WO2018188665A1 - 震荡与除气泡结构及超声波液体浓度测试装置 - Google Patents

震荡与除气泡结构及超声波液体浓度测试装置 Download PDF

Info

Publication number
WO2018188665A1
WO2018188665A1 PCT/CN2018/083115 CN2018083115W WO2018188665A1 WO 2018188665 A1 WO2018188665 A1 WO 2018188665A1 CN 2018083115 W CN2018083115 W CN 2018083115W WO 2018188665 A1 WO2018188665 A1 WO 2018188665A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
liquid concentration
flow guiding
testing device
concentration testing
Prior art date
Application number
PCT/CN2018/083115
Other languages
English (en)
French (fr)
Inventor
郭振武
Original Assignee
深圳市盛泽森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛泽森科技有限公司 filed Critical 深圳市盛泽森科技有限公司
Priority to EP18783875.0A priority Critical patent/EP3611499B1/en
Priority to US16/605,105 priority patent/US11143622B2/en
Publication of WO2018188665A1 publication Critical patent/WO2018188665A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • G01N2291/0228Aqueous liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02433Gases in liquids, e.g. bubbles, foams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/045External reflections, e.g. on reflectors

Definitions

  • the present disclosure relates to the field of concentration testing devices, for example, to an oscillating and debubbing structure and an ultrasonic liquid concentration testing device.
  • Diesel engines have been widely used in various industries with high horsepower. Compared with gasoline engines, the problem of high levels of nitrogen oxides generated by the formation of nitrogen oxides under the high temperature of the cylinder has plagued the industry. As people's environmental protection requirements have increased year by year, countries around the world have legislated to stipulate engine emission standards, and promote the research of exhaust gas treatment technologies by engine manufacturers in various countries.
  • the SCR system includes a urea tank loaded with a diesel exhaust gas treatment liquid and an SCR catalytic reaction tank.
  • the operation process of the SCR system is: when nitrogen oxides are found in the exhaust pipe, the urea tank automatically ejects the diesel exhaust gas treatment liquid, and the diesel exhaust gas treatment liquid and nitrogen oxides undergo oxidation-reduction reaction in the SCR catalytic reaction tank to generate no Contaminated nitrogen and water vapor are discharged.
  • the related ultrasonic liquid concentration measuring device for measuring the liquid concentration can determine the concentration or quality of the solution in the cavity of the ultrasonic liquid concentration testing device in real time by the synergy of the ultrasonic generating device, the ultrasonic receiving device, and the ultrasonic liquid concentration testing device control system.
  • the device cannot eliminate factors that affect measurement accuracy during the measurement process. For example, during the operation of the automobile, the transient shock caused by the vibration shock of the probe is too large, the probe is damaged or the life is reduced, the temperature of the liquid to be tested is high, or the bubble caused by the addition of the liquid adheres to the ultrasonic generation and receiving surface.
  • the measurement result of the urea liquid concentration measured by the related ultrasonic liquid concentration test device is not high in accuracy and low in reliability.
  • the present disclosure provides an ultrasonic liquid concentration testing device, which protects the ultrasonic generating device and the ultrasonic liquid concentration testing device probe, prolongs the life of the ultrasonic liquid concentration testing device probe, and improves the accuracy of the ultrasonic liquid concentration testing device.
  • the present disclosure also provides an oscillating structure of an ultrasonic liquid concentration testing device for guiding the external vibration energy and amplifying the amplitude of the probe swing.
  • the present disclosure also provides a bubble removing structure of the ultrasonic liquid concentration testing device, which reduces or removes air bubbles, reduces the attenuation of the ultrasonic signal due to the air bubbles, and improves the test accuracy.
  • An ultrasonic liquid concentration testing device includes: an oscillating structure, a bubble removing structure, and an ultrasonic detecting body component, wherein
  • the oscillating structure is located at the bottom of the ultrasonic detecting body member, and is arranged to buffer the shock received by the ultrasonic detecting body component;
  • the bubble removing structure is located on the ultrasonic detecting body member and is configured to accelerate liquid flow
  • the ultrasonic detecting body member is configured to perform liquid concentration detection.
  • the oscillating structure comprises an upper connecting surface connected to a bottom surface of the probe mounting base and a lower connecting surface integrally connected with the ultrasonic liquid concentration testing device, and three elastic pieces connected end to end; the elastic piece forms a stacked type
  • the first and last joints are connected together by locking screws, and the three pieces of elastic piece are formed into a solid whole; the elastic piece is provided with an elastic area, and the elastic area is provided with a hollow hole and an elastic curvature to adjust the elastic coefficient of the elastic piece.
  • the ultrasonic detecting body component comprises a probe of an ultrasonic transmitting and receiving device, the probe comprises: an ultrasonic generator base, an ultrasonic generator, a sealing ring, an ultrasonic generator pressing disk, an ultrasonic reflecting piece, a column body And signal transmission lines.
  • the ultrasonic generator base is integrated with the ultrasonic generator by injection molding, and the signal transmission line is integrated in the ultrasonic generator base.
  • the ultrasonic generator base and the column body are made of the same material to maintain the same thermal expansion coefficient when the two are connected and fixed;
  • the signal transmission line is made of a material resistant to high temperatures of 150 ° C to 300 ° C to avoid Melting in the molding operation;
  • the ultrasonic reflection sheet is embedded in the column body, the ultrasonic reflection sheet is made of stainless steel, and the surface of the reflection surface of the ultrasonic reflection sheet is polished to avoid rust due to long-term immersion in the solution. The surface is rough, which in turn causes the reflected signal to decay.
  • the non-reflecting surface of the ultrasonic reflecting sheet increases the adhesion of the injection molding by adding a groove, and avoids double-wave diffraction interference when the ultrasonic wave is reflected, thereby causing signal attenuation.
  • the de-bubble structure comprises a diversion jet body
  • the diversion jet body is composed of a funnel inlet, a diversion inlet, a diversion channel, an injection outlet and a weld line
  • the diversion jet body comprises Two first flow guiding jets above and above the ultrasonic liquid concentration testing device and two second flow guiding jets respectively above and below the ultrasonic liquid concentration testing device, wherein the two first diversion flows
  • the ejection outlets of the ejection body are both aligned with the ultrasonic emission/receiving surface of the ultrasonic generator, and the ejection outlets of the two second flow guiding ejection bodies are aligned with the reflecting surface of the ultrasonic reflecting sheet.
  • the flow guiding spray body is welded to the vertical column body, and the surface of the vertical cylindrical body is provided with a rectangular opening in an axial direction, and a liquid output channel is provided when the flow guiding spray body ejects liquid.
  • the flow guiding injection body is a funnel shape, the diameter of the flow guiding inlet of the funnel-shaped flow guiding injection body is small, and the diameter of the funnel inlet of the funnel-shaped flow guiding injection body is large;
  • the flow guiding channel is coplanar with the funnel inlet of the funnel-shaped flow guiding jet on three faces such that the introduction liquid enters the flow guiding channel from the flow guiding inlet; the shape of the ejection outlet is compared
  • the flow guiding channel forms a flared outlet such that the resistance in the flow guiding channel is suddenly released to increase the liquid flow rate.
  • An oscillating structure comprising: an upper connecting surface connected to a bottom surface of the probe mounting base; and a lower connecting surface integrally connected with the ultrasonic liquid concentration testing device, and three elastic pieces connected end to end;
  • the three elastic pieces are connected end to end to form a stacked type, and the end-to-end joints are connected by a locking screw to form a three-piece elastic piece into a solid whole;
  • the elastic piece is provided with an elastic area, and the elastic area is respectively provided with a corresponding hollow hole and an elastic curvature to adjust the elastic coefficient of the elastic piece.
  • a de-bubble structure includes: a diversion jet body, the diversion jet body comprising: a first diversion jet body and a second diversion jet body;
  • the first flow guiding injection body includes: a first funnel inlet, a first diversion inlet, a first diversion channel and a first injection outlet, and a first weld line
  • the second diversion jet body includes a second funnel An inlet, a second diversion inlet, a second diversion passage and a second injection outlet, and a second weld line;
  • first flow guiding injection body located above the ultrasonic liquid concentration testing device and the first flow guiding injection body located below the ultrasonic liquid concentration testing device are both aligned with the ultrasonic generator Ultrasonic emission/receiving surface;
  • the second flow guiding ejection body located above the ultrasonic liquid concentration testing device and the second flow guiding ejection body located below the ultrasonic liquid concentration testing device are aligned with the reflecting surface of the ultrasonic reflecting sheet.
  • the ultrasonic liquid concentration testing device of the present disclosure protects the ultrasonic generating device and the ultrasonic liquid concentration testing device probe, prolongs the life of the ultrasonic liquid concentration testing device probe, and improves the precision of the ultrasonic liquid concentration testing device
  • FIG 1 is an assembled view of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 2 is a cross-sectional view of a test area of an ultrasonic liquid concentration test device according to an embodiment
  • FIG. 3 is a structural view of a column body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 4 is a structural diagram of a shock body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 5 is a side view of an oscillating body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 6 is a cross-sectional view of a flow guiding injection body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 7 is a structural diagram of a flow guiding injection body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 8 is a cross-sectional view of a flow guiding injection body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 9 is a structural diagram of a flow guiding injection body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 10 is a diagram showing a liquid output passage of a column body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 11 is a diagram showing a liquid output passage of a column body of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 12 is a layout diagram of a shock body installation of an ultrasonic liquid concentration testing device according to an embodiment
  • FIG. 13 is a layout diagram of an oscillating body installation of an ultrasonic liquid concentration testing device according to an embodiment
  • shock body 21, upper joint surface; 22, locking screws; 23, elastic zone; 24, lower joint surface; 25, elastic curvature; 26, shrapnel; 27, avoiding holes;
  • a first flow guiding injection body 41, a first funnel inlet; 42, a first diversion inlet; 43, a first diversion channel; 44, a first injection outlet; 45, a first weld line;
  • a second diversion jet 51, a second funnel inlet; 52, a second diversion inlet; 53, a second diversion channel; 54, a second injection outlet; 55, a second weld line.
  • the embodiment provides an ultrasonic liquid concentration testing device capable of protecting the ultrasonic generating device and the ultrasonic liquid concentration testing device probe, prolonging the life of the ultrasonic liquid concentration testing device probe, and improving the accuracy of the ultrasonic liquid concentration testing device.
  • an ultrasonic liquid concentration testing device includes an ultrasonic detecting body member to form a probe 1 for an ultrasonic transmitting and receiving device.
  • the probe 1 includes an ultrasonic generator base 17, an ultrasonic generator 11, a seal ring 12, an ultrasonic generator compression disk 15, an ultrasonic reflection sheet 13, a column body 14, and a signal transmission line 16.
  • the ultrasonic generator base 17 is integrated with the ultrasonic generator 11 by injection molding, and the signal transmission line 16 of the ultrasonic generator 11 is simultaneously integrated in the ultrasonic generator base 17.
  • the sonotrode base 17 and the upright body 14 are made of the same material, keeping the two materials connected and fixed with the same coefficient of thermal expansion.
  • the signal transmission line 16 is made of a material resistant to a high temperature of 150 ° C to 300 ° C to avoid melting during molding.
  • a new material may be developed or selected by a professional manufacturer, or a high temperature resistant material may be wrapped during injection molding to protect the original lead of the ultrasonic generator 11.
  • the ultrasonic generator base 17 and the column body 14 are interfaced with an ultrasonic welding wire, and the two are connected by an ultrasonic welding process.
  • the ultrasonic reflection sheet 13 is embedded in the column body 14.
  • the ultrasonic reflection sheet 13 is made of stainless steel, and the surface of the reflection surface 131 needs to be polished to avoid surface roughness caused by rusting in the solution for a long time, thereby causing the reflection signal to be attenuated. .
  • the non-reflecting surface of the ultrasonic reflection sheet 13 adopts the addition of the groove 18 to increase the adhesion of the injection molding, and at the same time, the double-wave diffraction interference is prevented when the ultrasonic reflection is performed, thereby causing signal attenuation.
  • the ultrasonic reflection sheet 13 is made of a stainless steel material, the surface of the reflection surface 131 of the ultrasonic reflection sheet 13 is polished, and the non-reflection surface of the ultrasonic reflection sheet 13 is designed to increase the groove 18, thereby avoiding double reflection of the signal.
  • the formed signal interferes with noise such as diffraction, and the ultrasonic signal is prevented from being attenuated.
  • the ultrasonic generator base 17 and the ultrasonic generator 11 and the signal transmission line 16 of the ultrasonic generator 11 are integrally molded by injection molding, and the signal transmission line 16 is made of a material resistant to high temperature, and the ultrasonic generator is realized. protection of.
  • the sealing design of the sealing disc 15 by the sealing ring 12 and the sealing ring ensures that the ultrasonic generator is not wetted by the corrosive liquid to damage the electronic circuit.
  • the ultrasonic generator base 17 and the column body 14 are made of the same material to maintain the same thermal expansion coefficient of the two materials, and the ultrasonic generator base 17 and the column body 14 are ultrasonically welded.
  • the process angle ensures reliable structural stress and high tolerance of the ultrasonic liquid concentration test device, thus extending the life of the probe.
  • the embodiment provides an oscillating structure of an ultrasonic liquid concentration testing device, which provides a buffer for the ultrasonic liquid concentration testing device because of vibration caused by car bumps during running of the vehicle.
  • the oscillating structure can comfortably guide the external vibration energy, reduce the direct impact of the probe of the ultrasonic liquid concentration test device, improve the tolerance of the probe of the ultrasonic liquid concentration test device, and prolong the service life of the probe.
  • the oscillating structure can reduce the instantaneous displacement speed of the probe, so that the ultrasonic wave can obtain the largest probe receiving area as much as possible in the transmission direction and in the effective transmission time.
  • the oscillating structure guides the direction of the external vibration energy and amplifies the amplitude of the probe swing.
  • the vibrating structure called the vibrating body 2 is used in the ultrasonic liquid concentration testing device, and includes an upper connecting surface 21 connected to the bottom surface of the probe mounting base 3 and a lower connecting surface integrally connected with the ultrasonic liquid concentration testing device. 24, three shrapnel 26 connected end to end.
  • the three elastic pieces 26 are connected end to end to form a stacked type; the ends and ends are connected by the locking screws 22 to form a three-piece elastic piece into a solid whole.
  • the locking screw 22 is an anti-reverse screw to ensure that it is kept tight under frequent oscillations.
  • the three elastic pieces 26 are locked by the above-mentioned locking screws by a double screw, and the sufficient width of the elastic piece can ensure that the direction in which the probe is oscillated is fixed as far as possible in the up and down direction.
  • the elastic regions 23 of the three elastic pieces 26 are respectively provided with corresponding hollow holes 27 and elastic curvatures 25 to adjust the elastic modulus of the elastic pieces.
  • the elastic curvature 25 provides a corresponding up and down swing space in the vertical direction, while at the same time saving the horizontal space required by the probe 1 due to the required swing amplitude.
  • the elastic curvature 25 can reduce the material thickness while maintaining the same spring constant.
  • the direction of the elastic curvature 25 of the elastic region 23 on the elastic piece is opposite to the bottom layer in the intermediate layer, and such a design avoids interference of the elastic region.
  • the elastic curvature 25 of the top elastic layer elastic region 23 is greater than the elastic curvature of the intermediate layer and the bottom layer.
  • the ultrasonic liquid concentration test device oscillating device of the embodiment, the three-layer elastic piece 26 of the oscillating body 2 is designed to avoid the bump energy of the automobile on the road directly transmitted to the ultrasonic probe 1, reducing the direct impact of the probe 1 and prolonging the probe 1 Service life.
  • the oscillating body 2 adopts a wide body design manner, which can suppress the swinging of the probe 1 to the left and right, and guide the probe 1 to mainly generate vertical motion, thereby causing the main vibration mode of the automobile on the road-up and down bumps.
  • the energy is transmitted to the probe 1 to achieve the energy concentration of the probe 1 in the vertical direction.
  • the oscillating structure of the ultrasonic liquid concentration testing device of the embodiment, the three-layer elastic piece 26 of the oscillating body 2 is designed to provide sufficient swing amplitude; and the vertical direction energy gathering caused by the wide body design of the oscillating body 2 is combined.
  • the amplitude of the swing of the probe 1 in the vertical direction is reached to the maximum value of the design amplitude, and the swing speed is increased.
  • the embodiment provides a bubble removing structure of the ultrasonic liquid concentration testing device, and realizes a partial liquid running channel, which can form a liquid accelerated flow in the channel, and the liquid is sprayed to the ultrasonic generator emitting/receiving surface at the channel exit and The ultrasonic reflecting surface rushes to the surface due to the temperature rise and the addition of the liquid, thereby reducing or removing the air bubbles, reducing the attenuation of the ultrasonic signal due to the air bubbles, and improving the test accuracy.
  • a defoaming structure of an ultrasonic liquid concentration testing device includes a first flow guiding injection body 4 located above and above the ultrasonic liquid concentration testing device, and a second guiding device respectively above and below the ultrasonic liquid concentration testing device
  • the jet 5 is flowed.
  • the ejection outlets of the two first flow guiding ejection bodies 4 are aligned with the ultrasonic transmitting/receiving surface 111 of the ultrasonic generator, and the ejection outlets of the two second flow guiding ejection bodies 5 are aligned with the ultrasonic reflection
  • the reflective surface 131 of the sheet is provided.
  • the first flow guiding injection body 4 is composed of a first funnel inlet 41, a first guiding inlet 42, a first guiding passage 43 and a first injection outlet 44, and a first weld line 45.
  • the first weld line 45 is the first guide. The interface between the jet body 4 and the column body 14.
  • the second flow guiding spray body 5 is composed of a second funnel inlet 51, a second flow guiding inlet 52, a second guiding flow passage 53 and a second injection outlet 54 and a second weld line 55, and the second weld line 55 is a second guide.
  • Both the first flow guiding jet body 4 and the second flow guiding jet body 5 are welded to the column body 14.
  • the first funnel inlet 41 of the first flow guiding injection body 4 has a larger diameter than the second funnel inlet 51 of the second flow guiding injection body 5. Because the installation portion of the oscillating body 2 causes the second directional flow ejection body 5 to be away from the oscillating fulcrum, the vibration amplitude is larger than that of the first flow guiding injection body 4, so that the first directional flow ejection body 4 is the same as the second directional flow ejection body 5 There is a sufficient jet velocity, and it is necessary to increase the funnel diameter of the first deflecting jet body 4.
  • the fusion interface interface is that two first windows 141 inserted by the first flow guiding injection body 4 and two second windows 142 inserted by the second flow guiding injection body 5 are opened in the vertical direction of the vertical and horizontal bodies 14 .
  • the two first windows 141 are respectively located above and below the ultrasonic liquid concentration detecting device
  • the two second windows 142 are respectively located above and below the ultrasonic liquid concentration detecting device.
  • the first window 141 is completed by butt welding of the first weld line 45 with the first window seal area.
  • the second window 142 is completed by butt welding of the second weld line 55 with the second window seal area.
  • the welding direction is a vertical direction, and the first injection outlet 44 and the second injection outlet 54 are arranged radially along the column body 14 and both point to the axis of the column body 14.
  • the surface of the column body 14 is provided with a rectangular opening in the axial direction to form a liquid output passage 143 for providing a liquid output passage when the flow guiding injection body ejects liquid;
  • the first flow guiding injection body 4 is a funnel-shaped interface, the first guiding inlet 42 has a small diameter, and the first funnel inlet 41 has a large diameter;
  • the second flow guiding injection body 5 is a funnel-shaped interface, the second flow guiding inlet 52 has a small diameter, and the second funnel inlet 51 has a large diameter;
  • the first flow guiding channel 43 is coplanar with the first funnel inlet 41 on three faces so that liquid can be smoothly introduced from the first flow guiding inlet 42 into the first flow guiding channel 43.
  • the second flow guiding channel 53 is coplanar with the second funnel inlet 51 on three faces so that liquid can be smoothly introduced from the second flow guiding inlet 52 into the second flow guiding channel 53.
  • the shape of the second ejection outlet 54 is compared with the second flow guiding passage 53 to form a minute flare-shaped outlet, which causes the resistance in the second flow guiding passage 53 to be suddenly released, and the liquid flow rate is increased.
  • the ultrasonic liquid concentration testing device of the present embodiment includes a bubble removing device, a first flow guiding spray body 4 and a second flow guiding spray body 5.
  • the funnel-shaped structure of the diversion jet, the diversion inlet of the diversion jet is small, and the diameter of the funnel inlet is large, and the diversion channel of the diversion jet is coplanar with the inlet of the diversion jet funnel on three faces.
  • the introduction liquid enters the diversion channel from the diversion inlet, and the ejection outlet of the diversion jet body forms a tiny flare-shaped outlet, so that the resistance in the diversion channel is suddenly released to accelerate the liquid flow rate, and the like, accelerates
  • the flow of the liquid in the first flow guiding jet body 4 and the second flow guiding jet body 5 realizes flushing of the bubbles on the reflecting/receiving surface 111 of the ultrasonic generator 11 and the reflecting surface 131 of the ultrasonic reflecting sheet 13, and removing the bubbles.
  • the attenuation of the ultrasonic signal due to the bubble is avoided.
  • An ultrasonic liquid concentration detecting device includes an ultrasonic liquid concentration testing device probe 1, a probe mounting base 3, an oscillating structure, a first flow guiding spray body 4, and a second flow guiding spray body 5.
  • the oscillating structure is the oscillating body 2.
  • the probe 1 is designed as an integrated engineering plastic part, and the ultrasonic component 11 of the ultrasonic liquid concentration testing device core component is wrapped by engineering plastic; the ultrasonic functional component of the ultrasonic liquid concentration testing device is embedded into the column 14 in.
  • the ultrasonic generator 11 is injection molded by an engineering plastic through an embedded mold, and is embedded into the ultrasonic generator base 17, and is also embedded with the tail signal transmission line 16 of the ultrasonic generator; the column body 14 is also embedded.
  • the mold-molded, embedded hardware material is an ultrasonic reflection sheet 13.
  • the column body 14 in which the ultrasonic reflection sheet 13 is embedded and the ultrasonic generator base 17 in which the ultrasonic generator 11 is wrapped are welded by the ultrasonic welding tool for positioning and ultrasonic heating, and finally joined together as a whole.
  • the core functional electronic components of the ultrasonic solution concentration detecting device are integrated in the probe 1 to realize the emission, transmission, reflection and acceptance of the ultrasonic waves.
  • the probe 1 is connected to the probe mounting base 3 by means of a screw lock.
  • the horizontal direction of the probe 1 has outwardly extending wings on both sides of the ultrasonic generator base 17, and the two sides of the double-wing and probe mounting base 3 have a female groove for receiving the probe 1 wings, and the two form a male and female slot. Cooperate. On the basis of the cooperation of the male and female slots, the two are locked by self-tapping screws. In this way, the probe mounting base 3 provides an intermediate link to the outside, which can flexibly realize the future serial design of the product, and also provides the fastening interface of the probe 1 in the ultrasonic liquid concentration test device.
  • the bottom surface of the mounting base 3 is designed with a plane for mounting the vibrating body 2.
  • the mounting upper surface 21 of the vibrating body 2 is fastened by an anti-reverse double screw on the bottom surface of the mounting base, and the lower connecting surface 24 below the vibrating body 2 is also passed through two anti-reverse screws. It is connected to the base fixing plate of the ultrasonic liquid concentration test device.
  • the probe 1, the probe mounting base 3 and the vibrating body 2 are integrated with the ultrasonic liquid concentration test device.
  • the entire structure of the oscillating body 2 includes three elastic pieces 26, and three locking screws 22 are connected to the elastic pieces.
  • the locking screws are anti-reverse screws.
  • the three shrapnels are formed by precision cold stamping of the same stainless steel material.
  • the upper, middle and bottom shrapnels are formed by a stamping process using a cold stamping die.
  • the process includes blanking, punching, stamping, shaping, and the like.
  • the three shrapnels 26 are all tightened by anti-reverse screws to form a unitary vibrating body 2. It is particularly important to note that the direction of the elastic pieces 26 needs to be noted when connecting the three elastic pieces 26 to prevent the elastic regions 23 of the elastic pieces 26 from interfering with each other.
  • the probe 1 of the ultrasonic liquid concentration testing device has four guiding jets distributed in the vertical direction at the top and bottom of the probe 1, and is close to the first guiding end of the ultrasonic generator 11
  • the flow ejection body 4 is designed to be slightly larger, and the second flow guiding ejection body 5 close to one end of the ultrasonic reflection sheet 13 is slightly smaller, and the four flow guiding ejection bodies are integrally coupled to the probe 1 on the column body 14.
  • the first flow guiding jet 4 and the second deflecting jet 5 are both funnel-shaped.
  • the main body of the deflecting jet body is a funnel area, and the tail part is composed of a flow guiding passage and an injection outlet.
  • the first flow guiding injection body 4 comprises: a first funnel inlet 41, a first guiding inlet 42, a first guiding channel 43 and a first injection outlet 44, and a first welding wire 45
  • the second flow guiding injection body 5 comprises a second funnel inlet 51, a second guiding inlet 52, a second guiding channel 53 and a second injection outlet 54 and a second welding line 55; the guiding jet body is used with the column body 14
  • the same material is realized by the injection molding process, and the liquid flow passage inside the entire flow guiding spray body is designed to have a large upper surface and a small structure below, which can be realized by a mold core pulling method during molding.
  • the first flow guiding body 4 and the second flow guiding body 5 of the ultrasonic liquid concentration testing device are designed to be a fit at the bottom of the funnel of the flow guiding body.
  • the cylindrical body 14 has a cylindrical outer curved surface.
  • the vertical downward and upward directions of the curved surface are designed with ultrasonically welded weld lines, so that two of the same type of flow-conducting spray bodies can be welded by ultrasonic welding tool positioning and heating ultrasonic energy.
  • the probe 1 of the ultrasonic liquid concentration testing device is coupled to the oscillating body 2 through a probe mounting base, where the connection of the oscillating body 2 has a direction selection.
  • the mounting direction in the embodiment is right.
  • the oscillating body 2 has two interface interfaces, and the upper layer of the elastic piece is first installed.
  • the elastic piece is designed with an upper connecting surface 21 connecting the probe mounting base, and two connecting holes are arranged on the mounting base by anti-reverse screws, and the mounting direction is the non-connecting end of the upper elastic piece and the vertical column 14 of the probe 1.
  • the ultrasonic reflection sheets 13 are in the same direction.
  • an ultrasonic liquid concentration detecting device includes an ultrasonic liquid concentration testing device probe 1, a probe 1 mounting base 3, a vibrating body 2, a first diversion jet body 4, and a second diversion jet body. 5.
  • the probe 1 is designed as an integrated engineering plastic part, wherein the ultrasonic component 11 of the ultrasonic liquid concentration testing device core component is wrapped by engineering plastic; the ultrasonic functional component of the ultrasonic liquid concentration testing device is embedded into the column body. 14 in.
  • the ultrasonic generator 11 is injection molded by an engineering plastic through an embedded mold, and is embedded into the ultrasonic generator base 17, and is also embedded with the tail signal transmission line 16 of the ultrasonic generator; the column body 14 is also embedded.
  • the mold-molded, embedded hardware material is an ultrasonic reflection sheet 13.
  • the column body 14 in which the ultrasonic reflection sheet 13 is embedded and the ultrasonic base 17 in which the ultrasonic generator 11 is wrapped are welded by ultrasonic welding tooling and ultrasonic welding, and finally joined together as a whole.
  • the core functional electronic components of the ultrasonic solution concentration detecting device are integrated in the probe 1 to realize the emission, transmission, reflection and acceptance of the ultrasonic waves.
  • the probe 1 is connected to the probe mounting base 3 by means of a screw lock.
  • the horizontal direction of the probe 1 has outwardly extending wings on both sides of the ultrasonic generator base 17, and the two sides of the double-wing and probe mounting base 3 have a female groove for receiving the probe 1 wings, and the two form a male and female slot. Cooperate. On the basis of the cooperation of the male and female slots, the two are locked by self-tapping screws. In this way, the probe mount 3 provides an intermediate link to the outside, which can flexibly realize the future serial design of the product, and also provides the fastening interface of the probe 1 in the ultrasonic liquid concentration test device.
  • the bottom surface of the mounting base 3 is designed with a plane for mounting the vibrating body 2.
  • the mounting upper surface 21 of the vibrating body 2 is fastened by an anti-reverse double screw on the bottom surface of the mounting base, and the lower connecting surface 24 below the vibrating body 2 is also passed through two anti-reverse screws. It is connected to the base fixing plate of the ultrasonic liquid concentration test device.
  • the probe 1, the probe mounting base 3 and the vibrating body 2 are integrated with the ultrasonic liquid concentration test device.
  • the entire structure of the oscillating body 2 includes three elastic pieces 26, and anti-reverse screws that connect the three elastic pieces.
  • the three shrapnels are formed by precision cold stamping of the same stainless steel material.
  • the upper, middle and bottom shrapnels are all stamped by cold stamping dies.
  • the process includes punching, punching, stamping, shaping, and the like.
  • the three shrapnels 26 are all tightened by anti-reverse screws to form a unitary vibrating body 2. It is particularly important to note that the direction of the elastic pieces 26 needs to be noted when connecting the three elastic pieces 26 to prevent the elastic regions 23 of the elastic pieces 26 from interfering with each other.
  • the probe 1 of the ultrasonic liquid concentration testing device has four guiding jets distributed in the vertical direction at the top and bottom of the probe 1, and is close to the first guiding end of the ultrasonic generator 11
  • the flow ejection body 4 is designed to be slightly larger, and the second flow guiding ejection body 5 close to one end of the ultrasonic reflection sheet 13 is slightly smaller, and the four flow guiding ejection bodies are integrally coupled to the probe 1 on the column body 14.
  • the first flow guiding jet 4 and the second deflecting jet 5 are both funnel-shaped.
  • the main body of the deflecting jet body is a funnel area, and the tail part is composed of a flow guiding passage and an injection outlet.
  • the diversion jet body adopts the same material as the column body 14 and is realized by an injection molding process.
  • the liquid flow channel inside the entire diversion jet body is designed to have a large upper surface and a small structure below, which can be conveniently used in the molding process. achieve.
  • the first flow guiding body 4 and the second flow guiding body 5 of the ultrasonic liquid concentration testing device are designed to be a fit at the bottom of the funnel of the flow guiding body.
  • the cylindrical body 14 has a cylindrical outer curved surface.
  • the vertical downward and upward directions of the curved surface are designed with ultrasonically welded weld lines, so that two of the same type of flow-conducting spray bodies can be welded by ultrasonic welding tool positioning and heating ultrasonic energy.
  • this embodiment provides two circular through holes in the wall of the cylinder of the column body 1, and the two through holes are respectively adjacent to the first flow guiding jet body 4 and the second flow guiding jet body 5. This through hole realizes the intersection of the liquid in the column body and the solution to be tested outside the column body, and also provides a channel for liquid flow.
  • the probe 1 of the ultrasonic liquid concentration testing device is coupled to the oscillating body 2 through a probe mounting base, where the connection of the oscillating body 2 is direction-selected.
  • the mounting direction in the embodiment is left.
  • the oscillating body 2 has two interface interfaces, and the upper layer of the elastic piece is first installed.
  • the elastic piece is designed with an upper connecting surface 21 connecting the probe mounting base, and two connecting holes are arranged on the mounting base by anti-reverse screws, and the mounting direction is the non-connecting end of the upper elastic piece and the vertical column 14 of the probe 1.
  • the ultrasonic reflection/receiver end 111 is reversed.
  • a bottom elastic piece is mounted, which is designed with a lower connecting surface 24 of the base of the entire probe 1 to which the ultrasonic liquid concentration detecting device is coupled, and has two connecting holes thereon, which are fastened to the base by anti-reverse screws.
  • the ultrasonic liquid concentration testing device of the present disclosure protects the ultrasonic generating device and the ultrasonic liquid concentration testing device probe, prolongs the life of the ultrasonic liquid concentration testing device probe, and improves the accuracy of the ultrasonic liquid concentration testing device.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种超声波液体浓度测试装置,包括:震荡结构、除气泡结构以及超声探测主体部件,其中,所述震荡结构位于所述超声探测主体部件底部,且设置为缓冲所述超声探测主体部件收到的震荡;所述除气泡结构位于所述超声探测主体部件上,且设置为加速液体流动;所述超声探测主体部件,设置为实现液体浓度探测。本公开还提供一种超声波液体浓度测试装置的除气泡结构。本公开还提供一种超声波液体浓度测试装置的震荡结构。

Description

震荡与除气泡结构及超声波液体浓度测试装置 技术领域
本公开涉及浓度测试装置技术领域,例如涉及一种震荡与除气泡结构及超声波液体浓度测试装置。
背景技术
柴油发动机以较高的马力在各行各业得到了广泛的应用。相对于汽油发动机而言,柴油在缸体内的高温作用下,生成氮氧化物,造成氮氧化物排放量高的问题,一直困扰产业界。由于人们对于环保要求的逐年提高,世界各国相继立法规定了发动机的排放标准,推动着各国发动机厂家对于尾气的处理技术的研究。
目前,我国已经强制使用国IV标准的发动机,并且配合相应的尾气处理技术。其中在全球起主导作用的技术路线是选择性催化还原(Selected Crystal Reduction,SCR)和排气再循环(Exhaust Gas Recirculation,EGR)+柴油颗粒过滤器(Diesel Particulate Filter,DPF)技术,其中又以SCR最为成熟与普遍。中国国内几家大的发动机厂家均选用了SCR系统这一技术路线,它是利用化学物质对于发动机尾气排放物质进行反应,进而生成对人体无害的物质。尿素或基于尿素的溶液经常被用在汽车应用中来减少汽车尾气中的有害物质排放,其中有害物质的主要的成分就是氮氧化物。化学反应方程式:NO X+NH 3→N 2+H 2O(N 2和H 2O是自然界空气中无害的物质)。
SCR系统包括尿素罐装载着柴油机尾气处理液和SCR催化反应罐。SCR系统的运行过程是:当发现排气管中有氮氧化物时,尿素罐自动喷出柴油机尾气处理液,柴油机尾气处理液和氮氧化物在SCR催化反应罐中发生氧化还原反应,生成无污染的氮气和水蒸气排出。
随着国四标准或者更高汽车尾气排放标准的全面执行,所有重型商用车必须按照SCR系统或者等同排放后处理装置,而国内绝大部分主机厂选择SCR系统,因而必须使用车用尿素。尿素使用过程中必须保持一定的浓度范围,才可以充分地将尾气中的氮氧化物转化为水和氮气。车用尿素溶液中尿素浓度的过高,会发生反应不充分,带来二次NH 3污染;尿素浓度过低,则达不到排放标准。
今后,随着配合车载诊断系统(On-Board Diagnostic,OBD)强制执行,在排放不达标、不装载柴油机尾气处理液、纯度不够或质量伪劣时,车辆会被限制扭矩,甚至限制启动,都会发生车辆发动机自动减速。同时,质量伪劣的柴油机尾气处理液会污染SCR催化反应罐中的催化剂,造成严重后果。因此,随着国六的实施,尿素浓度超声波液体浓度测试装置成为强制执行部件。
相关的测量液体浓度的超声波液体浓度测试装置,通过超声波发生装置、超声波接受装置以及超声波液体浓度测试装置控制系统的协同,可以实时地确定超声波液体浓度测试装置所在腔体内的溶液的浓度或者质量。但是,该装置无法在测量过程中消除影响测量精度的因素。例如,汽车运行过程中探头受到振动冲击造成的瞬时冲击过大,探头损坏或寿命降低,被测液体温度较高或者添加液体造成的气泡附着于超声发生与接受面等。探头受到的冲击大,会造成被测声波偏移较大的问题;气泡会造成超声信号的大幅衰减;进而造成声波偏移与信号衰减,都带来浓度测量不准确问题。因此,相关的超声波液体浓度测试装置测量得到的尿素液浓度测量结果精度不高、可靠性低。
发明内容
本公开提供一种超声波液体浓度测试装置,保护了超声波发生装置及保护超声波液体浓度测试装置探头,延长超声波液体浓度测试装置探头寿命,同时提高超声波液体浓度测试装置精度。
本公开还提供一种超声波液体浓度测试装置的震荡结构,对外部振动能量进行方向引导以及放大探头摆动幅度。
本公开还提供一种超声波液体浓度测试装置的除气泡结构,减少或者去除气泡,减少了因为气泡而增加的超声波信号的衰减,提高了测试精度。
一种超声波液体浓度测试装置,包括:震荡结构、除气泡结构以及超声探测主体部件,其中,
所述震荡结构位于所述超声探测主体部件底部,且设置为缓冲所述超声探测主体部件收到的震荡;
所述除气泡结构位于所述超声探测主体部件上,且设置为加速液体流动;
所述超声探测主体部件,设置为进行液体浓度探测。
可选地,所述震荡结构包括与探头安装底座的底面连接处的上连接面及与 超声波液体浓度测试装置连为一体的下连接面,三个首尾相连的弹片;所述弹片,形成层叠式,首尾相接的地方通过锁紧螺丝连接在一起,将三片弹片形成坚固的整体;所述弹片设有弹性区,弹性区上均开设有避空孔及弹性弧度来调整弹片的弹性系数。
可选地,所述超声探测主体部件包括超声波发射及接受装置的探头,所述探头包括:超声波发生器底座,超声波发生器,密封圈,超声波发生器压紧盘片,超声波反射片,立柱体和信号传输线。
可选地,所述超声波发生器底座与所述超声波发生器通过注塑集成在一起,所述信号传输线集成在所述超声波发生器底座中。
可选地,所述超声波发生器底座与所述立柱体采用相同的材料,以保持两者连接并固定后的热膨胀系数相同;所述信号传输线采用耐150℃至300℃高温的材料,以避免成型操作时融化;所述超声波反射片镶嵌在所述立柱体中,所述超声波反射片采用不锈钢材质,所述超声波反射片的反射面表面经过抛光处理,以避免因为长期浸入溶液中生锈造成表面粗糙,进而造成反射信号衰减。
可选地,所述超声波反射片的非反射面通过增加沟槽来增加注塑成型的附着力,避免超声波反射时形成双波衍射干涉,造成信号衰减。
可选地,所述除气泡结构包括导流喷射体,所述导流喷射体由漏斗入口,导流入口,导流通道,喷射出口以及熔接线组成,所述导流喷射体包括分别位于所述超声波液体浓度测试装置上方和上方的两个第一导流喷射体和分别位于所述超声波液体浓度测试装置上方和下方的两个第二导流喷射体,其中所述两个第一导流喷射体的喷射出口均对准所述超声波发生器的超声发射/接受面,所述两个第二导流喷射体的喷射出口均对准超声波反射片的反射面。
可选地,所述导流喷射体与所述立柱体熔接在一起,所述立柱体表面沿轴向方向开设有长方形的开口,在所述导流喷射体喷射液体时提供液体输出通道。
可选地,所述导流喷射体是漏斗形,漏斗形的所述导流喷射体的所述导流入口的口径小,漏斗形的所述导流喷射体的漏斗入口的口径大;所述导流通道在三个面上与所述漏斗形的所述导流喷射体的漏斗入口共面,使得导入液体从所述导流入口进入所述导流通道;所述喷射出口的形状对比所述导流通道,形成一个喇叭形扩张的出口,使得所述导流通道内的阻力骤然释放,提升液体流速。
一种震荡结构,包括:与探头安装底座的底面连接处的上连接面及与超声波液体浓度测试装置连为一体的下连接面,三个首尾相连的弹片;
所述三个弹片,首尾相接,形成层叠式,首尾相接的地方通过锁紧螺丝连接在一起,将三片弹片形成坚固的整体;
所述弹片设有弹性区,所述弹性区上均开设有相应的避空孔及弹性弧度来调整所述弹片的弹性系数。
一种除气泡结构,包括:导流喷射体,所述导流喷射体包括:第一导流喷射体和第二导流喷射体;
所述第一导流喷射体包括:第一漏斗入口,第一导流入口,第一导流通道和第一喷射出口以及第一熔接线组成,所述第二导流喷射体包括第二漏斗入口,第二导流入口,第二导流通道和第二喷射出口以及第二熔接线组成;
其中,位于所述超声波液体浓度测试装置上方的所述第一导流喷射体和位于所述超声波液体浓度测试装置下方的所述第一导流喷射体,出口均对准所述超声波发生器的超声发射/接受面;
位于所述超声波液体浓度测试装置上方的所述第二导流喷射体和位于所述超声波液体浓度测试装置下方的所述第二导流喷射体,出口均对准超声波反射片的反射面。
本公开的超声波液体浓度测试装置,保护了超声波发生装置及保护超声波液体浓度测试装置探头,延长超声波液体浓度测试装置探头寿命,同时提高超声波液体浓度测试装置精度
附图说明
下面根据附图说明和实例对本发明作进一步详细说明。
图1为一实施例提供的超声波液体浓度测试装置的组装图;
图2为一实施例提供的超声波液体浓度测试装置测试区的剖面图;
图3为一实施例提供的超声波液体浓度测试装置的立柱体结构图;
图4为一实施例提供的超声波液体浓度测试装置震荡体结构图;
图5为一实施例提供的超声波液体浓度测试装置震荡体侧视图;
图6为一实施例提供的超声波液体浓度测试装置的导流喷射体剖面图;
图7为一实施例提供的超声波液体浓度测试装置的导流喷射体结构图;
图8为一实施例提供的超声波液体浓度测试装置的导流喷射体剖面图;
图9为一实施例提供的超声波液体浓度测试装置的导流喷射体结构图;
图10为一实施例提供的超声波液体浓度测试装置的立柱体液体输出通道图;
图11为一实施例提供的超声波液体浓度测试装置的立柱体液体输出通道图;
图12为一实施例提供的超声波液体浓度测试装置的震荡体安装布局图;
图13为一实施例提供的超声波液体浓度测试装置的震荡体安装布局图;
图1至图13中:
1、探头;11、超声波发生器;12、密封圈;13、超声波反射片;14、立柱体;15、压紧盘片;16、信号传输线;17、超声波发生器底座;18、沟槽;111、反射/接受面;131、反射面;141、第一窗口;142、第二窗口;143、液体输出通道;
2、震荡体;21、上连接面;22、锁紧螺丝;23、弹性区;24、下连接面;25、弹性弧度;26、弹片;27、避空孔;
3、探头安装底座;
4、第一导流喷射体;41、第一漏斗入口;42、第一导流入口;43、第一导流通道;44、第一喷射出口;45、第一熔接线;
5、第二导流喷射体;51、第二漏斗入口;52、第二导流入口;53、第二导流通道;54、第二喷射出口;55、第二熔接线。
具体实施方式
本实施例提供一种超声波液体浓度测试装置,能够保护超声波发生装置及超声波液体浓度测试装置探头,延长超声波液体浓度测试装置探头寿命,同时提高超声波液体浓度测试装置精度。
如图1至图3所示,一种超声波液体浓度测试装置,包括超声探测主体部件,形成超声波发射及接受装置的探头1。探头1包括超声波发生器底座17,超声波发生器11,密封圈12,超声波发生器压紧盘片15,超声波反射片13,立柱体14和信号传输线16。
可选地,超声波发生器底座17与超声波发生器11经过注塑集成在一起,而超声波发生器11的信号传输线16同时集成在超声波发生器底座17中。
可选地,超声波发生器底座17与立柱体14采用相同的材料,保持两种材料连接与固定后的热膨胀系数相同。
可选地,信号传输线16采用耐150℃至300℃高温的材料,避免成型时融化。
可选地,可以联系专业厂商开发或选用新的材料,或者在注塑成型时包裹耐高温材料,保护超声波发生器11原有引线。
可选地,超声波发生器底座17与立柱体14接口设计有超声熔接线,两者连接采用超声波熔接工艺。
可选地,超声波反射片13镶嵌在立柱体14中,超声波反射片13采用不锈钢材质,而且反射面131表面需要经过抛光处理,避免因为长期浸入溶液中生锈造成表面粗糙,进而造成反射信号衰减。
可选地,超声波反射片13的非反射面采用增加沟槽18来增加注塑成型的附着力,同时可以避免超声波反射时形成双波衍射干涉,造成信号衰减。
本实施例的超声波液体浓度测试装置,超声波反射片13采用不锈钢材质、超声波反射片13的反射面131表面抛光处理、超声波反射片13非反射面采用增加沟槽18的设计,从而避免信号双反射所形成的信号干涉与衍射等噪声,避免了超声波信号被衰减。
本实施例的超声波液体浓度测试装置,超声波发生器底座17与超声波发生器11、超声波发生器11的信号传输线16经过注塑集成在一起、信号传输线16采用耐高温的材料、实现了对于超声发生器的保护。另外,通过密封圈12及密封圈压紧盘片15的密封设计,从结构上保证了超声波发生器不被腐蚀液体浸湿从而损坏电子电路。
本实施例的超声波液体浓度测试装置,超声波发生器底座17与立柱体14采用同种材料来保持两种材料相同的热膨胀系数、超声波发生器底座17与立柱体14采用超声波熔接工艺等从材料与工艺角度确保了超声液体浓度测试装置的结构应力可靠以及使用耐受性高,从而延长探头的使用寿命。
本实施例提供一种超声波液体浓度测试装置震荡结构,对于超声波液体浓度测试装置因为在车辆行驶过程中汽车颠簸造成的振动提供一种缓冲。震荡结构能够把外部振动能量进行舒缓引导,减少超声波液体浓度测试装置探头所受到的直接冲击,提高超声波液体浓度测试装置的探头的耐受性,延长探头使用 寿命。该震荡结构能够把探头的瞬时位移速度降低,使得超声波在传输方向上、在有效的传输时间内,尽可能地获得最大的探头接受面积。该震荡结构,对外部振动能量进行方向引导以及放大探头摆动幅度。
一种振震荡结构,称为震荡体2,用于超声波液体浓度测试装置中,包括与探头安装底座3的底面连接处的上连接面21及与超声波液体浓度测试装置连为一体的下连接面24,三个首尾相连的弹片26。
所述三个弹片26,首尾相接,形成层叠式;首尾相接的地方通过锁紧螺丝22连接在一起,将三片弹片形成坚固的整体。
可选地,锁紧螺丝22是防反螺丝,可以保证在频繁震荡情况下保持紧固。
可选地,所述三个弹片26通过上述锁紧螺丝锁紧是双螺丝锁紧,同时弹片足够的宽度可以保证引导探头震荡的方向尽量固定在上下方向摆动。
可选地,三个弹片26的弹性区23上均开设有相应的避空孔27及弹性弧度25来调整弹片的弹性系数。
可选地,所述弹性弧度25在竖直方向提供相应的上下摆动空间,同时可以节约探头1因为所需要的摆动幅度而要求的水平方向空间。
可选地,弹性弧度25可以在保持相同弹性系数的情况下,减少材料厚度。
可选地,弹片上弹性区23的弹性弧度25方向在中间层与底层是相向设计的,这样的设计避免弹性区干涉。
可选地,顶层弹片弹性区23的弹性弧度25大于中间层与底层的弹性弧度。
本实施例的超声波液体浓度测试装置震荡装置,震荡体2的三层弹片26设计方式,避免了汽车在道路上颠簸能量直接传递到超声波探头1,减少了探头1被直接冲击,延长了探头1使用寿命。
本实施例的震荡结构,震荡体2采用宽体设计方式,能够抑制探头1左右摆动,引导探头1主要产生竖直方向的运动,从而使得汽车在道路上的主要振动方式-上下颠簸所产生的能量传导到探头1,实现探头1在竖直方向摆动能量聚集。
本实施例的超声波液体浓度测试装置的震荡结构,震荡体2的三层弹片26设计方式,提供了足够的摆动幅度;结合震荡体2宽体设计方式造成的竖直方向能量聚集,二者合力实现探头1在竖直方向摆动幅度达到设计幅度的最大值,同时增加了摆动速度。
本实施例提供一种超声波液体浓度测试装置的除气泡结构,实现局部液体奔流通道,这一通道结构能够在通道内形成液体加速流动,在通道出口处液体喷射至超声波发生器发射/接受面以及超声波反射面,对因为温度上升和添加液体造成的气泡滞留在上述表面进行冲刷,从而减少或者去除气泡,减少了因为气泡而增加的超声波信号的衰减,提高了测试精度。
一种超声波液体浓度测试装置的除气泡结构,包括分别位于所述超声波液体浓度测试装置上方和上方的第一导流喷射体4和分别位于所述超声波液体浓度测试装置上方和下方的第二导流喷射体5。其中所述两个第一导流喷射体4的喷射出口均对准所述超声波发生器的超声发射/接受面111,所述两个第二导流喷射体5的喷射出口均对准超声波反射片的反射面131。
第一导流喷射体4由第一漏斗入口41,第一导流入口42,第一导流通道43和第一喷射出口44以及第一熔接线45组成,第一熔接线45是第一导流喷射体4与立柱体14的接口界面。
第二导流喷射体5由第二漏斗入口51,第二导流入口52,第二导流通道53和第二喷射出口54以及第二熔接线55组成,第二熔接线55是第二导流喷射体与立柱体14的接口界面。
上述第一导流喷射体4与第二导流喷射体5都与立柱体14熔接在一起。
可选地,第一导流喷射体4的第一漏斗入口41口径比第二导流喷射体5的第二漏斗入口51口径要大。因为震荡体2安装的部位会造成第二导流喷射体5远离震荡支点,振动幅度大于第一导流喷射体4,所以为了保证第一导流喷射体4同第二导流喷射体5一样有足够的喷流速度,需要加大第一导流喷射体4的漏斗口径。
可选地,熔接接口界面是在立柱体14上下竖直方向上开出第一导流喷射体4插入的两个第一窗口141和第二导流喷射体5插入的两个第二窗口142,可选地,两个第一窗口141分别位于超声波液体浓度探测装置的上方和下方,两个第二窗口142分别位于超声波液体浓度探测装置的上方和下方。第一窗口141由第一熔接线45与第一窗口封口区域对接熔接完成。第二窗口142由第二熔接线55与第二窗口封口区域对接熔接完成。且熔接方向均是竖直方向,第一喷射出口44和第二喷射出口54沿着立柱体14径向安排,均指向立柱体14轴心。
可选地,立柱体14表面沿轴向方向开设有长方形的开口,形成液体输出通 道143,实现在导流喷射体喷射液体时提供液体输出通道;
可选地,第一导流喷射体4是漏斗形接口,第一导流入口42口径小,第一漏斗入口41口径大;
可选地,第二导流喷射体5是漏斗形接口,第二导流入口52口径小,第二漏斗入口51口径大;
可选地,第一导流通道43在三个面上与第一漏斗入口41是共面的,这样可以顺利导入液体从第一导流入口42进入第一导流通道43。
可选地,第二导流通道53在三个面上与第二漏斗入口51是共面的,这样可以顺利导入液体从第二导流入口52进入第二导流通道53。
可选地,第一喷射出口44的形状对比第二=一导流通道43,形成一个微小的喇叭形扩张的出口,这样会让第一导流通道43内的阻力骤然释放,液体流速加快。
可选地,第二喷射出口54的形状对比第二导流通道53,形成一个微小的喇叭形扩张的出口,这样会让第二导流通道53内的阻力骤然释放,液体流速加快。
本实施例的超声波液体浓度测试装置除气泡装置,第一导流喷射体4和第二导流喷射体5。导流喷射体漏斗形结构、导流喷射体导流入口口径小而漏斗入口口径大、导流喷射体的导流通道在三个面上与导流喷射体漏斗入口是共面的从而实现顺利导入液体从导流入口进入导流通道、导流喷射体的喷射出口形成一个微小的喇叭形扩张的出口从而让导流通道内的阻力骤然释放来加快液体流速,等多方面共同作用,加速了液体在第一导流喷射体4和第二导流喷射体5中的流动,实现对于超声波发生器11的反射/接受面111以及超声波反射片13的反射面131上气泡的冲刷,去除气泡,避免了因为气泡造成的超声波信号衰减。
一种超声波液体浓度探测装置,包括超声波液体浓度测试装置探头1,探头安装底座3、震荡结构、第一导流喷射体4和第二导流喷射体5。本实施例中震荡结构为震荡体2。
所述探头1被设计为一集成式的工程塑料件,超声波液体浓度测试装置核心部件超声波发生器11被工程塑胶所包裹;超声波液体浓度测试装置关键功能件超声波反射片13被镶嵌进入立柱体14中。
可选地,超声波发生器11通过工程塑料经过嵌入式模具注塑成型,被镶嵌 进入超声波发生器底座17内,被一同镶嵌的还有超声波发生器的尾部信号传输线16;立柱体14同样是通过嵌入式模具注塑成型的,被嵌入的五金材料是超声波反射片13。
镶嵌了超声波反射片13的立柱体14与包裹了超声波发生器11的超声波发生器底座17是通过超声波熔接工装进行定位与超声波加热工艺进行熔接,最后被连接成一个整体。如此,则将超声波溶液浓度探测装置的核心功能电子元件在探头1中进行了集成,实现了超声波的发射、传递、反射与接受。
探头1是通过螺钉锁定的方式与探头安装底座3进行连接的。
可选地,探头1的水平方向,在超声波发生器底座17的两侧有向外伸展的双翼,双翼与探头安装底座3的双侧有承接探头1双翼的母槽,二者形成公母槽配合。在公母槽配合的基础上,二者是通过自攻螺丝进行锁紧的。这样,通过探头安装底座3就提供了一个与外部联结的中间环节,可以灵活实现产品未来的系列化设计,同时也提供了探头1在超声波液体浓度测试装置中的紧固界面。
安装底座3底面设计有安装震荡体2的平面,震荡体2的安装上连接面21在安装底座底面由防反双螺丝紧固,震荡体2下面的下连接面24也是通过两个防反螺丝连接到超声波液体浓度测试装置的底座固定板上。这样,探头1、探头安装底座3与震荡体2就与超声波液体浓度测试装置联结成了一个整体。
如图4至图5所示,所述震荡体2的总体结构中包括三个弹片26,连接三个弹片的锁紧螺丝22,可选地,该锁紧螺丝为防反螺丝。
可选地,三个弹片都是同一种不锈钢材料经过精密冷冲压成型而成。上层、中层和底层弹片都是通过冷冲模具进行冲压工艺形成的。可选地,该工艺包括冲裁,冲孔,冲压、整形等过程。
三个弹片26的均通过防反螺丝抽紧,从而形成一个整体震荡体2。特别需要注意的是,在连接三个弹片26时需要注意弹片26的方向,避免弹片26的弹性区23相互干涉。
如图6至图9所示,所述超声波液体浓度测试装置的探头1在竖直方向上,探头1顶部与底部分布着4个导流喷射体,接近于超声波发生器11一端的第一导流喷射体4被设计的稍微大些,接近于超声波反射片13一端的第二导流喷射体5稍微小些,四个导流喷射体与探头1在立柱体14上被联结为一个整体。
可选地,第一导流喷射体4和第二导流喷射体5都是漏斗型的。导流喷射体主体是漏斗区,尾部是导流通道与喷射出口组成。可选地,所述第一导流喷射体4包括:第一漏斗入口41,第一导流入口42,第一导流通道43和第一喷射出口44以及第一熔接线45组成,所述第二导流喷射体5包括第二漏斗入口51,第二导流入口52,第二导流通道53和第二喷射出口54以及第二熔接线55组成;导流喷射体是采用与立柱体14相同的材料,通过注塑成型工艺实现,整个导流喷射体内部液体流动通道设计成了上面大,下面小的结构,方便在成型时可以采用模具抽芯方式来实现。
如图7和图9所示,所述超声波液体浓度测试装置的第一导流喷射体4和第二导流喷射体5,在导流喷射体漏斗区的底部,被设计成了一个贴合立柱体14圆柱形外部圆弧状的曲面。曲面的竖直向下和向上的方向被设计了超声波熔接的熔接线,如此两个同类型的导流喷射体就可以通过超声波焊接工装定位方式以及加热超声波能量实现熔接。
如图10所示,所述超声波液体浓度测试装置的探头1上,需要实现液体的加速导入功能,如上述导流喷射体结构描述;同时,为了保证液体在立柱体14内能够形成喷射流,本实例在立柱体14圆柱体的壁上提供了一个长方形的通孔,此通孔实现了液体在立柱体内与立柱体外部被测溶液的交汇,还提供了一个液体流动的通道。
如图12所示,所述超声波液体浓度测试装置的探头1通过探头安装底座联结有震荡体2,此处震荡体2的连接有方向选择,可选地,本实施例中的安装方向是右向安装。可选地,震荡体2有两个接口界面,首先安装上层弹片。此弹片被设计有一个联结探头安装底座的上连接面21,上面有两个连接孔,通过防反螺丝紧固在安装底座上,安装方向是让上层弹片非连接端与探头1的立柱体14超声波反射片13端同向。然后安装底层弹片,此弹片被设计有一个联结超声波液体浓度探测装置的整个探头1的底座的下连接面24,上面有两个连接孔,通过防反螺丝紧固在底座上。如图1至图3所示,一种超声波液体浓度探测装置,包括超声波液体浓度测试装置探头1,探头1安装底座3、震荡体2、第一导流喷射体4和第二导流喷射体5。
所述探头1被设计为一集成式的工程塑料件,其中超声波液体浓度测试装置核心部件超声波发生器11被工程塑胶所包裹;超声波液体浓度测试装置关键 功能件超声波反射片13被镶嵌进入立柱体14中。
可选地,超声波发生器11通过工程塑料经过嵌入式模具注塑成型,被镶嵌进入超声波发生器底座17内,被一同镶嵌的还有超声波发生器的尾部信号传输线16;立柱体14同样是通过嵌入式模具注塑成型的,被嵌入的五金材料是超声波反射片13。
镶嵌了超声波反射片13的立柱体14与包裹了超声波发生器11的超声波底座17是通过超声波熔接工装进行定位与超声波加热工艺进行熔接,最后被联接成一个整体。如此,则将超声波溶液浓度探测装置的核心功能电子元件在探头1中进行了集成,实现了超声波的发射、传递、反射与接受。
探头1是通过螺钉锁定的方式与探头安装底座3进行连接的。
可选地,探头1的水平方向,在超声波发生器底座17的两侧有向外伸展的双翼,双翼与探头安装底座3的双侧有承接探头1双翼的母槽,二者形成公母槽配合。在公母槽配合的基础上,二者是通过自攻螺丝进行锁紧的。这样,通过探头安装座3就提供了一个与外部联结的中间环节,可以灵活实现产品未来的系列化设计,同时也提供了探头1在超声波液体浓度测试装置中的紧固界面。
安装底座3底面设计有安装震荡体2的平面,震荡体2的安装上连接面21在安装底座底面由防反双螺丝紧固,震荡体2下面的下连接面24也是通过两个防反螺丝连接到超声波液体浓度测试装置的底座固定板上。这样,探头1、探头安装底座3与震荡体2就与超声波液体浓度测试装置联结成了一个整体。
如图4至图5所示,所述震荡体2的总体结构中包括三个弹片26,连接三个弹片的防反螺丝。
可选地,三个弹片都是同一种不锈钢材料经过精密冷冲压成型而成。上层、中层和底层弹片都是通过冷冲模具进行冲压实现的。可选地,该工艺包括冲裁,冲孔,冲压、整形等过程实现。
三个弹片26的均通过防反螺丝抽紧,从而形成一个整体震荡体2。特别需要注意的是,在连接三个弹片26时需要注意弹片26的方向,避免弹片26的弹性区23相互干涉。
如图6至图9所示,所述超声波液体浓度测试装置的探头1在竖直方向上,探头1顶部与底部分布着4个导流喷射体,接近于超声波发生器11一端的第一导流喷射体4被设计的稍微大些,接近于超声波反射片13一端的第二导流喷射 体5稍微小些,四个导流喷射体与探头1在立柱体14上被联结为一个整体。
可选地,第一导流喷射体4和第二导流喷射体5都是漏斗型的。导流喷射体主体是漏斗区,尾部是导流通道与喷射出口组成。导流喷射体采用与立柱体14相同的材料,通过注塑成型工艺实现,整个导流喷射体内部液体流动通道设计成了上面大,下面小的结构,方便在成型时可以采用模具抽芯方式来实现。
如图7和图9所示,所述超声波液体浓度测试装置的第一导流喷射体4和第二导流喷射体5,在导流喷射体漏斗区的底部,被设计成了一个贴合立柱体14圆柱形外部圆弧状的曲面。曲面的竖直向下和向上的方向被设计了超声波熔接的熔接线,如此两个同类型的导流喷射体就可以通过超声波焊接工装定位方式以及加热超声波能量实现熔接。
如图11所示,所述超声波液体浓度测试装置的探头1上,需要实现液体的加速导入功能,如上述导流喷射体结构描述;同时,为了保证液体在探头的立柱体14内能够形成喷射流,本实施例在立柱体1圆柱体的壁上提供了两个圆形的通孔,两个通孔分别靠近第一导流喷射体4和第二导流喷射体5。此通孔实现了液体在立柱体内与立柱体外部被测溶液的交汇,还提供了一个液体流动的通道。
如图13所示,所述超声波液体浓度测试装置的探头1通过探头安装底座联结有震荡体2,此处震荡体2的连接有方向选择,可选地,本实施例中的安装方向是左向安装。可选地,震荡体2有两个接口界面,首先安装上层弹片。此弹片被设计有一个联结探头安装底座的上连接面21,上面有两个连接孔,通过防反螺丝紧固在安装底座上,安装方向是让上层弹片非连接端与探头1的立柱体14超声波反射/接受端111反向。然后安装底层弹片,此弹片被设计有一个联结超声波液体浓度探测装置的整个探头1的底座的下连接面24,上面有两个连接孔,通过防反螺丝紧固在底座上。
工业实用性
本公开的超声波液体浓度测试装置保护了超声波发生装置及保护超声波液体浓度测试装置探头,延长超声波液体浓度测试装置探头寿命,同时提高超声波液体浓度测试装置精度。

Claims (11)

  1. 一种超声波液体浓度测试装置,包括:震荡结构、除气泡结构以及超声探测主体部件,其中,
    所述震荡结构位于所述超声探测主体部件底部,且设置为缓冲所述超声探测主体部件收到的震荡;
    所述除气泡结构位于所述超声探测主体部件上,且设置为加速液体流动;
    所述超声探测主体部件,设置为进行液体浓度探测。
  2. 根据权利要求1所述的超声波液体浓度测试装置,其中,所述震荡结构包括与探头安装底座的底面连接处的上连接面及与超声波液体浓度测试装置连为一体的下连接面,三个首尾相连的弹片;所述弹片形成层叠式,首尾相接的地方通过锁紧螺丝连接在一起,将三片弹片形成坚固的整体;所述弹片设有弹性区,弹性区上均开设有避空孔及弹性弧度来调整弹片的弹性系数。
  3. 根据权利要求1所述的超声波液体浓度测试装置,其中,所述超声探测主体部件包括超声波发射及接受装置的探头,所述探头包括:超声波发生器底座,超声波发生器,密封圈,超声波发生器压紧盘片,超声波反射片,立柱体和信号传输线。
  4. 根据权利要求3所述的超声波液体浓度测试装置,其中,所述超声波发生器底座与所述超声波发生器通过注塑集成在一起,所述信号传输线集成在所述超声波发生器底座中。
  5. 根据权利要求3所述的超声波液体浓度测试装置,其中,所述超声波发生器底座与所述立柱体采用相同的材料,以保持两者连接并固定后的热膨胀系数相同;所述信号传输线采用耐150℃至300℃高温的材料,以避免成型操作时融化;所述超声波反射片镶嵌在所述立柱体中,所述超声波反射片采用不锈钢材质,所述超声波反射片的反射面表面经过抛光处理,以避免因为长期浸入溶液中生锈造成表面粗糙,进而造成反射信号衰减。
  6. 根据权利要求3所述的超声波液体浓度测试装置,其中,所述超声波反射片的非反射面通过增加沟槽来增加注塑成型的附着力,避免超声波反射时形成双波衍射干涉,造成信号衰减。
  7. 根据权利要求1所述的超声波液体浓度测试装置,其中,所述除气泡结构包括导流喷射体,所述导流喷射体由漏斗入口,导流入口,导流通道,喷射出口以及熔接线组成,所述导流喷射体包括分别位于所述超声波液体浓度测试装 置上方和上方的两个第一导流喷射体和分别位于所述超声波液体浓度测试装置上方和下方的两个第二导流喷射体,其中所述两个第一导流喷射体的喷射出口均对准所述超声波发生器的超声发射/接受面,所述两个第二导流喷射体的喷射出口均对准超声波反射片的反射面。
  8. 根据权利要求3或7所述的超声波液体浓度测试装置,其中,所述导流喷射体与所述立柱体熔接在一起,所述立柱体表面沿轴向方向开设有长方形的开口,在所述导流喷射体喷射液体时提供液体输出通道。
  9. 根据权利要求7所述的超声波液体浓度测试装置,其中,所述导流喷射体是漏斗形,漏斗形的所述导流喷射体的所述导流入口的口径小,漏斗形的所述导流喷射体的漏斗入口的口径大;所述导流通道在三个面上与漏斗形的所述导流喷射体的漏斗入口共面,使得导入液体从所述导流入口进入所述导流通道;所述喷射出口的形状对比所述导流通道,形成一个喇叭形扩张的出口,使得所述导流通道内的阻力骤然释放,提升液体流速。
  10. 一种震荡结构,包括:与探头安装底座的底面连接处的上连接面及与超声波液体浓度测试装置连为一体的下连接面,三个首尾相连的弹片;
    所述三个弹片,首尾相接,形成层叠式,首尾相接的地方通过锁紧螺丝连接在一起,将三片弹片形成坚固的整体;
    所述弹片设有弹性区,所述弹性区上均开设有避空孔及弹性弧度来调整所述弹片的弹性系数。
  11. 一种除气泡结构,包括:导流喷射体,所述导流喷射体包括:第一导流喷射体和第二导流喷射体;
    所述第一导流喷射体包括:第一漏斗入口,第一导流入口,第一导流通道和第一喷射出口以及第一熔接线组成,所述第二导流喷射体包括第二漏斗入口,第二导流入口,第二导流通道和第二喷射出口以及第二熔接线组成;
    其中,位于所述超声波液体浓度测试装置上方的所述第一导流喷射体和位于所述超声波液体浓度测试装置下方的所述第一导流喷射体,出口均对准所述超声波发生器的超声发射/接受面;
    位于所述超声波液体浓度测试装置上方的所述第二导流喷射体和位于所述超声波液体浓度测试装置下方的所述第二导流喷射体,出口均对准超声波反射片的反射面。
PCT/CN2018/083115 2017-04-14 2018-04-13 震荡与除气泡结构及超声波液体浓度测试装置 WO2018188665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18783875.0A EP3611499B1 (en) 2017-04-14 2018-04-13 Shock structure, bubble removing structure, and ultrasonic liquid concentration testing device
US16/605,105 US11143622B2 (en) 2017-04-14 2018-04-13 Vibrating structure, bubble removing structure, and ultrasonic liquid concentration detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710243494.XA CN106896155B (zh) 2017-04-14 2017-04-14 震荡与除气泡结构及超声波液体浓度测试装置
CN201710243494.X 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018188665A1 true WO2018188665A1 (zh) 2018-10-18

Family

ID=59196592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083115 WO2018188665A1 (zh) 2017-04-14 2018-04-13 震荡与除气泡结构及超声波液体浓度测试装置

Country Status (4)

Country Link
US (1) US11143622B2 (zh)
EP (1) EP3611499B1 (zh)
CN (1) CN106896155B (zh)
WO (1) WO2018188665A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882624A4 (en) * 2018-12-26 2022-08-17 Nisshinbo Holdings Inc. GAS SOR

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896155B (zh) 2017-04-14 2023-09-12 广东正扬传感科技股份有限公司 震荡与除气泡结构及超声波液体浓度测试装置
CN110596236A (zh) * 2019-09-27 2019-12-20 湖北晟正汽车零部件有限公司 一种优化的尿素溶液浓度检测装置
CN112666249B (zh) * 2020-05-11 2023-11-10 江苏迅创科技股份有限公司 一种用于在线超声法测量液体浓度的承载结构
CN112758479B (zh) * 2021-02-04 2022-09-06 陇东学院 一种博物馆用文物防震保护装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250559A (ja) * 1987-04-07 1988-10-18 Shokuhin Sangyo Onrain Center Gijutsu Kenkyu Kumiai 超音波溶液濃度測定装置
TW293087B (zh) * 1994-07-06 1996-12-11 Sumitomo Chemical Co
US6959589B1 (en) * 2003-10-03 2005-11-01 The United States Of America As Represented By The United States Department Of Energy Ultrasound analysis of slurries
JP2016151489A (ja) * 2015-02-17 2016-08-22 日立建機株式会社 建設機械の尿素水濃度測定装置
CN106896155A (zh) * 2017-04-14 2017-06-27 深圳市盛泽森科技有限公司 震荡与除气泡结构及超声波液体浓度测试装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031596A (ja) * 2000-07-17 2002-01-31 Toshiba Corp 液濃度測定装置
US8459013B2 (en) 2008-12-30 2013-06-11 Daimler Trucks North America Llc Urea tank with closure member for vehicle exhaust system
JP2012062982A (ja) * 2010-09-17 2012-03-29 Kazuya Shimizu 除振装置
CN102518496A (zh) * 2012-01-05 2012-06-27 潍柴动力股份有限公司 一种尿素喷射量的控制方法和系统
JP6049058B2 (ja) * 2012-10-09 2016-12-21 株式会社サンエー 流動体状態識別装置
US9377441B2 (en) * 2013-10-02 2016-06-28 Ssi Technologies, Inc. Reduction of aeration interference in an ultrasonic fluid sensing system
WO2016027941A1 (ko) * 2014-08-19 2016-02-25 주식회사 화영 요소 농도 측정 장치와 이를 구비하는 요소수 센더 및 요소수 탱크
CN106340998B (zh) * 2016-11-15 2019-10-18 苏州海歌电器科技有限公司 吸尘器电机减震结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250559A (ja) * 1987-04-07 1988-10-18 Shokuhin Sangyo Onrain Center Gijutsu Kenkyu Kumiai 超音波溶液濃度測定装置
TW293087B (zh) * 1994-07-06 1996-12-11 Sumitomo Chemical Co
US6959589B1 (en) * 2003-10-03 2005-11-01 The United States Of America As Represented By The United States Department Of Energy Ultrasound analysis of slurries
JP2016151489A (ja) * 2015-02-17 2016-08-22 日立建機株式会社 建設機械の尿素水濃度測定装置
CN106896155A (zh) * 2017-04-14 2017-06-27 深圳市盛泽森科技有限公司 震荡与除气泡结构及超声波液体浓度测试装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882624A4 (en) * 2018-12-26 2022-08-17 Nisshinbo Holdings Inc. GAS SOR

Also Published As

Publication number Publication date
EP3611499A1 (en) 2020-02-19
EP3611499A4 (en) 2021-04-28
CN106896155B (zh) 2023-09-12
EP3611499B1 (en) 2024-06-05
US11143622B2 (en) 2021-10-12
US20200158689A1 (en) 2020-05-21
CN106896155A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2018188665A1 (zh) 震荡与除气泡结构及超声波液体浓度测试装置
US10500550B2 (en) Static mixer
CN205559030U (zh) 用于排气后处理系统的模块化组件
CN109415964B (zh) 用于机动车的废气后处理系统的混合器设备,废气后处理系统和机动车
US20090092525A1 (en) Exhaust gas cleaning apparatus with improved configuration ensuring proper injection of reducing agent
KR101848802B1 (ko) 배기 조립체용 모듈형 믹서
CN205025535U (zh) 混合组件、入口管组件及其排气后处理部件
US11555437B2 (en) Exhaust pipe
EP3301340B1 (en) Joint assembly
EP3559423B1 (en) Flow hood assembly
US8484948B2 (en) Fixed auger assembly
CN102498271A (zh) 用于液体还原剂的计量模块
JP2009203967A (ja) 尿素水タンクおよび尿素水タンクの取付構造
Park et al. Advanced aftertreatment system development for a locomotive application
US8967501B2 (en) Valve arrangement for metering a fluid medium in an exhaust line of an internal combustion engine
US20190072480A1 (en) Optical concentration sensor protective casing and optical concentration testing device
US20200386133A1 (en) System and apparatus to mitigate diesel exhaust fluid deposits in exhaust system flexible couplings
CN218117884U (zh) 一种抗干扰尿素浓度传感器
CN219865277U (zh) 一种新型egr冷却器支架
SE543916C2 (en) Evaporator module and exhaust aftertreatment system comprising such a module
WO2023105876A1 (ja) 排気構造およびインジェクタ取付部材
JP6743285B2 (ja) 還元剤供給ユニットコンパクト側方供給入口ポート
GB2579334A (en) Insulation assembly for reductant delivery system for exhaust gas aftertreatment system
WO2019172229A1 (ja) 排ガス浄化装置
CN117905562A (zh) 一种抗干扰尿素浓度传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018783875

Country of ref document: EP

Effective date: 20191114