WO2018188279A1 - 人工关节新型合金及其熔炼工艺 - Google Patents

人工关节新型合金及其熔炼工艺 Download PDF

Info

Publication number
WO2018188279A1
WO2018188279A1 PCT/CN2017/103635 CN2017103635W WO2018188279A1 WO 2018188279 A1 WO2018188279 A1 WO 2018188279A1 CN 2017103635 W CN2017103635 W CN 2017103635W WO 2018188279 A1 WO2018188279 A1 WO 2018188279A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
artificial joint
new
weight
power
Prior art date
Application number
PCT/CN2017/103635
Other languages
English (en)
French (fr)
Inventor
王开国
赵京晨
Original Assignee
涿州新卓立航空精密科技有限公司
北京钢新冶金技术研究所
北京金石永创科技发展有限公司
北京九章宏图科贸有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 涿州新卓立航空精密科技有限公司, 北京钢新冶金技术研究所, 北京金石永创科技发展有限公司, 北京九章宏图科贸有限公司 filed Critical 涿州新卓立航空精密科技有限公司
Publication of WO2018188279A1 publication Critical patent/WO2018188279A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present application relates to the field of artificial joint technology, and in particular to a novel artificial joint alloy and a smelting process thereof.
  • Existing artificial joint alloys can be divided into two categories, one is a titanium-based alloy; the other is a cobalt-based alloy. Cobalt-based alloys are further divided into cast cobalt-based alloys and forged cobalt-based alloys.
  • titanium-based alloys are non-magnetic. This is very important, especially as the times develop.
  • titanium-based alloy artificial joints are non-magnetic. But titanium-based alloy artificial joints to ensure its When the mechanical properties meet the requirements, they have to add elements such as aluminum and vanadium that are toxic to the human body. The toxic effects of these elements on the human body are increasingly recognized by humans. For example, aluminum can cause Alzheimer's disease, which is now known to women and children. Aluminum lunch boxes, aluminum pans, and aluminum cooking shovel have been completely replaced by corresponding products of nickel-chromium stainless steel. The vanadium element has potential cytotoxicity to the human body and has been reported in many literatures. Therefore, all countries in the world are currently working on the development of new titanium-based alloys without aluminum and vanadium. At present, there is still no commercial application.
  • TLM titanium-based alloy
  • yield strength is reported to be 365Mpa.
  • the yield strength should not be less than 450Mpa, which is unqualified.
  • Cobalt-based alloy artificial joints are divided into two types, one is casting cobalt-based alloy artificial joints; the other is forging cobalt-based alloy artificial joints.
  • the cobalt-based alloy artificial joints are non-magnetic or micro-magnetic, their wear resistance and corrosion resistance are not as good as those of forged cobalt-based alloy artificial joints due to the characteristics of casting itself, so the service life is short. For a person, it is almost impossible to have another artificial joint in a lifetime, especially in his later years.
  • forged cobalt-based alloy artificial joints are mostly magnetic, and a few micro-magnetics have not seen a large number of commercial applications because other performance indexes are lower than national standards.
  • the present application aims to provide a novel artificial joint alloy and a smelting process thereof for solving the problem that the existing cobalt-based alloy, especially the forged cobalt-based alloy, has an unstable crystal structure and is magnetic after forging.
  • cast cobalt-based alloys have no magnetic properties, their service life is far less than that of forged cobalt-based alloys.
  • Titanium Although the base alloy is not magnetic, it is currently toxic to varying degrees in commercial applications.
  • the new alloy of the present application is neither magnetic nor toxic, and other properties are comparable to or fully meet the corresponding national standards for existing artificial joint alloys.
  • a new type of artificial joint alloy the composition of the new alloy of the artificial joint is by weight: Ni: 35%-65%, Co: 15%-30%, Cr: 15%-30%, Ti: 0.0%-5.5% Mo: 0.0%-6.0%, Nb: 0.0%-6.0%, Fe: 0.0%-5.5%, C: 0.0%-1.0%;
  • the crystal structure of the new alloy of artificial joints is a stable cubic austenite crystal structure.
  • composition of the new alloy of artificial joint is as follows: Ni: 40% - 52%, Co: 16% - 23%, Cr: 16% - 23%, Ti: 0.1% - 2.0%, Mo: 0.1% - 3.5% , Nb: 3.0% - 6.0%, Fe: 0.1% - 2.0%, C: 0.1% - 0.6%.
  • composition of the new alloy of artificial joint is as follows: Ni: 53%-64%, Co: 25%-29%, Cr: 24%-29%, Ti: 2.5%-5.0%, Mo: 4.0%-5.5% Nb: 0.1% - 2.5%, Fe: 2.5% - 5.0%, C: 0.7% - 0.9%.
  • the smelting process of the new alloy of the artificial joint is carried out by using a vacuum induction furnace; the steps of the smelting process are:
  • step S2 according to the weight of each element charge calculated in step S1, weigh the metal raw materials required for each element charge; the weight is accurately weighed to gram; the corresponding alloying element content of each element charge is not less than 99.9%;
  • step S3 placing the element charge referred to in step S2 into the melting furnace, in order, the low melting point element charge is placed in the lower part, and the high melting point element charge is placed on the upper part;
  • the power supply is increased to make the temperature of the alloy liquid reach 1600 ° C plus or minus 10 ° C, the vacuum degree is within 0.5 ⁇ 0.1 Pa; maintain 60 minutes; then power off and cool;
  • step S6 when the temperature of the alloy liquid in step S5 is lowered to 1450 ° C plus or minus 10 ° C, the power is supplied, the power is adjusted to be 30% of the melting power, and the tilting is used to burn the mouth; when the vacuum reaches 0.4 Pa, the tilting will be The alloy liquid is poured into the ingot mold or mold, and then the power is turned off;
  • step S7 After the pouring in step S6 is completed, wait for more than 10 minutes before opening the furnace cover and lifting the alloy ingot mold or mold;
  • step S8 opening the alloy ingot mold or mold of step S7, taking out the alloy ingot or casting, and cutting the chemical analysis sample at the corresponding specified portion; after the inspection is passed, the alloy melting operation is completed; if the inspection result is unqualified, Then you need to find each link, correct the mistakes, and remelt.
  • step S8 The specific steps of step S8 are:
  • a new type of artificial joint alloy of the present application is non-magnetic and has no toxicity, and other performance indexes are in line with national standards;
  • a new type of artificial joint alloy of the present application is easy to cast and forge (because forging also requires first casting a metal blank), and there is still no magnetism after forging;
  • a new type of artificial joint alloy of the present application has high yield of finished products due to less use of precious metals and easy casting and forging, and consumes less energy and materials, so in the long run, the alloy is resource-saving and environmentally friendly.
  • FIG. 1 is a schematic view showing an as-cast microstructure of an optical metallographic casting of a novel artificial joint alloy
  • FIG. 2 is a schematic diagram of an optical metallurgical forging annealing structure of a novel artificial joint alloy
  • a new type of artificial joint alloy the composition of the new alloy of the artificial joint is by weight: Ni: 35%-65%, Co: 15%-30%, Cr: 15%-30%, Ti: 0.0%-5.5% Mo: 0.0%-6.0%, Nb: 0.0%-6.0%, Fe: 0.0%-5.5%, C: 0.0%-1.0%;
  • the crystal structure of the new alloy of artificial joints is a stable cubic austenite crystal structure.
  • composition of the new alloy of artificial joint is as follows: Ni: 40% - 52%, Co: 16% - 23%, Cr: 16% - 23%, Ti: 0.1% - 2.0%, Mo: 0.1% - 3.5% , Nb: 3.0% - 6.0%, Fe: 0.1% - 2.0%, C: 0.1% - 0.6%.
  • composition of the new alloy of artificial joint is as follows: Ni: 53%-64%, Co: 25%-29%, Cr: 24%-29%, Ti: 2.5%-5.0%, Mo: 4.0%-5.5% Nb: 0.1% - 2.5%, Fe: 2.5% - 5.0%, C: 0.7% - 0.9%.
  • the composition of the new artificial joint alloy is by mass percentage: Ni: 48% - 51%, Co: 20% - 22%, Cr: 19% - 22%, Ti: 0.6% - 1.2%, Mo: 1.0 %-3.0%, Nb: 4.0%-6.0%, Fe: 0.8%-1.2%, C: 0.2%-0.5%.
  • the alloy greatly reduces the cobalt content and increases the nickel content.
  • the design concept here is to obtain a stable, non-magnetic face-centered cubic austenite (FCC).
  • Crystal structure although the existing artificial joint alloy is also such a crystal structure, but unstable, when processed into the final product of the artificial joint, it will be transformed into a magnetic body-centered cubic martensite (HCP) crystal structure or The two phases coexist, considering that the elemental body of nickel is only a face-centered cubic (FCC) crystal structure that may exist, and there is a strong FCC crystal structure promoting effect in the alloy, while the elemental body of cobalt element is face-centered cubic (FCC) And the body-centered cubic (HCP) two possible crystal structures, which establishes the innate cause of the crystal structure instability of the alloy it forms.
  • FCC face-centered cubic austenite
  • the alloy composition of WKG-1A is designed.
  • This alloy composition also greatly reduces the cost of the alloy because the amount of cobalt which is much higher than that of the nickel element is reduced.
  • nickel is recognized as an element which can improve the castability and forgeability of a cobalt-based alloy, it is possible to significantly reduce the production difficulty and improve the yield of the product, thereby reducing the production cost of the artificial joint.
  • all of the constituent elements of the alloy have long been used in existing artificial joint alloys, and therefore, their availability in medical implants has not required clinical validation.
  • the smelting process of the new alloy of the artificial joint is carried out by using a vacuum induction furnace, and the steps of the smelting process are:
  • step S2 according to the weight of each element charge calculated in step S1, weigh the metal raw materials required for each element charge; the weight is accurately weighed to gram; the corresponding alloying element content of each element charge is not less than 99.9%;
  • step S3 placing the element charge referred to in step S2 into the melting furnace, in order, the low melting point element charge is placed in the lower part, and the high melting point element charge is placed on the upper part;
  • the power supply is increased to make the temperature of the alloy liquid reach 1600 ° C plus or minus 10 ° C, the vacuum degree is within 0.5 ⁇ 0.1 Pa; maintain 60 minutes; then power off and cool;
  • step S6 when the temperature of the alloy liquid in step S5 is lowered to 1450 ° C plus or minus 10 ° C, the power is supplied, the power is adjusted to be 30% of the melting power, and the tilting is used to burn the mouth; when the vacuum reaches 0.4 Pa, the tilting will be Combined Gold liquid is poured into the ingot mold or mold, and then the power is turned off;
  • step S7 After the pouring in step S6 is completed, wait for more than 10 minutes before opening the furnace cover and lifting the alloy ingot mold or mold;
  • step S8 opening the alloy ingot mold or mold of step S7, taking out the alloy ingot or casting, and cutting the chemical analysis sample at the corresponding specified portion; after the inspection is passed, the alloy melting operation is completed; if the inspection result is unqualified, Then you need to find each link, correct the mistakes, and remelt.
  • step S8 The specific steps of step S8 are:
  • the intermediate component of the weight percentage of various elemental components of the artificial joint new alloy is multiplied by the total weight of the furnace charge, and the weight fraction of the corresponding material is obtained, and each element charge is weighed according to the calculated weight of each element charge.
  • the power is supplied (the power supply is determined according to different furnace types and the amount of charge) to melt the charge.
  • the power supply is increased to make the temperature of the alloy liquid reach 1600 ° C plus or minus 10 ° C, and the vacuum degree is within 0.5 to 0.1 Pa. Maintain for 60 minutes. Then power off and cool down.
  • the Rockwell hardness of the new alloy is basically equivalent to the two representative alloys of the existing artificial joints, and the yield strength meets the yielding requirements of the medical surgical implant industry standard YY 0117.3-2005 of the People's Republic of China.
  • the strength should not be less than 450Mpa, but it is not magnetic and toxic.
  • the corrosion resistance of the new alloy is substantially equivalent to the two representative alloys of the existing artificial joints, but it is not magnetic and toxic.
  • the embodiments of the present application provide a new artificial joint alloy and a smelting process thereof.
  • the new artificial joint alloy is non-magnetic and has no toxicity, and other performance indexes are in line with national standards and are easy to cast ( Because forging also requires casting metal blanks and forging, and there is still no magnetism after forging, and because of the low yield of finished products due to less precious metal and easy casting and forging, Energy and materials consume less, so in the long run, the alloy is resource-saving, environmentally friendly, and sustainable.

Abstract

一种人工关节新型合金及其熔炼工艺,该合金也可以用于其他医用人体植入物。该新型人工关节合金没有磁性、没有毒性,其他方面的性能与钴基合金相当,并且易于铸造和锻造,且锻造之后仍然没有磁性,而且由于使用贵金属较少和易于铸造和锻造所带来的成品合格率高,能源和材料消耗少,所以从长远看,该合金属于资源节约型,环境保护型,具有可持续发展的意义。而且该合金的所有组成元素都是在现有人工关节合金中已经早有应用的,因此,其在医用人体植入物中的可用性已无需临床验证。

Description

人工关节新型合金及其熔炼工艺 技术领域
本申请涉及人工关节技术领域,尤其涉及一种人工关节新型合金及其熔炼工艺。
背景技术
现有人工关节合金可以分为两大类,一类是钛基合金;一类是钴基合金。钴基合金又分为铸造钴基合金和锻造钴基合金。
钛基合金有一个最突出的优点,就是无磁性。这一点很重要,尤其是随着时代的发展越来越重要。人类植入人工关节的原因,在早期的多由于事故外伤引起。而现在,越来越多的是由于人口老龄化使越来越多的人因骨质疏松而在日常生活中的意外引起的。甚至年轻人的现代生活方式也正在导致骨质疏松症趋于低龄化。越来越多的处于亚健康状态的年轻人和病弱的年轻人也因骨质疏松导致植入人工关节。而一旦植入人工关节,就有一个问题会出现,即;所植入的人工关节有没有磁性?这个问题在以前并不突出。原因有两方面,一方面是以前的人从很少生病就医的青壮年期到年老去世,之间的体弱多病的老年期时间很短。随着医学科学的发展,体弱多病的老年期在一个人的一生中所占的比例越来越长,这样,因病在医院做检查就比以前大大增多;另一方面是以前的科学水平,就是在大医院的检查手段中,也没有诸如CT扫描以及核磁共振等先进的电磁检查手段,而现在此类的仪器手段越来越普遍。因此,现在越来越多的人因为身体内有植入的人工关节是有磁性的,而不能接受诸如CT扫描以及核磁共振等医学检查。因此使疾病无法得到有效的治疗,甚至有些挽救生命的手术都不得不放弃。因此,随着人们经济收入水平的提高,从一开始就选择植入无磁性合金人工关节正在成为最重要的要考虑的问题。
如前所述,钛基合金人工关节是无磁性。但是钛基合金人工关节为了保证其 力学性能达到要求,都不得不加入铝、钒等对人体有毒害的元素。这些元素对人体的毒害性正在越来越被人类所认识到,例如铝元素会导致人患早老性痴呆症,这目前已经到了妇孺皆知的程度。铝饭盒、铝锅、铝炒菜铲子已经彻底被镍铬不锈钢的相应制品所代替了。而钒元素对人体具有潜在的细胞毒性,已有不少文献报道。因此,目前世界各国都在致力于研发无铝、钒的新型钛基合金,而目前仍未见商业应用,目前大量商业应用的仍然是含铝、钒的钛基合金。无铝、钒的新型钛基合金的研发前景也是不乐观的,因为目前替代元素都达不到铝、钒所能起到的耐磨性效果,耐磨性差会导致关节面金属微粒脱落,引起关节松动,以及金属微粒引起人体过敏反应。而如果引入人工关节从未使用过的合金元素到所研发的钛基合金里,则需要长期的无害性和人体生物相容性临床验证,而这样的验证试验随着时代的发展越来越没有可能做。例如,根据文献报道,有一种名叫TLM的新型钛基合金,它的研发目的就是实现无毒,但是铝、钒虽然是不含了,但却含有人工关节从未使用过的锆和锡,而且其屈服强度据报道是365Mpa这根据中华人民共和国医用外科植入物行业标准YY 0117.3—2005规定屈服强度应不低于450Mpa来说,是不合格的。
钴基合金人工关节分为两种,一种是铸造钴基合金人工关节;一种是锻造钴基合金人工关节。铸造钴基合金人工关节虽然有的是无磁或者微磁的,但由于铸造本身的特点,其耐磨性和耐腐蚀性不如锻造钴基合金人工关节,因此使用寿命短。而对于一个人来说,在有生之年,尤其是晚年,再做一次手术,换一个人工关节几乎是不可能的。而锻造钴基合金人工关节,目前多是有磁的,少数微磁的也由于其他性能指标低于国家标准而未见大量商业应用。
发明内容
鉴于上述的分析,本申请旨在提供一种人工关节新型合金及其熔炼工艺,用以解决现有钴基合金,尤其是锻造型钴基合金晶体结构不稳定,锻造后有磁性。铸造型钴基合金虽然有的没有磁性,但是其使用寿命远不及锻造型钴基合金。钛 基合金虽然没有磁性,但是目前商业应用的都不同程度地有毒性。本申请的新型合金是既无磁性,又无毒性,其他性能与现有的人工关节合金或相当或是完全满足相应的国家标准。
本申请的目的主要是通过以下技术方案实现的:
一种人工关节新型合金,该人工关节新型合金的成分按重量百分比为:Ni:35%-65%、Co:15%-30%、Cr:15%-30%、Ti:0.0%-5.5%、Mo:0.0%-6.0%、Nb:0.0%-6.0%、Fe:0.0%-5.5%、C:0.0%-1.0%;
人工关节新型合金的晶体结构均为稳定的立方奥氏体晶体结构。
人工关节新型合金的成分按重量百分比为:Ni:40%-52%、Co:16%-23%、Cr:16%-23%、Ti:0.1%-2.0%、Mo:0.1%-3.5%、Nb:3.0%-6.0%、Fe:0.1%-2.0%、C:0.1%-0.6%。
人工关节新型合金的成分按重量百分比为:Ni:53%-64%、Co:25%-29%、Cr:24%-29%、Ti:2.5%-5.0%、Mo:4.0%-5.5%、Nb:0.1%-2.5%、Fe:2.5%-5.0%、C:0.7%-0.9%。
一种该人工关节新型合金的熔炼工艺,熔炼工艺采用真空感应炉进行熔炼;该熔炼工艺的步骤为:
S1、将人工关节新型合金的各种元素成分重量百分比取中限值乘以所炼炉料总重量,得出相应元素的炉料分重量;
S2、按照步骤S1所计算出的各元素炉料分重量称取各元素炉料所需的金属原材料;重量称取精确到克;各元素炉料的相应合金元素含量不得小于99.9%;
S3、将步骤S2所称好的各元素炉料放置入熔炼炉坩埚,按顺序,低熔点的元素炉料放在下部,高熔点的元素炉料放在上部;
S4、关闭熔炼炉盖;开启真空泵;当真空度达到3Pa时,给电熔化炉料;
S5、当炉料全部熔化成为液体之后,提高给电功率使合金液体温度达到1600℃正负10℃,真空度达到0.5~0.1Pa之内;维持60分钟;然后停电降温;
S6、当步骤S5的合金液体温度降至1450℃正负10℃时,给电,调整功率为熔化功率的30%,倾斜坩埚烙烫坩埚嘴;当真空度达到0.4Pa时,倾转坩埚将合金液体浇注到钢锭模或者铸型中,然后关闭电源;
S7、当步骤S6的浇注完成之后,等待10分钟以上,方可打开炉盖,吊出合金锭模或者铸型;
S8、打开步骤S7的合金锭模或者铸型,取出合金锭或者铸件,在相应规定的部位切取化学分析样块;送检合格后,即告该合金熔炼工作完成;如果送检结果不合格,则需查找各个环节,纠正失误,重新熔炼。
步骤S8的具体步骤为:
在合金锭中部取样化验;化验结果不符合人工关节新型合金的成分的重量百分比时,对真空感应炉中的合金锭取三样化验,三样中任一取样的化验结果不符合人工关节新型合金的成分的重量百分比则制备的人工关节新型合金不合格。
本申请有益效果如下:
1、本申请的一种新型人工关节合金是无磁的、而且没有毒性,其他方面的性能指标均符合国家标准;
2、本申请的一种新型人工关节合金易于铸造和锻造(因为锻造也需要先铸造出来金属毛坯),且锻造之后仍然没有磁性;
3、本申请的一种新型人工关节合金由于使用贵金属较少和易于铸造和锻造所带来的成品合格率高,能源和材料消耗少,所以从长远看,该合金属于资源节约型,环境保护型,具有可持续发展的意义;
4、本申请的一种新型人工关节合金所有组成元素都是在现有人工关节合金中已经早有应用的,因此,其在医用植入物中的可用性已无需临床验证,也可以用于其他医用人体植入物。
本申请的其他特征和优点将在随后的说明书中阐述,并且从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的 说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本申请的限制,在整个附图中,相同的参考符号表示相同的部件。
图1为一种新型人工关节合金的光学金相铸造铸态组织示意图;
图2为一种新型人工关节合金的光学金相锻造退火组织示意图;
具体实施方式
下面结合附图来具体描述本申请的优选实施例,其中,附图构成本申请一部分,并与本申请的实施例一起用于阐释本申请的原理。
一种人工关节新型合金,该人工关节新型合金的成分按重量百分比为:Ni:35%-65%、Co:15%-30%、Cr:15%-30%、Ti:0.0%-5.5%、Mo:0.0%-6.0%、Nb:0.0%-6.0%、Fe:0.0%-5.5%、C:0.0%-1.0%;
人工关节新型合金的晶体结构均为稳定的立方奥氏体晶体结构。
人工关节新型合金的成分按重量百分比为:Ni:40%-52%、Co:16%-23%、Cr:16%-23%、Ti:0.1%-2.0%、Mo:0.1%-3.5%、Nb:3.0%-6.0%、Fe:0.1%-2.0%、C:0.1%-0.6%。
人工关节新型合金的成分按重量百分比为:Ni:53%-64%、Co:25%-29%、Cr:24%-29%、Ti:2.5%-5.0%、Mo:4.0%-5.5%、Nb:0.1%-2.5%、Fe:2.5%-5.0%、C:0.7%-0.9%。
可选的,人工关节新型合金的成分按质量百分比为:Ni:48%-51%、Co:20%-22%、Cr:19%-22%、Ti:0.6%-1.2%、Mo:1.0%-3.0%、Nb:4.0%-6.0%、Fe:0.8%-1.2%、C:0.2%-0.5%。
该合金与现有钴基人工关节合金相比,大幅度降低了钴的含量,提高了镍的含量,这里的设计理念就是为了获得稳定的,无磁性的面心立方奥氏体(FCC) 晶体结构,现有的人工关节合金虽然也有的是这种晶体结构,但是不稳定,在加工成为人工关节最终产品的时候,会转变为有磁性的体心立方马氏体(HCP)晶体结构或者是两相共存,考虑到镍元素的单质体只有面心立方(FCC)一种可能存在的晶体结构,在合金中有强烈的FCC晶体结构促进作用,而钴元素的单质体是面心立方(FCC)和体心立方(HCP)两种可能存在的晶体结构,这就奠定了它所形成的合金的晶体结构不稳定性的先天成因。因此为了设计出一种完全无磁和稳定无磁的并且符合植入人体各项要求的合金,就设计出了WKG-1A的合金成分。此合金成分也由于价格远高于镍元素的钴元素的用量减少,而大幅度降低了合金的成本。还由于镍是公认的可提高钴基合金可铸性和可锻性的元素,因此,会明显降低生产难度和提高产品的合格率由此而降低人工关节的生产成本。而且该合金的所有组成元素都是在现有人工关节合金中早有应用的,因此,其在医用植入物中的可用性已无需临床验证。
一种该人工关节新型合金的熔炼工艺,熔炼工艺采用真空感应炉进行熔炼,该熔炼工艺的步骤为:
S1、将人工关节新型合金的各种元素成分重量百分比取中限值乘以所炼炉料总重量,得出相应元素的炉料分重量;
S2、按照步骤S1所计算出的各元素炉料分重量称取各元素炉料所需的金属原材料;重量称取精确到克;各元素炉料的相应合金元素含量不得小于99.9%;
S3、将步骤S2所称好的各元素炉料放置入熔炼炉坩埚,按顺序,低熔点的元素炉料放在下部,高熔点的元素炉料放在上部;
S4、关闭熔炼炉盖;开启真空泵;当真空度达到3Pa时,给电熔化炉料;
S5、当炉料全部熔化成为液体之后,提高给电功率使合金液体温度达到1600℃正负10℃,真空度达到0.5~0.1Pa之内;维持60分钟;然后停电降温;
S6、当步骤S5的合金液体温度降至1450℃正负10℃时,给电,调整功率为熔化功率的30%,倾斜坩埚烙烫坩埚嘴;当真空度达到0.4Pa时,倾转坩埚将合 金液体浇注到钢锭模或者铸型中,然后关闭电源;
S7、当步骤S6的浇注完成之后,等待10分钟以上,方可打开炉盖,吊出合金锭模或者铸型;
S8、打开步骤S7的合金锭模或者铸型,取出合金锭或者铸件,在相应规定的部位切取化学分析样块;送检合格后,即告该合金熔炼工作完成;如果送检结果不合格,则需查找各个环节,纠正失误,重新熔炼。
步骤S8的具体步骤为:
在合金锭中部取样化验;化验结果不符合人工关节新型合金的成分的重量百分比时,对真空感应炉中的合金锭取三样化验,三样中任一取样的化验结果不符合人工关节新型合金的成分的重量百分比则制备的人工关节新型合金不合格。
具体实施例:
1、WKG-1A合金制备
使用100公斤级真空反应炉,熔炼70公斤配料,熔炼工艺如下:
S1、将人工关节新型合金的各种元素成分重量百分比取中限值乘以所炼炉料总重量,得出相应元素的炉料分重量,按照计算出的各元素炉料分重量称取各元素炉料所需的金属原材料。重量称取精确到克。金属原材料的相应元素元素含量不得小于99.9%。
S2、将称好的各元素炉料放置入熔炼炉坩埚,按顺序,低熔点的元素炉料放在下部,高熔点的元素炉料放在上部;关闭熔炼炉盖。开启真空泵。
S3、当真空度达到3Pa时,给电(给电功率根据不同炉型和炉料多少而定)熔化炉料。
S4、当炉料全部熔化成为液体之后,提高给电功率使合金液体温度达到1600℃正负10℃,真空度达到0.5~0.1Pa之内。维持60分钟。然后停电降温。
S5、当合金液体温度降至1450℃正负10℃时,给电,功率到熔化功率的30%, 倾斜坩埚烙烫坩埚嘴。当真空度达到0.4Pa时,倾转坩埚将合金液体浇注到合金锭模或者铸型中,然后关闭电源;
S6、当浇注完成之后,等待10分钟以上,方可打开炉盖,吊出合金锭模或者铸型;
S7、打开钢锭模或者铸型,取出钢锭或者铸件,在相应规定的部位切取化学分析样块,送检合格后,即告该合金熔炼工作完成。如果送检结果不合格,则需查找各个环节,纠正失误,重新熔炼。
浇注完成凝固后,在钢锭中部取样化验,总共冶炼2炉,化验结果如表1所示:
表1 实际冶炼2炉WKG-1A合金锭的化验结果
Figure PCTCN2017103635-appb-000001
2、WKG-1A合金的微观金相组织观察
如图1、图2所示,对第一炉合金进行光学金相组织观察。
3、WKG-1A合金的物力性能
对对第一炉合金进行物力性能测试,测试结果如表2所示:
表2 合金的物理性能
Figure PCTCN2017103635-appb-000002
Figure PCTCN2017103635-appb-000003
由表2可以看出,该新型合金的洛氏硬度与现有人工关节的两种具有代表性的合金基本相当,屈服强度符合中华人民共和国医用外科植入物行业标准YY 0117.3-2005规定的屈服强度应不低于450Mpa的要求,但是没有磁性和毒性。
4、WKG-1A合金的化学性能
对WKG-1A合金进行医用植入物合金耐腐蚀性的国家标准试验,试验结果如表3所示:
表3 WKG-1A合金耐Na2S腐蚀性国标试验结果
试验项目 72小时 168小时 有磁性 有毒性
WKG-1A 仍有光泽 略有光泽
F562 仍有光泽 失去光泽
Ti-6Al-4V 仍有光泽 失去光泽
注释:耐腐蚀性试验国家标准号:GB/T 17168—1997
由表3可以看出,该新型合金的耐腐蚀性与现有人工关节的两种具有代表性的合金基本相当,但是没有磁性和毒性。
综上所述,本申请实施例提供了一种人工关节新型合金及其熔炼工艺,该新型人工关节合金是无磁的、而且没有毒性,其他方面的性能指标均符合国家标准,并且易于铸造(因为锻造也需要先铸造出来金属毛坯)和锻造,且锻造之后仍然没有磁性,而且由于使用贵金属较少和易于铸造和锻造所带来的成品合格率高, 能源和材料消耗少,所以从长远看,该合金属于资源节约型,环境保护型,具有可持续发展的意义。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (6)

  1. 一种人工关节新型合金,其特征在于,该人工关节新型合金的成分按重量百分比为:Ni:35%-65%、Co:15%-30%、Cr:15%-30%、Ti:0.0%-5.5%、Mo:0.0%-6.0%、Nb:0.0%-6.0%、Fe:0.0%-5.5%、C:0.0%-1.0%;
    所述人工关节新型合金的晶体结构均为稳定的立方奥氏体晶体结构。
  2. 根据权利要求1所述的人工关节新型合金,其特征在于,所述人工关节新型合金的成分按重量百分比为:Ni:40%-52%、Co:16%-23%、Cr:16%-23%、Ti:0.1%-2.0%、Mo:0.1%-3.5%、Nb:3.0%-6.0%、Fe:0.1%-2.0%、C:0.1%-0.6%。
  3. 根据权利要求1所述的人工关节新型合金,其特征在于,所述人工关节新型合金的成分按重量百分比为:Ni:53%-64%、Co:25%-29%、Cr:24%-29%、Ti:2.5%-5.0%、Mo:4.0%-5.5%、Nb:0.1%-2.5%、Fe:2.5%-5.0%、C:0.7%-0.9%。
  4. 一种根据权利要求1-3任一所述的人工关节新型合金的熔炼工艺,其特征在于,该熔炼工艺的步骤为:
    S1、将所述的人工关节新型合金的各种元素成分重量百分比取中限值乘以所炼炉料总重量,得出相应元素的炉料分重量;
    S2、按照步骤S1所计算出的各元素炉料分重量称取各元素炉料所需的金属原材料;重量称取的精确度精确到克;各元素炉料的相应合金元素含量不得小于99.9%;
    S3、将步骤S2所称好的各元素炉料放置入熔炼炉坩埚,按顺序,低熔点的元素炉料放在下部,高熔点的元素炉料放在上部;
    S4、关闭熔炼炉盖;开启真空泵;当真空度达到3Pa时,给电熔化炉料;
    S5、当炉料全部熔化成为液体之后,提高给电功率使合金液体温度达到1600℃正负10℃,真空度达到0.5~0.1Pa之内;维持60分钟;然后停电降温;
    S6、当步骤S5的合金液体温度降至1450℃正负10℃时,给电,调整功率为熔化功率的30%,倾斜坩埚烙烫坩埚嘴;当真空度达到0.4Pa时,倾转坩埚将合 金液体浇注到钢锭模或者铸型中,然后关闭电源;
    S7、当步骤S6的浇注完成之后,等待10分钟以上,方可打开炉盖,吊出合金锭模或者铸型;
    S8、打开步骤S7的合金锭模或者铸型,取出合金锭或者铸件,在相应规定的部位切取化学分析样块;送检合格后,即告该合金熔炼工作完成;如果送检结果不合格,则需查找各个环节,纠正失误,重新熔炼。
  5. 根据权利要求4所述的人工关节新型合金,其特征在于,所述步骤S8的具体步骤为:
    在合金锭中部取样化验;化验结果不符合所述人工关节新型合金的成分的重量百分比时,对所述真空感应炉中的合金锭取三样化验,三样中任一取样的化验结果不符合所述人工关节新型合金的成分的重量百分比则制备的所述人工关节新型合金不合格。
  6. 根据权利要求4或5所述的人工关节新型合金,其特征在于,所述熔炼工艺采用真空感应炉进行熔炼。
PCT/CN2017/103635 2017-04-14 2017-09-27 人工关节新型合金及其熔炼工艺 WO2018188279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710243535.5 2017-04-14
CN201710243535.5A CN107299253B (zh) 2017-04-14 2017-04-14 人工关节合金及其熔炼工艺

Publications (1)

Publication Number Publication Date
WO2018188279A1 true WO2018188279A1 (zh) 2018-10-18

Family

ID=60137782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103635 WO2018188279A1 (zh) 2017-04-14 2017-09-27 人工关节新型合金及其熔炼工艺

Country Status (2)

Country Link
CN (1) CN107299253B (zh)
WO (1) WO2018188279A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563152A5 (en) * 1973-01-16 1975-06-30 Straumann Reinhard Inst Dr Ing Cobalt-based alloy implant - having improved friction and wearing props and corrosion-resistance
CN1867687A (zh) * 2003-09-05 2006-11-22 Ati资产公司 含降低量的氮化钛掺入体的钴镍铬钼合金
JP2011208210A (ja) * 2010-03-29 2011-10-20 Seiko Instruments Inc ステント用合金及びステント
CN103526037A (zh) * 2013-09-18 2014-01-22 北京航空航天大学 一种利用氧化钇坩埚对高温合金进行纯净化熔炼的方法
CN103667800A (zh) * 2013-12-06 2014-03-26 中国航空工业集团公司北京航空材料研究院 一种CoCrMo合金人工关节精密锻造方法
CN105682602A (zh) * 2013-11-01 2016-06-15 Ecp发展有限责任公司 具有驱动轴的柔性导管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845345A (ja) * 1981-09-11 1983-03-16 Hitachi Ltd 耐熱疲労性の優れたガスタ−ビン用ノズル
ES2533429T3 (es) * 2009-12-10 2015-04-10 Nippon Steel & Sumitomo Metal Corporation Aleaciones austeníticas resistentes al calor
JP5736140B2 (ja) * 2010-09-16 2015-06-17 セイコーインスツル株式会社 Co−Ni基合金およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563152A5 (en) * 1973-01-16 1975-06-30 Straumann Reinhard Inst Dr Ing Cobalt-based alloy implant - having improved friction and wearing props and corrosion-resistance
CN1867687A (zh) * 2003-09-05 2006-11-22 Ati资产公司 含降低量的氮化钛掺入体的钴镍铬钼合金
JP2011208210A (ja) * 2010-03-29 2011-10-20 Seiko Instruments Inc ステント用合金及びステント
CN103526037A (zh) * 2013-09-18 2014-01-22 北京航空航天大学 一种利用氧化钇坩埚对高温合金进行纯净化熔炼的方法
CN105682602A (zh) * 2013-11-01 2016-06-15 Ecp发展有限责任公司 具有驱动轴的柔性导管
CN103667800A (zh) * 2013-12-06 2014-03-26 中国航空工业集团公司北京航空材料研究院 一种CoCrMo合金人工关节精密锻造方法

Also Published As

Publication number Publication date
CN107299253B (zh) 2019-06-28
CN107299253A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
Yoda et al. Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co–Cr–Mo alloys for dental applications
Svanidze et al. High hardness in the biocompatible intermetallic compound β-Ti3Au
Calin et al. Designing biocompatible Ti-based metallic glasses for implant applications
Yamanaka et al. Effects of carbon concentration on microstructure and mechanical properties of as-cast nickel-free Co–28Cr–9W-based dental alloys
CN105734312A (zh) 一种生物医用TiZrNbTa系高熵合金及其制备方法
CN103215474B (zh) 一种齿科钴铬钼铜抗菌烤瓷合金及其热处理方法
CN106435271B (zh) 一种低模量医用钛合金及其制备方法
CN103233143B (zh) 一种钴基烤瓷合金及其应用
CN103215475A (zh) 一种新型外科植入用钴基合金及其应用
CN108203778A (zh) Zr基生物医用合金及其制备方法
Moshokoa et al. The effect of molybdenum content on the microstructural evolution and tensile properties of as-cast Ti-Mo alloys
CN115011840B (zh) 一种股骨柄人体植入用β型钛合金棒材的生产方法
Moshokoa et al. Microstructural and mechanical properties of Ti-Mo alloys designed by the cluster plus glue atom model for biomedical application
Nunes et al. Microstructure and mechanical properties of Ti-12Mo-8Nb alloy hot swaged and treated for orthopedic applications
CN109628796B (zh) 一种高弹性高强度钛合金及其制备方法和应用
Bakradze et al. Development of Ni-base superalloy with operating temperature up to 800° C for gas turbine disks
WO2018188279A1 (zh) 人工关节新型合金及其熔炼工艺
KR101911280B1 (ko) Co-Cr-Nb계 치과용 주조 합금
da Silva et al. The effect of cooling rate on the microstructure and hardness of as-cast Co-28Cr-6Mo alloy used as biomedical knee implant
Yamanaka et al. Impact of minor alloying with C and Si on the precipitation behavior and mechanical properties of N-doped Co–Cr alloy dental castings
de Freitas Quadros et al. Chemical, structural, microstructural, mechanical, and biological characterization of Ti–25Ta-xNb system alloys for biomedical applications
Niinomi Casting
JP2023503829A (ja) 高疲労強度の医療用チタン合金とその熱間加工及び熱処理方法、並びに機器
CN106319289B (zh) Co-Cr-W合金及其加工方法和应用
CN106591628B (zh) 一种具有低杨氏模量的Ti-Mn-Nb三元合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905556

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17905556

Country of ref document: EP

Kind code of ref document: A1