldehyde.
본 출원의 일 양태는 폴리라이신; 및 하나 이상의 환원당 또는 이의 유도체를 포함하며, 상기 폴리라이신이, 1H NMR 스펙트럼에서, 3.2 ppm 내지 3.4 ppm 에서의 제 1피크 및 3.8 ppm 내지 4.0 ppm 에서의 제 2피크를 포함하며, 제 1피크 면적(A)과 제 2피크 면적(B)의 비율(A:B)이 70 : 30 내지 98 : 2 인, 바인더 조성물을 제공하는 것이다.One aspect of the present application is a polylysine; And one or more reducing sugars or derivatives thereof, wherein the polylysine comprises a first peak at 3.2 ppm to 3.4 ppm and a second peak at 3.8 ppm to 4.0 ppm in a 1 H NMR spectrum It is providing the binder composition whose ratio (A: B) of (A) and 2nd peak area (B) is 70: 30-98: 2.
도 1은 실시예 1에서 사용된 알파 위치에 연결된 아미노기가 중합에 사용된 라이신 반복 단위와 입실론 위치에 연결된 아미노기가 중합에 사용된 반복단위를 동시에 포함하는 폴리라이신의 화학식 및 1H NMR 스펙트럼이다.1 is a chemical formula and 1H NMR spectrum of polylysine in which an amino group linked to an alpha position used in Example 1 simultaneously contains a repeating unit used for polymerization and a lysine repeating unit linked to an epsilon position.
도 2는 실시예 1 내지 4에서 제조된 바인더 조성물의 열경화물을 포함하는 수용액의 시간에 따른 pH 변화를 보여주는 그래프이다.Figure 2 is a graph showing the pH change with time of the aqueous solution containing the thermosetting of the binder composition prepared in Examples 1 to 4.
이하에서 설명되는 본 출원의 창의적 사상(inventive concept)은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 상세한 설명에 상세하게 설명한다. 그러나, 이는 본 출원의 창의적 사상을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 출원의 창의적 사상의 기술 범위에 포함되는 모든 변환, 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다. The inventive concept of the present application described below may apply various transformations and have various embodiments, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the inventive idea of the present application to specific embodiments, but should be understood to include all transformations, equivalents, or substitutes included in the technical scope of the inventive idea of the present application.
이하에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 창의적 사상을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 이하에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품, 성분, 재료 또는 이들을 조합한 것이 존재함을 나타내려는 것이지, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성 요소, 부품, 성분, 재료 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 이하에서 사용되는 "/"는 상황에 따라 "및"으로 해석될 수도 있고 "또는"으로 해석될 수도 있다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the inventive concepts. Singular expressions include plural expressions unless the context clearly indicates otherwise. Hereinafter, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, component, material, or combination thereof described in the specification, one or the same. It is to be understood that the foregoing does not exclude in advance the possibility of the presence or addition of other features, numbers, steps, operations, components, parts, components, materials, or combinations thereof. "/" Used below may be interpreted as "and" or "or" depending on the situation.
명세서 전체에서 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의하여 한정되어서는 안 된다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.Terms throughout the specification, such as first and second, may be used to describe various components, but the components should not be limited by the terms. The terms are used only to distinguish one component from another.
이하에서 예시적인 일구현예에 따른 바인더 조성물에 관하여 더욱 상세히 설명한다.Hereinafter, a binder composition according to an exemplary embodiment will be described in more detail.
본 출원의 한 양태에 따른 바인더 조성물은 폴리라이신; 및 하나 이상의 환원당 또는 이의 유도체를 포함하며, 폴리라이신이, 1H NMR 스펙트럼에서, 3.2 ppm 내지 3.4 ppm 에서의 제 1피크 및 3.8 ppm 내지 4.0 ppm 에서의 제 2피크를 포함하며, 제 1피크 면적(A)과 제 2피크 면적(B)의 비율(A:B)이 70 : 30 내지 98 : 2 임에 의하여, 바인더 조성물의 열경화물인 불수용성 중합체의 강도 및 내수성이 향상될 수 있다. 또한, 바인더 조성물 및 이의 열경화물인 불수용성 중합체가 포름아미드와 같은 유해한 유기 휘발성 물질을 방출하지 않으므로 친환경적일 수 있다. 폴리라이신의 1H NMR 스펙트럼에서, 제 1피크 면적(A)과 제 2피크 면적(B)의 비율(A:B)이 75 : 25 내지 98 : 2, 80 : 20 내지 98 : 2, 85 : 15 내지 98 : 2, 90 : 10 내지 98 : 2, 또는 95 : 5 내지 98 : 2일 수 있다. 폴리라이신은 1종의 폴리라이신 또는 2종 이상의 폴리라이신의 혼합물을 포함한다.The binder composition according to one aspect of the present application is polylysine; And one or more reducing sugars or derivatives thereof, wherein the polylysine comprises, in the 1 H NMR spectrum, a first peak at 3.2 ppm to 3.4 ppm and a second peak at 3.8 ppm to 4.0 ppm; When the ratio (A: B) of A) and the second peak area B is 70:30 to 98: 2, the strength and water resistance of the water-insoluble polymer which is a thermosetting binder composition may be improved. In addition, the binder composition and its thermosetting water-insoluble polymer can be environmentally friendly as they do not release harmful organic volatiles such as formamide. In the 1H NMR spectrum of polylysine, the ratio (A: B) of the first peak area (A) and the second peak area (B) is 75: 25 to 98: 2, 80: 20 to 98: 2, 85: 15 To 98: 2, 90: 10 to 98: 2, or 95: 5 to 98: 2. Polylysine includes one polylysine or a mixture of two or more polylysines.
폴리라이신 함량은 바인더 조성물 고형분 100 중량부 기준으로 15 내지 60 중량부, 25 내지 60 중량부, 35 내지 60 중량부, 40 내지 60 중량부, 15 내지 50 중량부, 25 내지 50 중량부, 35 내지 50 중량부, 또는 40 내지 50 중량부일 수 있다. 폴리라이신 함량이 지나치게 낮으면 바인더 조성물을 사용하여 제조된 물품 내에 미반응 환원당이 과량 잔류하여 물품의 물성이 저하될 수 있다. 폴리라이신 함량이 지나치게 높으면 바인더 조성물의 경화가 불완전함에 의하여 바인더 조성물을 사용하여 제조된 물품의 물성이 저하될 수 있다.The polylysine content is 15 to 60 parts by weight, 25 to 60 parts by weight, 35 to 60 parts by weight, 40 to 60 parts by weight, 15 to 50 parts by weight, 25 to 50 parts by weight, 35 to 50 parts by weight of the binder composition solids 50 parts by weight, or 40 to 50 parts by weight. If the polylysine content is too low, excessive amounts of unreacted reducing sugar may remain in the article manufactured using the binder composition, thereby lowering the physical properties of the article. If the polylysine content is too high, the curing of the binder composition may be incomplete, thereby deteriorating the physical properties of the article manufactured using the binder composition.
구체적으로 상기 폴리라이신은 L-라이신 및 DL-라이신으로 이루어진 군에서 선택된 적어도 하나의 축합 중합물일 수 있다.Specifically, the polylysine may be at least one condensation polymer selected from the group consisting of L-lysine and DL-lysine.
구체적으로 상기 폴리라이신은 L-라이신만을 단량체로 하여 중합된 L-폴리라이신일 수 있다. 또한, 상기 폴리라이신은 DL-라이신만을 단량체로 하여 중합된 DL-폴리라이신일 수 있다. 다른 예시적인 하나의 폴리라이신은 L-라이신 및 DL-라이신을 단량체로 하여 중합된 폴리라이신일 수 있다.Specifically, the polylysine may be L-polylysine polymerized using only L-lysine as a monomer. In addition, the polylysine may be DL-polylysine polymerized using only DL-lysine as a monomer. Another exemplary polylysine may be a polylysine polymerized using L-lysine and DL-lysine as monomers.
내수성 측면에서, DL-라이신을 단량체로 포함하여 중합된 폴리라이신이 L-라이신만을 단량체로 하여 중합된 폴리라이신에 비해 적합할 수 있다.In terms of water resistance, polylysine polymerized by including DL-lysine as a monomer may be more suitable than polylysine polymerized using only L-lysine as a monomer.
폴리라이신의 분자량은 4,000g/mol 이상, 5,000g/mol 이상, 6,000g/mol 이상, 7,000g/mol 이상, 8,000g/mol 이상, 9,000g/mol 이상, 또는 10,000g/mol 이상일 수 있다. 폴리라이신의 분자량은 PEG/PEO 표준 시료에 대한 상대적인 값으로 겔침투크로마토그래피(GPC, Gel Permeation Chromatograhy)를 사용하여 측정할 수 있다.The molecular weight of the polylysine may be at least 4,000 g / mol, at least 5,000 g / mol, at least 6,000 g / mol, at least 7,000 g / mol, at least 8,000 g / mol, at least 9,000 g / mol, or at least 10,000 g / mol. The molecular weight of polylysine can be measured using Gel Permeation Chromatography (GPC) as a value relative to the PEG / PEO standard sample.
폴리라이신은 6 내지 48시간 동안 130 내지 150℃ 온도 조건에서 라이신을 축합 중합하여 얻어지는 결과물일 수 있다. Polylysine may be the result obtained by condensation polymerization of lysine at 130 to 150 ° C. temperature for 6 to 48 hours.
폴리라이신 내 알파(α)는 라이신의 알파(α) 위치 탄소에 연결된 아미노기가 중합에 사용된 반복 단위이며, 폴리라이신 내 입실론(ε)은 라이신의 입실론(ε) 위치 탄소에 연결된 아미노기가 중합에 사용된 반복 단위이다. Alpha (α) in polylysine is a repeating unit in which an amino group connected to the alpha (α) position carbon of lysine is used for polymerization, and epsilon (ε) in polylysine is an amino group linked to the epsilon (ε) position carbon of lysine. The repeat unit used.
폴리라이신 내 알파(α):입실론(ε) 조성비는, 폴리라이신의 1H NMR 스펙트럼에서, 알파(α) 위치에 연결된 아미노기가 중합에 사용된 반복 단위의 메틴(-CH)에서 유래하는 3.2ppm 내지 3.4ppm 에서의 제 1피크 면적(A)과 입실론(ε) 위치에 연결된 아미노기가 중합에 사용된 반복 단위의 메틴(-CH, 도 1의 a 탄소)에서 유래하는 3.8ppm 내지 4.0ppm 에서의 제 2피크 면적(B)의 비율에 의하여 결정된다.The alpha (α): epsilon (ε) composition ratio in polylysine is from 3.2 ppm to 1M NMR spectrum of polylysine derived from methine (-CH) of repeating units in which the amino group linked to the alpha (α) position is used for polymerization. The first peak area (A) at 3.4 ppm and the amino group linked to the epsilon (ε) position are from 3.8 ppm to 4.0 ppm derived from methine (-CH, a carbon in FIG. 1) of the repeating unit used for polymerization. It is determined by the ratio of the 2 peak area B.
한편, 폴리라이신의 축합 반응 조건을 조절함에 의하여 얻어지는 폴리라이신의 1H NMR 스펙트럼에서, 제 1피크 면적(A)과 제 2피크 면적(B)의 비율(A:B)이 조절될 수 있다. On the other hand, in the 1H NMR spectrum of polylysine obtained by adjusting the condensation reaction conditions of polylysine, the ratio (A: B) of the first and second peak areas A and B may be adjusted.
폴리라이신 내에서 라이신의 알파(α) 위치에 연결된 아미노기가 중합에 사용된 반복 단위, 즉, α-폴리라이신 반복단위의 함량이 증가하면, 폴리라이신의 1H NMR 스펙트럼에서, 3.2ppm 내지 3.4ppm 에서의 제 1피크 면적(A)이 증가할 수 있다. 또한, 폴리라이신 내에서 라이신의 입실론(ε) 위치에 연결된 아미노기가 중합에 사용된 반복 단위, 즉, ε-폴리라이신 반복단위의 함량이 증가하면, 폴리라이신의 1H NMR 스펙트럼에서, 3.8ppm 내지 4.0ppm 에서의 제 2피크 면적(B)이 증가할 수 있다.If the amino group linked to the alpha (α) position of the lysine in the polylysine increases in the content of the repeating unit used for polymerization, i.e., the α-polylysine repeating unit, in the 1H NMR spectrum of the polylysine at 3.2 ppm to 3.4 ppm The first peak area A of may increase. In addition, when the content of the repeating units used for polymerization in the amino group linked to the epsilon (ε) position of the lysine in the polylysine, i.e., the ε-polylysine repeating unit, increases in the 1H NMR spectrum of the polylysine, from 3.8 ppm to 4.0 The second peak area B in ppm may increase.
환원당 또는 이의 유도체는 알데히드기 및 케톤기 중에서 선택된 하나 이상을 가질 수 있다. 환원당이 알데히드기 및 케톤기 중에서 선택된 하나 이상을 포함함에 의하여 환원당을 포함하는 바인더 조성물의 열경화시에 알데히드기 및/또는 케톤기가 폴리라이신의 아민기와 반응하여 이민 결합을 형성할 수 있다. 그리고, 이러한 이민 결합은 또 다른 환원당의 하이드록실기와 반응하여 경화될 수 있으며, 상기 경화 메카니즘은 비가역 반응일 수 있다.The reducing sugar or derivative thereof may have one or more selected from aldehyde groups and ketone groups. When the reducing sugar includes at least one selected from an aldehyde group and a ketone group, the aldehyde group and / or the ketone group may react with the amine group of the polylysine to form an imine bond upon thermosetting of the binder composition including the reducing sugar. And, this imine bond can be cured by reacting with the hydroxyl group of another reducing sugar, and the curing mechanism can be an irreversible reaction.
환원당 또는 이의 유도체의 함량은 바인더 조성물 고형분 100 중량부 기준으로 40 내지 85 중량부, 40 내지 75 중량부, 40 내지 65 중량부, 40 내지 60 중량부, 50 내지 85 중량부, 50 내지 75 중량부, 50 내지 65 중량부, 또는 50 내지 60 중량부일 수 있다. 환원당의 함량이 지나치게 높으면 바인더 조성물을 사용하여 제조된 물품 내에 미반응 환원당이 잔류하여 물품의 물성이 저하될 수 있다. 환원당의 함량이 지나치게 낮으면 바인더 조성물의 경화가 불완전함에 의하여 바인더 조성물을 사용하여 제조된 물품의 물성이 저하될 수 있다.The content of the reducing sugar or derivative thereof is 40 to 85 parts by weight, 40 to 75 parts by weight, 40 to 65 parts by weight, 40 to 60 parts by weight, 50 to 85 parts by weight, 50 to 75 parts by weight based on 100 parts by weight of the binder composition solids. , 50 to 65 parts by weight, or 50 to 60 parts by weight. If the content of the reducing sugar is too high, unreacted reducing sugar may remain in the article manufactured using the binder composition, thereby lowering the physical properties of the article. When the content of the reducing sugar is too low, the curing of the binder composition may be incomplete, thereby lowering the physical properties of the article manufactured using the binder composition.
환원당은 말토스, 프록토오스, 갈락토오스, 락토오스, 겐티오비오스, 루티노오스, 글루코오스, 자일로오스 등의 단당류 및 이당류 또는 이들의 조합이 사용될 수 있으나 본 발명의 목적을 벗어나지 않는 범위 내라면 반드시 이들로 제한되는 것은 아니다.Reducing sugars may be used monosaccharides and disaccharides or combinations thereof, such as maltose, fructose, galactose, lactose, genthiobiose, lutinose, glucose, xylose, but not necessarily within the scope of the present invention It is not limited to these.
구체적인 예를 들면, 상기 환원당은 글루코오스, 자일로오스 또는 이들의 조합일 수 있다. For example, the reducing sugar may be glucose, xylose, or a combination thereof.
또한, 강도 및 내수성 측면에서 상기 환원당은 글루코오스를 포함할 수 있다. 바인더 조성물에서 고형분 함량은 바인더 조성물 100 중량부에 대하여 15 내지 80 중량부, 15 내지 75 중량부, 15 내지 70 중량부, 15 내지 65 중량부, 15 내지 60 중량부, 또는 15 내지 55 중량부일 수 있다. 바인더 조성물에서 고형분은 폴리라이신과 환원당이고 고형분 이외 성분은 희석제인 물일 수 있다. 고형분 함량이 지나치게 높으면 바인더 조성물의 점도가 증가하여 작업성이 저하되며, 바인더 조성물을 사용하여 제조되는 물품 내에 바인더 함량이 지나치게 증가할 수 있다. 고형분 함량이 지나치게 낮으면 물을 제거하기 위하여 과량의 에너지가 소모될 수 있다.In addition, the reducing sugar may include glucose in terms of strength and water resistance. The solid content in the binder composition may be 15 to 80 parts by weight, 15 to 75 parts by weight, 15 to 70 parts by weight, 15 to 65 parts by weight, 15 to 60 parts by weight, or 15 to 55 parts by weight based on 100 parts by weight of the binder composition. have. Solids in the binder composition may be water, polylysine and reducing sugars and components other than solids are diluents. If the solid content is too high, the viscosity of the binder composition is increased to reduce workability, and the binder content may be excessively increased in an article manufactured using the binder composition. If the solids content is too low, excess energy may be consumed to remove the water.
바인더 조성물은 하나 이상의 첨가제를 추가로 포함할 수 있다. 첨가제는 열경화물의 내수성을 높이기 위한 발수제, 열경화물의 부식을 방지하기 위한 방청제, 열경화물의 분진 발생율을 낮추기 위한 방진유, 열경화물의 pH를 조절하기 위한 완충제, 바인더 조성물의 부착 향상을 위한 커플링제 등일 수 있으나 이들로 한정되지 않으며, 당해 기술분야에서 바인더 조성물 및 열경화물의 물성 향상을 위하여 사용될 수 있는 첨가제라면 모두 가능하다. 첨가제의 함량은 폴리라이신과 환원당의 총합 100 중량부에 대하여, 각각 0.1~10 중량부, 0.1~8 중량부, 0.1~6 중량부, 0.1~5 중량부, 0.1~4 중량부, 0.1~3 중량부, 0.1~2 중량부, 0.1~1 중량부, 또는 0.1~0.5 중량부일 수 있으나 반드시 이러한 범위로 한정되는 것은 아니며 요구되는 물성에 따라 조절될 수 있다.The binder composition may further comprise one or more additives. Additives include water repellents to increase the water resistance of thermosets, rust preventives to prevent corrosion of thermosets, anti-vibration oils to reduce dust incidence of thermosets, buffers to control pH of thermosets, and couples to improve adhesion of binder compositions. It may be a ring agent and the like, but is not limited thereto, and any additives that can be used for improving physical properties of the binder composition and the thermoset in the art are possible. The content of the additive is 0.1 to 10 parts by weight, 0.1 to 8 parts by weight, 0.1 to 6 parts by weight, 0.1 to 5 parts by weight, 0.1 to 4 parts by weight, 0.1 to 3 parts by weight of 100 parts by weight of the total amount of polylysine and reducing sugar. It may be part by weight, 0.1 to 2 parts by weight, 0.1 to 1 part by weight, or 0.1 to 0.5 parts by weight, but is not necessarily limited to this range and may be adjusted according to the required physical properties.
본 출원의 다른 양태에 따른 물품은 상술한 바인더 조성물의 열경화물에 의하여 결속된다. 상술한 바인더 조성물의 열경화물은 불수용성 중합체로서 물품을 강하게 결착하여 물품의 강도 및 내수성이 향상된다.An article according to another aspect of the present application is bound by the thermoset of the binder composition described above. The thermoset of the binder composition described above strongly binds the article as a water-insoluble polymer, thereby improving the strength and water resistance of the article.
바인더 조성물의 열경화물에 의하여 결속된 물품은 KSF3200에 따른 시험 방법에 의하여 측정된 흡수 두께 팽창률이 40% 이하, 38% 이하, 36% 이하, 34% 이하, 33% 이하, 30% 이하, 25% 이하, 20% 이하, 15% 이하, 또는 12% 이하일 수 있다. 바인더 조성물의 열경화물에 의하여 결속된 물품이 우수한 내수성을 가질 수 있다. 또한, 바인더 조성물의 열경화물에 의하여 결속된 물품은 KSF3200에 따른 시험 방법에 의하여 측정된 내부 결합 강도가 1.4 N/mm2 이상, 1.5 N/mm2 이상, 1.6 N/mm2 이상, 1.7 N/mm2 이상, 1.8 N/mm2 이상, 1.9 N/mm2 이상, 또는 2.0 N/mm2 이상일 수 있다. 바인더 조성물의 열경화물에 의하여 결속된 물품이 우수한 내부 결합 강도를 가질 수 있다. 바인더 조성물의 열경화물에 의하여 결속된 물품은 단열재, 합판 등일 수 있으나 반드시 이들로 한정되지 않으며, 바인더 조성물을 사용하여 일정한 형태로 결속되는 물품이라면 모두 가능하다.The article bound by the thermosetting of the binder composition has an absorption thickness expansion ratio of 40% or less, 38% or less, 36% or less, 34% or less, 33% or less, 30% or less, 25% as measured by a test method according to KSF3200. Up to 20%, up to 15%, or up to 12%. An article bound by the thermoset of the binder composition may have excellent water resistance. In addition, the article bound by the thermosetting of the binder composition has an internal bond strength of at least 1.4 N / mm 2, at least 1.5 N / mm 2, at least 1.6 N / mm 2 , 1.7 N / measured by the test method according to KSF3200 mm 2 or more, 1.8 N / mm 2 or more, 1.9 N / mm 2 or more, or 2.0 N / mm 2 or more. An article bound by the thermoset of the binder composition may have good internal bond strengths. The article bound by the thermoset of the binder composition may be a heat insulating material, plywood, etc., but is not necessarily limited to these, any article that is bound in a certain form using the binder composition is possible.
본 출원의 또 다른 양태에 따른 물품 제조방법은 상술한 바인더 조성물을 준비하는 단계; 및 바인더 조성물을 120℃ 이상의 온도에서 열경화시키는 단계;를 포함한다. 상술한 물품 제조방법으로 제조된 물품은 우수한 내수성 및 강도를 가진다.An article manufacturing method according to another aspect of the present application comprises the steps of preparing the binder composition; And thermally curing the binder composition at a temperature of 120 ° C. or higher. Articles made by the above-described article manufacturing method have excellent water resistance and strength.
물품 제조방법에서 바인더 조성물이 섬유상 재료 및 분말상 재료 중에서 선택된 하나 이상을 추가적으로 포함할 수 있다. In the article manufacturing method, the binder composition may further include one or more selected from fibrous materials and powdery materials.
섬유상 재료는 암면, 유리면, 세라믹 섬유 등과 같은 무기질 섬유, 천연 및 합성수지에서 얻어진 섬유 등의 단섬유 집합체 등일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 섬유상 재료로 사용될 수 있는 것이라면 모두 가능하다. 분말상 재료는 목재 분말 등일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 분말상 재료로 사용될 수 있는 것이라면 모두 가능하다.The fibrous material may be inorganic fiber such as rock wool, glass wool, ceramic fiber, etc., short fiber aggregates such as fibers obtained from natural and synthetic resins, and the like, but is not necessarily limited thereto, and any fibrous material may be used as the fibrous material in the art. The powdery material may be wood powder or the like, but is not necessarily limited thereto, and any powdery material may be used as long as it can be used as a powdery material in the art.
바인더 조성물에 섬유상 재료 및 분말상 재료 중에서 선택된 하나 이상이 추가적으로 포함된 혼합물이 120℃ 이상의 온도에서 열경화됨에 의하여 섬유상 또는 분말상 재료가 바인더 조성물의 열경화물에 의하여 결속된다. 열경화를 위한 열처리 온도는 120~300℃, 130~250℃, 140~200℃, 또는 150~180℃일 수 있다. 열처리 온도가 지나치게 낮으면 미경화가 발생하고, 열처리 온도가 지나치게 높으면 과경화가 발생하여 분진이 발생할 수 있다. 열경화를 위한 열처리 시간은 1~60분, 5~40분, 10~30분, 또는 12~18분일 수 있다. 열처리 시간이 지나치게 짧으면 미경화가 발생하고, 열처리 시간이 지나치게 길면 과경화가 발생하여 분진이 발생할 수 있다. 바인더 조성물이 120℃ 이상의 온도에서 열경화되면 환원당의 알데히드기/케톤기와 폴리라이신의 아민기와의 메일러드(Maillard) 반응 등의 다양한 경화반응을 통하여 수불용성의 중합체가 형성되어, 내수성, 강도 등의 물성이 우수한 접착제로 작용할 수 있다.The fibrous or powdery material is bound by the thermosetting of the binder composition by the thermal curing of the mixture further comprising at least one selected from the fibrous material and the powdery material in the binder composition at a temperature of 120 ° C. or higher. Heat treatment temperature for thermal curing may be 120 ~ 300 ℃, 130 ~ 250 ℃, 140 ~ 200 ℃, or 150 ~ 180 ℃. If the heat treatment temperature is too low, uncuring occurs, and if the heat treatment temperature is too high, overcure may occur and dust may be generated. The heat treatment time for thermal curing may be 1 to 60 minutes, 5 to 40 minutes, 10 to 30 minutes, or 12 to 18 minutes. If the heat treatment time is too short, uncuring occurs, if the heat treatment time is too long, over-curing may occur, dust may occur. When the binder composition is thermoset at a temperature of 120 ° C. or higher, a water-insoluble polymer is formed through various curing reactions, such as a Maillard reaction between an aldehyde group / ketone group of a reducing sugar and an amine group of a polylysine, and properties such as water resistance and strength. It can act as an excellent adhesive.
열경화시에 가압 및 성형이 동시에 또는 순차적으로 수행되어 제조되는 물품의 물성 및 형태를 조절할 수 있다. 가압 시에 가해지는 압력, 시간은 특별히 한정되지 않으며 요구되는 물품의 밀도 등에 따라 조절될 수 있다.Pressing and molding may be performed simultaneously or sequentially during thermosetting to control the properties and shape of the article to be produced. The pressure and time applied during the pressurization are not particularly limited and may be adjusted according to the required density of the article.
이하의 실시예 및 비교예를 통하여 본 출원이 더욱 상세하게 설명된다. 단, 실시예는 본 출원을 예시하기 위한 것으로서 이들만으로 본 출원의 범위가 한정되는 것이 아니다.The present application is described in more detail through the following examples and comparative examples. However, the examples are provided to illustrate the present application and the scope of the present application is not limited to these examples.
실시예Example 1 One
온도 150 ℃에서 48시간 동안 열 축합 중합방법으로 L형의 라이신을 단량체로 하여 중합된 3.42g의 L-폴리라이신과 3.42g 글루코오스가 38.86g 증류수에 용해된 바인더 조성물(고형분 함량 15%, 총 폴리라이신:글루코오스=1:1 중량비)을 준비하였다. 바인더 조성물 2g을 모이스쳐 밸런스(Moisture Balance) 내에 배치된 여과지 상에 도포하고 160℃에서 15분 동안 가열하였다. 바인더 조성물의 열경화물인 갈색의 불수용성 중합체가 여과지 상에 형성되었다.Binder composition in which 3.42 g of L-polylysine and 3.42 g of glucose were polymerized in 38.86 g of distilled water polymerized using L-lysine as a monomer by thermal condensation polymerization at a temperature of 150 ° C. for 48 hours (solid content 15%, total poly Lysine: glucose = 1: 1 weight ratio). 2 g of the binder composition was applied on filter paper placed in Moisture Balance and heated at 160 ° C. for 15 minutes. A brown water-insoluble polymer, a thermoset of the binder composition, was formed on the filter paper.
바인더 조성물의 제조에 사용된 폴리라이신은 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이며, 도 1의 1H NMR 스펙트럼에서 보여지는 바와 같이, 폴리라이신을 산화 중수소(D2O)를 용매로 사용하여 400MHz NMR을 측정하였을 때, 알파(α) 위치에 연결된 아미노기가 중합에 사용된 반복 단위의 메틴(-CH, 도 1의 c 탄소)에서 유래하는 3.2ppm 내지 3.4ppm 에서의 제 1피크 면적(A)과 입실론(ε) 위치에 연결된 아미노기가 중합에 사용된 반복 단위의 메틴(-CH, 도 1의 a 탄소)에서 유래하는 3.8ppm 내지 4.0ppm 에서의 제 2피크 면적(B)의 비율은 9:1이었다. 도 1에서 제 1피크는 c로 표시되고 제 2 피크는 a로 표시된다.Polylysine used in the preparation of the binder composition has a number average molecular weight (Mn) of 6,000 g / mol, a weight average molecular weight (Mw) of 8,000 g / mol, and as shown in the 1 H NMR spectrum of FIG. When 400 MHz NMR was measured using deuterium oxide (D 2 O) as a solvent, 3.2 derived from methine (-CH, FIG. At 3.8 ppm to 4.0 ppm derived from methine (-CH, a carbon in FIG. 1) of the repeating unit used in the polymerization, where the amino group linked to the first peak area (A) and the epsilon (ε) position at ppm to 3.4 ppm is used. The ratio of the second peak area (B) of 9 was 9: 1. In FIG. 1 the first peak is denoted c and the second peak is denoted a.
폴리라이신의 분자량은 PEG/PEO 표준 시료를 사용하여 GPC(Gel Permeation Chromatography)에서 측정하였다.The molecular weight of polylysine was measured in gel permeation chromography (GPC) using PEG / PEO standard samples.
실시예Example 2 2
1.72g L-폴리라이신과 5.14g 글루코오스가 38.86g 증류수에 용해된 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 15%, 폴리라이신:글루코오스=1:3 중량비)을 준비하였다. A binder composition (solid content 15%, polylysine: glucose = 1: 3 weight ratio) was prepared in the same manner as in Example 1 except that 1.72 g L-polylysine and 5.14 g glucose were dissolved in 38.86 g distilled water.
바인더 조성물 2g을 모이스쳐 밸런스(Moisture Balance) 내에 배치된 여과지 상에 도포하고 160℃에서 15분 동안 가열하였다. 바인더 조성물의 열경화물인 갈색의 불수용성 중합체가 여과지 상에 형성되었다.2 g of the binder composition was applied on filter paper placed in Moisture Balance and heated at 160 ° C. for 15 minutes. A brown water-insoluble polymer, a thermoset of the binder composition, was formed on the filter paper.
바인더 조성물 제조에 사용된 폴리라이신의 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.The ratio of the area (A) of the first peak to the area (B) of the second peak in the 1 H NMR spectrum of the polylysine used to prepare the binder composition was 9: 1, and the number average molecular weight (Mn) 6,000 g / mol, The weight average molecular weight (Mw) is 8,000 g / mol level.
실시예Example 3 3
1.71g L-폴리라이신과 8.58g 글루코오스가 58.28g 증류수에 용해된 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 15%, 폴리라이신:글루코오스=1:5 중량비)을 준비하였다. 바인더 조성물 2g을 모이스쳐 밸런스(Moisture Balance) 내에 배치된 여과지 상에 도포하고 160℃에서 15분 동안 가열하였다. 바인더 조성물의 열경화물인 갈색의 불수용성 중합체가 여과지 상에 형성되었다.A binder composition (solid content 15%, polylysine: glucose = 1: 5 weight ratio) was prepared in the same manner as in Example 1 except that 1.71 g L-polylysine and 8.58 g glucose were dissolved in 58.28 g distilled water. 2 g of the binder composition was applied on filter paper placed in Moisture Balance and heated at 160 ° C. for 15 minutes. A brown water-insoluble polymer, a thermoset of the binder composition, was formed on the filter paper.
바인더 조성물 제조에 사용된 폴리라이신의 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.The ratio of the area (A) of the first peak to the area (B) of the second peak in the 1 H NMR spectrum of the polylysine used to prepare the binder composition was 9: 1, and the number average molecular weight (Mn) 6,000 g / mol, The weight average molecular weight (Mw) is 8,000 g / mol level.
실시예Example 4 4
0.8g L-폴리라이신과 8g 글루코오스가 49.30g 증류수에 용해된 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 15%, 폴리라이신:글루코오스=1:10 중량비)을 준비하였다. 바인더 조성물 2g을 모이스쳐 밸런스(Moisture Balance) 내에 배치된 여과지 상에 도포하고 160℃에서 15분 동안 가열하였다. 바인더 조성물의 열경화물인 갈색의 불수용성 중합체가 여과지 상에 형성되었다.A binder composition (solid content 15%, polylysine: glucose = 1: 10 weight ratio) was prepared in the same manner as in Example 1 except that 0.8 g L-polylysine and 8 g glucose were dissolved in 49.30 g distilled water. 2 g of the binder composition was applied on filter paper placed in Moisture Balance and heated at 160 ° C. for 15 minutes. A brown water-insoluble polymer, a thermoset of the binder composition, was formed on the filter paper.
바인더 조성물 제조에 사용된 폴리라이신의 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.The ratio of the area (A) of the first peak to the area (B) of the second peak in the 1 H NMR spectrum of the polylysine used to prepare the binder composition was 9: 1, and the number average molecular weight (Mn) 6,000 g / mol, The weight average molecular weight (Mw) is 8,000 g / mol level.
실시예Example 5 5
12.22g L-폴리라이신과 12.22g 글루코오스가 24.44g 증류수에 용해된 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:1 중량비)을 준비하였다.A binder composition (50% solids, polylysine: glucose = 1: 1 weight ratio) was prepared in the same manner as in Example 1 except that 12.22 g L-polylysine and 12.22 g glucose were dissolved in 24.44 g distilled water.
바인더 조성물 제조에 사용된 폴리라이신은 실시예 1과 동일하게, 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
실시예Example 6 6
6.11g L-폴리라이신과 18.33g 글루코오스가 20.5g 증류수에 용해된 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:3 중량비)을 준비하였다.A binder composition (50% solids, polylysine: glucose = 1: 3 weight ratio) was prepared in the same manner as in Example 1 except that 6.11 g L-polylysine and 18.33 g glucose were dissolved in 20.5 g distilled water.
바인더 조성물 제조에 사용된 폴리라이신은 실시예 1과 동일하게, 1H NMR 스펙트럼 에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
실시예Example 7 7
15.27g L-폴리라이신과 7.64g 글루코오스가 22.91g 증류수에 용해된 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:0.5 중량비)을 준비하였다.A binder composition (50% solids, polylysine: glucose = 1: 0.5 weight ratio) was prepared in the same manner as in Example 1 except that 15.27 g L-polylysine and 7.64 g glucose were dissolved in 22.91 g distilled water.
바인더 조성물 제조에 사용된 폴리라이신은 실시예 1과 동일하게, 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
실시예Example 8 8
14.14g 폴리라이신과 14.14g 글루코오스를 28.28g 증류수에 용해하였으며 상기 폴리라이신이 실시예 1의 L-폴리라이신 및 상용 ε-폴리라이신(Zhengzhou Bainafo Bioengineering Co., Ltd 제조)의 혼합인 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:1 중량비)을 준비하였다.14.14 g polylysine and 14.14 g glucose were dissolved in 28.28 g distilled water except that the polylysine was a mixture of L-polylysine and commercially available ε-polylysine (manufactured by Zhengzhou Bainafo Bioengineering Co., Ltd.) of Example 1. A binder composition (50% solids content, polylysine: glucose = 1: 1 weight ratio) was prepared in the same manner as in Example 1.
상기 폴리라이신의 1H NMR 스펙트럼 내 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 7:3 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.The ratio of the area (A) of the first peak to the area (B) of the second peak in the 1 H NMR spectrum of the polylysine was 7: 3, and the number average molecular weight (Mn) was 6,000 g / mol and the weight average molecular weight (Mw). ) 8,000 g / mol level.
실시예Example 9 9
30g L-폴리라이신과 150g 글루코오스를 360g 증류수에 용해한 후, 80℃에서 1시간 30분 동안 교반한 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:5 중량비)을 준비하였다.Binder composition (50% solids content, polylysine: glucose = 1) in the same manner as in Example 1 except that 30 g L-polylysine and 150 g glucose were dissolved in 360 g distilled water and then stirred at 80 ° C. for 1 hour and 30 minutes. : 5 weight ratio) was prepared.
바인더 조성물 제조에 사용된 폴리라이신은 실시예 1과 동일하게, 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
실시예Example 10 10
30g L-폴리라이신과 150g 자일로오스가 360g 증류수에 용해된 후, 80℃에서 1시간 30분 동안 교반한 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 50%, 폴리라이신:자일로오스=1:5 중량비)을 준비하였다.Binder composition (50% solids content, polylysine: 50% solids content) in the same manner as in Example 1 except that 30 g L-polylysine and 150 g xylose were dissolved in 360 g distilled water and then stirred at 80 ° C. for 1 hour and 30 minutes. Xylose = 1: 5 weight ratio).
바인더 조성물 제조에 사용된 폴리라이신은 실시예 1과 동일하게, 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
실시예Example 11 11
30g L-폴리라이신과 30g 글루코오스가 60g 증류수에 용해된 것을 제외하고는 실시예 1과 동일한 방법으로 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:1 중량비)을 준비하였다.A binder composition (50% solids content, polylysine: glucose = 1: 1 weight ratio) was prepared in the same manner as in Example 1 except that 30 g L-polylysine and 30 g glucose were dissolved in 60 g distilled water.
바인더 조성물 제조에 사용된 폴리라이신은 실시예 1과 동일하게, 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
실시예Example 12 12
온도 150 ℃에서 48시간동안 열 축합 중합방법으로 DL-형의 라이신을 단량체로 하여 중합된 30g DL-폴리라이신과 30g 글루코오스가 60g 증류수에 용해된 바인더 조성물(고형분 함량 50%, DL-폴리라이신:글루코오스=1:1 중량비)을 준비하였다.Binder composition in which 30 g DL-polylysine and 30 g glucose dissolved in 60 g distilled water polymerized using DL-type lysine as a monomer by thermal condensation polymerization method at a temperature of 150 ° C. for 48 hours (50% of solid content, DL-polylysine: Glucose = 1: 1 weight ratio).
바인더 조성물 제조에 사용된 폴리라이신은 실시예 1과 동일하게, 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 9:1 이었으며, 수평균분자량(Mn) 6,000g/mol, 중량평균분자량(Mw) 8,000g/mol 수준이다.Polylysine used to prepare the binder composition was the same as Example 1, the ratio of the area (A) of the first peak and the area (B) of the second peak in the 1 H NMR spectrum was 9: 1, and the number average molecular weight ( Mn) 6,000 g / mol, weight average molecular weight (Mw) 8,000 g / mol level.
비교예Comparative example 1 One
바인더 물질 없이 목섬유 100 중량부를 그대로 사용하였다.100 parts by weight of wood fibers were used without binder material.
비교예Comparative example 2 2
16.5g 폴리라이신과 16.5g 글루코오스가 33g 증류수에 용해된 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:1 중량비)을 준비하였다.A binder composition (50% solids content, polylysine: glucose = 1: 1 weight ratio) in which 16.5 g polylysine and 16.5 g glucose was dissolved in 33 g distilled water was prepared.
상기 폴리라이신은 실시예 1의 L-폴리라이신 및 상용 ε-폴리라이신(Zhengzhou Bainafo Bioengineering Co., Ltd 제조)의 혼합이며, 상기 폴리라이신의 1H NMR 스펙트럼 내 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 5:5 이었다.The polylysine is a mixture of L-polylysine and commercially available ε-polylysine (manufactured by Zhengzhou Bainafo Bioengineering Co., Ltd.) of Example 1, and the area (A) of the first peak in the 1 H NMR spectrum of the polylysine The ratio of the area B of the second peak was 5: 5.
비교예Comparative example 3 3
18.3g 폴리라이신과 18.3g 글루코오스가 36.6g 증류수에 용해된 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:1 중량비)을 준비하였다.A binder composition (50% solids content, polylysine: glucose = 1: 1 weight ratio) in which 18.3 g polylysine and 18.3 g glucose was dissolved in 36.6 g distilled water was prepared.
상기 폴리라이신은 실시예 1의 L-폴리라이신 및 상용 ε-폴리라이신(Zhengzhou Bainafo Bioengineering Co., Ltd 제조)의 혼합이며, 상기 폴리라이신의 1H NMR 스펙트럼 내 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 3:7 이었다.The polylysine is a mixture of L-polylysine and commercially available ε-polylysine (manufactured by Zhengzhou Bainafo Bioengineering Co., Ltd.) of Example 1, and the area (A) of the first peak in the 1 H NMR spectrum of the polylysine The ratio of the area B of the second peak was 3: 7.
비교예Comparative example 4 4
상용 ε-폴리라이신(Zhengzhou Bainafo Bioengineering Co., Ltd 제조) 16g 및 글루코스 16g이 증류수에 용해된 바인더 조성물(고형분 함량 50%, 폴리라이신:글루코오스=1:1 중량비)을 준비하였다.A binder composition (50% solids content, polylysine: glucose = 1: 1 weight ratio) in which 16 g of commercially available ε-polylysine (manufactured by Zhengzhou Bainafo Bioengineering Co., Ltd.) and 16 g of glucose were dissolved in distilled water was prepared.
바인더 조성물 제조에 사용된 폴리라이신의 1H NMR 스펙트럼에서 제 1피크의 면적(A)과 제 2피크의 면적(B)의 비율은 0:10 이었다.The ratio of the area A of the first peak to the area B of the second peak in the 1 H NMR spectrum of the polylysine used for preparing the binder composition was 0:10.
비교예Comparative example 5 5
직접 제조한 상용 우레아-포름알데히드 수지(UF resin)를 바인더 조성물로 그대로 사용하였다.Commercially prepared commercial urea-formaldehyde resin (UF resin) was used as it is as a binder composition.
비교예Comparative example 6 6
상용 중밀도 섬유판(한솔홈데코社 제조, 인테리어급 GI 18) 를 사용하였다.A commercial medium density fiberboard (manufactured by Hansol Home Deco, interior grade GI 18) was used.
비교예Comparative example 7 7
상용 중밀도 섬유판(한솔홈데코社 제조, 슈퍼라이트급 GSL 18)를 사용하였다.A commercial medium density fiber board (manufactured by Hansol Home Deco Co., Ltd., super light grade GSL 18) was used.
평가예Evaluation example 1:  One: 폴리라이신과Polylysine 환원당의 조성에 따른 평가 Evaluation according to the composition of reducing sugar
폴리라이신과 환원당의 함량 비에 따른 물성 평가를 위해 하기 항목들의 실험을 수행하였다.In order to evaluate the properties according to the content ratio of polylysine and reducing sugar, the following items were tested.
a) 내수성 평가a) water resistance evaluation
실시예 1 내지 4에서 제조된 불수용성 중합체가 형성된 여과지를 상온에서 10분 동안 증류수에 담가 색변화 및 pH 변화를 측정하여 그 결과를 표 1 및 도 2에 각각 나타내었다. The filter paper on which the water-insoluble polymer prepared in Examples 1 to 4 was formed was immersed in distilled water at room temperature for 10 minutes to measure color change and pH change, and the results are shown in Table 1 and FIG. 2, respectively.
색변화는 분광측색계를 통해 APHA값과 황색채도(b*)를 측정하였다.Color change was measured by APHA value and yellow saturation (b *) through a spectrophotometer.
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4
APHAAPHA 2020 8484 119119 223223
황색채도(b*)Yellow Saturation (b *) 0.640.64 2.682.68 3.783.78 7.097.09
pH 변화가 적을수록 경화되지 않고 잔존하는 바인더 조성물의 용해정도가 향상되므로 내수성이 우수하며, 색변화가 적을수록 내수성이 우수하다. The smaller the pH change, the better the water solubility of the binder composition remaining without curing, and the better the water resistance.
표 1 및 도 2를 참조하면, 폴리라이신에 비하여 글루코오스 함량이 높은 실시예 2 내지 4의 바인더 조성물을 사용하여 얻어진 불수용성 중합체에 비하여 폴리라이신과 글루코오스의 함량이 동일한 실시예 1의 바인더 조성물을 사용하여 얻어진 불수용성 중합체는 일정 시간 침수 후에도 pH 변화 및 색변화가 적었다. 이에 따라, 실시예 1의 바인더 조성물을 사용하여 얻어진 불수용성 중합체가 실시예 2 내지 4의 바인더 조성물을 사용하여 얻어진 불수용성 중합체에 비하여 내수성이 향상됨을 확인할 수 있었다.Referring to Table 1 and FIG. 2, the binder composition of Example 1 having the same content of polylysine and glucose as the water-insoluble polymer obtained using the binder composition of Examples 2 to 4 having a higher glucose content than that of polylysine was used. The water-insoluble polymer obtained by the reaction showed little change in pH and color even after immersion for a certain time. Accordingly, it was confirmed that the water-insoluble polymer obtained using the binder composition of Example 1 is improved in water resistance compared to the water-insoluble polymer obtained using the binder compositions of Examples 2 to 4.
시편 제작Specimen Fabrication
실시예 5 내지 7에서 제조된 바인더 조성물을 사용하여 시편을 각각 제조하였다.Specimens were each prepared using the binder compositions prepared in Examples 5-7.
목섬유(우드 파이버, 리기다 소나무(Pinus rigida), 라디에타 소나무(Pinus radiate) 등의 혼합 재료) 85 중량부와 바인더 조성물 15 중량부를 혼합하여 혼합물을 준비하였다. 준비된 혼합물을 160℃ 온도 및 200kg/cm2의 압력 하에서 성형하였다. 성형은 30초 가압과 3분 해압을 두 차례 반복하였다. 해압에 의하여 경화 시 발생하는 기체를 제거하고 경화시켰다. 성형된 시편을 160℃에서 1시간 동안 방치하여 경화시켰다.A mixture was prepared by mixing 85 parts by weight of wood fibers (mixing material such as wood fiber, Pinus rigida, and Radius pine) and 15 parts by weight of the binder composition. The prepared mixture was molded under a temperature of 160 ° C. and a pressure of 200 kg / cm 2 . Molding was repeated twice for 30 seconds and three minutes of depressurization. The gas generated during curing was removed and cured by sea pressure. The molded specimen was cured by standing at 160 ° C. for 1 hour.
한편, 비교예 1의 목섬유 100 중량부를 사용하여 동일한 방법으로 시편을 제조하였다.On the other hand, using 100 parts by weight of wood fibers of Comparative Example 1 to prepare a specimen.
b) 굴곡강도(Flexural bending strength), 외관, 밀도 측정b) Flexural strength, appearance and density measurements
실시예 5 내지 7에서 제조된 바인더 조성물 및 비교예 1의 목섬유를 사용하여 준비된 시편에 대하여, 시편의 넓이와 두께를 마이크로미터로 측정하였고, 만능시험기(UTM, Universal Testing Machine)를 이용하여 상온에서 분당 50 mm의 속도로 압축하여 굴곡강도를 측정하여 그 결과를 하기 표 2에 나타내었다. 또한, 시편의 외관, 밀도 및 시편 제조에 사용된 바인더 조성물의 고형분 함량도 표 2에 나타내었다.For the specimens prepared using the binder compositions prepared in Examples 5 to 7 and wood fibers of Comparative Example 1, the width and thickness of the specimens were measured in micrometers, and at room temperature using a universal testing machine (UTM). Compressive strength was measured by compressing at a rate of 50 mm per minute and the results are shown in Table 2 below. In addition, the appearance, density and solids content of the binder composition used to prepare the specimens are also shown in Table 2.
구분division 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 비교예 1Comparative Example 1
시편 물성Specimen Properties 외관Exterior 적갈색불투명Maroon Opaque 적갈색불투명Maroon Opaque 갈색투명Brown and transparent --
고형분 함량(%)Solid content (%) 5050 5050 5050 --
밀도(kg/m3)Density (kg / m 3 ) 667667 741741 667667 --
굴곡강도(N/mm2)Flexural Strength (N / mm 2 ) 9.729.72 4.404.40 2.502.50 0.340.34
표 2에 보여지는 바와 같이, 실시예 5 내지 7의 바인더 조성물을 사용하여 제조된 시편은 비교예 1의 목섬유만을 사용하여 제조된 시편에 비하여 굴곡강도가 현저히 향상되었다.As shown in Table 2, the specimen prepared using the binder composition of Examples 5 to 7 significantly improved the bending strength compared to the specimen prepared using only the wood fiber of Comparative Example 1.
또한, 폴리라이신과 글루코오스의 함량비가 유사한 실시예 5의 바인더 조성물을 사용하여 제조된 시편은 폴리라이신과 글루코오스의 함량비가 상이한 실시예 6 내지 7의 바인더 조성물을 사용하여 제조된 시편에 비하여 굴곡 강도가 더욱 향상됨을 확인할 수 있었다.In addition, the specimen prepared using the binder composition of Example 5 having a similar content ratio of polylysine and glucose had a higher flexural strength than the specimen prepared using the binder compositions of Examples 6 to 7 having different content ratios of polylysine and glucose. It could be confirmed that further improvement.
따라서, 표 1 및 2에 의할때, 폴리라이신과 글루코오스의 함량이 유사할수록 경화반응 속도가 빨라져 불수용성 중합체의 내수성 및 강도가 향상되는 것으로 판단된다. 즉, 폴리라이신과 글루코오스의 함량이 유사할수록 불수용성 중합체의 물성이 더욱 향상되었다.Therefore, according to Tables 1 and 2, it is determined that the more similar the content of polylysine and glucose is, the faster the curing reaction rate is, thereby improving the water resistance and strength of the water-insoluble polymer. That is, the more similar the content of polylysine and glucose, the better the physical properties of the water-insoluble polymer.
평가예Evaluation example 2:  2: 폴리라이신Polylysine  of mine 알파(α):입실론(ε)Alpha (α): epsilon (ε) 조성비에 따른 물성 측정 Measurement of physical properties according to composition ratio
본 출원에서 폴리라이신 내 알파(α):입실론(ε) 조성비에 따른 바인더 평가를 위해 하기 항목들의 실험을 수행하였다.In the present application, experiments of the following items were performed to evaluate the binder according to the alpha (α): epsilon (ε) composition ratio in polylysine.
시편 제작Specimen Fabrication
실시예 5, 실시예 8 및 비교예 2 내지 4 에서 제조된 바인더 조성물을 사용하여 시편을 각각 제조하였다.Specimens were each prepared using the binder compositions prepared in Examples 5, 8 and Comparative Examples 2-4.
목섬유(우드 파이버, 리기다 소나무(Pinus rigida), 라디에타 소나무(Pinus radiate) 등의 혼합 재료) 85 중량부와 바인더 조성물 15 중량부를 혼합하여 혼합물을 준비하였다. 준비된 혼합물을 160℃ 온도 및 200kg/cm2의 압력 하에서 성형하였다. 성형은 30초 가압과 3분 해압을 두 차례 반복하였다. 해압에 의하여 경화 시 발생하는 기체를 제거하고 경화시켰다. 성형된 시편을 160℃에서 1시간 동안 방치하여 경화시켰다.A mixture was prepared by mixing 85 parts by weight of wood fibers (mixing material such as wood fiber, Pinus rigida, and Radius pine) and 15 parts by weight of the binder composition. The prepared mixture was molded under a temperature of 160 ° C. and a pressure of 200 kg / cm 2 . Molding was repeated twice for 30 seconds and three minutes of depressurization. The gas generated during curing was removed and cured by sea pressure. The molded specimen was cured by standing at 160 ° C. for 1 hour.
a) 외관, 밀도, 굴곡강도(Flexural bending strength) 측정a) measurement of appearance, density, and flexural strength;
실시예 5, 실시예 8, 및 비교예 2 내지 4 에서 제조된 바인더 조성물을 사용하여 준비된 시편에 대하여, 마이크로미터기를 이용하여 시편의 넓이와 두께를 측정하였고, 만능시험기(UTM, Universal Testing Machine)를 이용하여 상온에서 분당 50 mm의 속도로 압축하여 굴곡 강도를 측정하여 그 결과를 하기 표 3에 나타내었다. 또한, 시편의 외관, 밀도 및 시편 제조에 사용된 바인더 조성물의 고형분 함량도 표 3에 나타내었다.For the specimens prepared using the binder compositions prepared in Examples 5, 8, and Comparative Examples 2 to 4, the width and thickness of the specimens were measured using a micrometer, and were tested by a universal testing machine (UTM). By compressing at room temperature at a rate of 50 mm per minute using flexural strength was measured and the results are shown in Table 3 below. In addition, the appearance, density and solids content of the binder composition used to prepare the specimens are also shown in Table 3.
b) b) 경화온도Curing temperature 측정 Measure
회전형 유변물성 측정기(Rheometer, Anton Paar Physica)를 사용하여 경화 온도(curing temperature)를 측정하였다. 0.5mm 갭을 가진 평형판(parallel plate) 사이에 시편을 배치하고, 30~160℃ 온도 영역에서 2℃/min의 속도로 승온시키면서, 1.0s-1의 일정한 전단율(shear rate)로 평형판 중 하나를 회전시켰다. 시편 재료의 거동으로부터 경화온도(curing temperature)를 측정하여 그 결과를 하기 표 3에 나타내었다.Curing temperature was measured using a rheometer (Rheometer, Anton Paar Physica). Place specimens between parallel plates with 0.5 mm gap and equilibrate the plates with a constant shear rate of 1.0 s -1 while raising the temperature at a rate of 2 ° C / min in the temperature range of 30 to 160 ° C. One of them was rotated. Curing temperature was measured from the behavior of the specimen material and the results are shown in Table 3 below.
c) 두께 팽창률 측정c) thickness expansion rate measurement
실시예 5, 실시예 8 및 비교예 2 내지 4 에서 제조된 바인더 조성물을 사용하여 준비된 시편에 대하여, 마이크로미터기를 이용하여 시편의 넓이와 두께를 측정하였고, 증류수를 채운 비커 내에 시편을 침수시켜 24시간 방치한 후 시편의 두께 변화량을 측정하여 그 결과를 하기 표 3에 나타내었다. 두께 팽창률은 하기 수학식 1로부터 계산하였다.For the specimens prepared using the binder compositions prepared in Examples 5, 8 and Comparative Examples 2 to 4, the width and thickness of the specimens were measured using a micrometer, and the specimens were immersed in a beaker filled with distilled water. After leaving time, the thickness change of the specimen was measured and the results are shown in Table 3 below. The thickness expansion rate was calculated from the following equation.
<수학식 1><Equation 1>
두께 팽창률 (%) = [T-T0]/T0 × 100Thickness Expansion Rate (%) = [TT 0 ] / T 0 × 100
상기 식에서, T는 24시간 침수 후의 시편의 두께, T0는 시편의 초기 두께이다.Where T is the thickness of the specimen after immersion for 24 hours, and T 0 is the initial thickness of the specimen.
d) 수분흡수율 측정d) water absorption rate measurement
실시예 5및 비교예 2 내지 4에서 제조된 바인더 조성물을 사용하여 준비된 시편에 대하여, 시편의 무게를 측정하였고, 증류수를 채운 비커 내에 샘플을 침수시켜 24시간 후 시편의 무게를 측정하였다. 증류수의 온도는 상온을 유지하였으며, 수분 함량을 측정할 때는 비커에서 꺼내자마자 시편 표면의 물기만 제거한 후 질량을 측정하였다. 수분 흡수율은 하기 수학식 2로부터 계산하였다. For the specimen prepared using the binder composition prepared in Example 5 and Comparative Examples 2 to 4, the weight of the specimen was measured, the sample was immersed in a beaker filled with distilled water, and the weight of the specimen was measured after 24 hours. The temperature of the distilled water was maintained at room temperature, and when measuring the moisture content, as soon as it was taken out of the beaker, only the moisture on the surface of the specimen was removed and the mass was measured. The water absorption rate was calculated from the following equation.
<수학식 2><Equation 2>
수분 흡수율 (%) = [W-W0]/W0 × 100Water Absorption Rate (%) = [WW 0 ] / W 0 × 100
상기 식에서, W는 24시간 침수 후의 시편의 두께, W0는 시편의 초기 두께이다.Where W is the thickness of the specimen after immersion for 24 hours and W 0 is the initial thickness of the specimen.
여기서, W는 24시간 침수 후의 시편 무게, W0는 시편의 초기 무게이다.Where W is the weight of the specimen after immersion for 24 hours, and W 0 is the initial weight of the specimen.
구분division 실시예 5Example 5 실시예 8Example 8 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4
시편 물성Specimen Properties 외관Exterior 적갈색불투명Maroon Opaque 적갈색투명Reddish brown and transparent 적갈색투명Reddish brown and transparent 갈색투명Brown and transparent 노란색투명Yellow and transparent
밀도 (kg/m3)Density (kg / m 3 ) 667667 667667 667667 500500 571571
굴곡강도 (N/mm2)Flexural Strength (N / mm 2 ) 9.729.72 6.716.71 5.915.91 3.763.76 3.293.29
경화온도 (℃)Curing temperature (℃) 116.37116.37 117.94117.94 118.35118.35 119.56119.56 129.44129.44
두께 팽창률 (%)Thickness Expansion Rate (%) 51.2851.28 55.3455.34 75.0675.06 80.8980.89 86.6786.67
표 3에 보여지는 바와 같이, 폴리라이신 내 알파(α):입실론(ε) 조성비에서 알파(α) 함량이 증가할수록 바인더 열경화물의 물성이 향상되었다. 실시예 5 및 8의 시편은 비교예 2 내지 4의 시편에 비하여 경화 온도가 낮고 굴곡 강도가 증가하였음을 확인하였다. 이를 통해 폴리라이신 내 알파(α) 함량이 증가할수록 저온에서 경화가 시작되어 경화도가 높아짐에 따라 굴곡 강도가 향상되는 것으로 판단된다.As shown in Table 3, as the alpha (α) content was increased in the poly (lysine) alpha (α): epsilon (ε) composition ratio, the physical properties of the binder thermoset improved. It was confirmed that the specimens of Examples 5 and 8 had a lower curing temperature and increased flexural strength than the specimens of Comparative Examples 2 to 4. As a result, as the alpha (α) content in the polylysine increases, the bending strength is improved as curing begins at a low temperature and the degree of curing increases.
또한, 실시예 5 및 비교예 2 내지 4의 수분흡수율을 측정한 결과, 실시예 5의 수분흡수율은 93.54% 로 측정된 반면, 비교예 2 내지 비교예 4의 수분흡수율은 각각, 276.36%, 281.23 %, 및 285.36% 로 측정되었다. 즉, 폴리라이신 내 알파 (α) 결합이 증가할수록 수분흡수율이 감소한다는 것을 확인할 수 있었다. In addition, as a result of measuring the water absorption of Example 5 and Comparative Examples 2 to 4, the water absorption of Example 5 was measured as 93.54%, while the water absorption of Comparative Examples 2 to 4, respectively, 276.36%, 281.23 %, And 285.36%. That is, as the alpha (α) binding in polylysine increases, the water absorption rate was confirmed to decrease.
평가예Evaluation example 3: 환원당 종류에 따른 물성 측정 3: Measurement of physical properties according to reducing sugars
환원당의 종류에 따른 바인더 물성 평가를 위해 하기 항목들의 실험을 수행하였다.Experiments of the following items were carried out to evaluate the binder properties according to the type of reducing sugar.
시편 제작Specimen Fabrication
실시예 9 내지 11에서 제조된 바인더 조성물을 목섬유(우드 파이버) 대비 64.7kg/m3 투입하여 혼합한 후, 상기 혼합물을 220℃ 온도조건 하에서 수 초 동안 프레스(press) 경화하여 중밀도 섬유판(MDF, Medium-Density Fiberboard) 시편을 제작하였다. 즉, 목섬유 1m3 에 대하여 바인더 조성물 64.7kg을 혼합하였다.The binder composition prepared in Examples 9 to 11 was mixed with 64.7 kg / m 3 of wood fiber (wood fiber), and then the mixture was press cured for several seconds under a temperature condition of 220 ° C. (MDF). , Medium-Density Fiberboard) specimens were prepared. That is, 64.7 kg of the binder composition was mixed with respect to 1 m 3 of wood fibers.
비교예 5에서는 상용화된 UF 수지를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 중밀도 섬유판 시편을 제조하였다.In Comparative Example 5, a medium density fiberboard specimen was prepared in the same manner as in Example 8 except that a commercially available UF resin was used.
중밀도Medium density 섬유판 소재의 물성 측정 Measurement of physical properties of fiberboard material
목재 및 중밀도 섬유판에 대한 한국공업규격(KSF3200)에 근거하여 실시예 9 내지 11 및 비교예 5의 바인더를 사용하여 제조된 중밀도 섬유판의 물성을 측정하여 그 결과를 하기 표 4에 나타내었다. Based on the Korean Industrial Standards (KSF3200) for wood and medium density fiber boards, the physical properties of the medium density fiber boards manufactured using the binders of Examples 9 to 11 and Comparative Example 5 were measured and the results are shown in Table 4 below.
구분division 실시예 9Example 9 실시예 10Example 10 실시예 11Example 11 비교예 5Comparative Example 5
시편 물성Specimen Properties 외관Exterior 적갈색maroon 적갈색maroon 적갈색maroon 유백색milk white
밀도(kg/m3)Density (kg / m 3 ) 717717 709709 802802 740740
두께(mm)Thickness (mm) 3.033.03 2.982.98 2.872.87 2.742.74
내부결합강도(N/mm2)Internal bonding strength (N / mm 2 ) 1.721.72 2.042.04 2.42.4 1.31.3
두께 팽창률(%)Thickness Expansion Rate (%) 3838 32.832.8 3030 4040
표 4에 보여지는 바와 같이, 실시예 9 내지 11의 바인더 조성물을 사용하여 제조된 중밀도 섬유판 시편이 비교예 5의 상용 수지를 사용하여 제조된 중밀도 섬유판 시편에 비하여 내부결합강도가 향상되고 두께 팽창률이 감소하였다.As shown in Table 4, the medium density fiberboard specimens prepared using the binder compositions of Examples 9 to 11 had improved internal bond strength and thickness compared to the medium density fiberboard specimens prepared using the commercially available resins of Comparative Example 5. The expansion rate decreased.
실시예 11의 글루코오스를 포함하는 바인더 조성물은 실시예 10의 자일로오스를 포함하는 바인더 조성물에 비하여 시편 제조 후에 내부결합강도가 증가하고 두께팽창률이 감소하였는바 물성이 상대적으로 더욱 향상됨을 확인할 수 있었다.In the binder composition containing glucose of Example 11, the internal bond strength was increased and the thickness expansion rate was decreased after the specimen preparation compared to the binder composition containing the xylose of Example 10, and thus the physical properties were relatively improved. .
평가예Evaluation example 4:  4: 폴리라이신Polylysine 종류에 따른 물성 측정 Property measurement by type
폴리라이신 종류에 따른 바인더 평가를 위해 하기와 같은 실험을 수행하였다. In order to evaluate the binder according to the polylysine type, the following experiment was performed.
시편 제작Specimen Fabrication
실시예 11 내지 12 및 비교예 5에서 제조된 바인더 조성물을 사용하여 시편을 각각 제조하였다.Specimens were each prepared using the binder compositions prepared in Examples 11-12 and Comparative Example 5.
목섬유(우드 파이버, 리기다 소나무(Pinus rigida), 라디에타 소나무(Pinus radiate) 등의 혼합 재료) 85 중량부와 바인더 조성물 15 중량부를 혼합하여 혼합물을 준비하였다. 준비된 혼합물을 160℃ 온도 및 200kg/cm2의 압력 하에서 성형하였다. 성형은 30초 가압과 3분 해압을 두 차례 반복하였다. 해압에 의하여 경화 시 발생하는 기체를 제거하고 경화시켰다. 성형된 시편을 160℃에서 1시간 동안 방치하여 경화시켰다. A mixture was prepared by mixing 85 parts by weight of wood fibers (mixing material such as wood fiber, Pinus rigida, and Radius pine) and 15 parts by weight of the binder composition. The prepared mixture was molded under a temperature of 160 ° C. and a pressure of 200 kg / cm 2 . Molding was repeated twice for 30 seconds and three minutes of depressurization. The gas generated during curing was removed and cured by sea pressure. The molded specimen was cured by standing at 160 ° C. for 1 hour.
비교예 5에서는 상용화된 UF 수지를 사용한 것을 제외하고는 실시예 11과 동일한 방법으로 중밀도 섬유판 시편을 제조하였다.In Comparative Example 5, a medium-density fiberboard specimen was prepared in the same manner as in Example 11 except that a commercially available UF resin was used.
중밀도Medium density 섬유판 소재의 물성 측정 Measurement of physical properties of fiberboard material
목재 및 중밀도 섬유판(MDF)에 대한 한국공업규격(KSF3200)에 근거하여 실시예 11, 실시예 12 및 비교예 5의 바인더를 사용하여 제조된 중밀도 섬유판과 비교예 6 및 7의 상용 중밀도 섬유판의 물성을 측정하여 그 결과를 하기 표 5에 나타내었다. Based on the Korean Industrial Standard (KSF3200) for wood and medium density fiberboard (MDF), the commercial medium density of the medium density fiberboard prepared using the binders of Examples 11, 12 and 5 and Comparative Examples 6 and 7 The physical properties of the fiberboard were measured and the results are shown in Table 5 below.
물성 측정 방법은 상기 표 3의 물성 측정 방법과 동일하다.The physical property measuring method is the same as the physical property measuring method of the said Table 3.
구분division 실시예11Example 11 실시예12Example 12 비교예 5Comparative Example 5 비교예 6Comparative Example 6 비교예 7Comparative Example 7
시편 물성Specimen Properties 밀도(kg/m3)Density (kg / m 3 ) 840840 790790 770770 630630 620620
굴곡강도(MPa)Flexural Strength (MPa) 27.927.9 27.327.3 29.129.1 26.526.5 25.225.2
내부결합강도(MPa)Internal bonding strength (MPa) 0.360.36 0.480.48 0.280.28 0.180.18 0.590.59
두께 팽창률(%)Thickness Expansion Rate (%) 38.938.9 11.911.9 47.147.1 9.39.3 45.645.6
수분 흡수율(%)Water absorption (%) 1.671.67 1.001.00 2.962.96 6.386.38 4.764.76
표 5를 참조하면, 실시예 11, 12의 바인더 조성물을 사용하여 제조된 중밀도 섬유판 시편이 비교예 5의 상용 수지를 사용하여 제조된 중밀도 섬유판 시편과 유사한 굴곡강도를 제공하면서도 내부결합강도가 향상되고, 두께 팽창률 및 수분 흡수율이 감소하였는바 내수성이 개선되었음을 확인할 수 있었다.Referring to Table 5, the internal bonding strength of the medium density fiberboard specimens prepared using the binder compositions of Examples 11 and 12 provided similar flexural strength to that of the medium density fiberboard specimens prepared using the commercial resin of Comparative Example 5 It was confirmed that the water resistance was improved as the thickness expansion rate and water absorption rate were decreased.
또한, 실시예 11 및 12에 의한 중밀도 섬유판 시편은 비교예 6 및 7의 상용 중밀도 섬유판 시편에 비하여 굴곡강도가 향상되고, 수분 흡수율이 감소하여 물성이 더욱 개선됨을 알 수 있었다.In addition, it can be seen that the medium density fiberboard specimens according to Examples 11 and 12 have improved flexural strength and a decrease in water absorption compared to the commercial medium density fiberboard specimens of Comparative Examples 6 and 7 to further improve physical properties.
뿐만 아니라, 실시예 11과 실시예 12를 비교해 볼 때, DL-라이신을 단량체로 포함하여 중합된 DL-폴리라이신이 L-라이신만을 단량체로 하여 중합된 L-폴리라이신에 비해 내수성이 우수함을 확인하였다.In addition, when comparing Example 11 and Example 12, it was confirmed that the DL-polylysine polymerized by including DL-lysine as a monomer has better water resistance than L-polylysine polymerized using only L-lysine as a monomer. It was.
본 발명의 바인더 조성물은 열경화 후에 향상된 강도 및 내수성을 가질 수 있다.The binder composition of the present invention may have improved strength and water resistance after thermosetting.

Claims (12)

  1. 폴리라이신; 및Polylysine; And
    하나 이상의 환원당 또는 이의 유도체를 포함하며,One or more reducing sugars or derivatives thereof,
    상기 폴리라이신이, 1H NMR 스펙트럼에서, 3.2 ppm 내지 3.4 ppm 에서의 제 1피크 및 3.8 ppm 내지 4.0 ppm 에서의 제 2피크를 포함하며, 제 1피크 면적(A)과 제 2피크 면적(B)의 비율(A:B)이 70 : 30 내지 98 : 2 인, 바인더 조성물.The polylysine comprises, in the 1 H NMR spectrum, a first peak at 3.2 ppm to 3.4 ppm and a second peak at 3.8 ppm to 4.0 ppm, wherein the first peak area (A) and the second peak area (B) The binder composition having a ratio (A: B) of 70:30 to 98: 2.
  2. 제 1항에 있어서, 상기 폴리라이신 함량이 바인더 조성물 고형분 100 중량부 기준으로 15 내지 60 중량부인, 바인더 조성물.The binder composition of claim 1, wherein the polylysine content is 15 to 60 parts by weight based on 100 parts by weight of the binder composition solids.
  3. 제 1항에 있어서, 상기 폴리라이신의 분자량이 4,000g/mol 이상인, 바인더 조성물.The binder composition of claim 1, wherein the polylysine has a molecular weight of at least 4,000 g / mol.
  4. 제 1항에 있어서, 상기 폴리라이신은 L-라이신 및 DL-라이신으로 이루어진 군에서 선택된 적어도 하나의 축합 중합물인, 바인더 조성물.The binder composition of claim 1, wherein the polylysine is at least one condensation polymer selected from the group consisting of L-lysine and DL-lysine.
  5. 제 1항에 있어서, 상기 폴리라이신이 6 내지 48시간 동안 130 내지 150℃ 온도 조건에서 라이신의 축합 중합결과물인, 바인더 조성물.The binder composition of claim 1, wherein the polylysine is a condensation polymerization product of lysine at a temperature of 130 to 150 ° C. for 6 to 48 hours.
  6. 제 1항에 있어서, 상기 환원당은 알데히드기 및 케톤기 중에서 선택된 하나 이상을 가지는, 바인더 조성물.The binder composition of claim 1, wherein the reducing sugar has at least one selected from an aldehyde group and a ketone group.
  7. 제 1항에 있어서, 상기 환원당 또는 이의 유도체의 함량이 바인더 조성물 고형분 100 중량부 기준으로 40 내지 60 중량부인, 바인더 조성물.The binder composition according to claim 1, wherein the content of the reducing sugar or derivative thereof is 40 to 60 parts by weight based on 100 parts by weight of the binder composition solids.
  8. 제 1항에 있어서, 상기 환원당이 글루코오스, 자일로오스 또는 이들의 조합인, 바인더 조성물The binder composition of claim 1, wherein the reducing sugar is glucose, xylose, or a combination thereof.
  9. 제 1항에 있어서, 상기 바인더 조성물에서 고형분 함량은 바인더 조성물 100 중량부에 대하여 15 내지 80 중량부인, 바인더 조성물.The binder composition according to claim 1, wherein the solid content in the binder composition is 15 to 80 parts by weight based on 100 parts by weight of the binder composition.
  10. 제 1항 내지 제 8항 중 어느 한 항에 따른 바인더 조성물의 열경화물에 의하여 결속되는 물품.An article bound by thermosetting of the binder composition according to claim 1.
  11. 제 1항 내지 제 8항 중 어느 한 항에 따른 바인더 조성물을 준비하는 단계; 및Preparing a binder composition according to any one of claims 1 to 8; And
    상기 바인더 조성물을 120℃ 이상의 온도에서 열경화시키는 단계;를 포함하는 물품 제조방법.And thermally curing the binder composition at a temperature of 120 ° C. or higher.
  12. 제 10항에 있어서, 상기 바인더 조성물이 섬유상 재료 및 분말상 재료 중에서 선택된 하나 이상을 추가적으로 포함하는 물품 제조방법.The method of claim 10 wherein the binder composition further comprises one or more selected from fibrous materials and powdery materials.
PCT/KR2018/004308 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article WO2018190662A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
RU2019134450A RU2721572C1 (en) 2017-04-13 2018-04-13 Binding composition, article and method of producing article
JP2019555677A JP6928759B2 (en) 2017-04-13 2018-04-13 Binder composition, article and article manufacturing method
NZ759003A NZ759003B2 (en) 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article
BR112019021452-6A BR112019021452B1 (en) 2017-04-13 2018-04-13 BINDER COMPOSITION, ARTICLE, AND METHOD FOR MANUFACTURING AN ARTICLE
UAA201910613A UA123976C2 (en) 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article
CA3059688A CA3059688C (en) 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article
AU2018251522A AU2018251522B2 (en) 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article
CN201880024991.3A CN110520477B (en) 2017-04-13 2018-04-13 Adhesive composition, article, and method of making an article
MYPI2019006031A MY191048A (en) 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article
US16/604,988 US10961390B2 (en) 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article
EP18783720.8A EP3611225A4 (en) 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0048032 2017-04-13
KR20170048032 2017-04-13
KR10-2018-0007895 2018-01-22
KR1020180007895A KR101922644B1 (en) 2017-04-13 2018-01-22 Binder composition, Article and preparation method for article

Publications (2)

Publication Number Publication Date
WO2018190662A2 true WO2018190662A2 (en) 2018-10-18
WO2018190662A3 WO2018190662A3 (en) 2018-12-13

Family

ID=63793432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004308 WO2018190662A2 (en) 2017-04-13 2018-04-13 Binder composition, article, and method for manufacturing article

Country Status (1)

Country Link
WO (1) WO2018190662A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132790A (en) * 2019-02-22 2020-08-31 株式会社事業革新パートナーズ Resin composition and molding method using the resin composition
WO2022136612A1 (en) * 2020-12-23 2022-06-30 Basf Se Binder composition comprising poly(amino acid)s for fiber composite articles
WO2023247437A1 (en) * 2022-06-22 2023-12-28 Basf Se Binder for wood-based panels comprising amino acid polymer and polyaldehyde compound
WO2023247450A1 (en) 2022-06-22 2023-12-28 Basf Se Mineral fiber mat based on a binder comprising amino acid polymer and alpha-hydroxy carbonyl compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062578A1 (en) 2014-10-21 2016-04-28 Basf Se A process for preparing polylysines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2386605B1 (en) * 2010-04-22 2017-08-23 Rohm and Haas Company Durable thermosets from reducing sugars and primary polyamines
JP5977015B2 (en) * 2010-11-30 2016-08-24 ローム アンド ハース カンパニーRohm And Haas Company Stable reactive thermosetting formulations of reducing sugars and amines
EP2669325B1 (en) * 2012-05-29 2016-01-13 Rohm and Haas Company Bio-based flame resistant thermosetting binders with improved wet resistance
KR101871541B1 (en) * 2014-03-31 2018-06-26 주식회사 케이씨씨 Aqueous binder composition and method for binding fibrous materials by using the same
GB201408909D0 (en) * 2014-05-20 2014-07-02 Knauf Insulation Ltd Binders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062578A1 (en) 2014-10-21 2016-04-28 Basf Se A process for preparing polylysines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHOLL MARKUS, NGUYEN TUAN Q., BRUCHMANN BERND, KLOK HARM-ANTON: "The thermal polymerization of amino acids revisited; Synthesis and structural characterization of hyperbranched polymers fromL-lysine", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 45, no. 23, 1 December 2007 (2007-12-01), US , pages 5494 - 5508, XP055853053, ISSN: 0887-624X, DOI: 10.1002/pola.22295

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132790A (en) * 2019-02-22 2020-08-31 株式会社事業革新パートナーズ Resin composition and molding method using the resin composition
WO2022136612A1 (en) * 2020-12-23 2022-06-30 Basf Se Binder composition comprising poly(amino acid)s for fiber composite articles
WO2022136611A1 (en) * 2020-12-23 2022-06-30 Basf Se Binder composition comprising amino acid polymer(s) as well as carbohydrates for composite articles
US11976168B2 (en) 2020-12-23 2024-05-07 Basf Se Binder composition comprising poly(amino acid)s for fiber composite articles
WO2023247437A1 (en) * 2022-06-22 2023-12-28 Basf Se Binder for wood-based panels comprising amino acid polymer and polyaldehyde compound
WO2023247450A1 (en) 2022-06-22 2023-12-28 Basf Se Mineral fiber mat based on a binder comprising amino acid polymer and alpha-hydroxy carbonyl compound

Also Published As

Publication number Publication date
WO2018190662A3 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
WO2018190662A2 (en) Binder composition, article, and method for manufacturing article
KR100857514B1 (en) Composite materials and method of making the same
KR101837215B1 (en) Carbohydrate polyamine binders and materials made therewith
Musto et al. An interpenetrated system based on a tetrafunctional epoxy resin and a thermosetting bismaleimide: Structure–properties correlation
CZ301272B6 (en) Method of obtaining resin suitable as mineral fiber binding agent, resin obtained in such a manner and use thereof
GB2139628A (en) Bis-maleimide-epoxy compositions and pre-pregs
KR101922644B1 (en) Binder composition, Article and preparation method for article
KR20080072008A (en) Formaldehyde-free phenolic resin binder
WO2015102373A1 (en) Phenolic resin-based rigid polyurethane foam foamed by using no acid curing agents and preparation method therefor
DE2838844C2 (en)
KR930004942B1 (en) Silicon polyimide precursor composition
Antunes et al. Introducing flexibility in urea–formaldehyde resins: copolymerization with polyetheramines
US3423366A (en) Composition comprising: (1) a bis ester of an aromatic tetracarboxylic acid,(2) an inert organic solvent,(3) melamine,and (4) an aromatic diamine
WO2021066438A1 (en) Polymer composite material comprising aramid nanofiber, and method for preparing same
Adachi et al. Highly Temperature Resistant Silicone Ladder Polymers
Policastro et al. Synthesis of new polydimethylsiloxane‐polyamide copolymers from phenylene‐bis‐5‐oxazolones and aminopropyl‐terminated polydimethylsiloxane oligomers
US3560444A (en) Heat reactive mixtures of bis(hydrocarbyloxyalkyl) esters of aromatic tetracarboxylic acids and aromatic diamines
JPS6017312B2 (en) silicone resin composition
WO1994013670A1 (en) Polymerizable monomeric reactants (pmr) type resins
WO2023243998A1 (en) Fibrous material bound by using aqueous binder composition
WO2023027559A1 (en) Block copolymer and preparation method therefor
US3511733A (en) Nitrogenous polymers and process of laminating therewith
KR100346078B1 (en) Rubber-polysulfone copolymer as toughener and the preparation thereof, and epoxy resin containing the copolymer
WO2017209400A1 (en) Binder composition
WO2019098806A1 (en) Self-healing clear coat composition with improved optical characteristics, clear coat comprising same, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783720

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 3059688

Country of ref document: CA

Ref document number: 2019555677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019021452

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018783720

Country of ref document: EP

Effective date: 20191113

ENP Entry into the national phase

Ref document number: 2018251522

Country of ref document: AU

Date of ref document: 20180413

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019021452

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191011