WO2018188274A1 - 移动设备以及移动设备定向天线调节方法 - Google Patents

移动设备以及移动设备定向天线调节方法 Download PDF

Info

Publication number
WO2018188274A1
WO2018188274A1 PCT/CN2017/102575 CN2017102575W WO2018188274A1 WO 2018188274 A1 WO2018188274 A1 WO 2018188274A1 CN 2017102575 W CN2017102575 W CN 2017102575W WO 2018188274 A1 WO2018188274 A1 WO 2018188274A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mobile device
antenna
cell
unit
Prior art date
Application number
PCT/CN2017/102575
Other languages
English (en)
French (fr)
Inventor
徐健
吴新银
卢永春
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP17844649.8A priority Critical patent/EP3611798A4/en
Priority to US15/757,559 priority patent/US10939351B2/en
Publication of WO2018188274A1 publication Critical patent/WO2018188274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/38Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal
    • G01S3/42Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal the desired condition being maintained automatically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • Embodiments of the present disclosure relate to a mobile device and a directional antenna adjustment method of the mobile device.
  • Mobile devices are used for communication, Internet access, etc. in various situations.
  • the antenna system of the existing mobile device generally adopts a non-directional directional antenna system.
  • a non-directional directional antenna system When the mobile device is used in a high-speed moving environment, for example, when a user rides on a high-speed railway or drives on a highway, the speed of movement is fast. If a cell that passes through a neighboring base station in a short period of time uses a non-directional antenna, it will continue to receive and communicate with the current cell signal, and cannot switch to the next cell, causing a problem of delay in communication of the mobile device.
  • An object of the embodiments of the present disclosure is to provide a mobile device and a mobile device antenna adjustment method to solve the above technical problem.
  • a mobile device comprising: a direction sensor, a signal processing unit, a directional antenna unit, the direction sensor configured to detect a current moving direction of the mobile device;
  • the signal processing unit is configured to determine an antenna adjustment direction of the directional antenna unit according to the current moving direction, where the antenna adjustment direction is related to the current moving direction; and the directional antenna unit is configured to be configured according to the The antenna adjusts the direction to adjust the antenna direction from the first direction to the second direction.
  • the direction sensor includes a gyroscope and/or an acceleration sensor.
  • the mobile device further includes a communication unit configured to establish a connection with the signal cell in the second direction and to communicate in response to the antenna direction being adjusted from the first direction to the second direction.
  • the signal processing unit further includes a signal detecting unit configured to detect a signal of the signal cell in the direction based on the antenna adjustment direction, and when the signal of the signal cell in the direction is detected, The signal processing unit sends an antenna to the directional antenna unit And adjusting the command, the directional antenna unit adjusts the antenna direction from the first direction to the second direction according to the antenna adjustment instruction and the antenna adjustment direction.
  • a signal detecting unit configured to detect a signal of the signal cell in the direction based on the antenna adjustment direction, and when the signal of the signal cell in the direction is detected, The signal processing unit sends an antenna to the directional antenna unit And adjusting the command, the directional antenna unit adjusts the antenna direction from the first direction to the second direction according to the antenna adjustment instruction and the antenna adjustment direction.
  • the signal detecting unit is further configured to further determine a signal strength of the signal cell after detecting a signal of the signal cell in the signal adjustment direction; and when the signal strength is greater than a preset intensity threshold, the signal The processing unit transmits the antenna adjustment command to the directional antenna unit.
  • the mobile device further includes a positioning device that detects a current location of the mobile device; the signal processing unit determines an antenna adjustment direction of the directional antenna unit according to the current location and the current moving direction. .
  • the signal processing unit determines a next signal cell that the mobile device is ready to enter according to a current location of the mobile device and the current moving direction; determines a location of a base station of the next signal cell; based on a location of the base station Determining an antenna adjustment direction of the directional antenna unit.
  • the signal processing unit determines that the mobile device may enter the first signal cell and the second signal cell according to the current location of the mobile device and the current moving direction, and the signal detecting unit in the signal processing unit detects the location Decoding the signal strength of the first signal cell and the second signal cell, and determining a signal cell with the highest signal strength; determining the signal cell with the highest signal strength as the next signal cell that the mobile device is ready to enter.
  • the signal processing unit includes a signal receiver, a signal modulator that acquires information of an adjustment direction of the antenna; the signal modulator modulates the antenna adjustment direction information from the digital signal to the analog power signal.
  • the directional antenna unit is at least one of a phased array antenna or a metamaterial antenna.
  • the directional antenna unit compares the angle values of the moving direction and the antenna direction to determine whether direction correction is needed, and if the cumulative error of multiple sampling is greater than the directional antenna unit A preset angle value determines that the antenna adjustment function needs to be corrected.
  • a mobile device antenna adjustment method comprising: detecting a current moving direction of the mobile device; determining a directional antenna unit in the mobile device according to the current moving direction The antenna adjusts the direction, the antenna adjustment direction is related to the current moving direction; and the direction of the antenna is adjusted from the first direction to the second direction according to the antenna adjustment direction.
  • the direction sensor includes a gyroscope and/or an acceleration sensor.
  • the method further includes establishing a connection with the signal cell in the second direction and communicating in response to the antenna direction being adjusted from the first direction to the second direction.
  • the method further includes: detecting a signal of a signal cell in the direction based on the antenna adjustment direction; and transmitting an antenna adjustment instruction to the directional antenna unit after detecting a signal of the signal cell in the direction;
  • the adjusting direction of the antenna, the step of adjusting the direction of the antenna from the first direction to the second direction comprises: adjusting the antenna direction from the first direction to the second direction according to the antenna adjustment command and the antenna adjustment direction.
  • the method further includes: after detecting a signal of the signal cell in the signal adjustment direction, further determining a signal strength of the signal cell; and detecting a signal of the signal cell in the direction, the directional antenna
  • the unit transmitting the antenna adjustment command includes: transmitting the antenna adjustment instruction to the directional antenna unit when the signal strength is greater than a preset intensity threshold.
  • the method further includes: detecting a current location of the mobile device; determining, according to the current moving direction, an antenna adjustment direction of the directional antenna unit in the mobile device, according to the current location and the current The direction of movement determines the direction of antenna adjustment of the directional antenna unit.
  • the determining the antenna adjustment direction of the directional antenna unit according to the current location and the current moving direction comprises: determining, according to the current location of the mobile device and the current moving direction, that the mobile device is ready to enter a next signal cell; determining a location of the base station of the next signal cell; determining an antenna adjustment direction of the directional antenna unit based on a location of the base station.
  • the determining, according to the current location of the mobile device and the current moving direction, the next signal cell that the mobile device is ready to enter includes: determining, according to the current location of the mobile device and the current moving direction
  • the mobile device may enter the first signal cell and the second signal cell; detect signal strengths of the first signal cell and the second signal cell, and determine a signal cell with the highest signal strength; determine a signal cell with the highest signal strength Preparing the next signal cell for entry for the mobile device.
  • the directional antenna unit is at least one of a phased array directional antenna or a metamaterial antenna.
  • the directional antenna unit compares the angle values of the moving direction and the antenna direction to determine whether direction correction is needed, and if the cumulative error of multiple sampling is greater than the directional antenna unit A preset angle value determines that the antenna adjustment function needs to be corrected.
  • the direction of the signal received by the mobile device can be adjusted, and the function of directional transmitting and receiving signals is implemented, and the mobile device transmits and receives the base station signal at the moving direction, and the mobile device switches the base station.
  • the response is faster and the communication is better.
  • FIG. 1 is a schematic structural diagram of a mobile device according to an embodiment of the present disclosure
  • FIG. 2 illustrates a schematic diagram of mobile device antenna switching in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a phased array liquid crystal antenna in a mobile device according to an embodiment of the present disclosure
  • FIG. 4 illustrates another structural schematic diagram of a mobile device according to an embodiment of the present disclosure
  • FIG. 5 illustrates still another schematic structural diagram of a mobile device according to an embodiment of the present disclosure
  • FIG. 6 shows still another schematic structural diagram of a mobile device according to an embodiment of the present disclosure
  • FIG. 7 illustrates a flow chart of a mobile device antenna adjustment method in accordance with an embodiment of the present disclosure
  • FIG. 8 illustrates another structural schematic diagram of a mobile device in accordance with an embodiment of the present disclosure.
  • a mobile device refers to an electronic device that can communicate or access the Internet through a wireless network, including, for example, a mobile phone, a notebook, a tablet, a POS, and an onboard computer. Further, the mobile device can have multiple application functions and certain processing capabilities, such as a smart phone.
  • FIG. 1 shows a schematic structural diagram of a mobile device according to an embodiment of the present disclosure.
  • the mobile device 100 includes a direction sensor 110, a signal processing unit 120, and a directional antenna unit 130.
  • the direction sensor 110 detects a current moving direction of the mobile device 100.
  • the signal processing unit 120 determines an antenna adjustment direction of the directional antenna unit 130 according to a current moving direction of the mobile device, where the antenna adjustment direction is current with the mobile device The direction of movement is related.
  • the directional antenna unit 130 adjusts the antenna direction from the first direction to the second direction according to the antenna adjustment direction, where the antenna adjustment direction and the second direction are directions of the nearest base station in the moving direction or the moving direction of the mobile device.
  • the direction sensor 110 is configured to detect the current direction of movement of the mobile device.
  • the direction sensor 110 may include, for example, a gyroscope and/or an acceleration sensor.
  • the gyroscope can measure the relative deflection angle of the mobile device 100.
  • the gyroscope has a gyro inside, and its axis is always parallel to the initial direction due to the gyro effect, so that the actual direction can be calculated by the deviation from the initial direction.
  • a gyro sensor in a mobile device has a very sophisticated chip that can contain ultra-fine gyros inside.
  • the gyro sensor measurement reference standard is a gyro in which the inner middle rotates in a direction perpendicular to the ground.
  • the result is obtained by the angle between the mobile device 100 and the gyro, so the gyroscope can be installed in the mobile device to determine how much the mobile device is offset in the three directions of the X coordinate, the Y axis, and the Z axis in the earth coordinate system. .
  • the acceleration sensor measures the movement acceleration of the mobile device.
  • the acceleration sensor can be a three-axis acceleration sensor for measuring the angle of the mobile device in three directions.
  • the acceleration sensor generates deformation due to the acceleration of a certain medium, and measures the amount of deformation and converts it into a voltage output by using an associated circuit.
  • the mobile device 100 moves in any direction, the acceleration sensor has a signal output, and the acceleration sensor has no signal output when the mobile device 100 is stationary.
  • the direction of movement of the mobile device can be calculated by the gyroscope and/or the acceleration sensor. For example, whether the mobile device is in a moving state or a stationary state. In which direction to move, speed, acceleration, etc.
  • the moving direction of the mobile device 100 on the XYZ triaxial axis can be accurately detected according to the earth coordinate system.
  • the system structure and algorithm are simpler and lower in cost.
  • the gyroscope and the acceleration sensor are merely examples, and those skilled in the art should understand that other methods can also be used to obtain parameters such as the moving direction of the mobile device.
  • the signal processing unit 120 determines an antenna adjustment direction of the directional antenna unit 130 according to a current moving direction of the mobile device, the antenna adjustment direction being related to a current moving direction of the mobile device.
  • the antenna adjustment direction coincides with the current moving direction of the mobile device.
  • the south direction may be directly determined as the antenna adjustment direction of the directional antenna unit 130.
  • 2 shows a schematic diagram of a mobile device antenna switch in accordance with an embodiment of the present disclosure.
  • mobile device 100 moves from A to B, while A, B belong to different cells.
  • its antenna direction can be adjusted from the current direction to the line direction of A to B and toward B.
  • the antenna adjustment direction may also be the direction after necessary correction based on the current moving direction. For example, after determining the current moving direction of the mobile device, the current moving direction is corrected according to the accumulated error or the like, and the corrected direction is taken as the antenna adjusting direction.
  • the directional antenna unit 130 adjusts the antenna direction of the mobile device 100 from the first direction to the second direction according to the antenna adjustment direction. Unlike a normal antenna, the directional antenna unit 130 can control the antenna to receive signals and transmit signals in a specific direction, while the ordinary antenna can radiate signals to the surroundings for signal reception and transmission. According to an example of the present disclosure, the directional antenna may be at least one of a phased array directional antenna or a metamaterial antenna.
  • Metamaterials are artificial composite materials that are arranged by periodic or non-periodic artificial microstructures. Through complex artificial microstructure design and processing, the artificial "atoms" respond to electromagnetic fields or sonar.
  • the metamaterial directional antenna may be, for example, a directional antenna embedded in a zero refractive index metamaterial to obtain a zero refractive index high directional directional antenna. It may also be a highly oriented microstrip antenna in which a grid-like structure of zero-refractive-index metamaterial is placed over a directional antenna, and the like.
  • the phased array directional antenna changes direction by controlling the feed phase of the radiating elements in the array directional antenna.
  • the control phase can change the direction of the maximum value of the directional antenna pattern to achieve the purpose of beam scanning.
  • Its feed phase is generally controlled by an electronic computer, and the phase change speed is fast, for example, on the order of milliseconds, that is, the maximum value of the directional antenna pattern or other parameters change rapidly.
  • the phased array directional antenna may be a phased array liquid crystal antenna.
  • FIG. 3 is a block diagram showing the structure of a phased array liquid crystal antenna according to an embodiment of the present disclosure.
  • the phased array liquid crystal antenna 300 includes a power distribution electrode 310, a liquid crystal phase shifter 320, and a radiation electrode 330.
  • FIG. 8 illustrates another structural schematic diagram of a mobile device in accordance with an embodiment of the present disclosure.
  • the signal processing unit 120 includes a signal receiver and a signal conditioner, and when the signal receiver acquires the antenna adjustment direction information, sends the information to the signal conditioner, and the signal adjuster adjusts the direction of the antenna. Modulation from a digital signal to an analog signal. Then, the signal processing unit 120 transmits the analog signal to the phased array liquid crystal antenna 300.
  • the phased array liquid crystal antenna 300 adjusts the voltage of the power distribution electrode 310 based on the analog signal to adjust the liquid crystal dielectric constant of the liquid crystal phase shifter 320; and adjusts the electromagnetic wave emitted/received by the radiation electrode 330 based on the change in the dielectric constant.
  • the phase thereby changing the direction of the phased array liquid crystal antenna.
  • the signal conditioner includes a driving chip connected to the phased array liquid crystal antenna.
  • the signal conditioner can include an AD converter, a signal amplifier or One or any combination of decoders. Compared with the traditional mechanical method of rotating the directional antenna, the phased array liquid crystal antenna has a fast adjustment speed and high precision.
  • the embodiment of the present disclosure changes the direction of the directional antenna according to the moving direction of the mobile device, so that the direction of the antenna is directed toward the moving direction of the mobile device, so that the signal strength in the moving direction is maximized, so that the mobile device can be in time with the next moving direction.
  • the cell establishes a connection, which reduces or avoids the occurrence of communication lag.
  • FIG. 4 illustrates another structural schematic diagram of a mobile device in accordance with an embodiment of the present disclosure.
  • the mobile device can also include a communication unit 140.
  • the communication unit 140 adjusts from the first direction to the second direction in response to the directional antenna direction, establishes a connection with the signal cell in the second direction, and communicates.
  • the communication unit 140 may acquire communication parameters of the signal cell in the second direction, and establish a connection with the cell based on the communication parameters.
  • the communication unit 140 may first acquire a communication protocol of the next cell, and establish a connection with the cell according to the communication protocol to receive and transmit information.
  • the communication unit 140 may also establish a connection with multiple cells respectively.
  • the communication unit 140 may also establish a connection with the signal cell in the adjustment direction according to the antenna adjustment direction after the signal processing unit 120 determines the antenna adjustment direction. That is to say, the operation of establishing a connection with the next cell can be performed before, or at any time after, the antenna direction adjustment.
  • FIG. 5 illustrates another structural schematic diagram of a mobile device in accordance with an embodiment of the present disclosure.
  • the signal processing unit 120 further includes a signal detecting unit 1201.
  • the signal detecting unit 1201 detects a signal of the signal cell in the signal adjustment direction based on the antenna adjustment direction. After detecting the signal of the signal cell in the direction, the signal processing unit 120 sends an antenna adjustment command to the directional antenna unit 130, and the directional antenna The unit 130 adjusts the antenna direction from the first direction to the second direction according to the directional antenna adjustment command and the antenna adjustment direction. For example, when the signal processing unit 120 determines the antenna adjustment direction according to the current moving direction of the mobile device, at this time, the signal detecting unit 1201 further detects the signal of the signal cell to which the antenna adjustment direction is directed, only when the direction is detected.
  • the antenna adjustment command is sent to the directional antenna unit 130 to adjust the antenna direction from the first direction to the second direction.
  • the signal processing unit 120 determines that the mobile device 100 moves from A to B, at this time, the signal detection unit 1201 further detects the signal of the signal cell to which the B position belongs, until the cell signal is detected, and the signal processing unit 120 transmits the antenna adjustment command. If the antenna direction is switched when the mobile device is in the A position, the mobile device 100 may not be connected to the cell where the A location is located, due to the movement. If the device 100 does not reach the B position and does not receive the signal of the B location signal cell, the network connection may not be connected or the network may be delayed. Therefore, this embodiment of the present disclosure can effectively avoid the problem of network connection failure or network delay.
  • the signal detecting unit 1201 may further determine the signal strength of the signal cell, when the signal strength is greater than the preset intensity threshold.
  • the signal processing unit 120 transmits the antenna adjustment command to the directional antenna unit 130 to adjust an antenna direction.
  • the preset intensity threshold may be, for example, that the signal strength reaches 30% or 50% of the standard intensity.
  • the antenna can be adjusted to the direction of the cell with the strongest signal, and the communication unit can establish a connection with the cell with the strongest signal. .
  • the above example can avoid the waste of resources caused by the mobile device establishing a connection with multiple cells, and can also avoid the situation that the current cell signal is not received due to too early handover.
  • FIG. 6 shows still another schematic structural diagram of a mobile device according to an embodiment of the present disclosure.
  • the mobile device 100 can also include a positioning device 150.
  • the positioning device 150 can detect the current location of the mobile device 100.
  • the signal processing unit 120 can determine the antenna adjustment direction of the directional antenna unit 130 according to the current location of the mobile device 100 and the current moving direction.
  • a map of each cell location may be pre-stored in the mobile device 100, so that according to the current location of the mobile device and the direction of the mobile, it may be determined which cell the next cell to which the mobile device 100 is to enter, and according to the pre-stored cells.
  • the location of the base station of the signal cell may also be determined according to the pre-stored signal cell map.
  • the signal processing unit 120 can determine the antenna adjustment direction of the directional antenna unit based on the location of the base station. For example, the antenna unit is adjusted to a direction in which the received signal is transmitted toward the base station. This ensures that the mobile device sends the received signal at the best angle.
  • the signal processor 120 determines that the mobile device may enter multiple signal cells according to the current location of the mobile device 100 and the current direction of movement, for example, the first signal cell and the second signal cell.
  • the signal detecting unit 1201 in the signal processor 120 can detect the signal strengths of the first signal cell and the second signal cell, and determine which signal cell has the highest signal strength, and determine the signal cell with the highest signal strength as the mobile device preparation. Enter the next signal cell.
  • the antenna is adjusted to face the signal cell.
  • the antenna adjustment direction of the mobile device can be determined according to the current moving direction of the mobile device and other auxiliary parameters, and the antenna adjustment direction can be determined more accurately, thereby effectively avoiding Technical problem of network delay due to failure to receive signals.
  • the antenna adjustment method is the method for adjusting the antenna in the mobile device in the foregoing embodiment, and therefore corresponds to the structure and function of the mobile device. For the sake of brevity of the description, only the method is briefly described herein. For details, refer to the foregoing embodiment. In the mobile device.
  • FIG. 7 illustrates a flow chart of a mobile device antenna adjustment method in accordance with an embodiment of the present disclosure. Referring to FIG. 7, in step S701, the current moving direction of the mobile device is detected.
  • step S702 an antenna adjustment direction of the directional antenna unit in the mobile device is determined according to the current moving direction, and the antenna adjustment direction is related to the current moving direction.
  • step S703 the direction of the antenna is adjusted from the first direction to the second direction according to the antenna adjustment direction.
  • the direction sensor includes a gyroscope and/or an acceleration sensor.
  • the mobile device antenna adjustment method further includes establishing a connection with a signal cell in the second direction and communicating in response to the antenna direction being adjusted from the first direction to the second direction.
  • the mobile device antenna adjustment method further includes: detecting a signal of a signal cell in the direction based on an antenna adjustment direction; and transmitting an antenna adjustment instruction to the directional antenna unit after detecting a signal of the signal cell in the direction;
  • the step of adjusting the direction of the antenna from the first direction to the second direction comprises: adjusting the antenna direction from the first direction to the second direction according to the antenna adjustment command and the antenna adjustment direction.
  • the mobile device antenna adjustment method further includes: after detecting a signal of a signal cell in a signal adjustment direction, further determining a signal strength of the signal cell; when detecting a signal of the signal cell in the direction,
  • the step of transmitting an antenna adjustment command to the directional antenna unit includes: transmitting an antenna adjustment command to the directional antenna unit when the signal strength is greater than the preset intensity threshold.
  • the mobile device antenna adjustment method further includes: detecting a current location of the mobile device; determining, according to the current moving direction, an antenna adjustment direction of the directional antenna unit in the mobile device, comprising: determining, according to the current location and the current moving direction The antenna of the directional antenna unit adjusts the direction.
  • the directional antenna is determined according to the current location and the current moving direction.
  • the step of adjusting the direction of the antenna of the unit includes: determining a next signal cell that the mobile device is ready to enter according to the current location of the mobile device and the current moving direction; determining a location of the base station of the next signal cell; determining a directional antenna unit based on the location of the base station The antenna adjusts the direction.
  • the step of determining, according to the current location of the mobile device and the current direction of movement, the next signal cell that the mobile device is ready to enter includes determining that the mobile device may enter the first signal cell according to the current location of the mobile device and the current direction of movement. And detecting a signal strength of the first signal cell and the second signal cell, and determining a signal cell with the highest signal strength; determining a signal cell with the highest signal strength as the next signal cell that the mobile device is ready to enter.
  • the directional antenna unit is a phased array liquid crystal antenna
  • the phased array liquid crystal antenna includes a power distribution electrode, a liquid crystal phase shifter, and a radiation electrode
  • the direction of the antenna is adjusted from the first direction to the antenna according to the direction of adjustment of the antenna.
  • the step of the second direction includes: converting an antenna adjustment direction of the directional antenna unit into an analog electrical signal; adjusting a voltage of the distribution electrode of the directional antenna based on the analog electrical signal to adjust a liquid crystal dielectric constant of the liquid crystal phase shifter, and based on The change in the dielectric constant adjusts the phase of the electromagnetic wave emitted/received by the radiation electrode.
  • the mobile device antenna adjustment method further includes: acquiring information of an antenna adjustment direction; and converting the antenna adjustment direction of the directional antenna unit into an analog electrical signal, the signal modulator adjusting the antenna adjustment direction information from the digital The signal is modulated into an analog electrical signal.
  • the signal modulator can include a driver chip coupled to the phased array liquid crystal antenna.
  • the directional antenna unit is at least one of a phased array directional antenna or a metamaterial antenna.
  • the directional antenna unit when the mobile device moves along the current moving direction, the directional antenna unit performs error sampling in one cycle, that is, by comparing the angle values of the moving direction and the antenna direction, determining whether direction correction is required, if multiple times If the cumulative error of the sampling is greater than a preset angle value of the directional antenna unit, it is determined that the function of the antenna adjustment needs to be corrected at this time, that is, the cumulative error is added or subtracted in the direction of each adjustment of the antenna.
  • the antenna adjustment method of the embodiment of the present disclosure can adjust the antenna direction of the signal received by the mobile device, and solves the problem that the mobile device receives the disconnection signal caused by the non-moving direction side signal when the mobile device is in the high-speed motion state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种移动设备(100),所述移动设备包括:方向传感器(110),信号处理单元(120),定向天线单元(130),所述方向传感器(110),被配置为检测所述移动设备(100)当前移动方向;所述信号处理单元(120),被配置为根据所述当前移动方向确定所述定向天线单元(130)的天线调节方向,所述天线调节方向与所述当前移动方向相关;所述定向天线单元(130),被配置为根据所述天线调节方向,将天线方向从第一方向调节到第二方向。该移动设备(100)可以对接收信号的方向可进行调节,实现了定向收发信号的功能,对于处于运动中的移动设备收发运动方向处发来的基站信号,而使移动设备(100)切换基站的响应更快速,通信效果更佳。还提供了一种移动设备天线调节方法。

Description

移动设备以及移动设备定向天线调节方法 技术领域
本公开实施例涉及一种移动设备以及移动设备的定向天线调节方法。
背景技术
随着互联网的高度普及和移动互联技术的快速发展,更人性化的智能硬件设备被纷纷提出。移动设备更在各种场合被用来进行通信、上网等操作。
现有的移动设备的天线系统一般都是采用无方向性定向天线系统,当移动设备在高速运动的环境下使用时,例如使用者乘坐高速铁路或在高速公路驾车时,由于运动速度较快,会短时间内经过相邻基站的小区,若使用无方向性天线,则会因持续接收当前小区信号并与之通信,而无法切换至下一个小区,造成移动设备通信迟滞的问题。
发明内容
本公开实施例的目的在于提供一种移动设备以及移动设备天线调节方法,以解决上述技术问题。
根据本公开的至少一个实施例,提供了一种移动设备,所述移动设备包括:方向传感器,信号处理单元,定向天线单元,所述方向传感器,被配置为检测所述移动设备当前移动方向;所述信号处理单元,被配置为根据所述当前移动方向确定所述定向天线单元的天线调节方向,所述天线调节方向与所述当前移动方向相关;所述定向天线单元,被配置为根据所述天线调节方向,将天线方向从第一方向调节到第二方向。
例如,所述方向传感器包括陀螺仪和/或加速度传感器。
例如,所述移动设备还包括通信单元,所述通信单元,被配置为响应于所述天线方向从第一方向调节到第二方向,与第二方向上的信号小区建立连接并进行通信。
例如,所述信号处理单元还包括信号检测单元,所述信号检测单元被配置为基于所述天线调节方向,检测该方向上的信号小区的信号,当检测到该方向的信号小区的信号后,所述信号处理单元向所述定向天线单元发送天线 调节指令,所述定向天线单元根据所述天线调节指令以及所述天线调节方向,将天线方向从第一方向调节到第二方向。
例如,所述信号检测单元进一步被配置为,当检测到所述信号调节方向上的信号小区的信号后,进一步判断该信号小区的信号强度;当信号强度大于预设强度阈值时,所述信号处理单元向所述定向天线单元发送所述天线调节指令。
例如,所述移动设备还包括定位装置,所述定位装置检测所述移动设备的当前位置;所述信号处理单元根据所述当前位置以及所述当前移动方向确定所述定向天线单元的天线调节方向。
例如,所述信号处理单元根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备准备进入的下一个信号小区;确定该下一个信号小区的基站的位置;基于该基站的位置确定所述定向天线单元的天线调节方向。
例如,所述信号处理单元根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备可能进入第一信号小区和第二信号小区,所述信号处理单元中的信号检测单元检测所述第一信号小区以及第二信号小区的信号强度,并确定信号强度最大的信号小区;将所述信号强度最大的信号小区确定为所述移动设备准备进入的下一个信号小区。
例如,所述信号处理单元包括信号接收器,信号调制器,所述信号接收器获取所述天线调节方向的信息;所述信号调制器将该天线调节方向信息从数字信号调制为所述模拟电信号。
例如,所述定向天线单元为相控阵天线或超材料天线中的至少一个。
例如,当所述移动设备沿着当前移动方向移动时,所述定向天线单元比较移动方向与天线方向的角度值,判断是否需要进行方向校正,若多次采样的累计误差大于所述定向天线单元预设的一个角度值,则确定天线调节的功能需要被校正。
根据本公开的至少一个实施例,还提供了一种移动设备天线调节方法,所述方法包括:检测所述移动设备当前移动方向;根据所述当前移动方向确定所述移动设备中的定向天线单元的天线调节方向,所述天线调节方向与所述当前移动方向相关;根据所述天线调节方向,将所述天线的方向从第一方向调节到第二方向。
例如,所述方向传感器包括陀螺仪和/或加速度传感器。
例如,所述方法还包括:响应于所述天线方向从第一方向调节到第二方向,与第二方向上的信号小区建立连接并进行通信。
例如,所述方法还包括:基于所述天线调节方向,检测该方向上的信号小区的信号;当检测到该方向的信号小区的信号后,向所述定向天线单元发送天线调节指令;根据所述天线调节方向,将所述天线的方向从第一方向调节到第二方向的步骤包括:根据所述天线调节指令以及所述天线调节方向,将天线方向从第一方向调节到第二方向。
例如,所述方法还包括:当检测到所述信号调节方向上的信号小区的信号后,进一步判断该信号小区的信号强度;当检测到该方向的信号小区的信号后,向所述定向天线单元发送天线调节指令的步骤包括:当信号强度大于预设强度阈值时,向所述定向天线单元发送所述天线调节指令。
例如,所述方法还包括:检测所述移动设备的当前位置;根据所述当前移动方向确定所述移动设备中的定向天线单元的天线调节方向的步骤包括:根据所述当前位置以及所述当前移动方向确定所述定向天线单元的天线调节方向。
例如,所述根据所述当前位置以及所述当前移动方向确定所述定向天线单元的天线调节方向的步骤包括:根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备准备进入的下一个信号小区;确定该下一个信号小区的基站的位置;基于该基站的位置确定所述定向天线单元的天线调节方向。
例如,所述根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备准备进入的下一个信号小区的步骤包括:根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备可能进入第一信号小区和第二信号小区;检测所述第一信号小区以及第二信号小区的信号强度,并确定信号强度最大的信号小区;将所述信号强度最大的信号小区确定为所述移动设备准备进入的下一个信号小区。
例如,所述定向天线单元为相控阵定向天线或超材料天线中的至少一个。
例如,当所述移动设备沿着当前移动方向移动时,所述定向天线单元比较移动方向与天线方向的角度值,判断是否需要进行方向校正,若多次采样的累计误差大于所述定向天线单元预设的一个角度值,则确定天线调节的功能需要被校正。
本公开实施例中,可以对移动设备接收信号的方向可进行调节,实现了定向收发信号的功能,对于处于运动中的移动设备收发运动方向处发来的基站信号,而使移动设备切换基站的响应更快速,通信效果更佳。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的描述中所需要使用的附图作简单的介绍。下面描述中的附图仅仅是本公开的示例性实施例。
图1示出了根据本公开实施例的移动设备结构示意图;
图2示出了根据本公开实施例的移动设备天线切换示意图;
图3示出了根据本公开实施例的移动设备中是相控阵液晶天线的结构示意图;
图4示出了根据本公开实施例的移动设备的另一结构示意图;
图5示出了根据本公开实施例的移动设备的又一结构示意图;
图6示出了根据本公开实施例的移动设备的再一结构示意图;
图7示出了根据本公开实施例的移动设备天线调节方法的流程图;
图8示出了根据本公开实施例的移动设备的另一种结构示意图。
具体实施方式
在下文中,将参考附图详细描述本公开的优选实施例。注意,在本说明书和附图中,具有基本上相同步骤和元素用相同的附图标记来表示,且对这些步骤和元素的重复解释将被省略。
在本公开的以下实施例中,移动设备是指可以在移动中通过无线网络进行通信或上网的电子设备,例如包括手机、笔记本、平板电脑、POS机、车载电脑。进一步的,移动设备可以具有多种应用功能和一定处理能力,例如智能手机。
图1示出了根据本公开实施例的移动设备结构示意图。参见图1,移动设备100包括:方向传感器110,信号处理单元120,定向天线单元130。
根据本公开的一个示例,所述方向传感器110,检测移动设备100的当前移动方向。信号处理单元120,根据移动设备的当前移动方向确定定向天线单元130的天线调节方向,其中所述天线调节方向与所述移动设备的当前 移动方向相关。定向天线单元130,根据天线调节方向,将天线方向从第一方向调节到第二方向,所述天线调节方向和第二方向是移动设备的运动方向或运动方向上的最近一个基站所在的方向。
在本公开的一个实施例中,方向传感器110被配置为检测移动设备当前移动方向。方向传感器110例如可以包括陀螺仪和/或加速度传感器。
陀螺仪可以测量移动设备100的相对偏转角度。陀螺仪内部有一个陀螺,它的轴由于陀螺效应始终与初始方向平行,这样就可以通过与初始方向的偏差计算出实际方向。例如,移动设备中陀螺仪传感器具有一个结构非常精密的芯片,内部可以包含超微小的陀螺。陀螺仪传感器测量参考标准是内部中间在与地面垂直的方向上进行转动的陀螺。通过移动设备100与陀螺的夹角得到结果,因此可以在移动设备中安装陀螺仪以确定移动设备在地球坐标系中相对于X轴,Y轴,Z轴三个方向上分别偏移了多少度。
加速度传感器可以测量移动设备的移动加速度。例如,加速度传感器可以是三轴加速度传感器,用于测量移动设备在三个方向上的角度。加速度传感器由于加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出。移动设备100在任何方向上运动,加速度传感器就会有信号输出,移动设备100静止不动时加速度传感器则没有信号输出。
通过陀螺仪和/或加速度传感器可以计算移动设备的移动方向。例如,移动设备是在移动状态还是静止状态。向哪个方向移动,移动速度、加速度等等。可以根据地球坐标系,精确检测移动设备100的在XYZ三轴上的移动方向。相比其它方式,使用陀螺仪和/或加速度传感器计算移动设备的移动方向时,其系统结构及算法更简单、成本更低。当然,陀螺仪以及加速度传感器仅仅是示例,本领域技术人员应当了解,还可以使用其他方式来获取移动设备的移动方向等参数。
信号处理单元120根据移动设备的当前移动方向确定定向天线单元130的天线调节方向,该天线调节方向与移动设备的当前移动方向相关。
根据本公开的一个示例,天线调节方向与移动设备的当前移动方向一致。例如,当信号处理单元120确定移动设备当前移动方向为向正南方向移动时,可以直接将正南方向确定为定向天线单元130的天线调节方向。图2示出了根据本公开实施例的移动设备天线切换示意图。例如,参见图2,移动设备100从A向B移动,而A,B分属于不同小区。根据本公开实施例,当判断 出移动设备100从A向B移动时,可以将其天线方向从当前方向调节为沿A向B的连线方向并朝向B。
可替换的,天线调节方向也可以是在当前移动方向的基础上进行必要校正后的方向。例如,在确定移动设备的当前移动方向后,根据累计误差等对当前移动方向进行校正,将校正后的方向作为天线调节方向。
定向天线单元130,根据所述天线调节方向,将移动设备100的天线方向从第一方向调节到第二方向。与普通天线不同,定向天线单元130可以控制天线的在一特定方向接收信号和发射信号,而普通天线可以朝四周辐射信号,进行信号的接收和发送。根据本公开的一个示例,定向天线可以是相控阵定向天线或超材料天线中的至少一个。
超材料是由周期性或非周期性人造微结构排列而成的人工复合材料通过复杂的人造微结构设计与加工,实现人造“原子”对电磁场或者声纳的响应。超材料定向天线例如可以是将定向天线嵌入零折射率的超材料中,得到零折射率高定向性定向天线。还可以是网格状结构零折射率超材料置于定向天线上方的高定向型微带天线等等。
相控阵定向天线通过控制阵列定向天线中辐射单元的馈电相位来改变方向。控制相位可以改变定向天线方向图最大值的指向,以达到波束扫描的目的。它的馈电相位一般用电子计算机控制,相位变化速度快,例如毫秒量级,即定向天线方向图最大值指向或其他参数的变化迅速。
根据本公开的一个示例,相控阵定向天线可以是相控阵液晶天线。图3示出了根据本公开实施例中相控阵液晶天线的结构示意图。参见图3,相控阵液晶天线300包括配电电极310,液晶移相器320以及辐射电极330。
图8示出了根据本公开实施例的移动设备的另一种结构示意图。参见图8,根据本公开的一个示例,信号处理单元120包括信号接收器和信号调节器,信号接收器获取到天线调节方向信息时发送给信号调节器,信号调节器将该天线调节方向的信息从数字信号调制为模拟信号。然后,信号处理单元120将该模拟信号发送给相控阵液晶天线300。这样,相控阵液晶天线300基于该模拟信号调节配电电极310的电压,以调节液晶移相器320的液晶介电常数;并基于介电常数的改变,调节辐射电极330发射/接收的电磁波的相位,从而改变相控阵液晶天线的方向。此处,信号调节器包括与相控阵液晶天线连接的驱动芯片。可选地,信号调节器可以包括AD转换器,信号放大器或 解码器的一种或任意组合。比之传统的机械方法旋转定向天线,相控阵液晶天线调节速度快,且精度高。
本公开实施例根据移动设备的移动方向来改变定向天线的方向,使天线的方向朝向移动设备的移动方向,从而使得移动方向上的信号强度最大,这样,移动设备可以及时与移动方向的下一个小区建立连接,减少或避免了通信迟滞问题的发生。
图4示出了根据本公开实施例的移动设备的另一结构示意图。参见图4移动设备还可以包括通信单元140。通信单元140响应于定向天线方向从第一方向调节到第二方向,与第二方向上的信号小区建立连接并进行通信。例如,通信单元140可以获取第二方向上的信号小区的通信参数,基于通信参数与该小区建立连接。例如,通信单元140可以首先获取该下一个小区的通信协议,根据该通信协议与该小区建立连接,以接收和发送信息。可选的,当第二方向上有多个信号小区时,通信单元140也可以与多个小区分别建立连接。可选地,通信单元140也可以在信号处理单元120确定天线调节方向后,根据该天线调节方向与该调节方向上的信号小区建立连接。也就是说,与下一个小区建立连接的操作可以在天线方向调节之前,同时或之后任何时候进行。
图5示出了根据本公开实施例的移动设备的另一结构示意图。参见图5,在移动设备100中,信号处理单元120还包括信号检测单元1201。
信号检测单元1201基于天线调节方向,检测该信号调节方向上所在的信号小区的信号,当检测到该方向的信号小区的信号后,信号处理单元120向定向天线单元130发送天线调节指令,定向天线单元130根据定向天线调节指令以及天线调节方向,将天线方向从第一方向调节到第二方向。例如,当信号处理单元120根据移动设备的当前移动方向确定了天线调节方向,此时,信号检测单元1201还要进一步检测天线调节方向所朝向的信号小区的信号,仅当检测到了该方向上的某个小区的信号时,才向定向天线单元130发送天线调节指令,以使天线方向从第一方向调节到第二方向。例如,参见图2,当信号处理单元120确定移动设备100从A向B移动,此时,信号检测单1201还要进一步检测B位置所属信号小区的信号,直到检测到该小区信号,信号处理单元120才发送天线调节指令。如果当移动设备在A位置时就进行天线方向切换,则可能导致移动设备100与A位置所在小区连接不上,由于移动 设备100又没有达到B位置,也接收不到B位置信号小区的信号,则会造成网络连接不上或网络延迟的问题。因此,本公开该实施例可以有效避免网络连接不上或网络延迟的问题。
根据本公开的另一个示例,当检测到所述信号调节方向上的信号小区的信号后,所述信号检测单元1201还可以进一步判断该信号小区的信号强度,当信号强度大于预设强度阈值时,所述信号处理单元120向所述定向天线单元130发送所述天线调节指令以调节天线方向。其中预设强度阈值例如可以是信号强度到达标准强度的30%或50%。还例如,当信号检测单元130在移动设备100的移动方向上检测到多个信号小区的信号后,可以将天线调节到信号最强的小区的方向,通信单元可以与信号最强的小区建立连接。以上示例可以避免移动设备与多个小区建立连接而造成的资源浪费,同时也可以避免太早切换而造成的接收不到当前小区信号的情况发生。
图6示出了根据本公开实施例的移动设备的再一结构示意图。参见图6,移动设备100还可以包括定位装置150。定位装置150可以检测移动设备100的当前位置。这样,信号处理单元120可以根据移动设备100的当前位置以及当前移动方向确定定向天线单元130的天线调节方向。例如,移动设备100中可以预先存储有各个小区位置的地图,这样,根据移动设备当前位置以及移动方向,就可以确定移动设备100将要进入的下一个小区是哪个小区,并且根据预先存储的各个小区地图,将天线单元调节到朝向该小区的方向。进一步的,还可以根据预先存储的信号小区地图,确定该信号小区的基站的位置。这样,信号处理单元120可以基于该基站的位置确定定向天线单元的天线调节方向。例如,将天线单元调节到朝向该基站发射接收信号的方向。这样可以保证移动设备发送接收信号的角度最佳。
根据本公开的一个示例,当信号处理器120根据移动设备100的当前位置以及当前移动方向确定移动设备可能进入多个信号小区时,例如,第一信号小区和第二信号小区。此时,信号处理器120中的信号检测单元1201可以检测第一信号小区以及第二信号小区的信号强度,并确定哪个信号小区的信号强度最大,将信号强度最大的信号小区确定为移动设备准备进入的下一个信号小区。并将天线调节到朝向该信号小区。
本公开实施例,可以根据移动设备的当前移动方向以及其他辅助参数确定移动设备的天线调节方向,可以更精确的确定天线调节方向,有效避免了 由于接收不到信号造成的网络延迟的技术问题。
以上介绍了根据本公开实施例的移动设备的结构和工作方式,下面将进一步介绍根据本公开实施例的移动设备天线调节方法。该天线调节方法为前述实施例中的移动设备中天线的调节方法,因此与移动设备的结构和功能对应,为了说明书的简洁,在此仅对该方法进行简要描述,具体内容可以参考前述实施例中的移动设备。
图7示出了根据本公开实施例的移动设备天线调节方法的流程图。参见图7,在步骤S701中,检测移动设备当前移动方向。
在步骤S702中,根据当前移动方向确定移动设备中的定向天线单元的天线调节方向,天线调节方向与当前移动方向相关。
在步骤S703中,根据天线调节方向,将天线的方向从第一方向调节到第二方向。
根据本公开的一个示例,所述方向传感器包括陀螺仪和/或加速度传感器。
根据本公开的一个示例,移动设备天线调节方法还包括:响应于天线方向从第一方向调节到第二方向,与第二方向上的信号小区建立连接并进行通信。
根据本公开的一个示例,移动设备天线调节方法还包括:基于天线调节方向,检测该方向上的信号小区的信号;当检测到该方向的信号小区的信号后,向定向天线单元发送天线调节指令;根据天线调节方向,将天线的方向从第一方向调节到第二方向的步骤包括:根据天线调节指令以及天线调节方向,将天线方向从第一方向调节到第二方向。
根据本公开的一个示例,移动设备天线调节方法还包括:当检测到信号调节方向上的信号小区的信号后,进一步判断该信号小区的信号强度;当检测到该方向的信号小区的信号后,向定向天线单元发送天线调节指令的步骤包括:当信号强度大于预设强度阈值时,向定向天线单元发送天线调节指令。
根据本公开的一个示例,移动设备天线调节方法还包括:检测移动设备的当前位置;根据当前移动方向确定移动设备中的定向天线单元的天线调节方向的步骤包括:根据当前位置以及当前移动方向确定定向天线单元的天线调节方向。
根据本公开的一个示例,根据当前位置以及当前移动方向确定定向天线 单元的天线调节方向的步骤包括:根据移动设备的当前位置以及当前移动方向确定移动设备准备进入的下一个信号小区;确定该下一个信号小区的基站的位置;基于该基站的位置确定定向天线单元的天线调节方向。
根据本公开的一个示例,根据移动设备的当前位置以及当前移动方向确定移动设备准备进入的下一个信号小区的步骤包括:根据移动设备的当前位置以及当前移动方向确定移动设备可能进入第一信号小区和第二信号小区;检测第一信号小区以及第二信号小区的信号强度,并确定信号强度最大的信号小区;将信号强度最大的信号小区确定为移动设备准备进入的下一个信号小区。
根据本公开的一个示例,定向天线单元为相控阵液晶天线,相控阵液晶天线包括配电电极、液晶移相器以及辐射电极,根据天线调节方向,将天线的方向从第一方向调节到第二方向的步骤包括:将定向天线单元的天线调节方向转换为模拟电信号;基于该模拟电信号调节定向天线的配电电极的电压,以调节液晶移相器的液晶介电常数,并基于介电常数的改变,调节辐射电极发射/接收的电磁波的相位。
根据本公开的一个示例,移动设备天线调节方法还包括:获取天线调节方向的信息;将定向天线单元的天线调节方向转换为模拟电信号的步骤包括:信号调制器将该天线调节方向信息从数字信号调制为模拟电信号。信号调制器可以包括与相控阵液晶天线连接的驱动芯片。
根据本公开的一个示例,定向天线单元为相控阵定向天线或超材料天线中的至少一个。
根据本公开的一个示例,当移动设备沿着当前移动方向移动时,定向天线单元以一个周期进行误差采样,即通过比较移动方向与天线方向的角度值,判断是否需要进行方向校正,若多次采样的累计误差大于定向天线单元预设的一个角度值,则认定为此时天线调节的功能需要被校正,即在天线每次调节的方向上加上或减去该累计误差。
本公开实施例的天线调节方法,可以对移动设备接收信号的天线方向进行调节,解决了移动设备处于高速运动状态时,移动设备接收非运动方向一侧信号而造成的连接断线的问题。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实 现。并且软件模块可以置于任意形式的计算机存储介质中。为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
本领域技术人员应该理解,可依赖于设计需求和其它因素对本公开进行各种修改、组合、部分组合和替换,只要它们在所附权利要求书及其等价物的范围内。
本申请要求于2017年4月14日递交的中国专利申请第201710245745.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种移动设备,其中,包括:方向传感器,信号处理单元,定向天线单元,
    所述方向传感器,被配置为检测所述移动设备当前移动方向;
    所述信号处理单元,被配置为根据所述当前移动方向确定所述定向天线单元的天线调节方向,所述天线调节方向与所述当前移动方向相关;
    所述定向天线单元,可发射移动设备通讯用电磁波,被配置为根据所述天线调节方向,将天线方向从第一方向调节到第二方向,使定向天线单元在所述第二方向上发射的电磁波强度大于在所述第一方向上发射的电磁波强度。
  2. 根据权利要求1所述的移动设备,其中,所述方向传感器包括陀螺仪和/或加速度传感器。
  3. 根据权利要求1或2所述的移动设备,其中,所述信号处理单元还包括信号检测单元,
    所述信号检测单元被配置为,检测移动方向上的信号小区的信号,当检测到该方向的信号小区的信号后,所述信号处理单元向所述定向天线单元发送天线调节指令,所述定向天线单元根据所述天线调节指令以及所述天线调节方向,将天线方向从第一方向调节到第二方向。
  4. 根据权利要求1-3任一所述的移动设备,所述信号检测单元进一步被配置为,当检测到所述信号调节方向上的信号小区的信号后,进一步判断该信号小区的信号强度;
    当信号强度大于预设强度阈值时,所述信号处理单元向所述定向天线单元发送所述天线调节指令。
  5. 根据权利要求1-4任一所述的移动设备,所述移动设备还包括定位装置,
    所述定位装置检测所述移动设备的当前位置;
    所述信号处理单元根据所述当前位置以及所述当前移动方向确定所述定向天线单元的天线调节方向。
  6. 根据权利要求5所述的移动设备,其中,
    所述信号处理单元根据所述移动设备的当前位置以及所述当前移动方向 确定所述移动设备准备进入的下一个信号小区;
    确定该下一个信号小区的基站的位置;
    基于该基站的位置确定所述定向天线单元的天线调节方向。
  7. 根据权利要求6所述的移动设备,其中,
    所述信号处理单元根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备可能进入第一信号小区和第二信号小区,所述信号处理单元中的信号检测单元检测所述第一信号小区以及第二信号小区的信号强度,并确定信号强度最大的信号小区;
    将所述信号强度最大的信号小区确定为所述移动设备准备进入的下一个信号小区。
  8. 根据权利要求7所述的移动设备,其中,
    所述信号处理单元包括信号接收器,信号调制器,
    所述信号接收器获取所述天线调节方向的信息;
    所述信号调制器将该天线调节方向信息从数字信号调制为所述模拟电信号。
  9. 根据权利要求1-8任一所述的移动设备,其中,
    所述定向天线单元为相控阵定向天线或超材料天线中的至少一个。
  10. 根据权利要求1-9任一所述的移动设备,其中,当所述移动设备沿着当前移动方向移动时,所述定向天线单元比较移动方向与天线方向的角度值,判断是否需要进行方向校正,若多次采样的累计误差大于所述定向天线单元预设的一个角度值,则确定天线调节的功能需要被校正。
  11. 一种移动设备天线调节方法,所述方法包括:
    检测所述移动设备的当前移动方向;
    根据所述当前移动方向确定所述移动设备中的定向天线单元的天线调节方向,所述天线调节方向与所述当前移动方向相关;
    根据所述天线调节方向,将所述天线的方向从第一方向调节到第二方向。
  12. 根据权利要求11所述的方法,其中,所述方向传感器包括陀螺仪和/或加速度传感器。
  13. 根据权利要求11或12所述的方法,其中,所述方法还包括:
    响应于所述天线方向从第一方向调节到第二方向,与第二方向上的信号小区建立连接并进行通信。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    基于所述天线调节方向,检测该方向上的信号小区的信号;
    当检测到该方向的信号小区的信号后,向所述定向天线单元发送天线调节指令;
    根据所述天线调节方向,将所述天线的方向从第一方向调节到第二方向的步骤包括:
    根据所述天线调节指令以及所述天线调节方向,将天线方向从第一方向调节到第二方向。
  15. 根据权利要求14所述的方法,所述方法还包括:
    当检测到所述信号调节方向上的信号小区的信号后,进一步判断该信号小区的信号强度;
    当检测到该方向的信号小区的信号后,向所述定向天线单元发送天线调节指令的步骤包括:
    当信号强度大于预设强度阈值时,向所述定向天线单元发送所述天线调节指令。
  16. 根据权利要求12-15任一所述的方法,所述方法还包括:
    检测所述移动设备的当前位置;
    根据所述当前移动方向确定所述移动设备中的定向天线单元的天线调节方向的步骤包括:
    根据所述当前位置以及所述当前移动方向确定所述定向天线单元的天线调节方向。
  17. 根据权利要求16所述的方法,其中,
    所述根据所述当前位置以及所述当前移动方向确定所述定向天线单元的天线调节方向的步骤包括:
    根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备准备进入的下一个信号小区;
    确定该下一个信号小区的基站的位置;
    基于该基站的位置确定所述定向天线单元的天线调节方向。
  18. 根据权利要求17所述的方法,其中,
    所述根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备准备进入的下一个信号小区的步骤包括:
    根据所述移动设备的当前位置以及所述当前移动方向确定所述移动设备可能进入第一信号小区和第二信号小区;
    检测所述第一信号小区以及第二信号小区的信号强度,并确定信号强度最大的信号小区;
    将所述信号强度最大的信号小区确定为所述移动设备准备进入的下一个信号小区。
  19. 根据权利要求12-18任一所述的方法,其中,
    所述定向天线单元为相控阵定向天线或超材料天线中的至少一种。
  20. 根据权利要求11-19任一所述的方法,其中,当所述移动设备沿着当前移动方向移动时,所述定向天线单元比较移动方向与天线方向的角度值,判断是否需要进行方向校正,若多次采样的累计误差大于所述定向天线单元预设的一个角度值,则确定天线调节的功能需要被校正。
PCT/CN2017/102575 2017-04-14 2017-09-21 移动设备以及移动设备定向天线调节方法 WO2018188274A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17844649.8A EP3611798A4 (en) 2017-04-14 2017-09-21 MOBILE DEVICE AND ASSOCIATED METHOD FOR ADJUSTING THE DIRECTIONAL ANTENNA
US15/757,559 US10939351B2 (en) 2017-04-14 2017-09-21 Mobile device and directional antenna adjustment method of mobile device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710245745.8 2017-04-14
CN201710245745.8A CN108736161B (zh) 2017-04-14 2017-04-14 移动设备以及移动设备定向天线调节方法

Publications (1)

Publication Number Publication Date
WO2018188274A1 true WO2018188274A1 (zh) 2018-10-18

Family

ID=63792179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102575 WO2018188274A1 (zh) 2017-04-14 2017-09-21 移动设备以及移动设备定向天线调节方法

Country Status (4)

Country Link
US (1) US10939351B2 (zh)
EP (1) EP3611798A4 (zh)
CN (1) CN108736161B (zh)
WO (1) WO2018188274A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294772B (zh) * 2020-02-24 2022-12-16 无锡职业技术学院 一种基于智能天线调节的车载点对点通信系统及其方法
CN113407423A (zh) * 2021-06-16 2021-09-17 维沃移动通信有限公司 信号强度显示方法和信号强度显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158208A (zh) * 1995-05-24 1997-08-27 诺基亚电信公司 进行更快速越区切换的方法和一种蜂窝无线系统
CN1233376A (zh) * 1996-10-10 1999-10-27 垓技术公司 使用地理位置数据的通信系统
CN1333978A (zh) * 1998-11-24 2002-01-30 艾利森电话股份有限公司 具有用户单元自动重分配的方法和通信系统
EP1553789A2 (en) * 2003-12-23 2005-07-13 TeliaSonera Finland Oyj Data transmission at sea
CN1675859A (zh) * 2003-01-21 2005-09-28 富士通株式会社 适应控制装置
CN1729633A (zh) * 2002-10-28 2006-02-01 高通股份有限公司 利用速度和位置信息在无线通信系统内选择操作模式
CN101069446A (zh) * 2005-09-13 2007-11-07 京瓷无线公司 控制天线方向图的系统和方法
CN101466132A (zh) * 2007-12-20 2009-06-24 大唐移动通信设备有限公司 高速环境下的用户换小区接入方法及系统
CN103748799A (zh) * 2011-08-10 2014-04-23 三星电子株式会社 用于无线通信系统中的波束锁定的装置及方法
CN103812542A (zh) * 2014-01-21 2014-05-21 浙江大学 一种智能交通中基于位置传感器的波束成型方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2147753C1 (ru) * 1994-06-03 2000-04-20 Телефонактиеболагет Лм Эрикссон Калибровка антенной решетки
JPH10126135A (ja) * 1994-09-09 1998-05-15 Software Sekkei:Kk ビームアンテナの方向測定方法と方向測定装置及びビームアンテナの方向制御装置
KR100277101B1 (ko) * 1998-02-17 2001-01-15 윤종용 코드분할다중접속네트워크내의교환국간하드핸드오프수행방법
US6792290B2 (en) * 1998-09-21 2004-09-14 Ipr Licensing, Inc. Method and apparatus for performing directional re-scan of an adaptive antenna
US8326257B2 (en) 2002-10-28 2012-12-04 Qualcomm Incorporated Utilizing speed and position information to select an operational mode in a wireless communication system
JP2004282476A (ja) * 2003-03-17 2004-10-07 Sharp Corp アンテナ装置、およびアンテナ装置を備えた電子機器
US6972724B1 (en) * 2004-06-09 2005-12-06 Qualcomm Incorporated Self-correcting mobile antenna control system and method
US7996034B1 (en) * 2005-01-28 2011-08-09 National Semiconductor Corporation Cellular telephone handset with increased reception sensitivity and reduced transmit power levels
JP4869802B2 (ja) * 2006-06-19 2012-02-08 株式会社エヌ・ティ・ティ・ドコモ 送信装置及び通信方法
US9147935B2 (en) * 2011-08-10 2015-09-29 Qualcomm Incorporated Maintenance of mobile device RF beam
KR101828837B1 (ko) * 2011-09-29 2018-03-30 삼성전자주식회사 빔 포밍을 이용하는 무선 통신 시스템에서 짧은 핸드오버 지연을 위한 방법 및 장치
ITRM20110609A1 (it) * 2011-11-17 2013-05-18 St Ericsson Sa Digital class-d amplifier and digital signal processing method
US20150116162A1 (en) * 2013-10-28 2015-04-30 Skycross, Inc. Antenna structures and methods thereof for determining a frequency offset based on a differential magnitude
US9615265B2 (en) * 2013-11-07 2017-04-04 Telefonaktiebolaget L M Ericsson (Publ) Network node and method for adjusting antenna parameters in a wireless communications system
US9859972B2 (en) * 2014-02-17 2018-01-02 Ubiqomm Llc Broadband access to mobile platforms using drone/UAV background
US20160087336A1 (en) * 2014-09-24 2016-03-24 Alexander Maltsev Systems and methods for optimizing wireless communication
CN204441445U (zh) * 2015-04-03 2015-07-01 京东方科技集团股份有限公司 移动显示终端
CN105515689B (zh) * 2015-11-26 2018-08-21 江苏中兴微通信息科技有限公司 一种智能移动终端辅助定向天线方向调校的系统及方法
CN105635974A (zh) * 2016-03-17 2016-06-01 南京邮电大学 一种基于方向决策的动态路径节点定位方法
CN107733534A (zh) * 2017-08-29 2018-02-23 深圳市盛路物联通讯技术有限公司 一种天线控制方法及电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158208A (zh) * 1995-05-24 1997-08-27 诺基亚电信公司 进行更快速越区切换的方法和一种蜂窝无线系统
CN1233376A (zh) * 1996-10-10 1999-10-27 垓技术公司 使用地理位置数据的通信系统
CN1333978A (zh) * 1998-11-24 2002-01-30 艾利森电话股份有限公司 具有用户单元自动重分配的方法和通信系统
CN1729633A (zh) * 2002-10-28 2006-02-01 高通股份有限公司 利用速度和位置信息在无线通信系统内选择操作模式
CN1675859A (zh) * 2003-01-21 2005-09-28 富士通株式会社 适应控制装置
EP1553789A2 (en) * 2003-12-23 2005-07-13 TeliaSonera Finland Oyj Data transmission at sea
CN101069446A (zh) * 2005-09-13 2007-11-07 京瓷无线公司 控制天线方向图的系统和方法
CN101466132A (zh) * 2007-12-20 2009-06-24 大唐移动通信设备有限公司 高速环境下的用户换小区接入方法及系统
CN103748799A (zh) * 2011-08-10 2014-04-23 三星电子株式会社 用于无线通信系统中的波束锁定的装置及方法
CN103812542A (zh) * 2014-01-21 2014-05-21 浙江大学 一种智能交通中基于位置传感器的波束成型方法

Also Published As

Publication number Publication date
US10939351B2 (en) 2021-03-02
CN108736161A (zh) 2018-11-02
CN108736161B (zh) 2021-10-01
EP3611798A1 (en) 2020-02-19
US20190028949A1 (en) 2019-01-24
EP3611798A4 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
EP2614555B1 (en) Configuring antenna arrays of mobile wireless devices using motion sensors
US11032859B2 (en) Electronic device for controlling data communication of external electronic device and communication system
KR102154326B1 (ko) 무선통신 시스템에서 빔포밍 방법 및 장치
WO2006049710A2 (en) Method and apparatus for preventing communication link degradation due to the disengagement or movement of a self-positioning transceiver
CN103684553A (zh) 通信装置、通信控制方法和程序
US20140113591A1 (en) Authentication method between communication devices
WO2021063523A1 (en) Polarization aligned transmission towards a receiver device
WO2018188274A1 (zh) 移动设备以及移动设备定向天线调节方法
CN113676232A (zh) 天线系统以及操作天线系统的方法
CN113676233A (zh) 天线系统以及操作天线系统的方法
JP2001136565A (ja) 移動体通信装置
JP2016144194A (ja) 無線通信装置および無線通信システム、並びに無線通信方法
JP5372055B2 (ja) 無線通信装置およびビーム制御方法
CN112666514A (zh) 用于检测到达角的系统及位置检测系统
KR101822955B1 (ko) 송수신부 위상배열 안테나를 이용한 팬 빔 스캐닝 방법
KR20190141282A (ko) 비행체용 무선 전력 송신장치 및 그 제어방법
CN111430912A (zh) 一种相控阵天线的控制系统和方法
KR101888092B1 (ko) LoRa 통신을 이용한 비가시거리 통신지역에서의 사물 추적 시스템 및 방법
US8600306B2 (en) Wireless communication control device
KR102429917B1 (ko) 이종 안테나 장치의 신호 측정 장치 및 방법
CN112152689A (zh) 波束发送控制方法、装置及发送端
US20210336671A1 (en) Method of operation for an antenna array of a vehicle
KR20170073531A (ko) 단말 회전시 빔 트래킹 방법 및 이를 포함하는 단말
KR20170073530A (ko) 단말 이동시 빔 트래킹 방법 및 이를 포함하는 단말
US20200137713A1 (en) Method and system for beam assisted positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE