WO2018188406A1 - 等离子体化学气相沉积微波谐振腔及装置 - Google Patents

等离子体化学气相沉积微波谐振腔及装置 Download PDF

Info

Publication number
WO2018188406A1
WO2018188406A1 PCT/CN2018/075293 CN2018075293W WO2018188406A1 WO 2018188406 A1 WO2018188406 A1 WO 2018188406A1 CN 2018075293 W CN2018075293 W CN 2018075293W WO 2018188406 A1 WO2018188406 A1 WO 2018188406A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
microwave
base
frequency tuning
isosceles triangle
Prior art date
Application number
PCT/CN2018/075293
Other languages
English (en)
French (fr)
Inventor
于盛旺
郑可
高洁
鲁明杰
王洪孔
李亮亮
任咪娜
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学 filed Critical 太原理工大学
Priority to US16/494,768 priority Critical patent/US11270869B2/en
Publication of WO2018188406A1 publication Critical patent/WO2018188406A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32247Resonators
    • H01J37/32256Tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Definitions

  • the invention relates to the technical field of chemical vapor deposition, in particular to a microwave resonant cavity for plasma chemical vapor deposition and a plasma chemical vapor deposition device using the microwave resonant cavity.
  • Microwave plasma chemical vapor deposition is the use of microwave energy to excite plasma to achieve the preparation of materials (diamond, graphene, etc.). Since the plasma generation involves an electrodeless discharge process, the plasma is relatively pure, and can avoid contamination of the material due to hot wire metal or tungsten electrode evaporation when preparing materials by hot wire CVD or direct current jet CVD. . Compared with the RF CVD method, the microwave plasma CVD method has the characteristics of relatively concentrated discharge regions, high energy density, and fast deposition rate. Therefore, this method has received extensive attention and has been widely used in the fields of research and preparation of high-quality diamond materials.
  • the resonant cavity is a major component of the microwave plasma CVD apparatus.
  • the cavity structure of the microwave plasma CVD apparatus currently has a problem of low focusing ability.
  • the resonator is less flexible, and it needs to be combined with a specific coupling mechanism and dielectric window to be able to manufacture a microwave plasma CVD device.
  • an ellipsoidal resonator needs to be equipped with a coaxial probe antenna as a coupling mechanism, and a quartz bell jar is used.
  • a cylindrical resonator is generally configured with a coaxial probe as a coupling mechanism, and a quartz plate is used as a dielectric window;
  • a butterfly resonator needs to be configured with a coaxial circumferential antenna as a coupling mechanism, and a quartz ring is used as a dielectric window.
  • the present invention utilizes the principle of reflection and interference of electromagnetic waves to propose a novel resonant cavity having strong electric field focusing ability and capable of using different coupling mechanisms and dielectric windows.
  • the invention provides a plasma chemical vapor deposition microwave resonant cavity and device, so as to achieve the purpose of improving the focusing ability and configuration flexibility of the resonant cavity.
  • a plasma chemical vapor deposition microwave cavity comprising a turn formed by an equal assembly of two isosceles triangles.
  • a body having an upper cavity and a lower cavity formed therein, wherein the base of the isosceles triangle has a length of 2n ⁇ (2n+0.5) ⁇ , wherein n is an integer, ⁇ is a microwave wavelength, and a base angle is 50° ⁇ 75°, the base lengths of the two isosceles triangles are equal or different by n ⁇ , where n is an integer, and the center of gravity of the upper isosceles triangle and the center of gravity of the lower isosceles triangle are 0 to 4/5 ⁇ .
  • the middle portion of the rotating body is provided with an upper cylindrical cavity
  • the bottom of the lower cavity is provided with a lower cylindrical cavity
  • a plasma chemical vapor deposition apparatus comprising a microwave coupling mechanism, a dielectric window, a base, a tuning mechanism, an inlet and outlet port, and the microwave cavity described above.
  • the bottom sides of the two isosceles triangles forming the microwave cavity are equal in length, and the top of the upper cavity is provided with a coaxial probe coupling antenna, and the lower cavity
  • a frequency tuning plate is arranged at the bottom, and a microwave shielding elastic piece is arranged at a contact between the frequency tuning plate and the cavity wall of the lower cavity, and the foot of the quartz bell dielectric window is placed on the frequency tuning plate and sealed with the quartz arc media window top arc
  • the surface is higher than the interface of the upper and lower cavities, and the base is disposed in the middle of the frequency tuning plate, and the frequency tuning plate on both sides of the abutment is provided with an air inlet hole and an air outlet hole.
  • the base side length of the isosceles triangle forming the upper cavity is larger than the base side length of the isosceles triangle forming the lower cavity, and the top of the upper cavity is disposed.
  • a coaxial circumferential coupling antenna and a quartz ring dielectric window is arranged on the inner side of the top of the upper cavity to be fitted and sealed with the coaxial circumferential coupling antenna, and the inner center of the coaxial circumferential coupling antenna has an air inlet hole penetrating the inside of the microwave cavity a frequency tuning plate is disposed at a bottom of the lower cavity, and a microwave shielding elastic piece is disposed at a contact between the frequency tuning plate and the cavity wall of the lower cavity, wherein the base is disposed in a middle portion of the frequency tuning plate, and the frequency tuning plate on both sides of the abutment is opened. There are vents.
  • the base side length of the isosceles triangle forming the upper cavity is smaller than the base side length of the isosceles triangle forming the lower cavity, and the top of the upper cavity is disposed.
  • a microwave shielding elastic piece is disposed at a contact between the frequency tuning plate and the cavity wall of the lower cavity, the base plate is disposed in a middle portion of the frequency tuning plate, and an air outlet hole is opened on the frequency tuning plate on both sides of the base platform, and the bottom portion of the lower cavity body is open Venting holes.
  • the present invention provides a plasma chemical vapor deposition apparatus including a microwave coupling mechanism, a dielectric window, a base, a tuning mechanism, an inlet and outlet, and the claim 2
  • the microwave cavity is provided with a coaxial circumferential coupling antenna at the top of the upper cavity, and a quartz ring dielectric window fitted and sealed with the coaxial circumferential coupling antenna is disposed on the inner side of the upper cavity, and the inner center of the coaxial circumferential coupling antenna is disposed.
  • An air inlet hole extending through the interior of the microwave cavity is disposed, and a horizontal first frequency tuning plate is disposed in a middle portion of the lower cylindrical cavity, and a base is disposed in a middle portion of the first frequency tuning plate, and the two sides of the base plate are disposed perpendicular to the first frequency tuning plate
  • the second frequency tuning plate has an air outlet hole in the middle of the second frequency tuning plate and a total air outlet hole in the bottom of the lower cylindrical cavity.
  • a high-intensity and evenly distributed focusing electric field can be formed at the center of the bottom of the cavity.
  • the present invention utilizes the principle of reflection and interference of electromagnetic waves by adjusting the length of the bottom side of the upper and lower isosceles triangles. The base angle and the center distance between the two form a strong focus electric field.
  • the resonant cavity can select different dielectric windows, microwave coupling modes and reaction gas inlet and outlet modes according to specific applications, and has the characteristics of simple structure, convenience and flexibility.
  • FIG. 1 is a schematic view showing the structure of a microwave cavity of the present invention.
  • FIG. 2 is a diagram showing the simulation effect of the microwave electric field of the microwave cavity of the present invention.
  • Figure 3 is a schematic view of the apparatus of the first embodiment.
  • Figure 5 is a schematic view of the apparatus of Embodiment 3.
  • Figure 6 is a schematic view of the apparatus of the fourth embodiment.
  • Figure 7 is a microscopic surface topography of a diamond film prepared by the apparatus of the present invention.
  • Figure 8 is a Raman line of a diamond film prepared by the apparatus of the present invention.
  • a plasma chemical vapor deposition microwave resonant cavity includes a rotating body formed by two equal-angled isosceles triangle Boolean union operations.
  • the upper cavity 1 and the lower cavity 2 are formed inside the rotary body, wherein the base side length of the isosceles triangle is 2n ⁇ (2n+0.5) ⁇ , where n is an integer, ⁇ is a microwave wavelength, and the base angle is 50°. 75°, the base lengths of the two isosceles triangles are equal or different by n ⁇ (n is an integer), and the center of gravity of the upper isosceles triangle and the center of gravity of the lower isosceles triangle are 0 to 4/5 ⁇ .
  • the microwave electric field simulation effect diagram formed by the above embodiment refers to FIG. 2. It can be seen from FIG. 2 that the microwave can form a unique strong focusing electric field at the bottom center of the lower cavity after being coupled by the upper cavity.
  • the central portion of the body of revolution is provided with an upper cylindrical chamber 3 and the bottom of the lower chamber 2 is provided with a lower cylindrical chamber 4.
  • a plasma chemical vapor deposition device can be constructed by combining a microwave coupling mechanism, a dielectric window, a base, a tuning mechanism, and an inlet and outlet.
  • FIG. 7 is a microscopic surface topography of a diamond film prepared by using a plasma chemical vapor deposition apparatus manufactured by a preferred embodiment of the present invention, and it can be seen that the crystal grains on the surface of the prepared diamond film are continuous, Dense, there is no obvious gap between the diamond grain boundaries, and there are no obvious defects such as secondary nucleation particles.
  • Figure 8 is a Raman spectrum of a diamond film prepared by using the apparatus of the present invention. It can be seen from the figure that a diamond characteristic peak near the 1332.5 cm -1 in the Raman spectrum of the diamond film, and no obvious graphite and other The characteristic peak of the impurity appeared, and the full width at half maximum of the diamond Raman characteristic peak was 2.3 cm -1 , which indicates that the prepared diamond film has excellent quality.
  • the applicant has exemplified a microwave wavelength ⁇ of 122.4 mm (the wavelength tolerance range is ⁇ 10 mm).
  • the base side length of the isosceles triangle is 2n ⁇ (2n+0.5) ⁇ , where n is 1 and ⁇ is 122.4mm, that is, the base length of the isosceles triangle is 244.8 ⁇ 306mm; the base lengths of the two isosceles triangles are equal or differ by n ⁇ (n is 1), that is, the base lengths of the two isosceles triangles are equal or different from each other by 122.4mm (the allowable deviation range is ⁇ 10mm); the upper isosceles triangle
  • the center of gravity of the center of gravity and the isosceles triangle is 0 to 4/5 ⁇ , that is, the center of gravity of the upper isosceles triangle and the center of gravity of the lower isosceles triangle are 0 to 97.92 mm.
  • the bottom sides of the two isosceles triangles forming the microwave cavity are equal in length
  • the top of the upper cavity is provided with a coaxial probe coupling antenna 5
  • the bottom of the lower cavity 2 is provided with a frequency tuning plate 6, a quartz bell cover medium
  • the foot of the window 7 is placed on and sealed with the frequency tuning plate 6.
  • the top surface of the quartz bell dielectric window 7 is higher than the interface of the upper and lower cavities.
  • the base 8 is disposed in the middle of the frequency tuning plate 6, and the base 8
  • the frequency tuning plate 6 on both sides is provided with an air inlet hole 9 and an air outlet hole 10.
  • Cooperating with the base station is a base lifting mechanism 15 and a frequency tuning plate lifting mechanism 16 that cooperates with the frequency tuning plate.
  • the base length of the two isosceles triangles is 245 ⁇ 5 mm; the center of gravity of the upper isosceles triangle coincides with the center of gravity of the lower isosceles triangle, that is, the center of gravity is 0; two isosceles The base angle of the triangle is 50°.
  • the base side length of the isosceles triangle forming the upper cavity is larger than the base side length of the isosceles triangle forming the lower cavity
  • the top of the upper cavity 1 is provided with a coaxial circumferential coupling antenna 11 and the upper cavity 1
  • the top inner side is provided with a quartz ring dielectric window 12 adapted to the coaxial circumferential coupling antenna 11, and the inner circumference of the coaxial circumferential coupling antenna 11 has an air inlet hole 9 extending through the inside of the microwave cavity, and the bottom of the lower cavity 2 is provided with
  • the frequency tuning plate 6 is disposed in the middle of the frequency tuning plate 6, and the frequency tuning plate 6 on both sides of the base 8 is provided with an air outlet 10.
  • Cooperating with the base station is a base lifting mechanism 15 and a frequency tuning plate lifting mechanism 16 that cooperates with the frequency tuning plate.
  • the bottom side length of the upper isosceles triangle is 735 ⁇ 5 mm, and the bottom angle is 55°; the bottom side length of the lower isosceles triangle is 490 ⁇ 5 mm, and the bottom angle is 60°;
  • the distance between the center of gravity of the isosceles triangle and the center of gravity of the isosceles triangle is 55 ⁇ 5 mm.
  • the base side length of the isosceles triangle forming the upper cavity is smaller than the base side length of the isosceles triangle forming the lower cavity, and the top of the upper cavity 1 is provided with the coaxial probe coupling antenna 5, the upper cavity 1 central transverse quartz plate dielectric window 13, the upper cavity 1 below the quartz plate dielectric window 13 has an air inlet 9 in the wall, and the lower cavity 2 is provided with a frequency tuning plate 6 at the bottom, the base 8 is set at frequency tuning In the middle of the plate 6, the frequency tuning plate 6 on both sides of the base 8 is provided with an air outlet 10, and the bottom of the lower cavity is provided with a total air outlet 14.
  • Cooperating with the base station is a base lifting mechanism 15 and a frequency tuning plate lifting mechanism 16 that cooperates with the frequency tuning plate.
  • the bottom side length of the upper isosceles triangle is 790 ⁇ 5 mm, and the bottom angle is 75°; the bottom side length of the lower isosceles triangle is 1035 ⁇ 5 mm, and the bottom angle is 55°;
  • the distance between the center of gravity of the isosceles triangle and the center of gravity of the lower isosceles triangle is 95 ⁇ 5 mm.
  • the middle portion of the rotating body is provided with an upper cylindrical cavity 3, and the bottom of the lower cavity 2 is provided with a lower cylindrical cavity 4.
  • the base side length of the isosceles triangle of the upper cavity is greater than the base side length of the isosceles triangle forming the lower cavity.
  • the top of the upper cavity 1 is provided with a coaxial circumferential coupling antenna 11 , and the inner side of the upper cavity 1 is provided with a quartz ring dielectric window 12 adapted to the coaxial circumferential coupling antenna 11 , and the inner center of the coaxial circumferential coupling antenna 11 is opened
  • An air intake hole 9 is formed in the middle of the microwave cavity, and a horizontal first frequency tuning plate 61 is disposed in a middle portion of the lower cylindrical cavity 4, and a base 8 is disposed in a middle portion of the first frequency tuning plate 61, and the two sides of the base 8 are perpendicular to the first
  • the second frequency tuning plate 62 of the frequency tuning plate 61 has an air outlet 10 in the middle of the second frequency tuning plate 62 and a total air outlet 14 in the bottom of the lower cylindrical cavity 4.
  • Cooperating with the base station is a base lifting mechanism 15 and a first frequency tuning plate lifting mechanism 161 coupled to the first frequency tuning plate and a second frequency tuning plate lifting mechanism 162 coupled to the second frequency tuning plate
  • the bottom side length of the upper isosceles triangle is 1244 ⁇ 5 mm, and the bottom angle is 65°; the diameter of the upper cylindrical cavity 3 is 1110 ⁇ 5 mm, and the height is 290 ⁇ 5 mm;
  • the base of the triangle has a length of 1000 ⁇ 5 mm and a base angle of 55°; the diameter of the lower cylindrical cavity 4 is 850 ⁇ 5 mm and the height is 165 ⁇ 5 mm; the distance between the center of gravity of the upper isosceles triangle and the center of gravity of the lower isosceles triangle is 35 ⁇ 5mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

一种等离子体化学气相沉积微波谐振腔,包括两个顶部相交的等腰三角形布尔并集运算后形成的回转体,等腰三角形的底边边长为2nλ~(2n+0.5)λ,底角为50°~75°,两个等腰三角形的底边长相等或相差nλ,上等腰三角形的重心与下等腰三角形的重心间距为0~4/5λ,λ为微波波长。还公开了一种包括微波谐振腔的等离子体化学气相沉积装置。微波谐振腔利用了电磁波的反射和干涉原理,通过调节上、下等腰三角形的底边长、底边角度以及二者之间的中心距离形成强聚焦电场,能够根据具体的应用选择不同的介质窗口、微波耦合方式以及反应气体进出方式,具有结构简单、方便灵活的特点。

Description

等离子体化学气相沉积微波谐振腔及装置 技术领域
本发明涉及化学气相沉积技术领域,特别是一种用于等离子体化学气相沉积的微波谐振腔及采用该微波谐振腔的等离子体化学气相沉积装置。
背景技术
微波等离子体化学气相沉积(CVD)法是利用微波能量来激发等离子体,实现对材料(金刚石、石墨烯等)的制备。由于其等离子体产生涉及的是一种无电极放电过程,所以这种等离子体比较纯净,能够避免热丝CVD法、直流喷射CVD法制备材料时因热丝金属或钨电极蒸发对材料造成的污染。与射频CVD法相比较,微波等离子体CVD法具有放电区域相对集中,能量密度高,沉积速率快的特点。因此,这种方法受到人们的广泛关注,并在研究和制备高品质金刚石材料等领域得到了广泛的应用。
谐振腔是微波等离子体CVD装置的主要部件。目前使用的微波等离子体CVD装置的谐振腔结构一方面大多存在聚焦能力较低的问题,为了实现材料的快速沉积,人们从如何提高聚焦能力,以此形成强聚焦电场和高密度等离子体入手,不断探索新的谐振腔结构。另一方面,谐振腔灵活性较差,均需要搭配特定的耦合机构和介质窗口才能够制造成微波等离子体CVD装置,如椭球谐振腔需要配置同轴探针天线作为耦合机构,使用石英钟罩作为介质窗口;圆柱谐振腔一般配置同轴探针作为耦合机构,使用石英板作为介质窗口;蝶形谐振腔需要配置同轴圆周天线作为耦合机构,使用石英环作为介质窗口。
基于以上问题,本发明专利利用电磁波的反射和干涉原理提出了一种具有电场聚焦能力强,能够使用不同耦合机构和介质窗口的新型谐振腔。
发明内容
本发明提供一种等离子体化学气相沉积微波谐振腔及装置,以达到提高谐振腔聚焦能力和配置灵活性的目的。
为解决以上技术问题,根据本发明的一个方面,提供一种等离子体化学气相沉积微波谐振腔,其特征在于:该微波谐振腔包括两个顶部相交的等腰三角形布尔并集运算后形成的回转体,该回转体内部形成上腔体和下腔体,其中等腰三角形的底边边长为2nλ~(2n+0.5)λ,其中,n为整数,λ为微波波长,底角为50° ~75°,两个等腰三角形的底边长相等或相差nλ,其中,n为整数,上等腰三角形的重心与下等腰三角形的重心间距为0~4/5λ。
进一步地,所述的回转体的中部设置有上圆柱腔,下腔体底部设有下圆柱腔。
根据本发明的另一方面,本发明还提供一种等离子体化学气相沉积装置,它包括微波耦合机构、介质窗口、基台、调谐机构、进出气孔和上述的微波谐振腔。
进一步地,本发明所述的一种等离子体化学气相沉积装置,形成微波谐振腔的两个等腰三角形的底边边长相等,上腔体顶部设置有同轴探针耦合天线,下腔体底部设置有频率调谐板,频率调谐板与下腔体的腔壁接触处设有微波屏蔽弹片,石英钟罩介质窗口的脚部放置在频率调谐板上,并与之密封,石英钟罩介质窗口顶部弧面高于上下腔体的分界面,所述基台设置在频率调谐板中部,基台两侧的频率调谐板上开有进气孔和出气孔。
进一步地,本发明所述的一种等离子体化学气相沉积装置,形成上腔体的等腰三角形的底边边长大于形成下腔体的等腰三角形的底边边长,上腔体顶部设置有同轴圆周耦合天线,上腔体顶部内侧设置有与所述同轴圆周耦合天线适配并密封的石英环介质窗口,同轴圆周耦合天线内部中心开有贯通微波谐振腔内部的进气孔,下腔体底部设置有频率调谐板,频率调谐板与下腔体的腔壁接触处设有微波屏蔽弹片,所述基台设置在频率调谐板中部,基台两侧的频率调谐板上开有出气孔。
进一步地,本发明所述的一种等离子体化学气相沉积装置,形成上腔体的等腰三角形的底边边长小于形成下腔体的等腰三角形的底边边长,上腔体顶部设置有同轴探针耦合天线,上腔体中部横置并与之密封的石英板介质窗口,石英板介质窗口下方的上腔体壁开有进气孔,下腔体底部设置有频率调谐板,频率调谐板与下腔体的腔壁接触处设有微波屏蔽弹片,所述基台设置在频率调谐板中部,基台两侧的频率调谐板上开有出气孔,下腔体底部开有总出气孔。
进一步地,在包括上圆柱腔和下圆柱腔的结构中,本发明提供的一种等离子体化学气相沉积装置,包括微波耦合机构、介质窗口、基台、调谐机构、进出气孔和权利要求2所述的微波谐振腔,上腔体顶部设置有同轴圆周耦合天线,上腔体顶部内侧设置有与所述同轴圆周耦合天线适配并密封的石英环介质窗口,同轴圆周耦合天线内部中心开有贯通微波谐振腔内部的进气孔,下圆柱腔中部设有横 置的第一频率调谐板,第一频率调谐板中部设置基台,基台两侧设置垂直于第一频率调谐板的第二频率调谐板,第二频率调谐板中部开有出气孔,下圆柱腔底部开有总出气孔。
微波从上部耦合进微波谐振腔后,能够在腔体底部中心处形成强度高、均匀分布的聚焦电场,本发明利用了电磁波的反射和干涉原理,通过调节上、下等腰三角形的底边长、底边角度以及二者之间的中心距离形成强聚焦电场。同时,该谐振腔能够根据具体的应用选择不同的介质窗口、微波耦合方式以及反应气体进出方式,具有结构简单、方便灵活等特点。
附图说明
图1是本发明微波谐振腔的结构示意图。
图2是本发明微波谐振腔的微波电场模拟效果图。
图3是实施例1的装置示意图。
图4是实施例2的装置示意图。
图5是实施例3的装置示意图。
图6是实施例4的装置示意图。
图7是本发明装置制备出的金刚石膜的微观表面形貌图。
图8是本发明装置制备出的金刚石膜的拉曼谱线。
图中,1-上腔体,2-下腔体,3-上圆柱腔,4-下圆柱腔,5-同轴探针耦合天线,6-频率调谐板,7-石英钟罩介质窗口,8-基台,9-进气孔,10-出气孔,11-同轴圆周耦合天线,12-石英环介质窗口,13-石英板介质窗口,14-总出气孔,15-基台升降机构,16-频率调谐板升降机构,61-第一频率调谐板,62-第二频率调谐板,161-第一频率调谐板升降机构,162第二频率调谐板升降机构。
具体实施方式
在本发明一种典型的实施方式中,参考图1,一种等离子体化学气相沉积微波谐振腔,该微波谐振腔包括两个顶部相交的等腰三角形布尔并集运算后形成的回转体,该回转体内部形成上腔体1和下腔体2,其中等腰三角形的底边边长为2nλ~(2n+0.5)λ,其中,n为整数,λ为微波波长,底角为50°~75°,两个等腰三角形的底边长相等或相差nλ(n为整数),上等腰三角形的重心与下等腰三角形的重心间距为0~4/5λ。
以上实施方式形成的微波电场模拟效果图参考图2,由图2可以看出,微波由上腔体耦合后能够在下腔体底部中心处形成唯一的强聚焦电场。
在一种优选的实施方案中,所述的回转体的中部设置有上圆柱腔3,下腔体2底部设有下圆柱腔4。
在以上微波谐振腔的基础上,配合微波耦合机构、介质窗口、基台、调谐机构、进出气孔可构成等离子体化学气相沉积装置。
图7为使用本发明的一种优选实施方案制造的等离子体化学气相沉积装置制备出的金刚石膜的微观表面形貌图,从图中可以看出所制备的金刚石膜表面的晶粒之间连续、致密,金刚石晶界间没有明显的间隙,也不存在明显的二次形核颗粒等缺陷。图8为使用本发明装置制备出的金刚石膜的拉曼谱线,从图中可以看出金刚石膜的拉曼光谱中只有1332.5cm -1附近的一个金刚石特征峰,而且没有明显的石墨及其它杂质的特征峰出现,金刚石拉曼特征峰的半高宽为2.3cm -1,这表明所制备的金刚石膜具有优良的品质。
以下结合具体实施例对本发明所述的微波谐振腔及等离子体化学气相沉积装置的结构,以及技术效果作进一步说明。
需要说明的一点是,在本技术领域中,常见的工业用微波频率有两种,分别是2.45GHz和915MHz,其中,频率为2.45GHz的微波对应的波长λ 1=122.4mm,频率为915MHz的微波对应的波长λ 2=327.9mm。在本实施方式中,申请人采用122.4mm的微波波长λ(波长允许的偏差范围为±10mm)进行举例说明。对于实施例中的微波谐振腔,等腰三角形的底边边长为2nλ~(2n+0.5)λ,其中,n取1,λ取122.4mm,即等腰三角形的底边边长为244.8~306mm;两个等腰三角形的底边长相等或相差nλ(n取1),即两个等腰三角形的底边长相等或相差122.4mm(允许偏差范围为±10mm);上等腰三角形的重心与下等腰三角形的重心间距为0~4/5λ,即上等腰三角形的重心与下等腰三角形的重心间距为0~97.92mm。
实施例1
参考图3。本实施例中形成微波谐振腔的两个等腰三角形的底边边长相等,上腔体顶部设置有同轴探针耦合天线5,下腔体2底部设置有频率调谐板6,石英钟罩介质窗口7的脚部放置于频率调谐板6上并与之密封,石英钟罩介质窗口 7顶部弧面高于上下腔体的分界面,所述基台8设置在频率调谐板6中部,基台8两侧的频率调谐板6上开有进气孔9和出气孔10。与基台配合的有基台升降机构15,以及与频率调谐板配合的频率调谐板升降机构16。
具体实施时,对于上述微波谐振腔,两个等腰三角形的底边边长为245±5mm;上等腰三角形的重心与下等腰三角形的重心重合,即重心间距为0;两个等腰三角形的底角取50°。
实施例2
参考图4。本实施例中形成上腔体的等腰三角形的底边边长大于形成下腔体的等腰三角形的底边边长,上腔体1顶部设置有同轴圆周耦合天线11,上腔体1顶部内侧设置有与所述同轴圆周耦合天线11适配的石英环介质窗口12,同轴圆周耦合天线11内部中心开有贯通微波谐振腔内部的进气孔9,下腔体2底部设置有频率调谐板6,所述基台8设置在频率调谐板6中部,基台8两侧的频率调谐板6上开有出气孔10。与基台配合的有基台升降机构15,以及与频率调谐板配合的频率调谐板升降机构16。
具体实施时,对于上述微波谐振腔,上等腰三角形的底边边长为735±5mm、底角为55°;下等腰三角形的底边边长为490±5mm、底角为60°;上等腰三角形的重心与下等腰三角形的重心的间距为55±5mm。
实施例3
参考图5。本实施例中形成上腔体的等腰三角形的底边边长小于形成下腔体的等腰三角形的底边边长,上腔体1顶部设置有同轴探针耦合天线5,上腔体1中部横置石英板介质窗口13,石英板介质窗口13下方的上腔体1壁开有进气孔9,下腔体2底部设置有频率调谐板6,所述基台8设置在频率调谐板6中部,基台8两侧的频率调谐板6上开有出气孔10,下腔体底部开有总出气孔14。与基台配合的有基台升降机构15,以及与频率调谐板配合的频率调谐板升降机构16。
具体实施时,对于上述微波谐振腔,上等腰三角形的底边边长为790±5mm、底角为75°;下等腰三角形的底边边长为1035±5mm、底角为55°;上等腰三角形的重心与下等腰三角形的重心的间距为95±5mm。
实施例4
参考图6。本实施例中回转体的中部设置有上圆柱腔3,下腔体2底部设有下圆柱腔4。上腔体的等腰三角形的底边边长大于形成下腔体的等腰三角形的底边边长。上腔体1顶部设置有同轴圆周耦合天线11,上腔体1顶部内侧设置有与所述同轴圆周耦合天线11适配的石英环介质窗口12,同轴圆周耦合天线11内部中心开有贯通微波谐振腔内部的进气孔9,下圆柱腔4中部设有横置的第一频率调谐板61,第一频率调谐板61中部设置基台8,基台8两侧设置垂直于第一频率调谐板61的第二频率调谐板62,第二频率调谐板62中部开有出气孔10,下圆柱腔4底部开有总出气孔14。与基台配合的有基台升降机构15,以及与第一频率调谐板配合的第一频率调谐板升降机构161、与第二频率调谐板配合的第二频率调谐板升降机构162。
具体实施时,对于上述微波谐振腔,上等腰三角形的底边边长为1244±5mm、底角为65°;上圆柱腔3的直径为1110±5mm、高度为290±5mm;下等腰三角形的底边边长为1000±5mm、底角为55°;下圆柱腔4的直径为850±5mm、高度为165±5mm;上等腰三角形的重心与下等腰三角形的重心的间距为35±5mm。

Claims (7)

  1. 一种等离子体化学气相沉积微波谐振腔,其特征在于:该微波谐振腔包括两个顶部相交的等腰三角形布尔并集运算后形成的回转体,该回转体内部形成上腔体(1)和下腔体(2),其中等腰三角形的底边边长为2nλ~(2n+0.5)λ,其中,n为整数,λ为微波波长,底角为50°~75°,两个等腰三角形的底边长相等或相差nλ(n为整数),上等腰三角形的重心与下等腰三角形的重心间距为0~4/5λ。
  2. 根据权利要求1所述的等离子体化学气相沉积微波谐振腔,其特征在于:所述的回转体的中部设置有上圆柱腔(3),下腔体(2)底部设有下圆柱腔(4)。
  3. 一种等离子体化学气相沉积装置,其特征在于:包括微波耦合机构、介质窗口、基台、调谐机构、进出气孔和权利要求1所述的微波谐振腔。
  4. 根据权利要求3所述的等离子体化学气相沉积装置,其特征在于:形成微波谐振腔的两个等腰三角形的底边边长相等,上腔体顶部设置有同轴探针耦合天线(5),下腔体(2)底部设置有频率调谐板(6),石英钟罩介质窗口(7)的脚部放置在频率调谐板(6)上,石英钟罩介质窗口(7)顶部弧面高于上下腔体的分界面,所述基台(8)设置在频率调谐板(6)中部,基台(8)两侧的频率调谐板(6)上开有进气孔(9)和出气孔(10)。
  5. 根据权利要求3所述的等离子体化学气相沉积装置,其特征在于:形成上腔体的等腰三角形的底边边长大于形成下腔体的等腰三角形的底边边长,上腔体(1)顶部设置有同轴圆周耦合天线(11),上腔体(1)顶部内侧设置有与所述同轴圆周耦合天线(11)适配的石英环介质窗口(12),同轴圆周耦合天线(11)内部中心开有贯通微波谐振腔内部的进气孔(9),下腔体(2)底部设置有频率调谐板(6),所述基台(8)设置在频率调谐板(6)中部,基台(8)两侧的频率调谐板(6)上开有出气孔(10)。
  6. 根据权利要求3所述的等离子体化学气相沉积装置,其特征在于:形成上腔体的等腰三角形的底边边长小于形成下腔体的等腰三角形的底边边长,上腔体(1)顶部设置有同轴探针耦合天线(5),上腔体(1)中部横置石英板介质窗口(13),石英板介质窗口(13)下方的上腔体(1)壁开有进气孔(9),下腔体(2)底部设置有频率调谐板(6),所述基台(8)设置在频率调谐板(6)中部,基台(8)两侧的频率调谐板(6)上开有出气孔(10),下腔体 底部开有总出气孔(14)。
  7. 一种等离子体化学气相沉积装置,其特征在于:包括微波耦合机构、介质窗口、基台、调谐机构、进出气孔和权利要求2所述的微波谐振腔,上腔体(1)顶部设置有同轴圆周耦合天线(11),上腔体(1)顶部内侧设置有与所述同轴圆周耦合天线(11)适配的石英环介质窗口(12),同轴圆周耦合天线(11)内部中心开有贯通微波谐振腔内部的进气孔(9),下圆柱腔(4)中部设有横置的第一频率调谐板(61),第一频率调谐板(6)中部设置基(8),基台(8)两侧设置垂直于第一频率调谐板(61)的第二频率调谐板(62),第二频率调谐板(62)中部开有出气孔(10),下圆柱腔(4)底部开有总出气孔(14)。
PCT/CN2018/075293 2017-04-14 2018-02-05 等离子体化学气相沉积微波谐振腔及装置 WO2018188406A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/494,768 US11270869B2 (en) 2017-04-14 2018-02-05 Plasma chemical vapor deposition reactor with a microwave resonant cavity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710244250.3A CN106987827B (zh) 2017-04-14 2017-04-14 等离子体化学气相沉积微波谐振腔及装置
CN201710244250.3 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018188406A1 true WO2018188406A1 (zh) 2018-10-18

Family

ID=59414995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075293 WO2018188406A1 (zh) 2017-04-14 2018-02-05 等离子体化学气相沉积微波谐振腔及装置

Country Status (3)

Country Link
US (1) US11270869B2 (zh)
CN (1) CN106987827B (zh)
WO (1) WO2018188406A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987827B (zh) * 2017-04-14 2019-03-29 太原理工大学 等离子体化学气相沉积微波谐振腔及装置
CN111979579B (zh) * 2020-08-24 2021-11-09 哈尔滨工业大学 用于化学气相沉积单晶金刚石高速生长的等离子体聚集装置
CN113481595B (zh) * 2021-06-07 2022-04-15 北京科技大学 一种M形同轴天线915MHz微波等离子体化学气相沉积装置
CN113388885B (zh) * 2021-06-23 2022-04-15 秦皇岛本征晶体科技有限公司 一种基于微波等离子体反应器合成金刚石的方法
CN116555735B (zh) * 2023-05-25 2023-12-05 杭州超然金刚石有限公司 一种等离子化学气相沉积系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074985A (en) * 1989-10-06 1991-12-24 Hitachi, Ltd. Film forming apparatus
US5804033A (en) * 1990-09-26 1998-09-08 Hitachi, Ltd. Microwave plasma processing method and apparatus
CN101673655A (zh) * 2009-09-23 2010-03-17 电子科技大学 一种用于沉积金刚石薄膜的微波等离子体谐振腔
CN102458032A (zh) * 2010-10-19 2012-05-16 东京毅力科创株式会社 微波等离子体源和等离子体处理装置
CN104388910A (zh) * 2014-12-13 2015-03-04 太原理工大学 用于化学气相沉积金刚石膜的高功率微波等离子体反应装置
CN106987827A (zh) * 2017-04-14 2017-07-28 太原理工大学 等离子体化学气相沉积微波谐振腔及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9224745D0 (en) * 1992-11-26 1993-01-13 Atomic Energy Authority Uk Microwave plasma generator
US6132550A (en) * 1995-08-11 2000-10-17 Sumitomo Electric Industries, Ltd. Apparatuses for desposition or etching
DE19925493C1 (de) * 1999-06-04 2001-01-18 Fraunhofer Ges Forschung Linear ausgedehnte Anordnung zur großflächigen Mikrowellenbehandlung und zur großflächigen Plasmaerzeugung
US6622650B2 (en) * 1999-11-30 2003-09-23 Tokyo Electron Limited Plasma processing apparatus
WO2002077319A1 (en) * 2001-03-27 2002-10-03 Small & Medium Industry Promotion Corporation Diamond film depositing apparatus using microwaves and plasma
JP2010013715A (ja) * 2008-07-07 2010-01-21 Seiko Epson Corp 成膜方法、および成膜装置
CN101864560B (zh) * 2010-05-24 2011-10-12 北京科技大学 一种高功率微波等离子体金刚石膜沉积设备
GB201021865D0 (en) * 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
NL2007809C2 (en) * 2011-11-17 2013-05-21 Draka Comteq Bv An apparatus for performing a plasma chemical vapour deposition process.
CN104164658B (zh) * 2014-08-06 2016-08-24 河北普莱斯曼金刚石科技有限公司 一种椭球形高功率微波等离子体金刚石膜沉积装置
US10490425B2 (en) * 2015-07-29 2019-11-26 Infineon Technologies Ag Plasma systems and methods of processing using thereof
CN105239057B (zh) * 2015-11-06 2018-05-01 武汉理工大学 微波等离子体化学气相沉积装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074985A (en) * 1989-10-06 1991-12-24 Hitachi, Ltd. Film forming apparatus
US5804033A (en) * 1990-09-26 1998-09-08 Hitachi, Ltd. Microwave plasma processing method and apparatus
CN101673655A (zh) * 2009-09-23 2010-03-17 电子科技大学 一种用于沉积金刚石薄膜的微波等离子体谐振腔
CN102458032A (zh) * 2010-10-19 2012-05-16 东京毅力科创株式会社 微波等离子体源和等离子体处理装置
CN104388910A (zh) * 2014-12-13 2015-03-04 太原理工大学 用于化学气相沉积金刚石膜的高功率微波等离子体反应装置
CN106987827A (zh) * 2017-04-14 2017-07-28 太原理工大学 等离子体化学气相沉积微波谐振腔及装置

Also Published As

Publication number Publication date
US20200105504A1 (en) 2020-04-02
CN106987827B (zh) 2019-03-29
US11270869B2 (en) 2022-03-08
CN106987827A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2018188406A1 (zh) 等离子体化学气相沉积微波谐振腔及装置
US9574270B2 (en) Plasma processing apparatus
JP3378248B2 (ja) プラズマチャンバに一様な電場を誘起するための誘電性ウインドウを有するプラズマ装置及び物体をそのプラズマ装置で取り扱う方法
JP3625197B2 (ja) プラズマ装置およびプラズマ生成方法
EP1289003B1 (en) Plasma processing apparatus
WO2003001578A1 (fr) Dispositif de traitement au plasma par micro-ondes, procede de traitement au plasma, et organe de rayonnement de micro-ondes
CN106835070B (zh) 微波等离子体化学气相沉积金刚石反应装置
CN110565160B (zh) 一种微波等离子体化学气相沉积装置
JP4680400B2 (ja) プラズマ装置及びその製造方法
JP4554065B2 (ja) プラズマ処理装置
JP4115337B2 (ja) プラズマ処理装置
JP2003203869A (ja) プラズマ処理装置
JP3676680B2 (ja) プラズマ装置及びプラズマ生成方法
JPH0521986B2 (zh)
JP4598253B2 (ja) プラズマ装置
CN206635410U (zh) 微波等离子体化学气相沉积金刚石反应装置
CN110913556A (zh) 一种微波等离子反应装置
TW392215B (en) Surface processing apparatus
JP2973472B2 (ja) プラズマcvd装置
RU2595156C2 (ru) Плазменный свч реактор для газофазного осаждения алмазных пленок в потоке газа (варианты)
JP3899272B2 (ja) プラズマ装置
JPH10298786A (ja) 表面処理装置
JP2024060106A (ja) ダイヤモンド合成用プラズマcvd装置
CN110230037A (zh) 微波等离子反应装置以及微波等离子反应系统
JP3621730B2 (ja) マイクロ波プラズマ化学蒸着装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784612

Country of ref document: EP

Kind code of ref document: A1