WO2018189816A1 - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
WO2018189816A1
WO2018189816A1 PCT/JP2017/014879 JP2017014879W WO2018189816A1 WO 2018189816 A1 WO2018189816 A1 WO 2018189816A1 JP 2017014879 W JP2017014879 W JP 2017014879W WO 2018189816 A1 WO2018189816 A1 WO 2018189816A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
unit
lens barrel
charged particle
vacuum
Prior art date
Application number
PCT/JP2017/014879
Other languages
English (en)
French (fr)
Inventor
陽一 清水
田中 仁
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to US16/498,394 priority Critical patent/US10824077B2/en
Priority to KR1020197028029A priority patent/KR102271664B1/ko
Priority to PCT/JP2017/014879 priority patent/WO2018189816A1/ja
Publication of WO2018189816A1 publication Critical patent/WO2018189816A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70016Production of exposure light, i.e. light sources by discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • H01J2237/1405Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/152Magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/16Vessels
    • H01J2237/166Sealing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31793Problems associated with lithography

Definitions

  • the present invention relates to an exposure apparatus.
  • the electron beam exposure apparatus includes a plurality of electronic circuit areas that are operated in an atmospheric pressure environment and a plurality of areas that are evacuated to generate, accelerate, and collect electron beams.
  • a plurality of atmospheric pressure regions and a plurality of vacuum regions are close to each other and are complicatedly configured. Therefore, even if the multi-beam exposure apparatus is assembled with high accuracy in the atmospheric pressure, if the vacuum region is formed by evacuation, the partition that separates the atmospheric pressure region and the vacuum region is deformed, and a plurality of electron beams are Some or all of the optical systems may be complicated and changed independently. In addition, vacuum deformation may occur due to such deformation of the partition wall.
  • the exposure apparatus may include a lens barrel whose pressure is reduced so that the inside is in a vacuum state.
  • the exposure apparatus may include a plurality of charged particle beam sources provided in the lens barrel and emitting a plurality of charged particle beams in the extending direction of the lens barrel.
  • the exposure apparatus may include a plurality of electromagnetic optical elements that are provided corresponding to each of the plurality of charged particle beams in the lens barrel and control each of the charged particle beams.
  • the exposure apparatus may include a first partition and a second partition that are spaced apart from each other in the extending direction in the lens barrel and that form a non-vacuum space in at least a portion between them.
  • the exposure apparatus may include a decompression pump that depressurizes the non-vacuum space in contact with the first partition and the non-vacuum space in contact with the second partition to a pressure between the vacuum and the atmosphere.
  • the first partition may have an opening for passing each electron beam corresponding to each of the plurality of charged particle beams.
  • the second partition may have an opening for passing each electron beam corresponding to each of the plurality of charged particle beams.
  • the plurality of electromagnetic optical elements may be provided in a decompression space where the decompression pump between the first partition and the second partition depressurizes.
  • a space between the plurality of electromagnetic optical elements and the surface in contact with the decompression space in the first partition may be sealed with a vacuum seal.
  • the plurality of electromagnetic optical elements and the surface in contact with the reduced pressure space in the second partition may be sealed with a vacuum seal.
  • the exposure apparatus may include a third partition provided between the first partition and the second partition.
  • the exposure apparatus may include a fourth partition provided between the third partition and the second partition. At least a part of the space between the third partition wall and the fourth partition wall may have a higher atmospheric pressure than the space between the first partition wall and the third partition wall and the space between the second partition wall and the fourth partition wall.
  • the exposure apparatus may include a lens barrel whose pressure is reduced so that the inside is in a vacuum state.
  • the exposure apparatus may include a plurality of charged particle beam sources provided in the lens barrel and emitting a plurality of charged particle beams in the extending direction of the lens barrel.
  • the exposure apparatus may include a plurality of electromagnetic optical elements that are provided corresponding to each of the plurality of charged particle beams in the lens barrel and control each of the charged particle beams.
  • the exposure apparatus may include a first partition and a second partition that are spaced apart from each other in the extending direction in the lens barrel and that form a non-vacuum space in at least a portion between them. Between the 1st partition and the 2nd partition, you may fix in a plurality of places other than an edge.
  • the exposure apparatus may include a plurality of cylindrical members that are provided corresponding to the plurality of charged particle beams and pass the corresponding charged particle beams through the first partition and the second partition.
  • the first partition and the second partition may be pressed from both sides of the plurality of tubular members.
  • Each of the plurality of cylindrical members may be screwed with a nut from at least one end. At least one of the first partition and the second partition may be pressed by a nut.
  • the exposure apparatus may include a plurality of fixing members that penetrate the first partition wall and the second partition wall at a plurality of locations other than the edge portion and hold them from both sides.
  • Each of the plurality of fixing members may include a bolt that penetrates the first partition and the second partition and a nut that is screwed into the bolt.
  • the first partition and the second partition may be screwed to a member provided in a space between the first partition and the second partition at a plurality of locations other than the edge.
  • the exposure apparatus may include a third partition wall that is disposed in the lens barrel so as to be separated from the first partition wall in the extending direction, and in which a vacuum space is provided between the first partition wall.
  • the first partition may be provided between the third partition and may be pressed to the second partition by a first reinforcing member that extends in the extending direction.
  • the plurality of electromagnetic optical elements may be disposed between the first partition and the second partition.
  • the exposure apparatus may include a lens barrel whose pressure is reduced so that the inside is in a vacuum state.
  • the exposure apparatus may include a plurality of charged particle beam sources provided in the lens barrel and emitting a plurality of charged particle beams in the extending direction of the lens barrel.
  • the exposure apparatus may include a plurality of electromagnetic optical elements that are provided corresponding to each of the plurality of charged particle beams in the lens barrel and control each of the charged particle beams.
  • the exposure apparatus may include a first partition and a second partition that are spaced apart from each other in the extending direction in the lens barrel.
  • the first partition wall and the second partition wall may form a non-vacuum space only in a part of a cross section perpendicular to the extending direction of the lens barrel and form a vacuum space in the remaining part.
  • Each of the plurality of electromagnetic optical elements may be disposed in one or more non-vacuum spaces formed by the first partition and the second partition.
  • One non-vacuum space may contact the inner wall of the lens barrel.
  • Each of the one or plurality of non-vacuum spaces may be provided with a wiring that is in contact with the inner wall of the lens barrel and is connected to at least a part of the plurality of electromagnetic optical elements.
  • each of the plurality of first partitions facing the second partition may be provided corresponding to each of the plurality of non-vacuum spaces.
  • the second partition may be exposed to both the plurality of charged particle beam source sides and the opposite side of the plurality of charged particle beam sources in a portion where the plurality of non-vacuum spaces are not formed.
  • a plurality of spaces may be provided between the first partition and the second partition. A part of the plurality of spaces may be a non-vacuum space, and the remainder may be a space communicating with at least one of the vacuum spaces on the first partition wall side and the second partition wall side.
  • the exposure apparatus may include a lens barrel whose pressure is reduced so that the inside is in a vacuum state.
  • the exposure apparatus may include a plurality of charged particle beam sources provided in the lens barrel and emitting a plurality of charged particle beams in the extending direction of the lens barrel.
  • the exposure apparatus may include a plurality of electromagnetic optical elements that are provided corresponding to each of the plurality of charged particle beams in the lens barrel and control each of the charged particle beams.
  • the exposure apparatus may include a wiring substrate provided in the lens barrel and having wirings connected to the plurality of electromagnetic optical elements and openings through which the plurality of charged particle beams pass.
  • the exposure apparatus may include a first partition that is attached to one side of the wiring board.
  • the exposure apparatus may include a second partition that is attached to a surface of the wiring board opposite to the first partition. (Item 21)
  • the exposure apparatus may include a lens barrel.
  • the exposure apparatus may include a plurality of charged particle beam sources provided in the lens barrel and emitting a plurality of charged particle beams in the extending direction of the lens barrel.
  • the exposure apparatus may include a stage unit that is provided in the lens barrel and places a sample to be irradiated with a plurality of charged particle beams.
  • the exposure apparatus may include a plurality of first electromagnetic optical elements that are provided corresponding to each of the plurality of charged particle beams in the lens barrel and control each of the charged particle beams.
  • the exposure apparatus may include a first partition and a second partition that are sequentially spaced from each other in the extending direction in the lens barrel.
  • the exposure apparatus may include a third partition wall that is spaced apart from the first partition wall and the second partition wall in the extending direction within the lens barrel.
  • FIG. 2 shows a configuration example of an exposure apparatus 100 according to the present embodiment.
  • the structural example of the lens-barrel 110 which concerns on this embodiment is shown.
  • a comparative configuration example of the first unit 200 and the second unit 300 according to the present embodiment is shown.
  • 1 shows a first configuration example of a first unit 200 and a second unit 300 according to the present embodiment.
  • 2 shows a second configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • the 3rd structural example of the 1st unit 200 which concerns on this embodiment, and the 2nd unit 300 is shown.
  • 4 shows a fourth configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • the 5th structural example of the 1st unit 200 which concerns on this embodiment, and the 2nd unit 300 is shown.
  • FIG. 6 shows a sixth configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • the 7th structural example of the 1st unit 200 which concerns on this embodiment, and the 2nd unit 300 is shown.
  • the 8th structural example of the 1st unit 200 which concerns on this embodiment, and the 2nd unit 300 is shown.
  • a ninth configuration example of the first unit 200 and the second unit 300 according to the present embodiment is shown.
  • FIG. 1 shows a configuration example of an exposure apparatus 100 according to the present embodiment.
  • the exposure apparatus 100 draws a circuit pattern or the like on the sample 10 by generating a plurality of electron beams.
  • the exposure apparatus 100 includes a lens barrel 110, a CPU 130, a bus 132, an exposure control unit 140, a storage unit 150, and a stage control unit 160.
  • the lens barrel 110 is depressurized so that the inside is in a vacuum state.
  • the lens barrel 110 functions as a multi-electron beam column that generates a plurality of electron beams and irradiates the sample 10. That is, the lens barrel 110 includes a plurality of electron beam generators 120 and a stage unit 112 on which the sample 10 is placed.
  • Each of the electron beam generators 120 generates a charged particle beam having electrons or ions, and irradiates the sample 10 placed on the stage unit 112.
  • the number of electron beam generators 120 is preferably a larger number, for example, a number of tens or more.
  • the number of electron beam generators 120 is, for example, about a hundred.
  • the number of electron beam generators 120 is 88.
  • the 88 electron beam generators 120 may be arranged at a pitch of approximately 30 mm in the XY plane. It is desirable that the plurality of electron beam generators 120 be arranged to irradiate the entire surface of the sample 10 within the movable range of the stage unit 112.
  • FIG. 1 shows an example in which each of the electron beam generators 120 generates an electron beam in a direction substantially parallel to the Z-axis direction.
  • Each of the electron beam generators 120 generates an electron beam having a predetermined shape.
  • Each of the electron beam generators 120 generates, for example, an array of electron beams arranged in a predetermined one-dimensional direction.
  • the exposure apparatus 100 individually switches whether to irradiate the surface of the sample 10 with each of a plurality of electron beams (ON state) or not (OFF state) while moving the stage unit 112. A pattern may be exposed on the sample 10.
  • the electron beam generator 120 will be described later.
  • the stage unit 112 places and moves the sample 10 to be irradiated with a plurality of charged particle beams.
  • the sample 10 may be a substrate formed of semiconductor, glass, and / or ceramic, and as an example is a semiconductor wafer formed of silicon or the like.
  • the sample 10 may be a semiconductor wafer having a diameter of about 300 mm.
  • the sample 10 is, for example, a substrate having a line pattern formed on the surface with a conductor such as metal.
  • the exposure apparatus 100 may expose the resist formed on the line pattern in order to cut the line pattern and perform fine processing (formation of electrodes, wirings, and / or vias).
  • the stage unit 112 mounts the sample 10 and moves the sample 10 within a predetermined plane.
  • FIG. 1 shows an example in which the stage unit 112 moves in a plane substantially parallel to the XY plane.
  • the stage unit 112 may be an XY stage, and may be combined with one or more of a Z stage, a rotation stage, and a tilt stage in addition to the XY stage.
  • the stage unit 112 preferably includes a stage position detection unit that detects the position of the stage unit 112. As an example, the stage position detection unit detects the position of the stage by irradiating a moving stage with laser light and detecting reflected light.
  • the stage position detector preferably detects the position of the stage with an accuracy of about 1 nm or less.
  • CPU 130 controls the entire operation of exposure apparatus 100.
  • the CPU 130 may have a function of an input terminal for inputting an operation instruction from the user.
  • the CPU 130 may be a computer or a workstation.
  • the CPU 130 is connected to the exposure control unit 140 and may control the exposure operation of the exposure apparatus 100 in accordance with a user input.
  • CPU 130 is connected to exposure control unit 140, storage unit 150, and stage control unit 160 via bus 132, and exchanges control signals and the like.
  • a plurality of exposure control units 140 are provided and connected to the corresponding electron beam generators 120, respectively.
  • Each of the exposure control units 140 controls the corresponding electron beam generation unit 120 in accordance with a control signal received from the CPU 130 and executes the exposure operation of the sample 10.
  • the exposure control unit 140 may be connected to the storage unit 150 via the bus 132, and may exchange pattern data stored in the storage unit 150.
  • the storage unit 150 stores a pattern exposed by the exposure apparatus 100.
  • the storage unit 150 stores, for example, a cut pattern that is a pattern exposed by the exposure apparatus 100 in order to cut a line pattern formed on the sample 10.
  • the storage unit 150 may store a via pattern that is a pattern exposed by the exposure apparatus 100 in order to form a via in the sample 10.
  • the storage unit 150 receives and stores cut pattern and via pattern information from the outside via, for example, a network. Further, the storage unit 150 may receive and store information on cut patterns and via patterns input from the user via the CPU 130.
  • the storage unit 150 may store the arrangement information of the sample 10 and the arrangement information of the line pattern formed on the sample 10.
  • the storage unit 150 may store measurement results measured in advance as arrangement information before entering the exposure operation.
  • the storage unit 150 stores information that causes positioning errors such as a reduction rate of the sample 10 (deformation error due to a manufacturing process), a rotation error due to conveyance, distortion of the substrate, a height distribution, and the like. It may be stored as information.
  • the storage unit 150 may store information on positional deviation between the irradiation positions of a plurality of electron beams and the position of the line pattern as line pattern arrangement information.
  • the storage unit 150 preferably uses the information acquired by measuring the arrangement information of the sample 10 and the arrangement information of the line pattern by measuring the sample 10 placed on the stage unit 112 as the arrangement information. Instead of this, the storage unit 150 may store past measurement results of the sample 10 or measurement results of other samples in the same lot.
  • the stage control unit 160 is connected to the stage unit 112 and controls the operation of the stage unit 112.
  • the stage control unit 160 moves the stage unit 112 according to a control signal received from the CPU 130 and controls the position where the electron beam generation unit 120 irradiates the sample 10. For example, the stage controller 160 scans the irradiation positions of a plurality of electron beams along the longitudinal direction of the line pattern of the sample 10.
  • the stage control unit 160 in the present embodiment may scan the irradiation positions of the plurality of electron beams along the longitudinal direction of the line pattern by moving the stage unit 112 on which the sample 10 is mounted substantially parallel to the X direction. .
  • the stage controller 160 also moves the irradiation positions of the plurality of electron beams in the width direction of the line pattern so that a predetermined area on the surface of the sample 10 can be irradiated with each electron beam. You may scan.
  • the plurality of electron beam generators 120 expose the entire surface of the sample 10, respectively.
  • the plurality of electron beam generators 120 may perform exposure operations in parallel in time.
  • Each of the electron beam generators 120 may be capable of independently exposing a predetermined area on the surface of the sample 10. Thereby, for example, the exposure apparatus 100 can expose an area of 88 ⁇ 30 mm ⁇ 30 mm on the surface of the sample 10 in a time for one electron beam generating unit 120 to expose a square area of 30 mm ⁇ 30 mm.
  • the exposure apparatus 100 can improve the exposure throughput from several tens of times to about one hundred times as compared with the exposure apparatus having a single electron beam generator.
  • the exposure apparatus 100 can adjust the exposure throughput by increasing or decreasing the number of the electron beam generators 120. Therefore, even if the sample 10 is a semiconductor wafer or the like having a diameter of more than 300 mm, the exposure apparatus 100 can prevent a reduction in throughput by further increasing the number of electron beam generators 120. Further, when the diameter of the electron beam generator 120 can be further reduced, the exposure apparatus 100 may further increase the throughput by increasing the arrangement density of the electron beam generator 120.
  • the lens barrel 110 of the exposure apparatus 100 includes a plurality of electronic circuit regions that are operated in an environment close to atmospheric pressure, and a plurality of regions that are evacuated to generate, accelerate, and collect electron beams. Next, the inside of the lens barrel 110 will be described.
  • FIG. 2 shows a configuration example of the lens barrel 110 according to the present embodiment.
  • FIG. 2 shows an example of a sectional view taken along a plane substantially parallel to the ZX plane of the lens barrel 110 extending substantially parallel to the Z-axis direction.
  • the lens barrel 110 is provided with a stage portion 112 on which the sample 10 is placed, and draws a drawing pattern on the sample 10 using a plurality of electron beams.
  • the lens barrel 110 includes a plurality of charged particle beam sources 20, a blanking unit 30, a first unit 200, a second unit 300, and an exhaust port 310.
  • the plurality of charged particle beam sources 20 are provided in the lens barrel 110 and emit a plurality of charged particle beams in the extending direction of the lens barrel 110.
  • Each of the charged particle beam sources 20 is, for example, an electron gun that emits electrons by an electric field or heat.
  • the charged particle beam source 20 may apply a predetermined electric field to the emitted electrons and output an electron beam accelerated in the direction of the sample 10 which is the ⁇ Z direction in FIG.
  • the charged particle beam source 20 may output an electron beam by applying a predetermined acceleration voltage (for example, 50 kV).
  • a predetermined acceleration voltage for example, 50 kV
  • an electron beam will be described as an example of a charged particle beam.
  • the charged particle beam source 20 may be provided on a perpendicular line parallel to the Z axis from the surface of the sample 10 substantially parallel to the XY plane. That is, the plurality of charged particle beam sources 20 may be arranged at predetermined intervals substantially in parallel with the XY plane. The plurality of charged particle beam sources 20 may be arranged in a lattice shape or a concentric shape. A plurality of charged particle beam sources 20 may be applied with a substantially constant acceleration voltage.
  • the plurality of charged particle beam sources 20 need not be individually accommodated in a partition wall or the like.
  • the lens barrel 110 does not need to form a lens barrel for each charged particle beam source 20, so that the arrangement of the plurality of charged particle beam sources 20 can be made denser.
  • the lens barrel 110 can have an arrangement interval in one direction of the plurality of charged particle beam sources 20 of about 30 mm. That is, a cylindrical region that includes the charged particle beam source 20 and extends substantially parallel to the Z direction corresponds to the electron beam generator 120 inside the lens barrel 110. In this case, the diameter of the cylindrical region is about 30 mm as an example.
  • the blanking unit 30 switches whether the sample 10 is irradiated with each of a plurality of charged particle beams. That is, the blanking unit 30 switches whether to deflect each electron beam in a direction different from the direction of the sample 10.
  • the blanking unit 30 may include a plurality of openings arranged corresponding to each of the electron beams, and a plurality of blanking electrodes that apply an electric field in the plurality of openings.
  • the plurality of openings may allow each of the electron beams to pass individually. For example, when no voltage is supplied to the blanking electrode, an electric field applied to the electron beam is not generated in the corresponding opening, so that the electron beam incident on the opening passes toward the sample 10 without being deflected. (Beam ON state). When a voltage is supplied to the blanking electrode, an electric field is generated in the corresponding opening, so that the electron beam incident on the opening is deflected in a direction different from the direction passing through the sample 10 ( Beam off state).
  • the voltage for switching the ON state and the OFF state of the electron beam may be supplied from the corresponding exposure control unit 140 to the blanking electrode.
  • the space in which the electron beam travels from the charged particle beam source 20 to the sample 10 via the blanking unit 30 is maintained at a predetermined degree of vacuum.
  • An electromagnetic optical element that accelerates, condenses, deflects, etc. the electron beam is provided along the space in which the electron beam travels. Since the electromagnetic optical element includes a coil for passing a current and the like, it is desirable that the electromagnetic optical element be provided in a space of about atmospheric pressure.
  • the lens barrel 110 Since the lens barrel 110 generates a plurality of electron beams and separately irradiates the sample 10 with the plurality of electron beams, a plurality of such vacuum regions and non-vacuum regions are provided.
  • the vacuum region is maintained at a degree of vacuum that allows drawing with an electron beam. Vacuum area, for example, be maintained from 10 -7 Pa to a high vacuum leading to 10 -8 Pa.
  • the non-vacuum region may be about 1 atmosphere.
  • the non-vacuum region may be a low vacuum region lower than the atmospheric pressure as long as the electronic circuit in the lens barrel 110 operates normally. That is, the non-vacuum region may be maintained at 100 Pa or more, for example.
  • the lens barrel 110 may be separated into a plurality of units and formed and adjusted for each unit.
  • the plurality of units may be stacked in the extending direction of the lens barrel 110.
  • the lens barrel 110 includes, for example, a plurality of first units 200 and a plurality of second units 300.
  • the first unit 200 has a vacuum space that becomes a vacuum region during operation of the exposure apparatus and a non-vacuum space that becomes a non-vacuum region.
  • the first unit 200 allows an electron beam to pass through in a vacuum space, and an electromagnetic optical element is provided in the non-vacuum space.
  • a partition wall or the like is provided between the vacuum space and the non-vacuum space, and the two spaces are separated.
  • the non-vacuum space formed in each of the first units 200 may form an integral space, or may form a plurality of spaces instead.
  • the second unit 300 has a vacuum space that becomes a vacuum region during operation of the exposure apparatus.
  • the vacuum spaces of the plurality of first units 200 and the plurality of second units 300 may form an integral space.
  • the integral space may be an area for passing the electron beam, an area for accommodating the charged particle beam source 20, the blanking unit 30, the stage unit 112, and the like.
  • the second unit 300 does not place a shielding object between the plurality of charged particle beams passing through the second unit 300.
  • the second unit 300 may be a hollow unit.
  • the second unit 300 has an exhaust port 310 and is connected to an external exhaust device such as a vacuum pump.
  • Each of the second units 300 may have an exhaust port 310.
  • some of the second units 300 may have the exhaust port 310.
  • the first unit 200 and the second unit 300 may be alternately stacked.
  • the first unit 200 on which the electromagnetic optical element is provided is provided on the second unit 300 that accommodates the stage portion 112, and the second unit 300 that accommodates the blanking portion 30 on the first unit 200. May be provided.
  • the lens barrel 110 may be formed by stacking a plurality of units.
  • the lens barrel 110 includes about 7 to 8 first units 200 and second units 300, and is stacked alternately.
  • the vacuum space of the first unit 200 need not be provided with a partition wall or the like between the vacuum space of the adjacent second unit 300. That is, the vacuum space in the lens barrel 110 may be formed integrally. In this case, the vacuum spaces of the plurality of units may form part of the integrally formed vacuum space. Further, the non-vacuum space of the first unit 200 may form an independent space for each unit in the lens barrel 110. Such a plurality of units will be described next.
  • FIG. 3 shows a comparative configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • FIG. 3 shows an example of a cross-sectional view of the lens barrel 110 taken along a plane substantially parallel to the ZX plane. That is, FIG. 3 shows an example of a cross-sectional view in which a part of the cross-sectional view shown in FIG. 2 is enlarged. 3 shows an example of an ideal path of the electron beam from the B 1 by the dashed line of B n.
  • the first unit 200 of the comparative configuration example has a bottom portion 202 on the sample 10 side. Further, a recess 204 may be formed on the surface of the bottom 202 facing the sample 10. Further, the first unit 200 may have a convex portion 206 that protrudes on the opposite side to the sample 10.
  • the second unit 300 of the comparative configuration example has a bottom portion 302 on the sample 10 side. Further, a recess 304 may be formed on the surface of the bottom 302 facing the sample 10. Further, the second unit 300 may have a convex portion 306 that protrudes on the opposite side to the sample 10.
  • Such concave and convex portions of each unit are used for positioning when the units are stacked.
  • the first unit 200 is stacked on the second unit 300 so that the convex portion 306 of the second unit 300 and the concave portion 204 of the first unit 200 are fitted.
  • the second unit 300 may be stacked on the first unit 200 such that the convex portion 206 of the first unit 200 and the concave portion 304 of the second unit 300 are fitted.
  • An O-ring or the like may be provided between the units so as to maintain airtightness.
  • FIG. 3 illustrates an example in which a recess is provided at the bottom of each unit, but the present invention is not limited to this.
  • the shape which fits for alignment between adjacent units should just be formed in one or both units.
  • the electromagnetic optical element 40 is arranged in the first unit 200 having a non-vacuum space. That is, the first unit 200 includes the electromagnetic optical element 40, the wiring 42, the partition wall 510, the flange 520, and the fixing screw 522.
  • a plurality of partition walls 510 are arranged in the first unit 200 so as to surround the ideal path B of the electron beam.
  • the plurality of partition walls 510 are fixed to the bottom 202 of the first unit 200 and the bottom 302 of the second unit 300, respectively.
  • the bottom 202 has a plurality of through holes into which the partition walls 510 are inserted.
  • the partition wall 510 may be inserted into the through hole and fixed by a flange 520 and a fixing screw 522 on the surface of the bottom 202 facing the sample 10.
  • an O-ring is preferably provided between the bottom portion 202, the partition wall portion 510, and the flange 520.
  • the electromagnetic optical element 40 may be provided so as to surround the periphery of the partition wall 510.
  • the electromagnetic optical element 40 is provided corresponding to each of the plurality of electron beams passing through the vacuum region, and generates a magnetic field for each electron beam and individually controls it.
  • the electromagnetic optical element 40 includes, for example, at least one of an electromagnetic lens, an electromagnetic deflector, an electromagnetic corrector, and the like. Such an electromagnetic optical element 40 may generate a magnetic field and execute convergence, deflection, aberration correction, and the like of the electron beam.
  • the electromagnetic optical element 40 has a coil and / or a magnetic body for generating a magnetic field. Since such an electro-optic element 40 passes a current for the purpose of generating a magnetic field, if it is arranged in a vacuum region through which an electron beam passes, it cannot exhaust heat and may ignite. Further, when the electromagnetic optical element 40 includes a coil winding or a magnetic part, these members may cause degassing due to heat generation or the like. Therefore, if the electromagnetic optical element 40 is disposed in the vacuum region, it may cause ignition and deterioration of the degree of vacuum, and the electromagnetic optical element 40 is disposed in a non-vacuum space formed by the partition wall 510 and the like. It is desirable.
  • the electromagnetic optical element 40 and the partition wall 510 are preferably formed symmetrically about the ideal path B of the electron beam as the central axis.
  • the electromagnetic optical element 40 has a coil part and a magnetic part.
  • the coil portion includes a winding wound around the central axis.
  • the magnetic part includes a magnetic member that surrounds the coil part and is axisymmetric with respect to the central axis, and a gap provided in a part thereof.
  • Such an electromagnetic optical element 40 generates a local magnetic field in the central axis direction in a vacuum region surrounded by the partition wall 510. That is, in this case, the electromagnetic optical element 40 functions as an electromagnetic lens that converges the electron beam that passes through the first unit 200 along a path that substantially matches the path B.
  • the coil part and / or the magnetic part may be arranged symmetrically about the path B as the central axis.
  • the electromagnetic optical element 40 may function as an electromagnetic deflector that generates a magnetic field deviated from axial symmetry in accordance with the current flowing through the coil portion and changes the traveling direction of the electron beam. Further, the electromagnetic optical element 40 may function as an electromagnetic corrector that corrects the aberration of the electron beam.
  • the electromagnetic optical element 40 may pass a current through the wiring 42.
  • the wiring 42 is provided in the non-vacuum space and is electrically connected to at least a part of the plurality of electromagnetic optical elements 40.
  • the wiring 42 is electrically connected to the outside of the lens barrel 110.
  • the first unit 200 of the above comparative configuration example is preferably stacked on the second unit after the plurality of partition walls 510 are fixed to the bottom 202. That is, the first unit 200 may be stacked on the second unit 300 after the inside is assembled. Then, by further stacking different second units 300 on the first unit 200, a vacuum space and a non-vacuum space of the second unit 300 may be formed as shown in FIG. That is, the first unit 200 is separated into two spaces, a vacuum space and a non-vacuum space, by the first unit 200, the second unit 300, and the plurality of partition walls 510. In the first unit 200, a plurality of vacuum spaces are formed corresponding to the plurality of electron beams.
  • the lens barrel 110 can be formed with high accuracy by performing assembly and adjustment for each unit and stacking the units while positioning them.
  • the partition wall between the non-vacuum region and the vacuum region may be deformed.
  • the bottom portion 202 of the first unit 200 and the bottom portion 302 of the second unit 300 in the comparative configuration example may be bent toward the vacuum region side as indicated by a dotted line in FIG.
  • the exposure apparatus 100 reduces deformation of the partition walls and the like, thereby reducing fluctuations in the optical system. Further, the exposure apparatus 100 prevents the occurrence of vacuum leakage by reducing the deformation of the partition walls and the like.
  • FIG. 4 shows a first configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • first unit 200 and the second unit 300 of the first configuration example substantially the same operations as those of the first unit 200 and the second unit 300 of the comparative configuration example shown in FIG. Description is omitted.
  • FIG. 4 shows an example of a sectional view taken along a plane substantially parallel to the ZX plane of the lens barrel 110, as in FIG.
  • the first unit 200 and the second unit 300 of the first configuration example are stacked in the same manner as the first unit 200 and the second unit 300 of the comparative configuration example, thereby forming a lens barrel 110 as shown in FIG. .
  • the first unit 200 includes an electromagnetic optical element 40, a wiring 42, a first partition 210, a second partition 220, a frame 230, a support part 240, and a decompression pump 420.
  • the first partition wall 210 and the second partition wall 220 are arranged in the lens barrel 110 so as to be separated from each other in the extending direction of the lens barrel 110, and form a non-vacuum space in at least a part between them.
  • the non-vacuum space is a decompression space having a pressure higher than the vacuum space through which the electron beam passes and lower than the atmospheric pressure.
  • the first partition 210 and the second partition 220 are fixed inside the frame 230.
  • the first partition 210 and the second partition 220 have openings for allowing each charged particle beam to pass through corresponding to each of the plurality of charged particle beams.
  • FIG. 4 shows an example in which the first partition 210 has a plurality of openings 212 and the second partition 220 has a plurality of openings 222.
  • Each of the plurality of openings 212 of the first partition 210 and each of the plurality of openings 222 of the second partition 220 may be formed corresponding to the plurality of electron beam paths B 1 to B n , respectively.
  • one electron beam is input to the first unit 200 from one opening 212, passes through the first unit 200, and is output from the corresponding one opening 222. That is, the space from one opening 212 to the corresponding one opening 222 forms a vacuum space through which the electron beam passes.
  • the first partition 210 and the second partition 220 may be formed of a nonmagnetic metal. Further, the first partition wall 210 and the second partition wall 220 may be ceramics having conductivity or ceramics having a conductive film formed on the inner peripheral surface.
  • the frame 230 is provided between the first partition 210 and the second partition 220.
  • the frame 230 is formed in a cylindrical shape that extends in a direction substantially parallel to the Z-axis direction, and forms a part of the lens barrel 110. In other words, each of the plurality of frames 230 forms a part of the lens barrel 110.
  • the frame 230 may include iron or permalloy.
  • the frame 230 is preferably formed of a member that prevents a weak magnetic field from the outside from affecting the inside of the lens barrel 110.
  • the frame 230 has a concave portion 204, a convex portion 206, and an exhaust port 410.
  • the recess 204 may be formed on the surface of the frame 230 facing the sample 10.
  • the convex portion 206 may protrude to the opposite side of the frame 230 from the sample 10.
  • the concave portion 204 and the convex portion 206 are fitted with the corresponding second unit 300.
  • the exhaust port 410 is connected to the decompression pump 420.
  • the support part 240 is provided in the lens barrel 110 and supports and positions the plurality of electromagnetic optical elements 40.
  • the support portion 240 is disposed between the first partition 210 and the second partition 220 in the extending direction in the lens barrel 110.
  • the support part 240 may be fixed to the frame 230.
  • the support 240 is preferably formed of a nonmagnetic member.
  • the plurality of electromagnetic optical elements 40 By positioning the plurality of electromagnetic optical elements 40 by the support unit 240, the plurality of electromagnetic optical elements 40 are provided corresponding to each of the plurality of charged particle beams in the lens barrel 110, and each of the charged particle beams is respectively Can be controlled.
  • the plurality of electromagnetic optical elements 40 are disposed between the first partition 210 and the second partition 220 in the extending direction of the lens barrel 110.
  • the plurality of electromagnetic optical elements 40 and the surface in contact with the decompression space in the first partition 210 are sealed by a vacuum seal.
  • FIG. 4 shows an example in which the surface in contact with the decompression space in the first partition 210 is the surface facing the sample 10 of the first partition 210.
  • FIG. 4 shows an example in which the surface of the second partition 220 in contact with the reduced pressure space is the surface facing the opposite side of the sample 10 of the second partition 220.
  • the vacuum seal is sealed using, for example, an elastic material such as an O-ring.
  • the plurality of electromagnetic optical elements 40 are provided in the decompression space between the first partition 210 and the second partition 220.
  • the plurality of electromagnetic optical elements 40 may be sealed in a storage case or the like.
  • the storage case may further include a cooling unit that cools the electromagnetic optical elements 40.
  • the cooling unit may have a configuration for circulating a coolant such as cooling water, and may include a cooling device such as a Peltier element instead.
  • the storage case may be sealed with the first partition 210 and the second partition 220, respectively.
  • a wiring 42 electrically connected to at least a part of the plurality of electromagnetic optical elements 40 is also provided between the first partition 210 and the second partition 220.
  • a sealed non-vacuum region is formed in the first unit 200 by the first partition 210, the second partition 220, and the plurality of electromagnetic optical elements 40.
  • FIG. 4 shows an example in which an integrated non-vacuum region is formed inside the first unit 200. Note that the non-vacuum region may be divided into a plurality of portions by partition walls or the like. Such a non-vacuum region is separated from a plurality of vacuum spaces including a plurality of openings 212 of the first partition 210 and a plurality of openings 222 of the second partition 220 by sealing.
  • each of the vacuum spaces may form a cylindrical shape extending in the substantially same direction as the extending direction of the lens barrel 110 when separated from the non-vacuum space by sealing.
  • the plurality of vacuum spaces formed in the first unit 200 are the vacuum spaces and spaces of the two second units 300 adjacent to the first unit 200 on the sample 10 side and the opposite side of the sample 10, respectively. Connected. That is, a part of the electromagnetic optical element 40 may face the vacuum space through which the electron beam passes. A part of the electromagnetic optical element 40 may face a non-vacuum space. That is, the electromagnetic optical element 40 may function as a wall between the vacuum space and the non-vacuum region.
  • the vacuum pump 420 evacuates the non-vacuum space in contact with the first partition 210 and the non-vacuum space in contact with the second partition 220 to a pressure between the vacuum and the atmosphere by exhausting from the exhaust port 410.
  • the decompression pump 420 makes the non-vacuum space a decompression space having a substantially constant pressure.
  • the decompression pump 420 may depressurize the non-vacuum space to an air pressure that reduces the deflection generated in the first partition 210 and the second partition 220 when the second unit 300 is decompressed to form a vacuum region. .
  • the decompression pump 420 may decompress the non-vacuum space to a pressure that does not cause degassing from the plurality of electromagnetic optical elements 40.
  • the second unit 300 of the first configuration example includes an exhaust port 310 and a frame 320.
  • the frame 320 is formed in a cylindrical shape that extends in a direction substantially parallel to the Z-axis direction, and forms a part of the lens barrel 110.
  • the frame 320 may include iron or permalloy.
  • the frame 320 is preferably formed of a member that prevents a weak magnetic field from the outside from affecting the inside of the lens barrel 110.
  • the frame 320 may have a recess 304 formed on the surface facing the sample 10.
  • the first unit 200 and the second unit 300 may be positioned by fitting the concave portion 304 and the convex portion 206 of the first unit 200.
  • the frame 320 may be formed with a convex portion 306 that protrudes on the opposite side to the sample 10.
  • the first unit 200 and the second unit 300 may be positioned by fitting the convex portion 306 and the concave portion 204 of the first unit 200.
  • the exposure apparatus 100 uses the first unit 200 and the second unit 300 of the first configuration example described above, and is similar to the case where the first unit 200 and the second unit 300 of the comparative configuration example are used.
  • each unit can be stacked while being positioned. That is, the lens barrel 110 can be formed with high accuracy.
  • the exposure apparatus 100 depressurizes the non-vacuum space of the first unit 200 even if the second unit 300 is evacuated from the exhaust port 310, the first partition 210 and the second partition 220 have a reduced pressure. Deformation can be reduced. Therefore, the exposure apparatus 100 can prevent vacuum leakage due to deformation of the partition walls and the like. Further, since the electromagnetic optical element 40 is fixed to the support portion 240, the electromagnetic optical element 40 can be stably positioned with little movement in the lens barrel 110. Therefore, the exposure apparatus 100 can hold the plurality of electron beam optical systems positioned in the atmospheric pressure, and can prevent the accuracy of the pattern drawn on the sample 10 from being lowered.
  • the first unit 200 of the first configuration example described above has a reduced pressure space that is higher than the second unit 300 and lower than atmospheric pressure, thereby reducing deformation of the first partition 210 and the second partition 220.
  • the first unit 200 may have a plurality of decompression spaces maintained at different pressures.
  • the first unit 200 and the second unit 300 of the second configuration example are stacked in the same manner as the first unit 200 and the second unit 300 of the first configuration example, thereby forming the lens barrel 110 as shown in FIG. To do.
  • the first unit 200 of the second configuration example has a plurality of non-vacuum spaces in the extending direction of the lens barrel 110.
  • the first unit 200 further includes a dummy element 50, a dummy element 52, a third partition 430, a fourth partition 440, a decompression pump 422, and a decompression pump 424.
  • the third partition 430 is provided between the first partition 210 and the second partition 220.
  • the fourth partition 440 is provided between the third partition 430 and the second partition 220. That is, the four partition walls from the first partition wall 210 to the fourth partition wall 440 are arranged in the lens barrel 110 so as to be separated from each other in the extending direction of the lens barrel 110, and form a non-vacuum space in at least a part between them. To do.
  • the four partition walls are fixed inside the frame 230.
  • the first unit 200 of the second configuration example may form a part of the lens barrel 110 corresponding to the frame 230 of the first configuration example by stacking a plurality of frames.
  • FIG. 5 shows an example in which three frames 230a, 230b, and 230c are stacked.
  • the frame 230a is provided between the first partition 210 and the third partition 430
  • the frame 230b is provided between the third partition 430 and the fourth partition 440
  • the frame 230c is provided between the fourth partition 440 and the fourth partition 440.
  • One partition 210 may be provided.
  • the plurality of frames are preferably formed of substantially the same material.
  • FIG. 5 shows an example in which an exhaust port 412 is provided in the frame 230a, an exhaust port 410 is provided in the frame 230b, and an exhaust port 414 is provided in the frame 230c.
  • the support unit 240 positions each of the plurality of electromagnetic optical elements 40 in the same manner as the first unit 200 of the first configuration example.
  • FIG. 5 shows an example in which the support portion 240, the plurality of electromagnetic optical elements 40, and the wiring 42 are arranged between the third partition wall 430 and the fourth partition wall 440.
  • the plurality of electromagnetic optical elements 40 and the surface of the third partition wall 430 facing the sample 10 are sealed with a vacuum seal.
  • the plurality of electromagnetic optical elements 40 and the surface of the fourth partition 440 facing the opposite side of the sample 10 are sealed with a vacuum seal.
  • a non-vacuum space is formed by the third partition 430, the fourth partition 440, the plurality of electromagnetic optical elements 40, and the frame 230b.
  • the non-vacuum space between the third partition 430 and the fourth partition 440 is defined as a first non-vacuum space.
  • the first non-vacuum space may be decompressed by a decompression pump 420 connected to the exhaust port 410.
  • the first non-vacuum space is desirably maintained at a degree of vacuum that does not cause degassing from the plurality of electromagnetic optical elements 40.
  • first partition 210 and the third partition 430 forms a non-vacuum space.
  • a plurality of dummy elements 50 are provided between the first partition 210 and the third partition 430.
  • the space between the plurality of dummy elements 50 and the surface of the first partition 210 facing the sample 10 is sealed by a vacuum seal.
  • the space between the plurality of dummy elements 50 and the surface of the third partition wall 430 facing away from the sample 10 is sealed with a vacuum seal.
  • a non-vacuum space is formed by the first partition 210, the third partition 430, the plurality of dummy elements 50, and the frame 230a.
  • the non-vacuum space between the first partition 210 and the third partition 430 is a second non-vacuum space.
  • the second non-vacuum space may be decompressed by a decompression pump 422 connected to the exhaust port 412. It is desirable that the second non-vacuum space be maintained at a degree of vacuum that reduces the deflection generated in the first partition 210 when the second unit 300 is depressurized to form a vacuum region.
  • the fourth partition 440 and the second partition 220 forms a non-vacuum space.
  • a plurality of dummy elements 52 are provided between the fourth partition 440 and the second partition 220.
  • the space between the plurality of dummy elements 52 and the surface of the fourth partition wall 440 facing the sample 10 is sealed with a vacuum seal.
  • the space between the plurality of dummy elements 52 and the surface of the second partition 220 facing away from the sample 10 is sealed with a vacuum seal.
  • the non-vacuum space is formed by the fourth partition 440, the second partition 220, the plurality of dummy elements 52, and the frame 230c.
  • the non-vacuum space between the fourth partition 440 and the second partition 220 is a third non-vacuum space.
  • the third non-vacuum space may be decompressed by a decompression pump 424 connected to the exhaust port 414. It is desirable that the third non-vacuum space be maintained at a degree of vacuum that reduces the bending that occurs in the second partition 220 when the second unit 300 is depressurized to form a vacuum region.
  • the decompression pump 424 may be a common pump with the decompression pump 422. That is, the second non-vacuum space and the third non-vacuum space may be maintained at substantially the same pressure.
  • a plurality of non-vacuum spaces are formed by a plurality of partition walls.
  • the first non-vacuum space in which the plurality of electromagnetic optical elements 40 are provided is formed between the second non-vacuum space and the third non-vacuum space.
  • At least a part of the space between the third partition 430 and the fourth partition 440 (that is, the first non-vacuum space) is the space between the first partition 210 and the third partition 430 (that is, the second non-vacuum).
  • Space and a space between the second partition 220 and the fourth partition 440 (that is, the third non-vacuum space) is maintained at a higher atmospheric pressure.
  • the degree of vacuum can be changed stepwise between the vacuum space of the second unit 300 and the first non-vacuum space of the first unit 200, so that the first non-vacuum space is more at atmospheric pressure. Can be kept at close pressure. Therefore, the deformation of the first partition 210 and the second partition 220 can be reduced while fixing the plurality of electromagnetic optical elements 40 provided in the first non-vacuum space and operating them in a state close to atmospheric pressure.
  • the first non-vacuum space is preferably maintained at a pressure closer to the atmospheric pressure as compared with the second non-vacuum space and the third non-vacuum space, but instead, the first non-vacuum space is It may be kept at atmospheric pressure. In this case, the exhaust port 410 and the decompression pump 420 may not be provided.
  • the example in which the first unit 200 includes the plurality of dummy elements 50 and the plurality of dummy elements 52 has been described. However, at least a part of these may be the electromagnetic optical element 40.
  • first unit 200 and second unit 300 the example in which the change in the degree of vacuum between the vacuum space and the non-vacuum space is reduced to reduce the deformation of the partition wall has been described. Instead of or in addition to this, the deformation of the partition walls may be physically reduced. Next, the first unit 200 and the second unit 300 will be described.
  • FIG. 6 shows a third configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • the same reference numerals are given to the substantially same operations as those of the first unit 200 and the second unit 300 of the first configuration example shown in FIG. The description is omitted.
  • FIG. 6 shows an example of a cross-sectional view taken along a plane substantially parallel to the ZX plane of the lens barrel 110, as in FIG.
  • the first unit 200 of the third configuration example is fixed between the first partition 210 and the second partition 220 at a plurality of locations other than the edge.
  • the first unit 200 further includes a cylindrical member 250 and a nut 260.
  • the plurality of cylindrical members 250 are provided corresponding to the plurality of charged particle beams, and penetrate the first partition 210, the support 240, and the second partition 220. That is, each of the first partition 210, the second partition 220, and the support portion 240 has a plurality of through holes through which the tubular member 250 passes. Each of the cylindrical members 250 has a hollow interior serving as a vacuum space, and allows an electron beam to pass therethrough. Each of the plurality of cylindrical members 250 is fixed to the support portion 240.
  • Each of the plurality of tubular members 250 and the first partition 210 and the second partition 220 may be sealed with a vacuum seal. Further, the space between each of the plurality of tubular members 250 and the support portion 240 may be sealed with a vacuum seal. Inside the first unit 200, one or a plurality of non-vacuum spaces formed by the first partition 210, the second partition 220, the frame 230, and the tubular member 250 are formed.
  • the first partition wall 210 and the second partition wall 220 of the third configuration example are pressed from both sides of the plurality of cylindrical members 250.
  • each of the plurality of cylindrical members 250 is threaded at least at one end, and the nut 260 is screwed from the at least one end.
  • at least one of the first partition 210 and the second partition 220 is pressed by the nut 260.
  • FIG. 6 shows an example in which each of the plurality of cylindrical members 250 is threaded at both ends, and the nut 260 is screwed from both ends.
  • the first unit 200 of the third configuration example separates the vacuum space and the non-vacuum space with the cylindrical member 250, and the first partition 210 and / or the first partition at one end or both ends of the cylindrical member 250.
  • 2 Hold the partition wall 220 with the nut 260. Thereby, deformation of the 1st partition 210 and / or the 2nd partition 220 can be reduced, reducing the space for fixing a partition.
  • at least a part of the cylindrical member 250 may be fixed with a flange and a fixing screw.
  • the first unit 200 may use a fixing member made of a bolt and a nut.
  • each of the plurality of fixing members may include a bolt that penetrates the first partition 210 and the second partition 220 and a nut that is screwed into the bolt. Even in this case, the same effect as the combination of the fixing member 450 and the nut 452 can be obtained.
  • the fixing member 460 may be threaded at both ends, and may be screwed into the support portion 240 after one end passes through the first partition 210 or the second partition 220. Moreover, the nut 462 may be screwed into the other end of the fixing member 460. Instead, the fixing member 460 may be a bolt that passes through the first partition 210 or the second partition 220 and is screwed into the support portion 240.
  • the 1st partition 210 and the 2nd partition 220 are screwed with respect to the member provided in the space between the 1st partition 210 and the 2nd partition 220 in one or several places other than an edge.
  • the fixing member 460 may be fixed to the third partition.
  • FIG. 6 shows an example in which the fixing member 460 and the nut 462 are provided on the first partition 210 side and the second partition 220 side.
  • the first unit 200 of the third configuration example has been described with the example in which the deformation of the first partition wall 210 and the second partition wall 220 is physically reduced by using the fixing member. It is not limited to the example.
  • the fixing member has a convex portion, a concave portion, a hole portion, and / or a groove portion, and passes through the first partition wall 210 and / or the second partition wall 220, and then fits with the first partition wall 210 and / or the second partition wall 220.
  • the first partition 210 and the second partition 220 may be deformed by being fixed so as to be combined.
  • FIG. 7 shows a fourth configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • the same reference numerals are given to the substantially same operations as those of the first unit 200 and the second unit 300 of the first configuration example shown in FIG. The description is omitted.
  • FIG. 7 shows an example of a cross-sectional view taken along a plane substantially parallel to the ZX plane of the lens barrel 110, as in FIG.
  • the first unit 200 of the fourth configuration example is fixed between the first partition 210 and the second partition 220 at a plurality of locations other than the edges. Further, in the first unit 200 of the fourth configuration example, the deformation of the first partition 210 and the second partition 220 is reduced by the reinforcing member provided in the second unit 300.
  • the second unit 300 of the fourth configuration example further includes a first reinforcing member 470 and a second reinforcing member 472.
  • the lens barrel 110 may further include a third partition that is spaced apart from the first partition 210 in the extending direction of the lens barrel 110 and in which a vacuum space is provided between the first partition 210.
  • the third partition may be provided in the second unit 300.
  • the third partition may be the second partition 220 of the first unit 200 that is further stacked on the second unit 300.
  • the second partition of the first unit 200 corresponding to the third partition is referred to as a third partition 430.
  • the one or more first reinforcing members 470 are provided between the first partition 210 and the third partition and extend in the extending direction of the lens barrel 110.
  • the first reinforcing member 470 may function like a stick. That is, the first partition 210 is pressed to the second partition 220 side by the first reinforcing member 470.
  • the one or more second reinforcing members 472 are provided between the second partition 220 and the fourth partition, and extend in the extending direction of the lens barrel 110.
  • the second reinforcing member 472 may function like a stick. That is, the second partition 220 is pressed toward the first partition 210 by the second reinforcing member 472.
  • the first unit 200 and the second unit 300 in the fourth configuration example described above can reduce deformation of the first partition 210 and the second partition 220 by using a reinforcing member provided on the vacuum space side.
  • the reinforcing member has little pressing force when the inside of the lens barrel 110 is at atmospheric pressure, and may function as a pressing member when the pressure is reduced and the partition wall is deformed. Instead of this, the reinforcing member may have elasticity or the like, and may hold down the first partition 210 and the second partition 220 even when the inside of the lens barrel 110 is at atmospheric pressure.
  • the 1st unit 200 shown in FIG. 7 shows the example which can exhaust a non-vacuum space to pressure reduction space, as demonstrated in FIG.
  • the first unit 200 and the second unit 300 may include a plurality of configurations that reduce deformation of the first partition 210 and the second partition 220.
  • FIG. 8 shows a fifth configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • the same reference numerals are given to the substantially same operations as those of the first unit 200 and the second unit 300 of the first configuration example shown in FIG. The description is omitted.
  • FIG. 8 shows an example of a cross-sectional view taken along a plane substantially parallel to the ZX plane of the lens barrel 110, as in FIG.
  • the first unit 200 of the fifth configuration example reduces the volume of the non-vacuum space and reduces the deformation of the partition walls.
  • the first partition 210 and the second partition 220 form a non-vacuum space only in a part of a cross section substantially perpendicular to the extending direction of the lens barrel 110 and form a vacuum space in the remaining part.
  • the first partition 210 and the second partition 220 may form a number of non-vacuum spaces corresponding to the number of electron beams.
  • FIG. 8 shows an example in which the first partition 210 and the second partition 220 form a non-vacuum space for each of a plurality of electron beams arranged in the Y direction.
  • the first unit 200 may be provided with each of the plurality of first partitions 210 facing the second partition 220 corresponding to each of the plurality of non-vacuum spaces.
  • the first partition 210 is provided so as to cover and seal the plurality of electromagnetic optical elements 40 for each column in the Y direction.
  • the second partition 220 may be exposed to both the plurality of charged particle beam source 20 sides and the opposite side to the plurality of charged particle beam sources 20 in a portion where the plurality of non-vacuum spaces are not formed.
  • each of the plurality of electromagnetic optical elements 40 is disposed in one or more non-vacuum spaces formed by the first partition 210 and the second partition 220.
  • One non-vacuum space may be in contact with the inner wall of the lens barrel 110.
  • Each of the one or more non-vacuum spaces may be provided with a wiring 42 that is in contact with the inner wall of the lens barrel 110 and is connected to at least a part of the plurality of electromagnetic optical elements 40.
  • each of the plurality of electromagnetic optical elements 40 arranged in one non-vacuum space may be supplied with a drive current or the like by the wiring 42 connected from the inner wall to the inside.
  • FIG. 8 shows an example in which the non-vacuum space is divided with the arrangement interval of the electron beams in the X direction being approximately twice that of the example of FIG.
  • FIG. 8 illustrates an example in which the non-vacuum space is divided using the plurality of first partition walls 210, but is not limited thereto.
  • the first partition 210 and / or the second partition 220 may have a plurality of wall surfaces that divide the non-vacuum space.
  • FIG. 9 shows a sixth configuration example of the first unit 200 and the second unit 300 according to the present embodiment.
  • the same reference numerals are given to the substantially same operations as those of the first unit 200 and the second unit 300 of the third configuration example shown in FIG. The description is omitted.
  • FIG. 9 shows an example of a cross-sectional view taken along a plane substantially parallel to the ZX plane of the lens barrel 110, as in FIG.
  • the first unit 200 of the sixth configuration example reduces the volume of the non-vacuum space and reduces the deformation of the partition walls.
  • a plurality of spaces are provided between the first partition 210 and the second partition 220.
  • FIG. 9 shows an example in which the first partition 210 has a plurality of wall surfaces extending in a direction substantially parallel to the extending direction of the lens barrel 110 and a plurality of spaces are formed by the plurality of wall surfaces.
  • FIG. 9 shows an example in which a cylindrical member 250 and a nut 260 are used as in the first unit 200 of the third configuration example. Note that at least a part of the cylindrical member 250 may be fixed by a flange and a fixing screw.
  • the first unit 200 of the sixth configuration example includes a vacuum space inside the cylindrical member 250, a non-vacuum space surrounded by the first partition 210, the second partition 220, and the cylindrical member 250, and the remaining space. And divided.
  • a part of the plurality of spaces is a non-vacuum space, and the non-vacuum space may be divided into a plurality of walls by the plurality of wall surfaces of the first partition 210 and / or the second partition 220.
  • the non-vacuum space may be divided into a row direction, a column direction, a lattice shape, or a concentric circle shape on a plane substantially perpendicular to the extending direction of the lens barrel 110 (that is, a plane substantially parallel to the XY plane).
  • the remaining space of the first unit 200 may be a space communicating with at least one of the vacuum spaces on the first partition 210 side and the second partition 220 side.
  • FIG. 9 shows an example in which the remaining space is a space that communicates with the vacuum space of the second unit 300 on the first partition 210 side.
  • the deformation of the partition walls can be reduced by reducing the volume of the non-vacuum space and dividing the non-vacuum space. Further, by using the cylindrical member 250 and the nut 260, the deformation of the partition wall can be further reduced.
  • the second unit 300 has been described as being evacuated into a vacuum space.
  • the vacuum space may be divided in at least a part of the second unit 300.
  • the second unit 300 may have a plurality of wall surfaces extending in a direction substantially parallel to the extending direction of the lens barrel 110, and deformation of the first partition 210 and the second partition 220 of the first unit 200 may be reduced. .
  • the second unit 300 may form a non-vacuum space when the vacuum space is divided.
  • an example of the second unit 300 in which such a vacuum space is divided will be described.
  • FIG. 10 shows a seventh configuration example of the first unit 200 and the second unit 300 according to this embodiment.
  • the same reference numerals are given to the substantially same operations as those of the first unit 200 and the second unit 300 of the first configuration example shown in FIG. The description is omitted.
  • FIG. 10 shows an example of a cross-sectional view taken along a plane substantially parallel to the ZX plane of the lens barrel 110, as in FIG.
  • the first unit 200 and the second unit 300 in the seventh configuration example divide the vacuum space with a hollow member to reduce the deformation of the partition walls.
  • the first unit 200 of the seventh configuration example includes a first partition wall 210 and a second partition wall 220 that are sequentially spaced from each other in the extending direction of the lens barrel 110 in the lens barrel 110.
  • the lens barrel 110 includes a third partition wall that is arranged in the lens barrel 110 so as to be spaced apart from the first partition wall 210 and the second partition wall 220 in the extending direction.
  • the third partition may be the second partition 220 of the first unit 200 that is further stacked on the second unit 300.
  • the second partition of the first unit 200 corresponding to the third partition is referred to as a third partition 430.
  • the second unit 300 of the seventh configuration example further includes a hollow member 480.
  • the hollow member 480 surrounds a part of the space through which the plurality of charged particle beams pass between the first partition 210 and the third partition 430 in the lens barrel 110.
  • the hollow member 480 may be formed in a cylindrical shape that extends in a direction substantially parallel to the extending direction of the lens barrel 110.
  • the end of the hollow member 480 on the sample 10 side is taken as a first end
  • the end on the charged particle beam source 20 side is taken as a second end.
  • the hollow member 480 has a first end in contact with the first partition 210 and is sealed between the first partition 210 and the first end by a vacuum seal.
  • the hollow member 480 has a second end in contact with the third partition 430, and the third partition 430 and the second end are sealed with a vacuum seal.
  • the second unit 300 of the seventh configuration example described above can form a plurality of vacuum spaces through which the electron beam passes when the decompression pump 420 exhausts the air inside the hollow member 480 to form a vacuum state.
  • the plurality of hollow members 480 may be connected to each other so as to be exhausted from the exhaust port 410. Accordingly, the second unit 300 divides and reduces the vacuum space, so that deformation of the first partition 210 and the second partition 220 can be reduced.
  • the region outside the hollow member 480 through which the electron beam of the second unit 300 does not pass may be a non-vacuum space.
  • the non-vacuum space of the second unit 300 may be a space communicating with the non-vacuum space of the first unit 200.
  • the non-vacuum spaces of the first unit 200 and the second unit 300 may be maintained at substantially the same atmospheric pressure as the atmospheric pressure.
  • FIG. 10 shows an example in which hollow members 480 are respectively provided in two second units 300 adjacent to the sample 10 side and the charged particle beam source 20 side of the first unit 200, respectively.
  • the first unit 200 and the second unit 300 of the seventh configuration example described above are examples in which the hollow member 480 is provided in the second unit 300 and the space through which the electron beam passes is a vacuum space, but is not limited thereto. None happen. Instead, the first unit 200 and the second unit 300 may include a hollow member penetrating from the first unit 200 to the second unit 300. An example of the first unit 200 and the second unit 300 will be described below.
  • the first unit 200 and the second unit 300 in the eighth configuration example divide the vacuum space by the hollow member 480 to reduce the deformation of the partition walls.
  • the first unit 200 and the second unit 300 of the eighth configuration example include a plurality of hollow members 480 that respectively surround spaces through which a plurality of charged particle beams pass. Each of the hollow members penetrates the first partition 210, the second partition 220, and the third partition 430. Note that at least a part of the hollow member 480 may be fixed by the flange 270 and the fixing screw 272.
  • the first unit 200 and the second unit 300 of the eighth configuration example have been described as examples of the hollow member 480 penetrating the first partition 210, the second partition 220, and the third partition 430, but is not limited thereto. None happen.
  • the first unit 200 and the second unit 300 may include a hollow member 480 that penetrates the first partition 210, the second partition 220, and the fourth partition 440.
  • the fourth partition may be the first partition 210 of the different first unit 200 stacked on the sample 10 side with respect to the first unit 200.
  • the hollow member 480 may be the member which extended the length of the cylindrical member 250 demonstrated in FIG. .
  • the inner diameter of the hollow member 480 may vary depending on the location.
  • the inner diameter of the hollow member 480 in the second unit 300 may be formed larger than the inner diameter of the first unit 200.
  • FIG. 12 shows a ninth configuration example of the first unit 200 and the second unit 300 according to this embodiment.
  • the same reference numerals are given to the same operations as those of the first unit 200 and the second unit 300 of the third configuration example shown in FIG. The description is omitted.
  • FIG. 12 shows an example of a cross-sectional view taken along a plane substantially parallel to the ZX plane of the lens barrel 110, as in FIG.
  • the first unit 200 of the ninth configuration example may not be provided with a non-vacuum space.
  • a wiring substrate 44 is provided between the first partition 210 and the second partition 220 of the first unit 200.
  • the wiring board 44 is provided in the lens barrel 110 and has wirings connected to the plurality of electromagnetic optical elements 40 and openings through which the plurality of charged particle beams pass. That is, the first partition 210 may be attached to one side of the wiring substrate 44, and the second partition 220 may be attached to the surface of the wiring substrate 44 opposite to the first partition 210 side.
  • the first unit 200 includes a plurality of tubular members 250 that penetrate the first partition 210, the second partition 220, and the wiring board 44.
  • the cylindrical member 250 may extend from the first unit 200 to the second unit 300.
  • the electromagnetic optical element 40 may be provided around the cylindrical member 250.
  • FIG. 12 shows an example in which a plurality of electromagnetic optical elements 40 are provided in the second unit 300 on the charged particle beam source 20 side with respect to the first unit 200.
  • each of the plurality of electromagnetic optical elements 40 may be accommodated in a sealed case or the like.
  • Each of the plurality of electromagnetic optical elements 40 may be connected to the wiring substrate 44 of the first unit 200 and supplied with a drive current or the like.
  • the first unit 200 in the ninth configuration example does not form a non-vacuum space between the first partition wall 210 and the second partition wall 220, even if the vacuum space of the second unit 300 is exhausted, the first unit 200 The partition wall 210 and the second partition wall 220 are hardly deformed.
  • the multi-beam exposure apparatus can be assembled with high accuracy in the atmospheric pressure.
  • such a multi-beam exposure apparatus according to this embodiment can operate a plurality of electron beam optical systems while maintaining a state in which they are positioned at atmospheric pressure. Therefore, the exposure apparatus 100 according to the present embodiment can reduce the deformation of the partition that separates the vacuum region and the non-vacuum region, thereby preventing the accuracy of the pattern drawn on the sample 10 from being lowered.
  • the various embodiments of the present invention described above may be described with reference to flowcharts and block diagrams.
  • the blocks in the flowcharts and block diagrams may be expressed as (1) the stage of the process in which the operation is performed or (2) the “part” of the device responsible for performing the operation.
  • Certain stages and “parts” are provided with dedicated circuitry, programmable circuitry supplied with computer readable instructions stored on a computer readable storage medium, and / or computer readable instructions stored on a computer readable storage medium. It may be implemented by a processor.
  • dedicated circuitry programmable circuitry supplied with computer readable instructions stored on a computer readable storage medium, and / or computer readable instructions stored on a computer readable storage medium. It may be implemented by a processor.
  • the dedicated circuit may include a digital and / or analog hardware circuit, and may include an integrated circuit (IC) and / or a discrete circuit.
  • Programmable circuits may be logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as field programmable gate arrays (FPGAs) and programmable logic arrays (PLA), for example. , Flip-flops, registers, and memory elements, including reconfigurable hardware circuitry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

内部が真空状態となるように減圧される鏡筒と、鏡筒内に設けられ、鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源と、鏡筒内において複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子と、鏡筒内において延伸方向に互いに離間して配置され、互いの間の少なくとも一部に非真空空間を形成する第1隔壁および第2隔壁と、第1隔壁と接する非真空空間および第2隔壁と接する非真空空間を真空と大気との間の気圧に減圧する減圧ポンプと、を備える露光装置を提供する。

Description

露光装置
 本発明は、露光装置に関する。
 従来、電子ビーム露光装置を用いて半導体ウェハに回路パターンを描画する露光技術が知られている。また、複数の電子ビームを発生させて半導体ウェハに回路パターンをそれぞれ描画してスループットを向上させるマルチビーム露光技術も知られている(例えば、特許文献1~3参照)。
 特許文献1 特開2012-151102号公報
 特許文献2 国際公開第2012/057166号
 特許文献3 特開2013-175377号公報
解決しようとする課題
 電子ビーム露光装置は、大気圧の環境で動作させる電子回路の領域と、真空にして電子ビームを発生、加速、および集光させる領域と、を複数備える。マルチビーム露光装置の場合、複数の大気圧領域および複数の真空領域が近接して複雑に構成されることになる。したがって、マルチビーム露光装置を大気圧中で高精度に組み上げても、真空排気して真空領域を形成させると、大気圧領域および真空領域を分離する隔壁が変形してしまい、複数の電子ビームの一部または全部の光学系が別個独立に複雑に変化してしまうことがあった。また、このような隔壁の変形により、真空漏れが発生してしまうこともあった。
一般的開示
 (項目1)
 露光装置は、内部が真空状態となるように減圧される鏡筒を備えてよい。
 露光装置は、鏡筒内に設けられ、鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源を備えてよい。
 露光装置は、鏡筒内において複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子を備えてよい。
 露光装置は、鏡筒内において延伸方向に互いに離間して配置され、互いの間の少なくとも一部に非真空空間を形成する第1隔壁および第2隔壁を備えてよい。
 露光装置は、第1隔壁と接する非真空空間および第2隔壁と接する非真空空間を真空と大気との間の気圧に減圧する減圧ポンプを備えてよい。
 (項目2)
 第1隔壁は、複数の荷電粒子ビームのそれぞれに対応して、各電子ビームを通過させるための開口を有してよい。
 第2隔壁は、複数の荷電粒子ビームのそれぞれに対応して、各電子ビームを通過させるための開口を有してよい。
 (項目3)
 複数の電磁光学素子は、第1隔壁および第2隔壁の間における減圧ポンプが減圧する減圧空間に設けられてよい。
 (項目4)
 複数の電磁光学素子と第1隔壁における減圧空間と接する面との間は、真空シールによってシーリングされてよい。
 複数の電磁光学素子と第2隔壁における減圧空間と接する面との間は、真空シールによってシーリングされてよい。
 (項目5)
 露光装置は、第1隔壁および第2隔壁の間に設けられた第3隔壁を備えてよい。
 露光装置は、第3隔壁および第2隔壁の間に設けられた第4隔壁を備えてよい。
 第3隔壁および第4隔壁の間の空間の少なくとも一部は、第1隔壁および第3隔壁の間の空間および第2隔壁および第4隔壁の間の空間よりも気圧が高くてよい。
 (項目6)
 第1隔壁および第2隔壁の間は、縁部以外の複数の箇所において固定されてよい。
 (項目7)
 露光装置は、内部が真空状態となるように減圧される鏡筒を備えてよい。
 露光装置は、鏡筒内に設けられ、鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源を備えてよい。
 露光装置は、鏡筒内において複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子を備えてよい。
 露光装置は、鏡筒内において延伸方向に互いに離間して配置され、互いの間の少なくとも一部に非真空空間を形成する第1隔壁および第2隔壁を備えてよい。
 第1隔壁および第2隔壁の間は、縁部以外の複数の箇所において固定されてよい。
 (項目8)
 露光装置は、複数の荷電粒子ビームに対応して設けられ、第1隔壁、および第2隔壁を貫通して対応する荷電粒子ビームを通す複数の筒状部材を備えてよい。
 第1隔壁および第2隔壁は、複数の筒状部材のそれぞれの両側から押さえられてよい。
 (項目9)
 複数の筒状部材のそれぞれは、少なくとも一方の端部からナットがねじ込まれてよい。
 第1隔壁および第2隔壁の少なくとも一方は、ナットによって押さえられてよい。
 (項目10)
 露光装置は、第1隔壁および第2隔壁を縁部以外の複数の箇所において貫通して両側から押さえる複数の固定部材を備えてよい。
 (項目11)
 複数の固定部材のそれぞれは、第1隔壁および第2隔壁を貫通するボルトおよびボルトにねじ込まれるナットを有してよい。
 (項目12)
 第1隔壁および第2隔壁は、縁部以外の複数の箇所において第1隔壁および第2隔壁の間の空間に設けた部材に対してネジ止めされてよい。
 (項目13)
 露光装置は、鏡筒内で延伸方向において第1隔壁と離間して配置され、第1隔壁との間に真空空間が設けられる第3隔壁を備えてよい。
 第1隔壁は、第3隔壁との間に設けられ、延伸方向に延伸する第1補強部材によって第2隔壁側に押さえられてよい。
 (項目14)
 複数の電磁光学素子は、第1隔壁および第2隔壁の間に配置されてよい。
 (項目15)
 露光装置は、内部が真空状態となるように減圧される鏡筒を備えてよい。
 露光装置は、鏡筒内に設けられ、鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源を備えてよい。
 露光装置は、鏡筒内において複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子を備えてよい。
 露光装置は、鏡筒内において延伸方向に互いに離間して配置される第1隔壁および第2隔壁を備えてよい。
 第1隔壁および第2隔壁は、鏡筒の延伸方向に垂直な断面における一部のみに非真空空間を形成し、残りの部分に真空空間を形成してよい。
 (項目16)
 複数の電磁光学素子のそれぞれは、第1隔壁および第2隔壁により形成される1または複数の非真空空間内に配置されてよい。
 (項目17)
 一の非真空空間は、鏡筒の内壁に接してよい。
 1または複数の非真空空間のそれぞれには、鏡筒の内壁に接し、内部に複数の電磁光学素子のうちの少なくとも一部に接続される配線が設けられてよい。
 (項目18)
 露光装置は、複数の非真空空間のそれぞれに対応して、第2隔壁と向かい合う複数の第1隔壁のそれぞれが設けられよい。
 第2隔壁は、複数の非真空空間が形成されない部分において、複数の荷電粒子ビーム源側および複数の荷電粒子ビーム源とは反対側の両方に露出してよい。
 (項目19)
 第1隔壁および第2隔壁の間には、複数の空間が設けられてよい。
 複数の空間のうちの一部は非真空空間であり、残りは第1隔壁側および第2隔壁側の少なくとも一方の真空空間と通じる空間でよい。
 (項目20)
 露光装置は、内部が真空状態となるように減圧される鏡筒を備えてよい。
 露光装置は、鏡筒内に設けられ、鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源を備えてよい。
 露光装置は、鏡筒内において複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子を備えてよい。
 露光装置は、鏡筒内に設けられ、複数の電磁光学素子に接続される配線と複数の荷電粒子ビームのそれぞれを通過させる開口とを有する配線基板を備えてよい。
 露光装置は、配線基板の片面に貼り付けられた第1隔壁を備えてよい。
 露光装置は、配線基板における第1隔壁側とは反対側の面に貼り付けられた第2隔壁を備えてよい。
 (項目21)
 露光装置は、鏡筒を備えてよい。
 露光装置は、鏡筒内に設けられ、鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源を備えてよい。
 露光装置は、鏡筒内に設けられ、複数の荷電粒子ビームを照射する対象となる試料を載置するステージ部を備えてよい。
 露光装置は、鏡筒内において複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の第1電磁光学素子を備えてよい。
 露光装置は、鏡筒内において延伸方向に互いに離間して順に配置される第1隔壁および第2隔壁を備えてよい。
 露光装置は、鏡筒内において延伸方向に第1隔壁および第2隔壁と離間して配置される第3隔壁を備えてよい。
 露光装置は、鏡筒内における第1隔壁および第3隔壁の間において、複数の荷電粒子ビームが通過する一部の空間を囲む中空部材を備えてよい。
 露光装置は、中空部材の内部の空気を排気して真空状態とする真空ポンプを備えてよい。
 (項目22)
 中空部材は、第1隔壁に第1端が接し、第1隔壁と第1端の間が真空シールによってシーリングされてよい。
 (項目23)
 中空部材は、第3隔壁に第2端が接し、第3隔壁と第2端の間が真空シールによってシーリングされてよい。
 (項目24)
 露光装置は、複数の荷電粒子ビームのそれぞれが通過する空間をそれぞれ囲む複数の中空部材を備えてよい。
 複数の中空部材のそれぞれは、第1隔壁、第2隔壁、および第3隔壁を貫通してよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る露光装置100の構成例を示す。 本実施形態に係る鏡筒110の構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の比較構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第1構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第2構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第3構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第4構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第5構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第6構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第7構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第8構成例を示す。 本実施形態に係る第1ユニット200および第2ユニット300の第9構成例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本実施形態に係る露光装置100の構成例を示す。露光装置100は、複数の電子ビームを発生させて試料10に回路パターン等をそれぞれ描画する。露光装置100は、鏡筒110と、CPU130と、バス132と、露光制御部140と、記憶部150と、ステージ制御部160と、を備える。
 鏡筒110は、内部が真空状態となるように減圧される。鏡筒110は、複数の電子ビームを発生して試料10に照射するマルチ電子ビームカラムとして機能する。即ち、鏡筒110は、複数の電子ビーム発生部120と、試料10を載置するステージ部112と、を有する。
 電子ビーム発生部120のそれぞれは、電子またはイオンなどを有する荷電粒子ビームを発生し、ステージ部112に載置された試料10を照射する。本実施形態において、電子ビーム発生部120が、電子ビームを発生する例を説明する。電子ビーム発生部120の数は、より多くの数であることが望ましく、例えば、数十以上の数であることが望ましい。電子ビーム発生部120の数は、例えば、百程度の数である。電子ビーム発生部120の数は、一例として、88である。この場合、88個の電子ビーム発生部120は、XY平面内で略30mmピッチで配置されてよい。複数の電子ビーム発生部120は、ステージ部112の可動範囲において、試料10の表面全体を照射可能に配置されることが望ましい。
 図1は、電子ビーム発生部120のそれぞれが、Z軸方向と略平行な方向に電子ビームを発生させる例を示す。電子ビーム発生部120のそれぞれは、予め定められた形状の電子ビームを生成する。電子ビーム発生部120のそれぞれは、例えば、予め定められた一次元方向に配列したアレイ状の電子ビームを生成する。この場合、露光装置100は、ステージ部112を移動しながら、複数の電子ビームのそれぞれを、試料10の表面上に照射するか(ON状態)、否か(OFF状態)を個別に切り換えて、試料10にパターンを露光してよい。電子ビーム発生部120については後述する。
 ステージ部112は、複数の荷電粒子ビームを照射する対象となる試料10を載置して移動させる。ここで、試料10は、半導体、ガラス、および/またはセラミック等で形成された基板でよく、一例として、シリコン等で形成された半導体ウェハである。試料10は、直径略300mmの半導体ウェハでよい。試料10は、例えば、金属等の導電体でラインパターンが表面に形成された基板である。この場合、露光装置100は、当該ラインパターンを切断して微細な加工(電極、配線、および/またはビア等の形成)をすべく、当該ラインパターン上に形成されたレジストを露光してよい。
 ステージ部112は、試料10を搭載し、当該試料10を予め定められた平面内で移動させる。図1は、ステージ部112が、XY平面と略平行な面内を移動させる例を示す。ステージ部112は、XYステージであってよく、また、XYステージに加えて、Zステージ、回転ステージ、およびチルトステージのうちの1つ以上と組み合わされてもよい。ステージ部112は、当該ステージ部112の位置を検出するステージ位置検出部を含むことが望ましい。ステージ位置検出部は、一例として、レーザ光を移動するステージに照射し、反射光を検出することで当該ステージの位置を検出する。ステージ位置検出部は、略1nm以下の精度でステージの位置を検出することが望ましい。
 CPU130は、露光装置100全体の動作を制御する。CPU130は、ユーザからの操作指示を入力する入力端末の機能を有してよい。CPU130は、コンピュータまたはワークステーション等でよい。CPU130は、露光制御部140に接続され、ユーザの入力に応じて、露光装置100の露光動作を制御してよい。CPU130は、一例として、バス132を介して露光制御部140、記憶部150、およびステージ制御部160とそれぞれ接続され、制御信号等を授受する。
 露光制御部140は、複数設けられ、対応する電子ビーム発生部120にそれぞれ接続される。露光制御部140のそれぞれは、CPU130から受けとる制御信号等に応じて、対応する電子ビーム発生部120を制御して試料10の露光動作を実行する。また、露光制御部140は、バス132を介して記憶部150と接続され、記憶部150に記憶されたパターンのデータ等を授受してよい。
 記憶部150は、露光装置100が露光するパターンを記憶する。記憶部150は、例えば、試料10に形成されたラインパターンを切断すべく、露光装置100が露光するパターンであるカットパターンを記憶する。また、記憶部150は、試料10にビアを形成すべく、露光装置100が露光するパターンであるビアパターンを記憶してもよい。記憶部150は、例えば、ネットワーク等を介して外部からカットパターンおよびビアパターンの情報を受けとって記憶する。また、記憶部150は、CPU130を介して、ユーザから入力されるカットパターンおよびビアパターンの情報を受けとって記憶してもよい。
 また、記憶部150は、試料10の配置情報と試料10に形成されたラインパターンの配置情報とを記憶してよい。記憶部150は、露光動作に入る前に、予め測定された測定結果を配置情報として記憶してよい。記憶部150は、例えば、試料10の縮率(製造プロセスによる変形誤差)、搬送等による回転誤差、基板等の歪、および高さ分布等といった位置決め誤差の要因となる情報を、試料10の配置情報として記憶してもよい。
 また、記憶部150は、複数の電子ビームの照射位置と、ラインパターンの位置との間の位置ずれに関する情報を、ラインパターンの配置情報として記憶してよい。記憶部150は、試料10の配置情報およびラインパターンの配置情報を、ステージ部112上に載置された試料10を計測することによって取得した情報を配置情報とすることが望ましい。これに代えて、記憶部150は、試料10の過去の測定結果、または同一ロットの他の試料の測定結果等を記憶してもよい。
 ステージ制御部160は、ステージ部112に接続され、ステージ部112の動作を制御する。ステージ制御部160は、CPU130から受けとる制御信号等に応じて、ステージ部112を移動させ、電子ビーム発生部120が試料10を照射する位置を制御する。ステージ制御部160は、例えば、複数の電子ビームの照射位置を、試料10のラインパターンの長手方向に沿って走査させる。
 本実施形態におけるステージ制御部160は、試料10を搭載するステージ部112をX方向に略平行に移動させることにより、複数の電子ビームの照射位置をラインパターンの長手方向に沿って走査させてよい。また、ステージ制御部160は、ラインパターンの幅方向にも複数の電子ビームの照射位置を移動させ、試料10の表面上の予め定められた領域をそれぞれの電子ビームの照射可能領域とするように走査させてよい。
 以上の本実施形態に係る露光装置100は、複数の電子ビーム発生部120が試料10の表面全体を、それぞれ露光する。複数の電子ビーム発生部120は、時間的に並行に露光動作を実行してよい。電子ビーム発生部120のそれぞれは、試料10の表面上における予め定められた領域を別個独立に露光可能でよい。これにより、露光装置100は、例えば、一の電子ビーム発生部120が30mm×30mmの正方形領域を露光する時間で、試料10の表面における88×30mm×30mmの領域を露光できる。
 このように、本実施形態に係る露光装置100は、単一の電子ビーム発生部を有する露光装置に比べて、露光のスループットを数十倍から百倍程度に向上できる。このように、露光装置100は、電子ビーム発生部120の数を増減させることで、露光のスループットを調整することができる。したがって、試料10が直径300mmを超える半導体ウェハ等であっても、露光装置100は、電子ビーム発生部120の数を更に増加させることで、スループットの低減を防止できる。また、露光装置100は、電子ビーム発生部120の直径がさらに小さくできる場合、当該電子ビーム発生部120の配置密度を増加させて、更にスループットを向上させてもよい。
 このような露光装置100の鏡筒110は、大気圧に近い環境で動作させる電子回路の領域と、真空にして電子ビームを発生、加速、および集光させる領域と、を内部にそれぞれ複数備える。このような鏡筒110の内部について次に説明する。
 図2は、本実施形態に係る鏡筒110の構成例を示す。図2は、Z軸方向と略平行に延伸する鏡筒110のZX面と略平行な面による断面図の一例を示す。鏡筒110は、図1でも説明したように、内部に、試料10を載置するステージ部112が設けられ、複数の電子ビームを用いて描画パターンを試料10に描画する。鏡筒110は、複数の荷電粒子ビーム源20と、ブランキング部30と、第1ユニット200と、第2ユニット300と、排気口310と、を備える。
 複数の荷電粒子ビーム源20は、鏡筒110内に設けられ、鏡筒110の延伸方向に複数の荷電粒子ビームを放出する。荷電粒子ビーム源20のそれぞれは、例えば、電子を電界または熱によって放出させる電子銃である。この場合、荷電粒子ビーム源20は、当該放出した電子に予め定められた電界を印加して、図1の-Z方向となる試料10の方向に加速した電子ビームを出力してよい。荷電粒子ビーム源20は、予め定められた加速電圧(一例として、50kV)を印加して、電子ビームを出力してよい。なお、本実施形態において、電子ビームを荷電粒子ビームの例として説明する。
 荷電粒子ビーム源20は、XY平面と略平行な試料10の表面からZ軸と平行な垂線上にそれぞれ設けられてよい。即ち、複数の荷電粒子ビーム源20は、XY平面と略平行に、予め定められた間隔で配列されてよい。複数の荷電粒子ビーム源20は、格子状または同心円状に配列されてよい。複数の荷電粒子ビーム源20は、略一定の加速電圧が印加されてよい。
 この場合、複数の荷電粒子ビーム源20は、個別に隔壁等に収容しなくてもよい。鏡筒110は、図1に示したように、荷電粒子ビーム源20毎に鏡筒を形成しなくてもよいので、複数の荷電粒子ビーム源20の配置をより密にすることができる。鏡筒110は、一例として、複数の荷電粒子ビーム源20の一方向の配置間隔を30mm程度にすることができる。即ち、鏡筒110の内部において、荷電粒子ビーム源20を含み、Z方向と略平行に延伸する円筒状の領域が、電子ビーム発生部120に相当する。この場合、円筒状の領域の直径が、一例として30mm程度となる。
 ブランキング部30は、複数の荷電粒子ビームのそれぞれを試料10に照射させるか否かを切り替える。即ち、ブランキング部30は、電子ビームのそれぞれを、試料10の方向とは異なる向きに偏向させるか否かをそれぞれ切り換える。ブランキング部30は、電子ビームのそれぞれに対応して配列された複数の開口と、当該複数の開口内に電界を印加する複数のブランキング電極を有してよい。
 複数の開口は、電子ビームのそれぞれを個別に通過させてよい。例えば、ブランキング電極に電圧が供給されない場合、対応する開口内には電子ビームに印加する電界が発生しないので、当該開口に入射する電子ビームは偏向されずに試料10の方向に向けて通過する(ビームON状態とする)。また、ブランキング電極に電圧が供給される場合、対応する開口内に電界が発生するので、当該開口に入射する電子ビームは試料10の方向に通過する方向とは異なる向きへと偏向される(ビームOFF状態とする)。電子ビームのON状態およびOFF状態を切り換える電圧は、対応する露光制御部140からブランキング電極に供給されてよい。
 ここで、荷電粒子ビーム源20からブランキング部30を介して試料10に至るまでに電子ビームが走行する空間は、予め定められた真空度に保たれることが望ましい。また、電子ビームを加速、集光、および偏向等させる電磁光学素子は、電子ビームが走行する空間に沿って設けられる。電磁光学素子は、電流を流すコイル等を含むので、大気圧程度の空間に設けられることが望ましい。
 鏡筒110は、複数の電子ビームを発生し、別個独立に当該複数の電子ビームを試料10に照射するので、このような真空領域と非真空領域とが複数設けられる。なお、真空領域は、電子ビームで描画できる程度の真空度に保たれる。真空領域は、例えば、10-7Paから10-8Paに至る高真空に保たれる。また、非真空領域は、1気圧程度でよい。また、非真空領域は、鏡筒110内の電子回路が正常に動作する範囲であれば、大気圧よりも低い低真空の領域であってもよい。即ち、非真空領域は、例えば、100Pa以上に保たれてよい。
 このような鏡筒110を容易に形成すべく、本実施形態に係る鏡筒110は、複数のユニットに分離され、ユニット毎に形成および調整可能でよい。複数のユニットは、鏡筒110の延伸方向に積み重ねられてよい。鏡筒110は、例えば、複数の第1ユニット200と、複数の第2ユニット300とを備える。
 第1ユニット200は、露光装置の動作中に真空領域となる真空空間と、非真空領域となる非真空空間とを有する。第1ユニット200は、真空空間において電子ビームを通過させ、非真空空間に電磁光学素子が設けられる。第1ユニット200は、真空空間および非真空空間の間に隔壁等が設けられ、2つの空間が分離される。なお、第1ユニット200のそれぞれに形成される非真空空間は、一体の空間を形成してもよく、これに代えて、複数の空間を形成してもよい。
 第2ユニット300は、露光装置の動作中に真空領域となる真空空間を有する。複数の第1ユニット200および複数の第2ユニット300のそれぞれの真空空間は、一体の空間を形成してよい。この場合、一体の空間は、電子ビームを通過させる領域、荷電粒子ビーム源20、ブランキング部30、およびステージ部112等を収容する領域等になってよい。
 即ち、第2ユニット300は、当該第2ユニット300を通過する複数の荷電粒子ビームの間に遮蔽物を配置しない。第2ユニット300は、中空のユニットでよい。第2ユニット300は、排気口310を有し、外部の真空ポンプ等の排気装置に接続される。第2ユニット300は、それぞれ排気口310を有してよく、これに代えて、一部の第2ユニット300が排気口310を有してもよい。
 以上の鏡筒110は、第1ユニット200および第2ユニット300が交互に積み重ねられてよい。例えば、ステージ部112を収容する第2ユニット300の上に、電磁光学素子が設けられる第1ユニット200が設けられ、当該第1ユニット200の上に、ブランキング部30を収容する第2ユニット300が設けられてよい。鏡筒110は、このように、複数段のユニットが積み重ねられることで形成されてよい。鏡筒110は、一例として、第1ユニット200および第2ユニット300をそれぞれ7から8程度有し、交互に積み重ねられる。
 ここで、第1ユニット200の真空空間は、隣接する第2ユニット300の真空空間との間に隔壁等が設けられなくてよい。即ち、鏡筒110内の真空空間は、一体に形成されてよい。また、この場合、複数のユニットの真空空間は、一体に形成された真空空間の一部を形成してよい。また、第1ユニット200の非真空空間は、鏡筒110内において、ユニット毎に独立した空間を形成してよい。このような複数のユニットについて、次に説明する。
 図3は、本実施形態に係る第1ユニット200および第2ユニット300の比較構成例を示す。図3は、鏡筒110のZX面と略平行な面による断面図の一例を示す。即ち、図3は、図2に示す断面図の一部を拡大した断面図の例を示す。図3において、電子ビームの理想的な経路の例をBからBの一点鎖線で示す。
 比較構成例の第1ユニット200は、試料10側に底部202を有する。また、底部202の試料10を向く面に、凹部204が形成されてよい。また、第1ユニット200は、試料10とは反対側に突出する凸部206を有してよい。同様に、比較構成例の第2ユニット300は、試料10側に底部302を有する。また、底部302の試料10を向く面に、凹部304が形成されてよい。また、第2ユニット300は、試料10とは反対側に突出する凸部306を有してよい。
 このような各ユニットの凹部および凸部は、各ユニットが積み重ねられる場合の位置決めに用いられる。例えば、第2ユニット300の凸部306と第1ユニット200の凹部204とが嵌合するように、第2ユニット300上に第1ユニット200が積み重ねられる。また、第1ユニット200の凸部206と第2ユニット300の凹部304とが嵌合するように、第1ユニット200上に第2ユニット300が積み重ねられてよい。なお、各ユニットの間には、気密を保持するようにOリング等が設けられてよい。
 図3は、各ユニットの底部に凹部が設けられる例を説明したが、これに限定されることはない。隣接するユニット間で位置合わせのために嵌合するような形状が、一方または両方のユニットに形成されていればよい。このように積み重ねられる複数のユニットのうち、非真空空間を有する第1ユニット200に、電磁光学素子40が配置される。即ち、第1ユニット200は、電磁光学素子40と、配線42と、隔壁部510と、フランジ520と、固定ネジ522と、を有する。
 隔壁部510は、第1ユニット200の内部において、電子ビームの理想的な経路Bをそれぞれ囲むように、複数配置される。複数の隔壁部510は、第1ユニット200の底部202と、第2ユニット300の底部302とに、それぞれ固定される。例えば、底部202は、隔壁部510がそれぞれ挿入される複数の貫通孔を有する。隔壁部510は、当該貫通孔に挿入され、底部202の試料10を向く面において、フランジ520および固定ネジ522により固定されてよい。なお、底部202、隔壁部510、およびフランジ520の間に、Oリングが設けられることが望ましい。
 隔壁部510のそれぞれは、XY平面と略平行で、試料10とは反対側を向く接合面を有してよい。第1ユニット200の上に第2ユニット300が積み重なると、隔壁部510のそれぞれの接合面と第2ユニット300の底部302の試料10を向く面とが接するように、隔壁部510が配置されることが望ましい。なお、隔壁部510および底部302の間には、Oリングが設けられることが望ましい。隔壁部510は、非磁性の金属で形成されてよい。また、隔壁部510は、導電性を有するセラミックス、または、内周面に導電性被膜を形成したセラミックスであってもよい。
 電磁光学素子40は、このような隔壁部510の周囲を囲むようにそれぞれ設けられてよい。電磁光学素子40は、真空領域を通過する複数の電子ビームのそれぞれに対応して設けられ、それぞれの電子ビームに対して磁場を発生して個別に制御する。電磁光学素子40は、例えば、電磁レンズ、電磁偏向器、および電磁補正器等のうち少なくとも1つを含む。このような電磁光学素子40は、磁場を発生して、電子ビームの収束、偏向、および収差補正等を実行してよい。
 電磁光学素子40は、磁場を発生するためのコイルおよび/または磁性体を有する。このような電磁光学素子40は、磁場を発生させる目的で電流を流すので、電子ビームが通過する真空領域に配置されると、排熱することができず、発火に至ることもある。また、電磁光学素子40がコイル巻線や磁性体部を含む場合、これらの部材は発熱等によって脱ガスを生じさせることがある。したがって、電磁光学素子40を真空領域に配置すると、発火および真空度の劣化等を生じさせてしまうことがあるので、電磁光学素子40は、隔壁部510等によって形成される非真空空間に配置されることが望ましい。
 電磁光学素子40および隔壁部510は、電子ビームの理想的な経路Bを中心軸として、軸対称に形成されることが望ましい。例えば、電磁光学素子40は、コイル部および磁性体部を有する。コイル部は、一例として、中心軸の回りに巻かれた巻線を含む。また、磁性体部は、コイル部を取り囲み、中心軸に対して軸対称な磁性体部材と、その一部に設けられた間隙とを含む。このような電磁光学素子40は、隔壁部510を介して囲む真空領域において、中心軸方向の局所的な磁場を発生する。即ち、この場合、電磁光学素子40は、経路Bと略一致する経路で第1ユニット200を通過する電子ビームを収束させる電磁レンズとして機能する。
 また、電磁光学素子40は、コイル部および/または磁性体部が経路Bを中心軸として軸対称に配置されてよい。電磁光学素子40は、コイル部に流れる電流に応じて、軸対称からずれた磁場が発生し、電子ビームの進行方向を変える電磁偏向器として機能してよい。また、電磁光学素子40は、電子ビームの収差を補正する電磁補正器として機能してもよい。電磁光学素子40は、配線42を介して電流を流してよい。配線42は、非真空空間内に設けられ、複数の電磁光学素子40のうちの少なくとも一部に電気的に接続される。配線42は、鏡筒110の外部と電気的に接続される。
 以上の比較構成例の第1ユニット200は、複数の隔壁部510が底部202に固定されてから、第2ユニットの上に積み重ねられることが望ましい。即ち、第1ユニット200は、内部が組み立てられてから、第2ユニット300の上に積み重ねられてよい。そして、第1ユニット200の上に、更に異なる第2ユニット300が積み重ねられることにより、図3に示すように、第2ユニット300の真空空間および非真空空間が形成されてよい。即ち、第1ユニット200、第2ユニット300、および複数の隔壁部510により、第1ユニット200は、真空空間および非真空空間の2つの空間に分離される。なお、第1ユニット200は、複数の電子ビームに対応して、複数の真空空間が形成される。
 このように、ユニット毎に組み立ておよび調整を実行し、各ユニットを位置決めしつつ積み重ねることで、鏡筒110を精度よく形成することができる。しかしながら、鏡筒110を大気圧中で高精度に組み上げても、排気口310から真空排気して真空領域を形成させると、非真空領域および真空領域の間の隔壁等が変形することがある。例えば、比較構成例の第1ユニット200の底部202および第2ユニット300の底部302は、図3の点線で示すように、真空領域側に撓むことがある。
 この場合、隔壁部510および電磁光学素子40も移動するので、複数の電子ビームの一部または全部の光学系が別個独立に複雑に変化し、試料10に描画するパターンの精度が低下してしまうことがあった。また、このような底部202、底部302、および隔壁部510の変形により、真空漏れが発生してしまうこともあった。そこで、本実施形態に係る露光装置100は、隔壁等の変形を低減させて、光学系の変動を低減させる。また、露光装置100は、隔壁等の変形を低減させることで、真空漏れが生じることを防止する。このような露光装置100の鏡筒110を構成する第1構成例の各ユニットについて次に説明する。
 図4は、本実施形態に係る第1ユニット200および第2ユニット300の第1構成例を示す。第1構成例の第1ユニット200および第2ユニット300において、図3に示された比較構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図4は、図3と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。
 第1構成例の第1ユニット200および第2ユニット300は、比較構成例の第1ユニット200および第2ユニット300と同様に、積み重ねられることによって、図2に示すような鏡筒110を形成する。第1ユニット200は、電磁光学素子40と、配線42と、第1隔壁210と、第2隔壁220と、フレーム230と、支持部240と、減圧ポンプ420と、を備える。
 第1隔壁210および第2隔壁220は、鏡筒110内において鏡筒110の延伸方向に互いに離間して配置され、互いの間の少なくとも一部に非真空空間を形成する。非真空空間は、電子ビームが通過する真空空間よりも高く、大気圧よりも低い圧力の減圧空間となる。第1隔壁210および第2隔壁220は、フレーム230の内側に固定される。
 第1隔壁210および第2隔壁220は、複数の荷電粒子ビームのそれぞれに対応して、各荷電粒子ビームを通過させるための開口を有する。図4は、第1隔壁210が複数の開口212を有し、第2隔壁220が複数の開口222を有する例を示す。第1隔壁210の複数の開口212のそれぞれと、第2隔壁220が複数の開口222のそれぞれとは、複数の電子ビームの経路BからBにそれぞれ対応して形成されてよい。
 例えば、一の電子ビームは、一の開口212から第1ユニット200に入力し、当該第1ユニット200を通過して、対応する一の開口222から出力する。即ち、一の開口212から対応する一の開口222までの空間は、電子ビームが通過する真空空間を形成する。第1隔壁210および第2隔壁220は、非磁性の金属で形成されてよい。また、第1隔壁210および第2隔壁220は、導電性を有するセラミックス、または、内周面に導電性被膜を形成したセラミックスであってもよい。
 フレーム230は、第1隔壁210および第2隔壁220の間に設けられる。フレーム230は、Z軸方向と略平行な方向に延伸する筒状に形成され、鏡筒110の一部を形成する。即ち、複数のフレーム230は、それぞれが鏡筒110の一部をなすことになる。フレーム230は、鉄またはパーマロイを含んでよい。フレーム230は、外部からの微弱な磁場が鏡筒110内部に影響を及ぼすことを防止する部材で形成されることが望ましい。フレーム230は、凹部204、凸部206、および排気口410を有する。
 凹部204は、フレーム230の試料10を向く面に形成されてよい。凸部206は、フレーム230の試料10とは反対側に突出してよい。凹部204および凸部206は、対応する第2ユニット300と嵌合する。排気口410は、減圧ポンプ420に接続される。
 支持部240は、鏡筒110内に設けられ、複数の電磁光学素子40を支持して位置決めする。支持部240は、鏡筒110内の延伸方向において第1隔壁210および第2隔壁220の間に配置される。支持部240は、フレーム230に固定されてよい。支持部240は、非磁性の部材で形成されることが望ましい。
 支持部240が複数の電磁光学素子40をそれぞれ位置決めすることにより、複数の電磁光学素子40は、鏡筒110内において複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御できる。この場合、複数の電磁光学素子40は、鏡筒110の延伸方向において第1隔壁210および第2隔壁220の間に配置される。ここで、複数の電磁光学素子40と第1隔壁210における減圧空間と接する面との間は、真空シールによってシーリングされる。図4は、第1隔壁210における減圧空間と接する面が、第1隔壁210の試料10を向く面である例を示す。
 また、複数の電磁光学素子40と第2隔壁220における減圧空間と接する面との間は、真空シールによってシーリングされる。図4は、第2隔壁220における減圧空間と接する面が、第2隔壁220の試料10とは反対側を向く面である例を示す。なお、真空シールは、例えば、Oリング等の弾性を有する材料を用いてシーリングされる。
 このように、複数の電磁光学素子40は、第1隔壁210および第2隔壁220の間における減圧空間に設けられる。この場合、複数の電磁光学素子40は、収容ケース等に密封されてよい。なお、複数の電磁光学素子40が収容ケースに密封される場合、当該収容ケースは、電磁光学素子40を冷却する冷却部を更に有してよい。冷却部は、冷却水等の冷媒を循環させる構成を有してよく、これに代えて、ペルチエ素子のような冷却デバイスを有してもよい。また、当該収容ケースは、第1隔壁210および第2隔壁220とそれぞれシーリングされてよい。また、複数の電磁光学素子40のうちの少なくとも一部に電気的に接続される配線42も、第1隔壁210および第2隔壁220の間に設けられる。
 以上のように、第1ユニット200の内部は、第1隔壁210、第2隔壁220、および複数の電磁光学素子40によって、密閉された非真空領域が形成される。図4は、第1ユニット200の内部に、一体となる非真空領域が形成された例を示す。なお、非真空領域は、隔壁等により複数に分割されてもよい。このような非真空領域は、第1隔壁210の複数の開口212および第2隔壁220の複数の開口222を含む複数の真空空間とは、シーリングにより分離される。
 なお、真空空間のそれぞれは、非真空空間とシーリングにより分離されると、鏡筒110の延伸方向と略同一の方向に延伸する円筒状の形状を形成してよい。また、第1ユニット200に形成される複数の真空空間は、第1ユニット200に対して、試料10側および試料10とは反対側のそれぞれに隣接する2つの第2ユニット300の真空空間と空間的に接続される。即ち、電磁光学素子40の一部は、電子ビームが通過する真空空間に面してよい。また、電磁光学素子40の一部は、非真空空間に面してよい。即ち、電磁光学素子40は、真空空間および非真空領域の間の壁として機能してよい。
 減圧ポンプ420は、排気口410から排気することにより、第1隔壁210と接する非真空空間および第2隔壁220と接する非真空空間を、真空と大気との間の気圧に減圧する。減圧ポンプ420は、非真空空間を略一定の圧力の減圧空間とする。減圧ポンプ420は、第2ユニット300が減圧されて真空領域が形成された場合に、第1隔壁210および第2隔壁220に生じる撓みを低減させる程度の気圧に、非真空空間を減圧してよい。また、減圧ポンプ420は、第2ユニット300に真空領域が形成された場合に、複数の電磁光学素子40から脱ガスが発生しない程度の気圧に、非真空空間を減圧してよい。
 第1構成例の第2ユニット300は、排気口310と、フレーム320と、を備える。フレーム320は、Z軸方向と略平行な方向に延伸する筒状に形成され、鏡筒110の一部を形成する。フレーム320は、鉄またはパーマロイを含んでよい。フレーム320は、外部からの微弱な磁場が鏡筒110内部に影響を及ぼすことを防止する部材で形成されることが望ましい。
 フレーム320は、試料10を向く面に凹部304が形成されてよい。当該凹部304と第1ユニット200の凸部206とが嵌合することで、第1ユニット200および第2ユニット300が位置決めされてよい。また、フレーム320は、試料10とは反対側に突出する凸部306が形成されてよい。当該凸部306と第1ユニット200の凹部204とが嵌合することで、第1ユニット200および第2ユニット300が位置決めされてよい。
 本実施形態に係る露光装置100は、以上の第1構成例の第1ユニット200および第2ユニット300を用いることで、比較構成例の第1ユニット200および第2ユニット300を用いた場合と同様に、各ユニットを位置決めしつつ積み重ねることができる。即ち、鏡筒110を精度よく形成することができる。
 また、露光装置100は、第2ユニット300が排気口310から真空排気されても、第1ユニット200の非真空空間も減圧して減圧空間とするので、第1隔壁210および第2隔壁220の変形を低減させることができる。したがって、露光装置100は、隔壁等の変形による真空漏れを防止することができる。また、電磁光学素子40は、支持部240に固定されるので、鏡筒110内においてほとんど移動することなく、安定に位置決めできる。したがって、露光装置100は、複数の電子ビームの光学系を、大気圧中で位置決めした状態に保持することができ、試料10に描画するパターンの精度が低下することを防止できる。
 以上の第1構成例の第1ユニット200は、第2ユニット300よりも高く、大気圧よりも低い圧力の減圧空間を有することで、第1隔壁210および第2隔壁220の変形を低減させることを説明した。これに加えて、第1ユニット200は、異なる圧力に保たれた複数の減圧空間を有してよい。このような第1ユニット200および第2ユニット300について、次に説明する。
 図5は、本実施形態に係る第1ユニット200および第2ユニット300の第2構成例を示す。第2構成例の第1ユニット200および第2ユニット300において、図4に示された第1構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図5は、図4と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。
 第2構成例の第1ユニット200および第2ユニット300は、第1構成例の第1ユニット200および第2ユニット300と同様に、積み重ねられることによって、図2に示すような鏡筒110を形成する。第2構成例の第1ユニット200は、鏡筒110の延伸方向において複数の非真空空間を有する。第1ユニット200は、ダミー素子50と、ダミー素子52と、第3隔壁430と、第4隔壁440と、減圧ポンプ422と、減圧ポンプ424と、を更に備える。
 第3隔壁430は、第1隔壁210および第2隔壁220の間に設けられる。また、第4隔壁440は、第3隔壁430および第2隔壁220の間に設けられる。即ち、第1隔壁210から第4隔壁440までの4つの隔壁は、鏡筒110内において鏡筒110の延伸方向に互いに離間して配置され、互いの間の少なくとも一部に非真空空間を形成する。当該4つの隔壁は、フレーム230の内側に固定される。
 第3隔壁430および第4隔壁440は、第1隔壁210および第2隔壁220と同様に、複数の荷電粒子ビームのそれぞれに対応して、各荷電粒子ビームを通過させるための複数の開口を有する。第3隔壁430および第4隔壁440は、第1隔壁210および第2隔壁220と同様に、複数の電子ビームの経路BからBにそれぞれ対応して複数の開口が形成されてよい。即ち、一の開口212から対応する一の開口222までの空間は、電子ビームが通過する真空空間を形成する。第3隔壁430および第4隔壁440は、第1隔壁210および第2隔壁220と略同一の材料で形成されることが望ましい。
 第2構成例の第1ユニット200は、複数のフレームを積み重ねることで、第1構成例のフレーム230に対応する鏡筒110の一部が形成されてよい。図5は、フレーム230a、フレーム230b、およびフレーム230cの3つのフレームが積み重なる例を示す。なお、フレーム230aは、第1隔壁210および第3隔壁430の間に設けられ、フレーム230bは、第3隔壁430および第4隔壁440の間に設けられ、フレーム230cは、第4隔壁440および第1隔壁210の間に設けられてよい。複数のフレームは、略同一の材料で形成されることが望ましい。
 各フレームは、それぞれ排気口が設けられてよい。図5は、フレーム230aに排気口412が、フレーム230bに排気口410が、フレーム230cに排気口414が、それぞれ設けられる例を示す。
 支持部240は、第1構成例の第1ユニット200と同様に、複数の電磁光学素子40をそれぞれ位置決めする。図5は、支持部240、複数の電磁光学素子40、および配線42が、第3隔壁430および第4隔壁440の間に配置される例を示す。この場合、複数の電磁光学素子40と第3隔壁430の試料10を向く面との間は、真空シールによってシーリングされる。また、複数の電磁光学素子40と第4隔壁440の試料10とは反対側を向く面との間は、真空シールによってシーリングされる。
 即ち、第3隔壁430、第4隔壁440、複数の電磁光学素子40、およびフレーム230bによって、非真空空間が形成される。本実施形態において、第3隔壁430および第4隔壁440の間の非真空空間を、第1非真空空間とする。第1非真空空間は、排気口410に接続される減圧ポンプ420によって、減圧されてよい。第1非真空空間は、複数の電磁光学素子40から脱ガスが発生しない程度の真空度に保たれることが望ましい。
 同様に、第1隔壁210および第3隔壁430の間の少なくとも一部は、非真空空間を形成する。第1隔壁210および第3隔壁430の間には、複数のダミー素子50が設けられる。この場合、複数のダミー素子50と第1隔壁210の試料10を向く面との間は、真空シールによってシーリングされる。また、複数のダミー素子50と第3隔壁430の試料10とは反対側を向く面との間は、真空シールによってシーリングされる。
 このように、第1隔壁210、第3隔壁430、複数のダミー素子50、およびフレーム230aによって、非真空空間が形成される。本実施形態において、第1隔壁210および第3隔壁430の間の非真空空間を、第2非真空空間とする。第2非真空空間は、排気口412に接続される減圧ポンプ422によって減圧されてよい。第2非真空空間は、第2ユニット300が減圧されて真空領域が形成された場合に、第1隔壁210に生じる撓みを低減させる程度の真空度に保たれることが望ましい。
 同様に、第4隔壁440および第2隔壁220の間の少なくとも一部は、非真空空間を形成する。第4隔壁440および第2隔壁220の間には、複数のダミー素子52が設けられる。この場合、複数のダミー素子52と第4隔壁440の試料10を向く面との間は、真空シールによってシーリングされる。また、複数のダミー素子52と第2隔壁220の試料10とは反対側を向く面との間は、真空シールによってシーリングされる。
 このように、第4隔壁440、第2隔壁220、複数のダミー素子52、およびフレーム230cによって、非真空空間が形成される。本実施形態において、第4隔壁440および第2隔壁220の間の非真空空間を、第3非真空空間とする。第3非真空空間は、排気口414に接続される減圧ポンプ424によって減圧されてよい。第3非真空空間は、第2ユニット300が減圧されて真空領域が形成された場合に、第2隔壁220に生じる撓みを低減させる程度の真空度に保たれることが望ましい。また、減圧ポンプ424は、減圧ポンプ422と共通のポンプでよい。即ち、第2非真空空間および第3非真空空間は、略同一の圧力に保持されてよい。
 以上の第2構成例の第1ユニット200は、複数の隔壁により、複数の非真空空間が形成される。例えば、複数の電磁光学素子40が設けられる第1非真空空間は、第2非真空空間および第3非真空空間の間に形成される。そして、第3隔壁430および第4隔壁440の間の空間の少なくとも一部(即ち、第1非真空空間)は、第1隔壁210および第3隔壁430の間の空間(即ち、第2非真空空間)および第2隔壁220および第4隔壁440の間の空間(即ち、第3非真空空間)よりも気圧が高い状態が保たれる。
 このように、第2ユニット300の真空空間と第1ユニット200の第1非真空空間との間を、段階的に真空度を変えることができるので、第1非真空空間は、より大気圧に近い圧力に保つことができる。したがって、第1非真空空間に設けられる複数の電磁光学素子40を固定して、大気圧に近い状態で動作させつつ、第1隔壁210および第2隔壁220の変形を低減させることができる。
 なお、第1非真空空間は、第2非真空空間および第3非真空空間と比較して、より大気圧に近い圧力に保つことが望ましいが、これに代えて、第1非真空空間は、大気圧に保たれてもよい。この場合、排気口410および減圧ポンプ420は、なくてもよい。また、本実施形態において、第1ユニット200は、複数のダミー素子50および複数のダミー素子52を有する例を説明したが、これらの少なくとも一部が電磁光学素子40であってもよい。
 以上の本実施形態に係る第1ユニット200および第2ユニット300は、真空空間および非真空空間の間の真空度の変化を低減させて、隔壁の変形を低減させる例を説明した。これに代えて、または、これに加えて、隔壁の変形を物理的に低減させてもよい。このような第1ユニット200および第2ユニット300について、次に説明する。
 図6は、本実施形態に係る第1ユニット200および第2ユニット300の第3構成例を示す。第3構成例の第1ユニット200および第2ユニット300において、図4に示された第1構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図6は、図4と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。第3構成例の第1ユニット200は、第1隔壁210および第2隔壁220の間が、縁部以外の複数の箇所において固定される。第1ユニット200は、筒状部材250およびナット260を更に備える。
 複数の筒状部材250は、複数の荷電粒子ビームに対応して設けられ、第1隔壁210、支持部240、および第2隔壁220を貫通する。即ち、第1隔壁210、第2隔壁220、および支持部240のそれぞれは、筒状部材250を貫通させる貫通孔を複数有する。筒状部材250のそれぞれは、中空の内部が真空空間となり、電子ビームを通過させる。複数の筒状部材250のそれぞれは、支持部240に対して固定される。
 複数の筒状部材250のそれぞれと第1隔壁210および第2隔壁220の間は、真空シールによってシーリングされてよい。また、複数の筒状部材250のそれぞれと支持部240の間は、真空シールによってシーリングされてもよい。第1ユニット200の内部は、第1隔壁210、第2隔壁220、フレーム230、および筒状部材250によって形成される1または複数の非真空空間が形成される。
 第3構成例の第1隔壁210および第2隔壁220は、複数の筒状部材250のそれぞれの両側から押さえられる。例えば、複数の筒状部材250のそれぞれは、少なくとも一方の端部にねじ切りの加工が施され、当該少なくとも一方の端部からナット260がねじ込まれる。これにより、第1隔壁210および第2隔壁220の少なくとも一方は、当該ナット260によって押さえられる。図6は、複数の筒状部材250のそれぞれが、両端にねじ切りの加工が施され、当該両端からナット260がねじ込まれた例を示す。
 以上のように、第3構成例の第1ユニット200は、筒状部材250で真空空間および非真空空間を分離しつつ、当該筒状部材250の一端または両端において第1隔壁210および/または第2隔壁220をナット260で押さえる。これにより、隔壁を固定するための空間を低減させつつ、第1隔壁210および/または第2隔壁220の変形を低減させることができる。また、筒状部材250は、少なくとも一部がフランジおよび固定ネジで固定されてもよい。
 これに代えて、またはこれに加えて、第1ユニット200は、筒状部材250およびナット260とは異なる固定部材を用いて、第1隔壁210および/または第2隔壁220の変形を低減させてよい。第1ユニット200は、例えば、第1隔壁210および第2隔壁220を、縁部以外の1または複数の箇所において貫通して両側から押さえる1または複数の固定部材450を更に備える。
 固定部材450は、ねじ切りの加工が施され、第1隔壁210および第2隔壁220にねじ込まれてよい。これに代えて、固定部材450は、少なくとも両端にねじ切りの加工が施され、第1隔壁210、第2隔壁220、および支持部240を貫通してから、当該両端にナット452がねじ込まれてよい。図6は、固定部材450の両端にねじ切りの加工が施され、当該両端からナット452がねじ込まれた例を示す。
 これに代えて、またはこれに加えて、第1ユニット200は、ボルトおよびナットによる固定部材を用いてよい。この場合、複数の固定部材のそれぞれは、第1隔壁210および第2隔壁220を貫通するボルトおよび当該ボルトにねじ込まれるナットを有してよい。この場合においても、固定部材450およびナット452の組み合わせと同様の効果が得られる。
 これに代えて、またはこれに加えて、第1ユニット200は、支持部240に固定される固定部材を用いて、第1隔壁210および/または第2隔壁220の変形を低減させてもよい。第1ユニット200は、例えば、第1隔壁210または第2隔壁220を、縁部以外の1または複数の箇所において貫通して支持部240に固定される1または複数の固定部材460を更に備える。
 固定部材460は、両端にねじ切りの加工が施され、一端が第1隔壁210または第2隔壁220を貫通してから支持部240にねじ込まれてよい。また、固定部材460の他端は、当該他端にナット462がねじ込まれてよい。これに代えて、固定部材460は、第1隔壁210または第2隔壁220を貫通してから支持部240にねじ込まれるボルトであってもよい。
 このように、第1隔壁210および第2隔壁220は、縁部以外の1または複数の箇所において、第1隔壁210および第2隔壁220の間の空間に設けた部材に対してネジ止めされる。例えば、第1隔壁210および第2隔壁220の間に第3隔壁を設けた場合、固定部材460は、第3隔壁に固定されてもよい。図6は、固定部材460およびナット462が、第1隔壁210側および第2隔壁220側に設けられた例を示す。
 以上のように、第3構成例の第1ユニット200は、固定部材を用いることにより、物理的に第1隔壁210および第2隔壁220の変形を低減させる例を説明したが、固定部材は上記の例に限定されることはない。固定部材は、凸部、凹部、穴部、および/または溝部を有し、第1隔壁210および/または第2隔壁220を貫通してから、第1隔壁210および/または第2隔壁220と嵌合するように固定され、第1隔壁210および第2隔壁220の変形を低減させてもよい。
 図7は、本実施形態に係る第1ユニット200および第2ユニット300の第4構成例を示す。第4構成例の第1ユニット200および第2ユニット300において、図4に示された第1構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図7は、図4と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。
 第4構成例の第1ユニット200は、第3構成例の第1ユニット200と同様に、第1隔壁210および第2隔壁220の間が、縁部以外の複数の箇所において固定される。また、第4構成例の第1ユニット200は、第2ユニット300に設けられた補強部材によって、第1隔壁210および第2隔壁220の変形が低減される。第4構成例の第2ユニット300は、第1補強部材470と、第2補強部材472を更に備える。
 ここで、鏡筒110は、内部に当該鏡筒110の延伸方向において第1隔壁210と離間して配置され、第1隔壁210との間に真空空間が設けられる第3隔壁を更に備えてよい。なお、第3隔壁は、第2ユニット300内に設けられてよい。これに代えて、第3隔壁は、第2ユニット300上に更に積み重ねられる第1ユニット200の第2隔壁220であってもよい。図7において、第3隔壁に相当する第1ユニット200の第2隔壁を、第3隔壁430とした。
 1または複数の第1補強部材470は、第1隔壁210および第3隔壁の間に設けられ、鏡筒110の延伸方向に延伸する。第1補強部材470は、つっかえ棒のように機能してよい。即ち、第1隔壁210は、第1補強部材470によって第2隔壁220側に押さえられる。
 同様に、鏡筒110は、内部に当該鏡筒110の延伸方向において第2隔壁220と離間して配置され、第2隔壁220との間に真空空間が設けられる第4隔壁を更に備えてよい。なお、第4隔壁は、第2ユニット300内に設けられてよい。これに代えて、第4隔壁は、第1ユニット200よりも試料10側に積み重ねられた異なる第1ユニット200の第1隔壁210であってもよい。
 1または複数の第2補強部材472は、第2隔壁220および第4隔壁の間に設けられ、鏡筒110の延伸方向に延伸する。第2補強部材472は、つっかえ棒のように機能してよい。即ち、第2隔壁220は、第2補強部材472によって第1隔壁210側に押さえられる。
 以上の第4構成例の第1ユニット200および第2ユニット300は、真空空間側に設けられる補強部材を用いることにより、第1隔壁210および第2隔壁220の変形を低減できる。なお、当該補強部材は、鏡筒110内が大気圧の場合には押さえる力がほとんどなく、減圧されて隔壁が変形した場合に、押さえとして機能してよい。これに代えて、当該補強部材は、弾性力等を有し、鏡筒110内が大気圧の場合にも第1隔壁210および第2隔壁220をそれぞれ押さえつけてもよい。
 なお、図7に示す第1ユニット200は、図4で説明したように、非真空空間を減圧空間へと排気可能な例を示す。このように、第1ユニット200および第2ユニット300は、第1隔壁210および第2隔壁220の変形を低減させる構成を複数備えてよい。
 図8は、本実施形態に係る第1ユニット200および第2ユニット300の第5構成例を示す。第5構成例の第1ユニット200および第2ユニット300において、図4に示された第1構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図8は、図4と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。
 第5構成例の第1ユニット200は、非真空空間の体積を減少させて、隔壁の変形を低減させる。例えば、第1隔壁210および第2隔壁220は、鏡筒110の延伸方向に略垂直な断面における一部のみに非真空空間を形成し、残りの部分に真空空間を形成する。この場合、第1隔壁210および第2隔壁220は、電子ビームの数に応じた数の非真空空間を形成してよい。図8は、第1隔壁210および第2隔壁220が、Y方向に並ぶ複数の電子ビーム毎に非真空空間を形成した例を示す。
 このように、第1ユニット200は、複数の非真空空間のそれぞれに対応して、第2隔壁220と向かい合う複数の第1隔壁210のそれぞれが設けられてよい。一例として、第1隔壁210は、複数の電磁光学素子40をY方向の列毎にそれぞれ覆って密封するように設けられる。この場合、第2隔壁220は、複数の非真空空間が形成されない部分において、複数の荷電粒子ビーム源20側および複数の荷電粒子ビーム源20とは反対側の両方に露出してよい。
 なお、複数の電磁光学素子40のそれぞれは、第1隔壁210および第2隔壁220により形成される1または複数の非真空空間内に配置される。また、一の非真空空間は、鏡筒110の内壁に接してよい。そして、1または複数の非真空空間のそれぞれには、鏡筒110の内壁に接し、内部に複数の電磁光学素子40のうちの少なくとも一部に接続される配線42が設けられてよい。このように、一の非真空空間に配置される複数の電磁光学素子40のそれぞれは、内壁から内部へと接続される配線42によって駆動電流等が供給可能でよい。
 以上のように、非真空空間の体積を減少させ、また、非真空空間を分割することにより、隔壁の変形を低減させることができる。なお、この場合、電子ビームの配置を変更して、非真空空間を分割してもよい。図8は、電子ビームのX方向の配置間隔を図4の例の略2倍にして、非真空空間を分割した例を示す。また、図8は、複数の第1隔壁210を用いて、非真空空間を分割した例を説明したが、これに限定されることはない。第1隔壁210および/または第2隔壁220が、非真空空間を分割する複数の壁面を有してもよい。このような第1隔壁210を備える第1ユニット200について、次に説明する。
 図9は、本実施形態に係る第1ユニット200および第2ユニット300の第6構成例を示す。第6構成例の第1ユニット200および第2ユニット300において、図6に示された第3構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図9は、図6と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。
 第6構成例の第1ユニット200は、非真空空間の体積を減少させて、隔壁の変形を低減させる。第6構成例の第1ユニット200は、第1隔壁210および第2隔壁220の間には、複数の空間が設けられる。図9は、一例として、第1隔壁210が鏡筒110の延伸方向と略平行な方向に延伸する複数の壁面を有し、当該複数の壁面によって、複数の空間が形成される例を示す。また、図9は、第3構成例の第1ユニット200と同様に、筒状部材250およびナット260を用いた例を示す。なお、筒状部材250は、少なくとも一部がフランジおよび固定ネジで固定されてもよい。
 即ち、第6構成例の第1ユニット200は、筒状部材250の内側の真空空間と、第1隔壁210、第2隔壁220、および筒状部材250によって囲まれる非真空空間と、残りの空間とに分割される。このように、複数の空間のうちの一部は非真空空間であり、当該非真空空間は、第1隔壁210および/または第2隔壁220が有する複数の壁面によって複数に分割されてよい。非真空空間は、鏡筒110の延伸方向と略垂直な面(即ち、XY面と略平行な面)において、行方向、列方向、格子状、または同心円状に分割されてよい。
 また、第1ユニット200の残りの空間は、第1隔壁210側および第2隔壁220側の少なくとも一方の真空空間と通じる空間でよい。図9は、当該残りの空間が、第1隔壁210側の第2ユニット300の真空空間と通じる空間となる例を示す。以上のように、非真空空間の体積を減少させ、また、非真空空間を分割することにより、隔壁の変形を低減させることができる。また、筒状部材250およびナット260を用いることで、更に隔壁の変形を低減させることもできる。
 以上の本実施形態に係る第2ユニット300は、内部が排気されて真空空間となることを説明した。ここで、第2ユニット300の少なくとも一部は、当該真空空間が分割されてよい。例えば、第2ユニット300は、鏡筒110の延伸方向と略平行な方向に延伸する複数の壁面を有し、第1ユニット200の第1隔壁210および第2隔壁220の変形を低減させてよい。また、第2ユニット300は、真空空間が分割された場合、非真空空間が形成されてもよい。このような真空空間が分割される第2ユニット300の一例について、次に説明する。
 図10は、本実施形態に係る第1ユニット200および第2ユニット300の第7構成例を示す。第7構成例の第1ユニット200および第2ユニット300において、図4に示された第1構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図10は、図4と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。
 第7構成例の第1ユニット200および第2ユニット300は、真空空間を中空部材で分割して、隔壁の変形を低減させる。第7構成例の第1ユニット200は、鏡筒110内において鏡筒110の延伸方向に互いに離間して順に配置される第1隔壁210および第2隔壁220を備える。また、当該鏡筒110は、当該鏡筒110内において延伸方向に第1隔壁210および第2隔壁220と離間して配置される第3隔壁を備える。なお、第3隔壁は、第2ユニット300上に更に積み重ねられる第1ユニット200の第2隔壁220でよい。図10において、第3隔壁に相当する第1ユニット200の第2隔壁を、第3隔壁430とした。
 第7構成例の第2ユニット300は、中空部材480を更に備える。中空部材480は、鏡筒110内における第1隔壁210および第3隔壁430の間において、複数の荷電粒子ビームが通過する一部の空間を囲む。中空部材480は、鏡筒110の延伸方向と略平行な方向に延伸する円筒状に形成されてよい。ここで、中空部材480の、試料10側の端部を第1端とし、荷電粒子ビーム源20側の端部を第2端とする。中空部材480は、第1隔壁210に第1端が接し、第1隔壁210と第1端の間が真空シールによってシーリングされる。また、中空部材480は、第3隔壁430に第2端が接し、第3隔壁430と第2端の間が真空シールによってシーリングされる。
 以上の第7構成例の第2ユニット300は、減圧ポンプ420が中空部材480の内部の空気を排気して真空状態とすることにより、電子ビームを通過させる複数の真空空間を形成できる。なお、複数の中空部材480は、排気口410からそれぞれ排気されるように、内部が接続されてよい。これにより、第2ユニット300は、真空空間を分割して縮小するので、第1隔壁210および第2隔壁220の変形を低減させることができる。
 なお、第2ユニット300の電子ビームが通過しない中空部材480の外側の領域は、非真空空間でよい。この場合、第2ユニット300の非真空空間は、第1ユニット200の非真空空間と通じる空間でよい。また、この場合、第1ユニット200および第2ユニット300の非真空空間は、大気圧と略同一の気圧に保たれてもよい。
 また、以上において、中空部材480が、第1ユニット200に対して荷電粒子ビーム源20側に積み重ねられた第2ユニット300に設けられる例を説明した。これに代えて、またはこれに加えて、中空部材480は、第1ユニット200に対して試料10側に隣接して位置する第2ユニット300に設けられてよい。図10は、第1ユニット200の試料10側および荷電粒子ビーム源20側にそれぞれ隣接する2つの第2ユニット300に、中空部材480がそれぞれ設けられた例を示す。
 以上の第7構成例の第1ユニット200および第2ユニット300は、第2ユニット300に中空部材480を設け、電子ビームを通過させる空間を真空空間とする例を説明したが、これに限定されることはない。これに代えて、第1ユニット200および第2ユニット300は、第1ユニット200から第2ユニット300へと貫通する中空部材を備えてもよい。このような第1ユニット200および第2ユニット300の一例を次に示す。
 図11は、本実施形態に係る第1ユニット200および第2ユニット300の第8構成例を示す。第8構成例の第1ユニット200および第2ユニット300において、図6に示された第3構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図11は、図6と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。
 第8構成例の第1ユニット200および第2ユニット300は、第7構成例の第1ユニット200および第2ユニット300と同様に、真空空間を中空部材480で分割して、隔壁の変形を低減させる。第8構成例の第1ユニット200および第2ユニット300は、複数の荷電粒子ビームのそれぞれが通過する空間をそれぞれ囲む複数の中空部材480を備える。中空部材のそれぞれは、第1隔壁210、第2隔壁220、および第3隔壁430を貫通する。なお、中空部材480の少なくとも一部は、フランジ270および固定ネジ272で固定されてよい。
 なお、第3隔壁430は、第2ユニット300上に更に積み重ねられる第1ユニット200の第2隔壁220でよい。図10において、第3隔壁に相当する第1ユニット200の第2隔壁を、第3隔壁430とした。
 なお、第8構成例の第1ユニット200および第2ユニット300は、第1隔壁210、第2隔壁220、および第3隔壁430を貫通する中空部材480の例を説明したが、これに限定されることはない。第1ユニット200および第2ユニット300は、第1隔壁210、第2隔壁220、および第4隔壁440を貫通する中空部材480を有してもよい。なお、第4隔壁は、第1ユニット200よりも試料10側に積み重ねられた異なる第1ユニット200の第1隔壁210でよい。
 また、第1ユニット200および第2ユニット300を貫通する部材を中空部材480としたが、当該中空部材480は、図6で説明した筒状部材250の長さを延長した部材であってもよい。また、中空部材480の内径は、場所に応じて異なってよい。例えば、第2ユニット300における中空部材480の内径は、第1ユニット200における内径よりも大きく形成されてよい。
 以上の本実施形態において、第1ユニット200の第1隔壁210および第2隔壁220の間には、非真空空間が形成される例を説明したが、これに限定されることはない。第1隔壁210および第2隔壁220の間には、非真空空間が形成されなくてもよい。このような第1ユニット200および第2ユニット300の一例を次に示す。
 図12は、本実施形態に係る第1ユニット200および第2ユニット300の第9構成例を示す。第9構成例の第1ユニット200および第2ユニット300において、図6に示された第3構成例の第1ユニット200および第2ユニット300の動作と略同一のものには同一の符号を付け、説明を省略する。図12は、図6と同様に、鏡筒110のZX面と略平行な面による断面図の一例を示す。
 第9構成例の第1ユニット200は、非真空空間が設けられなくてもよい。第1ユニット200の第1隔壁210および第2隔壁220の間には、配線基板44が設けられる。配線基板44は、鏡筒110内に設けられ、複数の電磁光学素子40に接続される配線と複数の荷電粒子ビームのそれぞれを通過させる開口とを有する。即ち、第1隔壁210は、配線基板44の片面に貼り付けられ、第2隔壁220は、配線基板44における第1隔壁210側とは反対側の面に貼り付けられてよい。
 また、第1ユニット200は、第1隔壁210、第2隔壁220、および配線基板44を貫通する複数の筒状部材250を備える。筒状部材250は、第1ユニット200から第2ユニット300へと延伸してよい。また、第2ユニット300において、筒状部材250の周囲に電磁光学素子40が設けられてよい。図12は、第1ユニット200に対して、荷電粒子ビーム源20側の第2ユニット300に、複数の電磁光学素子40が設けられた例を示す。
 なお、第2ユニット300は、真空空間となるので、複数の電磁光学素子40のそれぞれは、密封ケース等に収容されてよい。複数の電磁光学素子40のそれぞれは、第1ユニット200の配線基板44と接続され、駆動電流等が供給されてよい。以上のように、第9構成例第1ユニット200は、第1隔壁210および第2隔壁220の間に非真空空間を形成しないので、第2ユニット300の真空空間が排気されても、第1隔壁210および第2隔壁220はほとんど変形しない。
 以上の本実施形態に係る第1ユニット200および第2ユニット300を用いることで、マルチビーム露光装置を大気圧中で高精度に組み上げることができる。また、このような本実施形態に係るマルチビーム露光装置は、複数の電子ビームの光学系を、大気圧中で位置決めした状態を保持したまま動作させることができる。したがって、本実施形態に係る露光装置100は、真空領域および非真空領域を分離する隔壁の変形を低減させて、試料10に描画するパターンの精度が低下することを防止できる。
 以上の本発明の様々な実施形態は、フローチャート及びブロック図を参照して記載されてよい。フローチャート及びブロック図におけるブロックは、(1)オペレーションが実行されるプロセスの段階又は(2)オペレーションを実行する役割を持つ装置の「部」として表現されてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。
 特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。なお、専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよい。これにより、当該有形なデバイスに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。
 コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ等を含んでよい。また、コンピュータ可読命令は、Smalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードを含んでよい。
 コンピュータ可読命令は、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。これにより、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために、当該コンピュータ可読命令を実行できる。なお、プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 試料、20 荷電粒子ビーム源、30 ブランキング部、40 電磁光学素子、42 配線、44 配線基板、50 ダミー素子、52 ダミー素子、100 露光装置、110 鏡筒、112 ステージ部、120 電子ビーム発生部、130 CPU、132 バス、140 露光制御部、150 記憶部、160 ステージ制御部、200 第1ユニット、202 底部、204 凹部、206 凸部、210 第1隔壁、212 開口、220 第2隔壁、222 開口、230 フレーム、240 支持部、250 筒状部材、260 ナット、270 フランジ、272 固定ネジ、300 第2ユニット、302 底部、304 凹部、306 凸部、310 排気口、320 フレーム、410 排気口、412 排気口、414 排気口、420 減圧ポンプ、422 減圧ポンプ、424 減圧ポンプ、430 第3隔壁、440 第4隔壁、450 固定部材、452 ナット、460 固定部材、462 ナット、470 第1補強部材、472 第2補強部材、480 中空部材、510 隔壁部、520 フランジ、522 固定ネジ

Claims (24)

  1.  内部が真空状態となるように減圧される鏡筒と、
     前記鏡筒内に設けられ、前記鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源と、
     前記鏡筒内において前記複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子と、
     前記鏡筒内において前記延伸方向に互いに離間して配置され、互いの間の少なくとも一部に非真空空間を形成する第1隔壁および第2隔壁と、
     前記第1隔壁と接する非真空空間および前記第2隔壁と接する非真空空間を真空と大気との間の気圧に減圧する減圧ポンプと、
     を備える
     露光装置。
  2.  前記第1隔壁および前記第2隔壁は、前記複数の荷電粒子ビームのそれぞれに対応して、各電子ビームを通過させるための開口を有する請求項1に記載の露光装置。
  3.  前記複数の電磁光学素子は、前記第1隔壁および前記第2隔壁の間における前記減圧ポンプが減圧する減圧空間に設けられる請求項2に記載の露光装置。
  4.  前記複数の電磁光学素子と前記第1隔壁における前記減圧空間と接する面との間、および前記複数の電磁光学素子と前記第2隔壁における前記減圧空間と接する面との間は、真空シールによってシーリングされる請求項3に記載の露光装置。
  5.  前記第1隔壁および前記第2隔壁の間に設けられた第3隔壁と、
     前記第3隔壁および前記第2隔壁の間に設けられた第4隔壁と
     を更に備え、
     前記第3隔壁および前記第4隔壁の間の空間の少なくとも一部は、前記第1隔壁および前記第3隔壁の間の空間および前記第2隔壁および前記第4隔壁の間の空間よりも気圧が高い
     請求項2から4のいずれか一項に記載の露光装置。
  6.  前記第1隔壁および前記第2隔壁の間は、縁部以外の複数の箇所において固定される請求項1から5のいずれか一項に記載の露光装置。
  7.  内部が真空状態となるように減圧される鏡筒と、
     前記鏡筒内に設けられ、前記鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源と、
     前記鏡筒内において前記複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子と、
     前記鏡筒内において前記延伸方向に互いに離間して配置され、互いの間の少なくとも一部に非真空空間を形成する第1隔壁および第2隔壁と
     を備え、
     前記第1隔壁および前記第2隔壁の間は、縁部以外の複数の箇所において固定される
     露光装置。
  8.  前記複数の荷電粒子ビームに対応して設けられ、前記第1隔壁、および前記第2隔壁を貫通して対応する荷電粒子ビームを通す複数の筒状部材を備え、
     前記第1隔壁および前記第2隔壁は、前記複数の筒状部材のそれぞれの両側から押さえられる請求項7に記載の露光装置。
  9.  前記複数の筒状部材のそれぞれは、少なくとも一方の端部からナットがねじ込まれ、
     前記第1隔壁および前記第2隔壁の少なくとも一方は、前記ナットによって押さえられる
     請求項8に記載の露光装置。
  10.  前記第1隔壁および前記第2隔壁を縁部以外の複数の箇所において貫通して両側から押さえる複数の固定部材を更に備える請求項7から9のいずれか一項に記載の露光装置。
  11.  前記複数の固定部材のそれぞれは、前記第1隔壁および前記第2隔壁を貫通するボルトおよび前記ボルトにねじ込まれるナットを有する請求項10に記載の露光装置。
  12.  前記第1隔壁および前記第2隔壁は、縁部以外の複数の箇所において前記第1隔壁および前記第2隔壁の間の空間に設けた部材に対してネジ止めされる請求項7から11のいずれか一項に記載の露光装置。
  13.  前記鏡筒内で前記延伸方向において前記第1隔壁と離間して配置され、前記第1隔壁との間に真空空間が設けられる第3隔壁を更に備え、
     前記第1隔壁は、前記第3隔壁との間に設けられ、前記延伸方向に延伸する第1補強部材によって前記第2隔壁側に押さえられる
     請求項7から12のいずれか一項に記載の露光装置。
  14.  前記複数の電磁光学素子は、前記第1隔壁および前記第2隔壁の間に配置される請求項7から13のいずれか一項に記載の露光装置。
  15.  内部が真空状態となるように減圧される鏡筒と、
     前記鏡筒内に設けられ、前記鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源と、
     前記鏡筒内において前記複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子と、
     前記鏡筒内において前記延伸方向に互いに離間して配置される第1隔壁および第2隔壁と
     を備え、
     前記第1隔壁および前記第2隔壁は、前記鏡筒の前記延伸方向に垂直な断面における一部のみに非真空空間を形成し、残りの部分に真空空間を形成する
     露光装置。
  16.  前記複数の電磁光学素子のそれぞれは、前記第1隔壁および前記第2隔壁により形成される1または複数の前記非真空空間内に配置される請求項15に記載の露光装置。
  17.  一の前記非真空空間は、前記鏡筒の内壁に接し、
     前記1または複数の前記非真空空間のそれぞれには、前記鏡筒の内壁に接し、内部に前記複数の電磁光学素子のうちの少なくとも一部に接続される配線が設けられる請求項16に記載の露光装置。
  18.  複数の非真空空間のそれぞれに対応して、前記第2隔壁と向かい合う複数の前記第1隔壁のそれぞれが設けられ、
     前記第2隔壁は、前記複数の非真空空間が形成されない部分において、前記複数の荷電粒子ビーム源側および前記複数の荷電粒子ビーム源とは反対側の両方に露出する請求項15から17のいずれか一項に記載の露光装置。
  19.  前記第1隔壁および前記第2隔壁の間には、複数の空間が設けられ、
     前記複数の空間のうちの一部は前記非真空空間であり、残りは前記第1隔壁側および前記第2隔壁側の少なくとも一方の真空空間と通じる空間である請求項15から17のいずれか一項に記載の露光装置。
  20.  内部が真空状態となるように減圧される鏡筒と、
     前記鏡筒内に設けられ、前記鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源と、
     前記鏡筒内において前記複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の電磁光学素子と、
     前記鏡筒内に設けられ、前記複数の電磁光学素子に接続される配線と前記複数の荷電粒子ビームのそれぞれを通過させる開口とを有する配線基板と、
     前記配線基板の片面に貼り付けられた第1隔壁と、
     前記配線基板における前記第1隔壁側とは反対側の面に貼り付けられた第2隔壁と
     を備える露光装置。
  21.  鏡筒と、
     前記鏡筒内に設けられ、前記鏡筒の延伸方向に複数の荷電粒子ビームを放出する複数の荷電粒子ビーム源と、
     前記鏡筒内に設けられ、前記複数の荷電粒子ビームを照射する対象となる試料を載置するステージ部と、
     前記鏡筒内において前記複数の荷電粒子ビームのそれぞれに対応して設けられ、各荷電粒子ビームをそれぞれ制御する複数の第1電磁光学素子と、
     前記鏡筒内において前記延伸方向に互いに離間して順に配置される第1隔壁および第2隔壁と、
     前記鏡筒内において前記延伸方向に前記第1隔壁および第2隔壁と離間して配置される第3隔壁と、
     前記鏡筒内における前記第1隔壁および前記第3隔壁の間において、前記複数の荷電粒子ビームが通過する一部の空間を囲む中空部材と、
     前記中空部材の内部の空気を排気して真空状態とする真空ポンプと、
     を備える露光装置。
  22.  前記中空部材は、前記第1隔壁に第1端が接し、前記第1隔壁と前記第1端の間が真空シールによってシーリングされる請求項21に記載の露光装置。
  23.  前記中空部材は、前記第3隔壁に第2端が接し、前記第3隔壁と前記第2端の間が真空シールによってシーリングされる請求項21または22に記載の露光装置。
  24.  前記複数の荷電粒子ビームのそれぞれが通過する空間をそれぞれ囲む複数の前記中空部材を備え、
     前記複数の中空部材のそれぞれは、前記第1隔壁、前記第2隔壁、および前記第3隔壁を貫通する請求項21に記載の露光装置。
PCT/JP2017/014879 2017-04-11 2017-04-11 露光装置 WO2018189816A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/498,394 US10824077B2 (en) 2017-04-11 2017-04-11 Exposure device
KR1020197028029A KR102271664B1 (ko) 2017-04-11 2017-04-11 노광 장치
PCT/JP2017/014879 WO2018189816A1 (ja) 2017-04-11 2017-04-11 露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014879 WO2018189816A1 (ja) 2017-04-11 2017-04-11 露光装置

Publications (1)

Publication Number Publication Date
WO2018189816A1 true WO2018189816A1 (ja) 2018-10-18

Family

ID=63793236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014879 WO2018189816A1 (ja) 2017-04-11 2017-04-11 露光装置

Country Status (3)

Country Link
US (1) US10824077B2 (ja)
KR (1) KR102271664B1 (ja)
WO (1) WO2018189816A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101106B2 (en) * 2017-04-11 2021-08-24 Advantest Corporation Exposure device
CN115427798A (zh) * 2020-04-17 2022-12-02 应用材料公司 检测样品的方法以及多电子束检测系统
KR102557093B1 (ko) * 2022-03-22 2023-07-18 에스케이엔펄스 주식회사 극자외선용 블랭크마스크 및 극자외선용 포토마스크

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118054A (ja) * 2000-10-11 2002-04-19 Nikon Corp 真空チャンバー及びそれを有する露光装置
JP2002352763A (ja) * 2001-05-24 2002-12-06 Ebara Corp 電子線装置及び該装置を用いたデバイス製造方法
JP2005064097A (ja) * 2003-08-08 2005-03-10 Canon Inc 電極基板およびその製造方法、該電極基板を用いた偏向器、ならびに該偏向器を用いた荷電粒子線露光装置
JP2006054240A (ja) * 2004-08-10 2006-02-23 Hitachi High-Technologies Corp マルチ電子ビーム描画装置用デバイスの製造方法
JP2014082327A (ja) * 2012-10-16 2014-05-08 Canon Inc 照射装置、描画装置及び物品の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101861210B1 (ko) * 2010-10-27 2018-05-25 가부시키가이샤 파람 전자 렌즈 및 전자빔 장치
JP4945698B1 (ja) 2010-12-28 2012-06-06 株式会社Param 電子ビーム装置
JP5836838B2 (ja) 2012-02-27 2015-12-24 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP6624482B2 (ja) * 2014-07-29 2019-12-25 俊 保坂 超小型加速器および超小型質量分析装置
JP2017204499A (ja) * 2016-05-09 2017-11-16 株式会社アドバンテスト マルチカラム荷電粒子ビーム露光装置
JP7026502B2 (ja) * 2017-12-26 2022-02-28 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118054A (ja) * 2000-10-11 2002-04-19 Nikon Corp 真空チャンバー及びそれを有する露光装置
JP2002352763A (ja) * 2001-05-24 2002-12-06 Ebara Corp 電子線装置及び該装置を用いたデバイス製造方法
JP2005064097A (ja) * 2003-08-08 2005-03-10 Canon Inc 電極基板およびその製造方法、該電極基板を用いた偏向器、ならびに該偏向器を用いた荷電粒子線露光装置
JP2006054240A (ja) * 2004-08-10 2006-02-23 Hitachi High-Technologies Corp マルチ電子ビーム描画装置用デバイスの製造方法
JP2014082327A (ja) * 2012-10-16 2014-05-08 Canon Inc 照射装置、描画装置及び物品の製造方法

Also Published As

Publication number Publication date
KR102271664B1 (ko) 2021-07-01
US20200064743A1 (en) 2020-02-27
KR20190117738A (ko) 2019-10-16
US10824077B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
JP5484808B2 (ja) 描画装置及び描画方法
US8232712B2 (en) Small electron gun
US6797953B2 (en) Electron beam system using multiple electron beams
US10483088B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
US8884254B2 (en) Charged particle beam writing apparatus
US9508528B2 (en) Method for correcting drift of accelerating voltage, method for correcting drift of charged particle beam, and charged particle beam writing apparatus
JP2013171925A (ja) 荷電粒子線装置、それを用いた物品の製造方法
WO2018189816A1 (ja) 露光装置
US10790113B2 (en) Multi-beam charged particle imaging apparatus
US9190245B2 (en) Charged particle beam writing apparatus, and charged particle beam writing method
JP6480534B1 (ja) 荷電粒子ビーム照射装置及び基板の帯電低減方法
US9336980B2 (en) Electron beam writing apparatus, and method for adjusting convergence half angle of electron beam
KR101922004B1 (ko) 이온 비임 생성을 위한 혁신적인 소스 조립체
WO2018189817A1 (ja) 露光装置
CN115485804A (zh) 使用增强偏转器操纵带电粒子束的装置
KR101229724B1 (ko) 이온 주입기에서 사용하기 위한 이온 소스
US11205557B2 (en) Multi charged particle beam writing apparatus
JP7299206B2 (ja) 電子ビームの照射エリア調整方法および同調整システム、電子ビームの照射領域補正方法、ならびに、電子ビーム照射装置
KR102646592B1 (ko) 하전 입자 빔 장치, 주사 전자 현미경, 및 하전 입자 빔 장치를 작동시키는 방법
JP2014235883A (ja) 電子線装置
US20140264063A1 (en) High brightness electron gun, system using the same, and method of operating thereof
JP4477433B2 (ja) 電子ビーム露光装置及びマルチビーム電子光学系
JP2020140834A (ja) 電子銃及び荷電粒子線装置
JP2001196296A (ja) 荷電粒子ビーム露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028029

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP