WO2018188171A1 - 无人机测绘、作业和监控联合工作方法及系统、计算机可读存储介质 - Google Patents

无人机测绘、作业和监控联合工作方法及系统、计算机可读存储介质 Download PDF

Info

Publication number
WO2018188171A1
WO2018188171A1 PCT/CN2017/085608 CN2017085608W WO2018188171A1 WO 2018188171 A1 WO2018188171 A1 WO 2018188171A1 CN 2017085608 W CN2017085608 W CN 2017085608W WO 2018188171 A1 WO2018188171 A1 WO 2018188171A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
mapping
monitoring
gps positioning
unmanned aerial
Prior art date
Application number
PCT/CN2017/085608
Other languages
English (en)
French (fr)
Inventor
曹雷
Original Assignee
珠海市双捷科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市双捷科技有限公司 filed Critical 珠海市双捷科技有限公司
Publication of WO2018188171A1 publication Critical patent/WO2018188171A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Definitions

  • the invention relates to the technical field of drones, in particular to a method and system for joint work of mapping, operation and monitoring of a drone, and a computer readable storage medium.
  • the present invention is based on a Chinese patent application filed on Apr. 13, 2017, the entire disclosure of which is hereby incorporated by reference.
  • the degree of agricultural mechanization continues to increase.
  • the application of drones in agriculture is mainly focused on spraying.
  • the drone spraying significantly reduces the labor intensity of the operator, reduces the harm of the pesticide to the operator, has high environmental applicability, fast operation speed, saves pesticides, and reduces pesticide residues and Environmental pollution.
  • the RTK handheld ground mapping terminal can receive GPS positioning information and differential correction information sent by the RTK base station.
  • the RTK base station has fixed coordinates, and the RTK base station and the RTK handheld ground mapping terminal simultaneously receive signals of the same satellite, and transmit differential correction information such as measured carrier phase observation value, pseudorange observation value, and base station coordinates to the RTK handheld ground mapping in real time. end.
  • the RTK handheld ground mapping end uses the GPS positioning information and differential correction information to calculate the exact position of the RTK handheld ground mapping terminal.
  • the RTK handheld ground mapping terminal requires manual hand-held mapping equipment, and completes surveying and mapping on foot. It has shortcomings such as long mapping time and large manpower consumption. It is especially vulnerable to terrain and surveying area and cannot meet the needs of large-scale surveying and mapping.
  • a drone when sprayed, it generally requires a flying hand operation, which is highly dependent on the flying hand, and is limited by the skill and working area of the flying hand, and cannot meet the needs of automatic spraying of the large farm.
  • the farm area is relatively large.
  • the number of farms is 2,109,303, with an average area of 9.95 hectares.
  • the number of farms is 1,220,000, with an average area of 14.27 hectares.
  • the number of farms is 134,148 and the average area is 143.75 hectares.
  • existing drone spray solutions cannot achieve efficient, automated sprays.
  • the ground personnel need to maintain a safe distance from the spraying site.
  • unmanned fishing In addition, in the field of delivery, unmanned fishing, etc., it is also necessary to use unmanned vehicles, such as driverless cars, unmanned vehicles, unmanned submarines.
  • a first object of the present invention is to provide a method for the joint work of drone mapping, operation and monitoring, such as automatic spraying on large farms.
  • a second object of the present invention is to provide a system suitable for use in the joint mapping, operation and monitoring of drones such as automatic spraying on large farms.
  • a third object of the present invention is to provide a computer readable storage medium suitable for use in the joint work of drone mapping, operations and monitoring, such as automatic spraying on large farms.
  • the method for joint mapping, operation and monitoring of the UAV comprises: selecting a calibration point located at a boundary of the work area and around the obstacle according to the map; releasing the first drone, Collecting GPS positioning information on the school location, receiving differential correction information sent by the RTK base station, performing RTK differential correction on the GPS positioning information, obtaining corrected position information, and transmitting the corrected position information to the command end; Position information, set the planned route; release the second drone, automatically drive and work according to the planned route; release the third drone connected to the tethering device, and the third drone is used to monitor the second drone Homework.
  • transmitting the corrected position information to the command end includes: transmitting the corrected position information to the command end by using a wireless signal.
  • a preferred technical solution is to transmit the planned route to the second drone by wireless signals before releasing the second drone; after releasing the second drone, acquire GPS positioning information, and receive the transmission by the RTK base station.
  • the differential correction information is subjected to RTK differential correction on the GPS positioning information to obtain an actual route of the second drone, and the actual route is corrected according to the planned route.
  • the drone is an unmanned aerial vehicle; releasing the second drone, automatically driving according to the planned route and performing the work includes: setting the second drone fixed-going flight and the breakpoint continuous spraying, releasing At least one second drone.
  • the monitoring operation includes: recording the recording and data when the second drone is traveling.
  • the present invention also provides a UAV mapping, operation and monitoring joint working system, comprising: a command unit for selecting a school located at a boundary of a work area and an obstacle according to a map on the command end. a mapping unit configured to acquire GPS positioning information on a calibration point on the first drone, and receive differential correction information sent by the RTK base station, perform RTK differential correction on the GPS positioning information, and obtain corrected position information.
  • the command unit is further configured to set a planned route according to the corrected position information on the command end; and the working unit is configured to control the second drone to automatically travel according to the planned route and Performing a work; a monitoring unit for monitoring the operation of the second drone on the third drone connected to the tethering device.
  • mapping unit is specifically configured to transmit the corrected position information to the command end by using a wireless signal.
  • command unit is further configured to transmit the planned route to the second drone by wireless signals before the second drone is released;
  • working unit is further configured to acquire GPS positioning information, and receive the RTK base station to send
  • the differential correction information is subjected to RTK differential correction of the GPS positioning information to obtain an actual route of the second drone, and the actual route is corrected according to the planned route.
  • the drone is an unmanned aerial vehicle; the working unit is further configured to set a second drone fixed-height flight and a breakpoint continuous spray to control at least one second drone.
  • the monitoring unit is further configured to record recordings and data when the second drone is traveling.
  • the present invention provides a computer readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor at the command end, is configured to select a school located at a job ground boundary and an obstacle according to the map.
  • a computer program is used to acquire GPS positioning information on a school point when receiving a processor of the first drone, and receives differential correction information sent by the RTK base station, and performs RTK differential correction on the GPS positioning information to obtain a correction.
  • the processor of the command end can also set the planned route according to the corrected position information on the command end when the computer program executes the computer program; the computer program is used by the second drone
  • the processor is also used to control the second drone to automatically travel and perform the work according to the planned route; when the computer program is executed by the processor of the third drone, the operation of monitoring the second drone is realized, in the third no.
  • the man-machine is connected to the mooring device.
  • a preferred solution is for transmitting the corrected position information to the command terminal via the wireless signal when the computer program is executed by the processor of the first drone.
  • the program is also transmitted to the second drone by wireless signals before the second drone is released; the computer program is executed by the processor of the second drone and is also used for Obtain GPS positioning information, and receive differential correction information sent by the RTK base station, perform RTK differential correction on the GPS positioning information, obtain an actual route of the second drone, and adjust the actual route according to the planned route.
  • the drone is an unmanned aerial vehicle; the computer program is executed by the processor of the second drone for setting the second drone's fixed flight and the breakpoint continuous spraying, and controlling at least one second unmanned person machine.
  • the computer program is executed by the processor of the third drone and is also used to record the recording and data when the second drone is traveling.
  • the first drone is used for mapping before using the second drone for spraying and the like.
  • accurate position information such as position coordinates of the calibration point can be obtained by correction, and the position error range can be in the range of 1 cm.
  • the first drone can automatically complete surveying, shortening the surveying time and reducing manpower consumption.
  • the second drone automatically travels according to the planned route for spraying, without the need for flying hands, and can achieve efficient and automatic spraying, especially for large-scale spraying operations.
  • the third drone is used to monitor the spraying operation of the second drone.
  • the third drone can issue an alarm and control the second.
  • the drone stops spraying or adjusts the route of the second drone to ensure the safety of the ground personnel.
  • the third drone is connected to the tethering device, can effectively provide power to the third drone, and quickly transmit the monitoring information to the ground monitoring station in real time.
  • the corrected position information is transmitted to the command end through the wireless signal, and the first drone can be transmitted near the command end, and the wireless signal can be a short-range wireless signal, such as WiFi. Wait.
  • the corrected position signal can also be transmitted by the first drone to the RTK base station, and then transmitted by the RTK base station to the command end via wireless signals such as WiFi to realize remote transmission.
  • the planned route is received, and after the take-off, the planned route is automatically driven.
  • the second drone can be brought close to the command end and transmitted through a short-range low-cost wireless signal such as WiFi.
  • the planned route can also be transmitted by the command terminal to the RTK base station through wireless signals such as WiFi, and then transmitted to the second drone by the RTK base station to realize remote transmission.
  • the differential correction information sent by the RTK base station is received on the second drone, and combined with the GPS positioning information, an accurate actual route is obtained through calculation, and the actual route is corrected to match the planned route. Precise control of the actual route of the second drone is beneficial to make the spray more uniform while avoiding accidents.
  • the second drone when the drone is an unmanned aerial vehicle, setting the second drone's fixed-high flight and breakpoint continuous spraying is beneficial to keep the second drone flying stably and evenly sprayed.
  • the use of multiple second drones for joint flight is particularly suitable for spraying on large farms, which improves the efficiency of spraying and also facilitates the rational setting of planned routes.
  • the recording and data of the second drone can be recorded on the third drone, which can be used for subsequent backup and analysis.
  • the surveying unit can realize position information acquisition on the first drone, automatically complete surveying, shorten the surveying time, and reduce manpower consumption.
  • the operation unit controls the second drone to automatically travel according to the planned route set by the command unit, which can realize efficient and automatic spraying, and is especially suitable for spraying on large farms.
  • the third drone is used to monitor the spraying operation of the second drone, so that the ground personnel can maintain a safe distance from the spraying site.
  • the computer readable storage medium of the present invention can be read by the processor of the control terminal, the first drone, the second drone, and the third drone to implement the joint operation method described above.
  • Fig. 1 is a flow chart showing an embodiment of a combined working method for mapping, operation and monitoring of a drone according to the present invention.
  • FIG. 2 is a schematic view showing the operation of an embodiment of the combined working method of the UAV mapping, operation and monitoring of the present invention.
  • FIG. 3 is a structural block diagram of an embodiment of a combined working system for surveying, mapping, and monitoring of a drone of the present invention.
  • the combined working method of the UAV mapping, operation and monitoring of the invention is mainly applied to the agricultural field, especially the planting industry and the forestry, for example, on the working ground of the defined range.
  • the drone of the present invention is not limited to an unmanned aerial vehicle, and may also include a driverless car, an unmanned ship, and an unmanned submersible. Therefore, the drone of the present invention may include the ability to be in the water. , land or air, any kind of transportation in the environment.
  • the combined UAV mapping, operation and monitoring work of the present invention can be applied to applications such as large-scale farm spraying drugs, and can also be applied to applications such as delivery express delivery, deep sea salvage, etc., such as using unmanned aircraft, unmanned driving. Cars and other express delivery, or the use of unmanned boats, unmanned submersibles, etc. for deep sea salvage work, so the operation of the present invention can be delivered delivery, salvage and other operations.
  • delivery express delivery deep sea salvage
  • unmanned aircraft unmanned driving.
  • Cars and other express delivery, or the use of unmanned boats, unmanned submersibles, etc. for deep sea salvage work so the operation of the present invention can be delivered delivery, salvage and other operations.
  • the present invention will be described in detail by taking a spraying operation using an unmanned aerial vehicle as an example.
  • step S101 is executed to select a school point on the ground boundary of the job and around the obstacle according to the map.
  • a school point is selected at the job ground boundary for defining the flight range. For example, for a rectangular work floor, four vertices of a rectangle may be selected as a calibration point; for an irregularly shaped work ground, a plurality of vertices of the shape may be selected as a calibration point. If there are obstacles in the ground area of the work, you need to select the school points around the obstacles to avoid accurate avoidance during flight. For example, if there is a barn in the working ground area, you can select a school location around the barn.
  • Step S102 is performed to release the first drone 201, collect GPS positioning information at the calibration point, receive differential correction information sent by the RTK base station 203, perform RTK differential correction on the GPS positioning information, and obtain corrected position information;
  • the corrected position information is transmitted to the command terminal 202.
  • step S102 the first drone 201 is lifted off and quickly reaches the calibration point.
  • the differential correction information transmitted by the RTK base station 203 is received on the first drone 201, and combined with the GPS positioning information received on the first drone 201, a real-time accurate calibration point can be obtained by calculation. coordinate.
  • the transmission of the differential correction information can be transmitted by digital transmission stations installed on the first drone 201 and the RTK base station 203, respectively.
  • the first drone 201 can fly automatically according to the previously set surveying route, and automatically complete the surveying. If necessary, only a small amount of operation of the flying hand is required to assist the first drone 201 to locate on the proofreading point, and the mapping can be completed.
  • the first drone 201 flies back to the accessory of the command terminal 202, and transmits the position information to the command terminal 202 through the wireless signal, and the wireless signal can adopt a low-cost fast WiFi signal suitable for short-range transmission.
  • the corrected position signal may also be transmitted by the first drone to the RTK base station, and then transmitted by the RTK base station to the command end for remote transmission.
  • step S103 is executed to set the planned route based on the corrected position information.
  • the corrected position information sent by the first drone 201 is received on the command end 202, and the planned route is automatically set in combination with the existing electronic map information, so that the planned route is reasonable within the working ground range. Arrange and avoid obstacles.
  • the command terminal 202 can be a desktop computer or a mobile terminal such as a mobile phone or a tablet.
  • step S104 is executed to release the second drone 204, automatically fly according to the planned route and perform the spraying operation; release the third drone 205 connected to the mooring device 206, and the third drone 205 is used for monitoring The spraying operation of the two drones 204.
  • the planned route sent by the commander 202 is received on the second drone 204, and the planned route preferably uses a low-cost, fast WiFi signal suitable for short-range transmission. Transfer.
  • the planned route can also be transmitted from the command terminal to the RTK base station, and then transmitted by the base station to the second drone to realize remote transmission.
  • the differential correction information transmitted by the RTK base station 203 is received on the second drone 204, and combined with the GPS positioning received on the second drone 204.
  • the signal is calculated to obtain an accurate actual route. Correct the actual route to match the planned route.
  • the differential correction information is transmitted through a digital transmission station provided on the second drone 204 and the RTK base station 203, respectively.
  • the second drone 204 can be set to set high flight and breakpoint continuous spraying.
  • a plurality of second drones 204 can also be used in combination to improve the spraying efficiency.
  • the third drone 205 is released before, simultaneously or after the second drone 204 is released.
  • the third drone 205 is coupled to the mooring device 206, and the lower end of the mooring device 206 includes a control station 207 located on the ground.
  • the mooring device 206 is capable of effectively providing power to the third drone 205 and is capable of quickly transmitting monitoring information to the ground monitoring station 207 in real time.
  • the third drone 205 can issue an alarm, control the second drone 204 to stop spraying or adjust the second drone 204.
  • the route ensures the safety of the ground personnel.
  • the recording and data of the second drone 204 during flight can also be recorded for backup and the like.
  • the UAV mapping, spraying and monitoring joint operation system includes a mapping unit 301, a command unit 302, a work unit 303, and a monitoring unit 304.
  • the command unit 302 can be a program running on the command end for selecting a school point located on the ground boundary of the work and around the obstacle according to the map on the command end.
  • the command unit 302 selects a school location located at the ground boundary of the job and can be used to define the flight range when designing the route. Selecting a school location around an obstacle can be used to accurately avoid obstacles when designing a route.
  • the command unit 302 can automatically select a school location according to the information of the electronic map.
  • the mapping unit 301 can be a program running on the first drone for collecting GPS positioning information on the calibration point on the first drone, and receiving differential correction information sent by the RTK base station, and performing RTK difference on the GPS positioning information. Correction, obtaining corrected position information; transmitting the corrected position information to the command end.
  • the mapping unit 301 maps the work floor after the first drone is lifted off.
  • the mapping unit 301 receives the differential signal sent by the RTK base station, and combines the received GPS positioning signal to obtain accurate coordinate coordinates of the calibration point in real time.
  • the command unit 302 can send the school location information to the surveying unit 301, and the first drone can fly to each school location according to the preset survey route, and automatically complete the surveying.
  • the mapping unit 301 transmits the corrected position information to the command terminal through the wireless signal.
  • the command unit 302 is further configured to set a planned route based on the corrected position information on the command end.
  • the command unit 302 on the command end receives the corrected position information transmitted by the surveying unit 301, and automatically sets the planned route accordingly.
  • the working unit 303 may be a program running on the second drone for controlling the second drone to automatically fly according to the planned route and perform the spraying operation.
  • the job unit 303 receives the planned route transmitted by the command unit 302. In order to further improve the navigation accuracy, the working unit 303 receives the differential correction information sent by the RTK base station, and combines the received GPS positioning information to obtain an accurate actual route through calculation, and corrects the actual route to match the planned route.
  • the working unit 303 can be set, for example, to set the second drone to a high flight and a breakpoint.
  • the working unit 303 can be disposed on the plurality of second drones to enable the plurality of second drones to fly in combination, thereby improving the spraying efficiency.
  • the monitoring unit 304 may be a program running on the third drone for monitoring the spraying operation of the second drone on the third drone connected to the mooring device.
  • the third drone is released before, simultaneously or after the second drone is released.
  • the monitoring unit 304 is connected to the monitoring station on the ground through the tethering device, and transmits the monitoring information to the ground monitoring station in real time, and can also record the recording and data of the second drone during flight.
  • the monitoring unit 304 can issue an alarm, control the second drone to stop spraying or adjust the route of the second drone.
  • the computer readable storage medium of the present invention may be a computer program, such as computer instructions written in code, which may be executed when the processor reads the computer program.
  • the calibration point located at the job ground boundary and around the obstacle may be selected according to the map, and the planned route may be set according to the corrected position information.
  • the processor of the first drone executes the computer program, the GPS positioning information on the calibration point can be collected, and the differential correction information sent by the RTK base station is received, and the GPS positioning information is subjected to RTK differential correction to obtain the corrected Location information, and the corrected location information can be transmitted to the command terminal.
  • the second drone can be controlled to automatically fly according to the planned route and perform the spraying operation.
  • the computer program is executed by the processor of the third drone, it is possible to monitor the spraying operation of the second drone, and connect the third drone to the mooring device.
  • the invention can be mainly applied to the spraying work on large farms, and can also be applied to work in a plurality of scenes such as express delivery and deep sea salvage.
  • the invention can use the wireless communication technology to control the joint operation of a plurality of unmanned aerial vehicles, for example, before using the second drone to spray the medicine, using the first drone to perform surveying and mapping, so that the first drone automatically completes the surveying and drawing, and shortens the surveying and mapping time.
  • the invention can also enable the second drone to automatically spray according to the planned route, so that no flying hand operation is required, and efficient and automatic spraying can be realized, and is particularly suitable for spraying on a large farm.
  • the third drone is used to monitor the spraying operation of the second drone, and when the working ground person or the second drone malfunctions and deviates from the planned waterway, the third drone can be Issue an alarm, control the second drone to stop spraying or adjust the route of the second drone to ensure the safety of the ground personnel.
  • the third drone is connected to the tethering device, can effectively provide power to the third drone, and quickly transmit the monitoring information to the ground monitoring station in real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Catching Or Destruction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

提供一种无人机测绘、作业和监控联合工作方法及系统、计算机可读存储介质,该方法包括根据地图选取位于作业区域边界以及障碍物周围的校位点;释放第一无人机,在校位点上采集GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到校正后的位置信息;将校正后的位置信息传输至指挥端;根据校正后的位置信息,设定计划路线;释放第二无人机,按计划航线自动行驶并进行作业;释放与系留装置连接的第三无人机,第三无人机用于监控第二无人机的作业。该系统用于执行上述方法,包括测绘单元、指挥单元、作业单元和监控单元,该存储介质用于被处理器执行时实现上述方法。

Description

无人机测绘、作业和监控联合工作方法及系统、计算机可读存储介质 技术领域
本发明涉及无人机技术领域,具体是一种无人机测绘、作业和监控联合工作的方法及系统、计算机可读存储介质。本发明是基于申请日为2017年4月13日,申请号为CN201710239148.4的中国发明专利申请,该申请的内容引入本文作为参考。
背景技术
随着农业科技的发展,农业机械化程度不断提高。目前,无人机在农业领域的应用主要集中在喷药上。无人机喷药与传统的人工喷药作业相比,显著减轻了作业者的劳动强度,降低了农药对作业人员的危害,环境适用性高,作业速度快,节省农药,减少了农药残留和环境污染。
在使用无人机进行喷药前,一般需要对作业地面进行测绘,获得精确的位置信息。目前较先进的技术是通过RTK手持地面测绘端进行测绘,再结合无人机进行喷药。其中,RTK手持地面测绘端能够接收GPS定位信息以及RTK基站发送的差分校正信息。RTK基站具有固定坐标,RTK基站与RTK手持地面测绘端同时接收相同卫星的信号,并实时地将测量的载波相位观测值、伪距观测值、基准站坐标等差分校正信息发送至RTK手持地面测绘端。RTK手持地面测绘端利用由GPS定位信息以及差分校正信息,可以计算得到RTK手持地面测绘端的精确位置。RTK手持地面测绘端需要人工手持测绘设备,步行完成测绘,存在测绘时间长、人力消耗大等缺点,尤其容易受地形和测绘面积限制,不能满足大农场测绘的需要。
目前无人机进行喷药时,一般需要飞手操作,对飞手的依赖性很大,受限于飞手的技术和作业面积,无法满足大农场自动化喷药的需要。对于人口密度较低的国家或地区,农场面积相对较大,例如在美国,农场数量为2109303个,平均面积为9.95公顷;又例如在欧盟,农场数量为12200000个,平均面积为14.27公顷;在澳大利亚,农场数量为134148个,平均面积为143.75公顷。对于大农场,现有的无人机喷药方案,无法实现高效、自动化喷药。
此外,在无人机喷药时,为了防止药物对人体的伤害,地面人员需要与喷药现场保持安全距离。为了避免无人机喷向地面人员或地面人员误入喷药现场,还需对无人机的喷药作业进行监控。
另外,在派送快递、无人打捞等领域,也需要使用无人驾驶的交通工具,如无人驾驶汽车、无人驾驶船、无人驾驶潜艇等。
技术问题
本发明的第一目的是提供一种适用于诸如大农场自动喷药的无人机测绘、作业和监控联合工作的方法。
本发明的第二目的是提供一种适用于诸如大农场自动喷药的无人机测绘、作业和监控联合工作的系统。
本发明的第三目的是提供一种适用于诸如大农场自动喷药的无人机测绘、作业和监控联合工作的计算机可读存储介质。
技术解决方案
为了实现上述的第一目的,本发明提供的无人机测绘、作业和监控联合工作方法,包括:根据地图选取位于作业区域边界以及障碍物周围的校位点;释放第一无人机,在校位点上采集GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到校正后的位置信息;将校正后的位置信息传输至指挥端;根据校正后的位置信息,设定计划路线;释放第二无人机,按计划路线自动行驶并进行作业;释放与系留装置连接的第三无人机,第三无人机用于监控第二无人机的作业。
在一个优选的技术方案中,将校正后的位置信息传输至指挥端包括:将校正后的位置信息通过无线信号传输至指挥端。
一个优选的技术方案是,在释放第二无人机之前,将计划路线通过无线信号传输到第二无人机;在释放第二无人机之后,获取GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到第二无人机的实际路线,根据计划路线校正实际路线。
一个优选的技术方案是,无人机为无人驾驶航空器;释放第二无人机,按计划路线自动行驶并进行作业包括:设定第二无人机定高飞行和断点续喷,释放至少一个第二无人机。
一个优选的技术方案是,监控作业包括:存录第二无人机行驶时的录像和数据。
为实现本发明的第二目的,本发明还提供了无人机测绘、作业和监控联合工作系统,包括:指挥单元,用于在指挥端上根据地图选取位于作业区域边界以及障碍物周围的校位点;测绘单元,用于在第一无人机上实现采集校位点上的GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到校正后的位置信息;将校正后的位置信息传输至指挥端;指挥单元还用于在指挥端上根据校正后的位置信息,设定计划路线;作业单元,用于控制第二无人机按计划路线自动行驶并进行作业;监控单元,用于在与系留装置连接的第三无人机上实现监控第二无人机的作业。
一个优选的技术方案是,测绘单元具体用于将校正后的位置信息通过无线信号传输给指挥端。
一个优选的技术方案是,指挥单元还用于在第二无人机释放之前,将计划路线通过无线信号传输到第二无人机;作业单元还用于获取GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到第二无人机的实际路线,根据计划路线校正实际路线。
一个优选的技术方案是,无人机为无人驾驶航空器;作业单元还用于设定第二无人机定高飞行和断点续喷,控制至少一个第二无人机。
一个优选的技术方案是,监控单元还用于存录第二无人机行驶时的录像和数据。
为实现上述第三目的,本发明提供的计算机可读存储介质,其上存储有计算机程序,计算机程序被指挥端的处理器执行时,用于实现根据地图选取位于作业地面边界以及障碍物周围的校位点;计算机程序被第一无人机的处理器执行时,用于采集校位点上的GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到校正后的位置信息;将校正后的位置信息传输至指挥端;指挥端的处理器执行计算机程序时还可以在指挥端上根据校正后的位置信息,设定计划路线;计算机程序被第二无人机的处理器执行时还用于控制第二无人机按计划路线自动行驶并进行作业;计算机程序被第三无人机的处理器执行时实现监控第二无人机的作业,在第三无人机与系留装置连接。
一个优选的方案是,计算机程序被第一无人机的处理器执行时,用于将校正后的位置信息通过无线信号传输至指挥端。
进一步的,指挥端执行计算机程序时还用于在第二无人机释放之前,将计划路线通过无线信号传输到第二无人机;计算机程序被第二无人机的处理器执行还用于获取GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到第二无人机的实际路线,根据计划路线调整实际路线。
更进一步的,无人机为无人驾驶航空器;计算机程序被第二无人机的处理器执行用于设定第二无人机定高飞行和断点续喷,控制至少一个第二无人机。
更进一步的,该计算机程序被第三无人机的处理器执行还用于存录第二无人机行驶时的录像和数据。
有益效果
由上述方案可见,在使用第二无人机进行喷药等作业前,使用第一无人机进行测绘。在第一无人机上利用GPS定位信息和RTK基站发送的差分校正信息,通过校正能够获得精确的校位点的位置信息例如位置坐标,其位置误差范围可以在1cm范围内。第一无人机能够自动完成测绘,缩短了测绘时间,减少了人力消耗。第二无人机按照计划路线自动行驶进行喷药作业,无需飞手操作,可以实现高效、自动化喷药,尤其适用于大农场喷药作业。第三无人机用于监控第二无人机的喷药作业,当作业地面出现人员或第二无人机出现故障、偏离计划航道时,在第三无人机上可以发出警报、控制第二无人机停止喷药或调整第二无人机的路线,保证地面人员的安全。第三无人机与系留装置连接,能够有效地为第三无人机提供电力,且将监控信息实时快速地传输到地面监控站。
并且,在完成所有校位点的校正后,将校正后的位置信息通过无线信号传输给指挥端,可以使第一无人机靠近指挥端进行传输,无线信号可以是短程的无线信号,例如WiFi等。当第一无人机与指挥端相距较远时,校正后的位置信号还可以由第一无人机传输给RTK基站,再由RTK基站通过WiFi等无线信号传输给指挥端,实现远程传输。
此外,在第二无人机起飞前,接收计划路线,起飞后按计划路线自动行驶。计划路线传输时,可以使第二无人机靠近指挥端,通过短程的低价的无线信号,例如WiFi等进行传输。当第二无人机离指挥端较远时,计划路线还可以由指挥端通过WiFi等无线信号传输至RTK基站,再由RTK基站传输至第二无人机,实现远程传输。
为了进一步提高航行精确度,在第二无人机上接收RTK基站发送的差分校正信息,再结合GPS定位信息,通过计算获得精确的实际路线,并且校正实际路线,使之与计划路线相符。精确控制第二无人机的实际路线,有利于使喷药更加均匀,同时避免意外发生。
另外,在无人机为无人驾驶航空器是,设定第二无人机定高飞行和断点续喷,有利于保持第二无人机飞行稳定、喷药均匀。采用多个第二无人机联合飞行,特别适合于大农场的喷药作业,提高了喷药效率,同时也有利于合理地设置计划路线。
并且,在第三无人机上还可以存录第二无人机行驶时的录像和数据,可以用于后续的备份和分析等。
由于本发明的系统中,测绘单元可以在第一无人机上实现位置信息获取,自动完成测绘,缩短测绘时间,减少人力消耗。作业单元控制第二无人机按照指挥单元设好的计划路线自动行驶,可以实现高效、自动化喷药,尤其适用于大农场喷药。第三无人机用于监控第二无人机的喷药作业,让地面人员与喷药现场保持安全距离。
此外,本发明的计算机可读存储介质可以被控制端、第一无人机、第二无人机及第三无人机的处理器所读取,从而实现上述的联合作业方法。
附图说明
图1是本发明无人机测绘、作业和监控联合工作方法实施例的流程图。
图2是本发明无人机测绘、作业和监控联合工作方法实施例的一种工作情况下的工作示意图。
图3是本发明无人机测绘、作业和监控联合工作系统实施例的结构框图。
以下结合附图及实施例对本发明作进一步说明。
本发明的实施方式
本发明的无人机测绘、作业和监控联合工作方法,主要应用于农业领域,尤其是种植业和林业,例如实施在范围确定的作业地面上。需要说明的是,本发明的无人机并不限于无人驾驶航空器,还可以包括无人驾驶汽车、无人驾驶船、无人驾驶潜水器,因此本发明的无人机可以包括能够在水、陆、空任一种环境中作业的交通工具。
另外,本发明的无人机测绘、作业和监控联合工作方可以应用在诸如大型农场喷射药物的场合,也可以应用在诸如派送快递、深海打捞等场合,如使用无人驾驶航空器、无人驾驶汽车等进行快递的派送,或是使用无人驾驶船、无人驾驶潜水器等进行深海打捞的工作,因此本发明的作业可以是派送快递、打捞等作业。下面以使用无人驾驶航空器进行喷药作业为例对本发明进行详细说明。
下面结合图1和图2介绍本实施例的工作流程。
首先,执行步骤S101,根据地图在作业地面边界以及障碍物周围选取校位点。
在步骤S101中,根据现有的电子地图的信息,在作业地面边界处选择校位点,用于限定飞行范围。例如对于矩形的作业地面,可以选择矩形四个顶点作为校位点;对于不规则形状的作业地面,可以选择形状的多个顶点等作为校位点。如作业地面范围内设有障碍物,则需要在障碍物周围选择校位点,便于飞行时准确地避开。例如在作业地面范围内设有谷仓,则可以在谷仓周围选取校位点。
执行步骤S102,释放第一无人机201,在校位点上采集GPS定位信息,并接收RTK基站203发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到校正后的位置信息;将校正后的位置信息传输至指挥端202。
在步骤S102中,使第一无人机201升空,快速到达校位点。如图2所示,在第一无人机201上接收RTK基站203发送的差分校正信息,结合在第一无人机201上接收的GPS定位信息,通过计算可以得到实时的精确的校位点坐标。差分校正信息的传输可以通过分别安装在第一无人机201和RTK基站203上的数传电台进行传输。第一无人机201可以按照事先设定的测绘航线飞行,自动完成测绘。必要时,只需要飞手少量的操作辅助第一无人机201在校对点上定位,即可完成测绘。
校正完成后,第一无人机201飞回指挥端202附件,通过无线信号将位置信息传输给指挥端202,无线信号可采用适用于短程传输的低价快速的WiFi信号。在本实施例的另一工作情况下,校正后的位置信号还可以由第一无人机传输给RTK基站,再由RTK基站传输给指挥端,实现远程传输。
接着,执行步骤S103,根据校正后的位置信息,设定计划航线。
如图2所示,在指挥端202上接收由第一无人机201发送的校正后的位置信息,结合现有的电子地图信息,自动设定计划航线,使得计划航线在作业地面范围内合理安排并且避开障碍物。
指挥端202可以是台式电脑,也可以是移动终端例如手机、平板电脑。
最后,执行步骤S104,释放第二无人机204,按计划航线自动飞行并进行喷药作业;释放与系留装置206连接的第三无人机205,第三无人机205用于监控第二无人机204的喷药作业。
如图2所示,在释放第二无人机204之前,在第二无人机204上接收由指挥端202发送的计划航线,计划航线优选采用适用于短程传输的低价、快速的WiFi信号进行传输。在本实施例的另一工作情况下,计划航线还可以由指挥端传输至RTK基站,再由基站传输至第二无人机,实现远程传输。
在第二无人机204飞行过程中,为了进一步提高航行精确度,在第二无人机204上接收RTK基站203发送的差分校正信息,再结合在第二无人机204上接收的GPS定位信号,通过计算获得精确的实际航线。校正实际航线,使之与计划航线相符。差分校正信息通过分别设在第二无人机204与RTK基站203上的数传电台进行传输。
为了保持第二无人机204飞行稳定、喷药均匀,可以设定第二无人机204定高飞行和断点续喷。此外,还可以采用多个第二无人机204联合飞行,提高喷药效率。
在释放第二无人机204之前、同时或之后,释放第三无人机205。第三无人机205与系留装置206连接,系留装置206下端包括位于地面的控制站207。系留装置206能够有效地为第三无人机205提供电力,且能够将监控信息实时快速地传输到地面监控站207。
当作业地面出现人员或第二无人机204出现故障、偏离计划航线时,在第三无人机205上可以发出警报、控制第二无人机204停止喷药或调整第二无人机204的航线,保证地面人员的安全。进行监控时还可以存录第二无人机204飞行时的录像和数据,用于备份等。
下面结合图3介绍无人机测绘、喷药和监控联合作业系统实施例。在本实施例中,无人机测绘、喷药和监控联合作业系统包括测绘单元301、指挥单元302、作业单元303和监控单元304。
指挥单元302可以是运行在指挥端上的程序,用于在指挥端上根据地图选取位于作业地面边界以及障碍物周围的校位点。
指挥单元302选取位于作业地面边界的校位点,在设计计划航线时可用于限定飞行范围。在障碍物周围选择校位点,在设计计划航线时可用于准确地避开障碍物。指挥单元302可根据电子地图的信息自动选取校位点。
测绘单元301可以是运行在第一无人机上的程序,用于在第一无人机上采集校位点上的GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到校正后的位置信息;将校正后的位置信息传输至指挥端。
测绘单元301在第一无人机升空后,对作业地面进行测绘。测绘单元301接收RTK基站发送的差分信号,结合接收的GPS定位信号,通过计算可以得到实时的精确的校位点坐标。指挥单元302可将校位点信息发送至测绘单元301,第一无人机可以按照事先设定的测绘航线飞行至各个校位点,自动完成测绘。
测绘完成后,测绘单元301通过无线信号将校正后的位置信息传输给指挥端。
指挥单元302还用于在指挥端上根据校正后的位置信息,设定计划航线。
指挥端上的指挥单元302接收由测绘单元301发送的经校正的位置信息,并据此自动设定计划航线。
作业单元303可以是运行在第二无人机上的程序,用于控制第二无人机按计划航线自动飞行并进行喷药作业。
作业单元303接收由指挥单元302发送的计划航线。为了进一步提高航行精确度,作业单元303接收RTK基站发送的差分校正信息,再结合接收的GPS定位信息,通过计算获得精确的实际航线,并校正实际航线,使之与计划航线相符。
为了保持第二无人机飞行稳定、喷药均匀,可以对作业单元303进行设置,例如设置使第二无人机定高飞行和断点续喷。此外,作业单元303可设置在多个第二无人机上,使多个第二无人机联合飞行,提高了喷药效率。
监控单元304可以是运行在第三无人机上的程序,用于在与系留装置连接的第三无人机上实现监控第二无人机的喷药作业。
为了实现对第二无人机的喷药作业的监控,在释放第二无人机之前、同时或之后,释放第三无人机。监控单元304通过系留装置与地面的监控站连接,将监控信息实时快速地传输到地面监控站,还可以存录第二无人机飞行时的录像和数据。当作业地面出现人员或第二无人机出现故障、偏离计划航线时,监控单元304可以发出警报、控制第二无人机停止喷药或调整第二无人机的航线。
本发明的计算机可读存储介质可以是计算机程序,如使用代码编写而成的计算机指令,当处理器读取该计算机程序时,可以执行相应的操作。例如,在被指挥端的处理器上执行该计算机程序时,可以根据地图选取位于作业地面边界以及障碍物周围的校位点,并且可以根据校正后的位置信息,设定计划航线。当第一无人机的处理器执行该计算机程序被时,可以采集校位点上的GPS定位信息,并接收RTK基站发送的差分校正信息,对GPS定位信息进行RTK差分校正,得到校正后的位置信息,并且可以将校正后的位置信息传输至指挥端。
而当计算机程序被第二无人机的处理器执行时,可以控制第二无人机按计划航线自动飞行并进行喷药作业。当计算机程序被第三无人机的处理器执行时,可以实现监控第二无人机的喷药作业,在第三无人机与系留装置连接。
可见,应用本发明的方法和系统以及该计算机可读存储介质,能够实现大农场的测绘、喷药以及监控联合作业。其中,测绘和喷药可以自动完成,缩短了作业时间,节省了人力消耗。利用第三无人机对喷药作业进行监控,提高了作业安全性。
当然,上述的方案只是本发明优选的实施方案,实际应用是还可以有更多的等效的变化,这些变化并不影响本发明的实施,也应该包括在本发明的保护范围内。
工业实用性
本发明可以主要应用在对大型农场的喷药工作,还可以应用在诸如快递派送、深海打捞等多张场景下的作业。本发明可以利用无线通信技术控制多架无人机联合作业,例如在使用第二无人机进行喷药前,使用第一无人机进行测绘,使第一无人机自动完成测绘,缩短测绘时间。同时,本发明还可以让第二无人机按照计划航线自动飞行进行喷药,这样即无需飞手操作,可以实现高效、自动化喷药,尤其适用于大农场喷药。
此外,本发明中,第三无人机用于监控第二无人机的喷药作业,当作业地面出现人员或第二无人机出现故障、偏离计划航道时,在第三无人机上可以发出警报、控制第二无人机停止喷药或调整第二无人机的航线,保证地面人员的安全。第三无人机与系留装置连接,能够有效地为第三无人机提供电力,且将监控信息实时快速地传输到地面监控站。

Claims (15)

  1. 无人机测绘、作业和监控联合工作方法,其特征在于,包括:
    根据地图选取位于作业区域边界以及障碍物周围的校位点;
    释放第一无人机,在校位点上采集GPS定位信息,并接收RTK基站发送的差分校正信息,对所述GPS定位信息进行RTK差分校正,得到校正后的位置信息;将所述校正后的位置信息传输至指挥端;
    根据所述校正后的位置信息,设定计划路线;
    释放第二无人机,按所述计划路线自动行驶并进行作业;
    释放与系留装置连接的第三无人机,所述第三无人机用于监控所述第二无人机的作业。
  2. 根据权利要求1所述的无人机测绘、作业和监控联合工作方法,其特征在于:
    将所述校正后的位置信息传输至指挥端包括:将所述校正后的位置信息通过无线信号传输至指挥端。
  3. 根据权利要求1或2所述的无人机测绘、作业和监控联合工作方法,其特征在于:
    在释放第二无人机之前,将所述计划路线通过无线信号传输到第二无人机;
    在释放第二无人机之后,获取GPS定位信息,并接收RTK基站发送的差分校正信息,对所述GPS定位信息进行RTK差分校正,得到第二无人机的实际路线,并根据所述计划路线调整所述实际路线。
  4. 根据权利要求1至3任一项所述的无人机测绘、作业和监控联合工作方法,其特征在于,所述无人机为无人驾驶航空器;
    释放第二无人机,按所述计划路线自动行驶并进行作业包括:设定所述第二无人机定高飞行和断点续喷,释放至少一个所述第二无人机。
  5. 根据权利要求1至4任一项所述的无人机测绘、作业和监控联合工作方法,其特征在于,监控所述第二无人机的作业包括:存录所述第二无人机行驶时的录像和数据。
  6. 无人机测绘、作业和监控联合工作系统,其特征在于包括:
    指挥单元,用于在指挥端上根据地图选取位于作业区域边界以及障碍物周围的校位点;
    测绘单元,用于在第一无人机上采集校位点上的GPS定位信息,并接收RTK基站发送的差分校正信息,对所述GPS定位信息进行RTK差分校正,得到校正后的位置信息;将所述校正后的位置信息传输至所述指挥端;
    所述指挥单元还用于在所述指挥端上根据所述校正后的位置信息,设定计划路线;
    作业单元,用于控制第二无人机按所述计划路线自动行驶并进行作业;
    监控单元,用于在与系留装置连接的第三无人机上实现监控所述第二无人机的作业。
  7. 根据权利要求6所述的无人机测绘、作业和监控联合工作系统,其特征在于,所述测绘单元用于将所述校正后的位置信息通过无线信号传输至指挥端。
  8. 根据权利要求6或7所述的无人机测绘、作业和监控联合工作系统,其特征在于,所述指挥单元还用于在所述第二无人机释放之前,将所述计划路线通过无线信号传输到所述第二无人机;
    所述作业单元还用于获取GPS定位信息,并接收RTK基站发送的差分校正信息,对所述GPS定位信息进行RTK差分校正,得到第二无人机的实际路线,根据所述计划路线调整所述实际路线。
  9. 根据权利要求6至8任一项所述的无人机测绘、作业和监控联合工作系统,其特征在于,所述无人机为无人驾驶航空器;
    所述作业单元还用于设定所述第二无人机定高飞行和断点续喷,控制至少一个所述第二无人机。
  10. 根据权利要求6至9任一项所述的无人机测绘、作业和监控联合工作系统,其特征在于,所述监控单元还用于存录所述第二无人机行驶时的录像和数据。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于:所述计算机程序被指挥端的处理器执行时,用于实现根据地图选取位于作业区域边界以及障碍物周围的校位点;
    所述计算机程序被第一无人机的处理器执行时,用于采集校位点上的GPS定位信息,并接收RTK基站发送的差分校正信息,对所述GPS定位信息进行RTK差分校正,得到校正后的位置信息;将所述校正后的位置信息传输至所述指挥端;
    所述指挥端的处理器执行所述计算机程序时还可以在所述指挥端上根据所述校正后的位置信息,设定计划路线;
    所述计算机程序被第二无人机的处理器执行时还用于控制第二无人机按所述计划路线自动行驶并进行作业;
    所述计算机程序被第三无人机的处理器执行时实现监控所述第二无人机的作业,所述在第三无人机与系留装置连接。
  12. 根据权利要求11所述的计算机可读存储介质,其特征在于,所述计算机程序被第一无人机的处理器执行时,用于将所述校正后的位置信息通过无线信号传输至指挥端。
  13. 根据权利要求11或12所述的计算机可读存储介质,其特征在于,所述指挥端执行所述计算机程序时还用于在所述第二无人机释放之前,将所述计划路线通过无线信号传输到所述第二无人机;
    所述计算机程序被第二无人机的处理器执行还用于获取GPS定位信息,并接收RTK基站发送的差分校正信息,对所述GPS定位信息进行RTK差分校正,得到第二无人机的实际路线,根据所述计划路线调整所述实际路线。
  14. 根据权利要求11至13任一项所述的计算机可读存储介质,其特征在于,所述无人机为无人驾驶航空器;
    所述计算机程序被第二无人机的处理器执行用于设定所述第二无人机定高飞行和断点续喷,控制至少一个所述第二无人机。
  15. 根据权利要求11至14任一项所述的计算机可读存储介质,其特征在于,所述计算机程序被第三无人机的处理器执行还用于存录所述第二无人机行驶时的录像和数据。
PCT/CN2017/085608 2017-04-13 2017-05-24 无人机测绘、作业和监控联合工作方法及系统、计算机可读存储介质 WO2018188171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710239148.4A CN106843277B (zh) 2017-04-13 2017-04-13 无人机测绘、喷药和监控联合作业方法及系统
CN201710239148.4 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018188171A1 true WO2018188171A1 (zh) 2018-10-18

Family

ID=59147876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085608 WO2018188171A1 (zh) 2017-04-13 2017-05-24 无人机测绘、作业和监控联合工作方法及系统、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN106843277B (zh)
WO (1) WO2018188171A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525947A (zh) * 2018-11-20 2019-03-26 广东电网有限责任公司 一种无人机运动轨迹记录方法及装置
CN110531391A (zh) * 2019-09-04 2019-12-03 北京麦飞科技有限公司 基于动态载波相位差分技术的田间导航方法及系统
CN110794834A (zh) * 2019-10-25 2020-02-14 北京星航机电装备有限公司 一种基于后驱前转向的搬运汽车控制系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023859A1 (zh) * 2017-07-31 2019-02-07 深圳市大疆创新科技有限公司 无人机失步处理方法、无人机以及无人机系统
CN108184794A (zh) * 2017-12-29 2018-06-22 上海拓攻机器人有限公司 植保作业方法、终端、植保无人机及计算机可读存储介质
CN108873934A (zh) * 2018-07-04 2018-11-23 溧阳汉和智能装备科技有限公司 一种无人机的航线规划与校准方法以及航线控制系统
CN108958288A (zh) * 2018-07-26 2018-12-07 杭州瓦屋科技有限公司 基于地理信息的低空作业无人机系统及其航迹规划方法
CN109737963A (zh) * 2018-11-30 2019-05-10 苏州极目机器人科技有限公司 一种地图校准方法、测绘移动终端以及测绘系统
CN109597429A (zh) * 2018-12-28 2019-04-09 飞智控(天津)科技有限公司 一站多机式无人机植保作业控制方法
CN109729494A (zh) * 2018-12-28 2019-05-07 一飞智控(天津)科技有限公司 移动基站、一站多机系统、通讯方法及控制方法
CN111361740A (zh) * 2020-03-30 2020-07-03 华南农业大学 基于系留无人机平台的水流增压式清洁系统及清洁方法
CN112558619A (zh) * 2020-12-07 2021-03-26 同济大学 一种超声波辅助的无人机自主平稳降落系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039986A1 (en) * 2006-02-28 2008-02-14 Airbus France Device for determining a flight trajectory of a follower aircraft during a patrol flight, as well as a system for aiding a patrol flight comprising such a device
CN105242684A (zh) * 2015-10-15 2016-01-13 杨珊珊 一种伴随拍摄飞行器的无人机航拍系统及方法
CN105955294A (zh) * 2016-05-26 2016-09-21 北京大工科技有限公司 控制无人机植保作业的方法及装置
CN106020233A (zh) * 2016-07-08 2016-10-12 聂浩然 无人机植保作业系统、用于植保作业的无人机及控制方法
CN106292698A (zh) * 2016-08-01 2017-01-04 北京艾森博航空科技股份有限公司 植保无人机的精准作业方法和系统
CN205880671U (zh) * 2016-07-08 2017-01-11 聂浩然 无人机植保作业系统及用于植保作业的无人机
CN106406336A (zh) * 2016-12-14 2017-02-15 江苏蒲公英无人机有限公司 一种用于果树喷药的无人机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707693B (zh) * 2012-06-05 2015-03-04 清华大学 一种时空联合的多架无人机协同控制系统的构建方法
CN105182992A (zh) * 2015-06-30 2015-12-23 深圳一电科技有限公司 无人机的控制方法、装置
CN205353770U (zh) * 2016-01-07 2016-06-29 谭圆圆 一种基于无人机的喷剂喷洒控制装置
CN105487551A (zh) * 2016-01-07 2016-04-13 谭圆圆 一种基于无人机的喷剂喷洒控制方法和控制装置
CN106020237B (zh) * 2016-08-03 2019-03-22 浙江空行飞行器技术有限公司 植保无人机的多机作业航线规划及其喷洒作业方法和系统
CN106502264B (zh) * 2016-10-26 2018-05-01 广州极飞科技有限公司 植保无人机的作业系统
CN106483980B (zh) * 2016-11-24 2019-05-31 腾讯科技(深圳)有限公司 一种无人机跟随飞行的控制方法、装置及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039986A1 (en) * 2006-02-28 2008-02-14 Airbus France Device for determining a flight trajectory of a follower aircraft during a patrol flight, as well as a system for aiding a patrol flight comprising such a device
CN105242684A (zh) * 2015-10-15 2016-01-13 杨珊珊 一种伴随拍摄飞行器的无人机航拍系统及方法
CN105955294A (zh) * 2016-05-26 2016-09-21 北京大工科技有限公司 控制无人机植保作业的方法及装置
CN106020233A (zh) * 2016-07-08 2016-10-12 聂浩然 无人机植保作业系统、用于植保作业的无人机及控制方法
CN205880671U (zh) * 2016-07-08 2017-01-11 聂浩然 无人机植保作业系统及用于植保作业的无人机
CN106292698A (zh) * 2016-08-01 2017-01-04 北京艾森博航空科技股份有限公司 植保无人机的精准作业方法和系统
CN106406336A (zh) * 2016-12-14 2017-02-15 江苏蒲公英无人机有限公司 一种用于果树喷药的无人机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525947A (zh) * 2018-11-20 2019-03-26 广东电网有限责任公司 一种无人机运动轨迹记录方法及装置
CN110531391A (zh) * 2019-09-04 2019-12-03 北京麦飞科技有限公司 基于动态载波相位差分技术的田间导航方法及系统
CN110794834A (zh) * 2019-10-25 2020-02-14 北京星航机电装备有限公司 一种基于后驱前转向的搬运汽车控制系统

Also Published As

Publication number Publication date
CN106843277B (zh) 2020-08-07
CN106843277A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018188171A1 (zh) 无人机测绘、作业和监控联合工作方法及系统、计算机可读存储介质
CN109099925B (zh) 一种无人农机导航路径规划与作业质量评估方法与装置
CN207096463U (zh) 一种农用北斗差分测向导航控制系统
KR101536095B1 (ko) 무인 비행체를 이용한 산지 생태 축산의 방목형 목장 운용 및 관리 시스템
CN110109480A (zh) 一种基于多传感器融合的无人机巡查搜救系统及搜救方法
CN109571403B (zh) 一种磁轨迹线导航智能巡检机器人及其导航方法
CN109571402B (zh) 一种爬坡机构、爬坡智能巡检机器人及其变电站爬坡方法
CN112414457A (zh) 一种基于变电站工作的自动智能巡检方法
CN104049625A (zh) 基于无人飞行器的物联网灌溉设施调控平台及方法
CN108801269A (zh) 一种室内云机器人导航系统及方法
CN104569909B (zh) 一种室内的定位系统及方法
CN113057154A (zh) 一种温室药液喷洒机器人
CN107390699A (zh) 一种甘蔗种植机的路线规划系统及其路线规划方法
CN206892664U (zh) 一种基于视觉识别的移动机器人路径规划与调度系统
CN211527467U (zh) 一种智慧城市水环境监控系统
CN114023035A (zh) 一种全天候全自动森林火灾早期探测系统及探测方法
CN210503198U (zh) 可搭载于无人机的双腔药箱及基于该药箱的喷施作业装置
CN109917802B (zh) 基于无人机的牧群行进轨迹监控方法及系统
CN205540281U (zh) 基于差分定位的自主飞行多旋翼植保机系统
CN109101025A (zh) 一种用于遥控农业机器人穿过信号盲区的安全渡越方法
CN105278537A (zh) 一种无人飞行器控制系统
CN205427178U (zh) 一种用于无人机精确导航的定位系统
CN213337401U (zh) 一种无人机载自动定位线夹x光检测系统
CN207571584U (zh) 基于apm飞控的无人巡航车的控制系统
CN206869895U (zh) 基于rtk技术的高精度定位自动导航农业机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17905188

Country of ref document: EP

Kind code of ref document: A1