WO2018189907A1 - Control method and control device for four-wheel drive electric vehicle - Google Patents

Control method and control device for four-wheel drive electric vehicle Download PDF

Info

Publication number
WO2018189907A1
WO2018189907A1 PCT/JP2017/015382 JP2017015382W WO2018189907A1 WO 2018189907 A1 WO2018189907 A1 WO 2018189907A1 JP 2017015382 W JP2017015382 W JP 2017015382W WO 2018189907 A1 WO2018189907 A1 WO 2018189907A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
driving force
wheel drive
friction clutch
release
Prior art date
Application number
PCT/JP2017/015382
Other languages
French (fr)
Japanese (ja)
Inventor
哲庸 森田
通晴 郡司
寛志 有田
祐亮 平畠
啓史郎 中村
博志 西田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/015382 priority Critical patent/WO2018189907A1/en
Priority to JP2019512168A priority patent/JP6725066B2/en
Publication of WO2018189907A1 publication Critical patent/WO2018189907A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to a control method and a control device for a four-wheel drive electric vehicle having a motor / generator as a drive source and a friction clutch in a drive force transmission system to sub drive wheels.
  • the electronic control coupling before the regeneration amount increases.
  • the clutch capacity could be reduced.
  • the electronic control coupling detects the accelerator OFF operation and releases the electronic control coupling.
  • the clutch capacity of the electronically controlled coupling is removed.
  • the amount of regeneration may increase before
  • the present disclosure has been made paying attention to the above-mentioned problem, and aims to prevent the occurrence of a shock regardless of whether or not there is a changeover time at the time of deceleration request where clutch release control and driving force reduction control overlap. To do.
  • the present disclosure has a motor / generator as a drive source, one of the left and right front wheels and the left and right rear wheels is a main drive wheel connected to the drive source, and the other of the left and right front wheels and the left and right rear wheels is The auxiliary drive wheel is connected to the drive source via a friction clutch.
  • a driving force reduction control is performed to reduce the driving force generated in the driving force transmission system toward the negative driving force region including the regeneration amount by the motor / generator at the time of deceleration request. Do. At the time of a deceleration request in which the friction clutch release control and the driving force reduction control overlap, the negative driving force by the driving force reduction control is limited until the actual clutch capacity of the friction clutch is released.
  • FIG. 1 is an overall system diagram illustrating an FF-based four-wheel drive hybrid vehicle (an example of a four-wheel drive electric vehicle) to which a control method and a control device according to a first embodiment are applied. It is the schematic which shows the electronically controlled coupling provided in the rear-wheel drive system of the four-wheel drive hybrid vehicle to which the control method and control apparatus of Example 1 were applied. It is a perspective view which shows the cam mechanism of an electronically controlled coupling.
  • FIG. 3 is a block diagram illustrating a configuration of a four-wheel driving force distribution control system in the 4WD control unit according to the first embodiment.
  • 4 is a flowchart illustrating a flow of 4WD control processing executed by the 4WD control unit according to the first embodiment.
  • FIG. It is a flowchart which shows the flow of the regeneration control process based on the accelerator opening performed at the time of accelerator release operation by the hybrid control module of Example 1.
  • FIG. It is a coast target driving force map which shows an example of the coast target driving force characteristic with respect to the vehicle speed when the weak regeneration mode is selected and the coast target driving force characteristic with respect to the vehicle speed when the strong regeneration mode is selected.
  • FIG. 7 is a time chart showing characteristics of accelerator opening, PWT generation driving force, and clutch capacity of electronic control coupling when electronic control coupling release control and coast regenerative torque control are overlapped by an accelerator release operation in a comparative example.
  • 6 is a time chart showing characteristics of accelerator opening, PWT generation driving force, and clutch capacity of electronic control coupling when release control of electronic control coupling and coast regenerative torque control are overlapped by an accelerator release operation in the first embodiment.
  • It is a flowchart which shows the flow of the regeneration control process based on the target drive force performed at the time of the deceleration request
  • the control method and control device of the first embodiment are applied to an FF-based four-wheel drive hybrid vehicle (an example of a four-wheel drive electric vehicle).
  • an FF-based four-wheel drive hybrid vehicle an example of a four-wheel drive electric vehicle.
  • the configuration of the first embodiment will be described by being divided into “entire system configuration”, “detailed configuration of electronic control coupling”, “4WD control processing configuration”, and “regenerative control processing configuration based on accelerator opening”.
  • FIG. 1 shows an overall system of an FF-based four-wheel drive hybrid vehicle to which the control method and the control device of the first embodiment are applied.
  • the overall system configuration of the FF-based four-wheel drive hybrid vehicle will be described below with reference to FIG.
  • the front wheel drive system of the FF-based four-wheel drive hybrid vehicle includes a starter motor 1, a horizontally mounted engine 2, a first clutch 3 (abbreviated as “CL1”), and a motor / generator 4 (abbreviated as abbreviation). “MG”), a second clutch 5 (abbreviated as “CL2”), and a belt type continuously variable transmission 6 (abbreviated as “CVT”).
  • the output shaft of the belt type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10R and 10L via a final reduction gear train 7, a front differential gear 8, and left and right front wheel drive shafts 9R and 9L.
  • the starter motor 1 is a cranking motor that has a gear that meshes with an engine start gear provided on a crankshaft of the horizontal engine 2 and that rotates the crankshaft when the engine is started.
  • the starter motor 1 is driven by using a 12V battery 22 as a power source.
  • the horizontal engine 2 is an engine disposed in the front room with the crankshaft direction as the vehicle width direction, and includes an electric water pump 12 and a crankshaft rotation sensor 13 that detects reverse rotation of the horizontal engine 2.
  • the first clutch 3 is a normally open dry multi-plate friction clutch that is hydraulically interposed between the horizontally mounted engine 2 and the motor / generator 4, and is fully engaged / slip engaged / released by the first clutch oil pressure. Be controlled.
  • the motor / generator 4 is a three-phase AC permanent magnet synchronous motor connected to the transverse engine 2 via the first clutch 3.
  • the motor / generator 4 uses a high-power battery 21 described later as a power source, and an inverter 26 that converts direct current into three-phase alternating current during power running and converts three-phase alternating current into direct current during regeneration is connected to the stator coil. Connected through.
  • the second clutch 5 is a wet-type multi-plate friction clutch by hydraulic operation that is interposed between the motor / generator 4 and the left and right front wheels 10R, 10L as drive wheels, and is completely engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled.
  • the second clutch 5 of the first embodiment uses the forward clutch 5a and the reverse brake 5b provided in the forward / reverse switching mechanism of the belt-type continuously variable transmission 6 using planetary gears. That is, during forward travel, the forward clutch 5a is the second clutch 5 (CL2), and during reverse travel, the reverse brake 5b is the second clutch 5 (CL2).
  • the belt-type continuously variable transmission 6 is a transmission that obtains a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber.
  • the belt type continuously variable transmission 6 includes a main oil pump 14 (mechanical drive), a sub oil pump 15 (motor drive), and a line pressure PL generated by adjusting pump discharge pressure from the main oil pump 14. And a control valve unit (not shown) that generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure with the pressure as the original pressure.
  • the sub oil pump 15 is mainly used as an auxiliary pump for producing lubricating cooling oil.
  • the first clutch 3, the motor / generator 4 and the second clutch 5 constitute a one-motor / two-clutch drive system, and there are “EV mode” and “HEV mode” as main drive modes by this drive system.
  • the “EV mode” is an electric vehicle mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor / generator 4 is used as a driving source. Driving in the “EV mode” is referred to as “EV driving”. .
  • the “HEV mode” is a hybrid vehicle mode in which both the clutches 3 and 5 are engaged and the horizontal engine 2 and the motor / generator 4 are used as driving sources, and traveling in the “HEV mode” is referred to as “HEV traveling”.
  • the regenerative cooperative brake unit 16 in FIG. 1 is a device that controls sharing of the required braking force by the brake cooperative regenerative amount and the mechanical brake when the brake is operated.
  • the regenerative cooperative brake unit 16 includes a brake pedal, a negative pressure booster, a master cylinder, and a brake hydraulic pressure actuator. Then, during the brake operation, cooperative control for the regenerative amount / hydraulic pressure is performed so that the amount obtained by subtracting the regenerative amount from the required braking force based on the pedal operation amount is shared by the hydraulic braking force (mechanical brake).
  • the rear wheel drive system of an FF-based four-wheel drive hybrid vehicle includes a transfer 40, a propeller shaft 41, an electronic control coupling 42, a rear differential gear 43, and left and right rear wheel drive shafts. 44R, 44L and left and right rear wheels 11R, 11L.
  • the transfer 40 transmits the driving force from the front differential gear 8 to the propeller shaft 41, the electronic control coupling 42, the rear differential gear 43, and the left and right rear wheel drive shafts 44R. , 44L to the left and right rear wheels 11R, 11L.
  • the detailed configuration of the electronic control coupling 42 will be described later.
  • the power system of the FF-based four-wheel drive hybrid vehicle includes a high-power battery 21 as a motor / generator power source and a 12V battery 22 as a 12V system load power source.
  • the high-power battery 21 is a secondary battery mounted as a power source for the motor / generator 4.
  • a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used.
  • the high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
  • the high-power battery 21 and the motor / generator 4 are connected via a DC harness 25, an inverter 26, and an AC harness 27.
  • the inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts a direct current from the DC harness 25 into a three-phase alternating current to the AC harness 27 during power running for driving the motor / generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into a direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor / generator 4.
  • the 12V battery 22 is a secondary battery mounted as a power source for a 12V load that is an auxiliary machine, and for example, a lead battery mounted in an engine vehicle or the like is used.
  • the high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38.
  • the DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 into 12V, and the charge amount of the 12V battery 22 is controlled by controlling the DC / DC converter 37 by the hybrid control module 81.
  • the configuration is to be managed.
  • the control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an integrated control means for properly managing the energy consumption of the entire vehicle.
  • Control devices connected to the hybrid control module 81 include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”).
  • ECM engine control module
  • MC motor controller
  • CVT control unit 84 abbreviation: “CVTCU”.
  • 4WD control unit 85 abbreviation: “4WDCU”
  • lithium battery controller 86 abbreviation: “LBC”.
  • Hybrid control module 81 performs various controls based on input information from each control device, regenerative mode selection switch 91, accelerator opening sensor 92, vehicle speed sensor 93, and the like.
  • the engine control module 82 performs fuel injection control, ignition control, fuel cut control, and the like of the horizontally placed engine 2.
  • the motor controller 83 performs power running control and regenerative control of the motor generator 4 by the inverter 26.
  • the CVT control unit 84 performs the engagement hydraulic pressure control of the first clutch 3, the engagement hydraulic pressure control of the second clutch 5, the transmission hydraulic pressure control of the belt type continuously variable transmission 6, and the like.
  • the lithium battery controller 86 manages the battery SOC, battery temperature, etc. of the high-power battery 21.
  • 4WD control unit 85 inputs signals from 4WD mode switch 94, wheel speed sensor 95, rudder angle sensor 96, yaw rate sensor 97, G sensor 98, brake switch 99, and the like. Then, after performing a predetermined calculation process, a transmission torque command value is output to the electronic control coupling 42. For example, when AUTO is selected by the 4WD mode switch 94, the final command torque is selected by select high among the initial torque process, the differential rotation torque process, and the driving force distribution torque process, and the front wheel 10R is selected. , 10L and the driving force distribution to the rear wheels 11R, 11L.
  • the driving force distribution ratio to be controlled is a stepless distribution from (100%: 0%, front wheel drive) to (50%: 50%, 4 wheel distribution drive) (front wheel distribution ratio: rear wheel distribution ratio) Is the ratio.
  • FIG. 2 is a schematic view showing the electronic control coupling 42
  • FIG. 3 is a perspective view showing a cam mechanism of the electronic control coupling 42.
  • a detailed configuration of the electronic control coupling 42 will be described with reference to FIGS. 2 and 3.
  • the electronic control coupling 42 includes a solenoid 45, a coupling input shaft 46, a coupling output shaft 47, a clutch housing 48, an armature 49, a control clutch 50, and a control.
  • a cam 51, a main cam 52, a ball 53, a main clutch 54, and a cam groove 55 are provided.
  • the coupling input shaft 46 has one end connected to the propeller shaft 41 and the other end fixed to the clutch housing 48.
  • the coupling output shaft 47 is fixed to the input gear of the rear differential gear 43.
  • the control clutch 50 is a multi-plate friction clutch interposed between the clutch housing 48 and the control cam 51.
  • the main clutch 54 is a multi-plate friction clutch interposed between the clutch housing 48 and the coupling output shaft 47.
  • a cam mechanism is constituted by the control cam 51, the main cam 52, and the balls 53 sandwiched between the cam grooves 55 and 55 formed in the both cams 51 and 52.
  • FIG. 4 shows the configuration of the four-wheel driving force distribution control system in the 4WD control unit 85 of the first embodiment.
  • the configuration of the four-wheel drive force distribution control system will be described with reference to FIG.
  • an initial torque processing unit B01 based on the vehicle speed As shown by a solid line block in FIG. 4, an initial torque processing unit B01 based on the vehicle speed, a differential rotation torque processing unit B02 based on front-rear differential rotation, an accelerator opening degree And a driving force distribution torque processing unit B03 based on the driving force.
  • the final command torque selection part B04 selected by selection high among the torque from each process part B01, B02, B03 is provided.
  • the final command torque decrease change rate limiting unit B06 that limits the decrease change rate of the selected final command torque based on the normal (slow gradient) block B05, and the torque with the reduced change rate limited as the final command torque.
  • the regeneration control intervention cooperative control system of the four-wheel drive force distribution control system includes a regeneration control intervention prediction determination block B08, a torque switching block B09, and a control determination time (steep slope) block, as shown by the dotted line block in FIG. B10 and a gradient switching block B11.
  • the regeneration control intervention prediction determination block B08 inputs the accelerator opening, the vehicle speed, and the solenoid current value, the vehicle speed is in the regenerative vehicle speed region, the accelerator opening is less than the threshold value, and the solenoid energization current is less than the threshold value. When it is not maintained for a certain time or longer, a regeneration control intervention prediction determination signal is output (FIG. 5).
  • the torque switching block B09 When the torque switching block B09 receives the regeneration control intervention prediction determination signal from the regeneration control intervention prediction determination block B08, the torque switching block B09 sets the torque from the initial torque processing unit B01 to zero (cuts) and the torque from the differential rotation torque processing unit B02. Zero (cut).
  • the gradient switching block B11 When the gradient switching block B11 receives the regeneration control intervention prediction determination signal from the regeneration control intervention prediction determination block B08, the gradient switching block B11 starts from the normal decrease gradient (slow gradient) from the normal time (slow gradient) block B05 to control determination (steep gradient). ) Switch to the decreasing gradient (steep gradient) at the time of control determination from the block B10.
  • FIG. 5 shows the flow of 4WD control processing executed by the 4WD control unit 85 of the first embodiment. Hereinafter, each step of FIG. 5 will be described.
  • step S01 it is determined whether or not the vehicle speed VSP exceeds a lower limit threshold value for regeneration when a deceleration request is made by an accelerator release operation or a brake operation. If YES (vehicle speed VSP> lower threshold), the process proceeds to step S02. If NO (vehicle speed VSP ⁇ lower threshold), the process proceeds to step S06.
  • step S02 following the determination that vehicle speed VSP> lower limit threshold value in step S01, it is determined whether vehicle speed VSP is less than an upper limit threshold value for regeneration at the time of a deceleration request by an accelerator release operation or a brake operation. If YES (vehicle speed VSP ⁇ upper limit threshold), the process proceeds to step S03. If NO (vehicle speed VSP ⁇ upper limit threshold), the process proceeds to step S06.
  • step S03 following the determination that vehicle speed VSP ⁇ the upper limit threshold value in step S02, it is determined whether or not the accelerator opening APO is less than the threshold value. If YES (accelerator opening APO ⁇ threshold), the process proceeds to step S04. If NO (accelerator opening APO ⁇ threshold), the process proceeds to step S06.
  • step S04 following the determination that accelerator opening APO ⁇ threshold value in step S03, it is determined whether solenoid energization current ⁇ threshold value has not been continued for a predetermined time or more. If YES (solenoid energization current ⁇ threshold duration is less than a certain time), the process proceeds to step S05. If N0 (solenoid energization current ⁇ threshold continues for a certain time or more), the process proceeds to step S06.
  • the threshold value of the solenoid energization current is a threshold value for determining that the solenoid energization current is zero, and is originally zero, but is set to a slight current value in consideration of a slight fluctuation of the current or the like. . Further, after the solenoid energization current to the electronic control coupling 42 is set to zero for a certain time, the time required for the frictional engagement torque to become zero after the release operation of the control clutch 50 and the main clutch 54 is completed is experimentally determined. Measured and set based on the measurement result.
  • step S05 following the determination that the solenoid energization current ⁇ the threshold duration time is less than a predetermined time in step S04, a regeneration control intervention prediction determination signal is output, and based on the output of the regeneration control intervention prediction determination signal, Cut the initial torque control and differential rotation control, and proceed to the end.
  • step S06 initial torque control and differential rotation control are performed in a state where output of the regeneration control intervention prediction determination signal is stopped following determination of NO in any of step S01, step S02, step S03, and step S04. Perform normal control without cutting and proceed to the end.
  • step S06 the initial torque control and the differential rotation control are returned to the normal control. Then, the decrease gradient of the solenoid energization current is returned from the decrease due to the steep gradient to the decrease due to the normal gentle gradient.
  • FIG. 6 shows the flow of the regenerative control process based on the accelerator opening APO that is executed during the accelerator release operation by the hybrid control module 81 of the first embodiment. Hereinafter, each step of FIG. 6 will be described.
  • step S11 it is determined whether or not the strong regeneration mode is selected by the regeneration mode selection switch 91. If YES (selection of strong regeneration mode), the process proceeds to step S12. If NO (selection of weak regeneration mode), the process proceeds to step S15.
  • the “weak regeneration mode” refers to a mode in which the braking force generation region due to the coast regeneration torque by the accelerator release operation is set to a region corresponding to the engine brake.
  • the “strong regeneration mode” means that the braking force generation region due to the coast regeneration torque by the accelerator release operation is expanded compared to the “weak regeneration mode”, and when the deceleration request by the accelerator release operation is requested, A mode with improved vehicle deceleration control performance.
  • each coast target driving force is set according to the vehicle speed VSP.
  • the maximum negative target in the middle vehicle speed region (for example, about 30 km / h).
  • the driving force is set.
  • the “weak regeneration mode” and the “strong regeneration mode” have the same negative target driving force.
  • the “weak regeneration mode” when the “weak regeneration mode” is selected, as shown by the arrow A in FIG. 7, when the vehicle is decelerated by the accelerator release operation, the regeneration amount due to the coast regeneration torque gradually decreases.
  • the “strong regeneration mode” when the vehicle is decelerated by the accelerator release operation, the regeneration amount by the coast regeneration torque increases. That is, the “strong regeneration mode” does not require a brake pedal operation in most deceleration scenes, and can control a braking force by an accelerator return / release operation. For this reason, the “strong regeneration mode” is sometimes referred to as “one pedal mode” in which driving / braking is controlled by accelerator work to the accelerator pedal.
  • “coast regeneration” is a regenerative braking force that is effective when the accelerator is off and the brake is off.
  • Brake cooperative regeneration is a regenerative braking force that is applied when the accelerator is off or the brake is on.
  • “Mechanical brake” is a brake hydraulic braking force that is compensated when the braking force cannot be satisfied by the regenerative amount alone when the accelerator is OFF and the brake is ON.
  • step S12 following the determination that the strong regeneration mode is selected in step S11, it is determined whether or not the accelerator opening APO is less than the threshold, as in step S03. If YES (accelerator opening APO ⁇ threshold), the process proceeds to step S13. If NO (accelerator opening APO ⁇ threshold), the process proceeds to step S15.
  • step S13 following the determination that accelerator opening APO ⁇ the threshold value in step S12 or the predetermined time has not elapsed in step S14, the negative driving force is limited, and the process proceeds to step S14.
  • limiting the negative driving force means limiting the magnitude of the driving force in the negative direction to a predetermined value or less, and is a direction in which the deceleration force is limited.
  • negative driving force limitation means that the negative driving force generated in the driving system is reached when a predetermined limit value is reached with the increase of the coast regeneration torque by the motor / generator 4 by the selection of the strong regeneration mode. It means to suppress an increase in the amount of regeneration so as to maintain a predetermined limit value.
  • the “regenerative amount” includes the case of only the coast regeneration amount (coast regeneration torque) by the motor / generator 4 and the case of both the coast regeneration amount and the brake cooperative regeneration amount (brake cooperative regeneration torque).
  • the “limit value” is set to a negative driving force value at which the vehicle front-rear G change rate due to the increase in the regeneration amount is equal to or less than a predetermined change rate that does not cause the occupant to feel shock or noise.
  • the tire diameters of the left and right front wheels 10L, 10R and the left and right rear wheels 11L, 11R are different, the tire diameter of the front and rear wheels is changed to a value smaller than the limit value when the tire diameter is the same. Is done.
  • step S14 following the negative driving force limitation in step S13, it is determined whether or not a predetermined time has elapsed since the negative driving force limitation was started. If YES (predetermined time has elapsed), the process proceeds to step S15. If NO (predetermined time has not elapsed), the process returns to step S13.
  • the “predetermined time” is based on the release response time of the electronic control coupling 42, and when the clutch release command is output, the time required to reliably enter the clutch release state after the output of the release command (for example, 0.2sec).
  • the time required from the start of output of the release command until the actual clutch capacity is released and the clutch is released is obtained in advance by an experiment or the like.
  • step S15 following the selection of the weak regeneration mode in step S11 or the determination that the predetermined time has elapsed in step S14, the process proceeds to the end without limiting the negative driving force including the regeneration amount.
  • Example 1 The effects of Example 1 are as follows: “Shock and noise generation mechanism during regenerative control intervention”, “Shock and noise generation effect in comparative example”, “Shock and noise suppression effect in Example 1”, “Negative This will be described separately in “characteristic action by driving force limit control”.
  • FIG. 9 shows a generation mechanism of shock / noise generated by the cam mechanism of the electronically controlled coupling 42 when the brake is depressed after the accelerator release operation.
  • shock / abnormal noise generation mechanism during the regeneration control intervention will be described with reference to FIG.
  • Section (1) is an accelerator-on driving state in which torque is transmitted from the drive source to the drive wheels, and in this section (1), the propeller shaft torque gradually increases.
  • the control cam 51 and the main cam A ball 53 is sandwiched between cam grooves 55 and 55 formed in 52, and the main clutch 54 is fastened with a small torque transmission (drive).
  • the accelerator is turned ON ⁇ OFF, and then the brake is turned ON to start the generation of regenerative torque.
  • the propeller shaft torque rapidly increases and decreases rapidly, but the residual torque of the 4WD coupling is in a positive drive state.
  • the ball 53 is sandwiched between the cam grooves 55, 55 formed in the control cam 51 and the main cam 52, and the main clutch 54 is fastened with a large torque transmission (drive).
  • Section (3) is a section in which the propeller shaft torque decreases to a negative coast state due to an increase in regenerative torque.
  • the main clutch 54 is fastened with a large torque transmission (coast) while the ball 53 is held between the cam grooves 55 and 55 formed in the control cam 51 and the main cam 52. That is, the coast torque transmission state before the cam reversal is set.
  • control cam 51 and the main cam 52 of the electronic control coupling 42 are distorted by the regenerative control intervention to have capacity, and the control cam 51 and the main cam 52 do not move relative to each other while the torque is small.
  • the control cam 51 and the main cam 52 suddenly move relative to each other, causing a shock or abnormal noise.
  • a comparative example is one in which cooperative control is performed by removing the clutch capacity of the electronically controlled coupling from the accelerator OFF timing before the start of brake cooperative regeneration based on the brake operation.
  • the PWT generation driving force is almost the accelerator OFF time t2 when the accelerator release operation is started at time t1, as shown by the broken line characteristic C in FIG. Shifts from a positive driving force to a negative driving force at. Then, until the brake ON time t4, a small coast regenerative torque is maintained, and when the brake ON time t4 is passed, the regenerative amount is reduced by the brake cooperative regeneration.
  • the negative driving force does not decrease to the limit value that generates shock and noise. This is because the changeover time from the accelerator OFF time t2 to the brake ON time t4 is long, and this changeover time can be used as an allowance time ⁇ t until the electronic control coupling is released.
  • “PWT” means power train (drive system).
  • the PWT generation driving force is as follows.
  • the accelerator release operation is started at time t1 as shown by the solid line characteristic D in FIG.
  • the driving force shifts from a positive driving force to a negative driving force.
  • the coast regeneration torque continues to increase during the period from the accelerator off time t2 to the brake start time t3 to the brake ON time t5.
  • the coast regeneration decreases with the regeneration amount obtained by adding brake cooperative regeneration to the coast regeneration. . Therefore, the negative driving force reaches the limit value at which the negative driving force generates shock and noise at time t4 before clutch release time t6 when the clutch capacity of the electronically controlled coupling is released.
  • the negative driving force decreases to a level exceeding the limit value for generating shock and abnormal noise.
  • the switching time from the accelerator OFF to the brake ON is substantially eliminated by selecting the “strong regeneration mode”, and the reduction in the regeneration amount cannot be suppressed. Therefore, the electronically controlled coupling greatly varies from drive torque (positive drive force) to coast torque (negative drive force) with clutch capacity, and when the coast torque exceeds the capacity due to cam distortion, two suddenly The cam moves relatively and generates shocks and noise.
  • the 4WD control processing operation executed by the 4WD control unit 85 will be described with reference to FIG.
  • a regenerative vehicle speed condition (lower limit threshold ⁇ vehicle speed ⁇ upper limit threshold) is satisfied, and an accelerator release condition (accelerator opening APO ⁇ threshold) is satisfied.
  • the solenoid energization current ⁇ the threshold duration time is less than a certain time when the accelerator release condition is satisfied, that is, if the electronic control coupling 42 is in the engaged state when the accelerator is OFF, step S01 ⁇ It progresses to step S02-> step S03-> step S04-> step S05.
  • step S05 the initial torque control and the differential rotation control are cut, and the electronic control coupling 42 is released.
  • the decrease gradient of the solenoid energization current is switched from the decrease due to the normal gentle gradient to the decrease due to the steep gradient.
  • step S06 the initial torque control and the differential rotation control are returned to the normal control without being cut.
  • step S11 the process proceeds from step S11 to step S15 to end in the flowchart of FIG.
  • accelerator release condition is not satisfied (accelerator opening APO ⁇ threshold) when the “strong regeneration mode” is selected
  • the process proceeds from step S11 to step S12 to step S15 to end in the flowchart of FIG. .
  • the negative driving force is not limited in step S15.
  • step S11 when the “strong regeneration mode” is selected and the accelerator release condition is satisfied (accelerator opening APO ⁇ threshold), the process proceeds from step S11 to step S12 to step S13 in the flowchart of FIG.
  • step S13 negative driving force limit control is started to suppress the reduction in the regeneration amount to the limit value.
  • the flow from step S13 to step S14 is repeated, and the negative driving force limit control that suppresses the reduction in the regeneration amount to the limit value is maintained.
  • step S14 when a predetermined time has elapsed from the start of the negative driving force limit control, the process proceeds from step S14 to step S15 in the flowchart of FIG. 6, and the negative driving force limit is released.
  • FIG. 11 is a time chart showing each characteristic in the deceleration request scene in which the release control of the electronic control coupling 42 and the regeneration control in which the negative driving force increases in the first embodiment overlap.
  • the shock / abnormal noise suppressing action in the first embodiment will be described with reference to FIG.
  • the PWT generation driving force is equal to the coast regeneration torque when the accelerator release operation is started at time t1, as shown by the solid line characteristic E in FIG. Due to the increase, the driving force shifts from a positive driving force to a negative driving force before reaching the accelerator OFF time t2. Then, when the brake start time t3 has elapsed from the accelerator OFF time t2 and the negative driving force reaches the limit value at time t4, after the time t4, a predetermined time from the accelerator OFF time t2 to the time t7 is reached. During this time, the regeneration amount by the coast regeneration and the brake cooperative regeneration is limited so as not to fall below the limit value. Therefore, at the clutch release time t6 ( ⁇ time t7) at which the clutch capacity of the electronic control coupling 42 is released, the negative driving force is maintained at the limit value, and the occurrence of shock and noise is suppressed.
  • the driving force reduction control is performed to reduce the driving force generated in the driving force transmission system toward the negative driving force region including the amount of regeneration by the motor / generator 4 when the deceleration is requested.
  • the negative driving force by the driving force reduction control is limited until the actual clutch capacity of the electronic control coupling 42 is released.
  • the regeneration amount when limiting the negative driving force by the driving force reduction control, when the predetermined limit value is reached due to the increase of the regeneration amount by the motor / generator 4, the regeneration amount is maintained so as to be maintained at the predetermined limit value. Suppresses the increase of
  • the deceleration request includes an accelerator release operation and an operation of switching from accelerator release to brake depression.
  • a negative driving force is generated due to an increase in the regeneration amount by the motor / generator 4. Becomes larger.
  • the amount of regeneration during the accelerator release operation has increased due to recent fuel efficiency requirements. Therefore, when limiting the negative driving force, pay attention to the regeneration amount by the motor / generator 4 having better control response and higher control accuracy than the brake fluid pressure in the mechanical brake, and suppress the increase in the regeneration amount. did. Therefore, when the negative driving force is limited, the negative driving force is limited to the limit value by regenerative amount control that provides good control response and high control accuracy.
  • the friction clutch is a ball cam type electronically controlled coupling 42
  • the limit value of the regenerative amount is a negative driving force value at which the vehicle front-rear G change rate due to the increase of the regenerative amount is equal to or less than a predetermined change rate.
  • Example 1 when the tire diameters of the front and rear wheels are different from each other, the limit value of the regeneration amount is changed to a value smaller than the limit value when the tire diameters of the front and rear wheels are the same diameter according to the difference in tire diameters. To do.
  • the accelerator opening APO becomes equal to or less than the threshold value, and then based on the release response time of the electronic control coupling 42.
  • the negative driving force is limited by suppressing an increase in the regeneration amount until a predetermined time set in the above elapses.
  • the coast line of the target driving force has fallen, so even if a release command is issued to the electronic control coupling 42, the clutch capacity cannot be released in time, and the regeneration amount increases before the clutch capacity is released. End up. Therefore, during the accelerator release operation in which the release control of the electronic control coupling 42 and the regeneration control in the strong regeneration mode overlap, the occurrence of shock due to the increase in the regeneration amount before the clutch capacity of the electronic control coupling 42 is released is prevented.
  • a friction clutch (electronic control coupling 42) It is set as the sub drive wheel connected via.
  • a release command is output to the friction clutch.
  • the drive force generated in the drive force transmission system is directed toward the negative drive force region including the regeneration amount by the motor / generator 4. To reduce the driving force.
  • the regeneration amount by the motor / generator 4 includes the case of only the coast regeneration amount and the case of both the coast regeneration amount and the brake cooperative regeneration amount.
  • the friction clutch is a ball cam type electronically controlled coupling 42.
  • the limit value of the regeneration amount is set to a negative driving force value at which the vehicle front-rear G change rate due to the increase of the regeneration amount is equal to or less than a predetermined change rate (FIG. 11). For this reason, in addition to the effect of (2), it is possible to prevent the occurrence of shock and abnormal noise at the time of deceleration request in which the release control of the electronic control coupling 42 and the driving force reduction control overlap.
  • the negative driving force is limited by suppressing an increase in the regenerative amount until a predetermined time set in advance based on the time in an experiment or the like has elapsed (FIG. 6). For this reason, in addition to the effects (1) to (4), the friction clutch (electronic control coupling 42) is used during the accelerator release operation, in which the release control of the friction clutch (electronic control coupling 42) and the regeneration control in the strong regeneration mode overlap. It is possible to prevent the occurrence of shock due to the increase in the regeneration amount before the clutch capacity of the clutch is released.
  • a 4WD controller (4WD control unit 85) is provided that outputs a release command to the friction clutch when a deceleration request is made in the four-wheel drive state by engagement of the friction clutch (electronic control coupling 42).
  • a driving force controller for performing driving force lowering control is provided.
  • the driving force controller is configured to request the deceleration of the friction clutch (electronic control coupling 42) release control and the driving force reduction control until the actual clutch capacity of the friction clutch (electronic control coupling 42) is released. Then, the negative driving force by the driving force reduction control is limited (FIG. 11).
  • a control device for a four-wheel drive electric vehicle (four-wheel drive hybrid vehicle) that prevents the occurrence of a shock regardless of whether or not there is a changeover time when the clutch release control and the driving force reduction control are overlapped. Can be provided.
  • Example 2 is an example in which the control based on the target driving force is used in place of the control based on the accelerator opening in Example 1 as the 4WD control for controlling the clutch capacity of the electronically controlled coupling.
  • the determination as to whether or not the accelerator opening in step S03 in FIG. 5 in the first embodiment ⁇ the threshold value is replaced with a determination as to whether or not the target driving force is equal to or less than a predetermined value.
  • the target driving force (negative driving force value) at the time of the accelerator release operation is set to a predetermined value, and the electronic control coupling 42 is controlled to be released when the target driving force becomes a predetermined value or less.
  • FIG. 12 shows the flow of the regenerative control process based on the target driving force executed during the accelerator release operation by the hybrid control module 81 of the second embodiment.
  • each step of FIG. 12 will be described.
  • step S21 it is determined whether or not the strong regeneration mode is selected by the regeneration mode selection switch 91. If YES (selection of strong regeneration mode), the process proceeds to step S22. If NO (selection of weak regeneration mode), the process proceeds to step S25.
  • Step S22 following the determination that the strong regeneration mode is selected in Step S21, it is determined whether or not the target driving force is equal to or less than a predetermined value. If YES (target driving force ⁇ predetermined value), the process proceeds to step S23. If NO (target driving force> predetermined value), the process proceeds to step S25.
  • the target driving force is set to drive power running torque when the accelerator opening is in the middle and high opening range, and coasting when the accelerator opening is in the low opening region.
  • the predetermined value of the target driving force is set as a threshold value for determining that the coast regeneration torque (negative driving force) due to the accelerator OFF operation is being generated.
  • step S23 following the determination in step S22 that the target driving force ⁇ predetermined value or the determination in step S24 that the predetermined time has not elapsed, the negative driving force is limited, and the process proceeds to step S24. .
  • step S24 following the negative driving force limitation in step S23, it is determined whether or not a predetermined time has elapsed since the negative driving force limitation was started. If YES (predetermined time has elapsed), the process proceeds to step S25. If NO (predetermined time has not elapsed), the process returns to step S23.
  • step S25 following the selection of the weak regeneration mode in step S21 or the determination that the predetermined time has elapsed in step S24, the process proceeds to the end without limiting the negative driving force including the regeneration amount.
  • shock / noise generation mechanism during regenerative control intervention and “shock / noise generation action in the comparative example” are the same as those in the first embodiment, description thereof is omitted.
  • shock / abnormal noise suppressing action in the second embodiment will be described.
  • step S21 the target driving force condition is not satisfied (target driving force> predetermined value) when the “strong regeneration mode” is selected
  • step S21 ⁇ step S22 ⁇ step S25 end in the flowchart of FIG. move on.
  • the negative driving force is not limited in step S25.
  • step S21 when the “strong regeneration mode” is selected and the target driving force condition is satisfied (target driving force ⁇ predetermined value), the process proceeds from step S21 to step S22 to step S23 in the flowchart of FIG.
  • step S23 negative driving force limit control is started to suppress the reduction in the regeneration amount to the limit value.
  • step S24 is repeated in the flowchart of FIG. 12, and negative driving force limit control that suppresses the reduction in the regeneration amount to the limit value is maintained.
  • step S24 when a predetermined time has elapsed from the start of the negative driving force limit control, the process proceeds from step S24 to step S25 in the flowchart of FIG. 12, and the negative driving force limit is released.
  • the regeneration amount by coast regeneration and brake cooperative regeneration is limited so as not to fall below the limit value for a predetermined time after the target driving force becomes equal to or less than the predetermined value. The Therefore, when the clutch is released to release the clutch capacity of the electronic control coupling 42, the negative driving force is maintained at the limit value, and the occurrence of shock and noise is suppressed.
  • Release control of the friction clutch is performed according to the target driving force set based on the accelerator opening APO and the vehicle speed VSP. Based on the release response time of the friction clutch (electronic control coupling 42) after the target drive force becomes a predetermined value or less at the time of deceleration request when the release control of the friction clutch (electronic control coupling 42) and the driving force reduction control overlap. Until the set time elapses, the negative driving force by the driving force reduction control is limited (FIG. 12).
  • the target driving force decreases before the clutch capacity of the friction clutch (electronic control coupling 42) is released at the time of deceleration request where the release control of the friction clutch (electronic control coupling 42) and the driving force reduction control overlap. It is possible to prevent the occurrence of shock due to.
  • Example 3 is an example in which an estimated clutch capacity (actual clutch capacity) is calculated in the case of 4WD control for controlling the clutch capacity of the electronically controlled coupling.
  • the control to release the electronic control coupling 42 is performed based on the determination that the accelerator opening degree of the first embodiment ⁇ the threshold value or the determination that the target driving force ⁇ the predetermined value in the second embodiment. Then, during release control of the electronic control coupling 42, an estimated clutch capacity value (actual clutch capacity) is calculated, and feedback control is performed based on a deviation from the target clutch capacity, for example.
  • an estimated clutch capacity value actual clutch capacity
  • FIG. 13 shows the flow of the regenerative control process based on the target driving force executed during the accelerator release operation by the hybrid control module 81 of the third embodiment. Hereinafter, each step of FIG. 13 will be described.
  • step S31 it is determined whether or not the strong regeneration mode is selected by the regeneration mode selection switch 91. If YES (selection of strong regeneration mode), the process proceeds to step S32. If NO (selection of weak regeneration mode), the process proceeds to step S34.
  • step S32 following the determination that the strong regeneration mode is selected in step S31, it is determined whether or not the estimated clutch capacity is greater than or equal to a predetermined value. If YES (clutch capacity estimated value ⁇ predetermined value), the process proceeds to step S33. If NO (clutch capacity estimated value ⁇ predetermined value), the process proceeds to step S34.
  • the predetermined value of the estimated clutch capacity is set as a threshold value for determining that the electronic control coupling 42 is in the released state with the clutch capacity removed.
  • step S33 following the determination that clutch estimated value ⁇ predetermined value in step S32, the negative driving force is limited and the process proceeds to the end. That is, when the process proceeds from step S32 to step S33, the negative driving force is limited based on the determination that the clutch capacity of the electronic control coupling 42 is not released.
  • step S34 following the determination that the weak regeneration mode is selected in step S31, or the determination that the clutch capacity estimation value is smaller than the predetermined value in step S32, the process is ended without limiting the negative driving force. Proceed to That is, when the process proceeds from step S32 to step S34, the limitation on the negative driving force is released based on the determination that the clutch capacity of the electronic control coupling 42 is removed and the clutch is released.
  • shock / noise generation mechanism during regenerative control intervention and “shock / noise generation action in the comparative example” are the same as those in the first embodiment, description thereof is omitted.
  • shock / abnormal noise suppressing action in the third embodiment will be described.
  • step S31 the clutch engagement condition is not satisfied (clutch capacity estimation value ⁇ predetermined value)
  • step S31 ⁇ step S32 ⁇ step S33 ⁇ end in the flowchart of FIG. Proceed to In step S33, negative driving force limit control is performed to suppress the reduction in the regeneration amount to the limit value.
  • Release control of the friction clutch (electronic control coupling 42) is performed while calculating an estimated clutch capacity value of the friction clutch (electronic control coupling 42).
  • the negative driving force by the driving force reduction control is limited while the estimated clutch capacity is equal to or greater than a predetermined value (FIG. 13). .
  • the negative driving force decreases before the actual clutch capacity of the friction clutch (electronic control coupling 42) is released at the time of deceleration request where the release control of the friction clutch (electronic control coupling 42) and the driving force reduction control overlap. It is possible to prevent the occurrence of a shock caused by doing.
  • control method and control device for the four-wheel drive electric vehicle of the present disclosure have been described based on the first to third embodiments.
  • specific configuration is not limited to these embodiments, and design changes and additions are allowed without departing from the spirit of the invention according to each claim of the claims.
  • Examples 1 to 3 examples of the pedal operation by the driver such as an accelerator release operation or a change-over operation from the accelerator release to the brake depression are shown as the deceleration request.
  • the deceleration request includes a case of a cruise control system-equipped vehicle or an automatically driven vehicle that outputs a deceleration request corresponding to accelerator release or stepping as a control command for the required regenerative torque.
  • FIG. 14 shows a request function for realizing cooperative control of clutch release control and driving force reduction control for the hybrid control module (HCM) and the vehicle behavior controller (VDC).
  • HCM hybrid control module
  • VDC vehicle behavior controller
  • the ball cam type electronically controlled coupling 42 having the control clutch 50, the cam mechanism, and the main clutch 54 is used as the friction clutch.
  • the friction clutch is not limited to the ball cam type electronically controlled coupling, and any friction clutch that controls the front / rear wheel driving force distribution by an external command can be used, such as a multi-plate clutch operated by the control hydraulic pressure. As an example.
  • Embodiments 1 to 3 show examples in which the control device of the present disclosure is applied to an FF-based four-wheel drive hybrid vehicle.
  • the control device of the present disclosure can be applied not only to an FF-based four-wheel drive hybrid vehicle but also to an FR-based four-wheel drive hybrid vehicle.
  • the present invention can be applied not only to a four-wheel drive hybrid vehicle but also to a four-wheel drive electric vehicle.
  • a four-wheel drive electric vehicle having a motor / generator as a drive source and a friction clutch for controlling the front and rear wheel drive force distribution by an external command in the drive force transmission path from the drive source to the sub drive wheels. If applicable.

Abstract

The present invention addresses the problem of preventing the occurrence of shocks at the time of a deceleration request in which clutch release control and driving force reduction control overlap, regardless of whether there is pedal switching time and this time is short or long. Provided are a control method and a control device for a four-wheel drive electric vehicle in which a drive source comprises a motor/generator (4), left/right front wheels (10L, 10R) serve as main drive wheels connected to the drive source, and left/right rear wheels (11L, 11R) serve as auxiliary drive wheels connected to the drive source via an electronic control coupling (42). A release command is output to a friction clutch at the time of a deceleration request when in a four-wheel drive state resulting from engagement of the electronic control coupling (42). In this control method for a four-wheel drive hybrid vehicle, driving force reduction control for reducing driving force generated in a driving force transmission system including the regeneration amount by the motor/generator (4) toward a negative driving force range is performed at the time of a deceleration request. At the time of a deceleration request in which driving force reduction control and release control of the electronic control coupling (42) overlap, the negative driving force resulting from the driving force reduction control is limited until the actual clutch capacity of the electronic control coupling (42) falls to zero.

Description

4輪駆動電動車両の制御方法及び制御装置Control method and control apparatus for four-wheel drive electric vehicle
 本開示は、駆動源にモータ/ジェネレータを有し、副駆動輪への駆動力伝達系に摩擦クラッチを備えた4輪駆動電動車両の制御方法及び制御装置に関する。 The present disclosure relates to a control method and a control device for a four-wheel drive electric vehicle having a motor / generator as a drive source and a friction clutch in a drive force transmission system to sub drive wheels.
 従来、4輪駆動状態でモータ/ジェネレータによる回生制御が介入したとき、回生制御を開始する前に、電子制御カップリングの伝達トルクをゼロにする協調制御が行う4輪駆動電動車両の制御装置が知られている(例えば、特許文献1参照)。 Conventionally, when regenerative control by a motor / generator is intervened in a four-wheel drive state, before starting the regenerative control, a control device for a four-wheel drive electric vehicle that performs cooperative control to make the transmission torque of the electronically controlled coupling zero. It is known (see, for example, Patent Document 1).
国際公開WO 2015/052808 A1号公報International Publication WO 2015/052808 A1 Publication
 上記従来装置において、ブレーキ踏み込み操作が行われた場合でも、ブレーキ協調回生での回生量が大きくなるまでに踏み換え時間を含む余裕時間があるため、回生量が大きくなる前に電子制御カップリングのクラッチ容量を低下できた。なお、電子制御カップリングは、アクセルOFF操作を検出して電子制御カップリングを解放している。 In the above-described conventional device, even when a brake depression operation is performed, since there is a margin time including a step change time until the regeneration amount in the brake cooperative regeneration increases, the electronic control coupling before the regeneration amount increases. The clutch capacity could be reduced. The electronic control coupling detects the accelerator OFF operation and releases the electronic control coupling.
 しかしながら、例えば、アクセルOFFでの回生量を拡大した強回生モードを備えた電動車両や制御指令による踏み換え時間がドライバ操作に比べて短い自動運転車両においては、電子制御カップリングのクラッチ容量が抜かれる前に回生量が大きくなる可能性がある。 However, for example, in an electrically powered vehicle with a strong regeneration mode with an increased regeneration amount when the accelerator is OFF and an autonomous driving vehicle in which the changeover time by the control command is shorter than the driver operation, the clutch capacity of the electronically controlled coupling is removed. The amount of regeneration may increase before
 本開示は、上記問題に着目してなされたもので、クラッチ解放制御と駆動力低下制御が重なる減速要求時、踏み換え時間の有無や長短にかかわらず、ショックの発生を防止することを目的とする。 The present disclosure has been made paying attention to the above-mentioned problem, and aims to prevent the occurrence of a shock regardless of whether or not there is a changeover time at the time of deceleration request where clutch release control and driving force reduction control overlap. To do.
 上記目的を達成するため、本開示は、駆動源にモータ/ジェネレータを有し、左右前輪と左右後輪の一方を駆動源に接続される主駆動輪とし、左右前輪と左右後輪の他方を駆動源に摩擦クラッチを介して接続される副駆動輪とする。
摩擦クラッチの締結による4輪駆動状態での減速要求時、摩擦クラッチに解放指令を出力する。
この4輪駆動電動車両の制御方法において、減速要求時、駆動力伝達系に発生する駆動力を、モータ/ジェネレータによる回生量を含んで負の駆動力領域に向かって低下させる駆動力低下制御を行う。
摩擦クラッチの解放制御と駆動力低下制御が重なる減速要求時、摩擦クラッチの実クラッチ容量が抜けるまで、駆動力低下制御による負の駆動力を制限する。
In order to achieve the above object, the present disclosure has a motor / generator as a drive source, one of the left and right front wheels and the left and right rear wheels is a main drive wheel connected to the drive source, and the other of the left and right front wheels and the left and right rear wheels is The auxiliary drive wheel is connected to the drive source via a friction clutch.
When requesting deceleration in the four-wheel drive state due to the engagement of the friction clutch, a release command is output to the friction clutch.
In this control method for a four-wheel drive electric vehicle, a driving force reduction control is performed to reduce the driving force generated in the driving force transmission system toward the negative driving force region including the regeneration amount by the motor / generator at the time of deceleration request. Do.
At the time of a deceleration request in which the friction clutch release control and the driving force reduction control overlap, the negative driving force by the driving force reduction control is limited until the actual clutch capacity of the friction clutch is released.
 このように、実クラッチ容量が抜けるまで、駆動力低下制御による負の駆動力を制限する協調制御を行うことで、クラッチ解放制御と駆動力低下制御が重なる減速要求時、踏み換え時間の有無や長短にかかわらず、ショックの発生を防止することができる。 In this way, by performing cooperative control that limits the negative driving force by the driving force reduction control until the actual clutch capacity is released, when there is a deceleration request in which the clutch release control and the driving force reduction control overlap, Whether it is long or short, it is possible to prevent the occurrence of shock.
実施例1の制御方法及び制御装置が適用されたFFベースの4輪駆動ハイブリッド車両(4輪駆動電動車両の一例)を示す全体システム図である。1 is an overall system diagram illustrating an FF-based four-wheel drive hybrid vehicle (an example of a four-wheel drive electric vehicle) to which a control method and a control device according to a first embodiment are applied. 実施例1の制御方法及び制御装置が適用された4輪駆動ハイブリッド車両の後輪駆動系に設けられた電子制御カップリングを示す概略図である。It is the schematic which shows the electronically controlled coupling provided in the rear-wheel drive system of the four-wheel drive hybrid vehicle to which the control method and control apparatus of Example 1 were applied. 電子制御カップリングのカム機構を示す斜視図である。It is a perspective view which shows the cam mechanism of an electronically controlled coupling. 実施例1の4WDコントロールユニットにおける4輪駆動力配分制御系の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a four-wheel driving force distribution control system in the 4WD control unit according to the first embodiment. 実施例1の4WDコントロールユニットにて実行される4WD制御処理の流れを示すフローチャートである。4 is a flowchart illustrating a flow of 4WD control processing executed by the 4WD control unit according to the first embodiment. 実施例1のハイブリッドコントロールモジュールでアクセル解放操作時に実行されるアクセル開度に基づく回生制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the regeneration control process based on the accelerator opening performed at the time of accelerator release operation by the hybrid control module of Example 1. FIG. 弱回生モードを選択したときの車速に対するコースト目標駆動力特性と強回生モードを選択したときの車速に対するコースト目標駆動力特性の一例を示すコースト目標駆動力マップである。It is a coast target driving force map which shows an example of the coast target driving force characteristic with respect to the vehicle speed when the weak regeneration mode is selected and the coast target driving force characteristic with respect to the vehicle speed when the strong regeneration mode is selected. 弱回生モードを選択したときと強回生モードを選択したときのコースト回生・ブレーキ協調回生・メカブレーキの分担比の比較を示す要求制動力分担比較図である。It is a required braking force sharing comparison diagram showing a comparison of the ratios of coast regeneration, brake cooperative regeneration, and mechanical brake when the weak regeneration mode is selected and when the strong regeneration mode is selected. アクセル解放操作後のブレーキ踏み込み操作時に電子制御カップリングのカム機構にて発生するショック・異音の発生メカニズムを示す説明図である。It is explanatory drawing which shows the generation | occurrence | production mechanism of the shock and noise which generate | occur | produce with the cam mechanism of an electronically controlled coupling at the time of brake depression operation after an accelerator release operation. 比較例においてアクセル解放操作により電子制御カップリングの解放制御とコースト回生トルク制御が重なるときのアクセル開度・PWT発生駆動力・電子制御カップリングのクラッチ容量の各特性を示すタイムチャートである。7 is a time chart showing characteristics of accelerator opening, PWT generation driving force, and clutch capacity of electronic control coupling when electronic control coupling release control and coast regenerative torque control are overlapped by an accelerator release operation in a comparative example. 実施例1においてアクセル解放操作により電子制御カップリングの解放制御とコースト回生トルク制御が重なるときのアクセル開度・PWT発生駆動力・電子制御カップリングのクラッチ容量の各特性を示すタイムチャートである。6 is a time chart showing characteristics of accelerator opening, PWT generation driving force, and clutch capacity of electronic control coupling when release control of electronic control coupling and coast regenerative torque control are overlapped by an accelerator release operation in the first embodiment. 実施例2のハイブリッドコントロールモジュールで減速要求時に実行される目標駆動力に基づく回生制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the regeneration control process based on the target drive force performed at the time of the deceleration request | requirement with the hybrid control module of Example 2. FIG. 実施例3のハイブリッドコントロールモジュールで減速要求時に実行されるクラッチ容量に基づく回生制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the regeneration control process based on the clutch capacity | capacitance performed at the time of the deceleration request | requirement by the hybrid control module of Example 3. 適用車両がクルーズコントロールシステムを搭載した4輪駆動ハイブリッド車両である場合においてクラッチ解放制御と駆動力低下制御との協調制御を実現するための要求機能を示すコンセプトブロック図である。It is a concept block diagram which shows the request | requirement function for implement | achieving cooperative control with clutch release control and driving force fall control, when an application vehicle is a four-wheel drive hybrid vehicle carrying a cruise control system.
 以下、本開示の4輪駆動電動車両の制御方法及び制御装置を実現する最良の形態を、図面に示す実施例1~実施例3に基づいて説明する。 Hereinafter, the best mode for realizing the control method and the control device of the four-wheel drive electric vehicle of the present disclosure will be described based on Examples 1 to 3 shown in the drawings.
 まず、構成を説明する。
実施例1の制御方法及び制御装置は、FFベースの4輪駆動ハイブリッド車両(4輪駆動電動車両の一例)に適用したものである。以下、実施例1の構成を、「全体システム構成」、「電子制御カップリングの詳細構成」、「4WD制御処理構成」、「アクセル開度に基づく回生制御処理構成」に分けて説明する。
First, the configuration will be described.
The control method and control device of the first embodiment are applied to an FF-based four-wheel drive hybrid vehicle (an example of a four-wheel drive electric vehicle). Hereinafter, the configuration of the first embodiment will be described by being divided into “entire system configuration”, “detailed configuration of electronic control coupling”, “4WD control processing configuration”, and “regenerative control processing configuration based on accelerator opening”.
 [全体システム構成]
 図1は、実施例1の制御方法及び制御装置が適用されたFFベースの4輪駆動ハイブリッド車両の全体システムを示す。以下、図1に基づいてFFベースの4輪駆動ハイブリッド車両の全体システム構成を説明する。
[Overall system configuration]
FIG. 1 shows an overall system of an FF-based four-wheel drive hybrid vehicle to which the control method and the control device of the first embodiment are applied. The overall system configuration of the FF-based four-wheel drive hybrid vehicle will be described below with reference to FIG.
 FFベースの4輪駆動ハイブリッド車両の前輪駆動系は、図1に示すように、スタータモータ1と、横置きエンジン2と、第1クラッチ3(略称「CL1」)と、モータ/ジェネレータ4(略称「MG」)と、第2クラッチ5(略称「CL2」)と、ベルト式無段変速機6(略称「CVT」)と、を備えている。ベルト式無段変速機6の出力軸は、終減速ギヤトレイン7とフロントデファレンシャルギア8と左右の前輪ドライブシャフト9R,9Lを介し、左右の前輪10R,10Lに駆動連結される。 As shown in FIG. 1, the front wheel drive system of the FF-based four-wheel drive hybrid vehicle includes a starter motor 1, a horizontally mounted engine 2, a first clutch 3 (abbreviated as “CL1”), and a motor / generator 4 (abbreviated as abbreviation). “MG”), a second clutch 5 (abbreviated as “CL2”), and a belt type continuously variable transmission 6 (abbreviated as “CVT”). The output shaft of the belt type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10R and 10L via a final reduction gear train 7, a front differential gear 8, and left and right front wheel drive shafts 9R and 9L.
 スタータモータ1は、横置きエンジン2のクランク軸に設けられたエンジン始動用ギヤに噛み合うギヤを持ち、エンジン始動時にクランク軸を回転駆動するクランキングモータである。このスタータモータ1は、12Vバッテリ22を電源として駆動する。 The starter motor 1 is a cranking motor that has a gear that meshes with an engine start gear provided on a crankshaft of the horizontal engine 2 and that rotates the crankshaft when the engine is started. The starter motor 1 is driven by using a 12V battery 22 as a power source.
 横置きエンジン2は、クランク軸方向を車幅方向としてフロントルームに配置したエンジンであり、電動ウォータポンプ12と、横置きエンジン2の逆転を検知するクランク軸回転センサ13と、を有する。 The horizontal engine 2 is an engine disposed in the front room with the crankshaft direction as the vehicle width direction, and includes an electric water pump 12 and a crankshaft rotation sensor 13 that detects reverse rotation of the horizontal engine 2.
 第1クラッチ3は、横置きエンジン2とモータ/ジェネレータ4との間に介装された油圧作動によるノーマルオープンの乾式多板摩擦クラッチであり、第1クラッチ油圧により完全締結/スリップ締結/解放が制御される。 The first clutch 3 is a normally open dry multi-plate friction clutch that is hydraulically interposed between the horizontally mounted engine 2 and the motor / generator 4, and is fully engaged / slip engaged / released by the first clutch oil pressure. Be controlled.
 モータ/ジェネレータ4は、第1クラッチ3を介して横置きエンジン2に連結された三相交流の永久磁石型同期モータである。このモータ/ジェネレータ4は、後述する強電バッテリ21を電源とし、ステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ26が、ACハーネス27を介して接続される。 The motor / generator 4 is a three-phase AC permanent magnet synchronous motor connected to the transverse engine 2 via the first clutch 3. The motor / generator 4 uses a high-power battery 21 described later as a power source, and an inverter 26 that converts direct current into three-phase alternating current during power running and converts three-phase alternating current into direct current during regeneration is connected to the stator coil. Connected through.
 第2クラッチ5は、モータ/ジェネレータ4と駆動輪である左右の前輪10R,10Lとの間に介装された油圧作動による湿式の多板摩擦クラッチであり、第2クラッチ油圧により完全締結/スリップ締結/解放が制御される。実施例1の第2クラッチ5は、遊星ギヤによるベルト式無段変速機6の前後進切替機構に設けられた前進クラッチ5aと後退ブレーキ5bを流用している。つまり、前進走行時には、前進クラッチ5aが第2クラッチ5(CL2)とされ、後退走行時には、後退ブレーキ5bが第2クラッチ5(CL2)とされる。 The second clutch 5 is a wet-type multi-plate friction clutch by hydraulic operation that is interposed between the motor / generator 4 and the left and right front wheels 10R, 10L as drive wheels, and is completely engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled. The second clutch 5 of the first embodiment uses the forward clutch 5a and the reverse brake 5b provided in the forward / reverse switching mechanism of the belt-type continuously variable transmission 6 using planetary gears. That is, during forward travel, the forward clutch 5a is the second clutch 5 (CL2), and during reverse travel, the reverse brake 5b is the second clutch 5 (CL2).
 ベルト式無段変速機6は、プライマリ油室とセカンダリ油室への変速油圧によりベルトの巻き付き径を変えることで無段階の変速比を得る変速機である。このベルト式無段変速機6には、メインオイルポンプ14(メカ駆動)と、サブオイルポンプ15(モータ駆動)と、メインオイルポンプ14からのポンプ吐出圧を調圧することで生成したライン圧PLを元圧として第1,第2クラッチ油圧及び変速油圧を作り出す図外のコントロールバルブユニットと、を有する。なお、メインオイルポンプ14は、モータ/ジェネレータ4のモータ軸(=変速機入力軸)により回転駆動される。サブオイルポンプ15は、主に潤滑冷却用油を作り出す補助ポンプとして用いられる。 The belt-type continuously variable transmission 6 is a transmission that obtains a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber. The belt type continuously variable transmission 6 includes a main oil pump 14 (mechanical drive), a sub oil pump 15 (motor drive), and a line pressure PL generated by adjusting pump discharge pressure from the main oil pump 14. And a control valve unit (not shown) that generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure with the pressure as the original pressure. The main oil pump 14 is rotationally driven by a motor shaft (= transmission input shaft) of the motor / generator 4. The sub oil pump 15 is mainly used as an auxiliary pump for producing lubricating cooling oil.
 第1クラッチ3とモータ/ジェネレータ4と第2クラッチ5により1モータ・2クラッチの駆動システムが構成され、この駆動システムによる主な駆動態様として、「EVモード」と「HEVモード」を有する。「EVモード」は、第1クラッチ3を解放し、第2クラッチ5を締結してモータ/ジェネレータ4のみを駆動源に有する電気自動車モードであり、「EVモード」による走行を「EV走行」という。「HEVモード」は、両クラッチ3,5を締結して横置きエンジン2とモータ/ジェネレータ4を駆動源に有するハイブリッド車モードであり、「HEVモード」による走行を「HEV走行」という。 The first clutch 3, the motor / generator 4 and the second clutch 5 constitute a one-motor / two-clutch drive system, and there are “EV mode” and “HEV mode” as main drive modes by this drive system. The “EV mode” is an electric vehicle mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor / generator 4 is used as a driving source. Driving in the “EV mode” is referred to as “EV driving”. . The “HEV mode” is a hybrid vehicle mode in which both the clutches 3 and 5 are engaged and the horizontal engine 2 and the motor / generator 4 are used as driving sources, and traveling in the “HEV mode” is referred to as “HEV traveling”.
 なお、図1の回生協調ブレーキユニット16は、ブレーキ操作時、要求制動力をブレーキ協調回生量とメカブレーキ分で分担するのをコントロールするデバイスである。この回生協調ブレーキユニット16には、ブレーキペダルと、負圧ブースタと、マスタシリンダと、ブレーキ液圧アクチュエータと、を備える。そして、ブレーキ操作時、ペダル操作量に基づく要求制動力から回生量を差し引いた分を液圧制動力(メカブレーキ)で分担するというように、回生量/液圧分の協調制御を行う。 Note that the regenerative cooperative brake unit 16 in FIG. 1 is a device that controls sharing of the required braking force by the brake cooperative regenerative amount and the mechanical brake when the brake is operated. The regenerative cooperative brake unit 16 includes a brake pedal, a negative pressure booster, a master cylinder, and a brake hydraulic pressure actuator. Then, during the brake operation, cooperative control for the regenerative amount / hydraulic pressure is performed so that the amount obtained by subtracting the regenerative amount from the required braking force based on the pedal operation amount is shared by the hydraulic braking force (mechanical brake).
 FFベースの4輪駆動ハイブリッド車両の後輪駆動系は、図1に示すように、トランスファー40と、プロペラシャフト41と、電子制御カップリング42と、リアデファレンシャルギア43と、左右の後輪ドライブシャフト44R,44Lと、左右の後輪11R,11Lと、を備えている。 As shown in FIG. 1, the rear wheel drive system of an FF-based four-wheel drive hybrid vehicle includes a transfer 40, a propeller shaft 41, an electronic control coupling 42, a rear differential gear 43, and left and right rear wheel drive shafts. 44R, 44L and left and right rear wheels 11R, 11L.
 トランスファー40は、電子制御カップリング42が締結されているとき、フロントデファレンシャルギア8からの駆動力を、プロペラシャフト41、電子制御カップリング42と、リアデファレンシャルギア43と、左右の後輪ドライブシャフト44R,44Lを介して左右の後輪11R,11Lへ伝達する。なお、電子制御カップリング42の詳細構成は後述する。 When the electronic control coupling 42 is fastened, the transfer 40 transmits the driving force from the front differential gear 8 to the propeller shaft 41, the electronic control coupling 42, the rear differential gear 43, and the left and right rear wheel drive shafts 44R. , 44L to the left and right rear wheels 11R, 11L. The detailed configuration of the electronic control coupling 42 will be described later.
 FFベースの4輪駆動ハイブリッド車両の電源システムとしては、図1に示すように、モータ/ジェネレータ電源としての強電バッテリ21と、12V系負荷電源としての12Vバッテリ22と、を備えている。 As shown in FIG. 1, the power system of the FF-based four-wheel drive hybrid vehicle includes a high-power battery 21 as a motor / generator power source and a 12V battery 22 as a 12V system load power source.
 強電バッテリ21は、モータ/ジェネレータ4の電源として搭載された二次電池であり、例えば、多数のセルにより構成したセルモジュールを、バッテリパックケース内に設定したリチウムイオンバッテリが用いられる。この強電バッテリ21には、強電の供給/遮断/分配を行うリレー回路を集約させたジャンクションボックスが内蔵され、さらに、バッテリ冷却機能を持つ冷却ファンユニット24と、バッテリ充電容量(バッテリSOC)やバッテリ温度を監視するリチウムバッテリコントローラ86と、が付設される。 The high-power battery 21 is a secondary battery mounted as a power source for the motor / generator 4. For example, a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used. The high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
 強電バッテリ21とモータ/ジェネレータ4は、DCハーネス25とインバータ26とACハーネス27を介して接続される。インバータ26には、力行/回生制御を行うモータコントローラ83が付設される。つまり、インバータ26は、強電バッテリ21の放電によりモータ/ジェネレータ4を駆動する力行時、DCハーネス25からの直流をACハーネス27への三相交流に変換する。また、モータ/ジェネレータ4での発電により強電バッテリ21を充電する回生時、ACハーネス27からの三相交流をDCハーネス25への直流に変換する。 The high-power battery 21 and the motor / generator 4 are connected via a DC harness 25, an inverter 26, and an AC harness 27. The inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts a direct current from the DC harness 25 into a three-phase alternating current to the AC harness 27 during power running for driving the motor / generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into a direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor / generator 4.
 12Vバッテリ22は、補機類である12V系負荷の電源として搭載された二次電池であり、例えば、エンジン車等で搭載されている鉛バッテリが用いられる。強電バッテリ21と12Vバッテリ22は、DC分岐ハーネス25aとDC/DCコンバータ37とバッテリハーネス38を介して接続される。DC/DCコンバータ37は、強電バッテリ21からの数百ボルト電圧を12Vに変換するものであり、このDC/DCコンバータ37を、ハイブリッドコントロールモジュール81により制御することで、12Vバッテリ22の充電量を管理する構成としている。 The 12V battery 22 is a secondary battery mounted as a power source for a 12V load that is an auxiliary machine, and for example, a lead battery mounted in an engine vehicle or the like is used. The high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38. The DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 into 12V, and the charge amount of the 12V battery 22 is controlled by controlling the DC / DC converter 37 by the hybrid control module 81. The configuration is to be managed.
 FFハイブリッド車両の制御システムとしては、図1に示すように、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段として、ハイブリッドコントロールモジュール81(略称:「HCM」)を備えている。このハイブリッドコントロールモジュール81に接続される制御デバイスとして、エンジンコントロールモジュール82(略称:「ECM」)と、モータコントローラ83(略称:「MC」)と、CVTコントロールユニット84(略称:「CVTCU」)と、4WDコントロールユニット85(略称:「4WDCU」)と、リチウムバッテリコントローラ86(略称:「LBC」)と、を有する。ハイブリッドコントロールモジュール81を含むこれらの制御デバイスは、CAN通信線90(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続される。 As shown in FIG. 1, the control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an integrated control means for properly managing the energy consumption of the entire vehicle. Control devices connected to the hybrid control module 81 include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”). 4WD control unit 85 (abbreviation: “4WDCU”) and lithium battery controller 86 (abbreviation: “LBC”). These control devices including the hybrid control module 81 are connected via a CAN communication line 90 (CAN is an abbreviation of “Controller Area Network”) so that bidirectional information can be exchanged.
 ハイブリッドコントロールモジュール81は、各制御デバイス、回生モード選択スイッチ91、アクセル開度センサ92、車速センサ93等からの入力情報に基づき、様々な制御を行う。 Hybrid control module 81 performs various controls based on input information from each control device, regenerative mode selection switch 91, accelerator opening sensor 92, vehicle speed sensor 93, and the like.
 エンジンコントロールモジュール82は、横置きエンジン2の燃料噴射制御や点火制御や燃料カット制御等を行う。 The engine control module 82 performs fuel injection control, ignition control, fuel cut control, and the like of the horizontally placed engine 2.
 モータコントローラ83は、インバータ26によるモータジェネレータ4の力行制御や回生制御等を行う。 The motor controller 83 performs power running control and regenerative control of the motor generator 4 by the inverter 26.
 CVTコントロールユニット84は、第1クラッチ3の締結油圧制御、第2クラッチ5の締結油圧制御、ベルト式無段変速機6の変速油圧制御等を行う。 The CVT control unit 84 performs the engagement hydraulic pressure control of the first clutch 3, the engagement hydraulic pressure control of the second clutch 5, the transmission hydraulic pressure control of the belt type continuously variable transmission 6, and the like.
 リチウムバッテリコントローラ86は、強電バッテリ21のバッテリSOCやバッテリ温度等を管理する。 The lithium battery controller 86 manages the battery SOC, battery temperature, etc. of the high-power battery 21.
 4WDコントロールユニット85は、4WDモードスイッチ94、車輪速センサ95、舵角センサ96、ヨーレートセンサ97、Gセンサ98、ブレーキスイッチ99等からの信号を入力する。そして、所定の演算処理を行った後、電子制御カップリング42に伝達トルク指令値を出力する。例えば、4WDモードスイッチ94にてオート(AUTO)が選択されているときには、イニシャルトルク処理と、差回転トルク処理と、駆動力配分トルク処理のうち、セレクトハイにより最終指令トルクを選択し、前輪10R,10Lと後輪11R,11Lへの駆動力配分を制御する。制御される駆動力配分比は、(前輪配分比:後輪配分比)が(100%:0%,前輪駆動)から(50%:50%,4輪等配分駆動)までの無段階による配分比である。 4WD control unit 85 inputs signals from 4WD mode switch 94, wheel speed sensor 95, rudder angle sensor 96, yaw rate sensor 97, G sensor 98, brake switch 99, and the like. Then, after performing a predetermined calculation process, a transmission torque command value is output to the electronic control coupling 42. For example, when AUTO is selected by the 4WD mode switch 94, the final command torque is selected by select high among the initial torque process, the differential rotation torque process, and the driving force distribution torque process, and the front wheel 10R is selected. , 10L and the driving force distribution to the rear wheels 11R, 11L. The driving force distribution ratio to be controlled is a stepless distribution from (100%: 0%, front wheel drive) to (50%: 50%, 4 wheel distribution drive) (front wheel distribution ratio: rear wheel distribution ratio) Is the ratio.
 [電子制御カップリングの詳細構成]
 図2は、電子制御カップリング42を示す概略図であり、図3は、電子制御カップリング42のカム機構を示す斜視図である。以下、図2及び図3に基づき、電子制御カップリング42の詳細構成を説明する。
[Detailed configuration of electronically controlled coupling]
FIG. 2 is a schematic view showing the electronic control coupling 42, and FIG. 3 is a perspective view showing a cam mechanism of the electronic control coupling 42. Hereinafter, a detailed configuration of the electronic control coupling 42 will be described with reference to FIGS. 2 and 3.
 電子制御カップリング42は、図2及び図3に示すように、ソレノイド45と、カップリング入力軸46と、カップリング出力軸47と、クラッチハウジング48と、アーマチュア49と、コントロールクラッチ50と、コントロールカム51と、メインカム52と、ボール53と、メインクラッチ54と、カム溝55と、を備えている。 2 and 3, the electronic control coupling 42 includes a solenoid 45, a coupling input shaft 46, a coupling output shaft 47, a clutch housing 48, an armature 49, a control clutch 50, and a control. A cam 51, a main cam 52, a ball 53, a main clutch 54, and a cam groove 55 are provided.
 カップリング入力軸46は、一端部がプロペラシャフト41に連結され、他端部がクラッチハウジング48に固定される。カップリング出力軸47は、リアデファレンシャルギア43の入力ギヤに固定されている。 The coupling input shaft 46 has one end connected to the propeller shaft 41 and the other end fixed to the clutch housing 48. The coupling output shaft 47 is fixed to the input gear of the rear differential gear 43.
 コントロールクラッチ50は、クラッチハウジング48とコントロールカム51との間に介装された多板摩擦クラッチである。メインクラッチ54は、クラッチハウジング48とカップリング出力軸47との間に介装された多板摩擦クラッチである。 The control clutch 50 is a multi-plate friction clutch interposed between the clutch housing 48 and the control cam 51. The main clutch 54 is a multi-plate friction clutch interposed between the clutch housing 48 and the coupling output shaft 47.
 コントロールカム51と、メインカム52と、両カム51,52に形成されたカム溝55,55の間に挟持されたボール53により、図3に示すようにカム機構が構成される。 As shown in FIG. 3, a cam mechanism is constituted by the control cam 51, the main cam 52, and the balls 53 sandwiched between the cam grooves 55 and 55 formed in the both cams 51 and 52.
 ここで、電子制御カップリング42の締結作動について説明する。まず、4WDコントロールユニット85からの指令により、ソレノイド45に電流が流されると、ソレノイド45の回りに磁界が発生し、アーマチュア49をコントロールクラッチ50側に引き寄せる。この引き寄せられたアーマチュア49に押され、コントロールクラッチ50で摩擦トルクが発生し、コントロールクラッチ50で発生した摩擦トルクは、カム機構のコントロールカム51に伝達され、周方向の拘束力になる。コントロールカム51に伝達されたトルクによる拘束力は、カム溝55,55及びボール53を介して軸方向の押し付け力に増幅・変換され、メインカム52をフロント方向に押し付ける。メインカム52が軸方向の押し付け力によりメインクラッチ54を押すと、メインクラッチ54に電流値に比例した摩擦締結トルクが発生する。メインクラッチ54で発生した摩擦締結トルクは、カップリング出力軸47を経過し、駆動力としてリアデファレンシャルギア43へと伝達される。 Here, the fastening operation of the electronic control coupling 42 will be described. First, when a current is passed through the solenoid 45 according to a command from the 4WD control unit 85, a magnetic field is generated around the solenoid 45, and the armature 49 is drawn toward the control clutch 50 side. The friction torque generated by the control clutch 50 is pushed by the attracted armature 49, and the friction torque generated by the control clutch 50 is transmitted to the control cam 51 of the cam mechanism to become a circumferential restraining force. The restraining force due to the torque transmitted to the control cam 51 is amplified and converted into an axial pressing force via the cam grooves 55 and 55 and the ball 53, and presses the main cam 52 in the front direction. When the main cam 52 pushes the main clutch 54 with an axial pressing force, a frictional engagement torque proportional to the current value is generated in the main clutch 54. The frictional engagement torque generated in the main clutch 54 passes through the coupling output shaft 47 and is transmitted to the rear differential gear 43 as a driving force.
 [4WD制御処理構成]
 図4は、実施例1の4WDコントロールユニット85における4輪駆動力配分制御系の構成を示す。以下、図4に基づいて4輪駆動力配分制御系の構成を説明する。
[4WD control processing configuration]
FIG. 4 shows the configuration of the four-wheel driving force distribution control system in the 4WD control unit 85 of the first embodiment. Hereinafter, the configuration of the four-wheel drive force distribution control system will be described with reference to FIG.
 4輪駆動力配分制御系の基本制御系としては、図4の実線ブロックに示すように、車速に基づくイニシャルトルク処理部B01と、前後差回転に基づく差回転トルク処理部B02と、アクセル開度及び駆動力に基づく駆動力配分トルク処理部B03と、を備える。そして、各処理部B01,B02,B03からのトルクのうち、セレクトハイにより選択する最終指令トルク選択部B04を備える。さらに、選択された最終指令トルクを通常時(緩勾配)ブロックB05に基づき減少変化率を制限する最終指令トルク減少変化率制限部B06と、減少変化率が制限されたトルクを最終指令トルクとする最終指令トルクブロックB07と、を備える。 As a basic control system of the four-wheel driving force distribution control system, as shown by a solid line block in FIG. 4, an initial torque processing unit B01 based on the vehicle speed, a differential rotation torque processing unit B02 based on front-rear differential rotation, an accelerator opening degree And a driving force distribution torque processing unit B03 based on the driving force. And the final command torque selection part B04 selected by selection high among the torque from each process part B01, B02, B03 is provided. Further, the final command torque decrease change rate limiting unit B06 that limits the decrease change rate of the selected final command torque based on the normal (slow gradient) block B05, and the torque with the reduced change rate limited as the final command torque. And a final command torque block B07.
 4輪駆動力配分制御系の回生制御介入協調制御系としては、図4の点線ブロックに示すように、回生制御介入予測判定ブロックB08と、トルク切り替えブロックB09と、制御判定時(急勾配)ブロックB10と、勾配切り替えブロックB11と、を備える。 The regeneration control intervention cooperative control system of the four-wheel drive force distribution control system includes a regeneration control intervention prediction determination block B08, a torque switching block B09, and a control determination time (steep slope) block, as shown by the dotted line block in FIG. B10 and a gradient switching block B11.
 回生制御介入予測判定ブロックB08は、アクセル開度と車速とソレノイド電流値を入力し、車速が回生車速領域にあり、かつ、アクセル開度が閾値以下であり、かつ、ソレノイド通電電流が閾値未満を一定時間以上維持していないとき、回生制御介入予測判定信号を出力する(図5)。 The regeneration control intervention prediction determination block B08 inputs the accelerator opening, the vehicle speed, and the solenoid current value, the vehicle speed is in the regenerative vehicle speed region, the accelerator opening is less than the threshold value, and the solenoid energization current is less than the threshold value. When it is not maintained for a certain time or longer, a regeneration control intervention prediction determination signal is output (FIG. 5).
 トルク切り替えブロックB09は、回生制御介入予測判定ブロックB08からの回生制御介入予測判定信号を入力すると、イニシャルトルク処理部B01からのトルクをゼロとし(カット)、差回転トルク処理部B02からのトルクをゼロとする(カット)。 When the torque switching block B09 receives the regeneration control intervention prediction determination signal from the regeneration control intervention prediction determination block B08, the torque switching block B09 sets the torque from the initial torque processing unit B01 to zero (cuts) and the torque from the differential rotation torque processing unit B02. Zero (cut).
 勾配切り替えブロックB11は、回生制御介入予測判定ブロックB08からの回生制御介入予測判定信号を入力すると、通常時(緩勾配)ブロックB05からの通常時減少勾配(緩勾配)から制御判定時(急勾配)ブロックB10からの制御判定時減少勾配(急勾配)へと切り替える。 When the gradient switching block B11 receives the regeneration control intervention prediction determination signal from the regeneration control intervention prediction determination block B08, the gradient switching block B11 starts from the normal decrease gradient (slow gradient) from the normal time (slow gradient) block B05 to control determination (steep gradient). ) Switch to the decreasing gradient (steep gradient) at the time of control determination from the block B10.
 図5は、実施例1の4WDコントロールユニット85にて実行される4WD制御処理の流れを示す。以下、図5の各ステップについて説明する。 FIG. 5 shows the flow of 4WD control processing executed by the 4WD control unit 85 of the first embodiment. Hereinafter, each step of FIG. 5 will be described.
 ステップS01では、車速VSPが、アクセル解放操作やブレーキ操作による減速要求時に回生を行う下限閾値を超えているか否かを判断する。YES(車速VSP>下限閾値)の場合はステップS02へ進み、NO(車速VSP≦下限閾値)の場合はステップS06へ進む。 In step S01, it is determined whether or not the vehicle speed VSP exceeds a lower limit threshold value for regeneration when a deceleration request is made by an accelerator release operation or a brake operation. If YES (vehicle speed VSP> lower threshold), the process proceeds to step S02. If NO (vehicle speed VSP ≦ lower threshold), the process proceeds to step S06.
 ステップS02では、ステップS01での車速VSP>下限閾値であるとの判断に続き、車速VSPが、アクセル解放操作やブレーキ操作による減速要求時に回生を行う上限閾値未満である否かを判断する。YES(車速VSP<上限閾値)の場合はステップS03へ進み、NO(車速VSP≧上限閾値)の場合はステップS06へ進む。 In step S02, following the determination that vehicle speed VSP> lower limit threshold value in step S01, it is determined whether vehicle speed VSP is less than an upper limit threshold value for regeneration at the time of a deceleration request by an accelerator release operation or a brake operation. If YES (vehicle speed VSP <upper limit threshold), the process proceeds to step S03. If NO (vehicle speed VSP ≧ upper limit threshold), the process proceeds to step S06.
 ステップS03では、ステップS02での車速VSP<上限閾値であるとの判断に続き、アクセル開度APOが閾値未満であるか否かを判断する。YES(アクセル開度APO<閾値)の場合はステップS04へ進み、NO(アクセル開度APO≧閾値)の場合はステップS06へ進む。 In step S03, following the determination that vehicle speed VSP <the upper limit threshold value in step S02, it is determined whether or not the accelerator opening APO is less than the threshold value. If YES (accelerator opening APO <threshold), the process proceeds to step S04. If NO (accelerator opening APO ≧ threshold), the process proceeds to step S06.
 ここで、アクセル開度APOの閾値は、アクセルOFF操作を判定するための閾値であり、本来、アクセル開度APO=0(アクセルOFF)であるが、センサノイズ等を考慮した僅かな開度値に設定される。 Here, the threshold value of the accelerator opening APO is a threshold for determining the accelerator OFF operation, and originally the accelerator opening APO = 0 (accelerator OFF), but a slight opening value in consideration of sensor noise or the like. Set to
 ステップS04では、ステップS03でのアクセル開度APO<閾値であるとの判断に続き、ソレノイド通電電流<閾値を一定時間以上継続していないか否かを判断する。YES(ソレノイド通電電流<閾値の継続時間が一定時間未満)の場合はステップS05へ進み、N0(ソレノイド通電電流<閾値を一定時間以上継続)の場合はステップS06へ進む。 In step S04, following the determination that accelerator opening APO <threshold value in step S03, it is determined whether solenoid energization current <threshold value has not been continued for a predetermined time or more. If YES (solenoid energization current <threshold duration is less than a certain time), the process proceeds to step S05. If N0 (solenoid energization current <threshold continues for a certain time or more), the process proceeds to step S06.
 ここで、ソレノイド通電電流の閾値は、ソレノイド通電電流がゼロであることを判定するための閾値であり、本来、ゼロであるが、電流の微変動等を考慮した僅かな電流値に設定される。また、一定時間は、電子制御カップリング42へのソレノイド通電電流をゼロにした後、コントロールクラッチ50及びメインクラッチ54の解放動作が完了し、摩擦締結トルクがゼロになるのに要する時間を実験により測定し、その測定結果に基づき設定される。 Here, the threshold value of the solenoid energization current is a threshold value for determining that the solenoid energization current is zero, and is originally zero, but is set to a slight current value in consideration of a slight fluctuation of the current or the like. . Further, after the solenoid energization current to the electronic control coupling 42 is set to zero for a certain time, the time required for the frictional engagement torque to become zero after the release operation of the control clutch 50 and the main clutch 54 is completed is experimentally determined. Measured and set based on the measurement result.
 ステップS05では、ステップS04でのソレノイド通電電流<閾値の継続時間が一定時間未満であるとの判断に続き、回生制御介入予測判定信号を出力し、この回生制御介入予測判定信号の出力に基づき、イニシャルトルク制御、差回転制御をカットし、エンドへ進む。 In step S05, following the determination that the solenoid energization current <the threshold duration time is less than a predetermined time in step S04, a regeneration control intervention prediction determination signal is output, and based on the output of the regeneration control intervention prediction determination signal, Cut the initial torque control and differential rotation control, and proceed to the end.
 ここで、イニシャルトルク制御、差回転制御をカットすると、電子制御カップリング42のソレノイド45への電流減少勾配を、通常時の緩勾配による減少から急勾配による減少に切り替え、電子制御カップリング42を解放する。 Here, when the initial torque control and the differential rotation control are cut, the current decrease gradient to the solenoid 45 of the electronic control coupling 42 is switched from the decrease due to the normal gentle gradient to the decrease due to the steep gradient, and the electronic control coupling 42 is switched. release.
 ステップS06では、ステップS01,ステップS02,ステップS03,ステップS04の何れかでNOであるとの判断に続き、回生制御介入予測判定信号の出力を停止した状態で、イニシャルトルク制御、差回転制御をカットしない通常制御を行い、エンドへ進む。 In step S06, initial torque control and differential rotation control are performed in a state where output of the regeneration control intervention prediction determination signal is stopped following determination of NO in any of step S01, step S02, step S03, and step S04. Perform normal control without cutting and proceed to the end.
 ここで、電子制御カップリング42を解放しているときにステップS06へ進むと、イニシャルトルク制御、差回転制御を通常制御に復帰する。そして、ソレノイド通電電流の減少勾配を、急勾配による減少から通常時の緩勾配による減少に戻す。 Here, if the electronic control coupling 42 is released and the process proceeds to step S06, the initial torque control and the differential rotation control are returned to the normal control. Then, the decrease gradient of the solenoid energization current is returned from the decrease due to the steep gradient to the decrease due to the normal gentle gradient.
 [アクセル開度に基づく回生制御処理構成]
 図6は、実施例1のハイブリッドコントロールモジュール81でアクセル解放操作時に実行されるアクセル開度APOに基づく回生制御処理の流れを示す。以下、図6の各ステップについて説明する。
[Regenerative control processing configuration based on accelerator opening]
FIG. 6 shows the flow of the regenerative control process based on the accelerator opening APO that is executed during the accelerator release operation by the hybrid control module 81 of the first embodiment. Hereinafter, each step of FIG. 6 will be described.
 ステップS11では、回生モード選択スイッチ91により強回生モードを選択しているか否かを判断する。YES(強回生モードの選択)の場合はステップS12へ進み、NO(弱回生モードの選択)の場合はステップS15へ進む。 In step S11, it is determined whether or not the strong regeneration mode is selected by the regeneration mode selection switch 91. If YES (selection of strong regeneration mode), the process proceeds to step S12. If NO (selection of weak regeneration mode), the process proceeds to step S15.
 ここで、「弱回生モード」と「強回生モード」について説明する。「弱回生モード」とは、図7及び図8に示すように、アクセル解放操作によるコースト回生トルクによる制動力発生領域をエンジンブレーキ相当の領域に設定したモードをいう。「強回生モード」とは、図7及び図8に示すように、アクセル解放操作によるコースト回生トルクによる制動力発生領域を「弱回生モード」に比べて拡大し、アクセル解放操作による減速要求時、車両減速度のコントロール性能を高めたモードをいう。そして、図7のマップで示す通り、車速VSPに応じて各々のコースト目標駆動力を設定しており、「強回生モード」では中車速領域(例えば、30km/h程度)で最大の負の目標駆動力を設定している。なお、図示しないが、実施例1では、例えば、90km/h程度以上の高車速域では、「弱回生モード」と「強回生モード」は、同様な負の目標駆動力としている。 Here, “weak regeneration mode” and “strong regeneration mode” will be described. As shown in FIGS. 7 and 8, the “weak regeneration mode” refers to a mode in which the braking force generation region due to the coast regeneration torque by the accelerator release operation is set to a region corresponding to the engine brake. As shown in FIG. 7 and FIG. 8, the “strong regeneration mode” means that the braking force generation region due to the coast regeneration torque by the accelerator release operation is expanded compared to the “weak regeneration mode”, and when the deceleration request by the accelerator release operation is requested, A mode with improved vehicle deceleration control performance. As shown in the map of FIG. 7, each coast target driving force is set according to the vehicle speed VSP. In the “strong regeneration mode”, the maximum negative target in the middle vehicle speed region (for example, about 30 km / h). The driving force is set. Although not shown, in the first embodiment, for example, in a high vehicle speed range of about 90 km / h or more, the “weak regeneration mode” and the “strong regeneration mode” have the same negative target driving force.
 「弱回生モード」の選択時、図7の矢印Aに示すように、アクセル解放操作により減速すると、コースト回生トルクによる回生量が徐々に低下する。一方、「強回生モード」の選択時、図7の矢印Bに示すように、アクセル解放操作により減速すると、コースト回生トルクによる回生量が増大する。つまり、「強回生モード」は、殆どの減速シーンにおいてブレーキペダル操作を要さず、アクセル戻し/解放操作による制動力コントロールが可能である。このため、「強回生モード」は、アクセルペダルへのアクセルワークにより駆動/制動をコントロールする「1ペダルモード」と呼ばれることがある。 When the “weak regeneration mode” is selected, as shown by the arrow A in FIG. 7, when the vehicle is decelerated by the accelerator release operation, the regeneration amount due to the coast regeneration torque gradually decreases. On the other hand, when the “strong regeneration mode” is selected, as shown by the arrow B in FIG. 7, when the vehicle is decelerated by the accelerator release operation, the regeneration amount by the coast regeneration torque increases. That is, the “strong regeneration mode” does not require a brake pedal operation in most deceleration scenes, and can control a braking force by an accelerator return / release operation. For this reason, the “strong regeneration mode” is sometimes referred to as “one pedal mode” in which driving / braking is controlled by accelerator work to the accelerator pedal.
 なお、図8において、「コースト回生」は、アクセルOFF・ブレーキOFFで効かせる回生制動力である。「ブレーキ協調回生」は、アクセルOFF・ブレーキONで効かせる回生制動力である。「メカブレーキ」は、アクセルOFF・ブレーキONのとき回生量だけでは制動力を満たせない場合に補償するブレーキ液圧制動力である。 In FIG. 8, “coast regeneration” is a regenerative braking force that is effective when the accelerator is off and the brake is off. “Brake cooperative regeneration” is a regenerative braking force that is applied when the accelerator is off or the brake is on. “Mechanical brake” is a brake hydraulic braking force that is compensated when the braking force cannot be satisfied by the regenerative amount alone when the accelerator is OFF and the brake is ON.
 ステップS12では、ステップS11での強回生モードの選択であるとの判断に続き、ステップS03と同様に、アクセル開度APOが閾値未満であるか否かを判断する。YES(アクセル開度APO<閾値)の場合はステップS13へ進み、NO(アクセル開度APO≧閾値)の場合はステップS15へ進む。 In step S12, following the determination that the strong regeneration mode is selected in step S11, it is determined whether or not the accelerator opening APO is less than the threshold, as in step S03. If YES (accelerator opening APO <threshold), the process proceeds to step S13. If NO (accelerator opening APO ≧ threshold), the process proceeds to step S15.
 ここで、アクセル開度APOの閾値は、アクセルOFF操作を判定するための閾値であり、本来、アクセル開度APO=0(アクセルOFF)であるが、センサノイズ等を考慮した僅かな開度値に設定される。 Here, the threshold value of the accelerator opening APO is a threshold for determining the accelerator OFF operation, and originally the accelerator opening APO = 0 (accelerator OFF), but a slight opening value in consideration of sensor noise or the like. Set to
 ステップS13では、ステップS12でのアクセル開度APO<閾値であるとの判断、或いは、ステップS14での所定時間未経過であるとの判断に続き、負の駆動力を制限し、ステップS14へ進む。ここで、負の駆動力を制限するとは、負の方向の駆動力の大きさを所定値以下に制限することであり、減速力が制限される方向である。 In step S13, following the determination that accelerator opening APO <the threshold value in step S12 or the predetermined time has not elapsed in step S14, the negative driving force is limited, and the process proceeds to step S14. . Here, limiting the negative driving force means limiting the magnitude of the driving force in the negative direction to a predetermined value or less, and is a direction in which the deceleration force is limited.
 ここで、「負の駆動力制限」とは、強回生モードの選択によりモータ/ジェネレータ4によるコースト回生トルクの増大を伴って所定の制限値に到達すると、駆動系で発生する負の駆動力を所定の制限値のままで維持するように回生量の増大を抑制することをいう。 Here, “negative driving force limitation” means that the negative driving force generated in the driving system is reached when a predetermined limit value is reached with the increase of the coast regeneration torque by the motor / generator 4 by the selection of the strong regeneration mode. It means to suppress an increase in the amount of regeneration so as to maintain a predetermined limit value.
 なお、「回生量」には、モータ/ジェネレータ4によるコースト回生量(コースト回生トルク)のみの場合と、コースト回生量とブレーキ協調回生量(ブレーキ協調回生トルク)の両方による場合とを含む。 The “regenerative amount” includes the case of only the coast regeneration amount (coast regeneration torque) by the motor / generator 4 and the case of both the coast regeneration amount and the brake cooperative regeneration amount (brake cooperative regeneration torque).
 また、「制限値」は、回生量の増大による車両前後G変化率が、乗員にショックや異音を感じさせない所定変化率以下となる負の駆動力値に設定される。そして、左右前輪10L,10Rと左右後輪11L,11Rのタイヤ径が異径のとき、タイヤの異径差に応じて、前後輪のタイヤ径が同径のときの制限値より小さい値に変更される。 Also, the “limit value” is set to a negative driving force value at which the vehicle front-rear G change rate due to the increase in the regeneration amount is equal to or less than a predetermined change rate that does not cause the occupant to feel shock or noise. When the tire diameters of the left and right front wheels 10L, 10R and the left and right rear wheels 11L, 11R are different, the tire diameter of the front and rear wheels is changed to a value smaller than the limit value when the tire diameter is the same. Is done.
 ステップS14では、ステップS13での負の駆動力制限に続き、負の駆動力制限を開始してからの時間が所定時間経過したか否かを判断する。YES(所定時間経過)の場合はステップS15へ進み、NO(所定時間未経過)の場合はステップS13へ戻る。 In step S14, following the negative driving force limitation in step S13, it is determined whether or not a predetermined time has elapsed since the negative driving force limitation was started. If YES (predetermined time has elapsed), the process proceeds to step S15. If NO (predetermined time has not elapsed), the process returns to step S13.
 ここで、「所定時間」は、電子制御カップリング42の解放応答時間に基づき、クラッチ解放指令を出力したとき、解放指令の出力開始から確実にクラッチ解放状態となるまでに要する所要時間(例えば、0.2sec)に設定する。なお、電子制御カップリング42へ解放指令を出力した場合、解放指令の出力開始から実クラッチ容量が抜けてクラッチ解放状態となるまでに要する所要時間は、予め実験等により取得しておく。 Here, the “predetermined time” is based on the release response time of the electronic control coupling 42, and when the clutch release command is output, the time required to reliably enter the clutch release state after the output of the release command (for example, 0.2sec). When a release command is output to the electronic control coupling 42, the time required from the start of output of the release command until the actual clutch capacity is released and the clutch is released is obtained in advance by an experiment or the like.
 ステップS15では、ステップS11での弱回生モードの選択、或いは、ステップS14での所定時間経過であるとの判断に続き、回生量を含む負の駆動力制限をしないでエンドへ進む。 In step S15, following the selection of the weak regeneration mode in step S11 or the determination that the predetermined time has elapsed in step S14, the process proceeds to the end without limiting the negative driving force including the regeneration amount.
 ここで、「負の駆動力制限をしない」とは、負の駆動力制限をしない状態から移行するときは制限解除状態を維持することをいい、負の駆動力制限をしている状態から移行するときは制限状態を解除することをいう。 Here, “do not limit negative driving force” means to maintain the restriction release state when shifting from a state where no negative driving force is limited, and shift from a state where negative driving force is limited. When doing, it means releasing the restricted state.
 次に、作用を説明する。
実施例1の作用を、「回生制御介入時におけるショック・異音発生メカニズム」、「比較例でのショック・異音発生作用」、「実施例1でのショック・異音抑制作用」、「負の駆動力制限制御による特徴作用」に分けて説明する。
Next, the operation will be described.
The effects of Example 1 are as follows: “Shock and noise generation mechanism during regenerative control intervention”, “Shock and noise generation effect in comparative example”, “Shock and noise suppression effect in Example 1”, “Negative This will be described separately in “characteristic action by driving force limit control”.
 [回生制御介入時におけるショック・異音発生メカニズム]
 図9は、アクセル解放操作後のブレーキ踏み込み操作時に電子制御カップリング42のカム機構にて発生するショック・異音の発生メカニズムを示す。以下、図9に基づいて回生制御介入時におけるショック・異音発生メカニズムを説明する。
[Shock and noise generation mechanism during regenerative control intervention]
FIG. 9 shows a generation mechanism of shock / noise generated by the cam mechanism of the electronically controlled coupling 42 when the brake is depressed after the accelerator release operation. Hereinafter, the shock / abnormal noise generation mechanism during the regeneration control intervention will be described with reference to FIG.
 区間(1)は、駆動源から駆動輪へトルクが伝達されるアクセルONのドライブ状態であり、プロペラシャフトトルクが緩やかに上昇する区間である、この区間(1)においては、コントロールカム51とメインカム52に形成されたカム溝55,55の間にボール53が挟持され、メインクラッチ54がトルク伝達小(ドライブ)にて締結される。 Section (1) is an accelerator-on driving state in which torque is transmitted from the drive source to the drive wheels, and in this section (1), the propeller shaft torque gradually increases. In this section (1), the control cam 51 and the main cam A ball 53 is sandwiched between cam grooves 55 and 55 formed in 52, and the main clutch 54 is fastened with a small torque transmission (drive).
 区間(2)は、アクセルON→OFFとし、その後、ブレーキONとして回生トルクの発生し始めることで、プロペラシャフトトルクが急上昇して急低下するが4WDカップリングの残存トルクが正のドライブ状態である区間である。この区間(2)においては、コントロールカム51とメインカム52に形成されたカム溝55,55の間にボール53が挟持され、メインクラッチ54がトルク伝達大(ドライブ)にて締結される。 In the section (2), the accelerator is turned ON → OFF, and then the brake is turned ON to start the generation of regenerative torque. As a result, the propeller shaft torque rapidly increases and decreases rapidly, but the residual torque of the 4WD coupling is in a positive drive state. It is a section. In this section (2), the ball 53 is sandwiched between the cam grooves 55, 55 formed in the control cam 51 and the main cam 52, and the main clutch 54 is fastened with a large torque transmission (drive).
 区間(3)は、回生トルクの上昇により、プロペラシャフトトルクのトルクが負のコースト状態に低下する区間である。この区間(3)においては、コントロールカム51とメインカム52に形成されたカム溝55,55の間にボール53が挟持されたままで、メインクラッチ54がトルク伝達大(コースト)にて締結される。すなわち、カム反転前のコーストトルク伝達状態になる。 Section (3) is a section in which the propeller shaft torque decreases to a negative coast state due to an increase in regenerative torque. In this section (3), the main clutch 54 is fastened with a large torque transmission (coast) while the ball 53 is held between the cam grooves 55 and 55 formed in the control cam 51 and the main cam 52. That is, the coast torque transmission state before the cam reversal is set.
 区間(4)は、プロペラシャフトトルクが負のコースト状態で、回生トルク>カップリングトルクになることでコントロールカム51が反転し始め、カム溝55,55の間のボール53が挟持からフリー状態になる区間である。この区間(4)においては、トルクが一気に解放されてニュートラル状態となることで、大きなコーストトルクが急激にゼロトルクに向かって変動し、この変動トルクによりショックや異音が発生する。 In the section (4), when the propeller shaft torque is in a negative coast state, the regenerative torque is greater than the coupling torque, so that the control cam 51 begins to reverse, and the ball 53 between the cam grooves 55 and 55 changes from the pinched state to the free state. It is a section. In this section (4), the torque is released at a stretch and becomes in a neutral state, so that a large coast torque suddenly fluctuates toward zero torque, and shock and noise occur due to this fluctuating torque.
 このように、回生制御介入により電子制御カップリング42のコントロールカム51とメインカム52が歪むことで容量を持ち、トルクが小さい間はコントロールカム51とメインカム52が相対移動しない。しかし、トルクが大きくなり歪による容量を超えると、急にコントロールカム51とメインカム52が相対移動し、ショックや異音が発生する。 As described above, the control cam 51 and the main cam 52 of the electronic control coupling 42 are distorted by the regenerative control intervention to have capacity, and the control cam 51 and the main cam 52 do not move relative to each other while the torque is small. However, when the torque increases and exceeds the capacity due to distortion, the control cam 51 and the main cam 52 suddenly move relative to each other, causing a shock or abnormal noise.
 [比較例でのショック・異音発生作用]
 まず、アクセル操作による電子制御カップリングへの伝達トルク制御とブレーキ操作による回生トルク制御との間で協調制御を行うことなく、それぞれ独立に制御するとする。この場合、回生トルク制御が介入したとき、電子制御カップリングがクラッチ容量を持っているため、上記発生メカニズムで説明したように、ショック・異音が発生する。
[Shock and noise generation effect in comparative example]
First, it is assumed that control is independently performed without performing cooperative control between transmission torque control to the electronically controlled coupling by the accelerator operation and regenerative torque control by the brake operation. In this case, when the regenerative torque control intervenes, the electronic control coupling has a clutch capacity, so that shock and noise occur as described in the generation mechanism.
 よって、モータ/ジェネレータによる回生制御が介入するとき、回生制御を開始する前に電子制御カップリングの伝達トルクをゼロとし、クラッチ容量を抜いておく協調制御を行うことで、ショック・異音の発生が抑えられる。そこで、ブレーキ操作に基づくブレーキ協調回生を開始する前のアクセルOFFのタイミングから電子制御カップリングのクラッチ容量を抜く協調制御を行うものを比較例とする。 Therefore, when regenerative control by the motor / generator intervenes, shock and noise are generated by performing coordinated control in which the transmission torque of the electronic control coupling is set to zero and the clutch capacity is released before starting the regenerative control. Is suppressed. Therefore, a comparative example is one in which cooperative control is performed by removing the clutch capacity of the electronically controlled coupling from the accelerator OFF timing before the start of brake cooperative regeneration based on the brake operation.
 この比較例において、「弱回生モード」を選択しているときのPWT発生駆動力は、図10の破線特性Cに示すように、時刻t1にてアクセル解放操作を開始すると、ほぼアクセルOFF時刻t2にて正の駆動力から負の駆動力へと移行する。そして、ブレーキON時刻t4までは小さいコースト回生トルクを維持して推移し、ブレーキON時刻t4を過ぎるとブレーキ協調回生による回生量にて低下する。つまり、電子制御カップリングのクラッチ容量を抜かれるクラッチ解放時刻t6のとき、負の駆動力はショック・異音を発生する制限値まで低下しない。これは、アクセルOFF時刻t2からブレーキON時刻t4までの踏み換え時間が長く、この踏み換え時間を電子制御カップリングが解放するまでの余裕時間Δtとして使えるためである。なお、「PWT」は、パワートレーン(駆動系)の意味である。 In this comparative example, when the “weak regeneration mode” is selected, the PWT generation driving force is almost the accelerator OFF time t2 when the accelerator release operation is started at time t1, as shown by the broken line characteristic C in FIG. Shifts from a positive driving force to a negative driving force at. Then, until the brake ON time t4, a small coast regenerative torque is maintained, and when the brake ON time t4 is passed, the regenerative amount is reduced by the brake cooperative regeneration. In other words, at the clutch release time t6 when the clutch capacity of the electronically controlled coupling is released, the negative driving force does not decrease to the limit value that generates shock and noise. This is because the changeover time from the accelerator OFF time t2 to the brake ON time t4 is long, and this changeover time can be used as an allowance time Δt until the electronic control coupling is released. “PWT” means power train (drive system).
 しかしながら、「強回生モード」を選択しているときのPWT発生駆動力は、図10の実線特性Dに示すように、時刻t1にてアクセル解放操作を開始すると、コースト回生トルクの増大によりアクセルOFF時刻t2への到達前に正の駆動力から負の駆動力へと移行する。そして、アクセルOFF時刻t2→ブレーキ開始時刻t3→ブレーキON時刻t5までの間もコースト回生トルクが増大し続け、ブレーキON時刻t5を過ぎるとコースト回生にブレーキ協調回生を加えた回生量にて低下する。よって、電子制御カップリングのクラッチ容量を抜かれるクラッチ解放時刻t6より前の時刻t4にて負の駆動力がショック・異音を発生する制限値に到達する。その後、クラッチ解放時刻t6になると、負の駆動力がショック・異音を発生する制限値を超えたレベルまで低下する。これは、「強回生モード」の選択により、アクセルOFFからブレーキONまでの踏み換え時間が実質的に無くなり、回生量の低下が抑えられないためである。したがって、電子制御カップリングでクラッチ容量を持ったままドライブトルク(正の駆動力)からコーストトルク(負の駆動力)へと大きく変動し、コーストトルクがカム歪による容量を超えると急に2つのカムが相対移動し、ショック・異音が発生する。 However, when the “strong regeneration mode” is selected, the PWT generation driving force is as follows. When the accelerator release operation is started at time t1 as shown by the solid line characteristic D in FIG. Before reaching time t2, the driving force shifts from a positive driving force to a negative driving force. The coast regeneration torque continues to increase during the period from the accelerator off time t2 to the brake start time t3 to the brake ON time t5. After the brake ON time t5, the coast regeneration decreases with the regeneration amount obtained by adding brake cooperative regeneration to the coast regeneration. . Therefore, the negative driving force reaches the limit value at which the negative driving force generates shock and noise at time t4 before clutch release time t6 when the clutch capacity of the electronically controlled coupling is released. Thereafter, at clutch release time t6, the negative driving force decreases to a level exceeding the limit value for generating shock and abnormal noise. This is because the switching time from the accelerator OFF to the brake ON is substantially eliminated by selecting the “strong regeneration mode”, and the reduction in the regeneration amount cannot be suppressed. Therefore, the electronically controlled coupling greatly varies from drive torque (positive drive force) to coast torque (negative drive force) with clutch capacity, and when the coast torque exceeds the capacity due to cam distortion, two suddenly The cam moves relatively and generates shocks and noise.
 [実施例1でのショック・異音抑制作用]
 実施例1において電子制御カップリング42の解放制御と負の駆動力が増大する回生制御が重なる減速要求シーンでのショック・音抑制作用を、図4、図5、図11に基づいて説明する。
[Shock and noise suppression effect in Example 1]
The shock / sound suppression action in the deceleration request scene in which the release control of the electronic control coupling 42 and the regenerative control in which the negative driving force increases in Example 1 will be described with reference to FIGS. 4, 5, and 11.
 4WDコントロールユニット85にて実行される4WD制御処理作用を、図5に基づいて説明する。回生車速条件(下限閾値<車速<上限閾値)が成立し、かつ、アクセル解放条件(アクセル開度APO<閾値)が成立する。そして、アクセル解放条件の成立時にソレノイド通電電流<閾値の継続時間が一定時間未満の場合、つまり、アクセルOFF時に電子制御カップリング42が締結状態である場合は、図5のフローチャートにおいて、ステップS01→ステップS02→ステップS03→ステップS04→ステップS05へ進む。ステップS05では、イニシャルトルク制御、差回転制御がカットされ、電子制御カップリング42が解放される。このとき、ソレノイド通電電流の低下勾配が、通常時の緩勾配による減少から急勾配による減少に切り替えられる。 The 4WD control processing operation executed by the 4WD control unit 85 will be described with reference to FIG. A regenerative vehicle speed condition (lower limit threshold <vehicle speed <upper limit threshold) is satisfied, and an accelerator release condition (accelerator opening APO <threshold) is satisfied. If the solenoid energization current <the threshold duration time is less than a certain time when the accelerator release condition is satisfied, that is, if the electronic control coupling 42 is in the engaged state when the accelerator is OFF, step S01 → It progresses to step S02-> step S03-> step S04-> step S05. In step S05, the initial torque control and the differential rotation control are cut, and the electronic control coupling 42 is released. At this time, the decrease gradient of the solenoid energization current is switched from the decrease due to the normal gentle gradient to the decrease due to the steep gradient.
 そして、ソレノイド通電電流<閾値の継続時間が一定時間以上、つまり、アクセルOFF時に電子制御カップリング42が解放状態になると、ステップS01→ステップS02→ステップS03→ステップS04→ステップS06へ進む。ステップS06では、イニシャルトルク制御、差回転制御をカットしない通常制御に復帰する。 Then, when the solenoid energization current <the duration of the threshold value is longer than a certain time, that is, when the electronic control coupling 42 is in the released state when the accelerator is OFF, the process proceeds to step S01 → step S02 → step S03 → step S04 → step S06. In step S06, the initial torque control and the differential rotation control are returned to the normal control without being cut.
 次に、ハイブリッドコントロールモジュール81での回生制御処理作用を、図6に基づいて説明する。「弱回生モード」の選択時には、図6のフローチャートにおいて、ステップS11→ステップS15→エンドへと進む。また、「強回生モード」の選択時であるがアクセル解放条件が不成立(アクセル開度APO≧閾値)である間は、図6のフローチャートにおいて、ステップS11→ステップS12→ステップS15→エンドへと進む。何れの場合も、ステップS15では、負の駆動力を制限しない。 Next, the regeneration control processing operation in the hybrid control module 81 will be described with reference to FIG. When the “weak regeneration mode” is selected, the process proceeds from step S11 to step S15 to end in the flowchart of FIG. Further, while the accelerator release condition is not satisfied (accelerator opening APO ≧ threshold) when the “strong regeneration mode” is selected, the process proceeds from step S11 to step S12 to step S15 to end in the flowchart of FIG. . In any case, the negative driving force is not limited in step S15.
 一方、「強回生モード」の選択時であり、かつ、アクセル解放条件が成立(アクセル開度APO<閾値)すると、図6のフローチャートにおいて、ステップS11→ステップS12→ステップS13へと進む。ステップS13では、回生量の低下を制限値までに抑える負の駆動力制限制御が開始される。そして、所定時間が経過するまでの間は、図6のフローチャートにおいて、ステップS13→ステップS14へと進む流れが繰り返され、回生量の低下を制限値までに抑える負の駆動力制限制御が維持される。そして、負の駆動力制限制御の開始から所定時間が経過すると、図6のフローチャートにおいて、ステップS14からステップS15へと進み、負の駆動力制限が解除される。 On the other hand, when the “strong regeneration mode” is selected and the accelerator release condition is satisfied (accelerator opening APO <threshold), the process proceeds from step S11 to step S12 to step S13 in the flowchart of FIG. In step S13, negative driving force limit control is started to suppress the reduction in the regeneration amount to the limit value. Until the predetermined time elapses, in the flowchart of FIG. 6, the flow from step S13 to step S14 is repeated, and the negative driving force limit control that suppresses the reduction in the regeneration amount to the limit value is maintained. The Then, when a predetermined time has elapsed from the start of the negative driving force limit control, the process proceeds from step S14 to step S15 in the flowchart of FIG. 6, and the negative driving force limit is released.
 図11は、実施例1での電子制御カップリング42の解放制御と負の駆動力が増大する回生制御が重なる減速要求シーンにおける各特性を示すタイムチャートである。以下、図11に基づいて実施例1でのショック・異音抑制作用を説明する。 FIG. 11 is a time chart showing each characteristic in the deceleration request scene in which the release control of the electronic control coupling 42 and the regeneration control in which the negative driving force increases in the first embodiment overlap. Hereinafter, the shock / abnormal noise suppressing action in the first embodiment will be described with reference to FIG.
 実施例1の場合、「強回生モード」を選択しているときのPWT発生駆動力は、図11の実線特性Eに示すように、時刻t1にてアクセル解放操作を開始すると、コースト回生トルクの増大によりアクセルOFF時刻t2への到達前に正の駆動力から負の駆動力に移行する。そして、アクセルOFF時刻t2からブレーキ開始時刻t3を経過し、時刻t4になって負の駆動力が制限値に到達すると、時刻t4以降は、アクセルOFF時刻t2から時刻t7になるまでの所定時間の間、コースト回生とブレーキ協調回生による回生量が制限値を下回ることがないように制限される。よって、電子制御カップリング42のクラッチ容量を抜かれるクラッチ解放時刻t6(<時刻t7)のとき、負の駆動力が制限値に維持され、ショック・異音の発生が抑えられる。 In the case of the first embodiment, when the “strong regeneration mode” is selected, the PWT generation driving force is equal to the coast regeneration torque when the accelerator release operation is started at time t1, as shown by the solid line characteristic E in FIG. Due to the increase, the driving force shifts from a positive driving force to a negative driving force before reaching the accelerator OFF time t2. Then, when the brake start time t3 has elapsed from the accelerator OFF time t2 and the negative driving force reaches the limit value at time t4, after the time t4, a predetermined time from the accelerator OFF time t2 to the time t7 is reached. During this time, the regeneration amount by the coast regeneration and the brake cooperative regeneration is limited so as not to fall below the limit value. Therefore, at the clutch release time t6 (<time t7) at which the clutch capacity of the electronic control coupling 42 is released, the negative driving force is maintained at the limit value, and the occurrence of shock and noise is suppressed.
 即ち、「強回生モード」の選択により、負の駆動力の低下が抑えられるアクセルOFFからブレーキONまでの踏み換え余裕時間が実質的に無くなる。しかし、電子制御カップリング42のクラッチ容量が抜かれるまでは、コースト回生とブレーキ協調回生による回生量が、負の駆動力の制限値を下回ることがないように制限する回生制御が実行されるためである。 In other words, by selecting the “strong regeneration mode”, there is substantially no extra time for switching from the accelerator OFF to the brake ON, which can suppress a decrease in negative driving force. However, until the clutch capacity of the electronic control coupling 42 is removed, regeneration control is performed to limit the regeneration amount by coast regeneration and brake cooperative regeneration so as not to fall below the limit value of the negative driving force. It is.
 [負の駆動力制限制御による特徴作用]
 実施例1では、減速要求時、駆動力伝達系に発生する駆動力を、モータ/ジェネレータ4による回生量を含んで負の駆動力領域に向かって低下させる駆動力低下制御を行う。電子制御カップリング42の解放制御と駆動力低下制御が重なる減速要求時、電子制御カップリング42の実クラッチ容量が抜けるまで、駆動力低下制御による負の駆動力を制限する。
[Characteristic action by negative driving force limit control]
In the first embodiment, the driving force reduction control is performed to reduce the driving force generated in the driving force transmission system toward the negative driving force region including the amount of regeneration by the motor / generator 4 when the deceleration is requested. At the time of deceleration request in which the release control of the electronic control coupling 42 and the driving force reduction control overlap, the negative driving force by the driving force reduction control is limited until the actual clutch capacity of the electronic control coupling 42 is released.
 即ち、減速要求時、電子制御カップリング42の実クラッチ容量が抜ける前に、駆動力低下制御により負の駆動力が大きくなり、電子制御カップリング42において正トルク→ニュートラル状態→負トルクへと移行するとショックが発生することを知見した。
そこで、電子制御カップリング42の解放応答性に影響されない駆動力低下制御側に着目し、電子制御カップリング42の実クラッチ容量が抜けるまで、駆動力低下制御による負の駆動力を制限する協調制御を行うようにした。
従って、クラッチ解放制御と駆動力低下制御が重なる減速要求時、踏み換え時間の有無や長短にかかわらず、ショックの発生が防止される。
That is, at the time of deceleration request, before the actual clutch capacity of the electronic control coupling 42 is released, the negative driving force is increased by the driving force reduction control, and the electronic control coupling 42 shifts from positive torque to neutral state to negative torque. Then, it was found that a shock occurred.
Accordingly, paying attention to the driving force reduction control side that is not affected by the release response of the electronic control coupling 42, the cooperative control that limits the negative driving force by the driving force reduction control until the actual clutch capacity of the electronic control coupling 42 is released. To do.
Therefore, when a deceleration request in which the clutch release control and the driving force reduction control overlap with each other, the occurrence of a shock is prevented regardless of the presence / absence of the changeover time and the length.
 実施例1では、駆動力低下制御による負の駆動力を制限するとき、モータ/ジェネレータ4による回生量の増大により所定の制限値に到達すると、所定の制限値のままで維持するように回生量の増大を抑制する。 In the first embodiment, when limiting the negative driving force by the driving force reduction control, when the predetermined limit value is reached due to the increase of the regeneration amount by the motor / generator 4, the regeneration amount is maintained so as to be maintained at the predetermined limit value. Suppresses the increase of
 例えば、減速要求としては、アクセル解放操作やアクセル解放からブレーキ踏み込みへの踏み換え操作があるが、何れにしてもアクセル解放操作を行うと、モータ/ジェネレータ4による回生量の増大により負の駆動力が大きくなる。しかも、昨今の燃費要求によりアクセル解放操作時の回生量が増えている。そこで、負の駆動力を制限するとき、メカブレーキでのブレーキ液圧よりも制御応答性が良くて制御精度が高いモータ/ジェネレータ4による回生量に着目し、回生量の増大を抑制するようにした。
従って、負の駆動力を制限するとき、良好な制御応答性と高い制御精度が得られる回生量制御により、負の駆動力が制限値までに制限される。
For example, the deceleration request includes an accelerator release operation and an operation of switching from accelerator release to brake depression. In any case, if the accelerator release operation is performed, a negative driving force is generated due to an increase in the regeneration amount by the motor / generator 4. Becomes larger. Moreover, the amount of regeneration during the accelerator release operation has increased due to recent fuel efficiency requirements. Therefore, when limiting the negative driving force, pay attention to the regeneration amount by the motor / generator 4 having better control response and higher control accuracy than the brake fluid pressure in the mechanical brake, and suppress the increase in the regeneration amount. did.
Therefore, when the negative driving force is limited, the negative driving force is limited to the limit value by regenerative amount control that provides good control response and high control accuracy.
 実施例1では、摩擦クラッチは、ボールカム式の電子制御カップリング42であり、回生量の制限値は、回生量の増大による車両前後G変化率が所定変化率以下となる負の駆動力値に設定する。 In the first embodiment, the friction clutch is a ball cam type electronically controlled coupling 42, and the limit value of the regenerative amount is a negative driving force value at which the vehicle front-rear G change rate due to the increase of the regenerative amount is equal to or less than a predetermined change rate. Set.
 即ち、ボールカム式の電子制御カップリング42の場合、解放までに負の駆動力が大きく発生すると、ショックが発生するだけでなく、ボール53がカム溝55に衝突するときの打撃音による異音が発生する。
従って、電子制御カップリング42の解放制御と駆動力低下制御が重なる減速要求時、ショックと異音の発生が防止される。
In other words, in the case of the ball cam type electronically controlled coupling 42, if a large negative driving force is generated until release, not only a shock is generated, but also an abnormal noise due to a striking sound when the ball 53 collides with the cam groove 55 is generated. appear.
Therefore, the occurrence of shock and abnormal noise is prevented at the time of deceleration request in which the release control of the electronic control coupling 42 and the driving force reduction control overlap.
 実施例1では、回生量の制限値は、前後輪のタイヤ径が異径のとき、タイヤの異径差に応じて、前後輪のタイヤ径が同径のときの制限値より小さい値に変更する。 In Example 1, when the tire diameters of the front and rear wheels are different from each other, the limit value of the regeneration amount is changed to a value smaller than the limit value when the tire diameters of the front and rear wheels are the same diameter according to the difference in tire diameters. To do.
 即ち、異径タイヤを履いたとき、電子制御カップリング42のカム前後にかかる負荷が変わり、タイヤの異径差が大きいほど衝突打撃音による異音が大きく発生する。従って、前後輪で異径タイヤを履いたとき、タイヤの異径差にかかわらず、異音の発生が抑えられる。 That is, when a tire with a different diameter is worn, the load applied before and after the cam of the electronically controlled coupling 42 changes, and the larger the difference in the diameter of the tire, the greater the noise generated by the impact hitting sound. Therefore, when different diameter tires are worn on the front and rear wheels, the generation of abnormal noise can be suppressed regardless of the difference in tire diameters.
 実施例1では、電子制御カップリング42の解放制御と強回生モードによる回生制御が重なるアクセル解放操作時、アクセル開度APOが閾値以下になってから、電子制御カップリング42の解放応答時間に基づいて設定された所定時間が経過するまで、回生量の増大を抑えることで負の駆動力を制限する。 In the first embodiment, at the time of the accelerator release operation in which the release control of the electronic control coupling 42 and the regeneration control in the strong regeneration mode overlap, the accelerator opening APO becomes equal to or less than the threshold value, and then based on the release response time of the electronic control coupling 42. The negative driving force is limited by suppressing an increase in the regeneration amount until a predetermined time set in the above elapses.
 即ち、強回生モードでは、目標駆動力のコースト線が下がったことで、電子制御カップリング42に解放指令を出してもクラッチ容量の抜けが間に合わず、クラッチ容量の抜ける前に回生量が増大してしまう。
従って、電子制御カップリング42の解放制御と強回生モードによる回生制御が重なるアクセル解放操作時、電子制御カップリング42のクラッチ容量が抜かれる前に回生量が増大することによるショックの発生が防止される。
That is, in the strong regeneration mode, the coast line of the target driving force has fallen, so even if a release command is issued to the electronic control coupling 42, the clutch capacity cannot be released in time, and the regeneration amount increases before the clutch capacity is released. End up.
Therefore, during the accelerator release operation in which the release control of the electronic control coupling 42 and the regeneration control in the strong regeneration mode overlap, the occurrence of shock due to the increase in the regeneration amount before the clutch capacity of the electronic control coupling 42 is released is prevented. The
 次に、効果を説明する。
実施例1の4輪駆動ハイブリッド車両の制御方法及び制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the control method and control device for the four-wheel drive hybrid vehicle of the first embodiment, the effects listed below can be obtained.
 (1) 駆動源にモータ/ジェネレータ4を有し、左右前輪10L,10Rを駆動源に接続される主駆動輪とし、左右後輪11L,11Rを駆動源に摩擦クラッチ(電子制御カップリング42)を介して接続される副駆動輪とする。
摩擦クラッチ(電子制御カップリング42)の締結による4輪駆動状態での減速要求時、摩擦クラッチに解放指令を出力する。
この4輪駆動電動車両(4輪駆動ハイブリッド車両)の制御方法において、減速要求時、駆動力伝達系に発生する駆動力を、モータ/ジェネレータ4による回生量を含んで負の駆動力領域に向かって低下させる駆動力低下制御を行う。
摩擦クラッチ(電子制御カップリング42)の解放制御と駆動力低下制御が重なる減速要求時、摩擦クラッチ(電子制御カップリング42)の実クラッチ容量が抜けるまで、駆動力低下制御による負の駆動力を制限する(図11)。
  このため、クラッチ解放制御と駆動力低下制御が重なる減速要求時、踏み換え時間の有無や長短にかかわらず、ショックの発生を防止する4輪駆動電動車両(4輪駆動ハイブリッド車両)の制御方法を提供することができる。
(1) Having a motor / generator 4 as a drive source, the left and right front wheels 10L, 10R as main drive wheels connected to the drive source, and the left and right rear wheels 11L, 11R as a drive source, a friction clutch (electronic control coupling 42) It is set as the sub drive wheel connected via.
At the time of deceleration request in the four-wheel drive state by engagement of the friction clutch (electronic control coupling 42), a release command is output to the friction clutch.
In the control method of this four-wheel drive electric vehicle (four-wheel drive hybrid vehicle), when the deceleration is requested, the drive force generated in the drive force transmission system is directed toward the negative drive force region including the regeneration amount by the motor / generator 4. To reduce the driving force.
At the time of deceleration request where the release control of the friction clutch (electronic control coupling 42) and the driving force reduction control overlap, the negative driving force by the driving force reduction control is reduced until the actual clutch capacity of the friction clutch (electronic control coupling 42) is released. Limit (FIG. 11).
For this reason, there is provided a control method for a four-wheel drive electric vehicle (four-wheel drive hybrid vehicle) that prevents the occurrence of a shock regardless of whether or not there is a stepping time when the clutch release control and the driving force reduction control overlap. Can be provided.
 (2) モータ/ジェネレータ4による回生量は、コースト回生量のみによる場合と、コースト回生量とブレーキ協調回生量の両方の場合を含む。
駆動力低下制御による負の駆動力を制限するとき、モータ/ジェネレータ4による回生量の増大により所定の制限値に到達すると、所定の制限値のままで維持するように回生量の増大を抑制する(図11)。
  このため、(1)の効果に加え、負の駆動力を制限するとき、良好な制御応答性と高い制御精度が得られる回生量制御により、負の駆動力を制限値までに制限することができる。
(2) The regeneration amount by the motor / generator 4 includes the case of only the coast regeneration amount and the case of both the coast regeneration amount and the brake cooperative regeneration amount.
When the negative driving force by the driving force reduction control is limited, if the predetermined limit value is reached due to the increase in the regeneration amount by the motor / generator 4, the increase in the regeneration amount is suppressed so that the predetermined limit value is maintained. (FIG. 11).
For this reason, in addition to the effect of (1), when limiting the negative driving force, it is possible to limit the negative driving force to the limit value by regenerative amount control that provides good control response and high control accuracy. it can.
 (3) 摩擦クラッチは、ボールカム式の電子制御カップリング42である。
回生量の制限値は、回生量の増大による車両前後G変化率が所定変化率以下となる負の駆動力値に設定する(図11)。
  このため、(2)の効果に加え、電子制御カップリング42の解放制御と駆動力低下制御が重なる減速要求時、ショックと異音の発生を防止することができる。
(3) The friction clutch is a ball cam type electronically controlled coupling 42.
The limit value of the regeneration amount is set to a negative driving force value at which the vehicle front-rear G change rate due to the increase of the regeneration amount is equal to or less than a predetermined change rate (FIG. 11).
For this reason, in addition to the effect of (2), it is possible to prevent the occurrence of shock and abnormal noise at the time of deceleration request in which the release control of the electronic control coupling 42 and the driving force reduction control overlap.
 (4) 回生量の制限値は、前後輪のタイヤ径が異径のとき、タイヤの異径差に応じて、前後輪のタイヤ径が同径のときの制限値より小さい値に変更する(図11)。
  このため、(3)の効果に加え、前後輪で異径タイヤを履いたとき、タイヤの異径差にかかわらず、異音の発生を抑えることができる。
(4) When the tire diameter of the front and rear wheels is different, the limit value of the regeneration amount is changed to a value smaller than the limit value when the tire diameter of the front and rear wheels is the same diameter according to the difference in tire diameter ( FIG. 11).
For this reason, in addition to the effect of (3), when different diameter tires are worn on the front and rear wheels, the occurrence of abnormal noise can be suppressed regardless of the difference in tire diameter difference.
 (5) 摩擦クラッチ(電子制御カップリング42)の締結による4輪駆動状態でのアクセル解放操作時、アクセル開度APOが閾値以下になったら摩擦クラッチ(電子制御カップリング42)に解放指令を出力する4輪駆動制御を行う。
アクセル解放操作時、モータ/ジェネレータ4により発生させるコースト回生トルクをエンジンブレーキ相当よりも拡大した強回生モードによる回生制御を行う。
摩擦クラッチ(電子制御カップリング42)の解放制御と強回生モードによる回生制御が重なるアクセル解放操作時、アクセル開度APOが閾値以下になってから、摩擦クラッチ(電子制御カップリング42)の解放応答時間に基づいて予め実験等で設定された所定時間が経過するまで、回生量の増大を抑えることで負の駆動力を制限する(図6)。
  このため、(1)~(4)の効果に加え、摩擦クラッチ(電子制御カップリング42)の解放制御と強回生モードによる回生制御が重なるアクセル解放操作時、摩擦クラッチ(電子制御カップリング42)のクラッチ容量が抜かれる前に回生量が増大することによるショックの発生を防止することができる。
(5) At the time of accelerator release operation in the four-wheel drive state by engagement of the friction clutch (electronic control coupling 42), if the accelerator opening APO becomes less than the threshold value, a release command is output to the friction clutch (electronic control coupling 42) 4 wheel drive control is performed.
At the time of accelerator release operation, regeneration control is performed in a strong regeneration mode in which the coast regeneration torque generated by the motor / generator 4 is larger than the engine brake equivalent.
At the time of accelerator release operation in which the release control of the friction clutch (electronic control coupling 42) and the regeneration control in the strong regeneration mode overlap, the release response of the friction clutch (electronic control coupling 42) after the accelerator opening APO falls below the threshold value. The negative driving force is limited by suppressing an increase in the regenerative amount until a predetermined time set in advance based on the time in an experiment or the like has elapsed (FIG. 6).
For this reason, in addition to the effects (1) to (4), the friction clutch (electronic control coupling 42) is used during the accelerator release operation, in which the release control of the friction clutch (electronic control coupling 42) and the regeneration control in the strong regeneration mode overlap. It is possible to prevent the occurrence of shock due to the increase in the regeneration amount before the clutch capacity of the clutch is released.
 (6) 駆動源にモータ/ジェネレータ4を有し、左右前輪10L,10Rを駆動源に接続される主駆動輪とし、左右後輪11L,11Rを駆動源に摩擦クラッチ(電子制御カップリング42)を介して接続される副駆動輪とする。
摩擦クラッチ(電子制御カップリング42)の締結による4輪駆動状態での減速要求時、摩擦クラッチに解放指令を出力する4WDコントローラ(4WDコントロールユニット85)を備える。
この4輪駆動電動車両(4輪駆動ハイブリッド車両)の制御装置において、減速要求時、駆動力伝達系に発生する駆動力を、モータ/ジェネレータ4による回生量を含んで負の駆動力領域に向かって低下させる駆動力低下制御を行う駆動力コントローラ(ハイブリッドコントロールモジュール81)を設ける。
駆動力コントローラ(ハイブリッドコントロールモジュール81)は、摩擦クラッチ(電子制御カップリング42)の解放制御と駆動力低下制御が重なる減速要求時、摩擦クラッチ(電子制御カップリング42)の実クラッチ容量が抜けるまで、駆動力低下制御による負の駆動力を制限する(図11)。
  このため、クラッチ解放制御と駆動力低下制御が重なる減速要求時、踏み換え時間の有無や長短にかかわらず、ショックの発生を防止する4輪駆動電動車両(4輪駆動ハイブリッド車両)の制御装置を提供することができる。
(6) Having a motor / generator 4 as a drive source, the left and right front wheels 10L and 10R as main drive wheels connected to the drive source, and the left and right rear wheels 11L and 11R as a drive source, a friction clutch (electronic control coupling 42) It is set as the sub drive wheel connected via.
A 4WD controller (4WD control unit 85) is provided that outputs a release command to the friction clutch when a deceleration request is made in the four-wheel drive state by engagement of the friction clutch (electronic control coupling 42).
In the control device for this four-wheel drive electric vehicle (four-wheel drive hybrid vehicle), when the deceleration is requested, the drive force generated in the drive force transmission system is directed toward the negative drive force region including the regeneration amount by the motor / generator 4. A driving force controller (hybrid control module 81) for performing driving force lowering control is provided.
The driving force controller (hybrid control module 81) is configured to request the deceleration of the friction clutch (electronic control coupling 42) release control and the driving force reduction control until the actual clutch capacity of the friction clutch (electronic control coupling 42) is released. Then, the negative driving force by the driving force reduction control is limited (FIG. 11).
For this reason, a control device for a four-wheel drive electric vehicle (four-wheel drive hybrid vehicle) that prevents the occurrence of a shock regardless of whether or not there is a changeover time when the clutch release control and the driving force reduction control are overlapped. Can be provided.
 実施例2は、電子制御カップリングのクラッチ容量を制御する4WD制御として、実施例1のアクセル開度による制御に代えて目標駆動力による制御とした例である。 Example 2 is an example in which the control based on the target driving force is used in place of the control based on the accelerator opening in Example 1 as the 4WD control for controlling the clutch capacity of the electronically controlled coupling.
 まず、構成を説明する。
なお、「全体システム構成」、「電子制御カップリングの詳細構成」については、実施例1と同様であるので図示並びに説明を省略する。以下、「4WD制御処理構成及び目標駆動力に基づく回生制御処理構成」を説明する。
First, the configuration will be described.
In addition, since “the whole system configuration” and “the detailed configuration of the electronic control coupling” are the same as those in the first embodiment, illustration and description thereof are omitted. Hereinafter, “4WD control processing configuration and regenerative control processing configuration based on target driving force” will be described.
 [4WD制御処理構成及び目標駆動力に基づく回生制御処理構成]
 4WD制御処理構成については、実施例1における図5のステップS03でのアクセル開度<閾値であるか否かという判断を、目標駆動力が所定値以下であるか否かという判断に差し換えたものとする。つまり、4WD制御では、アクセル解放操作時における目標駆動力(負の駆動力値)を所定値とし、目標駆動力が所定値以下になると電子制御カップリング42を解放する制御を行う。
[4WD control processing configuration and regenerative control processing configuration based on target driving force]
For the 4WD control processing configuration, the determination as to whether or not the accelerator opening in step S03 in FIG. 5 in the first embodiment <the threshold value is replaced with a determination as to whether or not the target driving force is equal to or less than a predetermined value. And That is, in the 4WD control, the target driving force (negative driving force value) at the time of the accelerator release operation is set to a predetermined value, and the electronic control coupling 42 is controlled to be released when the target driving force becomes a predetermined value or less.
 図12は、実施例2のハイブリッドコントロールモジュール81でアクセル解放操作時に実行される目標駆動力に基づく回生制御処理の流れを示す。以下、図12の各ステップについて説明する。 FIG. 12 shows the flow of the regenerative control process based on the target driving force executed during the accelerator release operation by the hybrid control module 81 of the second embodiment. Hereinafter, each step of FIG. 12 will be described.
 ステップS21では、回生モード選択スイッチ91により強回生モードを選択しているか否かを判断する。YES(強回生モードの選択)の場合はステップS22へ進み、NO(弱回生モードの選択)の場合はステップS25へ進む。 In step S21, it is determined whether or not the strong regeneration mode is selected by the regeneration mode selection switch 91. If YES (selection of strong regeneration mode), the process proceeds to step S22. If NO (selection of weak regeneration mode), the process proceeds to step S25.
 ステップS22では、ステップS21での強回生モードの選択であるとの判断に続き、目標駆動力が所定値以下であるか否かを判断する。YES(目標駆動力≦所定値)の場合はステップS23へ進み、NO(目標駆動力>所定値)の場合はステップS25へ進む。 In Step S22, following the determination that the strong regeneration mode is selected in Step S21, it is determined whether or not the target driving force is equal to or less than a predetermined value. If YES (target driving force ≦ predetermined value), the process proceeds to step S23. If NO (target driving force> predetermined value), the process proceeds to step S25.
 ここで、目標駆動力は、アクセル開度APOと車速VSPと目標駆動力マップに基づいて、アクセル開度が中高開度領域ではドライブ力行トルクに設定され、アクセル開度が低開度領域ではコースト回生トルクに設定される。目標駆動力の所定値は、アクセルOFF操作によるコースト回生トルク(負の駆動力)が出ていることを判定するための閾値として設定される。 Here, based on the accelerator opening APO, the vehicle speed VSP, and the target driving force map, the target driving force is set to drive power running torque when the accelerator opening is in the middle and high opening range, and coasting when the accelerator opening is in the low opening region. Set to regenerative torque. The predetermined value of the target driving force is set as a threshold value for determining that the coast regeneration torque (negative driving force) due to the accelerator OFF operation is being generated.
 ステップS23では、ステップS22での目標駆動力≦所定値であるとの判断、或いは、ステップS24での所定時間未経過であるとの判断に続き、負の駆動力を制限し、ステップS24へ進む。 In step S23, following the determination in step S22 that the target driving force ≦ predetermined value or the determination in step S24 that the predetermined time has not elapsed, the negative driving force is limited, and the process proceeds to step S24. .
 ステップS24では、ステップS23での負の駆動力制限に続き、負の駆動力制限を開始してからの時間が所定時間経過したか否かを判断する。YES(所定時間経過)の場合はステップS25へ進み、NO(所定時間未経過)の場合はステップS23へ戻る。 In step S24, following the negative driving force limitation in step S23, it is determined whether or not a predetermined time has elapsed since the negative driving force limitation was started. If YES (predetermined time has elapsed), the process proceeds to step S25. If NO (predetermined time has not elapsed), the process returns to step S23.
 ステップS25では、ステップS21での弱回生モードの選択、或いは、ステップS24での所定時間経過であるとの判断に続き、回生量を含む負の駆動力制限をしないでエンドへ進む。 In step S25, following the selection of the weak regeneration mode in step S21 or the determination that the predetermined time has elapsed in step S24, the process proceeds to the end without limiting the negative driving force including the regeneration amount.
 次に、作用を説明する。
「回生制御介入時におけるショック・異音発生メカニズム」、「比較例でのショック・異音発生作用」については、実施例1と同様であるので説明を省略する。以下、「実施例2でのショック・異音抑制作用」を説明する。
Next, the operation will be described.
Since “shock / noise generation mechanism during regenerative control intervention” and “shock / noise generation action in the comparative example” are the same as those in the first embodiment, description thereof is omitted. Hereinafter, the “shock / abnormal noise suppressing action in the second embodiment” will be described.
 [実施例2でのショック・異音抑制作用]
 実施例2において電子制御カップリング42の解放制御と負の駆動力が増大する回生制御が重なる減速要求シーンでのショック・音抑制作用を説明する。
[Shock and noise suppression effect in Example 2]
The shock / sound suppressing action in the deceleration request scene in which the release control of the electronic control coupling 42 and the regenerative control in which the negative driving force increases in the second embodiment will be described.
 まず、ハイブリッドコントロールモジュール81での回生制御処理作用を、図12に基づいて説明する。「弱回生モード」の選択時には、図12のフローチャートにおいて、ステップS21→ステップS25→エンドへと進む。また、「強回生モード」の選択時であるが目標駆動力条件が不成立(目標駆動力>所定値)である間は、図12のフローチャートにおいて、ステップS21→ステップS22→ステップS25→エンドへと進む。何れの場合も、ステップS25では、負の駆動力を制限しない。 First, the regenerative control processing operation in the hybrid control module 81 will be described with reference to FIG. When the “weak regeneration mode” is selected, the process proceeds from step S21 to step S25 to the end in the flowchart of FIG. Further, while the target driving force condition is not satisfied (target driving force> predetermined value) when the “strong regeneration mode” is selected, step S21 → step S22 → step S25 → end in the flowchart of FIG. move on. In any case, the negative driving force is not limited in step S25.
 一方、「強回生モード」の選択時であり、かつ、目標駆動力条件が成立(目標駆動力≦所定値)すると、図12のフローチャートにおいて、ステップS21→ステップS22→ステップS23へと進む。ステップS23では、回生量の低下を制限値までに抑える負の駆動力制限制御が開始される。そして、所定時間が経過するまでの間は、図12のフローチャートにおいて、ステップS23→ステップS24へと進む流れが繰り返され、回生量の低下を制限値までに抑える負の駆動力制限制御が維持される。そして、負の駆動力制限制御の開始から所定時間が経過すると、図12のフローチャートにおいて、ステップS24からステップS25へと進み、負の駆動力制限が解除される。 On the other hand, when the “strong regeneration mode” is selected and the target driving force condition is satisfied (target driving force ≦ predetermined value), the process proceeds from step S21 to step S22 to step S23 in the flowchart of FIG. In step S23, negative driving force limit control is started to suppress the reduction in the regeneration amount to the limit value. Then, until the predetermined time elapses, the flow from step S23 to step S24 is repeated in the flowchart of FIG. 12, and negative driving force limit control that suppresses the reduction in the regeneration amount to the limit value is maintained. The Then, when a predetermined time has elapsed from the start of the negative driving force limit control, the process proceeds from step S24 to step S25 in the flowchart of FIG. 12, and the negative driving force limit is released.
 従って、実施例1での図11と同様に、目標駆動力が所定値以下となってから所定時間の間、コースト回生とブレーキ協調回生による回生量が制限値を下回ることがないように制限される。よって、電子制御カップリング42のクラッチ容量を抜かれるクラッチ解放のとき、負の駆動力が制限値に維持され、ショック・異音の発生が抑えられる。 Therefore, similarly to FIG. 11 in the first embodiment, the regeneration amount by coast regeneration and brake cooperative regeneration is limited so as not to fall below the limit value for a predetermined time after the target driving force becomes equal to or less than the predetermined value. The Therefore, when the clutch is released to release the clutch capacity of the electronic control coupling 42, the negative driving force is maintained at the limit value, and the occurrence of shock and noise is suppressed.
 次に、効果を説明する。
実施例2における4輪駆動ハイブリッド車両の制御方法及び制御装置にあっては、実施例1の(1)~(4),(6)の効果に加え、下記の効果が得られる。
Next, the effect will be described.
In addition to the effects (1) to (4) and (6) of the first embodiment, the following effects are obtained in the control method and control device for the four-wheel drive hybrid vehicle in the second embodiment.
 (7) 摩擦クラッチ(電子制御カップリング42)の解放制御を、アクセル開度APOと車速VSPに基づいて設定される目標駆動力に応じて行う。
摩擦クラッチ(電子制御カップリング42)の解放制御と駆動力低下制御が重なる減速要求時、目標駆動力が所定値以下になってから、摩擦クラッチ(電子制御カップリング42)の解放応答時間に基づいて設定された設定時間が経過するまで、駆動力低下制御による負の駆動力を制限する(図12)。
  このため、摩擦クラッチ(電子制御カップリング42)の解放制御と駆動力低下制御が重なる減速要求時、摩擦クラッチ(電子制御カップリング42)のクラッチ容量が抜かれる前に目標駆動力が低下することによるショックの発生を防止することができる。
(7) Release control of the friction clutch (electronic control coupling 42) is performed according to the target driving force set based on the accelerator opening APO and the vehicle speed VSP.
Based on the release response time of the friction clutch (electronic control coupling 42) after the target drive force becomes a predetermined value or less at the time of deceleration request when the release control of the friction clutch (electronic control coupling 42) and the driving force reduction control overlap. Until the set time elapses, the negative driving force by the driving force reduction control is limited (FIG. 12).
For this reason, the target driving force decreases before the clutch capacity of the friction clutch (electronic control coupling 42) is released at the time of deceleration request where the release control of the friction clutch (electronic control coupling 42) and the driving force reduction control overlap. It is possible to prevent the occurrence of shock due to.
 実施例3は、電子制御カップリングのクラッチ容量を制御する4WD制御のとき、クラッチ容量推定値(実クラッチ容量)を算出する例である。 Example 3 is an example in which an estimated clutch capacity (actual clutch capacity) is calculated in the case of 4WD control for controlling the clutch capacity of the electronically controlled coupling.
 まず、構成を説明する。
なお、「全体システム構成」、「電子制御カップリングの詳細構成」については、実施例1と同様であるので図示並びに説明を省略する。以下、「4WD制御処理構成及び目標駆動力に基づく回生制御処理構成」を説明する。
First, the configuration will be described.
In addition, since “the whole system configuration” and “the detailed configuration of the electronic control coupling” are the same as those in the first embodiment, illustration and description thereof are omitted. Hereinafter, “4WD control processing configuration and regenerative control processing configuration based on target driving force” will be described.
 [4WD制御処理構成及び目標駆動力に基づく回生制御処理構成]
 4WD制御処理構成については、実施例1のアクセル開度<閾値という判断、或いは、実施例2の目標駆動力≦所定値という判断により、電子制御カップリング42を解放する制御を行う。そして、電子制御カップリング42の解放制御のとき、クラッチ容量推定値(実クラッチ容量)を算出し、例えば、目標クラッチ容量との偏差によりフィードバック制御を行う。
[4WD control processing configuration and regenerative control processing configuration based on target driving force]
With regard to the 4WD control processing configuration, the control to release the electronic control coupling 42 is performed based on the determination that the accelerator opening degree of the first embodiment <the threshold value or the determination that the target driving force ≦ the predetermined value in the second embodiment. Then, during release control of the electronic control coupling 42, an estimated clutch capacity value (actual clutch capacity) is calculated, and feedback control is performed based on a deviation from the target clutch capacity, for example.
 図13は、実施例3のハイブリッドコントロールモジュール81でアクセル解放操作時に実行される目標駆動力に基づく回生制御処理の流れを示す。以下、図13の各ステップについて説明する。 FIG. 13 shows the flow of the regenerative control process based on the target driving force executed during the accelerator release operation by the hybrid control module 81 of the third embodiment. Hereinafter, each step of FIG. 13 will be described.
 ステップS31では、回生モード選択スイッチ91により強回生モードを選択しているか否かを判断する。YES(強回生モードの選択)の場合はステップS32へ進み、NO(弱回生モードの選択)の場合はステップS34へ進む。 In step S31, it is determined whether or not the strong regeneration mode is selected by the regeneration mode selection switch 91. If YES (selection of strong regeneration mode), the process proceeds to step S32. If NO (selection of weak regeneration mode), the process proceeds to step S34.
 ステップS32では、ステップS31での強回生モードの選択であるとの判断に続き、クラッチ容量推定値が所定値以上であるか否かを判断する。YES(クラッチ容量推定値≧所定値)の場合はステップS33へ進み、NO(クラッチ容量推定値<所定値)の場合はステップS34へ進む。 In step S32, following the determination that the strong regeneration mode is selected in step S31, it is determined whether or not the estimated clutch capacity is greater than or equal to a predetermined value. If YES (clutch capacity estimated value ≧ predetermined value), the process proceeds to step S33. If NO (clutch capacity estimated value <predetermined value), the process proceeds to step S34.
 ここで、クラッチ容量推定値の所定値は、電子制御カップリング42がクラッチ容量を抜かれた解放状態にあることを判定するための閾値として設定される。 Here, the predetermined value of the estimated clutch capacity is set as a threshold value for determining that the electronic control coupling 42 is in the released state with the clutch capacity removed.
 ステップS33では、ステップS32でのクラッチ容量推定値≧所定値であるとの判断に続き、負の駆動力を制限し、エンドへ進む。つまり、ステップS32→ステップS33へと進むとき、電子制御カップリング42のクラッチ容量が抜かれていない状態であるとの判断に基づいて、負の駆動力を制限する。 In step S33, following the determination that clutch estimated value ≧ predetermined value in step S32, the negative driving force is limited and the process proceeds to the end. That is, when the process proceeds from step S32 to step S33, the negative driving force is limited based on the determination that the clutch capacity of the electronic control coupling 42 is not released.
 ステップS34では、ステップS31での弱回生モードの選択時であるとの判断、或いは、ステップS32でのクラッチ容量推定値<所定値であるとの判断に続き、負の駆動力制限をしないでエンドへ進む。つまり、ステップS32→ステップS34へと進むとき、電子制御カップリング42のクラッチ容量が抜かれ、クラッチ解放状態になったとの判断に基づいて、負の駆動力の制限を解除する。 In step S34, following the determination that the weak regeneration mode is selected in step S31, or the determination that the clutch capacity estimation value is smaller than the predetermined value in step S32, the process is ended without limiting the negative driving force. Proceed to That is, when the process proceeds from step S32 to step S34, the limitation on the negative driving force is released based on the determination that the clutch capacity of the electronic control coupling 42 is removed and the clutch is released.
 次に、作用を説明する。
「回生制御介入時におけるショック・異音発生メカニズム」、「比較例でのショック・異音発生作用」については、実施例1と同様であるので説明を省略する。以下、「実施例3でのショック・異音抑制作用」を説明する。
Next, the operation will be described.
Since “shock / noise generation mechanism during regenerative control intervention” and “shock / noise generation action in the comparative example” are the same as those in the first embodiment, description thereof is omitted. Hereinafter, the “shock / abnormal noise suppressing action in the third embodiment” will be described.
 [実施例3でのショック・異音抑制作用]
 実施例3において電子制御カップリング42の解放制御と負の駆動力が増大する回生制御が重なる減速要求シーンでのショック・音抑制作用を説明する。
[Shock and noise suppression effect in Example 3]
A shock / sound suppression operation in a deceleration request scene in which the release control of the electronic control coupling 42 and the regenerative control in which the negative driving force increases in the third embodiment will be described.
 まず、ハイブリッドコントロールモジュール81での回生制御処理作用を、図13に基づいて説明する。「弱回生モード」の選択時には、図13のフローチャートにおいて、ステップS31→ステップS34→エンドへと進む。また、「強回生モード」の選択時であるがクラッチ締結条件が不成立(クラッチ容量推定値≧所定値)である間は、図13のフローチャートにおいて、ステップS31→ステップS32→ステップS34→エンドへと進む。何れの場合も、ステップS34では、負の駆動力を制限しない。 First, the regenerative control processing operation in the hybrid control module 81 will be described with reference to FIG. When the “weak regeneration mode” is selected, the process proceeds from step S31 to step S34 to end in the flowchart of FIG. Further, when the “strong regeneration mode” is selected but the clutch engagement condition is not satisfied (clutch capacity estimation value ≧ predetermined value), step S31 → step S32 → step S34 → end in the flowchart of FIG. move on. In either case, the negative driving force is not limited in step S34.
 一方、「強回生モード」の選択時であり、かつ、クラッチ締結条件が成立(クラッチ容量推定値≧所定値)である間は、図13のフローチャートにおいて、ステップS31→ステップS32→ステップS33→エンドへと進む。ステップS33では、回生量の低下を制限値までに抑える負の駆動力制限制御が実行される。 On the other hand, while the “strong regeneration mode” is selected and the clutch engagement condition is satisfied (clutch capacity estimation value ≧ predetermined value), step S31 → step S32 → step S33 → end in the flowchart of FIG. Proceed to In step S33, negative driving force limit control is performed to suppress the reduction in the regeneration amount to the limit value.
 従って、クラッチ締結条件が成立(クラッチ容量推定値≧所定値)である間は、コースト回生とブレーキ協調回生による回生量が制限値を下回ることがないように制限される。そして、クラッチ締結条件が不成立(クラッチ容量推定値<所定値)、つまり、電子制御カップリング42が解放状態になると、負の駆動力制限制御が解除される。よって、電子制御カップリング42のクラッチ容量が抜かれたことが確認されるまでは、負の駆動力が制限値に維持され、ショック・異音の発生が抑えられる。 Therefore, while the clutch engagement condition is satisfied (clutch capacity estimation value ≧ predetermined value), the regeneration amount by coast regeneration and brake cooperative regeneration is limited so as not to fall below the limit value. When the clutch engagement condition is not satisfied (clutch capacity estimation value <predetermined value), that is, when the electronic control coupling 42 is in the released state, the negative driving force restriction control is released. Therefore, until it is confirmed that the clutch capacity of the electronic control coupling 42 has been released, the negative driving force is maintained at the limit value, and the occurrence of shock and noise is suppressed.
 次に、効果を説明する。
実施例3における4輪駆動ハイブリッド車両の制御方法及び制御装置にあっては、実施例1の(1)~(4),(6)の効果に加え、下記の効果が得られる。
Next, the effect will be described.
In addition to the effects (1) to (4) and (6) of the first embodiment, the following effects are obtained in the control method and control apparatus for a four-wheel drive hybrid vehicle in the third embodiment.
 (8) 摩擦クラッチ(電子制御カップリング42)の解放制御を、摩擦クラッチ(電子制御カップリング42)のクラッチ容量推定値を算出しながら行う。摩擦クラッチ(電子制御カップリング42)の解放制御と駆動力低下制御が重なる減速要求時、クラッチ容量推定値が所定値以上の間、駆動力低下制御による負の駆動力を制限する(図13)。
  このため、摩擦クラッチ(電子制御カップリング42)の解放制御と駆動力低下制御が重なる減速要求時、摩擦クラッチ(電子制御カップリング42)の実クラッチ容量が抜かれる前に負の駆動力が低下することによるショックの発生を防止することができる。
(8) Release control of the friction clutch (electronic control coupling 42) is performed while calculating an estimated clutch capacity value of the friction clutch (electronic control coupling 42). At the time of a deceleration request in which the release control of the friction clutch (electronic control coupling 42) and the driving force reduction control overlap, the negative driving force by the driving force reduction control is limited while the estimated clutch capacity is equal to or greater than a predetermined value (FIG. 13). .
For this reason, the negative driving force decreases before the actual clutch capacity of the friction clutch (electronic control coupling 42) is released at the time of deceleration request where the release control of the friction clutch (electronic control coupling 42) and the driving force reduction control overlap. It is possible to prevent the occurrence of a shock caused by doing.
 以上、本開示の4輪駆動電動車両の制御方法及び制御装置を実施例1~3に基づき説明してきた。しかし、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The control method and control device for the four-wheel drive electric vehicle of the present disclosure have been described based on the first to third embodiments. However, the specific configuration is not limited to these embodiments, and design changes and additions are allowed without departing from the spirit of the invention according to each claim of the claims.
 実施例1~3では、減速要求として、アクセル解放操作、又は、アクセル解放からブレーキ踏み込みへの踏み換え操作というドライバによるペダル操作の例を示した。しかし、減速要求としては、アクセル解放や踏み換えに相当する減速要求を要求回生トルクの制御指令として出力するクルーズコントロールシステム搭載車両や自動運転車両等の場合も含まれる。 In Examples 1 to 3, examples of the pedal operation by the driver such as an accelerator release operation or a change-over operation from the accelerator release to the brake depression are shown as the deceleration request. However, the deceleration request includes a case of a cruise control system-equipped vehicle or an automatically driven vehicle that outputs a deceleration request corresponding to accelerator release or stepping as a control command for the required regenerative torque.
 例えば、適用車両がクルーズコントロールシステムを搭載した4輪駆動ハイブリッド車両である場合においては、図14のコンセプトブロック図に示す機能を、ハイブリッドコントロールモジュール(HCM)や車両挙動コントローラ(VDC)に与える。つまり、図14は、ハイブリッドコントロールモジュール(HCM)と車両挙動コントローラ(VDC)に対し、クラッチ解放制御と駆動力低下制御との協調制御を実現するための要求機能をあらわす。なお、図14において、「ACEP」は「強回生モード」を示し、「Norma」は「弱回生モード」を示す。 For example, when the applicable vehicle is a four-wheel drive hybrid vehicle equipped with a cruise control system, the function shown in the concept block diagram of FIG. 14 is given to the hybrid control module (HCM) and the vehicle behavior controller (VDC). That is, FIG. 14 shows a request function for realizing cooperative control of clutch release control and driving force reduction control for the hybrid control module (HCM) and the vehicle behavior controller (VDC). In FIG. 14, “ACEP” indicates “strong regeneration mode”, and “Norma” indicates “weak regeneration mode”.
 実施例1~3では、摩擦クラッチとして、コントロールクラッチ50とカム機構とメインクラッチ54を有するボールカム式の電子制御カップリング42を用いる例を示した。しかし、摩擦クラッチとしては、ボールカム式の電子制御カップリングに限られるものではなく、前後輪駆動力配分を外部からの指令により制御する摩擦クラッチであれば、制御油圧により作動する多板クラッチ等の例としても良い。 In the first to third embodiments, the ball cam type electronically controlled coupling 42 having the control clutch 50, the cam mechanism, and the main clutch 54 is used as the friction clutch. However, the friction clutch is not limited to the ball cam type electronically controlled coupling, and any friction clutch that controls the front / rear wheel driving force distribution by an external command can be used, such as a multi-plate clutch operated by the control hydraulic pressure. As an example.
 実施例1~3では、本開示の制御装置をFFベースの4輪駆動ハイブリッド車両に適用する例を示した。しかし、本開示の制御装置は、FFベースの4輪駆動ハイブリッド車両に限らず、FRベースの4輪駆動ハイブリッド車両に対しても適用することができる。さらに、4輪駆動ハイブリッド車両に限らず、4輪駆動電気自動車に対しても適用することができる。要するに、駆動源にモータ/ジェネレータを有し、駆動源から副駆動輪への駆動力伝達経路に前後輪駆動力配分を外部からの指令により制御する摩擦クラッチを設けた4輪駆動電動車両であれば適用できる。 Embodiments 1 to 3 show examples in which the control device of the present disclosure is applied to an FF-based four-wheel drive hybrid vehicle. However, the control device of the present disclosure can be applied not only to an FF-based four-wheel drive hybrid vehicle but also to an FR-based four-wheel drive hybrid vehicle. Furthermore, the present invention can be applied not only to a four-wheel drive hybrid vehicle but also to a four-wheel drive electric vehicle. In short, a four-wheel drive electric vehicle having a motor / generator as a drive source and a friction clutch for controlling the front and rear wheel drive force distribution by an external command in the drive force transmission path from the drive source to the sub drive wheels. If applicable.

Claims (8)

  1.  駆動源にモータ/ジェネレータを有し、左右前輪と左右後輪の一方を前記駆動源に接続される主駆動輪とし、左右前輪と左右後輪の他方を前記駆動源に摩擦クラッチを介して接続される副駆動輪とし、
     前記摩擦クラッチの締結による4輪駆動状態での減速要求時、前記摩擦クラッチに解放指令を出力する4輪駆動電動車両の制御方法において、
     減速要求時、駆動力伝達系に発生する駆動力を、前記モータ/ジェネレータによる回生量を含んで負の駆動力領域に向かって低下させる駆動力低下制御を行い、
     前記摩擦クラッチの解放制御と前記駆動力低下制御が重なる減速要求時、前記摩擦クラッチの実クラッチ容量が抜けるまで、前記駆動力低下制御による負の駆動力を制限する
     ことを特徴とする4輪駆動電動車両の制御方法。
    A motor / generator is used as the drive source, and one of the left and right front wheels and the left and right rear wheels is a main drive wheel connected to the drive source, and the other of the left and right front wheels and the left and right rear wheels is connected to the drive source via a friction clutch. As a secondary drive wheel
    In a control method of a four-wheel drive electric vehicle that outputs a release command to the friction clutch when requesting deceleration in a four-wheel drive state by engagement of the friction clutch,
    At the time of deceleration request, drive force reduction control is performed to reduce the drive force generated in the drive force transmission system toward the negative drive force region including the regeneration amount by the motor / generator,
    A four-wheel drive characterized by limiting the negative driving force by the driving force reduction control until the actual clutch capacity of the friction clutch is released at the time of deceleration request where the release control of the friction clutch and the driving force reduction control overlap. Control method of electric vehicle.
  2.  請求項1に記載された4輪駆動電動車両の制御方法において、
     前記モータ/ジェネレータによる回生量は、コースト回生量のみによる場合と、コースト回生量とブレーキ協調回生量の両方の場合を含み、
     前記駆動力低下制御による負の駆動力を制限するとき、前記モータ/ジェネレータによる回生量の増大により所定の制限値に到達すると、前記所定の制限値のままで維持するように回生量の増大を抑制する
     ことを特徴とする4輪駆動電動車両の制御方法。
    In the control method of the four-wheel drive electric vehicle according to claim 1,
    The regeneration amount by the motor / generator includes the case of only the coast regeneration amount and the case of both the coast regeneration amount and the brake cooperative regeneration amount,
    When limiting the negative driving force by the driving force reduction control, when the predetermined limit value is reached due to the increase in the regeneration amount by the motor / generator, the regeneration amount is increased so as to maintain the predetermined limit value. A control method for a four-wheel drive electric vehicle.
  3.  請求項2に記載された4輪駆動電動車両の制御方法において、
     前記摩擦クラッチは、ボールカム式の電子制御カップリングであり、
     前記回生量の制限値は、回生量の増大による車両前後G変化率が所定変化率以下となる負の駆動力値に設定する
     ことを特徴とする4輪駆動電動車両の制御方法。
    In the control method of the four-wheel drive electric vehicle according to claim 2,
    The friction clutch is a ball cam type electronically controlled coupling,
    The limit value of the regeneration amount is set to a negative driving force value at which the vehicle front-rear G change rate due to the increase of the regeneration amount is equal to or less than a predetermined change rate.
  4.  請求項3に記載された4輪駆動電動車両の制御方法において、
     前記回生量の制限値は、前後輪のタイヤ径が異径のとき、タイヤの異径差に応じて、前後輪のタイヤ径が同径のときの制限値より小さい値に変更する
     ことを特徴とする4輪駆動電動車両の制御方法。
    In the control method of the four-wheel drive electric vehicle according to claim 3,
    The regenerative amount limit value is changed to a value smaller than the limit value when the front and rear wheel tire diameters are the same, depending on the difference in tire diameter when the front and rear wheel tire diameters are different. A control method for a four-wheel drive electric vehicle.
  5.  請求項1から4までの何れか一項に記載された4輪駆動電動車両の制御方法において、
     前記摩擦クラッチの締結による4輪駆動状態でのアクセル解放操作時、アクセル開度が閾値以下になったら前記摩擦クラッチに解放指令を出力する4輪駆動制御を行い、
     アクセル解放操作時、前記モータ/ジェネレータにより発生させるコースト回生トルクをエンジンブレーキ相当よりも拡大した強回生モードによる回生制御を行い、
     前記摩擦クラッチの解放制御と前記強回生モードによる回生制御が重なるアクセル解放操作時、アクセル開度が閾値以下になってから、前記摩擦クラッチの解放応答時間に基づいて設定された所定時間が経過するまで、前記回生量の増大を抑えることで負の駆動力を制限する
     ことを特徴とする4輪駆動電動車両の制御方法。
    In the control method of the four-wheel drive electric vehicle according to any one of claims 1 to 4,
    At the time of accelerator release operation in the four-wheel drive state by engagement of the friction clutch, four-wheel drive control is performed to output a release command to the friction clutch when the accelerator opening is below a threshold value,
    At the time of accelerator release operation, regenerative control is performed in the strong regenerative mode in which the coast regenerative torque generated by the motor / generator is expanded more than the engine brake equivalent,
    During the accelerator release operation in which the friction clutch release control and the regeneration control in the strong regeneration mode overlap, a predetermined time set based on the friction clutch release response time elapses after the accelerator opening becomes equal to or less than a threshold value. Until then, the negative driving force is limited by suppressing the increase in the regeneration amount. A method for controlling a four-wheel drive electric vehicle.
  6.  請求項1から4までの何れか一項に記載された4輪駆動電動車両の制御方法において、
     前記摩擦クラッチの解放制御を、アクセル開度と車速に基づいて設定される目標駆動力に応じて行い、
     前記摩擦クラッチの解放制御と前記駆動力低下制御が重なる減速要求時、前記目標駆動力が所定値以下になってから、前記摩擦クラッチの解放応答時間に基づいて設定された設定時間が経過するまで、前記駆動力低下制御による負の駆動力を制限する
     ことを特徴とする4輪駆動電動車両の制御方法。
    In the control method of the four-wheel drive electric vehicle according to any one of claims 1 to 4,
    The friction clutch release control is performed according to a target driving force set based on the accelerator opening and the vehicle speed,
    At the time of a deceleration request in which the friction clutch release control and the driving force reduction control overlap each other, until the set time set based on the friction clutch release response time elapses after the target driving force becomes a predetermined value or less. The negative driving force by the driving force reduction control is limited. A control method for a four-wheel drive electric vehicle.
  7.  請求項1から4までの何れか一項に記載された4輪駆動電動車両の制御方法において、
     前記摩擦クラッチの解放制御を、前記摩擦クラッチのクラッチ容量推定値を算出しながら行い、
     前記摩擦クラッチの解放制御と前記駆動力低下制御が重なる減速要求時、前記クラッチ容量推定値が所定値以上の間、前記駆動力低下制御による負の駆動力を制限する
     ことを特徴とする4輪駆動電動車両の制御方法。
    In the control method of the four-wheel drive electric vehicle according to any one of claims 1 to 4,
    Performing the release control of the friction clutch while calculating the estimated clutch capacity of the friction clutch;
    The four-wheel drive is characterized in that, when the deceleration request for overlapping the friction clutch release control and the driving force reduction control overlaps, the negative driving force by the driving force reduction control is limited while the estimated clutch capacity is not less than a predetermined value. A method for controlling a drive electric vehicle.
  8.  駆動源にモータ/ジェネレータを有し、左右前輪と左右後輪の一方を前記駆動源に接続される主駆動輪と、左右前輪と左右後輪の他方を前記駆動源に摩擦クラッチを介して接続される副駆動輪とを備える4輪駆動電動車両の制御装置において、
     アクセル開度を検知、もしくは、推定するアクセル開度検出装置と、
     車速を検知、もしくは、推定する車速検出装置と、
     前記摩擦クラッチの締結による4輪駆動状態でアクセル踏み込み状態から解放状態になった時、前記摩擦クラッチに解放指令を出力する4WDコントローラと、
     アクセル踏み込み状態から解放状態になった時、前記モータ/ジェネレータに車速に応じて設定した負の駆動力を発生させる駆動力コントローラを設け、
     前記駆動力コントローラは、前記摩擦クラッチが締結された4輪駆動状態でアクセル踏み込み状態から解放状態になった時、所定時間の間、前記負の駆動力を所定値以下に制限する
     ことを特徴とする4輪駆動電動車両の制御装置。
    A motor / generator is provided as the drive source, and one of the left and right front wheels and the left and right rear wheels is connected to the drive source, and the other of the left and right front wheels and the left and right rear wheels is connected to the drive source via a friction clutch. In a control device for a four-wheel drive electric vehicle comprising:
    An accelerator position detector for detecting or estimating the accelerator position;
    A vehicle speed detection device for detecting or estimating the vehicle speed;
    A 4WD controller that outputs a release command to the friction clutch when the accelerator is depressed to a release state in the four-wheel drive state by the engagement of the friction clutch;
    Provided with a driving force controller that generates a negative driving force set according to the vehicle speed in the motor / generator when the accelerator is depressed to a released state;
    The driving force controller limits the negative driving force to a predetermined value or less for a predetermined time when the accelerator is depressed and released in a four-wheel drive state in which the friction clutch is engaged. A control device for a four-wheel drive electric vehicle.
PCT/JP2017/015382 2017-04-14 2017-04-14 Control method and control device for four-wheel drive electric vehicle WO2018189907A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/015382 WO2018189907A1 (en) 2017-04-14 2017-04-14 Control method and control device for four-wheel drive electric vehicle
JP2019512168A JP6725066B2 (en) 2017-04-14 2017-04-14 Control method and control device for four-wheel drive electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015382 WO2018189907A1 (en) 2017-04-14 2017-04-14 Control method and control device for four-wheel drive electric vehicle

Publications (1)

Publication Number Publication Date
WO2018189907A1 true WO2018189907A1 (en) 2018-10-18

Family

ID=63792483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015382 WO2018189907A1 (en) 2017-04-14 2017-04-14 Control method and control device for four-wheel drive electric vehicle

Country Status (2)

Country Link
JP (1) JP6725066B2 (en)
WO (1) WO2018189907A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200404848A1 (en) * 2018-03-20 2020-12-31 Honda Motor Co., Ltd. Work machine
CN112815090A (en) * 2019-11-15 2021-05-18 本田技研工业株式会社 Vehicle control device, vehicle, and vehicle control method
JP7371576B2 (en) 2020-06-08 2023-10-31 トヨタ自動車株式会社 four wheel drive vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043696A (en) * 1998-07-27 2000-02-15 Toyota Motor Corp Braking torque distribution control device for vehicle
WO2015052808A1 (en) * 2013-10-10 2015-04-16 日産自動車株式会社 Control device for four-wheel drive electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043696A (en) * 1998-07-27 2000-02-15 Toyota Motor Corp Braking torque distribution control device for vehicle
WO2015052808A1 (en) * 2013-10-10 2015-04-16 日産自動車株式会社 Control device for four-wheel drive electric vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200404848A1 (en) * 2018-03-20 2020-12-31 Honda Motor Co., Ltd. Work machine
CN112815090A (en) * 2019-11-15 2021-05-18 本田技研工业株式会社 Vehicle control device, vehicle, and vehicle control method
JP7371576B2 (en) 2020-06-08 2023-10-31 トヨタ自動車株式会社 four wheel drive vehicle

Also Published As

Publication number Publication date
JP6725066B2 (en) 2020-07-15
JPWO2018189907A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6292239B2 (en) Control device for four-wheel drive electric vehicle
WO2012059998A1 (en) Hybrid driving apparatus for vehicle
JP6256651B2 (en) Vehicle regenerative shift control device
EP3273102B1 (en) Vehicle regenerative speed control device
JP6070854B2 (en) Control device for hybrid vehicle
WO2015052807A1 (en) Control device for hybrid vehicle
WO2018189907A1 (en) Control method and control device for four-wheel drive electric vehicle
JP6444488B2 (en) Control device for hybrid vehicle
JP6187059B2 (en) Control device for hybrid vehicle
JP6229399B2 (en) Control device for hybrid vehicle
JP6384155B2 (en) Driving force control device
JP2014231292A (en) Vehicle controller
JP6194735B2 (en) Control device for hybrid vehicle
JP6160249B2 (en) Vehicle control device
WO2016021018A1 (en) Device for controlling starting of electric vehicle
WO2015052760A1 (en) Device for controlling hybrid vehicle
JP6237085B2 (en) Control device for hybrid vehicle
JP6202099B2 (en) Control device for hybrid vehicle
JP5445709B2 (en) Hybrid drive device for vehicle
WO2015037042A1 (en) Hybrid vehicle control device
JP6488798B2 (en) Control device for hybrid vehicle
JP2015058869A (en) Control system for hybrid vehicle
WO2015037043A1 (en) Hybrid vehicle controller
WO2016013061A1 (en) Vehicle transmission hydraulic pressure controller
BR112016007888B1 (en) CONTROL DEVICE FOR FOUR-WHEEL DRIVE ELECTRIC VEHICLE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905783

Country of ref document: EP

Kind code of ref document: A1