WO2018189787A1 - Hand dryer - Google Patents

Hand dryer Download PDF

Info

Publication number
WO2018189787A1
WO2018189787A1 PCT/JP2017/014702 JP2017014702W WO2018189787A1 WO 2018189787 A1 WO2018189787 A1 WO 2018189787A1 JP 2017014702 W JP2017014702 W JP 2017014702W WO 2018189787 A1 WO2018189787 A1 WO 2018189787A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
data
unit
time
frequency
Prior art date
Application number
PCT/JP2017/014702
Other languages
French (fr)
Japanese (ja)
Inventor
国大 成谷
文夫 齋藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17905613.0A priority Critical patent/EP3610764B1/en
Priority to PCT/JP2017/014702 priority patent/WO2018189787A1/en
Priority to JP2019512065A priority patent/JP6818876B2/en
Publication of WO2018189787A1 publication Critical patent/WO2018189787A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/48Drying by means of hot air

Definitions

  • the present invention relates to a hand dryer for drying wet hands.
  • a hand drying device that blows off water droplets by jetting air flow to dry the hand may be used.
  • the hand drying device When a hand is detected in the hand insertion part of the hand drying device, the hand drying device activates the blower and jets an air flow at the hand insertion unit. When the hand is pulled out from the hand insertion portion and the hand is no longer detected, the hand drying device stops the blower.
  • the hand dryer is required to be able to shorten the time from the detection of the hand to the start of the blower. Moreover, the hand dryer is required to reduce standby power when the blower is stopped.
  • Patent Document 1 discloses a blower including a boost converter unit that boosts an AC voltage supplied from an AC power source and converts it into a DC voltage.
  • the blower can be reduced in size and increase in the amount of blown air by boosting in the boost converter unit.
  • Patent Document 2 discloses a technique in which a hand dryer is provided with a clock function and the interval of intermittent driving of the hand detection unit is switched according to a time zone.
  • the hand dryer can reduce standby power while reducing troubles during use of the hand dryer by increasing the drive interval in a time zone in which the frequency of use is low.
  • the blower In the manual drying apparatus including the blower according to the technique of Patent Document 1, when the boost converter unit is operated after the hand is detected, the blower is started for the time required to boost the direct current to a desired voltage value. It will be late. If the step-up converter unit is always operated to enable the blower to be started quickly, standby power of the hand dryer increases.
  • the hand dryer according to the technique of Patent Document 2 requires work for setting a time zone. The hand dryer is required to be able to shorten the time required to start blowing and to reduce standby power.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a hand drying device that can shorten the time required to start blowing and can reduce standby power.
  • a hand drying device sends out a housing including a hand insertion part into which a hand can be inserted and an air flow to be ejected by the hand insertion part.
  • a blower unit a hand detection unit that detects a hand inserted into the hand insertion unit, a power supply unit that includes a booster circuit that boosts a DC voltage, and a drive circuit that receives power supply from the power supply unit and drives the blower unit
  • a control processing unit that controls the operation of the booster circuit based on performance data indicating the presence / absence of hand detection by the hand detection unit.
  • the hand-drying device has an effect that the time required to start blowing can be shortened and standby power can be reduced.
  • FIG. Block diagram showing the functional configuration of the microcontroller shown in FIG. Block diagram showing the hardware configuration of the microcontroller shown in FIG.
  • the flowchart which shows the procedure of the operation
  • FIG. 1 is a perspective view of a hand dryer 1 according to a first embodiment of the present invention.
  • the hand dryer 1 has a housing 3 including a hand insertion portion 2 into which a hand can be inserted.
  • the upper part and both side parts of the manual insertion part 2 are open.
  • the hand insertion part 2 can insert a hand from an upper part and both side parts.
  • the housing 3 forms the entire outer shell of the hand dryer 1.
  • the front part 4 is a part of the housing 3 and is on the front side of the hand insertion part 2.
  • the back part 5 is a part of the housing 3 and is a part on the back side of the hand insertion part 2.
  • the front side is the side where the user who uses the hand dryer 1 is seen from the hand dryer 1.
  • the back side is the side opposite to the front side when viewed from the hand dryer 1.
  • the water receiving part 6 is located at the lowermost part of the hand insertion part 2.
  • the water receiver 6 is provided with a drain outlet for discharging the received water to the drain tank 7.
  • the housing 3 is provided with a drainage channel through which water from the drainage port flows to the drain tank 7. In FIG. 1 and FIG. 2 to be described later, illustration of a drain outlet and a drainage channel is omitted.
  • the drain tank 7 stores water from the drainage channel.
  • the drain tank 7 is provided on the front side of the lower portion of the housing 3.
  • the drain tank 7 is removable from the housing 3.
  • FIG. 2 is a cross-sectional view of the hand dryer 1 taken along the line II-II in FIG.
  • the hand drying device 1 includes a blower 10 that is a blower unit that sends out an air flow to be ejected by the hand insertion unit 2.
  • the blower 10 is provided inside the housing 3.
  • the blower 10 includes a direct current (DC) brushless motor 21 that is a drive source, and a turbo fan 22 that rotates by driving the DC brushless motor 21.
  • DC direct current
  • the nozzle 11 is provided on the surface of the front portion 4 on the hand insertion portion 2 side.
  • the nozzle 12 is provided on the surface of the back surface portion 5 on the hand insertion portion 2 side.
  • the hand drying device 1 causes the air flow that has passed through the duct 13 in the front part 4 from the blower 10 to be ejected from the nozzle 11 at the hand insertion part 2.
  • the hand drying device 1 causes the air insertion unit 2 to inject the air flow that has passed through the duct 14 inside the back surface portion 5 from the blower 10 through the nozzle 12.
  • the hand dryer 1 includes a sensor 15 that is a hand detection unit that detects a hand inserted into the hand insertion unit 2.
  • the sensor 15 is built in the back surface portion 5.
  • One example of the sensor 15 is a distance measuring sensor.
  • the sensor 15 that is a distance measuring sensor includes a light emitting element that emits infrared light and a light receiving element that detects infrared light reflected by a hand that is a measurement object. In FIG. 2, illustration of the light emitting element and the light receiving element is omitted.
  • the sensor 15 detects the presence or absence of a hand in the hand insertion portion 2 based on the angle of infrared light incident on the light receiving element.
  • the sensor 15 may be a sensor other than the distance measuring sensor as long as it can detect the hand inserted into the hand insertion unit 2.
  • the sensor 15 may be built in the front part 4.
  • the intake port 16 is provided at a position on the back side in the lower part of the housing 3.
  • the blower 10 takes in an air flow from the intake port 16 to the duct 17 inside the housing 3 and sends out the air flow from the duct 17 to the ducts 13 and 14.
  • An air filter 18 is attached to the intake port 16 to remove foreign substances from the air flow taken into the duct 17.
  • the hand dryer 1 may include a heater that heats the air flow sent to the ducts 13 and 14.
  • a control unit 20 that controls the entire hand dryer 1 is provided inside the housing 3.
  • the control unit 20 activates the blower 10.
  • the control unit 20 stops the blower 10.
  • FIG. 3 is a diagram showing a configuration of the control unit 20 shown in FIG.
  • the control unit 20 includes a power supply unit 24 including a booster circuit that boosts a DC voltage, a drive circuit 25 that receives power supply from the power supply unit 24 and drives the DC brushless motor 21, and a microcontroller 26 that is a control processing unit. Is provided.
  • the rectifier circuit 31 of the power supply unit 24 is connected to the commercial AC power supply 23.
  • the rectifier circuit 31 outputs a DC voltage by full-wave rectification of the AC voltage from the commercial AC power supply 23.
  • the voltage dividing resistor 32 as voltage detecting means is connected between the DC bus 42 on the positive voltage side and the DC bus 43 on the negative voltage side on the output side of the rectifier circuit 31.
  • the inductor 33, the switching element 34, and the fast recovery diode 35 of the power supply unit 24 constitute a boost converter unit 30 that is a boost circuit.
  • Boost converter unit 30 raises the voltage value of the DC voltage from rectifier circuit 31 to a predetermined voltage value.
  • the inductor 33 is connected to the DC bus 42.
  • the switching element 34 is connected between the DC buses 42 and 43 on the output side of the inductor 33.
  • the switching element 34 is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or IGBT (Insulated Gate Bipolar Transistor) which is a semiconductor element having a switching function.
  • the anode of the fast recovery diode 35 is connected to the output side of the inductor 33.
  • a voltage dividing resistor 36 as voltage detecting means is connected between the DC buses 42 and 43 on the cathode side of the fast recovery diode 35.
  • the smoothing capacitor 37 is connected between the DC buses 42 and 43 on the output side of the voltage dividing resistor 36.
  • the control power supply circuit 38 is connected between the DC buses 42 and 43 on the output side of the smoothing capacitor 37.
  • a resistor 39 serving as a current detecting means is connected between the voltage dividing resistor 32 and the switching element 34 in the DC bus 43.
  • the smoothing capacitor 37 is charged by supplying electric charge from the inductor 33 through the first recovery diode 35.
  • the smoothing capacitor 37 reduces noise by smoothing the voltage.
  • a switching control IC (Integrated Circuit) 40 controls the switching operation of the switching element 34.
  • the switching control IC 40 detects the DC voltage output from the rectifier circuit 31 with the voltage dividing resistor 32.
  • the switching control IC 40 detects the current from the inductor 33 with the resistor 39.
  • the switching control IC 40 detects the voltage output from the boost converter unit 30 by the voltage dividing resistor 36.
  • the switching control IC 40 controls the operation of the switching element 34 based on these detection results, thereby matching the phase of the voltage and the phase of the current after rectification.
  • the switching control IC 40 functions as a power factor correction circuit that suppresses the generation of harmonic current components by adjusting the voltage phase and the current phase to coincide with each other to bring the power factor of the power supply unit 24 close to 1.
  • Boost converter unit 30 functions as an active filter for suppressing harmonic current components. Furthermore, the switching control IC 40 performs adjustment so that the voltage value from the boost converter unit 30 becomes a desired voltage value by controlling the operation of the switching element 34.
  • the control power supply circuit 38 supplies power to the drive circuit 25, the microcontroller 26, and the switching control IC 40.
  • the switching element 41 is a semiconductor element having a switching function, and is a bipolar transistor. The switching element 41 is connected to the microcontroller 26, the control power supply circuit 38 and the switching control IC 40.
  • the microcontroller 26 supplies a current to the base of the switching element 41 to turn on the switching element 41.
  • the power of the control power supply circuit 38 is supplied to the switching control IC 40.
  • the switching control IC 40 turns on the switching element 34 when power is supplied.
  • the boost converter unit 30 starts the boost operation.
  • control power supply circuit 38 supplies power to drive circuit 25.
  • the drive circuit 25 drives the DC brushless motor 21 when power is supplied.
  • the microcontroller 26 controls on / off of the boosting operation of the boost converter unit 30 by switching the switching element 41 on and off. Further, the microcontroller 26 performs feedback control of the drive circuit 25.
  • FIG. 4 is a diagram illustrating a configuration of the control unit 20 according to the modification of the first embodiment.
  • the microcontroller 26 controls the switching operation of the switching element 34.
  • the microcontroller 26 detects the DC voltage output from the rectifier circuit 31 with the voltage dividing resistor 32.
  • the microcontroller 26 detects the current from the inductor 33 with the resistor 39.
  • the microcontroller 26 detects the voltage output from the boost converter unit 30 by the voltage dividing resistor 36.
  • the microcontroller 26 controls the operation of the switching element 34 based on these detection results, thereby matching the phase of the voltage and the phase of the current after rectification.
  • the microcontroller 26 performs adjustment so that the voltage value from the boost converter unit 30 becomes a desired voltage value by controlling the operation of the switching element 34.
  • the microcontroller 26 controls on / off of the boost operation of the boost converter unit 30 by switching the switching element 34 on and off.
  • FIG. 5 is a block diagram showing a functional configuration of the microcontroller 26 shown in FIG.
  • the microcontroller 26 is an input unit 51 that is a functional unit that receives an input from the sensor 15, a control calculation unit 52 that is a functional unit that performs control and calculation of the entire microcontroller 26, and a functional unit that stores data. And a storage unit 53.
  • the control calculation unit 52 includes a storage processing unit 54 that is a functional unit that executes processing for storing actual data regarding hand detection, a timer 55 that is a functional unit that measures time, and a boosting voltage of the boosting converter unit 30.
  • a boost control unit 56 that is a functional unit for controlling the operation.
  • the storage unit 53 includes a performance data storage unit 57 that is a functional unit that stores performance data by the processing of the storage processing unit 54, and a parameter storage unit 58 that stores various parameters for controlling the boosting operation.
  • the function of the microcontroller 26 is executed on a program analyzed and executed by the microcontroller 26. Note that some of the functions of the microcontroller 26 may be executed on hardware by wired logic.
  • FIG. 6 is a block diagram showing a hardware configuration of the microcontroller 26 shown in FIG.
  • the microcontroller 26 includes a CPU (Central Processing Unit) 61 that executes various processes, a ROM (Read Only Memory) 62 that is a nonvolatile memory, a RAM (Random Access Memory) 63 that includes a program storage area and a data storage area, , An EEPROM (Electrically Erasable Programmable Read Only Memory) 64, which is a rewritable nonvolatile memory, and an input interface (I / F) 65.
  • Each unit shown in FIG. 6 is connected to each other via a bus 66.
  • the ROM 62 stores programs for various processes.
  • the program is loaded into the RAM 63.
  • the CPU 61 develops a program in the program storage area in the RAM 63 and executes various processes.
  • the data storage area in the RAM 63 is a work area for executing various processes.
  • the EEPROM 64 stores various data.
  • the function of the control calculation unit 52 shown in FIG. 5 is realized using the CPU 61.
  • the function of the storage unit 53 is realized using the EEPROM 64.
  • the function of the input unit 51 is realized using the input I / F 65.
  • the microcontroller 26 may include a built-in memory other than the EEPROM 64.
  • the function of the storage unit 53 may be realized using an internal memory.
  • the step-up control unit 56 of the microcontroller 26 turns on the step-up operation when the sensor 15 detects a hand when the step-up operation of the step-up converter unit 30 is off.
  • the boost control unit 56 turns off the boost operation when the sensor 15 stops detecting the hand.
  • the boost control unit 56 also has the boost converter unit 30 based on the record data stored in the record data storage unit 57 shown in FIG. 5 while waiting for the hand to be detected by the sensor 15. Enables control to turn on the boost operation.
  • the microcontroller 26 increases the pressure when waiting for hand detection by the sensor 15 in the second cycle period after the first cycle period. The operation of the converter unit 30 is controlled.
  • the actual data is data representing the actual presence / absence of hand detection by the sensor 15.
  • the storage processing unit 54 of the microcontroller 26 shown in FIG. 5 converts the presence / absence of hand detection in unit time, which is a preset time, into data based on the detection result of the sensor 15, and uses time-series data.
  • a certain result data is accumulated in the result data storage unit 57.
  • the unit time is 10 seconds.
  • the step-up control unit 56 controls the step-up operation of the step-up converter unit 30 based on performance data in a preset cycle period. In the first embodiment, the cycle period is 24 hours.
  • a parameter indicating the cycle period and a parameter indicating the unit time are stored in the parameter storage unit 58. Note that the length of the unit time and the length of the cycle period can be arbitrarily set.
  • the boost control unit 56 grasps the time when the hand is detected in the past cycle period which is the first cycle period from the actual data, and at the time of standby in the current cycle period which is the second cycle period. The time for turning on the boosting operation and the time for turning off the boosting operation are determined.
  • the microcontroller 26 controls the step-up operation during standby based on the usage record of the hand dryer 1 in the past cycle.
  • the microcontroller 26 turns on the boosting operation when the same time as the time when the hand dryer 1 was used in the past cycle period is near. Further, the microcontroller 26 turns off the boosting operation in the same time zone as the time zone in which the hand dryer 1 is not used in the past cycle period.
  • the hand dryer 1 can reduce standby power as compared with the case where the boosting operation is always on during the entire cycle period. Moreover, since the use of the hand dryer 1 is expected when the time when the hand dryer 1 has been used in the past is approaching, the hand dryer 1 turns on the boosting operation. When the use of the hand dryer 1 is expected, the hand dryer 1 can stand by in a state where air blowing can be started immediately.
  • FIG. 7 is a diagram for explaining the control of the boosting operation during standby by the hand dryer 1 according to the first embodiment.
  • FIG. 7 shows a time chart of actual data in the past cycle period C-1 that is the first cycle period and a time chart of the state of the boosting operation in the current cycle period C0 that is the second cycle period. Show.
  • the time axis representing the time T-1 of the cycle period C-1 and the time axis representing the time T0 of the current cycle period C0 are shown by matching the same time with different dates. Note that “ ⁇ 1” in the cycle period “C-1” indicates a cycle period immediately before the cycle period “C0”.
  • the rising edge of the time chart represents “1” of the actual data
  • the falling edge represents “0” of the actual data.
  • the rising edge of the time chart represents a state where the boosting operation is on.
  • the falling edge of the time chart represents a state where the boosting state is OFF.
  • the microcontroller 26 turns on the boosting operation at a time earlier by the parameter ⁇ than the same time t1 in the cycle period C0.
  • the parameter ⁇ is a start parameter for setting at the start of the boost operation.
  • the parameter ⁇ is a predetermined time set to 120 seconds.
  • the microcontroller 26 turns off the boosting operation at a time later by the parameter ⁇ from the time t1.
  • the parameter ⁇ is an end parameter for setting at the end of the boosting operation.
  • the parameter ⁇ is a predetermined time set in advance and is 120 seconds.
  • the parameter ⁇ and the parameter ⁇ are stored in the parameter storage unit 58 shown in FIG. Note that the value of the parameter ⁇ and the value of the parameter ⁇ can be arbitrarily set.
  • the microcontroller 26 controls the boosting operation on and off at each time t2, t3, t4, t5, and t6 when the hand is detected.
  • Each unit time at time t3 and time t4 is the time earlier by parameter ⁇ from time t4 before parameter ⁇ elapses from time t3.
  • the microcontroller 26 continues the state in which the step-up operation is turned on from the time earlier by the parameter ⁇ than the time t3 to the time later by the parameter ⁇ than the time t4.
  • FIG. 8 is a flowchart showing an operation procedure for storing the record data in the microcontroller 26 shown in FIG.
  • the microcontroller 26 executes the operation shown in FIG. 8 when the actual data is not stored in the actual data storage unit 57 when the hand dryer 1 is turned on.
  • the microcontroller 26 may execute the operation shown in FIG. 8 even when updating the performance data.
  • the microcontroller 26 may always accumulate the performance data when the power of the hand dryer 1 is turned on.
  • the microcontroller 26 starts counting by the timer 55 in step S1.
  • timer 55 continues to count at 1 second intervals.
  • the storage processing unit 54 monitors the presence or absence of hand detection by the sensor 15 while referring to the count value representing the number of counts by the timer 55.
  • step S ⁇ b> 2 the storage processing unit 54 determines whether or not the time from the start of the count has reached a unit time of 10 seconds based on the count value of the timer 55.
  • step S2: No the microcontroller 26 continues to count the time in the timer 55 until the time from the start of the count reaches the unit time.
  • step S2 the storage processing unit 54 sends data indicating the presence or absence of hand detection within the unit time to the result data storage unit 57 in step S3. Store. If no hand is detected within the unit time, the storage processing unit 54 writes “0” to the data storage location for the unit time in the result data storage unit 57. If a hand is detected within the unit time, the storage processing unit 54 writes “1” to the data storage location for the unit time in the result data storage unit 57.
  • the storage processing unit 54 resets the count value of the timer 55 in step S4.
  • the storage processing unit 54 refers to the cycle period parameter stored in the parameter storage unit 58, and determines whether or not the storage of the record data for the cycle period is completed.
  • step S5 If the storage of performance data for the cycle period has not been completed (step S5: No), the microcontroller 26 returns to step S1 and continues the operation for obtaining data for the next unit time.
  • step S5: Yes the microcontroller 26 ends the operation for storing the record data.
  • the microcontroller 26 may continue the operation for storing the result data for the next cycle period after the storage of the result data for one cycle period is completed.
  • FIG. 9 is a diagram illustrating an example of the result data stored in the result data storage unit 57 illustrated in FIG. 5 and the parameters stored in the parameter storage unit 58.
  • the data number is a number representing the order of unit times in the time series of the result data. In the example shown in FIG. 9, the data numbers are allocated every 10 seconds, which is a unit time, in 24 hours, which is the cycle period C-1 when the actual data is acquired.
  • (I) indicating the data number is an integer from 1 to 8640.
  • the detection data is data indicating the presence / absence of hand detection per unit time. The detection data “0” indicates that no hand is detected in the unit time. The detection data “1” indicates that a hand has been detected in a unit time.
  • a fixed value of 120 seconds is set for both the parameter ⁇ and the parameter ⁇ .
  • unit time start point T-1 (i) “step-up operation start time T0on (i)”, and “step-up operation end time T0off (i)” shown in FIG. It is assumed that the parameters are calculated in the process and are not stored in the storage unit 53.
  • the unit (s) of each parameter of ⁇ , ⁇ , T-1 (i), T0on (i), and T0off (i) shown in FIG. 9 represents seconds.
  • T-1 (i), T0on (i), and T0off (i) represent each time by the time elapsed from the start point of the cycle period of the actual data.
  • the microcontroller 26 determines a start time T0on (i) that is a timing for starting the boosting operation of the boosting converter unit 30 based on the data number of the detection data “1” indicating that the hand has been detected. Further, the microcontroller 26 determines an end time T0off (i), which is a timing at which the boosting operation of the boosting converter unit 30 is terminated, based on the data number of the detection data “1” indicating that the hand has been detected. .
  • the boost control unit 56 of the microcontroller 26 determines the start point T-1 (i) of the unit time at which the detection data is “1” in each unit time. calculate. In the example shown in FIG. 9, for the data number “119” whose detection data is “1”, T-1 (119), which is the start point of the unit time, is calculated as 1180 seconds.
  • the boost control unit 56 adds the parameter ⁇ to the start point T-1 (i) of the unit time for the past cycle period C-1, thereby to end the boost operation end time T0off (for the current cycle period C0). i) is determined.
  • the boost control unit 56 turns off the boost of the boost converter unit 30 at the calculated end time T0off (i).
  • T-1 (5) which is the start point of the unit time
  • T0on (5) Is calculated as minus 80 seconds.
  • the boost control unit 56 may start the boost operation 80 seconds before the start point of the current cycle period C0, or may start the boost operation from the start point of the cycle period C0.
  • FIG. 10 and FIG. 11 are flowcharts showing the control procedure of the boosting operation by the hand dryer 1 of the first embodiment.
  • step S11 the hand dryer 1 is turned on by connection to the commercial AC power source 23 shown in FIG.
  • step S12 the hand dryer 1 enters a standby state with the boost operation of the boost converter unit 30 turned off.
  • the hand dryer 1 operates the blower 10 by turning on the pressure increasing operation at any time when the sensor 15 detects the hand.
  • Step S12 and subsequent steps show the operation procedure in a standby state in which no hand is detected by the sensor 15.
  • step S13 the boost control unit 56 shown in FIG. 5 determines whether or not the actual data is stored in the actual data storage unit 57.
  • step S13: No the microcontroller 26 acquires the actual data by executing an operation according to the procedure shown in FIG. 8 in step S14.
  • the microcontroller 26 stores the acquired result data in the result data storage unit 57.
  • step S13: Yes the result data is stored in the result data storage unit 57
  • step S14 the hand drying apparatus 1 advances the procedure to step S15.
  • step S15 the boost control unit 56 determines whether or not the current time has reached the start time of the cycle period C-1 of the performance data. If the current time has not reached the start time of the cycle period C-1 (step S15: No), the microcontroller 26 waits until the current time reaches the start time of the cycle period C-1. When the current time reaches the start time of the cycle period C-1 (step S15: Yes), the microcontroller 26 starts counting by the timer 55 in step S16. The time when the counting is started in step S16 is the start point of the current cycle period C0.
  • step S19 the boost control unit 56 refers to the count value of the timer 55 and determines whether or not the current time Tnow has reached the start time T0on (Xn) calculated in step S18. That is, the boost control unit 56 determines whether or not the relationship of the following equation (2) is satisfied.
  • the time Tnow is a variable that changes with the passage of time. Tnow ⁇ T0on (Xn) (2)
  • step S19: No If the current time Tnow has not reached the start time T0on (Xn) (step S19: No), the microcontroller 26 waits until the current time Tnow reaches the start time TC0on (Xn). When the current time Tnow reaches the start time TC0on (Xn) (step S19: Yes), the boost control unit 56 turns on the boost operation of the boost converter unit 30 in step S20.
  • the boost control unit 56 reads the parameter ⁇ from the parameter storage unit 58.
  • step S21 the boost control unit 56 adds the parameter ⁇ to the start point T-1 (Xn) of the unit time for the data number “Xn” set in step S17, so that the boost operation end time T0off (Xn ) That is, the boost control unit 56 calculates T0off (Xn) that satisfies the relationship of the following expression (3).
  • T0off (Xn) T-1 (Xn) + ⁇ (3)
  • step S22 the boost control unit 56 refers to the count value of the timer 55 and determines whether or not the current time Tnow has reached the end time T0off (Xn). That is, the boost control unit 56 determines whether or not the relationship of the following equation (4) is satisfied. Tnow ⁇ T0off (Xn) (4)
  • step S22 When the current time Tnow reaches the end time T0off (Xn) (step S22: Yes), the boost control unit 56 turns off the boost operation of the boost converter unit 30 in step S23. In step S24, the boost control unit 56 determines whether or not the processing for controlling the boost operation has been completed for all the data numbers of the detection data “1” in the performance data.
  • the boost control unit 56 subtracts the parameter ⁇ from the start point T-1 (Xn + 1) of the unit time for the data number “Xn + 1” set in step S25, thereby starting the boost operation start time T0on ( Xn + 1). That is, the boost control unit 56 calculates T0on (Xn + 1) that satisfies the relationship of the following equation (5).
  • T0on (Xn + 1) T-1 (Xn + 1) - ⁇ (5)
  • step S28 the boost control unit 56 refers to the count value of the timer 55 and determines whether or not the current time Tnow has reached the start time T0on (Xn + 1) calculated in step S26. That is, the boost control unit 56 determines whether or not the relationship of the following formula (6) is satisfied. Tnow ⁇ T0on (Xn + 1) (6)
  • step S28: No If the current time Tnow has not reached the start time T0on (Xn + 1) (step S28: No), the boost control unit 56 returns the procedure to step S22 for the data number “Xn”.
  • step S29 the boost control unit 56 updates the data number “Xn” while keeping the boost operation on. To do.
  • step S29 the data number “Xn” is set to the same data number as the data number “Xn + 1” set in step S26.
  • step S24 when the processing for all the data numbers has been completed (step S24: Yes), the microcontroller 26 ends the control of the boosting operation based on the result data.
  • the boost control unit 56 sets the data number “Xn” to “5”,... “119”, “121”, “122”. ⁇ ⁇ Update it.
  • the microcontroller 26 turns on the boosting operation by the interruption process and operates the blower 10 when the hand is detected by the sensor 15 during the execution of the processes after step S12. If the timer 55 is counting, the microcontroller 26 continues counting during the interrupt processing.
  • the microcontroller 26 may accumulate the result data based on the detection result of the hand by the sensor 15 for the current cycle period C0 in which the step-up operation during standby is controlled.
  • the microcontroller 26 may store the actual data accumulated in the current cycle period C0 together with the past actual data, or may overwrite the past actual data.
  • the microcontroller 26 may continue the process based on the performance data for the current cycle period C0 after the process according to the procedure shown in FIGS.
  • the microcontroller 26 controls the boosting operation in the cycle period next to the cycle period C0.
  • the microcontroller 26 may continuously perform the control of the boosting operation with the cycle period of 24 hours and the accumulation of the result data.
  • the microcontroller 26 may accumulate the performance data by always turning on the boosting operation in the first cycle period among the continuous cycle periods, and may control the boosting operation in the second and subsequent cycle periods.
  • the hand drying device 1 controls the boosting operation of the boosting converter unit 30 based on the record data indicating the record of presence / absence of hand detection.
  • the hand dryer 1 starts the pressure increasing operation at the start time set based on the time when the hand is detected in the past cycle period.
  • the hand drying device 1 can stand by in a state where air blowing can be started immediately.
  • the hand dryer 1 can reduce standby power by not performing the boosting operation at other times.
  • the hand dryer 1 controls the boosting operation based on the record data accumulated in the microcontroller 26. Since the hand dryer 1 does not need to set a time zone for performing the pressure increasing operation in the standby state, it can eliminate the need for complicated input operations for the setting conditions.
  • the hand dryer 1 can have a simple configuration by eliminating the need for an input operation for a time zone and a means for displaying the input content.
  • the hand drying device 1 has an effect that the time required to start blowing can be shortened and standby power can be reduced.
  • FIG. FIG. 12 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the second embodiment of the present invention.
  • the hand dryer 1 according to the second embodiment uses the start time parameter and the end time parameter determined based on the frequency of the detection data “1” indicating that the hand is detected by the sensor 15.
  • the start time and end time of the boosting operation are set.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the frequency F which is the first frequency, represents the number of detection data “1” included in the first determination period.
  • the first determination period is a period set by dividing from the first cycle period, which is the cycle period of the performance data. In one example, the first determination period is 1 hour.
  • the criterion for the frequency classification “low” is that the frequency F is 9 or less.
  • the criterion of the frequency classification “medium” is that the frequency F is 10 or more and 20 or less.
  • the criterion for the frequency classification “high” is that the frequency F is 21 or more.
  • the parameter ⁇ which is a start time parameter, is set to increase in value such as 60 seconds, 120 seconds, and 180 seconds.
  • the value of the parameter ⁇ which is an end parameter, is the same as the value of the parameter ⁇ .
  • the parameter storage unit 58 shown in FIG. 5 stores the value of the parameter ⁇ and the value of the parameter ⁇ set for each frequency classification. Note that the length of the first determination period can be arbitrarily set.
  • the number of frequency classifications is not limited to three, and may be two or four or more.
  • the frequency classification criteria can be arbitrarily set. It is assumed that the values of the parameters ⁇ and ⁇ for each frequency classification can be arbitrarily set.
  • FIG. 13 is a diagram showing an example of the result data stored in the result data storage unit 57 shown in FIG. 5 and the parameters stored in the parameter storage unit 58.
  • the frequency F shown in FIG. 13 is a parameter calculated in the process of calculation in the microcontroller 26 and is not stored in the storage unit 53.
  • the microcontroller 26 uses the parameter ⁇ determined based on the frequency F of the detection data “1” in the first determination period to obtain a start time that is a timing for starting the boost operation of the boost converter unit 30. In addition, the microcontroller 26 uses the parameter ⁇ determined based on the frequency F of the detection data “1” in the first determination period, and sets an end time that is a timing for ending the boost operation of the boost converter unit 30. Ask.
  • Detection data from data numbers “1” to “360” is detection data indicating whether or not a hand is detected in the first determination period, which is one hour from the start point of the cycle period C-1. It is assumed that 21 detection data “1” indicating that a hand has been detected is included in the detection data from the data numbers “1” to “360”.
  • the boost control unit 56 illustrated in FIG. 5 determines that the frequency classification of the detection data “1” in the first determination period is “high” based on the criterion illustrated in FIG. 12.
  • the boosting control unit 56 determines the parameter ⁇ and the parameter ⁇ from the data numbers “1” to “360” as 180 seconds based on the determination of the frequency classification “high”. In the first determination period for other data numbers, the boost control unit 56 also sets the parameter ⁇ and the parameter ⁇ based on the frequency classification, as in the case of the first determination period from the data numbers “1” to “360”. The parameter ⁇ is determined.
  • the hand dryer 1 uses the parameter ⁇ and the parameter ⁇ determined based on the frequency with which the hand is detected, so that the hand dryer 1 is used based on the frequency with which the hand dryer 1 is used.
  • the start time and end time of the boost operation can be set.
  • the hand dryer 1 can lengthen the period of the boosting operation as it is expected to be used at a high frequency, and can shorten the period of the boosting operation when the frequency of use is expected to be low. Thereby, the hand dryer 1 can control a pressure
  • FIG. FIG. 14 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the third embodiment of the present invention.
  • the hand drying apparatus 1 according to the third embodiment is based on the second frequency, which is the frequency of hand detection in the second cycle period in which the pressure increasing operation during standby of hand detection is controlled. Change parameters and exit parameters.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the classification of “low”, “medium”, and “high” shown in FIG. 14 is the same as the classification shown in FIG. 12 of the second embodiment.
  • the second determination period is a period of 20 minutes set by division from the current cycle period which is the second cycle period.
  • the second determination period is 20 minutes from the time corresponding to the start point of the first determination period in the second embodiment.
  • the frequency Fn which is the second frequency, represents the number of times that a hand has been detected in the second determination period.
  • the boost control unit 56 shown in FIG. 5 changes the parameters ⁇ and ⁇ determined from the performance data based on the frequency Fn.
  • the values of the parameters ⁇ and ⁇ determined from the actual data may be referred to as reference values.
  • the reference values are the values of the parameters ⁇ and ⁇ shown in FIG. Note that the length of the second determination period can be arbitrarily set.
  • the parameter ⁇ which is a start parameter, is set to 60 seconds, which is the same value as the reference value.
  • the parameter ⁇ is set to 120 seconds, which is a value larger than the reference value.
  • the boost control unit 56 changes the parameter ⁇ from the reference value of 60 seconds to 120 seconds.
  • the microcontroller 26 has the frequency Fn of 4 or more when the frequency classification based on the performance data is “low”. It is determined that the use frequency of the drying apparatus 1 has increased, and adjustment is performed to lengthen the period of the boosting operation.
  • the parameter ⁇ is set to 120 seconds, which is the same value as the reference value.
  • the parameter ⁇ is set to 60 seconds, which is a value smaller than the reference value.
  • the boost control unit 56 changes the parameter ⁇ from the reference value of 120 seconds to 60 seconds.
  • the microcontroller 26 performs manual drying in the current cycle compared to the cycle in the performance data because the frequency Fn is 3 or less when the frequency classification based on the performance data is “medium”. It is determined that the frequency of use of the device 1 has become low, and adjustment that shortens the period of the boosting operation is made possible.
  • the value of the parameter ⁇ for each range of the frequency Fn is set.
  • the value of the parameter ⁇ which is an end parameter, is the same as the value of the parameter ⁇ .
  • the parameter storage unit 58 shown in FIG. 5 stores a preset value of the parameter ⁇ and a value of the parameter ⁇ .
  • standard for changing the value of parameter (alpha) and (beta) from a reference value shall be set arbitrarily.
  • the values of the parameters ⁇ and ⁇ for each range of the frequency Fn can be arbitrarily set.
  • FIG. 15 is a diagram showing an example of the result data stored in the result data storage unit 57 shown in FIG. 5 and the determined parameters.
  • the frequency Fn shown in FIG. 15 is a parameter calculated in the process of calculation in the microcontroller 26 and is not stored in the storage unit 53.
  • the boosting control unit 56 is the second determination period of 20 minutes corresponding to the data numbers “1” to “120” among the 1 hours corresponding to the data numbers “1” to “360” in the current cycle period.
  • Parameters ⁇ and ⁇ are 180 seconds.
  • the boost control unit 56 monitors the frequency Fn, which is the number of unit times in which the hand is detected in such 20 minutes.
  • Fn the frequency of unit times in which the hand is detected in such 20 minutes.
  • the step-up control unit 56 changes the parameters ⁇ and ⁇ from 180 seconds to 120 seconds.
  • the step-up control unit 56 sets the parameters ⁇ and ⁇ to 120 seconds in 40 minutes corresponding to the data numbers “121” to “360”.
  • the microcontroller 26 determines that the current frequency of use of the hand dryer 1 has changed from the frequency Fn compared to the cycle period of the performance data, and changes the period of the boosting operation.
  • the boost control unit 56 changes the parameters ⁇ and ⁇ based on the frequency Fn in the same manner as the data numbers “1” to “360” for the data numbers “361” and thereafter.
  • the hand dryer 1 can change the parameters ⁇ and ⁇ obtained from the result data based on the frequency of hand detection in the current cycle period. Thereby, the hand dryer 1 can control a pressure
  • the hand dryer 1 omits the determination of the frequency classification “low”, “medium”, and “high” from the past performance data, and detects the hand in the current cycle period.
  • the parameters ⁇ and ⁇ may be determined based on the frequency.
  • FIG. FIG. 16 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the fourth embodiment of the present invention.
  • the hand drying device 1 according to the fourth embodiment uses the result of the hand detection in the current cycle period, which is the second cycle period for controlling the pressure increasing operation at the time of hand detection standby, as the result data. Based on this, the boosting operation is stopped.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 16 shows a time chart of the actual data in the past cycle period C-1, and a time chart of the hand detection result and the state of the boosting operation in the current cycle period C0.
  • the time axis representing the time T-1 of the cycle period C-1 and the time axis representing the time T0 of the current cycle period C0 are shown by matching the same time with different dates.
  • the boost control unit 56 shown in FIG. 5 stops the boost operation based on the result data when no hand is detected in the first determination period in the current cycle period C0.
  • the first determination period is 1 hour. Note that the length of the first determination period can be arbitrarily set.
  • the boost control unit 56 is based on the past data in the past cycle period C-1 as in the case of the first embodiment.
  • the boosting operation is controlled on and off.
  • the boost control unit 56 waits in the first determination period H2 next to the first determination period H1.
  • the step-up operation in the state is always turned off.
  • the boost control unit 56 determines that the frequency of use of the hand dryer 1 has significantly decreased compared to the past cycle period when there has been no hand detection in the first determination period.
  • the boosting operation based on the actual data is stopped.
  • the boost control unit 56 always turns off the boost operation in the standby state in the cycle period C0 after the first determination period H2.
  • the microcontroller 26 can reduce standby power in a situation where the frequency of use of the hand dryer 1 is significantly lower than that in the normal cycle period by always turning off the boosting operation in the standby state in the cycle period C0. Note that, after the first determination period H2, the boost control unit 56 resumes the control of the boost operation based on the actual data of the cycle period C-1 when a hand is detected in the cycle period C0.
  • the boost control unit 56 determines that in the cycle period C-1 in the cycle period C1 next to the cycle period C0. The control of the boosting operation based on the result data is resumed. In the cycle period C1, if there is a first determination period in which no hand is detected, the boost control unit 56 always turns off the boost operation in the standby state even in the cycle period C1.
  • the frequency of use of the hand dryer 1 is equal to the frequency of use in the cycle period C-1 up to the previous day. It can be significantly lower than that.
  • the boosting control unit 56 can reduce wasteful standby power on closed days by always turning off the boosting operation in the standby state in the cycle period C0.
  • the boost control unit 56 is not limited to the case where the number of unit times in which the hand is detected in the first determination period is not once, but when the number of unit times is equal to or less than a preset threshold value.
  • the boosting operation based on the result data may be stopped.
  • the microcontroller 26 can reduce standby power in a situation where the frequency of use of the hand dryer 1 is extremely low.
  • the boosting control unit 56 can stop the boosting operation in the standby state when the hand dryer 1 is slightly used on a facility holiday. Further, after stopping the boosting operation in the standby state, the boosting control unit 56 may restart the boosting operation in the standby state when the number of unit times in which a hand is detected exceeds a threshold value.
  • the threshold value may be set by an operation on an input unit provided in the hand dryer 1. Note that the input means is not shown.
  • the hand dryer 1 according to the fourth embodiment may determine the timing for starting and ending the boosting operation, as in the second or third embodiment.
  • the hand dryer 1 stops the pressure increasing operation based on the result data based on the hand detection result in the current cycle period.
  • the hand dryer 1 can reduce standby power in a situation where the frequency of use of the hand dryer 1 is extremely low.
  • Embodiment 5 FIG.
  • the same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the result data storage unit 57 shown in FIG. 5 stores the result data for a plurality of cycle periods.
  • FIG. 17 is a flowchart for explaining the control of the boosting operation by the hand dryer 1 according to the fifth embodiment of the present invention.
  • the microcontroller 26 shown in FIG. 5 performs the accumulation of the actual data of seven cycle periods C0, C1, C2,... C6 and the control of the boosting operation based on the accumulated actual data. To do.
  • step S31 the microcontroller 26 accumulates the first result data that is the result data in the first cycle period C0 that is the first cycle period.
  • the microcontroller 26 accumulates and stores the first accumulation data by the same procedure as that shown in FIG.
  • step S32 the microcontroller 26 controls the boosting operation in the second cycle period C1 based on the first accumulated data stored in step S31.
  • the microcontroller 26 controls the boosting operation according to a procedure similar to that shown in FIGS.
  • the microcontroller 26 accumulates second performance data, which is performance data in the second cycle period C1, simultaneously with the control of the boosting operation.
  • the microcontroller 26 accumulates and stores the second accumulated data by the same procedure as that shown in FIG.
  • step S33 the microcontroller 26 controls the boosting operation in the third cycle period C2 based on the first accumulated data and the second accumulated data stored up to step S32.
  • the boost control unit 56 shown in FIG. 5 may calculate an average value of the frequency F shown in FIG. 13 for each first determination period from the first accumulation data and the second accumulation data.
  • the boost control unit 56 determines a start parameter and an end parameter based on the average value of the frequency F.
  • the boost control unit 56 determines the start time parameter and the end time parameter by the same method as in the second embodiment.
  • the boost control unit 56 sets the start time and end time of the boost operation in the third cycle period C2 using the determined start time parameter and end time parameter.
  • step S33 the microcontroller 26 accumulates third performance data that is performance data in the third cycle period C2 simultaneously with the control of the boosting operation.
  • the microcontroller 26 accumulates and stores the third accumulation data by the same procedure as that shown in FIG.
  • step S34 the microcontroller 26 controls the boosting operation from the fourth cycle period to the seventh cycle periods C3, C4, C5, and C6 in the same manner as the third cycle period C2. Further, the microcontroller 26 performs the same operation as the third cycle period C2 to the fourth actual data from the fourth cycle period to the seventh cycle periods C3, C4, C5, C6 to the seventh actual period data. Accumulate actual data. Thereby, the microcontroller 26 finishes accumulating the actual data of the seven cycle periods C0, C1, C2,... C6 and the control of the boosting operation based on the accumulated actual data.
  • the microcontroller 26 performs the boosting operation based on the average value of the frequency F calculated from the first to sixth performance data. Set the start time and end time.
  • the microcontroller 26 can grasp the tendency of the frequency of use of the hand dryer 1 with high accuracy by using the result data accumulated in the past plural cycle periods.
  • the hand-drying device 1 can reduce the useless boosting operation by enabling the boosting operation to be controlled based on the grasped usage frequency tendency. Thereby, the hand dryer 1 can effectively reduce standby power.
  • the microcontroller 26 may stop the boosting operation based on the performance data when the hand detection in the first determination period is extremely low.
  • the microcontroller 26 may exclude the performance data of the cycle period in which the boosting operation is stopped when calculating the average value of the frequency F.
  • the microcontroller 26 can calculate the average value of the frequency F by excluding the actual data on closed days. Thereby, the microcontroller 26 can grasp the tendency of the usage frequency of the hand dryer 1 with higher accuracy.
  • the microcontroller 26 is not limited to executing the accumulation of the performance data in the seven cycle periods and the control of the boosting operation based on the accumulated performance data.
  • the microcontroller 26 may perform performance data accumulation and boost operation control for less than seven or more than seven cycle periods.
  • the microcontroller 26 may execute the accumulation of the actual data for each day in one month and the control of the boosting operation based on the accumulated actual data.
  • the microcontroller 26 may control the boosting operation by calculating an average value of the frequency F for each day of the week.
  • the microcontroller 26 can calculate the average value for each day of the week by using the performance data every seven cycle periods. Further, the microcontroller 26 may calculate the average value of the frequency F based on all the actual data other than the actual data on the closed days.
  • the microcontroller 26 may execute accumulation of the actual data for each day in one year and control of the boosting operation based on the accumulated actual data. Also in this case, the microcontroller 26 may calculate the average value of the frequency F for each day of the week and control the boosting operation. The microcontroller 26 may control the boosting operation by calculating an average value of the frequency F every month or every season. The microcontroller 26 can control the boosting operation in response to a change in the usage frequency during the year. In one example, the microcontroller 26 can control the step-up operation by grasping a closed period set in the year. The hand dryer 1 according to the fifth embodiment may determine the timing for starting and ending the boosting operation, as in the second or third embodiment.
  • the hand dryer 1 accumulates performance data for a plurality of cycle periods, and controls the boosting operation based on the accumulated performance data. Thereby, the hand dryer 1 can grasp
  • Embodiment 6 FIG.
  • a period from when the power to the hand dryer 1 is turned on to when the power is turned off is defined as a cycle period.
  • the cycle period in which the result data is accumulated and the cycle period in which the boosting operation is controlled based on the result data are the period from when the power to the hand dryer 1 is turned on to when the power is turned off. is there.
  • the hand dryer 1 according to the sixth embodiment enables accumulation of performance data and control of the boosting operation as in the first to fifth embodiments except that the method for setting the cycle period is different.
  • the cycle period is the time from on to off of the commercial AC power supply 23 shown in FIG.
  • the hand dryer 1 may be turned on at the same time every day or at the same time period, and may be turned off at the same time every day or at the same time period. In one example, the power is turned on at 8 am and the power is turned off at 9 pm. In this case, if the cycle period is set to 24 hours in advance, the result data for the cycle period is not accumulated. When it is determined in step S13 in FIG. 10 that the actual result data is not always stored, the microcontroller 26 cannot execute the processing after step S14.
  • the manual drying apparatus 1 can store the actual data for the cycle period and control the boosting operation based on the stored actual data by setting the time from when the power is turned on to when the power is turned off as the cycle period. It becomes. Assuming that the power supply is not exceptionally cut off, the microcontroller 26 accumulates the subsequent detection data when the actual data is accumulated from when the power is turned on until a preset period has elapsed. It is good not to do. Further, when the power is not cut off even when the past performance data is not stored, the microcontroller 26 may set the boosting operation in the standby state to always on or always off.
  • the hand dryer 1 according to the sixth embodiment may determine the timing for starting and ending the boosting operation as in the second or third embodiment. Moreover, the hand dryer 1 concerning Embodiment 6 may stop the pressure
  • the hand-drying device 1 performs accumulation of performance data and control of the boosting operation, with the time period from when the power is turned on to when the power is turned off as a cycle period.
  • the hand drying device 1 can shorten the time required to start blowing and can reduce standby power.
  • FIG. FIG. 18 is a diagram illustrating a configuration of the control unit 20 provided in the hand dryer 1 according to the seventh embodiment of the present invention.
  • the same parts as those in the first to sixth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the hand dryer 1 according to the seventh embodiment changes the period of the pressure increasing operation based on the air temperature.
  • the hand dryer 1 includes a thermistor 60 that is a temperature measuring unit.
  • the thermistor 60 measures the temperature.
  • the microcontroller 26 acquires the temperature measurement result from the thermistor 60.
  • the thermistor 60 is attached inside or outside the housing 3 of the hand dryer 1 shown in FIG.
  • the thermistor 60 may be mounted inside the control unit 20.
  • the temperature measurement unit only needs to be able to measure the temperature, and may be other than the thermistor 60.
  • the temperature measurement unit is not limited to the one attached to the hand dryer 1, and may be installed at a position away from the hand dryer 1.
  • the temperature measurement unit may be a thermometer that measures the temperature in the room where the hand dryer 1 is installed or the temperature in the user's room.
  • the hand dryer 1 may include a communication unit that receives temperature information from a temperature measurement unit at a remote location. In FIG. 18, the communication means is not shown.
  • the microcontroller 26 corrects the length of the period during which the boost converter unit 30 is operated based on the acquired temperature data.
  • FIG. 19 is a diagram showing an example of the result data stored in the result data storage unit 57 shown in FIG.
  • the actual data includes temperature data for each unit time measured by the thermistor 60.
  • the storage processing unit 54 shown in FIG. 5 stores the temperature data acquired from the thermistor 60 within the unit time in the result data storage unit 57 together with the detection data.
  • the storage processing unit 54 stores temperature data together with the detection data in step S3 shown in FIG.
  • the “temperature difference” shown in FIG. 19 represents the difference between the temperature measured in the unit time of the current cycle period and the temperature data included in the actual data.
  • the “ ⁇ correction value” is a correction value calculated based on the temperature difference, and represents the correction value of the parameter ⁇ that is the end time parameter. Note that “temperature difference” and “ ⁇ correction value” are parameters calculated in the process of calculation in the microcontroller 26, and are not stored in the storage unit 53.
  • the units of “temperature” and “temperature difference” shown in FIG. 19 are Celsius degrees (° C.).
  • the unit of “ ⁇ correction value” is second (s).
  • the step-up control unit 56 of the microcontroller 26 reads the temperature data at the data number when the detection data “1” is obtained from the result data storage unit 57.
  • the step-up control unit 56 subtracts the read temperature data from the current temperature measurement value to calculate the temperature difference.
  • the boost control unit 56 calculates a ⁇ correction value from the temperature difference.
  • the boost control unit 56 obtains the end time of the boost operation based on the parameter ⁇ corrected with the calculated ⁇ correction value.
  • the parameter ⁇ before correction by the ⁇ correction value is a constant value ⁇ regardless of the hand detection frequency, and the parameter ⁇ of the second embodiment determined from the frequency F. Any of the parameters ⁇ of the third embodiment changed based on the frequency Fn may be used.
  • the method for calculating the ⁇ correction value from the temperature difference is not limited to the method according to the seventh embodiment, and may be changed as appropriate.
  • the temperature difference obtained by subtracting 17 ° C., which is the temperature in the actual data, from the current temperature is calculated as minus 3 ° C.
  • the boost control unit 56 calculates plus 30 seconds, which is a ⁇ correction value, based on the temperature difference of minus 3 ° C.
  • the boost control unit 56 sets the end time of the boost operation for the data number “5” based on the result obtained by adding the plus 30 seconds that is the ⁇ correction value to 120 seconds that is the parameter ⁇ shown in FIG. calculate.
  • the end time T0off (5) for the data number “5” in FIG. 9 is corrected from 40 seconds + ⁇ of 160 seconds to 190 seconds by adding 30 seconds.
  • the temperature difference obtained by subtracting 21 ° C. that is the temperature in the actual data from the current temperature is calculated as plus 2 ° C.
  • the boost control unit 56 calculates minus 20 seconds, which is a ⁇ correction value, based on the temperature difference of plus 2 ° C.
  • the boost control unit 56 sets the end time of the boost operation for the data number “359” based on 160 seconds that is the result of subtracting 20 seconds from 180 seconds that is the parameter ⁇ shown in FIG. calculate.
  • the hand-drying device 1 can be controlled such that the pressure increase operation end time is delayed as the temperature difference increases toward the minus side, and the period of the pressure increase operation in the standby state becomes longer as the temperature decreases.
  • the hand dryer 1 controls the pressure increasing operation so as to meet the general tendency that the use frequency of the toilet increases as the temperature decreases. can do.
  • the hand dryer 1 can control the pressure increasing operation adapted to the change in the temperature when the use frequency can change due to the change in the temperature.
  • the boost control unit 56 may correct the parameter ⁇ , which is the start parameter, with a correction value calculated based on the temperature difference.
  • the hand drying device 1 can change the period of the boosting operation by correcting at least one of the parameter ⁇ and the parameter ⁇ .
  • the hand dryer 1 is controlled so that the frequency of use increases as the temperature difference decreases toward the positive side when the frequency of use decreases as the temperature decreases or the frequency of use increases as the temperature increases. May be performed.
  • the hand dryer 1 according to the seventh embodiment may determine the timing for starting and ending the boosting operation, as in the second or third embodiment. Moreover, the hand dryer 1 concerning Embodiment 7 may stop the pressure
  • the hand-drying device 1 can control the boosting operation adapted to the change of the temperature by changing the period of the boosting operation based on the temperature.
  • FIG. 20 is a diagram illustrating a configuration of the control unit 20 provided in the hand dryer 1 according to the eighth embodiment of the present invention.
  • the same parts as those in the first to seventh embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the hand dryer 1 according to the eighth embodiment includes a clock 70 that provides time information to the microcontroller 26.
  • the microcontroller 26 acquires time information from the clock 70.
  • the hand dryer 1 executes the control of the boosting operation in the first to seventh embodiments using the current time.
  • the clock 70 may present a date and day of the week together with the time.
  • the microcontroller 26 acquires date and day information from the clock 70 together with time information.
  • the hand dryer 1 can control the boosting operation in the first to seventh embodiments using the current date and day of the week.
  • the hand dryer 1 can always grasp the time without setting the time when the commercial AC power supply 23 is turned on.
  • the timepiece 70 may be provided in any of the hand drying apparatuses 1 according to the first to seventh embodiments.
  • the hand drying device 1 includes the clock 70, and can control the boosting operation using the current time.
  • FIG. FIG. 21 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the ninth embodiment of the present invention.
  • the hand dryer 1 according to the ninth embodiment determines the classification of the frequency of the detection data “1” for a third determination period different from the first determination period in the second embodiment.
  • the same parts as those in the first to eighth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the third determination period includes a period before the start point of the unit time for the data number (i) and a period after the start point.
  • the third determination period is one hour including 30 minutes before the start point of the unit time and 30 minutes after the start point.
  • the length of the third determination period is the same as the length of the first determination period, but the setting of the start point and the end point in the third determination period is the setting of the first determination period.
  • the third determination period is a period set by shifting for each data number.
  • the frequency Fm that is the first frequency represents the number of detection data “1” included in one hour that is the third determination period. Note that the length of the third determination period can be arbitrarily set. “Low”, “medium”, and “high” shown in FIG. 21 represent frequency classifications.
  • the frequency classification in the ninth embodiment is the same as that in the second embodiment shown in FIG.
  • FIG. 22 is a diagram showing an example of the result data stored in the result data storage unit 57 shown in FIG. 5 and an example of the frequency Fm.
  • the frequency Fm shown in FIG. 22 is a parameter calculated during the calculation process in the microcontroller 26 and is not stored in the storage unit 53.
  • the start point of the third determination period for the unit time of the data number “181” is the time 30 minutes before the start point of the unit time of the data number “181”, and the start point of the unit time of the data number “1” It's time.
  • the end point of the third determination period for the unit time of the data number “181” is the time 30 minutes after the start point of the unit time of the data number “181”, and the end time of the unit time of the data number “360”. This is the end point time.
  • the frequency Fm is the number of detection data “1” in one hour from the start point to the end point of the third determination period. According to the example of FIG.
  • the frequency Fm for the unit time of the data number “181” is 21 times.
  • the boost control unit 56 determines that the frequency classification is “high” based on the reference illustrated in FIG. 21.
  • the boosting control unit 56 determines the parameter ⁇ and the parameter ⁇ of the data number “181” as 180 seconds based on the determination of the frequency classification “high”.
  • the third determination period for data number “182” is one unit time lower than the third determination period for data number “181”, that is, 10 seconds.
  • the start point of the third determination period for the data number “360” is the time of the start point of the unit time of the data number “181”.
  • the end point of the third determination period for the data number “360” is the end time of the unit time of the data number “540”.
  • the frequency Fm for the unit time of the data number “360” is 7 times.
  • the boost control unit 56 determines that the frequency classification is “low” based on the reference illustrated in FIG. 21. Based on the determination of the frequency classification “low”, the boost control unit 56 determines the parameter ⁇ and the parameter ⁇ of the data number “360” as 60 seconds.
  • the boost control unit 56 determines the frequency classification by obtaining the frequency Fm while shifting the third determination period for each data number. By shifting the third determination period, the boost control unit 56 can reduce the deviation of the determination result that may be caused by the uneven use frequency within a certain period. Thereby, the microcontroller 26 can determine the usage frequency of the hand dryer 1 with high accuracy.
  • the length of the period before the start point of the unit time for the data number (i) may be different from the length of the period after the start point.
  • the length of the unit time The third determination period may be 40 minutes before the start point and 20 minutes after the start point. Further, the third determination period may not include a period before the start point of the unit time for the data number (i), or may not include a period after the start point.
  • the third determination period may be one hour before the start point of the unit time or one hour after the start point.
  • the hand drying device 1 according to the ninth embodiment may stop the boosting operation based on the result data based on the hand detection result in the current cycle period.
  • the hand dryer 1 concerning Embodiment 9 may store the performance data about several cycle periods similarly to Embodiment 5.
  • a period from when the power to the hand dryer 1 is turned on to when the power is turned off may be a cycle period.
  • the hand dryer 1 concerning Embodiment 9 may change the period of pressure
  • the hand dryer 1 according to the ninth embodiment may include a clock 70 as in the eighth embodiment.
  • the hand drying device 1 determines the parameter ⁇ and the parameter ⁇ based on the frequency with which the hand is detected in the third determination period.
  • the hand dryer 1 can accurately determine the frequency of use of the hand dryer 1 and can control the boosting operation so as to suit the situation of the frequency of use.
  • FIG. FIG. 23 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the tenth embodiment of the present invention.
  • the hand drying device 1 according to the tenth embodiment starts at the start based on the second frequency, which is the frequency of hand detection in the second cycle period that controls the pressure increasing operation during hand detection standby. Change parameters and exit parameters.
  • the number of hand detections in a fourth determination period different from the second determination period in the third embodiment is set as the second frequency.
  • the same parts as those in the first to ninth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the fourth determination period is a period before the start point of the unit time in the current cycle period. In one example, the fourth determination period is 20 minutes before the start point of the unit time. In such an example, the length of the fourth determination period is the same as the length of the second determination period, but the setting of the start point and the end point in the fourth determination period is the setting of the second determination period. Different.
  • the fourth determination period is a period set by shifting every unit time in the second cycle period.
  • the frequency Fp which is the second frequency, represents the number of times that a hand has been detected in the second determination period. “Low”, “medium”, and “high” shown in FIG. 23 represent frequency classifications. The frequency classification in the tenth embodiment is the same as that in the third embodiment shown in FIG.
  • the boost control unit 56 shown in FIG. 5 changes the parameter ⁇ determined from the performance data based on the frequency Fp.
  • the values of the parameters ⁇ and ⁇ determined from the actual data may be referred to as reference values.
  • the reference values are the values of the parameters ⁇ and ⁇ shown in FIG.
  • the reference value may be the values of the parameters ⁇ and ⁇ shown in FIG. It is assumed that the length of the fourth determination period can be arbitrarily set.
  • FIG. 24 is a diagram illustrating an example of the performance data stored in the performance data storage unit 57 illustrated in FIG. 5 and an example of the frequency Fp.
  • the frequency Fp shown in FIG. 24 is a parameter calculated in the process of calculation in the microcontroller 26 and is not stored in the storage unit 53.
  • the start point of the fourth determination period for the unit time of the data number “121” is a time 20 minutes before the start point of the unit time of the data number “121”, and the start point of the unit time of the data number “1”. It's time. Further, the end point of the fourth determination period for the unit time of the data number “121” is the end time of the unit time of the data number “120”, and is the start time of the unit time of the data number “121”. is there.
  • the frequency Fp is the number of detection data “1” in 20 minutes from the start point to the end point of the fourth determination period. According to the example of FIG. 24, the frequency Fp for the unit time of the data number “121” is 7 times.
  • the boost control unit 56 sets the parameter ⁇ of the data number “121” from the reference shown in FIG. Determine 120 seconds.
  • the boost control unit 56 changes the value of the parameter ⁇ from the reference value of 180 seconds to 120 seconds.
  • the step-up control unit 56 has a lower frequency of use of the hand dryer 1 at the present time than the actual data because the frequency Fp in the current cycle period is lower than the frequency that is the criterion of the classification “high”. Therefore, the adjustment for shortening the period of the boosting operation is performed.
  • the fourth determination period for data number “122” is one unit time lower than the fourth determination period for data number “121”, that is, 10 seconds.
  • the start point of the fourth determination period for the data number “182” is the time of the start point of the unit time of the data number “122”.
  • the end point of the fourth determination period for the data number “182” is the end time of the unit time of the data number “181” and the start time of the unit time of the data number “182”.
  • the boost control unit 56 shifts the fourth determination period for each data number and determines the frequency Fp. By shifting the fourth determination period, the boost control unit 56 can reduce the deviation of the determination result that may be caused by the uneven use frequency within a certain period. Thereby, the microcontroller 26 can determine the usage frequency of the hand dryer 1 with high accuracy.
  • the step-up control unit 56 may keep the parameter ⁇ as the reference value for the unit times of the data numbers “1” to “120”. Further, the boost control unit 56 may change the parameter ⁇ using the data for the last 20 minutes of the cycle period immediately before the current cycle period for the unit times of the data numbers “1” to “120”. good.
  • the boost control unit 56 changes the parameter ⁇ as well as the parameter ⁇ .
  • the fourth determination period for the parameter ⁇ is shifted before the fourth determination period for the parameter ⁇ .
  • the fourth determination period for the parameter ⁇ may be a period from a time 25 minutes before the start time of the unit time to a time 5 minutes before the start time of the unit time.
  • the end point of the fourth determination period with respect to the parameter ⁇ may be set to a time before the time that is back by the time that is the maximum value of the parameter ⁇ from the start point of the unit time.
  • the hand dryer 1 omits the determination of the frequency classification “low”, “medium”, and “high” from the past performance data, and detects the hand in the current cycle period.
  • the parameters ⁇ and ⁇ may be determined based on the frequency.
  • the hand drying device 1 according to the tenth embodiment may stop the boosting operation based on the result data based on the hand detection result in the current cycle period.
  • the hand dryer 1 concerning Embodiment 10 may store the performance data about several cycle periods similarly to Embodiment 5.
  • a period from when the power to the hand dryer 1 is turned on to when the power is turned off may be a cycle period.
  • the hand dryer 1 according to the tenth embodiment may change the period of the pressure increasing operation based on the temperature, as in the seventh embodiment.
  • the hand dryer 1 according to the tenth embodiment may include a clock 70 as in the eighth embodiment.
  • the hand drying device 1 can change the parameters ⁇ and ⁇ obtained from the result data based on the frequency of hand detection in the fourth determination period.
  • the hand dryer 1 can determine the current use frequency of the hand dryer 1 with high accuracy, and can control the boosting operation so as to adapt to changes in the use situation.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

This hand dryer includes: a casing having a hand insertion unit into which a hand can be inserted; a blowing unit that delivers a flow of air jetted in the hand insertion unit; and a hand detection unit (15) that detects the hand when inserted into the hand insertion unit. The hand dryer also includes: a power supply unit (24) that has a booster circuit which boosts DC voltage; a drive circuit (25) that drives the blowing unit by receiving power supply from the power supply unit; and a control processing unit (26) that controls operation of the booster circuit on the basis of result data which represents the results of whether a hand has been detected by the hand detection unit.

Description

手乾燥装置Hand dryer
 本発明は、濡れた手を乾燥させる手乾燥装置に関する。 The present invention relates to a hand dryer for drying wet hands.
 手の衛生を保全するためには、手が適切に洗浄されるとともに、洗浄後の濡れた手を衛生的に乾燥させることが求められる。手の衛生的な乾燥を可能とするために、空気流の噴射により水滴を吹き飛ばして手を乾燥させる手乾燥装置が使用されることがある。 In order to preserve hand hygiene, it is required that the hand is properly washed and the wet hand after washing is hygienically dried. In order to enable sanitary drying of the hand, a hand drying device that blows off water droplets by jetting air flow to dry the hand may be used.
 手乾燥装置の手挿入部において手が検知されると、手乾燥装置は、送風機を起動させて、手挿入部にて空気流を噴射させる。手挿入部から手が抜かれて、手が検知されなくなると、手乾燥装置は、送風機を停止させる。手乾燥装置は、手の検知から送風機の起動までの時間を短縮できることが求められている。また、手乾燥装置は、送風機を停止させているときの待機電力を低減できることが求められている。 When a hand is detected in the hand insertion part of the hand drying device, the hand drying device activates the blower and jets an air flow at the hand insertion unit. When the hand is pulled out from the hand insertion portion and the hand is no longer detected, the hand drying device stops the blower. The hand dryer is required to be able to shorten the time from the detection of the hand to the start of the blower. Moreover, the hand dryer is required to reduce standby power when the blower is stopped.
 特許文献1には、交流電源から供給される交流電圧を昇圧して直流電圧へ変換する昇圧コンバータ部を備える送風機が開示されている。送風機は、昇圧コンバータ部での昇圧により、小型化と送風量の増大とが可能となる。 Patent Document 1 discloses a blower including a boost converter unit that boosts an AC voltage supplied from an AC power source and converts it into a DC voltage. The blower can be reduced in size and increase in the amount of blown air by boosting in the boost converter unit.
 特許文献2には、手乾燥装置に時計機能を設けて、手検知部の間欠駆動の間隔を時間帯によって切り換える技術が開示されている。手乾燥装置は、使用頻度が低くなる時間帯において駆動の間隔を長くすることで、手乾燥装置の使用の際の支障を少なくしながら待機電力を低減することができる。 Patent Document 2 discloses a technique in which a hand dryer is provided with a clock function and the interval of intermittent driving of the hand detection unit is switched according to a time zone. The hand dryer can reduce standby power while reducing troubles during use of the hand dryer by increasing the drive interval in a time zone in which the frequency of use is low.
特許第5158101号公報Japanese Patent No. 5158101 特開2002-177165号公報JP 2002-177165 A
 特許文献1の技術による送風機を備える手乾燥装置は、手が検知されてから昇圧コンバータ部を動作させると、所望の電圧値にまで直流電流を昇圧するまでに要する時間の分、送風機の起動が遅れることになる。送風機の早い起動を可能とするために昇圧コンバータ部を常時動作させると、手乾燥装置の待機電力が増大することになる。特許文献2の技術による手乾燥装置は、時間帯の設定のための作業が必要となる。手乾燥装置は、送風の開始に要する時間を短縮できることと、待機電力を低減できることとが求められている。 In the manual drying apparatus including the blower according to the technique of Patent Document 1, when the boost converter unit is operated after the hand is detected, the blower is started for the time required to boost the direct current to a desired voltage value. It will be late. If the step-up converter unit is always operated to enable the blower to be started quickly, standby power of the hand dryer increases. The hand dryer according to the technique of Patent Document 2 requires work for setting a time zone. The hand dryer is required to be able to shorten the time required to start blowing and to reduce standby power.
 本発明は、上記に鑑みてなされたものであって、手乾燥装置は、送風の開始に要する時間を短縮でき、かつ待機電力を低減可能とする手乾燥装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a hand drying device that can shorten the time required to start blowing and can reduce standby power.
 上述した課題を解決し、目的を達成するために、本発明にかかる手乾燥装置は、手を挿入可能とされた手挿入部を備える筐体と、手挿入部にて噴射させる空気流を送り出す送風部と、手挿入部へ挿入されている手を検知する手検知部と、直流電圧を昇圧する昇圧回路を含む電源部と、電源部からの電力供給を受けて送風部を駆動する駆動回路と、手検知部での手の検知の有無の実績を表す実績データに基づいて昇圧回路の動作を制御する制御処理部とを備える。 In order to solve the above-described problems and achieve the object, a hand drying device according to the present invention sends out a housing including a hand insertion part into which a hand can be inserted and an air flow to be ejected by the hand insertion part. A blower unit, a hand detection unit that detects a hand inserted into the hand insertion unit, a power supply unit that includes a booster circuit that boosts a DC voltage, and a drive circuit that receives power supply from the power supply unit and drives the blower unit And a control processing unit that controls the operation of the booster circuit based on performance data indicating the presence / absence of hand detection by the hand detection unit.
 本発明にかかる手乾燥装置は、送風の開始に要する時間を短縮でき、かつ待機電力を低減できるという効果を奏する。 The hand-drying device according to the present invention has an effect that the time required to start blowing can be shortened and standby power can be reduced.
本発明の実施の形態1にかかる手乾燥装置の斜視図The perspective view of the hand-drying apparatus concerning Embodiment 1 of this invention. 図1のII-II線における手乾燥装置の断面図Sectional view of the hand dryer in line II-II in FIG. 図2に示す制御部の構成を示す図The figure which shows the structure of the control part shown in FIG. 実施の形態1の変形例にかかる制御部の構成を示す図The figure which shows the structure of the control part concerning the modification of Embodiment 1. FIG. 図3に示すマイクロコントローラの機能構成を示すブロック図Block diagram showing the functional configuration of the microcontroller shown in FIG. 図3に示すマイクロコントローラのハードウェア構成を示すブロック図Block diagram showing the hardware configuration of the microcontroller shown in FIG. 実施の形態1の手乾燥装置による待機時における昇圧動作の制御について説明する図The figure explaining control of pressure | voltage rise operation | movement at the time of standby by the hand dryer of Embodiment 1 図5に示すマイクロコントローラにおける実績データの格納のための動作の手順を示すフローチャートThe flowchart which shows the procedure of the operation | movement for storage of the performance data in the microcontroller shown in FIG. 図5に示す実績データ格納部に格納された実績データと、パラメータ格納部に格納されたパラメータとの例を示す図The figure which shows the example of the performance data stored in the performance data storage part shown in FIG. 5, and the parameter stored in the parameter storage part 実施の形態1の手乾燥装置による昇圧動作の制御の手順を示すフローチャートThe flowchart which shows the procedure of control of the pressure | voltage rise operation | movement by the hand dryer of Embodiment 1. 実施の形態1の手乾燥装置による昇圧動作の制御の手順を示すフローチャートThe flowchart which shows the procedure of control of the pressure | voltage rise operation | movement by the hand dryer of Embodiment 1. 本発明の実施の形態2にかかる手乾燥装置による昇圧動作の制御について説明する図The figure explaining control of pressure | voltage rise operation | movement by the hand-drying apparatus concerning Embodiment 2 of this invention. 図5に示す実績データ格納部に格納された実績データと、パラメータ格納部に格納されたパラメータとの例を示す図The figure which shows the example of the performance data stored in the performance data storage part shown in FIG. 5, and the parameter stored in the parameter storage part 本発明の実施の形態3にかかる手乾燥装置による昇圧動作の制御について説明する図The figure explaining control of the pressure | voltage rise operation | movement by the hand dryer concerning Embodiment 3 of this invention. 図5に示す実績データ格納部に格納された実績データと、決定されたパラメータとの例を示す図The figure which shows the example of the performance data stored in the performance data storage part shown in FIG. 5, and the determined parameter 本発明の実施の形態4にかかる手乾燥装置による昇圧動作の制御について説明する図The figure explaining control of pressure | voltage rise operation | movement by the hand dryer concerning Embodiment 4 of this invention. 本発明の実施の形態5にかかる手乾燥装置による昇圧動作の制御について説明するフローチャートThe flowchart explaining control of the pressure | voltage rise operation | movement by the hand dryer concerning Embodiment 5 of this invention. 本発明の実施の形態7にかかる手乾燥装置に備えられた制御部の構成を示す図The figure which shows the structure of the control part with which the hand-drying apparatus concerning Embodiment 7 of this invention was equipped. 図5に示す実績データ格納部に格納された実績データの例を示す図The figure which shows the example of the performance data stored in the performance data storage part shown in FIG. 本発明の実施の形態8にかかる手乾燥装置に備えられた制御部の構成を示す図The figure which shows the structure of the control part with which the hand dryer concerning Embodiment 8 of this invention was equipped. 本発明の実施の形態9にかかる手乾燥装置による昇圧動作の制御について説明する図The figure explaining control of the pressure | voltage rise operation | movement by the hand dryer concerning Embodiment 9 of this invention. 図5に示す実績データ格納部に格納された実績データの例と頻度の例とを示す図The figure which shows the example of the performance data stored in the performance data storage part shown in FIG. 5, and the example of frequency 本発明の実施の形態10にかかる手乾燥装置による昇圧動作の制御について説明する図The figure explaining control of the pressure | voltage rise operation | movement by the hand dryer concerning Embodiment 10 of this invention. 図5に示す実績データ格納部に格納された実績データの例と頻度の例とを示す図The figure which shows the example of the performance data stored in the performance data storage part shown in FIG. 5, and the example of frequency
 以下に、本発明の実施の形態にかかる手乾燥装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a hand dryer according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる手乾燥装置1の斜視図である。手乾燥装置1は、手を挿入可能とされた手挿入部2を備える筐体3を有する。手挿入部2の上部と両側部とは開放されている。手挿入部2は、上部と両側部とから手を挿入可能とされている。筐体3は、手乾燥装置1の全体の外殻をなしている。正面部4は、筐体3の一部であって、手挿入部2の正面側にある部分である。背面部5は、筐体3の一部であって、手挿入部2の背面側にある部分である。なお、正面側とは、手乾燥装置1から見て、手乾燥装置1を使用する使用者がいる側とする。背面側とは、手乾燥装置1から見て、正面側とは逆の側とする。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a hand dryer 1 according to a first embodiment of the present invention. The hand dryer 1 has a housing 3 including a hand insertion portion 2 into which a hand can be inserted. The upper part and both side parts of the manual insertion part 2 are open. The hand insertion part 2 can insert a hand from an upper part and both side parts. The housing 3 forms the entire outer shell of the hand dryer 1. The front part 4 is a part of the housing 3 and is on the front side of the hand insertion part 2. The back part 5 is a part of the housing 3 and is a part on the back side of the hand insertion part 2. The front side is the side where the user who uses the hand dryer 1 is seen from the hand dryer 1. The back side is the side opposite to the front side when viewed from the hand dryer 1.
 水受け部6は、手挿入部2の最下部に位置している。水受け部6には、受けた水をドレンタンク7へ排出するため排水口が設けられている。また、筐体3には、排水口からの水がドレンタンク7へ流れる排水路が設けられている。図1および後述する図2では、排水口と排水路との図示を省略している。ドレンタンク7は、排水路からの水を貯留する。ドレンタンク7は、筐体3下部の正面側に設けられている。ドレンタンク7は、筐体3から取り外し可能とされている。 The water receiving part 6 is located at the lowermost part of the hand insertion part 2. The water receiver 6 is provided with a drain outlet for discharging the received water to the drain tank 7. The housing 3 is provided with a drainage channel through which water from the drainage port flows to the drain tank 7. In FIG. 1 and FIG. 2 to be described later, illustration of a drain outlet and a drainage channel is omitted. The drain tank 7 stores water from the drainage channel. The drain tank 7 is provided on the front side of the lower portion of the housing 3. The drain tank 7 is removable from the housing 3.
 図2は、図1のII-II線における手乾燥装置1の断面図である。手乾燥装置1は、手挿入部2にて噴射させる空気流を送り出す送風部である送風機10を備える。送風機10は、筐体3の内部に設けられている。送風機10は、駆動源である直流(Direct Current,DC)ブラシレスモータ21と、DCブラシレスモータ21の駆動により回転するターボファン22とを備える。 FIG. 2 is a cross-sectional view of the hand dryer 1 taken along the line II-II in FIG. The hand drying device 1 includes a blower 10 that is a blower unit that sends out an air flow to be ejected by the hand insertion unit 2. The blower 10 is provided inside the housing 3. The blower 10 includes a direct current (DC) brushless motor 21 that is a drive source, and a turbo fan 22 that rotates by driving the DC brushless motor 21.
 ノズル11は、正面部4のうち手挿入部2側の面に設けられている。ノズル12は、背面部5のうち手挿入部2側の面に設けられている。手乾燥装置1は、送風機10から正面部4の内部のダクト13を通過した空気流を、ノズル11から手挿入部2にて噴射させる。手乾燥装置1は、送風機10から背面部5の内部のダクト14を通過した空気流を、ノズル12から手挿入部2にて噴射させる。 The nozzle 11 is provided on the surface of the front portion 4 on the hand insertion portion 2 side. The nozzle 12 is provided on the surface of the back surface portion 5 on the hand insertion portion 2 side. The hand drying device 1 causes the air flow that has passed through the duct 13 in the front part 4 from the blower 10 to be ejected from the nozzle 11 at the hand insertion part 2. The hand drying device 1 causes the air insertion unit 2 to inject the air flow that has passed through the duct 14 inside the back surface portion 5 from the blower 10 through the nozzle 12.
 手乾燥装置1は、手挿入部2へ挿入されている手を検知する手検知部であるセンサ15を備える。センサ15は、背面部5に内蔵されている。センサ15の1つの例は、測距センサである。測距センサであるセンサ15は、赤外光を射出する発光素子と、測定対象物である手で反射した赤外光を検出する受光素子とを備える。図2では、発光素子と受光素子との図示を省略している。センサ15は、受光素子へ入射する赤外光の角度を基に、手挿入部2における手の有無を検知する。センサ15は、手挿入部2へ挿入されている手を検知可能であれば良く、測距センサ以外のセンサであっても良い。センサ15は、正面部4に内蔵されていても良い。 The hand dryer 1 includes a sensor 15 that is a hand detection unit that detects a hand inserted into the hand insertion unit 2. The sensor 15 is built in the back surface portion 5. One example of the sensor 15 is a distance measuring sensor. The sensor 15 that is a distance measuring sensor includes a light emitting element that emits infrared light and a light receiving element that detects infrared light reflected by a hand that is a measurement object. In FIG. 2, illustration of the light emitting element and the light receiving element is omitted. The sensor 15 detects the presence or absence of a hand in the hand insertion portion 2 based on the angle of infrared light incident on the light receiving element. The sensor 15 may be a sensor other than the distance measuring sensor as long as it can detect the hand inserted into the hand insertion unit 2. The sensor 15 may be built in the front part 4.
 吸気口16は、筐体3下部のうち背面側の位置に設けられている。送風機10は、吸気口16から筐体3内部のダクト17へ空気流を取り込み、ダクト17からの空気流をダクト13,14へ送り出す。吸気口16には、ダクト17へ取り込まれる空気流から異物を取り除くエアフィルタ18が取り付けられている。なお、手乾燥装置1は、ダクト13,14へ送り出される空気流を加熱するヒータを備えていても良い。 The intake port 16 is provided at a position on the back side in the lower part of the housing 3. The blower 10 takes in an air flow from the intake port 16 to the duct 17 inside the housing 3 and sends out the air flow from the duct 17 to the ducts 13 and 14. An air filter 18 is attached to the intake port 16 to remove foreign substances from the air flow taken into the duct 17. The hand dryer 1 may include a heater that heats the air flow sent to the ducts 13 and 14.
 筐体3の内部には、手乾燥装置1の全体を制御する制御部20が設けられている。制御部20は、センサ15にて手が検知されると、送風機10を起動させる。手挿入部2から手が抜かれて、センサ15にて手が検知されなくなると、制御部20は、送風機10を停止させる。 Inside the housing 3, a control unit 20 that controls the entire hand dryer 1 is provided. When the hand is detected by the sensor 15, the control unit 20 activates the blower 10. When the hand is removed from the hand insertion unit 2 and the hand is not detected by the sensor 15, the control unit 20 stops the blower 10.
 図3は、図2に示す制御部20の構成を示す図である。制御部20は、直流電圧を昇圧する昇圧回路を含む電源部24と、電源部24からの電力供給を受けてDCブラシレスモータ21を駆動する駆動回路25と、制御処理部であるマイクロコントローラ26とを備える。 FIG. 3 is a diagram showing a configuration of the control unit 20 shown in FIG. The control unit 20 includes a power supply unit 24 including a booster circuit that boosts a DC voltage, a drive circuit 25 that receives power supply from the power supply unit 24 and drives the DC brushless motor 21, and a microcontroller 26 that is a control processing unit. Is provided.
 電源部24の整流回路31は、商用交流電源23に接続されている。整流回路31は、商用交流電源23からの交流電圧の全波整流により、直流電圧を出力する。電圧検出手段である分圧抵抗32は、整流回路31の出力側にて、正電圧側の直流母線42と負電圧側の直流母線43の間に接続されている。電源部24のインダクタ33と、スイッチング素子34と、ファーストリカバリダイオード35とは、昇圧回路である昇圧コンバータ部30を構成する。昇圧コンバータ部30は、整流回路31からの直流電圧の電圧値を、あらかじめ定められた電圧値へ上昇させる。 The rectifier circuit 31 of the power supply unit 24 is connected to the commercial AC power supply 23. The rectifier circuit 31 outputs a DC voltage by full-wave rectification of the AC voltage from the commercial AC power supply 23. The voltage dividing resistor 32 as voltage detecting means is connected between the DC bus 42 on the positive voltage side and the DC bus 43 on the negative voltage side on the output side of the rectifier circuit 31. The inductor 33, the switching element 34, and the fast recovery diode 35 of the power supply unit 24 constitute a boost converter unit 30 that is a boost circuit. Boost converter unit 30 raises the voltage value of the DC voltage from rectifier circuit 31 to a predetermined voltage value.
 インダクタ33は、直流母線42に接続されている。スイッチング素子34は、インダクタ33の出力側における直流母線42,43の間に接続されている。スイッチング素子34は、スイッチング機能を備える半導体素子であるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)あるいはIGBT(Insulated Gate Bipolar Transistor)である。 The inductor 33 is connected to the DC bus 42. The switching element 34 is connected between the DC buses 42 and 43 on the output side of the inductor 33. The switching element 34 is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or IGBT (Insulated Gate Bipolar Transistor) which is a semiconductor element having a switching function.
 ファーストリカバリダイオード35のアノードは、インダクタ33の出力側に接続されている。電圧検出手段である分圧抵抗36は、ファーストリカバリダイオード35のカソード側にて、直流母線42,43の間に接続されている。平滑コンデンサ37は、分圧抵抗36の出力側にて、直流母線42,43の間に接続されている。制御電源回路38は、平滑コンデンサ37の出力側にて、直流母線42,43の間に接続されている。電流検出手段である抵抗39は、直流母線43のうち分圧抵抗32とスイッチング素子34との間に接続されている。 The anode of the fast recovery diode 35 is connected to the output side of the inductor 33. A voltage dividing resistor 36 as voltage detecting means is connected between the DC buses 42 and 43 on the cathode side of the fast recovery diode 35. The smoothing capacitor 37 is connected between the DC buses 42 and 43 on the output side of the voltage dividing resistor 36. The control power supply circuit 38 is connected between the DC buses 42 and 43 on the output side of the smoothing capacitor 37. A resistor 39 serving as a current detecting means is connected between the voltage dividing resistor 32 and the switching element 34 in the DC bus 43.
 スイッチング素子34がオンになると、インダクタ33には電荷が蓄えられる。スイッチング素子34がオンからオフへ切り換えられると、インダクタ33は、蓄えられた電荷を放出する。インダクタ33からファーストリカバリダイオード35を通った電荷が供給されることにより、平滑コンデンサ37が充電される。平滑コンデンサ37は、電圧を平滑化させることによりノイズを低減させる。 When the switching element 34 is turned on, electric charge is stored in the inductor 33. When the switching element 34 is switched from on to off, the inductor 33 releases the stored charge. The smoothing capacitor 37 is charged by supplying electric charge from the inductor 33 through the first recovery diode 35. The smoothing capacitor 37 reduces noise by smoothing the voltage.
 スイッチング制御IC(Integrated Circuit)40は、スイッチング素子34のスイッチング動作を制御する。スイッチング制御IC40は、整流回路31から出力される直流電圧を分圧抵抗32にて検出する。スイッチング制御IC40は、インダクタ33からの電流を抵抗39にて検出する。スイッチング制御IC40は、昇圧コンバータ部30から出力される電圧を分圧抵抗36にて検出する。スイッチング制御IC40は、これらの検出結果を基にスイッチング素子34の動作を制御することで、整流後における電圧の位相と電流の位相とを一致させる。 A switching control IC (Integrated Circuit) 40 controls the switching operation of the switching element 34. The switching control IC 40 detects the DC voltage output from the rectifier circuit 31 with the voltage dividing resistor 32. The switching control IC 40 detects the current from the inductor 33 with the resistor 39. The switching control IC 40 detects the voltage output from the boost converter unit 30 by the voltage dividing resistor 36. The switching control IC 40 controls the operation of the switching element 34 based on these detection results, thereby matching the phase of the voltage and the phase of the current after rectification.
 スイッチング制御IC40は、電圧の位相と電流の位相とを一致させる調整により、電源部24の力率を1に近づけて高調波電流成分の発生を抑制させる力率改善回路の機能を果たす。昇圧コンバータ部30は、高調波電流成分の抑制のためのアクティブフィルタの機能を果たす。さらに、スイッチング制御IC40は、スイッチング素子34の動作を制御することで、昇圧コンバータ部30からの電圧値が所望の電圧値となるような調整を行う。 The switching control IC 40 functions as a power factor correction circuit that suppresses the generation of harmonic current components by adjusting the voltage phase and the current phase to coincide with each other to bring the power factor of the power supply unit 24 close to 1. Boost converter unit 30 functions as an active filter for suppressing harmonic current components. Furthermore, the switching control IC 40 performs adjustment so that the voltage value from the boost converter unit 30 becomes a desired voltage value by controlling the operation of the switching element 34.
 制御電源回路38は、駆動回路25と、マイクロコントローラ26と、スイッチング制御IC40とへ電力を供給する。スイッチング素子41は、スイッチング機能を備える半導体素子であって、バイポーラトランジスタである。スイッチング素子41は、マイクロコントローラ26、制御電源回路38およびスイッチング制御IC40に接続されている。 The control power supply circuit 38 supplies power to the drive circuit 25, the microcontroller 26, and the switching control IC 40. The switching element 41 is a semiconductor element having a switching function, and is a bipolar transistor. The switching element 41 is connected to the microcontroller 26, the control power supply circuit 38 and the switching control IC 40.
 マイクロコントローラ26は、センサ15にて手が検知されると、スイッチング素子41のベースへ電流を流して、スイッチング素子41をオンにする。スイッチング素子41がオンになると、制御電源回路38の電力がスイッチング制御IC40へ供給される。スイッチング制御IC40は、電力が供給されることにより、スイッチング素子34をオンにする。スイッチング素子34がオンとなることで、昇圧コンバータ部30は、昇圧動作を開始させる。昇圧コンバータ部30から出力される電圧が所望の電圧値に到達すると、制御電源回路38は、駆動回路25へ電力を供給する。駆動回路25は、電力が供給されることにより、DCブラシレスモータ21を駆動する。マイクロコントローラ26は、スイッチング素子41のオンとオフとを切り換えることで、昇圧コンバータ部30の昇圧動作のオンとオフとを制御する。また、マイクロコントローラ26は、駆動回路25のフィードバック制御を実行する。 When the hand is detected by the sensor 15, the microcontroller 26 supplies a current to the base of the switching element 41 to turn on the switching element 41. When the switching element 41 is turned on, the power of the control power supply circuit 38 is supplied to the switching control IC 40. The switching control IC 40 turns on the switching element 34 when power is supplied. When the switching element 34 is turned on, the boost converter unit 30 starts the boost operation. When the voltage output from boost converter unit 30 reaches a desired voltage value, control power supply circuit 38 supplies power to drive circuit 25. The drive circuit 25 drives the DC brushless motor 21 when power is supplied. The microcontroller 26 controls on / off of the boosting operation of the boost converter unit 30 by switching the switching element 41 on and off. Further, the microcontroller 26 performs feedback control of the drive circuit 25.
 なお、制御部20は、スイッチング制御IC40の機能をマイクロコントローラ26の機能に含めることとしても良い。図4は、実施の形態1の変形例にかかる制御部20の構成を示す図である。変形例において、マイクロコントローラ26は、スイッチング素子34のスイッチング動作を制御する。マイクロコントローラ26は、整流回路31から出力される直流電圧を分圧抵抗32にて検出する。マイクロコントローラ26は、インダクタ33からの電流を抵抗39にて検出する。マイクロコントローラ26は、昇圧コンバータ部30から出力される電圧を分圧抵抗36にて検出する。マイクロコントローラ26は、これらの検出結果を基にスイッチング素子34の動作を制御することで、整流後における電圧の位相と電流の位相とを一致させる。さらに、マイクロコントローラ26は、スイッチング素子34の動作を制御することで、昇圧コンバータ部30からの電圧値が所望の電圧値となるような調整を行う。マイクロコントローラ26は、スイッチング素子34のオンとオフとを切り換えることで、昇圧コンバータ部30の昇圧動作のオンとオフとを制御する。 Note that the control unit 20 may include the function of the switching control IC 40 in the function of the microcontroller 26. FIG. 4 is a diagram illustrating a configuration of the control unit 20 according to the modification of the first embodiment. In the modification, the microcontroller 26 controls the switching operation of the switching element 34. The microcontroller 26 detects the DC voltage output from the rectifier circuit 31 with the voltage dividing resistor 32. The microcontroller 26 detects the current from the inductor 33 with the resistor 39. The microcontroller 26 detects the voltage output from the boost converter unit 30 by the voltage dividing resistor 36. The microcontroller 26 controls the operation of the switching element 34 based on these detection results, thereby matching the phase of the voltage and the phase of the current after rectification. Furthermore, the microcontroller 26 performs adjustment so that the voltage value from the boost converter unit 30 becomes a desired voltage value by controlling the operation of the switching element 34. The microcontroller 26 controls on / off of the boost operation of the boost converter unit 30 by switching the switching element 34 on and off.
 図5は、図3に示すマイクロコントローラ26の機能構成を示すブロック図である。マイクロコントローラ26は、センサ15からの入力を受け付ける機能部である入力部51と、マイクロコントローラ26全体の制御と演算とを行う機能部である制御演算部52と、データを記憶する機能部である記憶部53とを備える。 FIG. 5 is a block diagram showing a functional configuration of the microcontroller 26 shown in FIG. The microcontroller 26 is an input unit 51 that is a functional unit that receives an input from the sensor 15, a control calculation unit 52 that is a functional unit that performs control and calculation of the entire microcontroller 26, and a functional unit that stores data. And a storage unit 53.
 制御演算部52は、手の検知についての実績データを記憶するための処理を実行する機能部である記憶処理部54と、時間を計測する機能部であるタイマー55と、昇圧コンバータ部30の昇圧動作を制御する機能部である昇圧制御部56とを備える。記憶部53は、記憶処理部54の処理により実績データを格納する機能部である実績データ格納部57と、昇圧動作の制御のための各種パラメータを格納するパラメータ格納部58とを備える。 The control calculation unit 52 includes a storage processing unit 54 that is a functional unit that executes processing for storing actual data regarding hand detection, a timer 55 that is a functional unit that measures time, and a boosting voltage of the boosting converter unit 30. A boost control unit 56 that is a functional unit for controlling the operation. The storage unit 53 includes a performance data storage unit 57 that is a functional unit that stores performance data by the processing of the storage processing unit 54, and a parameter storage unit 58 that stores various parameters for controlling the boosting operation.
 マイクロコントローラ26の機能は、マイクロコントローラ26にて解析および実行されるプログラム上で実行される。なお、マイクロコントローラ26の機能の一部は、ワイヤードロジックによるハードウェア上で実行しても良い。 The function of the microcontroller 26 is executed on a program analyzed and executed by the microcontroller 26. Note that some of the functions of the microcontroller 26 may be executed on hardware by wired logic.
 図6は、図3に示すマイクロコントローラ26のハードウェア構成を示すブロック図である。マイクロコントローラ26は、各種処理を実行するCPU(Central Processing Unit)61と、不揮発性メモリであるROM(Read Only Memory)62と、プログラム格納領域およびデータ格納領域を含むRAM(Random Access Memory)63と、内容を書き換え可能な不揮発性メモリであるEEPROM(Electrically Erasable Programmable Read Only Memory)64と、入力インタフェース(I/F)65とを備える。図6に示す各部は、バス66を介して相互に接続されている。 FIG. 6 is a block diagram showing a hardware configuration of the microcontroller 26 shown in FIG. The microcontroller 26 includes a CPU (Central Processing Unit) 61 that executes various processes, a ROM (Read Only Memory) 62 that is a nonvolatile memory, a RAM (Random Access Memory) 63 that includes a program storage area and a data storage area, , An EEPROM (Electrically Erasable Programmable Read Only Memory) 64, which is a rewritable nonvolatile memory, and an input interface (I / F) 65. Each unit shown in FIG. 6 is connected to each other via a bus 66.
 ROM62には、各種処理のためのプログラムが格納されている。プログラムは、RAM63にロードされる。CPU61は、RAM63内のプログラム格納領域にてプログラムを展開して各種処理を実行する。RAM63内のデータ格納領域は、各種処理の実行における作業領域とされる。EEPROM64は、各種データを格納する。図5に示す制御演算部52の機能は、CPU61を使用して実現される。記憶部53の機能は、EEPROM64を使用して実現される。入力部51の機能は、入力I/F65を使用して実現される。なお、マイクロコントローラ26は、EEPROM64以外の内蔵メモリを備えていても良い。記憶部53の機能は、内蔵メモリを使用して実現されても良い。 The ROM 62 stores programs for various processes. The program is loaded into the RAM 63. The CPU 61 develops a program in the program storage area in the RAM 63 and executes various processes. The data storage area in the RAM 63 is a work area for executing various processes. The EEPROM 64 stores various data. The function of the control calculation unit 52 shown in FIG. 5 is realized using the CPU 61. The function of the storage unit 53 is realized using the EEPROM 64. The function of the input unit 51 is realized using the input I / F 65. Note that the microcontroller 26 may include a built-in memory other than the EEPROM 64. The function of the storage unit 53 may be realized using an internal memory.
 次に、マイクロコントローラ26による昇圧コンバータ部30の制御について説明する。マイクロコントローラ26の昇圧制御部56は、昇圧コンバータ部30の昇圧動作がオフであるときにセンサ15での手の検知があると、昇圧動作をオンとする。また、昇圧制御部56は、センサ15での手の検知がなくなったときに、昇圧動作をオフとする。この他、昇圧制御部56は、センサ15での手の検知を待機しているときにも、図5に示す実績データ格納部57に格納されている実績データに基づいて、昇圧コンバータ部30の昇圧動作をオンにする制御を可能とする。マイクロコントローラ26は、過去の第1のサイクル期間における実績データを基に、第1のサイクル期間より後の第2のサイクル期間のうち、センサ15での手の検知を待機しているときの昇圧コンバータ部30の動作を制御する。 Next, control of the boost converter unit 30 by the microcontroller 26 will be described. The step-up control unit 56 of the microcontroller 26 turns on the step-up operation when the sensor 15 detects a hand when the step-up operation of the step-up converter unit 30 is off. In addition, the boost control unit 56 turns off the boost operation when the sensor 15 stops detecting the hand. In addition to this, the boost control unit 56 also has the boost converter unit 30 based on the record data stored in the record data storage unit 57 shown in FIG. 5 while waiting for the hand to be detected by the sensor 15. Enables control to turn on the boost operation. Based on the past data in the first cycle period, the microcontroller 26 increases the pressure when waiting for hand detection by the sensor 15 in the second cycle period after the first cycle period. The operation of the converter unit 30 is controlled.
 実績データは、センサ15での手の検知の有無の実績を表すデータである。図5に示すマイクロコントローラ26の記憶処理部54は、センサ15での検知結果を基に、あらかじめ設定された時間である単位時間ごとにおける手の検知の有無をデータ化して、時系列のデータである実績データを実績データ格納部57へ蓄積していく。実施の形態1において、単位時間は10秒間とする。昇圧制御部56は、あらかじめ設定されたサイクル期間における実績データに基づいて昇圧コンバータ部30の昇圧動作を制御する。実施の形態1において、サイクル期間は24時間とする。サイクル期間を示すパラメータと、単位時間を示すパラメータとは、パラメータ格納部58に格納される。なお、単位時間の長さとサイクル期間の長さとは、任意に設定可能であるものとする。 The actual data is data representing the actual presence / absence of hand detection by the sensor 15. The storage processing unit 54 of the microcontroller 26 shown in FIG. 5 converts the presence / absence of hand detection in unit time, which is a preset time, into data based on the detection result of the sensor 15, and uses time-series data. A certain result data is accumulated in the result data storage unit 57. In the first embodiment, the unit time is 10 seconds. The step-up control unit 56 controls the step-up operation of the step-up converter unit 30 based on performance data in a preset cycle period. In the first embodiment, the cycle period is 24 hours. A parameter indicating the cycle period and a parameter indicating the unit time are stored in the parameter storage unit 58. Note that the length of the unit time and the length of the cycle period can be arbitrarily set.
 昇圧制御部56は、第1のサイクル期間である過去のサイクル期間のうち手の検知があった時刻を実績データから把握して、第2のサイクル期間である現在のサイクル期間での待機時において昇圧動作をオンにする時刻と、昇圧動作をオフにする時刻とを決定する。マイクロコントローラ26は、過去のサイクルにおける手乾燥装置1の使用実績に基づいて、待機時における昇圧動作を制御する。 The boost control unit 56 grasps the time when the hand is detected in the past cycle period which is the first cycle period from the actual data, and at the time of standby in the current cycle period which is the second cycle period. The time for turning on the boosting operation and the time for turning off the boosting operation are determined. The microcontroller 26 controls the step-up operation during standby based on the usage record of the hand dryer 1 in the past cycle.
 マイクロコントローラ26は、過去のサイクル期間のうち手乾燥装置1の使用があった時刻と同じ時刻が近くなったときに昇圧動作をオンとする。また、マイクロコントローラ26は、過去のサイクル期間のうち手乾燥装置1の使用がなかった時間帯と同じ時間帯では昇圧動作をオフとする。手乾燥装置1は、サイクル期間の全体において昇圧動作を常時オンとする場合と比べて、待機電力を低減できる。また、手乾燥装置1は、過去に手乾燥装置1の使用があった時刻が近くなったときに、手乾燥装置1の使用が予想されることから、昇圧動作をオンとする。手乾燥装置1は、手乾燥装置1の使用が予想されるときに、送風をすぐに開始可能な状態で待機することができる。 The microcontroller 26 turns on the boosting operation when the same time as the time when the hand dryer 1 was used in the past cycle period is near. Further, the microcontroller 26 turns off the boosting operation in the same time zone as the time zone in which the hand dryer 1 is not used in the past cycle period. The hand dryer 1 can reduce standby power as compared with the case where the boosting operation is always on during the entire cycle period. Moreover, since the use of the hand dryer 1 is expected when the time when the hand dryer 1 has been used in the past is approaching, the hand dryer 1 turns on the boosting operation. When the use of the hand dryer 1 is expected, the hand dryer 1 can stand by in a state where air blowing can be started immediately.
 図7は、実施の形態1の手乾燥装置1による待機時における昇圧動作の制御について説明する図である。図7には、第1のサイクル期間である過去のサイクル期間C-1における実績データのタイムチャートと、第2のサイクル期間である現在のサイクル期間C0における昇圧動作の状態とのタイムチャートとを示している。図7において、サイクル期間C-1の時間T-1を表す時間軸と、現在のサイクル期間C0の時間T0を表す時間軸とは、日付が異なる同じ時刻を一致させて示している。なお、サイクル期間「C-1」の「-1」は、サイクル期間「C0」の1つ前のサイクル期間であることを示している。 FIG. 7 is a diagram for explaining the control of the boosting operation during standby by the hand dryer 1 according to the first embodiment. FIG. 7 shows a time chart of actual data in the past cycle period C-1 that is the first cycle period and a time chart of the state of the boosting operation in the current cycle period C0 that is the second cycle period. Show. In FIG. 7, the time axis representing the time T-1 of the cycle period C-1 and the time axis representing the time T0 of the current cycle period C0 are shown by matching the same time with different dates. Note that “−1” in the cycle period “C-1” indicates a cycle period immediately before the cycle period “C0”.
 実績データでは、センサ15での手の検知がなかったことを「0」と表し、センサ15での手の検知があったことを「1」と表す。タイムチャートの立ち上がりは実績データの「1」を表し、立ち下がりは実績データの「0」を表している。また、昇圧動作の状態については、タイムチャートの立ち上がりは昇圧動作がオンである状態を表すとする。タイムチャートの立ち下がりは昇圧状態がオフである状態を表すとする。 In the performance data, “0” indicates that the hand is not detected by the sensor 15, and “1” indicates that the hand is detected by the sensor 15. The rising edge of the time chart represents “1” of the actual data, and the falling edge represents “0” of the actual data. As for the state of the boosting operation, the rising edge of the time chart represents a state where the boosting operation is on. Assume that the falling edge of the time chart represents a state where the boosting state is OFF.
 サイクル期間C-1の時刻t1を始点とする単位時間において手の検知があったとする。マイクロコントローラ26は、サイクル期間C0のうち、同じ時刻t1よりパラメータαだけ早い時刻において昇圧動作をオンにする。パラメータαは、昇圧動作の開始時の設定のための開始時パラメータとする。実施の形態1では、パラメータαは、あらかじめ設定された一定の時間であって、120秒とする。また、マイクロコントローラ26は、時刻t1からパラメータβだけ遅い時刻に昇圧動作をオフにする。パラメータβは、昇圧動作の終了時の設定のための終了時パラメータとする。実施の形態1では、パラメータβはあらかじめ設定された一定の時間であって、120秒とする。パラメータαとパラメータβとは、図5に示すパラメータ格納部58に格納される。なお、パラメータαの値とパラメータβの値とは、任意に設定可能であるものとする。 Suppose that a hand is detected in a unit time starting from time t1 of cycle period C-1. The microcontroller 26 turns on the boosting operation at a time earlier by the parameter α than the same time t1 in the cycle period C0. The parameter α is a start parameter for setting at the start of the boost operation. In the first embodiment, the parameter α is a predetermined time set to 120 seconds. Further, the microcontroller 26 turns off the boosting operation at a time later by the parameter β from the time t1. The parameter β is an end parameter for setting at the end of the boosting operation. In the first embodiment, the parameter β is a predetermined time set in advance and is 120 seconds. The parameter α and the parameter β are stored in the parameter storage unit 58 shown in FIG. Note that the value of the parameter α and the value of the parameter β can be arbitrarily set.
 マイクロコントローラ26は、時刻t1と同様に、手の検知があった各時刻t2,t3,t4,t5,t6でも、昇圧動作のオンとオフとを制御する。時刻t3および時刻t4の各単位時間については、時刻t3からパラメータβが経過するより先に、時刻t4からパラメータαだけ早い時刻となる。マイクロコントローラ26は、時刻t3よりパラメータαだけ早い時刻から、時刻t4よりパラメータβだけ遅い時刻まで、昇圧動作をオンとする状態を継続する。 Similarly to the time t1, the microcontroller 26 controls the boosting operation on and off at each time t2, t3, t4, t5, and t6 when the hand is detected. Each unit time at time t3 and time t4 is the time earlier by parameter α from time t4 before parameter β elapses from time t3. The microcontroller 26 continues the state in which the step-up operation is turned on from the time earlier by the parameter α than the time t3 to the time later by the parameter β than the time t4.
 図8は、図5に示すマイクロコントローラ26における実績データの格納のための動作の手順を示すフローチャートである。1つの例では、マイクロコントローラ26は、手乾燥装置1の電源投入時において、実績データ格納部57に実績データが格納されていない場合に、図8に示す動作を実行する。マイクロコントローラ26は、実績データを更新する場合においても、図8に示す動作を実行しても良い。マイクロコントローラ26は、手乾燥装置1の電源が投入されているときに、常時実績データを蓄積しても良い。 FIG. 8 is a flowchart showing an operation procedure for storing the record data in the microcontroller 26 shown in FIG. In one example, the microcontroller 26 executes the operation shown in FIG. 8 when the actual data is not stored in the actual data storage unit 57 when the hand dryer 1 is turned on. The microcontroller 26 may execute the operation shown in FIG. 8 even when updating the performance data. The microcontroller 26 may always accumulate the performance data when the power of the hand dryer 1 is turned on.
 実績データの格納のための動作を開始するとき、マイクロコントローラ26は、ステップS1において、タイマー55でのカウントを開始する。1つの例では、タイマー55は、1秒間隔のカウントを継続する。また、記憶処理部54は、タイマー55でのカウントの回数を表すカウント値を参照しながら、センサ15での手の検知の有無をモニタする。ステップS2では、記憶処理部54は、タイマー55のカウント値を基に、カウントの開始からの時間が単位時間である10秒に達したか否かを判断する。カウントの開始からの時間が単位時間に達していない場合(ステップS2:No)、マイクロコントローラ26は、カウントの開始からの時間が単位時間に達するまでタイマー55での時間のカウントを継続する。 When starting the operation for storing the result data, the microcontroller 26 starts counting by the timer 55 in step S1. In one example, timer 55 continues to count at 1 second intervals. In addition, the storage processing unit 54 monitors the presence or absence of hand detection by the sensor 15 while referring to the count value representing the number of counts by the timer 55. In step S <b> 2, the storage processing unit 54 determines whether or not the time from the start of the count has reached a unit time of 10 seconds based on the count value of the timer 55. When the time from the start of the count has not reached the unit time (step S2: No), the microcontroller 26 continues to count the time in the timer 55 until the time from the start of the count reaches the unit time.
 カウントの開始からの時間が単位時間に達した場合(ステップS2:Yes)、記憶処理部54は、ステップS3において、単位時間内における手の検知の有無を示すデータを、実績データ格納部57へ格納する。単位時間内に手の検知がなかった場合、記憶処理部54は、実績データ格納部57のうち当該単位時間についてのデータの格納場所へ「0」を書き込む。単位時間内に手の検知があった場合、記憶処理部54は、実績データ格納部57のうち当該単位時間についてのデータの格納場所へ「1」を書き込む。 When the time from the start of the count has reached the unit time (step S2: Yes), the storage processing unit 54 sends data indicating the presence or absence of hand detection within the unit time to the result data storage unit 57 in step S3. Store. If no hand is detected within the unit time, the storage processing unit 54 writes “0” to the data storage location for the unit time in the result data storage unit 57. If a hand is detected within the unit time, the storage processing unit 54 writes “1” to the data storage location for the unit time in the result data storage unit 57.
 次に、記憶処理部54は、ステップS4において、タイマー55のカウント値をリセットさせる。ステップS5において、記憶処理部54は、パラメータ格納部58に格納されているサイクル期間のパラメータを参照して、サイクル期間についての実績データの格納が完了したか否かを判断する。 Next, the storage processing unit 54 resets the count value of the timer 55 in step S4. In step S <b> 5, the storage processing unit 54 refers to the cycle period parameter stored in the parameter storage unit 58, and determines whether or not the storage of the record data for the cycle period is completed.
 サイクル期間についての実績データの格納が完了していない場合(ステップS5:No)、マイクロコントローラ26は、ステップS1に戻って、次の単位時間についてのデータを得るための動作を継続する。サイクル期間についての実績データの格納が完了した場合(ステップS5:Yes)、マイクロコントローラ26は、実績データの記憶のための動作を終了する。なお、マイクロコントローラ26は、1つのサイクル期間についての実績データの格納が完了してから、次のサイクル期間についての実績データの格納のための動作を継続しても良い。 If the storage of performance data for the cycle period has not been completed (step S5: No), the microcontroller 26 returns to step S1 and continues the operation for obtaining data for the next unit time. When the storage of the record data for the cycle period is completed (step S5: Yes), the microcontroller 26 ends the operation for storing the record data. The microcontroller 26 may continue the operation for storing the result data for the next cycle period after the storage of the result data for one cycle period is completed.
 図9は、図5に示す実績データ格納部57に格納された実績データと、パラメータ格納部58に格納されたパラメータとの例を示す図である。データ番号は、実績データの時系列における単位時間の順序を表す番号である。図9に示す例では、データ番号は、実績データが取得されたときのサイクル期間C-1である24時間において、単位時間である10秒間ごとに割り振られている。データ番号を示す(i)は、1から8640までの整数とする。検知データは、単位時間ごとにおける手の検知の有無を示すデータである。検知データ「0」は、単位時間において手の検知がなかったことを示す。検知データ「1」は、単位時間において手の検知があったことを示す。 FIG. 9 is a diagram illustrating an example of the result data stored in the result data storage unit 57 illustrated in FIG. 5 and the parameters stored in the parameter storage unit 58. The data number is a number representing the order of unit times in the time series of the result data. In the example shown in FIG. 9, the data numbers are allocated every 10 seconds, which is a unit time, in 24 hours, which is the cycle period C-1 when the actual data is acquired. (I) indicating the data number is an integer from 1 to 8640. The detection data is data indicating the presence / absence of hand detection per unit time. The detection data “0” indicates that no hand is detected in the unit time. The detection data “1” indicates that a hand has been detected in a unit time.
 図9に示す例では、パラメータαおよびパラメータβには、いずれも固定値である120秒が設定されている。なお、図9に示す「単位時間の始点T-1(i)」、「昇圧動作の開始時刻T0on(i)」、「昇圧動作の終了時刻T0off(i)」は、マイクロコントローラ26での演算の過程において算出されるパラメータであって、記憶部53には格納されないものとする。図9に示すα,β,T-1(i),T0on(i),T0off(i)の各パラメータの単位(s)は、秒を表す。T-1(i),T0on(i),T0off(i)は、実績データのサイクル期間の始点から経過した時間により、各時刻を表している。 In the example shown in FIG. 9, a fixed value of 120 seconds is set for both the parameter α and the parameter β. Note that “unit time start point T-1 (i)”, “step-up operation start time T0on (i)”, and “step-up operation end time T0off (i)” shown in FIG. It is assumed that the parameters are calculated in the process and are not stored in the storage unit 53. The unit (s) of each parameter of α, β, T-1 (i), T0on (i), and T0off (i) shown in FIG. 9 represents seconds. T-1 (i), T0on (i), and T0off (i) represent each time by the time elapsed from the start point of the cycle period of the actual data.
 マイクロコントローラ26は、手の検知があったことを示す検知データ「1」のデータ番号を基に、昇圧コンバータ部30の昇圧動作を開始させるタイミングである開始時刻T0on(i)を決定する。また、マイクロコントローラ26は、手の検知があったことを示す検知データ「1」のデータ番号を基に、昇圧コンバータ部30の昇圧動作を終了させるタイミングである終了時刻T0off(i)を決定する。 The microcontroller 26 determines a start time T0on (i) that is a timing for starting the boosting operation of the boosting converter unit 30 based on the data number of the detection data “1” indicating that the hand has been detected. Further, the microcontroller 26 determines an end time T0off (i), which is a timing at which the boosting operation of the boosting converter unit 30 is terminated, based on the data number of the detection data “1” indicating that the hand has been detected. .
 ここで、図9を参照して、開始時刻T0on(i)と終了時刻T0off(i)との決定について説明する。マイクロコントローラ26の昇圧制御部56は、実績データ格納部57から読み出された実績データを基に、各単位時間のうち検知データが「1」である単位時間の始点T-1(i)を算出する。図9に示す例では、検知データが「1」であるデータ番号「119」について、単位時間の始点であるT-1(119)は、1180秒と算出される。 Here, the determination of the start time T0on (i) and the end time T0off (i) will be described with reference to FIG. Based on the record data read from the record data storage unit 57, the boost control unit 56 of the microcontroller 26 determines the start point T-1 (i) of the unit time at which the detection data is “1” in each unit time. calculate. In the example shown in FIG. 9, for the data number “119” whose detection data is “1”, T-1 (119), which is the start point of the unit time, is calculated as 1180 seconds.
 昇圧制御部56は、過去のサイクル期間C-1についての単位時間の始点T-1(i)からパラメータαを差し引くことにより、現在のサイクル期間C0についての昇圧動作の開始時刻T0on(i)を求める。図9に示す例において、昇圧制御部56は、T-1(119)=1180(s)からα=120(s)を差し引くことにより、開始時刻T0on(119)=1060(s)を算出する。昇圧制御部56は、算出された開始時刻T0on(i)において、昇圧コンバータ部30の昇圧をオンにする。 The boost control unit 56 subtracts the parameter α from the starting point T-1 (i) of the unit time for the past cycle period C-1 to thereby determine the boost operation start time T0on (i) for the current cycle period C0. Ask. In the example shown in FIG. 9, the boost control unit 56 calculates the start time T0on (119) = 1060 (s) by subtracting α = 120 (s) from T−1 (119) = 1180 (s). . The boost control unit 56 turns on boost of the boost converter unit 30 at the calculated start time T0on (i).
 また、昇圧制御部56は、過去のサイクル期間C-1についての単位時間の始点T-1(i)へパラメータβを足し合せることにより、現在のサイクル期間C0についての昇圧動作の終了時刻T0off(i)を求める。図9に示す例において、昇圧制御部56は、T-1(119)=1180(s)へβ=120(s)を足し合せることにより、終了時刻T0off(119)=1300(s)を算出する。昇圧制御部56は、算出された終了時刻T0off(i)において、昇圧コンバータ部30の昇圧をオフにする。 Further, the boost control unit 56 adds the parameter β to the start point T-1 (i) of the unit time for the past cycle period C-1, thereby to end the boost operation end time T0off (for the current cycle period C0). i) is determined. In the example shown in FIG. 9, the boost control unit 56 calculates the end time T0off (119) = 1300 (s) by adding β = 120 (s) to T-1 (119) = 1180 (s). To do. The boost control unit 56 turns off the boost of the boost converter unit 30 at the calculated end time T0off (i).
 なお、図9に示す例において、検知データが「1」であるデータ番号「5」については、単位時間の始点であるT-1(5)は40秒、昇圧動作の開始時刻T0on(5)はマイナス80秒と求められる。この場合、昇圧制御部56は、現在のサイクル期間C0の始点より80秒前に昇圧動作を開始しても良く、サイクル期間C0の始点から昇圧動作を開始しても良い。 In the example shown in FIG. 9, for the data number “5” where the detection data is “1”, T-1 (5), which is the start point of the unit time, is 40 seconds, and the boosting operation start time T0on (5) Is calculated as minus 80 seconds. In this case, the boost control unit 56 may start the boost operation 80 seconds before the start point of the current cycle period C0, or may start the boost operation from the start point of the cycle period C0.
 図10および図11は、実施の形態1の手乾燥装置1による昇圧動作の制御の手順を示すフローチャートである。ステップS11にて、図3に示す商用交流電源23への接続により手乾燥装置1へ電源が投入される。ステップS12にて、手乾燥装置1は、昇圧コンバータ部30の昇圧動作をオフとして待機状態となる。なお、手乾燥装置1は、電源が投入されてからは、センサ15での手の検知があった場合には、昇圧動作を随時オンにして送風機10を動作させる。ステップS12以降は、センサ15での手の検知がない待機状態での動作の手順を示している。 FIG. 10 and FIG. 11 are flowcharts showing the control procedure of the boosting operation by the hand dryer 1 of the first embodiment. In step S11, the hand dryer 1 is turned on by connection to the commercial AC power source 23 shown in FIG. In step S12, the hand dryer 1 enters a standby state with the boost operation of the boost converter unit 30 turned off. In addition, after the power is turned on, the hand dryer 1 operates the blower 10 by turning on the pressure increasing operation at any time when the sensor 15 detects the hand. Step S12 and subsequent steps show the operation procedure in a standby state in which no hand is detected by the sensor 15.
 ステップS13にて、図5に示す昇圧制御部56は、実績データ格納部57に実績データが格納されているか否かを判断する。実績データ格納部57に実績データが格納されていない場合(ステップS13:No)、マイクロコントローラ26は、ステップS14において、図8に示す手順による動作を実行することにより実績データを取得する。マイクロコントローラ26は、取得された実績データを実績データ格納部57へ格納する。実績データ格納部57に実績データが格納されている場合(ステップS13:Yes)、あるいはステップS14にて実績データが取得された場合、手乾燥装置1は、手順をステップS15へ進める。 In step S13, the boost control unit 56 shown in FIG. 5 determines whether or not the actual data is stored in the actual data storage unit 57. When the actual data is not stored in the actual data storage unit 57 (step S13: No), the microcontroller 26 acquires the actual data by executing an operation according to the procedure shown in FIG. 8 in step S14. The microcontroller 26 stores the acquired result data in the result data storage unit 57. When the result data is stored in the result data storage unit 57 (step S13: Yes), or when the result data is acquired in step S14, the hand drying apparatus 1 advances the procedure to step S15.
 ステップS15において、昇圧制御部56は、現在の時刻が実績データのサイクル期間C-1の始点の時刻に達したか否かを判断する。現在の時刻がサイクル期間C-1の始点の時刻に達していない場合(ステップS15:No)、マイクロコントローラ26は、現在の時刻がサイクル期間C-1の始点の時刻に達するまで待機する。現在の時刻がサイクル期間C-1の始点の時刻に達すると(ステップS15:Yes)、マイクロコントローラ26は、ステップS16において、タイマー55でのカウントを開始する。ステップS16にてカウントを開始したときの時刻が、現在のサイクル期間C0の始点となる。 In step S15, the boost control unit 56 determines whether or not the current time has reached the start time of the cycle period C-1 of the performance data. If the current time has not reached the start time of the cycle period C-1 (step S15: No), the microcontroller 26 waits until the current time reaches the start time of the cycle period C-1. When the current time reaches the start time of the cycle period C-1 (step S15: Yes), the microcontroller 26 starts counting by the timer 55 in step S16. The time when the counting is started in step S16 is the start point of the current cycle period C0.
 ステップS17では、昇圧制御部56は、実績データ格納部57に格納されている実績データを参照して、手の検知があったことを示すデータである検知データ「1」が得られたときのデータ番号「Xn」を設定する。「Xn」は変数とする。ステップS16でのカウントの開始から最初のステップS17では、データ番号「Xn」は、サイクル期間C-1の始点以降における最初のデータ番号である「X1」とされる。最初に実行されるステップS17からステップS22において、昇圧制御部56は、Xn=X1の設定による処理を実行する。 In step S <b> 17, the boost control unit 56 refers to the actual data stored in the actual data storage unit 57 and obtains detection data “1” that is data indicating that a hand has been detected. Data number “Xn” is set. “Xn” is a variable. In the first step S17 from the start of the count in step S16, the data number “Xn” is set to “X1” which is the first data number after the start point of the cycle period C-1. In step S <b> 17 to step S <b> 22 that are executed first, the boost control unit 56 executes processing by setting Xn = X <b> 1.
 昇圧制御部56は、パラメータ格納部58からパラメータαを読み出す。ステップS18において、昇圧制御部56は、ステップS17で設定されたデータ番号「Xn」についての単位時間の始点T-1(Xn)からパラメータαを差し引くことにより、昇圧動作の開始時刻T0on(Xn)を求める。すなわち、昇圧制御部56は、次の式(1)の関係を満たすT0on(Xn)を算出する。
T0on(Xn)=T-1(Xn)-α ・・・(1)
The boost control unit 56 reads the parameter α from the parameter storage unit 58. In step S18, the boost control unit 56 subtracts the parameter α from the unit time start point T-1 (Xn) for the data number “Xn” set in step S17, thereby starting the boost operation start time T0on (Xn). Ask for. That is, the boost control unit 56 calculates T0on (Xn) that satisfies the relationship of the following expression (1).
T0on (Xn) = T-1 (Xn) -α (1)
 ステップS19において、昇圧制御部56は、タイマー55のカウント値を参照して、現在の時刻Tnowが、ステップS18で算出された開始時刻T0on(Xn)に達したか否かを判断する。すなわち、昇圧制御部56は、次の式(2)の関係を満たすか否かを判断する。なお、時刻Tnowは、時間の経過に伴って変化する変数とする。
Tnow≧T0on(Xn) ・・・(2)
In step S19, the boost control unit 56 refers to the count value of the timer 55 and determines whether or not the current time Tnow has reached the start time T0on (Xn) calculated in step S18. That is, the boost control unit 56 determines whether or not the relationship of the following equation (2) is satisfied. The time Tnow is a variable that changes with the passage of time.
Tnow ≧ T0on (Xn) (2)
 現在の時刻Tnowが開始時刻T0on(Xn)に達していない場合(ステップS19:No)、マイクロコントローラ26は、現在の時刻Tnowが開始時刻TC0on(Xn)に達するまで待機する。現在の時刻Tnowが開始時刻TC0on(Xn)に達すると(ステップS19:Yes)、昇圧制御部56は、ステップS20において、昇圧コンバータ部30の昇圧動作をオンにする。 If the current time Tnow has not reached the start time T0on (Xn) (step S19: No), the microcontroller 26 waits until the current time Tnow reaches the start time TC0on (Xn). When the current time Tnow reaches the start time TC0on (Xn) (step S19: Yes), the boost control unit 56 turns on the boost operation of the boost converter unit 30 in step S20.
 昇圧制御部56は、パラメータ格納部58からパラメータβを読み出す。ステップS21において、昇圧制御部56は、ステップS17で設定されたデータ番号「Xn」についての単位時間の始点T-1(Xn)にパラメータβを足し合せることにより、昇圧動作の終了時間T0off(Xn)を求める。すなわち、昇圧制御部56は、次の式(3)の関係を満たすT0off(Xn)を算出する。
T0off(Xn)=T-1(Xn)+β ・・・(3)
The boost control unit 56 reads the parameter β from the parameter storage unit 58. In step S21, the boost control unit 56 adds the parameter β to the start point T-1 (Xn) of the unit time for the data number “Xn” set in step S17, so that the boost operation end time T0off (Xn ) That is, the boost control unit 56 calculates T0off (Xn) that satisfies the relationship of the following expression (3).
T0off (Xn) = T-1 (Xn) + β (3)
 ステップS22において、昇圧制御部56は、タイマー55のカウント値を参照して、現在の時刻Tnowが終了時間T0off(Xn)に達したか否かを判断する。すなわち、昇圧制御部56は、次の式(4)の関係を満たすか否かを判断する。
Tnow≧T0off(Xn) ・・・(4)
In step S22, the boost control unit 56 refers to the count value of the timer 55 and determines whether or not the current time Tnow has reached the end time T0off (Xn). That is, the boost control unit 56 determines whether or not the relationship of the following equation (4) is satisfied.
Tnow ≧ T0off (Xn) (4)
 現在の時刻Tnowが終了時間T0off(Xn)に達すると(ステップS22:Yes)、昇圧制御部56は、ステップS23において、昇圧コンバータ部30の昇圧動作をオフにする。ステップS24において、昇圧制御部56は、実績データにおける検知データ「1」の全てのデータ番号について昇圧動作の制御のための処理が完了したか否かを判断する。 When the current time Tnow reaches the end time T0off (Xn) (step S22: Yes), the boost control unit 56 turns off the boost operation of the boost converter unit 30 in step S23. In step S24, the boost control unit 56 determines whether or not the processing for controlling the boost operation has been completed for all the data numbers of the detection data “1” in the performance data.
 全てのデータ番号についての処理が完了していない場合(ステップS24:No)、昇圧制御部56は、ステップS25において、実績データを参照して、検知データ「1」が得られたときのデータ番号「Xn」を更新する。Xn=X1の設定によるステップS24までの処理を経てから最初のステップS25の場合、昇圧制御部56は、データ番号「Xn」を、「X1」から「X2」へ更新する。「X2」は、最初のデータ番号「X1」の次に検知データ「1」が得られたときのデータ番号とする。その後、昇圧制御部56は、Xn=X2の設定によるステップS18以降の処理を実行する。 When the processing for all the data numbers has not been completed (step S24: No), the boost control unit 56 refers to the actual data in step S25, and the data number when the detection data “1” is obtained. Update “Xn”. In the case of the first step S25 after the processing up to step S24 by setting Xn = X1, the boost control unit 56 updates the data number “Xn” from “X1” to “X2”. “X2” is the data number when the detection data “1” is obtained after the first data number “X1”. Thereafter, the boost control unit 56 executes the processing after step S18 by setting Xn = X2.
 一方、現在の時刻Tnowが終了時間T0off(Xn)に達していない場合(ステップS22:No)、ステップS26において、昇圧制御部56は、実績データ格納部57に格納されている実績データを参照して、データ番号「Xn」の次に検知データ「1」が得られたときのデータ番号「Xn+1」を設定する。「Xn+1」は変数とする。Xn=X1の設定によるステップS22までの処理を経てから最初のステップS26の場合、昇圧制御部56は、データ番号「Xn+1」に「X2」を設定する。上述するステップS25の場合と同様に、「X2」は、最初のデータ番号「X1」の次に検知データ「1」が得られたときのデータ番号である。 On the other hand, when the current time Tnow has not reached the end time T0off (Xn) (step S22: No), the step-up control unit 56 refers to the result data stored in the result data storage unit 57 in step S26. Then, the data number “Xn + 1” when the detection data “1” is obtained next to the data number “Xn” is set. “Xn + 1” is a variable. In the case of the first step S26 after the processing up to step S22 by setting Xn = X1, the boost control unit 56 sets “X2” to the data number “Xn + 1”. As in step S25 described above, “X2” is the data number when the detection data “1” is obtained after the first data number “X1”.
 次のステップS27において、昇圧制御部56は、ステップS25で設定されたデータ番号「Xn+1」についての単位時間の始点T-1(Xn+1)からパラメータαを差し引くことにより、昇圧動作の開始時刻T0on(Xn+1)を求める。すなわち、昇圧制御部56は、次の式(5)の関係を満たすT0on(Xn+1)を算出する。
T0on(Xn+1)=T-1(Xn+1)-α ・・・(5)
In the next step S27, the boost control unit 56 subtracts the parameter α from the start point T-1 (Xn + 1) of the unit time for the data number “Xn + 1” set in step S25, thereby starting the boost operation start time T0on ( Xn + 1). That is, the boost control unit 56 calculates T0on (Xn + 1) that satisfies the relationship of the following equation (5).
T0on (Xn + 1) = T-1 (Xn + 1) -α (5)
 ステップS28において、昇圧制御部56は、タイマー55のカウント値を参照して、現在の時刻Tnowが、ステップS26で算出された開始時刻T0on(Xn+1)に達したか否かを判断する。すなわち、昇圧制御部56は、次の式(6)の関係を満たすか否かを判断する。
Tnow≧T0on(Xn+1) ・・・(6)
In step S28, the boost control unit 56 refers to the count value of the timer 55 and determines whether or not the current time Tnow has reached the start time T0on (Xn + 1) calculated in step S26. That is, the boost control unit 56 determines whether or not the relationship of the following formula (6) is satisfied.
Tnow ≧ T0on (Xn + 1) (6)
 現在の時刻Tnowが開始時刻T0on(Xn+1)に達していない場合(ステップS28:No)、昇圧制御部56は、データ番号「Xn」についてのステップS22へ手順を戻す。一方、現在の時刻Tnowが開始時刻T0on(Xn+1)に達している場合(ステップS28:Yes)、ステップS29において、昇圧制御部56は、昇圧動作をオンとしたまま、データ番号「Xn」を更新する。ステップS29において、データ番号「Xn」には、ステップS26において設定されたデータ番号「Xn+1」と同じデータ番号が設定される。ステップS26においてデータ番号「Xn+1」に「X2」が設定されている場合、昇圧制御部56は、データ番号「Xn」に「X2」を設定する。その後、昇圧制御部56は、Xn=X2の設定によるステップS21以降の処理を実行する。 If the current time Tnow has not reached the start time T0on (Xn + 1) (step S28: No), the boost control unit 56 returns the procedure to step S22 for the data number “Xn”. On the other hand, when the current time Tnow has reached the start time T0on (Xn + 1) (step S28: Yes), in step S29, the boost control unit 56 updates the data number “Xn” while keeping the boost operation on. To do. In step S29, the data number “Xn” is set to the same data number as the data number “Xn + 1” set in step S26. When “X2” is set to the data number “Xn + 1” in step S26, the boost control unit 56 sets “X2” to the data number “Xn”. Thereafter, the boost control unit 56 executes the processing after step S21 by setting Xn = X2.
 ステップS24において、全てのデータ番号についての処理が完了している場合(ステップS24:Yes)、マイクロコントローラ26は、実績データに基づく昇圧動作の制御を終了する。なお、図9に示す実績データの場合、昇圧制御部56は、ステップS25あるいはステップS29において、データ番号「Xn」を、「5」、・・・「119」、「121」、「122」・・・と更新させる。 In step S24, when the processing for all the data numbers has been completed (step S24: Yes), the microcontroller 26 ends the control of the boosting operation based on the result data. In the case of the performance data shown in FIG. 9, the boost control unit 56 sets the data number “Xn” to “5”,... “119”, “121”, “122”.・ ・ Update it.
 マイクロコントローラ26は、ステップS12以降の処理の実行中においてセンサ15での手の検知があった場合、割り込み処理により昇圧動作をオンにして、送風機10を動作させる。タイマー55でのカウントが行われている場合は、マイクロコントローラ26は、割り込み処理の間においてカウントを継続する。マイクロコントローラ26は、待機時における昇圧動作を制御している現在のサイクル期間C0について、センサ15での手の検知結果を基に、実績データを蓄積しても良い。マイクロコントローラ26は、現在のサイクル期間C0において蓄積された実績データを過去の実績データとともに格納しても良く、過去の実績データに上書きしても良い。マイクロコントローラ26は、図10および図11に示す手順による処理を終了してから、現在のサイクル期間C0についての実績データに基づく処理を継続しても良い。マイクロコントローラ26は、サイクル期間C0の次のサイクル期間における昇圧動作の制御を実行する。 The microcontroller 26 turns on the boosting operation by the interruption process and operates the blower 10 when the hand is detected by the sensor 15 during the execution of the processes after step S12. If the timer 55 is counting, the microcontroller 26 continues counting during the interrupt processing. The microcontroller 26 may accumulate the result data based on the detection result of the hand by the sensor 15 for the current cycle period C0 in which the step-up operation during standby is controlled. The microcontroller 26 may store the actual data accumulated in the current cycle period C0 together with the past actual data, or may overwrite the past actual data. The microcontroller 26 may continue the process based on the performance data for the current cycle period C0 after the process according to the procedure shown in FIGS. The microcontroller 26 controls the boosting operation in the cycle period next to the cycle period C0.
 マイクロコントローラ26は、24時間をサイクル期間とする昇圧動作の制御と実績データの蓄積とを連続して実行しても良い。マイクロコントローラ26は、連続するサイクル期間のうち最初のサイクル期間では昇圧動作を常時オンとして実績データを蓄積し、2回目以降のサイクル期間において昇圧動作の制御を実行しても良い。 The microcontroller 26 may continuously perform the control of the boosting operation with the cycle period of 24 hours and the accumulation of the result data. The microcontroller 26 may accumulate the performance data by always turning on the boosting operation in the first cycle period among the continuous cycle periods, and may control the boosting operation in the second and subsequent cycle periods.
 実施の形態1によると、手乾燥装置1は、手の検知の有無の実績を表す実績データに基づいて昇圧コンバータ部30の昇圧動作を制御する。手乾燥装置1は、過去のサイクル期間のうち手の検知があった時刻に基づいて設定された開始時刻において昇圧動作を開始させる。手乾燥装置1は、手乾燥装置1の使用が予想されるときに、送風をすぐに開始可能な状態で待機可能とする。手乾燥装置1は、その他の時間においては昇圧動作を行わないことで、待機電力を低減できる。手乾燥装置1は、マイクロコントローラ26に蓄積された実績データを基に昇圧動作を制御する。手乾燥装置1は、待機状態での昇圧動作を行わせる時間帯の設定が不要であることから、設定条件についての煩雑な入力操作を不要とすることができる。手乾燥装置1は、時間帯についての入力操作のための手段と、入力内容を表示する手段とが不要となることで、簡易な構成とすることができる。 According to the first embodiment, the hand drying device 1 controls the boosting operation of the boosting converter unit 30 based on the record data indicating the record of presence / absence of hand detection. The hand dryer 1 starts the pressure increasing operation at the start time set based on the time when the hand is detected in the past cycle period. When the use of the hand drying device 1 is expected, the hand drying device 1 can stand by in a state where air blowing can be started immediately. The hand dryer 1 can reduce standby power by not performing the boosting operation at other times. The hand dryer 1 controls the boosting operation based on the record data accumulated in the microcontroller 26. Since the hand dryer 1 does not need to set a time zone for performing the pressure increasing operation in the standby state, it can eliminate the need for complicated input operations for the setting conditions. The hand dryer 1 can have a simple configuration by eliminating the need for an input operation for a time zone and a means for displaying the input content.
 以上により、手乾燥装置1は、送風の開始に要する時間を短縮でき、かつ待機電力を低減できるという効果を奏する。 As described above, the hand drying device 1 has an effect that the time required to start blowing can be shortened and standby power can be reduced.
実施の形態2.
 図12は、本発明の実施の形態2にかかる手乾燥装置1による昇圧動作の制御について説明する図である。実施の形態2にかかる手乾燥装置1は、センサ15での手の検知があったことを示す検知データ「1」の頻度を基に決定された開始時パラメータと終了時パラメータとを使用して、昇圧動作の開始時刻と終了時刻とを設定する。上記の実施の形態1と同じ部分には同じ符号を付し、重複する説明を省略する。
Embodiment 2. FIG.
FIG. 12 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the second embodiment of the present invention. The hand dryer 1 according to the second embodiment uses the start time parameter and the end time parameter determined based on the frequency of the detection data “1” indicating that the hand is detected by the sensor 15. The start time and end time of the boosting operation are set. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 図12に示す「低」、「中」、「高」は、頻度の分類を表す。第1の頻度である頻度Fは、第1の判定期間に含まれる検知データ「1」の数を表す。第1の判定期間は、実績データのサイクル期間である第1のサイクル期間からの区分けにより設定された期間である。1つの例では、第1の判定期間は1時間とする。頻度の分類「低」の基準は、頻度Fが9以下であることとする。頻度の分類「中」の基準は、頻度Fが10以上かつ20以下であることとする。頻度の分類「高」の基準は、頻度Fが21以上であることとする。頻度が「低」、「中」、「高」と高くなるにしたがい、開始時パラメータであるパラメータαは、60秒、120秒、180秒と値が大きくなるように設定されている。終了時パラメータであるパラメータβの値は、パラメータαの値と同じである。図5に示すパラメータ格納部58は、頻度の分類ごとに設定されたパラメータαの値とパラメータβの値とを格納する。なお、第1の判定期間の長さは任意に設定可能であるものとする。また、頻度の分類の数は3つに限られず、2つあるいは4つ以上であっても良い。頻度の分類の基準は、任意に設定可能であるものとする。頻度の分類ごとのパラメータα,βの値は、任意に設定可能であるものとする。 “Low”, “Medium”, and “High” shown in FIG. 12 represent frequency classifications. The frequency F, which is the first frequency, represents the number of detection data “1” included in the first determination period. The first determination period is a period set by dividing from the first cycle period, which is the cycle period of the performance data. In one example, the first determination period is 1 hour. The criterion for the frequency classification “low” is that the frequency F is 9 or less. The criterion of the frequency classification “medium” is that the frequency F is 10 or more and 20 or less. The criterion for the frequency classification “high” is that the frequency F is 21 or more. As the frequency increases to “low”, “medium”, and “high”, the parameter α, which is a start time parameter, is set to increase in value such as 60 seconds, 120 seconds, and 180 seconds. The value of the parameter β, which is an end parameter, is the same as the value of the parameter α. The parameter storage unit 58 shown in FIG. 5 stores the value of the parameter α and the value of the parameter β set for each frequency classification. Note that the length of the first determination period can be arbitrarily set. The number of frequency classifications is not limited to three, and may be two or four or more. The frequency classification criteria can be arbitrarily set. It is assumed that the values of the parameters α and β for each frequency classification can be arbitrarily set.
 図13は、図5に示す実績データ格納部57に格納された実績データと、パラメータ格納部58に格納されたパラメータとの例を示す図である。図13に示す頻度Fは、マイクロコントローラ26での演算の過程において算出されるパラメータであって、記憶部53には格納されないものとする。 FIG. 13 is a diagram showing an example of the result data stored in the result data storage unit 57 shown in FIG. 5 and the parameters stored in the parameter storage unit 58. The frequency F shown in FIG. 13 is a parameter calculated in the process of calculation in the microcontroller 26 and is not stored in the storage unit 53.
 マイクロコントローラ26は、第1の判定期間における検知データ「1」の頻度Fに基づいて決定されたパラメータαを使用して、昇圧コンバータ部30の昇圧動作を開始させるタイミングである開始時刻を求める。また、マイクロコントローラ26は、第1の判定期間における検知データ「1」の頻度Fに基づいて決定されたパラメータβを使用して、昇圧コンバータ部30の昇圧動作を終了させるタイミングである終了時刻を求める。 The microcontroller 26 uses the parameter α determined based on the frequency F of the detection data “1” in the first determination period to obtain a start time that is a timing for starting the boost operation of the boost converter unit 30. In addition, the microcontroller 26 uses the parameter β determined based on the frequency F of the detection data “1” in the first determination period, and sets an end time that is a timing for ending the boost operation of the boost converter unit 30. Ask.
 ここで、図13を参照して、パラメータαとパラメータβとの決定について説明する。データ番号「1」から「360」までの検知データは、サイクル期間C-1の始点からの1時間である第1の判定期間における手の検知の有無を示す検知データである。データ番号「1」から「360」までの検知データに、手の検知があったことを示す検知データ「1」が21個含まれていたとする。図5に示す昇圧制御部56は、かかる第1の判定期間における検知データ「1」の頻度の分類を、図12に示す基準に基づいて「高」と判定する。昇圧制御部56は、頻度の分類「高」の判定を基に、データ番号「1」から「360」までのパラメータαとパラメータβとを180秒と決定する。昇圧制御部56は、その他のデータ番号の第1の判定期間についても、データ番号「1」から「360」までの第1の判定期間の場合と同様に、頻度の分類に基づいてパラメータαとパラメータβとを決定する。 Here, the determination of the parameter α and the parameter β will be described with reference to FIG. Detection data from data numbers “1” to “360” is detection data indicating whether or not a hand is detected in the first determination period, which is one hour from the start point of the cycle period C-1. It is assumed that 21 detection data “1” indicating that a hand has been detected is included in the detection data from the data numbers “1” to “360”. The boost control unit 56 illustrated in FIG. 5 determines that the frequency classification of the detection data “1” in the first determination period is “high” based on the criterion illustrated in FIG. 12. The boosting control unit 56 determines the parameter α and the parameter β from the data numbers “1” to “360” as 180 seconds based on the determination of the frequency classification “high”. In the first determination period for other data numbers, the boost control unit 56 also sets the parameter α and the parameter α based on the frequency classification, as in the case of the first determination period from the data numbers “1” to “360”. The parameter β is determined.
 実施の形態2によると、手乾燥装置1は、手の検知があった頻度を基に決定されたパラメータαとパラメータβとを使用することで、手乾燥装置1が使用された頻度を基に昇圧動作の開始時刻と終了時刻を設定可能とする。手乾燥装置1は、高い頻度での使用が予想されるときほど昇圧動作の期間を長くし、使用の頻度が低いと予想されるときには昇圧動作の期間を短くすることができる。これにより、手乾燥装置1は、使用頻度の状況に適合するように昇圧動作を制御することができる。 According to the second embodiment, the hand dryer 1 uses the parameter α and the parameter β determined based on the frequency with which the hand is detected, so that the hand dryer 1 is used based on the frequency with which the hand dryer 1 is used. The start time and end time of the boost operation can be set. The hand dryer 1 can lengthen the period of the boosting operation as it is expected to be used at a high frequency, and can shorten the period of the boosting operation when the frequency of use is expected to be low. Thereby, the hand dryer 1 can control a pressure | voltage rise operation so that it may adapt to the condition of use frequency.
実施の形態3.
 図14は、本発明の実施の形態3にかかる手乾燥装置1による昇圧動作の制御について説明する図である。実施の形態3にかかる手乾燥装置1は、手の検知の待機時での昇圧動作を制御している第2のサイクル期間における手の検知の頻度である第2の頻度を基に、開始時パラメータと終了時パラメータとを変更する。上記の実施の形態1および2と同じ部分には同じ符号を付し、重複する説明を省略する。
Embodiment 3 FIG.
FIG. 14 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the third embodiment of the present invention. The hand drying apparatus 1 according to the third embodiment is based on the second frequency, which is the frequency of hand detection in the second cycle period in which the pressure increasing operation during standby of hand detection is controlled. Change parameters and exit parameters. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.
 図14に示す「低」、「中」、「高」の分類は、実施の形態2の図12に示す分類と同様とする。第2の判定期間は、第2のサイクル期間である現在のサイクル期間からの区分けにより設定された20分間の期間である。第2の判定期間は、実施の形態2における第1の判定期間の始点に対応する時刻からの20分間とする。第2の頻度である頻度Fnは、第2の判定期間において手が検知された回数を表す。 The classification of “low”, “medium”, and “high” shown in FIG. 14 is the same as the classification shown in FIG. 12 of the second embodiment. The second determination period is a period of 20 minutes set by division from the current cycle period which is the second cycle period. The second determination period is 20 minutes from the time corresponding to the start point of the first determination period in the second embodiment. The frequency Fn, which is the second frequency, represents the number of times that a hand has been detected in the second determination period.
 図5に示す昇圧制御部56は、実績データから決定されたパラメータα,βを、頻度Fnに基づいて変更する。実施の形態3では、実績データから決定されたパラメータα,βの値を基準値と称することがある。1つの例では、基準値は、図12に示すパラメータα,βの値である。なお、第2の判定期間の長さは任意に設定可能とする。 The boost control unit 56 shown in FIG. 5 changes the parameters α and β determined from the performance data based on the frequency Fn. In the third embodiment, the values of the parameters α and β determined from the actual data may be referred to as reference values. In one example, the reference values are the values of the parameters α and β shown in FIG. Note that the length of the second determination period can be arbitrarily set.
 頻度の分類が「低」かつ頻度Fnが3以下である場合について、開始時パラメータであるパラメータαは、基準値と同じ値である60秒と設定されている。頻度の分類が「低」かつ頻度Fnが4以上である場合について、パラメータαは、基準値より大きい値である120秒と設定されている。昇圧制御部56は、頻度の分類「低」において頻度Fnが4以上である場合には、パラメータαを基準値である60秒から120秒へ変更する。これにより、マイクロコントローラ26は、実績データに基づく頻度の分類が「低」である場合にて頻度Fnが4以上となったことで、実績データのサイクル期間と比べて現在のサイクル期間での手乾燥装置1の使用頻度が高くなったと判断して、昇圧動作の期間を長くする調整を行う。 When the frequency classification is “low” and the frequency Fn is 3 or less, the parameter α, which is a start parameter, is set to 60 seconds, which is the same value as the reference value. When the frequency classification is “low” and the frequency Fn is 4 or more, the parameter α is set to 120 seconds, which is a value larger than the reference value. When the frequency Fn is 4 or more in the frequency classification “low”, the boost control unit 56 changes the parameter α from the reference value of 60 seconds to 120 seconds. As a result, the microcontroller 26 has the frequency Fn of 4 or more when the frequency classification based on the performance data is “low”. It is determined that the use frequency of the drying apparatus 1 has increased, and adjustment is performed to lengthen the period of the boosting operation.
 頻度の分類が「中」かつ頻度Fnが4以上かつ7以下である場合について、パラメータαは、基準値と同じ値である120秒と設定されている。頻度の分類が「中」かつ頻度Fnが3以下である場合について、パラメータαは、基準値より小さい値である60秒と設定されている。昇圧制御部56は、頻度の分類「中」において頻度Fnが3以下である場合には、パラメータαを基準値である120秒から60秒へ変更する。これにより、マイクロコントローラ26は、実績データに基づく頻度の分類が「中」である場合にて頻度Fnが3以下となったことで、実績データでのサイクルと比べて現在のサイクルでの手乾燥装置1の使用頻度が低くなったと判断して、昇圧動作の期間を短くする調整を可能とする。 When the frequency classification is “medium” and the frequency Fn is 4 or more and 7 or less, the parameter α is set to 120 seconds, which is the same value as the reference value. When the frequency classification is “medium” and the frequency Fn is 3 or less, the parameter α is set to 60 seconds, which is a value smaller than the reference value. When the frequency Fn is 3 or less in the frequency classification “medium”, the boost control unit 56 changes the parameter α from the reference value of 120 seconds to 60 seconds. As a result, the microcontroller 26 performs manual drying in the current cycle compared to the cycle in the performance data because the frequency Fn is 3 or less when the frequency classification based on the performance data is “medium”. It is determined that the frequency of use of the device 1 has become low, and adjustment that shortens the period of the boosting operation is made possible.
 図14に示すように、「低」、「中」、「高」の各分類について、頻度Fnの範囲ごとのパラメータαの値が設定されている。終了時パラメータであるパラメータβの値は、パラメータαの値と同じである。図5に示すパラメータ格納部58は、あらかじめ設定されたパラメータαの値とパラメータβの値とを格納する。なお、パラメータα,βの値を基準値から変更させるための基準とされる頻度Fnの範囲は、任意に設定可能であるものとする。また、頻度Fnの範囲ごとのパラメータα,βの値は、任意に設定可能であるものとする。 As shown in FIG. 14, for each classification of “low”, “medium”, and “high”, the value of the parameter α for each range of the frequency Fn is set. The value of the parameter β, which is an end parameter, is the same as the value of the parameter α. The parameter storage unit 58 shown in FIG. 5 stores a preset value of the parameter α and a value of the parameter β. In addition, the range of the frequency Fn used as a reference | standard for changing the value of parameter (alpha) and (beta) from a reference value shall be set arbitrarily. In addition, the values of the parameters α and β for each range of the frequency Fn can be arbitrarily set.
 図15は、図5に示す実績データ格納部57に格納された実績データと、決定されたパラメータとの例を示す図である。図15に示す頻度Fnは、マイクロコントローラ26での演算の過程において算出されるパラメータであって、記憶部53には格納されないものとする。 FIG. 15 is a diagram showing an example of the result data stored in the result data storage unit 57 shown in FIG. 5 and the determined parameters. The frequency Fn shown in FIG. 15 is a parameter calculated in the process of calculation in the microcontroller 26 and is not stored in the storage unit 53.
 ここで、図15を参照して、パラメータαとパラメータβとの変更について説明する。データ番号「1」から「360」までの1時間におけるパラメータα,βの基準値は、図12に示す頻度の分類「高」の場合の180秒とする。昇圧制御部56は、現在のサイクル期間においてデータ番号「1」から「360」に相当する1時間のうち、第2の判定期間であってデータ番号「1」から「120」に相当する20分間において、パラメータα,βを180秒とする。 Here, the change between the parameter α and the parameter β will be described with reference to FIG. The reference values of the parameters α and β in one hour from the data numbers “1” to “360” are 180 seconds in the case of the frequency classification “high” shown in FIG. The boosting control unit 56 is the second determination period of 20 minutes corresponding to the data numbers “1” to “120” among the 1 hours corresponding to the data numbers “1” to “360” in the current cycle period. , Parameters α and β are 180 seconds.
 また、昇圧制御部56は、かかる20分間において、手が検知された単位時間の数である頻度Fnをモニタする。頻度Fnが「6」であった場合、パラメータα,βは、図14に示す分類「高」かつ「Fn≦7」についての120秒となる。昇圧制御部56は、パラメータα、βを、180秒から120秒へ変更する。昇圧制御部56は、データ番号「121」から「360」に相当する40分間において、パラメータα,βを120秒とする。このように、マイクロコントローラ26は、実績データのサイクル期間のときと比べて現在における手乾燥装置1の使用頻度が変化したことを頻度Fnから判断して、昇圧動作の期間を変化させる。昇圧制御部56は、データ番号「361」以降についても、データ番号「1」から「360」についてと同様に、頻度Fnを基にパラメータα、βを変更する。 In addition, the boost control unit 56 monitors the frequency Fn, which is the number of unit times in which the hand is detected in such 20 minutes. When the frequency Fn is “6”, the parameters α and β are 120 seconds for the classification “high” and “Fn ≦ 7” shown in FIG. The step-up control unit 56 changes the parameters α and β from 180 seconds to 120 seconds. The step-up control unit 56 sets the parameters α and β to 120 seconds in 40 minutes corresponding to the data numbers “121” to “360”. In this way, the microcontroller 26 determines that the current frequency of use of the hand dryer 1 has changed from the frequency Fn compared to the cycle period of the performance data, and changes the period of the boosting operation. The boost control unit 56 changes the parameters α and β based on the frequency Fn in the same manner as the data numbers “1” to “360” for the data numbers “361” and thereafter.
 実施の形態3によると、手乾燥装置1は、実績データから得られたパラメータα,βを、現在のサイクル期間における手の検知の頻度に基づいて変更可能とする。これにより、手乾燥装置1は、使用状況の変化に適合するように昇圧動作を制御することができる。 According to the third embodiment, the hand dryer 1 can change the parameters α and β obtained from the result data based on the frequency of hand detection in the current cycle period. Thereby, the hand dryer 1 can control a pressure | voltage rise operation so that it may adapt to the change of a use condition.
 なお、実施の形態3において、手乾燥装置1は、過去の実績データからの頻度の分類「低」、「中」、「高」の判定を省略して、現在のサイクル期間における手の検知の頻度を基にパラメータα,βを決定しても良い。 In the third embodiment, the hand dryer 1 omits the determination of the frequency classification “low”, “medium”, and “high” from the past performance data, and detects the hand in the current cycle period. The parameters α and β may be determined based on the frequency.
実施の形態4.
 図16は、本発明の実施の形態4にかかる手乾燥装置1による昇圧動作の制御について説明する図である。実施の形態4にかかる手乾燥装置1は、手の検知の待機時での昇圧動作を制御している第2のサイクル期間である現在のサイクル期間における手の検知結果を基に、実績データに基づく昇圧動作を停止させる。上記の実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
Embodiment 4 FIG.
FIG. 16 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the fourth embodiment of the present invention. The hand drying device 1 according to the fourth embodiment uses the result of the hand detection in the current cycle period, which is the second cycle period for controlling the pressure increasing operation at the time of hand detection standby, as the result data. Based on this, the boosting operation is stopped. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 図16には、過去のサイクル期間C-1における実績データのタイムチャートと、現在のサイクル期間C0における手の検出結果と昇圧動作の状態とのタイムチャートとを示している。図16では、サイクル期間C-1の時間T-1を表す時間軸と、現在のサイクル期間C0の時間T0を表す時間軸とは、日付が異なる同じ時刻を一致させて示している。 FIG. 16 shows a time chart of the actual data in the past cycle period C-1, and a time chart of the hand detection result and the state of the boosting operation in the current cycle period C0. In FIG. 16, the time axis representing the time T-1 of the cycle period C-1 and the time axis representing the time T0 of the current cycle period C0 are shown by matching the same time with different dates.
 図5に示す昇圧制御部56は、現在のサイクル期間C0での第1の判定期間において手の検知が1回もなかった場合に、実績データに基づく昇圧動作を停止させる。実施の形態4において、第1の判定期間は1時間とする。なお、第1の判定期間の長さは任意に設定可能とする。 The boost control unit 56 shown in FIG. 5 stops the boost operation based on the result data when no hand is detected in the first determination period in the current cycle period C0. In Embodiment 4, the first determination period is 1 hour. Note that the length of the first determination period can be arbitrarily set.
 図16に示す例では、現在のサイクル期間C0の第1の判定期間H1において、昇圧制御部56は、実施の形態1の場合と同様に、過去のサイクル期間C-1における実績データに基づいて昇圧動作のオンとオフとを制御している。かかる第1の判定期間H1において、手が検知された単位時間が1つもなかった場合に、昇圧制御部56は、当該第1の判定期間H1の次の第1の判定期間H2にて、待機状態における昇圧動作を常時オフとする。このように、昇圧制御部56は、第1の判定期間にて手の検知が1回もなかった場合には、手乾燥装置1の使用頻度が過去のサイクル期間と比べて著しく下がったとの判断により、実績データに基づく昇圧動作を停止させる。 In the example shown in FIG. 16, in the first determination period H1 of the current cycle period C0, the boost control unit 56 is based on the past data in the past cycle period C-1 as in the case of the first embodiment. The boosting operation is controlled on and off. In the first determination period H1, when there is no unit time in which a hand is detected, the boost control unit 56 waits in the first determination period H2 next to the first determination period H1. The step-up operation in the state is always turned off. As described above, the boost control unit 56 determines that the frequency of use of the hand dryer 1 has significantly decreased compared to the past cycle period when there has been no hand detection in the first determination period. Thus, the boosting operation based on the actual data is stopped.
 昇圧制御部56は、第1の判定期間H2以降、サイクル期間C0において待機状態における昇圧動作を常時オフとする。マイクロコントローラ26は、サイクル期間C0での待機状態における昇圧動作を常時オフとすることで、通常のサイクル期間と比べて手乾燥装置1の使用頻度が著しく低い状況での待機電力を低減できる。なお、昇圧制御部56は、第1の判定期間H2以降、サイクル期間C0において手の検知があった場合に、サイクル期間C-1の実績データに基づく昇圧動作の制御を再開させる。 The boost control unit 56 always turns off the boost operation in the standby state in the cycle period C0 after the first determination period H2. The microcontroller 26 can reduce standby power in a situation where the frequency of use of the hand dryer 1 is significantly lower than that in the normal cycle period by always turning off the boosting operation in the standby state in the cycle period C0. Note that, after the first determination period H2, the boost control unit 56 resumes the control of the boost operation based on the actual data of the cycle period C-1 when a hand is detected in the cycle period C0.
 また、第1の判定期間H2以降、手の検知が1度もないままサイクル期間C0が終了した場合、昇圧制御部56は、サイクル期間C0の次のサイクル期間C1では、サイクル期間C-1における実績データに基づく昇圧動作の制御を再開させる。なお、サイクル期間C1においても、手の検知が1回もない第1の判定期間があった場合には、昇圧制御部56は、サイクル期間C1においても待機状態における昇圧動作を常時オフとする。 In addition, after the first determination period H2, when the cycle period C0 ends without any hand detection, the boost control unit 56 determines that in the cycle period C-1 in the cycle period C1 next to the cycle period C0. The control of the boosting operation based on the result data is resumed. In the cycle period C1, if there is a first determination period in which no hand is detected, the boost control unit 56 always turns off the boost operation in the standby state even in the cycle period C1.
 1つの例では、現在のサイクル期間C0が、手乾燥装置1が設置されている設備の休業日に当たる場合に、手乾燥装置1の使用頻度が、前日までのサイクル期間C-1における使用頻度に比べて著しく下がることがあり得る。昇圧制御部56は、サイクル期間C0での待機状態における昇圧動作を常時オフとすることで、休業日における無駄な待機電力を低減できる。 In one example, when the current cycle period C0 falls on a closed day of the facility where the hand dryer 1 is installed, the frequency of use of the hand dryer 1 is equal to the frequency of use in the cycle period C-1 up to the previous day. It can be significantly lower than that. The boosting control unit 56 can reduce wasteful standby power on closed days by always turning off the boosting operation in the standby state in the cycle period C0.
 なお、昇圧制御部56は、第1の判定期間での手が検知された単位時間の数が1回もない場合に限らず、単位時間の数があらかじめ設定された閾値以下であった場合に、実績データに基づく昇圧動作を停止させても良い。この場合も、マイクロコントローラ26は、手乾燥装置1の使用頻度が著しく低い状況での待機電力を低減できる。1つの例では、昇圧制御部56は、設備の休業日において手乾燥装置1の使用が若干ある場合において、待機状態における昇圧動作を停止させることができる。また、昇圧制御部56は、待機状態での昇圧動作を停止させた後に、手が検知された単位時間の数が閾値を超えた場合に、待機状態での昇圧動作を再開しても良い。閾値は、手乾燥装置1に設けられた入力手段への操作により設定できることとしても良い。なお、入力手段の図示は省略している。実施の形態4にかかる手乾燥装置1は、実施の形態2あるいは3と同様に、昇圧動作を開始させるタイミングと終了させるタイミングとを求めても良い。 The boost control unit 56 is not limited to the case where the number of unit times in which the hand is detected in the first determination period is not once, but when the number of unit times is equal to or less than a preset threshold value. The boosting operation based on the result data may be stopped. Also in this case, the microcontroller 26 can reduce standby power in a situation where the frequency of use of the hand dryer 1 is extremely low. In one example, the boosting control unit 56 can stop the boosting operation in the standby state when the hand dryer 1 is slightly used on a facility holiday. Further, after stopping the boosting operation in the standby state, the boosting control unit 56 may restart the boosting operation in the standby state when the number of unit times in which a hand is detected exceeds a threshold value. The threshold value may be set by an operation on an input unit provided in the hand dryer 1. Note that the input means is not shown. The hand dryer 1 according to the fourth embodiment may determine the timing for starting and ending the boosting operation, as in the second or third embodiment.
 実施の形態4によると、手乾燥装置1は、現在のサイクル期間における手の検知結果を基に、実績データに基づく昇圧動作を停止させる。手乾燥装置1は、手乾燥装置1の使用頻度が著しく低い状況での待機電力を低減できる。 According to the fourth embodiment, the hand dryer 1 stops the pressure increasing operation based on the result data based on the hand detection result in the current cycle period. The hand dryer 1 can reduce standby power in a situation where the frequency of use of the hand dryer 1 is extremely low.
実施の形態5.
 本発明の実施の形態5にかかる手乾燥装置1は、複数のサイクル期間における実績データを蓄積する。上記の実施の形態1から4と同一の部分には同一の符号を付し、重複する説明を省略する。実施の形態5において、図5に示す実績データ格納部57は、複数のサイクル期間についての実績データを格納する。
Embodiment 5 FIG.
The hand-drying apparatus 1 concerning Embodiment 5 of this invention accumulate | stores the performance data in several cycle periods. The same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and redundant description is omitted. In the fifth embodiment, the result data storage unit 57 shown in FIG. 5 stores the result data for a plurality of cycle periods.
 図17は、本発明の実施の形態5にかかる手乾燥装置1による昇圧動作の制御について説明するフローチャートである。実施の形態5では、図5に示すマイクロコントローラ26は、7個のサイクル期間C0,C1,C2・・・C6の実績データの蓄積と、蓄積された実績データに基づく昇圧動作の制御とを実行する。 FIG. 17 is a flowchart for explaining the control of the boosting operation by the hand dryer 1 according to the fifth embodiment of the present invention. In the fifth embodiment, the microcontroller 26 shown in FIG. 5 performs the accumulation of the actual data of seven cycle periods C0, C1, C2,... C6 and the control of the boosting operation based on the accumulated actual data. To do.
 ステップS31では、マイクロコントローラ26は、最初のサイクル期間である第1のサイクル期間C0における実績データである第1の実績データを蓄積する。マイクロコントローラ26は、図8に示す手順と同様の手順により、第1の蓄積データを蓄積および格納する。 In step S31, the microcontroller 26 accumulates the first result data that is the result data in the first cycle period C0 that is the first cycle period. The microcontroller 26 accumulates and stores the first accumulation data by the same procedure as that shown in FIG.
 ステップS32では、マイクロコントローラ26は、ステップS31で格納された第1の蓄積データに基づいて、第2のサイクル期間C1における昇圧動作の制御を実行する。マイクロコントローラ26は、図10および図11に示す手順と同様の手順により、昇圧動作を制御する。マイクロコントローラ26は、昇圧動作の制御と同時に、第2のサイクル期間C1における実績データである第2の実績データを蓄積する。マイクロコントローラ26は、図8に示す手順と同様の手順により、第2の蓄積データを蓄積および格納する。 In step S32, the microcontroller 26 controls the boosting operation in the second cycle period C1 based on the first accumulated data stored in step S31. The microcontroller 26 controls the boosting operation according to a procedure similar to that shown in FIGS. The microcontroller 26 accumulates second performance data, which is performance data in the second cycle period C1, simultaneously with the control of the boosting operation. The microcontroller 26 accumulates and stores the second accumulated data by the same procedure as that shown in FIG.
 ステップS33では、マイクロコントローラ26は、ステップS32までに格納された第1の蓄積データと第2の蓄積データとに基づいて、第3のサイクル期間C2における昇圧動作の制御を実行する。図5に示す昇圧制御部56は、第1の蓄積データと第2の蓄積データとから、第1の判定期間ごとにおける図13に示す頻度Fの平均値を算出しても良い。昇圧制御部56は、頻度Fの平均値を基に、開始時パラメータと終了時パラメータとを決定する。昇圧制御部56は、実施の形態2と同様の手法により、開始時パラメータと終了時パラメータとを決定する。昇圧制御部56は、決定された開始時パラメータと終了時パラメータとを使用して、第3のサイクル期間C2での昇圧動作の開始時刻と終了時刻とを設定する。 In step S33, the microcontroller 26 controls the boosting operation in the third cycle period C2 based on the first accumulated data and the second accumulated data stored up to step S32. The boost control unit 56 shown in FIG. 5 may calculate an average value of the frequency F shown in FIG. 13 for each first determination period from the first accumulation data and the second accumulation data. The boost control unit 56 determines a start parameter and an end parameter based on the average value of the frequency F. The boost control unit 56 determines the start time parameter and the end time parameter by the same method as in the second embodiment. The boost control unit 56 sets the start time and end time of the boost operation in the third cycle period C2 using the determined start time parameter and end time parameter.
 また、ステップS33では、マイクロコントローラ26は、昇圧動作の制御と同時に、第3のサイクル期間C2における実績データである第3の実績データを蓄積する。マイクロコントローラ26は、図8に示す手順と同様の手順により、第3の蓄積データを蓄積および格納する。 In step S33, the microcontroller 26 accumulates third performance data that is performance data in the third cycle period C2 simultaneously with the control of the boosting operation. The microcontroller 26 accumulates and stores the third accumulation data by the same procedure as that shown in FIG.
 ステップS34では、マイクロコントローラ26は、第3のサイクル期間C2と同様の要領により、第4のサイクル期間から第7のサイクル期間C3,C4,C5,C6における昇圧動作を制御する。また、マイクロコントローラ26は、第3のサイクル期間C2と同様の要領により、第4のサイクル期間から第7のサイクル期間C3,C4,C5,C6における実績データである第4の実績データから第7の実績データを蓄積する。これにより、マイクロコントローラ26は、7つのサイクル期間C0,C1,C2・・・C6の実績データを蓄積と、蓄積された実績データに基づく昇圧動作の制御とを終了する。 In step S34, the microcontroller 26 controls the boosting operation from the fourth cycle period to the seventh cycle periods C3, C4, C5, and C6 in the same manner as the third cycle period C2. Further, the microcontroller 26 performs the same operation as the third cycle period C2 to the fourth actual data from the fourth cycle period to the seventh cycle periods C3, C4, C5, C6 to the seventh actual period data. Accumulate actual data. Thereby, the microcontroller 26 finishes accumulating the actual data of the seven cycle periods C0, C1, C2,... C6 and the control of the boosting operation based on the accumulated actual data.
 図17に示す手順によると、マイクロコントローラ26は、第7のサイクル期間C6での昇圧動作の制御において、第1から第6の実績データから算出された頻度Fの平均値を基に、昇圧動作の開始時刻と終了時刻とを設定する。マイクロコントローラ26は、過去の複数のサイクル期間にて蓄積された実績データを利用することで、手乾燥装置1の使用頻度の傾向を高い精度で把握することができる。手乾燥装置1は、把握された使用頻度の傾向を基に昇圧動作を制御可能とすることで、無駄な昇圧動作を低減できる。これにより、手乾燥装置1は、待機電力の効果的な低減が可能となる。 According to the procedure shown in FIG. 17, in the control of the boosting operation in the seventh cycle period C6, the microcontroller 26 performs the boosting operation based on the average value of the frequency F calculated from the first to sixth performance data. Set the start time and end time. The microcontroller 26 can grasp the tendency of the frequency of use of the hand dryer 1 with high accuracy by using the result data accumulated in the past plural cycle periods. The hand-drying device 1 can reduce the useless boosting operation by enabling the boosting operation to be controlled based on the grasped usage frequency tendency. Thereby, the hand dryer 1 can effectively reduce standby power.
 マイクロコントローラ26は、実施の形態4と同様に、第1の判定期間における手の検知が著しく低い場合に、実績データに基づく昇圧動作を停止させても良い。マイクロコントローラ26は、昇圧動作を停止させたサイクル期間の実績データを、頻度Fの平均値の算出の際に除外しても良い。1つの例では、マイクロコントローラ26は、休業日の実績データを除外して頻度Fの平均値を算出可能とする。これにより、マイクロコントローラ26は、手乾燥装置1の使用頻度の傾向をさらに高い精度で把握することができる。 Similarly to the fourth embodiment, the microcontroller 26 may stop the boosting operation based on the performance data when the hand detection in the first determination period is extremely low. The microcontroller 26 may exclude the performance data of the cycle period in which the boosting operation is stopped when calculating the average value of the frequency F. In one example, the microcontroller 26 can calculate the average value of the frequency F by excluding the actual data on closed days. Thereby, the microcontroller 26 can grasp the tendency of the usage frequency of the hand dryer 1 with higher accuracy.
 マイクロコントローラ26は、7つのサイクル期間における実績データの蓄積と、蓄積された実績データに基づく昇圧動作の制御とを実行するものに限られない。マイクロコントローラ26は、7個未満あるいは7個より多いサイクル期間について、実績データの蓄積と、昇圧動作の制御とを実行しても良い。 The microcontroller 26 is not limited to executing the accumulation of the performance data in the seven cycle periods and the control of the boosting operation based on the accumulated performance data. The microcontroller 26 may perform performance data accumulation and boost operation control for less than seven or more than seven cycle periods.
 1つの例では、マイクロコントローラ26は、1か月間における日ごとの実績データの蓄積と、蓄積された実績データに基づく昇圧動作の制御とを実行しても良い。この場合、マイクロコントローラ26は、曜日ごとにおける頻度Fの平均値を算出して、昇圧動作を制御しても良い。マイクロコントローラ26は、7つのサイクル期間おきの実績データを使用することで、曜日ごとの平均値を算出することができる。また、マイクロコントローラ26は、休業日における実績データ以外の全て実績データを基に、頻度Fの平均値を算出しても良い。 In one example, the microcontroller 26 may execute the accumulation of the actual data for each day in one month and the control of the boosting operation based on the accumulated actual data. In this case, the microcontroller 26 may control the boosting operation by calculating an average value of the frequency F for each day of the week. The microcontroller 26 can calculate the average value for each day of the week by using the performance data every seven cycle periods. Further, the microcontroller 26 may calculate the average value of the frequency F based on all the actual data other than the actual data on the closed days.
 さらに、マイクロコントローラ26は、1年間における日ごとの実績データの蓄積と、蓄積された実績データに基づく昇圧動作の制御とを実行しても良い。この場合も、マイクロコントローラ26は、曜日ごとにおける頻度Fの平均値を算出して、昇圧動作を制御しても良い。マイクロコントローラ26は、月ごとあるいは季節ごとにおける頻度Fの平均値を算出して、昇圧動作を制御しても良い。マイクロコントローラ26は、年間における使用頻度の変化に対応して、昇圧動作を制御することが可能となる。1つの例では、マイクロコントローラ26は、年間にて定められた休業期間を把握して昇圧動作を制御することが可能となる。実施の形態5にかかる手乾燥装置1は、実施の形態2あるいは3と同様に、昇圧動作を開始させるタイミングと終了させるタイミングとを求めても良い。 Furthermore, the microcontroller 26 may execute accumulation of the actual data for each day in one year and control of the boosting operation based on the accumulated actual data. Also in this case, the microcontroller 26 may calculate the average value of the frequency F for each day of the week and control the boosting operation. The microcontroller 26 may control the boosting operation by calculating an average value of the frequency F every month or every season. The microcontroller 26 can control the boosting operation in response to a change in the usage frequency during the year. In one example, the microcontroller 26 can control the step-up operation by grasping a closed period set in the year. The hand dryer 1 according to the fifth embodiment may determine the timing for starting and ending the boosting operation, as in the second or third embodiment.
 実施の形態5によると、手乾燥装置1は、複数のサイクル期間における実績データを蓄積して、蓄積された実績データを基に昇圧動作を制御する。これにより、手乾燥装置1は、使用頻度の傾向を高い精度で把握して昇圧動作を制御可能とし、待機電力の効果的な低減が可能となる。 According to the fifth embodiment, the hand dryer 1 accumulates performance data for a plurality of cycle periods, and controls the boosting operation based on the accumulated performance data. Thereby, the hand dryer 1 can grasp | ascertain the tendency of usage frequency with high precision, can control pressure | voltage rise operation | movement, and can reduce standby electric power effectively.
実施の形態6.
 本発明の実施の形態6にかかる手乾燥装置1は、あらかじめ設定された時間であるサイクル期間に代えて、手乾燥装置1への電源の投入時から電源の切断時までの期間をサイクル期間とする。実施の形態6では、実績データが蓄積されるサイクル期間と、実績データを基に昇圧動作を制御するサイクル期間とは、手乾燥装置1への電源の投入時から電源の切断時までの期間である。実施の形態6にかかる手乾燥装置1は、サイクル期間の設定の手法が異なる以外は、実施の形態1から5と同様に、実績データの蓄積と、昇圧動作の制御とを可能とする。実施の形態6において、サイクル期間は、図3に示す商用交流電源23のオンからオフまでの時間とする。
Embodiment 6 FIG.
In the hand dryer 1 according to the sixth embodiment of the present invention, instead of a cycle period that is a preset time, a period from when the power to the hand dryer 1 is turned on to when the power is turned off is defined as a cycle period. To do. In the sixth embodiment, the cycle period in which the result data is accumulated and the cycle period in which the boosting operation is controlled based on the result data are the period from when the power to the hand dryer 1 is turned on to when the power is turned off. is there. The hand dryer 1 according to the sixth embodiment enables accumulation of performance data and control of the boosting operation as in the first to fifth embodiments except that the method for setting the cycle period is different. In the sixth embodiment, the cycle period is the time from on to off of the commercial AC power supply 23 shown in FIG.
 手乾燥装置1は、毎日の同じ時刻あるいは同じ時間帯において電源がオンにされ、毎日の同じ時刻あるいは同じ時間帯において電源がオフとされることがある。1つの例では、午前8時に電源がオンにされ、午後9時に電源がオフとされる。この場合において、サイクル期間があらかじめ24時間と設定されていたとすると、サイクル期間分の実績データが蓄積されないこととなる。図10のステップS13にて、常に実績データが格納されていないと判断されることで、マイクロコントローラ26は、ステップS14以降の処理を実行し得ないことになる。 The hand dryer 1 may be turned on at the same time every day or at the same time period, and may be turned off at the same time every day or at the same time period. In one example, the power is turned on at 8 am and the power is turned off at 9 pm. In this case, if the cycle period is set to 24 hours in advance, the result data for the cycle period is not accumulated. When it is determined in step S13 in FIG. 10 that the actual result data is not always stored, the microcontroller 26 cannot execute the processing after step S14.
 手乾燥装置1は、電源の投入時から電源の切断時までの時間をサイクル期間とすることで、サイクル期間分の実績データの格納と、格納された実績データに基づく昇圧動作の制御とが可能となる。なお、電源が例外的に切断されない場合を想定して、マイクロコントローラ26は、電源の投入からあらかじめ設定された期間が経過した時点までの実績データが蓄積された場合に、その後の検知データを蓄積しないこととしても良い。また、マイクロコントローラ26は、過去の実績データが格納されていない時間帯になっても電源が切断されない場合は、待機状態での昇圧動作を常時オンあるいは常時オフとしても良い。 The manual drying apparatus 1 can store the actual data for the cycle period and control the boosting operation based on the stored actual data by setting the time from when the power is turned on to when the power is turned off as the cycle period. It becomes. Assuming that the power supply is not exceptionally cut off, the microcontroller 26 accumulates the subsequent detection data when the actual data is accumulated from when the power is turned on until a preset period has elapsed. It is good not to do. Further, when the power is not cut off even when the past performance data is not stored, the microcontroller 26 may set the boosting operation in the standby state to always on or always off.
 実施の形態6にかかる手乾燥装置1は、実施の形態2あるいは3と同様に、昇圧動作を開始させるタイミングと終了させるタイミングとを求めても良い。また、実施の形態6にかかる手乾燥装置1は、実施の形態4と同様に、現在のサイクル期間における手の検知結果を基に、実績データに基づく昇圧動作を停止させても良い。また、実施の形態6にかかる手乾燥装置1は、実施の形態5と同様に、複数のサイクル期間についての実績データを格納しても良い。 The hand dryer 1 according to the sixth embodiment may determine the timing for starting and ending the boosting operation as in the second or third embodiment. Moreover, the hand dryer 1 concerning Embodiment 6 may stop the pressure | voltage rise operation based on performance data based on the detection result of the hand in the present cycle period similarly to Embodiment 4. FIG. Moreover, the hand dryer 1 concerning Embodiment 6 may store the performance data about several cycle periods similarly to Embodiment 5. FIG.
 実施の形態6によると、手乾燥装置1は、電源の投入時から電源の切断時までの時間をサイクル期間として、実績データの蓄積と昇圧動作の制御とを行う。手乾燥装置1は、実施の形態1から5と同様に、送風の開始に要する時間を短縮でき、また待機電力を低減できる。 According to the sixth embodiment, the hand-drying device 1 performs accumulation of performance data and control of the boosting operation, with the time period from when the power is turned on to when the power is turned off as a cycle period. As with the first to fifth embodiments, the hand drying device 1 can shorten the time required to start blowing and can reduce standby power.
実施の形態7.
 図18は、本発明の実施の形態7にかかる手乾燥装置1に備えられた制御部20の構成を示す図である。実施の形態1から6と同一の部分には同一の符号を付し、重複する説明を省略する。実施の形態7にかかる手乾燥装置1は、気温を基に、昇圧動作の期間を変化させる。
Embodiment 7 FIG.
FIG. 18 is a diagram illustrating a configuration of the control unit 20 provided in the hand dryer 1 according to the seventh embodiment of the present invention. The same parts as those in the first to sixth embodiments are denoted by the same reference numerals, and redundant description is omitted. The hand dryer 1 according to the seventh embodiment changes the period of the pressure increasing operation based on the air temperature.
 手乾燥装置1は、温度計測部であるサーミスタ60を備える。サーミスタ60は、気温を計測する。マイクロコントローラ26は、サーミスタ60から気温の計測結果を取得する。サーミスタ60は、図1に示す手乾燥装置1の筐体3の内部あるいは外部に取り付けられている。サーミスタ60は、制御部20の内部に実装されても良い。温度計測部は、気温を計測可能であれば良く、サーミスタ60以外であっても良い。温度計測部は、手乾燥装置1に取り付けられたものに限られず、手乾燥装置1から離れた位置に設置されたものでも良い。温度計測部は、手乾燥装置1が設置されている室内の気温、あるいはユーザの居室内の気温を計測する温度計であっても良い。手乾燥装置1は、離れた位置の温度計測部からの温度情報を受信する通信手段を備えていても良い。図18では、通信手段の図示を省略している。マイクロコントローラ26は、取得された気温のデータを基に、昇圧コンバータ部30を動作させる期間の長さを補正する。 The hand dryer 1 includes a thermistor 60 that is a temperature measuring unit. The thermistor 60 measures the temperature. The microcontroller 26 acquires the temperature measurement result from the thermistor 60. The thermistor 60 is attached inside or outside the housing 3 of the hand dryer 1 shown in FIG. The thermistor 60 may be mounted inside the control unit 20. The temperature measurement unit only needs to be able to measure the temperature, and may be other than the thermistor 60. The temperature measurement unit is not limited to the one attached to the hand dryer 1, and may be installed at a position away from the hand dryer 1. The temperature measurement unit may be a thermometer that measures the temperature in the room where the hand dryer 1 is installed or the temperature in the user's room. The hand dryer 1 may include a communication unit that receives temperature information from a temperature measurement unit at a remote location. In FIG. 18, the communication means is not shown. The microcontroller 26 corrects the length of the period during which the boost converter unit 30 is operated based on the acquired temperature data.
 図19は、図5に示す実績データ格納部57に格納された実績データの例を示す図である。実施の形態7において、実績データには、サーミスタ60で計測された単位時間ごとの温度のデータが含まれる。図5に示す記憶処理部54は、単位時間内においてサーミスタ60から取得された温度のデータを、検知データとともに実績データ格納部57へ格納する。1つの例では、記憶処理部54は、図8に示すステップS3において、検知データとともに温度のデータを格納する。 FIG. 19 is a diagram showing an example of the result data stored in the result data storage unit 57 shown in FIG. In the seventh embodiment, the actual data includes temperature data for each unit time measured by the thermistor 60. The storage processing unit 54 shown in FIG. 5 stores the temperature data acquired from the thermistor 60 within the unit time in the result data storage unit 57 together with the detection data. In one example, the storage processing unit 54 stores temperature data together with the detection data in step S3 shown in FIG.
 図19に示す「温度差」は、現在のサイクル期間の単位時間において計測された温度と、実績データに含まれる温度のデータとの差分を表す。「β補正値」は、温度差を基に算出された補正値であって、終了時パラメータであるパラメータβの補正値を表す。なお、「温度差」および「β補正値」は、マイクロコントローラ26での演算の過程において算出されるパラメータであって、記憶部53には格納されないものとする。図19に示す「温度」および「温度差」の単位は、セルシウス度(℃)とする。「β補正値」の単位は、秒(s)とする。 The “temperature difference” shown in FIG. 19 represents the difference between the temperature measured in the unit time of the current cycle period and the temperature data included in the actual data. The “β correction value” is a correction value calculated based on the temperature difference, and represents the correction value of the parameter β that is the end time parameter. Note that “temperature difference” and “β correction value” are parameters calculated in the process of calculation in the microcontroller 26, and are not stored in the storage unit 53. The units of “temperature” and “temperature difference” shown in FIG. 19 are Celsius degrees (° C.). The unit of “β correction value” is second (s).
 昇圧動作の制御の際、マイクロコントローラ26の昇圧制御部56は、検知データ「1」が得られたときのデータ番号における温度のデータを実績データ格納部57から読み出す。昇圧制御部56は、現在の温度の計測値から、読み出された温度のデータを差し引いて、温度差を算出する。 When controlling the step-up operation, the step-up control unit 56 of the microcontroller 26 reads the temperature data at the data number when the detection data “1” is obtained from the result data storage unit 57. The step-up control unit 56 subtracts the read temperature data from the current temperature measurement value to calculate the temperature difference.
 1つの例では、温度差がプラスの値である場合では、温度差1℃当たりのβ補正値はマイナス10秒、温度差がマイナスの値である場合では、温度差1℃当たりのβ補正値はプラス10秒と設定されている。昇圧制御部56は、かかる設定を基に、温度差からβ補正値を算出する。昇圧制御部56は、算出されたβ補正値で補正されたパラメータβを基に、昇圧動作の終了時刻を求める。なお、β補正値による補正前のパラメータβは、手の検知の頻度によらず一定の値とされた実施の形態1のパラメータβと、頻度Fから決定された実施の形態2のパラメータβと、頻度Fnに基づいて変更された実施の形態3のパラメータβとのいずれであっても良い。なお、温度差からβ補正値を算出する手法は、実施の形態7による手法に限られず、適宜変更しても良い。 In one example, when the temperature difference is a positive value, the β correction value per 1 ° C. of the temperature difference is minus 10 seconds, and when the temperature difference is a negative value, the β correction value per 1 ° C. of the temperature difference. Is set to plus 10 seconds. Based on this setting, the boost control unit 56 calculates a β correction value from the temperature difference. The boost control unit 56 obtains the end time of the boost operation based on the parameter β corrected with the calculated β correction value. Note that the parameter β before correction by the β correction value is a constant value β regardless of the hand detection frequency, and the parameter β of the second embodiment determined from the frequency F. Any of the parameters β of the third embodiment changed based on the frequency Fn may be used. The method for calculating the β correction value from the temperature difference is not limited to the method according to the seventh embodiment, and may be changed as appropriate.
 図19に示す例では、検知データ「1」のデータ番号「5」について、現在の温度から実績データにおける温度である17℃を差し引いた温度差がマイナス3℃と算出されている。昇圧制御部56は、マイナス3℃の温度差を基に、β補正値であるプラス30秒を算出する。1つの例では、昇圧制御部56は、図9に示すパラメータβである120秒にβ補正値であるプラス30秒を加えた結果を基に、データ番号「5」について昇圧動作の終了時刻を算出する。図9におけるデータ番号「5」についての終了時刻T0off(5)は、40秒+βの160秒から、プラス30秒の加算により190秒へ補正される。 In the example shown in FIG. 19, for the data number “5” of the detection data “1”, the temperature difference obtained by subtracting 17 ° C., which is the temperature in the actual data, from the current temperature is calculated as minus 3 ° C. The boost control unit 56 calculates plus 30 seconds, which is a β correction value, based on the temperature difference of minus 3 ° C. In one example, the boost control unit 56 sets the end time of the boost operation for the data number “5” based on the result obtained by adding the plus 30 seconds that is the β correction value to 120 seconds that is the parameter β shown in FIG. calculate. The end time T0off (5) for the data number “5” in FIG. 9 is corrected from 40 seconds + β of 160 seconds to 190 seconds by adding 30 seconds.
 また、図19に示す例では、検知データ「1」のデータ番号「359」について、現在の温度から実績データにおける温度である21℃を差し引いた温度差がプラス2℃と算出されている。昇圧制御部56は、プラス2℃の温度差を基に、β補正値であるマイナス20秒を算出する。1つの例では、昇圧制御部56は、図13に示すパラメータβである180秒から20秒が差し引かれた結果である160秒を基に、データ番号「359」についての昇圧動作の終了時刻を算出する。 Further, in the example shown in FIG. 19, for the data number “359” of the detection data “1”, the temperature difference obtained by subtracting 21 ° C. that is the temperature in the actual data from the current temperature is calculated as plus 2 ° C. The boost control unit 56 calculates minus 20 seconds, which is a β correction value, based on the temperature difference of plus 2 ° C. In one example, the boost control unit 56 sets the end time of the boost operation for the data number “359” based on 160 seconds that is the result of subtracting 20 seconds from 180 seconds that is the parameter β shown in FIG. calculate.
 手乾燥装置1は、温度差がマイナス側へ大きくなるほど昇圧動作の終了時刻を遅らせることで、気温が低くなるほど待機状態における昇圧動作の期間が長くなるような制御が可能となる。1つの例では、トイレ室に設置されている手乾燥装置1の場合、手乾燥装置1は、気温が低いほどトイレの使用頻度が高くなるという一般的な傾向に適合するように昇圧動作を制御することができる。このように、手乾燥装置1は、気温の変化により使用頻度に変化が生じ得る場合に、気温の変化に適合した昇圧動作の制御を行うことができる。 The hand-drying device 1 can be controlled such that the pressure increase operation end time is delayed as the temperature difference increases toward the minus side, and the period of the pressure increase operation in the standby state becomes longer as the temperature decreases. In one example, in the case of the hand dryer 1 installed in the toilet room, the hand dryer 1 controls the pressure increasing operation so as to meet the general tendency that the use frequency of the toilet increases as the temperature decreases. can do. As described above, the hand dryer 1 can control the pressure increasing operation adapted to the change in the temperature when the use frequency can change due to the change in the temperature.
 なお、昇圧制御部56は、温度差を基に算出された補正値により、開始パラメータであるパラメータαを補正しても良い。手乾燥装置1は、パラメータαとパラメータβとの少なくとも一方を補正することで、昇圧動作の期間を変化させることができる。また、手乾燥装置1は、気温が低いほど使用頻度が低くなる、あるいは気温が高いほど使用頻度が高くなる場合には、温度差がプラス側へ大きくなるほど昇圧動作の期間が長くなるような制御を行っても良い。 Note that the boost control unit 56 may correct the parameter α, which is the start parameter, with a correction value calculated based on the temperature difference. The hand drying device 1 can change the period of the boosting operation by correcting at least one of the parameter α and the parameter β. In addition, the hand dryer 1 is controlled so that the frequency of use increases as the temperature difference decreases toward the positive side when the frequency of use decreases as the temperature decreases or the frequency of use increases as the temperature increases. May be performed.
 実施の形態7にかかる手乾燥装置1は、実施の形態2あるいは3と同様に、昇圧動作を開始させるタイミングと終了させるタイミングとを求めても良い。また、実施の形態7にかかる手乾燥装置1は、実施の形態4と同様に、現在のサイクル期間における手の検知結果を基に、実績データに基づく昇圧動作を停止させても良い。また、実施の形態7にかかる手乾燥装置1は、実施の形態5と同様に、複数のサイクル期間についての実績データを格納しても良い。また、実施の形態7にかかる手乾燥装置1は、実施の形態6と同様に、手乾燥装置1への電源の投入時から電源の切断時までの期間をサイクル期間としても良い。 The hand dryer 1 according to the seventh embodiment may determine the timing for starting and ending the boosting operation, as in the second or third embodiment. Moreover, the hand dryer 1 concerning Embodiment 7 may stop the pressure | voltage rise operation based on performance data based on the detection result of the hand in the present cycle period similarly to Embodiment 4. FIG. Moreover, the hand dryer 1 concerning Embodiment 7 may store the performance data about several cycle periods similarly to Embodiment 5. FIG. Further, in the hand dryer 1 according to the seventh embodiment, similarly to the sixth embodiment, a period from when the power to the hand dryer 1 is turned on to when the power is turned off may be a cycle period.
 実施の形態7によると、手乾燥装置1は、気温に基づいて昇圧動作の期間を変化させることで、気温の変化に適合した昇圧動作の制御を行うことができる。 According to the seventh embodiment, the hand-drying device 1 can control the boosting operation adapted to the change of the temperature by changing the period of the boosting operation based on the temperature.
実施の形態8.
 図20は、本発明の実施の形態8にかかる手乾燥装置1に備えられた制御部20の構成を示す図である。実施の形態1から7と同一の部分には同一の符号を付し、重複する説明を省略する。実施の形態8にかかる手乾燥装置1は、マイクロコントローラ26へ時刻の情報を提供する時計70を備える。
Embodiment 8 FIG.
FIG. 20 is a diagram illustrating a configuration of the control unit 20 provided in the hand dryer 1 according to the eighth embodiment of the present invention. The same parts as those in the first to seventh embodiments are denoted by the same reference numerals, and redundant description is omitted. The hand dryer 1 according to the eighth embodiment includes a clock 70 that provides time information to the microcontroller 26.
 マイクロコントローラ26は、時計70から時刻の情報を取得する。手乾燥装置1は、現在の時刻を用いて、実施の形態1から7における昇圧動作の制御を実行する。また、時計70は、時刻とともに、日付と曜日とを提示するものであっても良い。マイクロコントローラ26は、時刻の情報とともに、日付および曜日の情報を時計70から取得する。手乾燥装置1は、現在の日付および曜日を用いて、実施の形態1から7における昇圧動作の制御を実行できる。 The microcontroller 26 acquires time information from the clock 70. The hand dryer 1 executes the control of the boosting operation in the first to seventh embodiments using the current time. The clock 70 may present a date and day of the week together with the time. The microcontroller 26 acquires date and day information from the clock 70 together with time information. The hand dryer 1 can control the boosting operation in the first to seventh embodiments using the current date and day of the week.
 手乾燥装置1は、商用交流電源23が定期的にオフとされる場合でも、商用交流電源23がオンとされたときにおける時刻についての設定を行わなくても、時刻を常時把握することができる。時計70は、実施の形態1から7のいずれの手乾燥装置1に設けられていても良い。実施の形態8によると、手乾燥装置1は、時計70を備えることで、現在の時刻を用いて昇圧動作を制御することができる。 Even when the commercial AC power supply 23 is periodically turned off, the hand dryer 1 can always grasp the time without setting the time when the commercial AC power supply 23 is turned on. . The timepiece 70 may be provided in any of the hand drying apparatuses 1 according to the first to seventh embodiments. According to the eighth embodiment, the hand drying device 1 includes the clock 70, and can control the boosting operation using the current time.
実施の形態9.
 図21は、本発明の実施の形態9にかかる手乾燥装置1による昇圧動作の制御について説明する図である。実施の形態9にかかる手乾燥装置1は、実施の形態2での第1の判定期間とは異なる第3の判定期間について、検知データ「1」の頻度の分類を判定する。実施の形態1から8と同一の部分には同一の符号を付し、重複する説明を省略する。
Embodiment 9 FIG.
FIG. 21 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the ninth embodiment of the present invention. The hand dryer 1 according to the ninth embodiment determines the classification of the frequency of the detection data “1” for a third determination period different from the first determination period in the second embodiment. The same parts as those in the first to eighth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 第3の判定期間は、データ番号(i)についての単位時間の始点の前の期間と、始点の後の期間とを含む。1つの例では、第3の判定期間は、単位時間の始点の前の30分間と、始点の後の30分間とを含む1時間である。かかる例では、第3の判定期間の長さは、第1の判定期間の長さと同じであるが、第3の判定期間における始点の終点との設定が、第1の判定期間の設定とは異なる。第3の判定期間は、データ番号ごとにシフトさせて設定された期間である。 The third determination period includes a period before the start point of the unit time for the data number (i) and a period after the start point. In one example, the third determination period is one hour including 30 minutes before the start point of the unit time and 30 minutes after the start point. In such an example, the length of the third determination period is the same as the length of the first determination period, but the setting of the start point and the end point in the third determination period is the setting of the first determination period. Different. The third determination period is a period set by shifting for each data number.
 第1の頻度である頻度Fmは、第3の判定期間である1時間に含まれる検知データ「1」の数を表す。なお、第3の判定期間の長さは任意に設定可能であるものとする。図21に示す「低」、「中」、「高」は、頻度の分類を表す。実施の形態9における頻度の分類は、図12に示す実施の形態2の場合と同様である。 The frequency Fm that is the first frequency represents the number of detection data “1” included in one hour that is the third determination period. Note that the length of the third determination period can be arbitrarily set. “Low”, “medium”, and “high” shown in FIG. 21 represent frequency classifications. The frequency classification in the ninth embodiment is the same as that in the second embodiment shown in FIG.
 図22は、図5に示す実績データ格納部57に格納された実績データの例と頻度Fmの例とを示す図である。図22に示す頻度Fmは、マイクロコントローラ26での演算の過程において算出されるパラメータであって、記憶部53には格納されないものとする。 FIG. 22 is a diagram showing an example of the result data stored in the result data storage unit 57 shown in FIG. 5 and an example of the frequency Fm. The frequency Fm shown in FIG. 22 is a parameter calculated during the calculation process in the microcontroller 26 and is not stored in the storage unit 53.
 ここで、図22を参照して、パラメータαとパラメータβとの決定について説明する。データ番号「181」の単位時間についての第3の判定期間の始点は、データ番号「181」の単位時間の始点の30分前の時刻であって、データ番号「1」の単位時間の始点の時刻である。また、データ番号「181」の単位時間についての第3の判定期間の終点は、データ番号「181」の単位時間の始点の30分後の時刻であって、データ番号「360」の単位時間の終点の時刻である。頻度Fmは、かかる第3の判定期間の始点から終点までの1時間における検知データ「1」の回数である。図22の例によると、データ番号「181」の単位時間についての頻度Fmは、21回である。昇圧制御部56は、図21に示す基準から、頻度の分類を「高」と判定する。昇圧制御部56は、頻度の分類「高」の判定に基づいて、データ番号「181」のパラメータαとパラメータβとを180秒と決定する。 Here, the determination of the parameter α and the parameter β will be described with reference to FIG. The start point of the third determination period for the unit time of the data number “181” is the time 30 minutes before the start point of the unit time of the data number “181”, and the start point of the unit time of the data number “1” It's time. The end point of the third determination period for the unit time of the data number “181” is the time 30 minutes after the start point of the unit time of the data number “181”, and the end time of the unit time of the data number “360”. This is the end point time. The frequency Fm is the number of detection data “1” in one hour from the start point to the end point of the third determination period. According to the example of FIG. 22, the frequency Fm for the unit time of the data number “181” is 21 times. The boost control unit 56 determines that the frequency classification is “high” based on the reference illustrated in FIG. 21. The boosting control unit 56 determines the parameter α and the parameter β of the data number “181” as 180 seconds based on the determination of the frequency classification “high”.
 データ番号「182」についての第3の判定期間は、データ番号「181」についての第3の判定期間から単位時間1つ分、すなわち10秒繰り下がる。また、データ番号「360」についての第3の判定期間の始点は、データ番号「181」の単位時間の始点の時刻である。データ番号「360」についての第3の判定期間の終点は、データ番号「540」の単位時間の終点の時刻である。図22の例によると、データ番号「360」の単位時間についての頻度Fmは、7回である。昇圧制御部56は、図21に示す基準から、頻度の分類を「低」と判定する。昇圧制御部56は、頻度の分類「低」の判定に基づいて、データ番号「360」のパラメータαとパラメータβとを60秒と決定する。 The third determination period for data number “182” is one unit time lower than the third determination period for data number “181”, that is, 10 seconds. The start point of the third determination period for the data number “360” is the time of the start point of the unit time of the data number “181”. The end point of the third determination period for the data number “360” is the end time of the unit time of the data number “540”. According to the example of FIG. 22, the frequency Fm for the unit time of the data number “360” is 7 times. The boost control unit 56 determines that the frequency classification is “low” based on the reference illustrated in FIG. 21. Based on the determination of the frequency classification “low”, the boost control unit 56 determines the parameter α and the parameter β of the data number “360” as 60 seconds.
 このように、昇圧制御部56は、データ番号ごとに第3の判定期間をシフトさせながら頻度Fmを求めて、頻度の分類を判定する。第3の判定期間をシフトさせることで、昇圧制御部56は、一定の期間内での使用頻度の偏りから生じ得る判定結果のずれを低減可能とする。これにより、マイクロコントローラ26は、手乾燥装置1の使用頻度を精度良く判定することができる。 As described above, the boost control unit 56 determines the frequency classification by obtaining the frequency Fm while shifting the third determination period for each data number. By shifting the third determination period, the boost control unit 56 can reduce the deviation of the determination result that may be caused by the uneven use frequency within a certain period. Thereby, the microcontroller 26 can determine the usage frequency of the hand dryer 1 with high accuracy.
 第3の判定期間のうち、データ番号(i)についての単位時間の始点の前の期間の長さと、始点の後の期間の長さとは、異なっても良い、1つの例では、単位時間の始点の前の40分間と、始点の後の20分間とを、第3の判定期間としても良い。また、第3の判定期間は、データ番号(i)についての単位時間の始点の前の期間を含まないもの、あるいは始点の後の期間を含まないものであっても良い。第3の判定期間は、単位時間の始点の前の1時間、あるいは始点の後の1時間であっても良い。 Of the third determination period, the length of the period before the start point of the unit time for the data number (i) may be different from the length of the period after the start point. In one example, the length of the unit time The third determination period may be 40 minutes before the start point and 20 minutes after the start point. Further, the third determination period may not include a period before the start point of the unit time for the data number (i), or may not include a period after the start point. The third determination period may be one hour before the start point of the unit time or one hour after the start point.
 実施の形態9にかかる手乾燥装置1は、実施の形態4と同様に、現在のサイクル期間における手の検知結果を基に、実績データに基づく昇圧動作を停止させても良い。また、実施の形態9にかかる手乾燥装置1は、実施の形態5と同様に、複数のサイクル期間についての実績データを格納しても良い。また、実施の形態9にかかる手乾燥装置1は、実施の形態6と同様に、手乾燥装置1への電源の投入時から電源の切断時までの期間をサイクル期間としても良い。また、実施の形態9にかかる手乾燥装置1は、実施の形態7と同様に、気温に基づいて昇圧動作の期間を変化させても良い。また、実施の形態9にかかる手乾燥装置1は、実施の形態8と同様に、時計70を備えていても良い。 As in the fourth embodiment, the hand drying device 1 according to the ninth embodiment may stop the boosting operation based on the result data based on the hand detection result in the current cycle period. Moreover, the hand dryer 1 concerning Embodiment 9 may store the performance data about several cycle periods similarly to Embodiment 5. FIG. Further, in the hand dryer 1 according to the ninth embodiment, similarly to the sixth embodiment, a period from when the power to the hand dryer 1 is turned on to when the power is turned off may be a cycle period. Moreover, the hand dryer 1 concerning Embodiment 9 may change the period of pressure | voltage rise operation based on temperature similarly to Embodiment 7. FIG. Further, the hand dryer 1 according to the ninth embodiment may include a clock 70 as in the eighth embodiment.
 実施の形態9によると、手乾燥装置1は、第3の判定期間における手の検知があった頻度を基に、パラメータαとパラメータβとを決定する。手乾燥装置1は、手乾燥装置1の使用頻度を精度良く判定可能とし、使用頻度の状況に適合するように昇圧動作を制御することができる。 According to the ninth embodiment, the hand drying device 1 determines the parameter α and the parameter β based on the frequency with which the hand is detected in the third determination period. The hand dryer 1 can accurately determine the frequency of use of the hand dryer 1 and can control the boosting operation so as to suit the situation of the frequency of use.
実施の形態10.
 図23は、本発明の実施の形態10にかかる手乾燥装置1による昇圧動作の制御について説明する図である。実施の形態10にかかる手乾燥装置1は、手の検知の待機時での昇圧動作を制御している第2のサイクル期間における手の検知の頻度である第2の頻度を基に、開始時パラメータと終了時パラメータとを変更する。実施の形態10では、実施の形態3での第2の判定期間とは異なる第4の判定期間における手の検知の回数を第2の頻度とする。実施の形態1から9と同一の部分には同一の符号を付し、重複する説明を省略する。
Embodiment 10 FIG.
FIG. 23 is a diagram for explaining the control of the step-up operation by the hand dryer 1 according to the tenth embodiment of the present invention. The hand drying device 1 according to the tenth embodiment starts at the start based on the second frequency, which is the frequency of hand detection in the second cycle period that controls the pressure increasing operation during hand detection standby. Change parameters and exit parameters. In the tenth embodiment, the number of hand detections in a fourth determination period different from the second determination period in the third embodiment is set as the second frequency. The same parts as those in the first to ninth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 第4の判定期間は、現在のサイクル期間における単位時間の始点の前の期間である。1つの例では、第4の判定期間は、単位時間の始点の前の20分間である。かかる例では、第4の判定期間の長さは、第2の判定期間の長さと同じであるが、第4の判定期間における始点と終点との設定が、第2の判定期間の設定とは異なる。第4の判定期間は、第2のサイクル期間における単位時間ごとにシフトさせて設定された期間である。第2の頻度である頻度Fpは、第2の判定期間において手が検知された回数を表す。図23に示す「低」、「中」、「高」は、頻度の分類を表す。実施の形態10における頻度の分類は、図14に示す実施の形態3の場合と同様である。 The fourth determination period is a period before the start point of the unit time in the current cycle period. In one example, the fourth determination period is 20 minutes before the start point of the unit time. In such an example, the length of the fourth determination period is the same as the length of the second determination period, but the setting of the start point and the end point in the fourth determination period is the setting of the second determination period. Different. The fourth determination period is a period set by shifting every unit time in the second cycle period. The frequency Fp, which is the second frequency, represents the number of times that a hand has been detected in the second determination period. “Low”, “medium”, and “high” shown in FIG. 23 represent frequency classifications. The frequency classification in the tenth embodiment is the same as that in the third embodiment shown in FIG.
 ここでは、終了時パラメータであるパラメータβの値の変更について主に説明し、開始時パラメータであるパラメータαの値の変更については後述する。図5に示す昇圧制御部56は、実績データから決定されたパラメータβを、頻度Fpに基づいて変更する。実施の形態10では、実績データから決定されたパラメータα,βの値を、基準値と称することがある。1つの例では、基準値は、図21に示すパラメータα,βの値である。なお、基準値は、図12に示すパラメータα,βの値であっても良い。第4の判定期間の長さは任意に設定可能であるものとする。 Here, the change of the value of the parameter β as the end parameter will be mainly described, and the change of the value of the parameter α as the start parameter will be described later. The boost control unit 56 shown in FIG. 5 changes the parameter β determined from the performance data based on the frequency Fp. In the tenth embodiment, the values of the parameters α and β determined from the actual data may be referred to as reference values. In one example, the reference values are the values of the parameters α and β shown in FIG. The reference value may be the values of the parameters α and β shown in FIG. It is assumed that the length of the fourth determination period can be arbitrarily set.
 図24は、図5に示す実績データ格納部57に格納された実績データの例と頻度Fpの例とを示す図である。図24に示す頻度Fpは、マイクロコントローラ26での演算の過程において算出されるパラメータであって、記憶部53には格納されないものとする。 FIG. 24 is a diagram illustrating an example of the performance data stored in the performance data storage unit 57 illustrated in FIG. 5 and an example of the frequency Fp. The frequency Fp shown in FIG. 24 is a parameter calculated in the process of calculation in the microcontroller 26 and is not stored in the storage unit 53.
 ここで、図24を参照して、パラメータβの変更について説明する。データ番号「121」の単位時間についての第4の判定期間の始点は、データ番号「121」の単位時間の始点の20分前の時刻であって、データ番号「1」の単位時間の始点の時刻である。また、データ番号「121」の単位時間についての第4の判定期間の終点は、データ番号「120」の単位時間の終点の時刻であって、データ番号「121」の単位時間の始点の時刻である。頻度Fpは、かかる第4の判定期間の始点から終点までの20分間における検知データ「1」の回数である。図24の例によると、データ番号「121」の単位時間についての頻度Fpは、7回である。 Here, the change of the parameter β will be described with reference to FIG. The start point of the fourth determination period for the unit time of the data number “121” is a time 20 minutes before the start point of the unit time of the data number “121”, and the start point of the unit time of the data number “1”. It's time. Further, the end point of the fourth determination period for the unit time of the data number “121” is the end time of the unit time of the data number “120”, and is the start time of the unit time of the data number “121”. is there. The frequency Fp is the number of detection data “1” in 20 minutes from the start point to the end point of the fourth determination period. According to the example of FIG. 24, the frequency Fp for the unit time of the data number “121” is 7 times.
 データ番号「121」の単位時間について、実績データから判定された頻度の分類が「高」であった場合、昇圧制御部56は、図23に示す基準から、データ番号「121」のパラメータβを120秒と決定する。この例では、昇圧制御部56は、パラメータβの値を、基準値である180秒から120秒へ変更する。昇圧制御部56は、現在のサイクル期間での頻度Fpが分類「高」の基準である頻度に比べて低かったことで、実績データのときと比べて現在における手乾燥装置1の使用頻度が低くなったと判断して、昇圧動作の期間を短くする調整を行っている。 When the classification of the frequency determined from the actual data is “high” for the unit time of the data number “121”, the boost control unit 56 sets the parameter β of the data number “121” from the reference shown in FIG. Determine 120 seconds. In this example, the boost control unit 56 changes the value of the parameter β from the reference value of 180 seconds to 120 seconds. The step-up control unit 56 has a lower frequency of use of the hand dryer 1 at the present time than the actual data because the frequency Fp in the current cycle period is lower than the frequency that is the criterion of the classification “high”. Therefore, the adjustment for shortening the period of the boosting operation is performed.
 データ番号「122」についての第4の判定期間は、データ番号「121」についての第4の判定期間から単位時間1つ分、すなわち10秒繰り下がる。また、データ番号「182」についての第4の判定期間の始点は、データ番号「122」の単位時間の始点の時刻である。データ番号「182」についての第4の判定期間の終点は、データ番号「181」の単位時間の終点の時刻であって、データ番号「182」の単位時間の始点の時刻である。 The fourth determination period for data number “122” is one unit time lower than the fourth determination period for data number “121”, that is, 10 seconds. The start point of the fourth determination period for the data number “182” is the time of the start point of the unit time of the data number “122”. The end point of the fourth determination period for the data number “182” is the end time of the unit time of the data number “181” and the start time of the unit time of the data number “182”.
 このように、昇圧制御部56は、データ番号ごとに第4の判定期間をシフトさせて、頻度Fpを決定する。第4の判定期間をシフトさせることで、昇圧制御部56は、一定の期間内での使用頻度の偏りから生じ得る判定結果のずれを低減可能とする。これにより、マイクロコントローラ26は、手乾燥装置1の使用頻度を精度良く判定することができる。 Thus, the boost control unit 56 shifts the fourth determination period for each data number and determines the frequency Fp. By shifting the fourth determination period, the boost control unit 56 can reduce the deviation of the determination result that may be caused by the uneven use frequency within a certain period. Thereby, the microcontroller 26 can determine the usage frequency of the hand dryer 1 with high accuracy.
 なお、単位時間の始点の前のデータ番号「1」から「120」の単位時間については、単位時間の始点の前の20分間における手の検知の有無のデータが揃わないこととなる。昇圧制御部56は、データ番号「1」から「120」の単位時間については、パラメータβを基準値のままとしても良い。また、昇圧制御部56は、データ番号「1」から「120」の単位時間について、現在のサイクル期間の1つ前のサイクル期間の最後20分間におけるデータを利用してパラメータβを変更しても良い。 In addition, for the unit time of data numbers “1” to “120” before the start point of the unit time, there is no data on presence / absence of hand detection in the 20 minutes before the start point of the unit time. The step-up control unit 56 may keep the parameter β as the reference value for the unit times of the data numbers “1” to “120”. Further, the boost control unit 56 may change the parameter β using the data for the last 20 minutes of the cycle period immediately before the current cycle period for the unit times of the data numbers “1” to “120”. good.
 昇圧制御部56は、パラメータαについても、パラメータβと同様に変更する。パラメータαについての第4の判定期間は、パラメータβについての第4の判定期間より前にシフトさせる。パラメータαについての第4の判定期間は、単位時間の始点の25分前の時刻から、単位時間の始点の5分前の時刻までの期間としても良い。パラメータαについての第4の判定期間の終点は、単位時間の始点から、パラメータαの最大値である時間だけ遡った時刻より前の時刻に設定されれば良い。 The boost control unit 56 changes the parameter α as well as the parameter β. The fourth determination period for the parameter α is shifted before the fourth determination period for the parameter β. The fourth determination period for the parameter α may be a period from a time 25 minutes before the start time of the unit time to a time 5 minutes before the start time of the unit time. The end point of the fourth determination period with respect to the parameter α may be set to a time before the time that is back by the time that is the maximum value of the parameter α from the start point of the unit time.
 なお、実施の形態10において、手乾燥装置1は、過去の実績データからの頻度の分類「低」、「中」、「高」の判定を省略して、現在のサイクル期間における手の検知の頻度を基にパラメータα,βを決定しても良い。 In the tenth embodiment, the hand dryer 1 omits the determination of the frequency classification “low”, “medium”, and “high” from the past performance data, and detects the hand in the current cycle period. The parameters α and β may be determined based on the frequency.
 実施の形態10にかかる手乾燥装置1は、実施の形態4と同様に、現在のサイクル期間における手の検知結果を基に、実績データに基づく昇圧動作を停止させても良い。また、実施の形態10にかかる手乾燥装置1は、実施の形態5と同様に、複数のサイクル期間についての実績データを格納しても良い。また、実施の形態10にかかる手乾燥装置1は、実施の形態6と同様に、手乾燥装置1への電源の投入時から電源の切断時までの期間をサイクル期間としても良い。また、実施の形態10にかかる手乾燥装置1は、実施の形態7と同様に、気温に基づいて昇圧動作の期間を変化させても良い。また、実施の形態10にかかる手乾燥装置1は、実施の形態8と同様に、時計70を備えていても良い。 As in the fourth embodiment, the hand drying device 1 according to the tenth embodiment may stop the boosting operation based on the result data based on the hand detection result in the current cycle period. Moreover, the hand dryer 1 concerning Embodiment 10 may store the performance data about several cycle periods similarly to Embodiment 5. FIG. Further, in the hand dryer 1 according to the tenth embodiment, similarly to the sixth embodiment, a period from when the power to the hand dryer 1 is turned on to when the power is turned off may be a cycle period. Further, the hand dryer 1 according to the tenth embodiment may change the period of the pressure increasing operation based on the temperature, as in the seventh embodiment. Further, the hand dryer 1 according to the tenth embodiment may include a clock 70 as in the eighth embodiment.
 実施の形態10によると、手乾燥装置1は、実績データから得られたパラメータα,βを、第4の判定期間における手の検知の頻度に基づいて変更可能とする。手乾燥装置1は、手乾燥装置1の現在の使用頻度を精度良く判定可能とし、使用状況の変化に適合するように昇圧動作を制御することができる。 According to the tenth embodiment, the hand drying device 1 can change the parameters α and β obtained from the result data based on the frequency of hand detection in the fourth determination period. The hand dryer 1 can determine the current use frequency of the hand dryer 1 with high accuracy, and can control the boosting operation so as to adapt to changes in the use situation.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 手乾燥装置、2 手挿入部、3 筐体、4 正面部、5 背面部、6 水受け部、7 ドレンタンク、10 送風機、11,12 ノズル、13,14,17 ダクト、15 センサ、16 吸気口、18 エアフィルタ、20 制御部、21 DCブラシレスモータ、22 ターボファン、23 商用交流電源、24 電源部、25 駆動回路、26 マイクロコントローラ、30 昇圧コンバータ部、31 整流回路、32,36 分圧抵抗、33 インダクタ、34,41 スイッチング素子、35 ファーストリカバリダイオード、37 平滑コンデンサ、38 制御電源回路、39 抵抗、40 スイッチング制御IC、42,43 直流母線、51 入力部、52 制御演算部、53 記憶部、54 記憶処理部、55 タイマー、56 昇圧制御部、57 実績データ格納部、58 パラメータ格納部、60 サーミスタ、61 CPU、62 ROM、63 RAM、64 EEPROM、65 入力I/F、70 時計。 1 hand dryer, 2 hand insertion section, 3 housing, 4 front section, 5 back section, 6 water receiving section, 7 drain tank, 10 blower, 11, 12 nozzle, 13, 14, 17 duct, 15 sensor, 16 Inlet, 18 air filter, 20 control unit, 21 DC brushless motor, 22 turbo fan, 23 commercial AC power supply, 24 power supply unit, 25 drive circuit, 26 microcontroller, 30 boost converter unit, 31 rectifier circuit, 32, 36 minutes Voltage resistance, 33 inductor, 34, 41 switching element, 35 fast recovery diode, 37 smoothing capacitor, 38 control power circuit, 39 resistance, 40 switching control IC, 42, 43 DC bus, 51 input section, 52 control calculation section, 53 Storage unit, 54 Storage processing unit, 55 Timer, 56 boost controller, 57 actual data storage unit, 58 parameter storage unit, 60 a thermistor, 61 CPU, 62 ROM, 63 RAM, 64 EEPROM, 65 input I / F, 70 clock.

Claims (18)

  1.  手を挿入可能とされた手挿入部を備える筐体と、
     前記手挿入部にて噴射させる空気流を送り出す送風部と、
     前記手挿入部へ挿入されている手を検知する手検知部と、
     直流電圧を昇圧する昇圧回路を含む電源部と、
     前記電源部からの電力供給を受けて前記送風部を駆動する駆動回路と、
     前記手検知部での手の検知の有無の実績を表す実績データに基づいて前記昇圧回路の動作を制御する制御処理部と
     を備えることを特徴とする手乾燥装置。
    A housing provided with a hand insertion portion capable of inserting a hand;
    An air blowing unit for sending out an air flow to be injected at the manual insertion unit;
    A hand detection unit for detecting a hand inserted into the hand insertion unit;
    A power supply unit including a booster circuit for boosting a DC voltage;
    A drive circuit that receives power supply from the power supply unit and drives the blower unit;
    And a control processing unit that controls the operation of the booster circuit based on performance data representing the presence / absence of hand detection by the hand detection unit.
  2.  前記制御処理部は、第1のサイクル期間における前記実績データを基に、前記第1のサイクル期間より後の第2のサイクル期間のうち前記手検知部での検知を待機しているときの前記昇圧回路の動作を制御することを特徴とする請求項1に記載の手乾燥装置。 The control processing unit is based on the actual data in the first cycle period, and waits for detection by the hand detection unit in the second cycle period after the first cycle period. The hand dryer according to claim 1, wherein the operation of the booster circuit is controlled.
  3.  前記実績データは、単位時間ごとにおける手の検知の有無を示す検知データと、前記実績データの時系列における前記単位時間の順序を表す番号であるデータ番号とを含むことを特徴とする請求項1または2に記載の手乾燥装置。 The said performance data contains the detection data which shows the presence or absence of the detection of the hand for every unit time, and the data number which is a number showing the order of the said unit time in the time series of the said performance data. Or the hand-drying apparatus of 2.
  4.  前記制御処理部は、手の検知があったことを示す検知データの前記データ番号を基に、前記昇圧回路の動作を開始させるタイミングを決定することを特徴とする請求項3に記載の手乾燥装置。 The hand-drying according to claim 3, wherein the control processing unit determines the timing for starting the operation of the booster circuit based on the data number of detection data indicating that a hand has been detected. apparatus.
  5.  前記制御処理部は、手の検知があったことを示す検知データの前記データ番号を基に、前記昇圧回路の動作を終了させるタイミングを決定することを特徴とする請求項4に記載の手乾燥装置。 5. The hand drying according to claim 4, wherein the control processing unit determines a timing for ending the operation of the booster circuit based on the data number of detection data indicating that a hand is detected. apparatus.
  6.  前記制御処理部は、手の検知があったことを示す検知データの頻度である第1の頻度に基づいて決定されたパラメータを使用して、前記昇圧回路の動作を開始させるタイミングを求めることを特徴とする請求項4または5に記載の手乾燥装置。 The control processing unit obtains a timing for starting the operation of the booster circuit using a parameter determined based on a first frequency that is a frequency of detection data indicating that a hand has been detected. The hand-drying apparatus according to claim 4 or 5, characterized in that:
  7.  前記制御処理部は、手の検知があったことを示す検知データの頻度である第1の頻度に基づいて決定されたパラメータを使用して、前記昇圧回路の動作を終了させるタイミングを求めることを特徴とする請求項5または6に記載の手乾燥装置。 The control processing unit obtains a timing for ending the operation of the booster circuit using a parameter determined based on a first frequency that is a frequency of detection data indicating that a hand has been detected. The hand dryer according to claim 5 or 6, characterized in that
  8.  前記第1の頻度は、前記実績データの第1のサイクル期間からの区分けにより設定された第1の判定期間における、手の検知があったことを示す検知データの数であることを特徴とする請求項6または7に記載の手乾燥装置。 The first frequency is the number of detection data indicating that a hand has been detected in a first determination period set by dividing the actual data from a first cycle period. The hand dryer according to claim 6 or 7.
  9.  前記制御処理部は、手の検知の待機時での前記昇圧回路の動作が制御されている第2のサイクル期間における手の検知の頻度である第2の頻度を基に、前記パラメータを変更することを特徴とする請求項6から8のいずれか1つに記載の手乾燥装置。 The control processing unit changes the parameter based on a second frequency that is a frequency of hand detection in a second cycle period in which the operation of the booster circuit is controlled during standby for hand detection. The hand dryer according to any one of claims 6 to 8, characterized in that:
  10.  前記第2の頻度は、前記第2のサイクル期間からの区分けにより設定された第2の判定期間における手の検知の回数であることを特徴とする請求項9に記載の手乾燥装置。 10. The hand dryer according to claim 9, wherein the second frequency is the number of hand detections in a second determination period set by dividing from the second cycle period.
  11.  前記第1の頻度は、前記実績データの時系列における前記単位時間の順序を表す番号であるデータ番号ごとにシフトさせて設定された第3の判定期間における、手の検知があったことを示す検知データの数であることを特徴とする請求項6または7に記載の手乾燥装置。 The first frequency indicates that a hand has been detected in a third determination period that is set by shifting for each data number that is a number representing the order of the unit time in the time series of the actual data. The hand dryer according to claim 6 or 7, wherein the number is the number of detected data.
  12.  前記第2の頻度は、前記第2のサイクル期間における単位時間ごとにシフトさせて設定された第4の判定期間における手の検知の回数であることを特徴とする請求項9に記載の手乾燥装置。 10. The hand drying according to claim 9, wherein the second frequency is the number of times of hand detection in a fourth determination period set by shifting every unit time in the second cycle period. apparatus.
  13.  前記制御処理部は、手の検知の待機時での前記昇圧回路の動作を制御している第2のサイクル期間における手の検知結果を基に、前記実績データに基づく前記昇圧回路の動作の制御を停止させることを特徴とする請求項1から12のいずれか1つに記載の手乾燥装置。 The control processing unit controls the operation of the booster circuit based on the result data based on a hand detection result in a second cycle period in which the operation of the booster circuit is controlled during standby for hand detection. The hand dryer according to claim 1, wherein the hand dryer is stopped.
  14.  前記制御処理部は、前記実績データを格納する実績データ格納部を備えることを特徴とする請求項1から13のいずれか1つに記載の手乾燥装置。 The hand dryer according to any one of claims 1 to 13, wherein the control processing unit includes a result data storage unit that stores the result data.
  15.  前記実績データ格納部は、複数のサイクル期間についての前記実績データを格納することを特徴とする請求項14に記載の手乾燥装置。 15. The hand dryer according to claim 14, wherein the result data storage unit stores the result data for a plurality of cycle periods.
  16.  前記実績データが蓄積されるサイクル期間と、前記実績データを基に前記昇圧回路の動作が制御されるサイクル期間とは、前記手乾燥装置への電源の投入時から電源の切断時までの期間であることを特徴とする請求項1から15のいずれか1つに記載の手乾燥装置。 The cycle period in which the actual data is accumulated and the cycle period in which the operation of the booster circuit is controlled based on the actual data are the period from when the power to the hand dryer is turned on to when the power is turned off. The hand drying apparatus according to claim 1, wherein the hand drying apparatus is provided.
  17.  前記制御処理部は、気温に基づいて、前記昇圧回路を動作させる期間の長さを補正することを特徴とする請求項1から16のいずれか1つに記載の手乾燥装置。 The hand dryer according to any one of claims 1 to 16, wherein the control processing unit corrects a length of a period during which the booster circuit is operated based on an air temperature.
  18.  前記制御処理部へ時刻の情報を提供する時計を備え、
     前記制御処理部は、時刻の情報を用いて、前記昇圧回路の動作を制御することを特徴とする請求項1から17のいずれか1つに記載の手乾燥装置。
    A clock providing time information to the control processing unit;
    The hand-drying apparatus according to claim 1, wherein the control processing unit controls operation of the booster circuit using time information.
PCT/JP2017/014702 2017-04-10 2017-04-10 Hand dryer WO2018189787A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17905613.0A EP3610764B1 (en) 2017-04-10 2017-04-10 Hand dryer
PCT/JP2017/014702 WO2018189787A1 (en) 2017-04-10 2017-04-10 Hand dryer
JP2019512065A JP6818876B2 (en) 2017-04-10 2017-04-10 Hand drying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014702 WO2018189787A1 (en) 2017-04-10 2017-04-10 Hand dryer

Publications (1)

Publication Number Publication Date
WO2018189787A1 true WO2018189787A1 (en) 2018-10-18

Family

ID=63792399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014702 WO2018189787A1 (en) 2017-04-10 2017-04-10 Hand dryer

Country Status (3)

Country Link
EP (1) EP3610764B1 (en)
JP (1) JP6818876B2 (en)
WO (1) WO2018189787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022107338A1 (en) * 2020-11-20 2022-05-27

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215729A (en) * 1990-12-12 1992-08-06 Inax Corp Control method for warm-air wash stand
JP2002177165A (en) 2000-12-13 2002-06-25 Toto Ltd Hand drier
JP2003171968A (en) * 2001-09-28 2003-06-20 Toto Ltd Sanitary device
JP2003301502A (en) * 2002-02-05 2003-10-24 Toto Ltd Apparatus system having optionally selected component member
JP2006011527A (en) * 2004-06-22 2006-01-12 Toshiba Mitsubishi-Electric Industrial System Corp Process monitoring device
JP2007289387A (en) * 2006-04-25 2007-11-08 Matsushita Electric Ind Co Ltd Hand dryer
JP2011038507A (en) * 2009-07-16 2011-02-24 Mitsubishi Electric Corp Electric blower
JP2017056031A (en) * 2015-09-17 2017-03-23 Toto株式会社 Hand dryer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215729A (en) * 1990-12-12 1992-08-06 Inax Corp Control method for warm-air wash stand
JP2002177165A (en) 2000-12-13 2002-06-25 Toto Ltd Hand drier
JP2003171968A (en) * 2001-09-28 2003-06-20 Toto Ltd Sanitary device
JP2003301502A (en) * 2002-02-05 2003-10-24 Toto Ltd Apparatus system having optionally selected component member
JP2006011527A (en) * 2004-06-22 2006-01-12 Toshiba Mitsubishi-Electric Industrial System Corp Process monitoring device
JP2007289387A (en) * 2006-04-25 2007-11-08 Matsushita Electric Ind Co Ltd Hand dryer
JP2011038507A (en) * 2009-07-16 2011-02-24 Mitsubishi Electric Corp Electric blower
JP5158101B2 (en) 2009-07-16 2013-03-06 三菱電機株式会社 Electric blower
JP2017056031A (en) * 2015-09-17 2017-03-23 Toto株式会社 Hand dryer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3610764A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022107338A1 (en) * 2020-11-20 2022-05-27
WO2022107338A1 (en) * 2020-11-20 2022-05-27 三菱電機株式会社 Hand drying device
JP7309082B2 (en) 2020-11-20 2023-07-14 三菱電機株式会社 hand dryer

Also Published As

Publication number Publication date
EP3610764B1 (en) 2021-11-24
EP3610764A4 (en) 2020-03-18
JPWO2018189787A1 (en) 2019-06-27
EP3610764A1 (en) 2020-02-19
JP6818876B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
US9345083B2 (en) Boost converter with a pulse frequency modulation mode for operating above an audible frequency
US11864594B2 (en) Aerosol generation device, control method and storage medium
WO2017075948A1 (en) Electric water heater and control method therefor
CN107105774B (en) Dynamic output power management for electronic smoking devices
US20120073077A1 (en) Dust collector
CN110558617A (en) Electronic atomization device, heating control method, device and storage medium
US11969022B2 (en) Aerosol generation device, control method and storage medium
JP2002168524A (en) Hot water supply device
WO2018189787A1 (en) Hand dryer
CN109425120B (en) Water heater control method and device and water heater
CN107024003A (en) Hot water unit control method, device and system and hot water unit
JP6800318B2 (en) Hand drying device
CN113834219A (en) Heating control method and device of water heater and water heater
JP4201015B2 (en) Dishwasher
CN114431808A (en) Dishwasher control method, dishwasher, and computer-readable storage medium
JP5849818B2 (en) Automatic faucet device
WO2024093183A1 (en) Device micro-power consumption intelligent control apparatus, method and system, and medium
JP6411489B2 (en) Method for adjusting the electric heating device when the window is open
JP2015151924A (en) Water supply device
JP3837732B2 (en) Induction heating device
JP6031974B2 (en) Air conditioner outdoor unit
CN106766216B (en) A kind of intelligent backwater control method, controller and control system
JP2014185786A (en) Drive control device for refrigeration cycle compressor
JP6273885B2 (en) LED power supply device and LED lighting device
TWI773697B (en) Aerosol generating device, and method and computer program product for operating the aerosol generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017905613

Country of ref document: EP

Effective date: 20191111