WO2018186611A2 - Bioink and preparation method therefor - Google Patents

Bioink and preparation method therefor Download PDF

Info

Publication number
WO2018186611A2
WO2018186611A2 PCT/KR2018/003353 KR2018003353W WO2018186611A2 WO 2018186611 A2 WO2018186611 A2 WO 2018186611A2 KR 2018003353 W KR2018003353 W KR 2018003353W WO 2018186611 A2 WO2018186611 A2 WO 2018186611A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
bio
silk fibroin
ink
photoinitiator
Prior art date
Application number
PCT/KR2018/003353
Other languages
French (fr)
Korean (ko)
Other versions
WO2018186611A3 (en
Inventor
박찬흠
김순희
이정민
연응규
이영진
서예빈
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Publication of WO2018186611A2 publication Critical patent/WO2018186611A2/en
Publication of WO2018186611A3 publication Critical patent/WO2018186611A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the present invention uses silk fibroin, one of the natural protein fibers.
  • the present invention relates to a bio ink capable of producing a biological tissue having improved cell compatibility and excellent physical properties using a 3D printer, and a method of manufacturing the same.
  • 3D printing technology is to realize a three-dimensional shape, that is, a three-dimensional shape, based on a three-dimensional drawing, depending on the ink material used for printing, a curing method, and the driving principle of a 3D printer. Among them, they can be classified according to the classification of the American ASTM (Amer i can Society for Testing and Materials) F2792-12a.
  • the photopolymerization method SLACstereo li thography (DCR) method and DLP (digital processing process) method, which uses a photocurable polymer that is cured in response to light as a base material, creates a three-dimensional shape by irradiating and curing light.
  • DCR SLACstereo li thography
  • DLP digital processing process
  • a fused deposi- tion ion modeling (FDM) method of a material extrusion method which is a method of continuously pushing a heated material at high pressure through a nozzle to produce a three-dimensional shape
  • Adhesive spraying method for producing a three-dimensional shape by combining the base material by discharging the adhesive of the liquid form on the base material of the powder form
  • a material injection method for discharging the material in solution form by jet ting and curing with ultraviolet light
  • Powder-laminated melting method for producing a three-dimensional shape by combining the high-energy beam and irradiating it on the powder-based base material
  • Etc A fused deposi- tion ion modeling
  • 3D printing technology gradually develops, it is possible to manufacture more precise and detailed 3D shapes, and it is applied to the medical or bio fields, and fine and large tissue structures that almost mimic medical device parts or actual human tissues are intact. It is used to manufacture human body model, skin tissue and body organ regeneration.
  • the support for tissue engineering is very important for the selection of constituent materials and structural control technology.
  • the supporter plays a role as a bridge connecting the tissue to regenerate the tissue lost through the self-recovery function, it should be excellent in cell affinity so that tissue regeneration is smoothly performed.
  • cells grow in three dimensions
  • the support for tissue engineering must first be physically stable at the implant site, secondly, exhibit physiological activity that can regulate regenerative efficacy, and thirdly, form new tissue and then degrade in vivo. It must not have this toxicity.
  • bioinks which are materials for producing biostructures such as surgical simulations and surgical implants, personalized implants, artificial blood vessels, and artificial organs, have shown many limitations.
  • bio-inks required for 3D bioprinting include, firstly, excellent biocompatibility, and when applied to a 3D printer printed through a nozzle, a fine diameter dispensing nozzle (di spensing nozz le) is smoothly applied. It must have physical properties that can be passed through and printed in the desired pattern. In addition, it should be possible to maintain a mechanical support role while providing cell-specific signals after 3D printing.
  • natural or synthetic hydrogel bio inks have been developed and used in the field of 3D bio printing (Republic of Korea Patent Publication No. 10-2017-0001444: 2017.01.04.) There are significant limitations in physical and biological aspects such as suitability, printing suitability, geometrical precision and precision.
  • the present invention provides a bio-ink that can be applied to a 3D printer and a method of manufacturing the same, by producing a bio-ink based on silk fibroin, which is a natural protein polymer as a main skeleton, to maintain excellent mechanical strength and cellular suitability of silk fibroin. I would like to.
  • One embodiment of the present invention for achieving the above object relates to a bio ink that can be used for 3D printing, preferably silk fibroin (Si lk Fibroin) and methacrylate (Methacryl ate) compound Polymerized high polymers; And a photoinitiator.
  • a bio ink that can be used for 3D printing, preferably silk fibroin (Si lk Fibroin) and methacrylate (Methacryl ate) compound Polymerized high polymers; And a photoinitiator.
  • the polymer formed by copolymerizing at least one methacrylate compound with the amino acid residue of silk fibroin is preferable to use.
  • the photoinitiator lithium thienyl phenyl-2,4,6-trimethylbenzoylphosphinate (li thium phenyl- (2,4,6-trimethylbenzoyl) phosphinate, LAP), benzyl dimethyl ketal, acetophenone Acetophenone , Benzoin methyl ether ether), diethoxyacetophenone, benzoyl phosphine oxide and benzoyl phosphine oxide, and may include one or more selected from the group consisting of 1-hydroxycyclohexyl phenyl ketone.
  • a dissolution step of dissolving silk fibroin (Si lk Fibroin) in a solvent Adding a methacrylate compound to a solution in which silk fibroin is dissolved, followed by stirring to prepare a polymer polymer; A drying step of lyophilizing and powdering the solution containing the polymer prepared by the polymerization step; And a mixing step of mixing a powder containing a high molecular polymer with water and a photoinitiator in water.
  • the solution containing the prepared polymer polymer in the dialysis tube After the polymerization step, the solution containing the prepared polymer polymer in the dialysis tube, the dialysis step of removing impurities by immersing in water;
  • the dialysis step, the dialysis step, the solution containing the prepared polymer polymer It is desirable to remove the impurities by immersing in 12 14 kDa cutof f dialysis tube, immersed in water for 3-5 days.
  • the dissolving step after dissolving the silk fibroin at a concentration of 0.05-0.35 g / ml in a solvent, it can be heated to a temperature of 50 ⁇ 70 ° C for 40-80 minutes.
  • methacrylate-based compound is added to the solution in which the silk fibroin is dissolved at a concentration of 141 to 705 mM, and after the methacrylate-based compound is added to the solution in which the silk fibroin is dissolved, the temperature is 50 to 70 ° C. It is preferable to stir at 200 to 400 rpm rotational speed for 2 to 4 hours at.
  • the mixing step 20 to 30 ⁇ % of the powder containing the polymer polymer in water and 0.1 to 0.3% of the photoinitiator are mixed, but it is preferable that the sum of the water, the polymer and the photoinitiator does not exceed 100 wt%. .
  • lithium thiphenyl phenyl-2,4,6-trimethylbenzoylphosphinate (li thium phenyl- (2,4,6-tr imethyl benzoydopinyll) phosphinate, LAP), benzyldimethyl Benzyl dimethyl ketal, acetophenone, benzoin methyl ether, diethoxyacetophenone, benzoyl phosphine oxide and 1-hydroxycyclonucleic phenyl ketone 1-hydroxycyclohexyl phenyl ketone) may be used that includes at least one selected from the group consisting of.
  • the solution containing the polymer polymer is frozen at -90 to -70 ° C for 10 to 14 hours, and then lyophilized for 40 to 60 hours at the same temperature as the freezing temperature.
  • another embodiment of the present invention is the aforementioned bio ink; Or a bio structure manufactured by 3D printing using the bio ink prepared by the aforementioned manufacturing method.
  • the present invention is based on the silk fibroin, one of the natural protein fibers in a liquid state that can cause a gelation or curing reaction upon exposure to light through polymerization reaction.
  • biological tissues having mechanical properties such as moisture absorption, volume expansion ratio, compressive strength, and tensile strength can be prepared.
  • FIG. 1 is a schematic diagram schematically showing a hydrogel state of a bioink which is an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the manufacturing process of the bio ink of the present invention.
  • Figure 3 is an embodiment of the present invention, a schematic chemical formula showing the polymerization reaction of silk fibroin and GMA.
  • FIG. 4 is a schematic view showing an embodiment of the present invention in which gel fibroin and GMA polymerized polymer (SGMA) are gelled.
  • SGMA gel fibroin and GMA polymerized polymer
  • Figure 5 is an embodiment of the present invention, FT-IR spectrum of the SGMA according to the concentration of GMA injected into the silk fibroin.
  • 6 is an embodiment of the present invention, which is -NMR spectrum of SGMA according to the concentration of GMA injected into silk fibroin.
  • Figure 7 is a schematic diagram showing a 3D printing process in a DLP method using a bio ink prepared according to an embodiment of the present invention. .
  • Figure 8 is a graph showing the results of measuring the water absorption of the hydrogel printed by 3D printing using a bio ink prepared in another embodiment of the present invention.
  • 9 is a graph showing the results of measuring the volume expansion rate of the hydrogel printed by 3D printing using a bio ink prepared according to another embodiment of the present invention.
  • 10 to 16 are photographs or graphs showing an experimental procedure or test results of measuring the mechanical strength of a hydrogel printed by 3D printing using a bio ink prepared according to another embodiment of the present invention.
  • FIG. 17 is a graph showing storage modulus (G ′) and loss modulus (G ′ 1 ) according to the shear strain of a hydrogel printed by 3D printing using a bio ink prepared according to another embodiment of the present invention.
  • FIG. 18 is a graph showing storage modulus (G ′) and loss modulus (G ′ ′) of a hydrogel printed by 3D printing using a bio ink prepared according to another embodiment of the present invention.
  • FIG. 19 is a graph showing the stiffness of hydrogels printed by 3D printing using bio inks containing different photoinitiator contents according to another embodiment of the present invention.
  • 20 is a graph showing the stiffness of the hydrogel according to the curing time exposed to UV under 3D printing using different SGMA-3 content of different bio inks prepared by another embodiment of the present invention.
  • 21 is a fluorescence micrograph showing the results of cytotoxicity test of the bio ink prepared according to another embodiment of the present invention.
  • FIG. 22 is a cell proliferation experiment of a bio ink prepared by another embodiment of the present invention A graph showing the results.
  • each step the identification code is used for convenience of explanation, and the identification code does not describe the order of each step, and each step may be performed differently from the stated order unless the context clearly indicates a specific order. have. That is, each step may be performed in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • each step may be performed in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • the bio ink of the present invention is a biomaterial capable of printing biostructures that can be utilized in medical and bio fields such as tissue engineering supports, surgical implants, personalized implants, artificial blood vessels, artificial organs, etc., via 3D printers.
  • the biostructure consisting of a hydrogel formed as shown in FIG. 1 can be printed by exposing a liquid bio ink obtained by dissolving a polymer polymerized in a silk fibroin, which is a protein polymer, in water together with a photoinitiator to light (for example, UV). have.
  • bio ink of the present invention may be applied to various types of 3D printers, but may be preferably applied to 3D printers based on digital processing (DLP).
  • DLP digital processing
  • DLP digi- tal process processing
  • DLP type 3D printer
  • It is a shape to be molded by using a beam projector in a tank containing a liquid photocurable resin.
  • It is a 3D printing method of manufacturing a structure by projecting light with light, and curing and laminating resin in the projected shape.
  • This 3D printing technology of the DLP method projects the image from the beam projector in mask units (2D), which enables output without additional materials such as a support, and has excellent surface roughness and no noise during the printing process. There is this.
  • the structure is molded through the surface unit molding method using the resin in the liquid state as the ink, and thus the work speed can be uniformly and rapidly formed, which reduces the damage to the cells, thereby improving the cell compatibility.
  • the bio ink of the present invention can be used as a biomaterial Biocompatible materials (e.g. agarose, fibrinogen, fibroin, methacrylated hyaluronic acid (HAMA), thiolated hyaluronic acid, gelatin, gelatin methacrylate ( GelMA), Silicated Gelatin, Collagen, Alginate, Methyl Cellulose, Chitosan, Chitin, Synthetic Peptide, Polyethylene glycol based hydrogel, Polyglycolic acid (PGA), Poly-lact ic-co-glycolic acid ), Polylactic acid (PLA), poly (L-lactic acid) (PLLA), Polycaprolactone (PCL), PH 1 (Po 1 yhyd roxybutyrate), Polyhydroxyvalerate (PHV), PDO (Po 1 yd i ox anone), PTMC Polytrimethylene carbonate) and the like, and among them, fibroin having excellent biocompatibility and physical properties can be used as
  • Fibroin can maintain rapid cross-link formation and mechanical stiffness, have excellent mechanical properties in terms of stability when formed into a hydrogel, and can create a microenvironment suitable for cell attachment and differentiation after the cells are printed. There is an advantage.
  • the bio ink of the present invention is fibroin.
  • it contains a high molecular polymer prepared from silk fibroin obtained from silkworm cocoon, showing excellent cell compatibility, excellent compressive strength after printing, tensile strength and storage modulus.
  • it can be applied to DLP type 3D printer.
  • the bio ink according to the present invention includes a polymer polymer in which silk fibroin and methacrylate compound are polymerized; And a photoinitiator, wherein the polymer polymer and photoinitiator are dissolved in water to fill a liquid bio ink in a 3D printer, and the bio ink is exposed to light, preferably UV lltraviolet ray ultraviolet rays.
  • the structure may be formed by hydrogel.
  • Silk fibroin which forms the main skeleton of the bio ink of the present invention, is a natural protein polymer obtained by removing sericin from silkworm cocoon, and a polymer polymer can be prepared by polymerizing a single amino acid residue and a methacrylate compound in the silk fibroin.
  • a methacrylate compound is copolymerized to the lysine residue in the amino acid group in the silk fibroin to prepare a polymer polymer in which a methacrylate vinyl group is formed in the amine group of the silk fibroin.
  • the polymer is a methacrylate-based compound as shown in FIG. 3, and polymerized with the silk fibroin by using glycidyl methacrylate (GMA) to meta-amine the amine in the silk fibroin molecule.
  • the acrylate group (metacrylate groLip) may be a polymerized polymer (hereinafter, SGMA).
  • the photoinitiator may cause radical reaction by attacking the polymer when exposed to light, but may be used without particular limitation as long as it is a chemically stable compound that is not toxic to the human body.
  • the photoinitiator included in the bio ink of the present invention is a free radical type photoinitiator, lithium phenyl— 2,4,6-trimethylbenzoylphosphinate (lithium phenyl- (2,4,6-trimethyl benzoyl) phosphinate, LAP), Benzyldimethyl ketal (benzyl dimethyl ketal, acetophenone, benzoin methyl ether, diethethacetophenone, benzoyl phosphine oxide and 1-hydroxycyclonuclear phenyl ketone (l- hydroxycyc lohexyl phenyl ketone) may be used that includes at least one selected from the group consisting of, but is preferably low cytotoxic lithium phenyl-2,4,6-trimethylbenzoylphosphinate (li thium phenyl- (2, 4, 6-tr imethyl benzoyl) phosphinate, LAP) can be used.
  • the photoinitiator attacks the vinyl monomer of the polymer polymer to generate radical reaction, and the free radicals are cured through the polymerization reaction to form a structure.
  • the bio ink according to the present invention may be a cell, growth factor, according to the use or characteristic of the biostructure to be prepared through 3D bioprinting in addition to the polymer and photoinitiator polymerized with the silk fibroin and methacrylate-based compounds mentioned above.
  • Biodegradable polymers and the like may be further included as appropriate.
  • FIG. 2 (a) a method for producing a bio ink as shown in Figure 2 dissolution step of dissolving silk fibroin (Si lk Fibroin) in a solvent (Fig. 2 (a)); After adding methacrylate to a solution in which silk fibroin is dissolved, a polymerization step of preparing a polymer by stirring it (Fig. 2 (b)); Drying step of lyophilizing and drying the solution containing the polymer prepared by the polymerization step (Fig. 2 (d) and (e); and mixing step of mixing the powder and photoinitiator containing the polymer polymer in water) (FIG. 2 (f)) may be used to produce a bio ink.
  • the silk fibroin is a natural protein polymer, rejection reaction and immune reaction does not occur in the body, there is an advantage that the biocompatibility is excellent due to less inflammatory reaction.
  • Silk fibroin is a silkworm cocoon (Bombyx mor i) silkworm cocoon raw silk as it is removed by sericin and impurities through the refining process, the method of refining silkworm cocoon silk is usually boiled over 10 hours with boiling water, diluted alkaline There is a method of treatment with a solution, and the technique for obtaining silk fibroin refined by removing sericin and impurities from silkworm cocoon can be used if it is a widely known method, so a detailed description thereof will be omitted.
  • Silk fibroin refined through the refining process is insoluble in dilute aqueous solution such as water, dilute acid or dilute base, and in order to dissolve silk fibroin in the solvent in the dissolution step, 50 ⁇ 70 ° C in lithium bromide solution It can be dissolved by heating to a temperature of 40-80 minutes.
  • a lithium bromide (LiBr) solution or calcium chloride (CaCl 2 ) solution of 8.0 to 10.0 M may be used.
  • a lithium bromide solution of 8.7 to 9.8 M may be used.
  • a polymer After adding a methacrylate compound to a solution in which the silk fibroin is prepared through the dissolution step, to prepare a polymer by stirring
  • a polymer may be prepared by polymerizing a methacrylate group to an amino acid residue of silk fibroin, thereby forming a structure made of a hydrogel having improved mechanical properties such as compressive strength, tensile strength, and storage elasticity when exposed to light. have.
  • the amino acid residue refers to a structural unit from which H and 0H are separated from the molecular structure of various amino acids included in silk fibroin, and broadly means each amino acid constituting a peptide or protein.
  • the polymerization step may be prepared by adding a methacrylate compound to a solvent in which the silk fibroin is dissolved, and then stirred at a speed of 200 to 400 rpm for 2 to 4 hours at a temperature of 50 ⁇ 70 ° C. .
  • the polymer included in the bio ink of the present invention is a polymer polymer prepared by copolymerizing silk fibroin (Sl ik Fibtoin, SF) and a methacrylate-based compound, and is a polymer polymer that is a basic skeleton of a biostructure manufactured during 3D printing.
  • One or more methacrylate-based compounds may be copolymerized to the residues of amino acids included in the silk fibroin, thereby forming a polymer by forming a copolymer having a methacrylate group bonded to the residues of the amino acids. .
  • two methacrylate-based compounds may be polymerized to the residue of the amino acid contained in the silk fibroin to prepare a polymer, which may be cured upon exposure to light with a photoinitiator to form a hydrogel. Can be formed.
  • the wavelength of light may be used to irradiate a light wavelength region in which the photoinitiator may initiate a radical reaction, thereby initiating gelation and curing reaction of the bio ink.
  • the polymer copolymer is a combination of silk fibroin (SF) and glycidyl methacrylate (glyc idyl met hacry late, GMA) as shown in Figure 3, the amine in the silk fibroin molecule, preferably As the epoxy ring of glycidyl methacrylate is boiled, a polymer polymer (hereinafter, SGMA) in which a methacrylate group (metacrylate group) is polymerized to an amine of a lysine group in a silk fibroin molecule may be prepared.
  • SGMA polymer polymer polymer
  • the polymer SGMA can be prepared.
  • the mixing ratio of the silk fibroin and the methacrylate-based compound mixed in the polymerization step is most important.
  • a methacrylate-based compound at a concentration of 141 to 705 mM in a solution in which silk fibroin is dissolved in a solvent at a concentration of 0.05 to 0.35 g / ml.
  • a solution containing the polymer prepared in order to remove impurities, which are ions contained in the solution containing the polymer polymer prepared through the polymerization step, that is, ions contained in the solvent used in the dissolution step, is placed in the dialysis stream. It is preferable to further include a dialysis step (FIG. 2 (c)) to be immersed in water. More preferably, before the dialysis step, the solution containing the polymer polymer may be filtered using a filter, and then a dialysis step may be performed to remove ions contained in the solution.
  • the dialysis step may use a dialysis tube that passes the ionic component but does not pass the polymer polymer, preferably in the 12 ⁇ 14 kDa cutof f dialysis tube containing a solution containing the polymer prepared in water It is preferable to immerse for 3-5 days.
  • the dialysis time is less than 3 days, the removal of the ionic components contained in the solution containing the prepared polymer may not be sufficient, resulting in a decrease in biocompatibility or a decrease in mechanical strength of the structure manufactured by printing. If the dialysis time exceeds 5 days, there is no benefit over time, which may lower the economic efficiency.
  • the drying step of lyophilizing and drying the solution containing the polymer polymer passed through the dialysis step, the solution containing the polymer polymer in order to improve the circulation and storage of the liquid bio ink and to impart chemical stability of the bio ink All lyophilization and powdering are preferred.
  • the dialysis proceeds sufficiently to completely freeze the solution containing the polymer polymer from which the ionic component is removed first at -90 to -70 ° C for 10 to 14 hours, and then for 40 to 60 hours. Freeze drying is preferably performed at the same temperature as the freezing temperature.
  • the solution containing the freeze-dried polymer polymerizer is preferably powdered to have an appropriate size particle size through processing such as crushing and grinding.
  • the powder containing the polymer may be prepared in the bio ink of the present invention through a mixing step of mixing with a photoinitiator in water.
  • a mixing step it is preferable to mix 20-30 wt% of the powder containing the polymer polymer in water and 0.01-1.3 wt% of the photoinitiator, wherein the sum of water, the polymer polymer and the photoinitiator is 100 ⁇ . It is desirable not to exceed ⁇ %.
  • the bio ink of the present invention manufactured as described above may be gelled or cured by exposure to light having a wavelength at which the photoinitiator may initiate photopolymerization reaction as shown in FIG. 4 to form a hydrogel.
  • the bioinks of the present invention prepared by adding LAP, a photoinitiator, to a solution containing SGMA formed by polymerization of silk fibroin and glycidyl methacrylate (GMA) are used as light (ultraviolet, Exposure to UV) causes the photoinitiator LAP to attack the vinyl group of SGMA to generate free radicals, thereby binding within the chain of the double bond portion of the methacryl group of SGMA, between Not only covalent bonds are induced, but also the physical entanglement between the long chain of the polymer can be produced a structure of the hydrogel.
  • LAP light
  • a photoinitiator LAP causes the photoinitiator LAP to attack the vinyl group of SGMA to generate free radicals, thereby binding within the chain of the double bond portion of the methacryl group of SGMA, between Not only covalent bonds are induced, but also the physical entanglement between the long chain of the polymer can be produced a structure of the hydrogel.
  • the bio-structure in the hydrogel state may be manufactured by 3D printing, preferably DLP-type 3D printing using the aforementioned bio ink or the bio ink manufactured by the aforementioned manufacturing method.
  • 3D printing preferably DLP-type 3D printing using the aforementioned bio ink or the bio ink manufactured by the aforementioned manufacturing method.
  • 40 g of the cocoon was immersed in 1 L of 0.05 M sodium carbonate solution, heated to 100 0 C for 30 minutes, and washed several times with distilled water. Then, it was dried at room temperature to obtain 31.1 g (about 80% yield) of silkworm cocoon, ie, silk fibroin, from which sericin was removed.
  • GMG solution (Sigma-Aldrich, St. Louis, Missouri, USA) was added 2, 4, 6, 10 ml, respectively, and stirred for 3 hours at 300 rpm at a temperature of 60 ° C so that the silk fibroin and GMA could be fully polymerized.
  • a 13 kDa cut-off dialysis tube contains a solution containing silk fibroin and SGMA, which is a combination of GMA, and then the dilution water is completely immersed in distilled water. After leaving for 4 days, the ions and impurities contained in the solution were dialyzed and removed (see FIG. 2C).
  • the dialysis solution was frozen for 12 hours at an average temperature of -80 0 C, then lyophilized for 48 hours (see FIG. 2 (d)), and then powdered to give SGMA powder (in order of GMA dosage, SGMA-l , SGMA-2, SGMA-3, SGMA-4) were prepared (see FIG. 2 (e)).
  • All of SGMA-4 showed peaks at amide 1 (1639 cm “1 ), amide ⁇ (1512 cm “ 1 ), and amide ⁇ (1234 cm _1 ), representing 1105 halves of about 5000 amino acids contained in silk fibroin. Male amino acid.
  • the CH-0H peak which is weakly measured at 1238 ⁇ 1 , represents an alcohol group formed by breaking the epoxy ring of GMA, and the peaks of 1165 CITT 1 and 951 cnf 1 show the resonance of CH 2 of the methacrylate vinyl group of GMA. It was expected that the formed by the peak, it was confirmed that the intensity of the peak also increased as the amount of GMA contained.
  • the degree of denaturation of the methylene group of lysine of silk fibroin was estimated to be about 22-42% according to the change of GMA content.
  • Table 1 is a measurement of the width of each peak (vinyl group, lysine, methyl group of methacrylate) observed in FIG. 6 which is an NMR graph, and the degree of methacrylateization is 3 ⁇ 4 NMR of FIG. 6.
  • methacrylate may occur in all secondary amine groups having semi-ungwoong in silk fibroin, but since the representative amino acid of the secondary amine group having semi-ungwoong in silk fibroin is lysine group The degree of methacrylated in silk fibroin was confirmed based on the freshness.
  • SGMA-3 powder and lithium phenyl-2,4,6-trimethylbenzoylphosphinate powder (hereinafter referred to as LAP powder; Tokyo chemical industry, Tokyo, Japan) prepared in Preparation Example 1 were added to 1 L of water, respectively. After adding together, the SGMA '3 powder and the LAP powder were completely dissolved to prepare a bio ink.
  • the specimens printed with 10 10 X 2mm 3 hexahedron were 0.3 0.5, 1, respectively in 37 0 C PBS (phosphate reduced saline, ⁇ 7 ⁇ 4). After soaking for 2, 3, 4, 5 hours, the weight was measured (W swollen ), which was lyophilized to measure the weight (W dry ). The weight of the lyophilized SGMA powder was measured and the weight of the water absorbed state was measured based on this (100%), and the water absorption capacity (Q) was derived through the following Equation (2). Table 3 shows.
  • the prepared specimen was 10% SGMA-3.
  • cylindrical specimens (diameter; 6 mm, height; 12 mm) by 3D printing using bio inks of Examples 1 to 3 ((10% SGMA-3 to 30% SGMA-3) to measure mechanical strength. It was manufactured and pressured at a displacement rate of 5 ⁇ / min using a universal test ing device (QM100S, QMESYS, South Korea) equipped with a lO kgf load shell (FIG. 10) compressive stress, modulus of elasticity (el ast ic modul us) was measured, and the tensile stress (tensi le stress) was measured by setting the elongation rate 3 ⁇ 4! im / min at room temperature, and the Young's modulus was calculated as the slope of 50% strain deformation. The results of the experiment are shown in Table 3 and FIGS. 10 to 16.
  • the measured values also increase as the content ratio of SGMA-3 increases in all measurement results such as compressive stress, compressive strain, elastic modulus, tensile stress, elongation, and Young's modulus.
  • Example 3 containing 30% SGMA-3 it can be seen that the compression force is increased by about 2 times compared to Example 2.
  • Example 1 which is 10% SGMA-3, was too soft, The result was not obtained, but as the SGMA-3 content increased, it was confirmed that the measured values of tensile stress, elongation and Young's modulus increased.
  • Figure 16 is to confirm the strength or elasticity of the hydrogel, when a 7kg kettle bell on top of Example 3 which is 30% SGMA-3, Example 3 is a hydrogel weight of the In addition to supporting, after removing Kerbell after a certain period of time, it returned to the same shape as before the measurement.
  • the rheological properties were measured by using 0.1% strain and Anton Paar MCR 302 (Anton Paar, Zofingen, Swi tzer land) at 1 Hz frequency. 4 and FIGS. 17 and 18.
  • the storage modulus (G ') is about 6 times greater than the loss modulus (G' '), so the hydrogels of Examples 1 to 3 can be expected to behave in an elastomeric form. .
  • the phase change angle represents the state of the material to 6.4 ⁇ 9.1 ° (behavior like a solid '0 0 ', behave like a liquid '90 ⁇ ')
  • Example 1 (10% SGMA-3) to 3 It can be seen that the hydrogel prepared through 3D printing using (30% SGMA-3) bio ink has a solid state. Therefore, when combining the results of Experimental Example 2 (results of FIGS.
  • the measured value gradually increases with increasing SGMA content. It could be predicted that the silk fibroin polymer and GMA were polymerized by light irradiation and had excellent physical properties due to the entanglement between molecules and molecules. As a result, the reduction of the expansion rate according to the increase of the SGMA content in the bio ink could be expected to increase the degree of crystallization by increasing the chemical bond 1 ⁇ 2 degree in the molecule and increasing the rigidity and elasticity of the hydrogel.
  • Example 3 in particular SGMA-3 of 30> has the highest form stability.
  • the storage modulus was measured according to the change of SGMA-3 and LAP content of photoinitiator. 19 and FIG. 20.
  • FIG. 19 shows a tendency of stiffness of the hydrogel according to the change in the content of LAP, a photoinitiator, and the curing time of SGMA-3 (UV exposure for 4 seconds) of Examples 1 to 3 and 30, respectively, through FIG. 20.
  • the storage modulus (G ′) of the hydrogel was increased. This could be expected to stabilize the hydrophobi c domain in which silk fibroin (SF) methacrylated by GMA with increasing exposure to UV light.
  • SF silk fibroin
  • the storage modulus (G ′) rapidly decreased.
  • the gelation point of SGMA according to the change of the content of SGMA, a polymer polymer in bio ink, and LAP, a photoinitiator, is defined as a gelation point by defining the intersection point of storage modulus (G ') and loss elasticity (G ") Measured.
  • Cells used for cytotoxicity and cell proliferation experiments were HeLa cells and NIH / 3T3 cells, which were purchased from ATCC (Manassas, Virginia).
  • Cytotoxicity experiments were conducted using a LIVE / DEAD analysis kit (Life Technologies, USA), and observed with a fluorescence microscope to identify the cells with green fluorescence (calcein), that is, the living cells as shown in FIG.
  • the cell proliferation experiment was carried out through CC-8 analysis (Do jindo molecular technologt, Rockville, USA) and the results are shown in FIG.
  • GelMA Comparative Example 1
  • 10% SGMA-3 Example 1 measured with HeLa cells, as shown in FIG. 21, most cells showed green fluorescence on Day 1, indicating that living cells could be identified. have.
  • Figure 22 is a graph showing the rate of cell proliferation, based on the number of cells of GelMA (Comparative Example 1) and 10% SGMA-3C Example 1) per day GelMA (Comparative Example 1) cells gradually over time While the number of cells decreased, 10% SGMA-3 Example 1) showed a slight increase in the number of cells until about 7 days, but after 14 days, the number of cells increased significantly, indicating that the cells proliferated. It was confirmed in all 3T3 cells. . Therefore, summarizing the results of Experimental Example 2 and Experimental Example 3, the polymer polymer formed by polymerizing silk fibroin into a basic skeleton can cross-link upon exposure to light together with a photoinitiator. 3D printing can be used to produce 3D biostructures with excellent cell suitability as well as excellent physical properties.
  • the present invention is a polymer polymer in which the silk fibroin (Si lk Fibroin) and the methacrylate-based compound, which is a natural protein polymer, are polymerized; And photoinitiator]; and suggests a bio ink composition and a method of manufacturing the same, which can be applied to a 3D printer while maintaining excellent mechanical strength and cellular suitability of silk fibroin at an equivalent or higher.
  • Absorption, volume expansion rate, compressive strength Since almost no immune reaction occurs in a living tissue having mechanical properties such as tensile strength or in the body, an excellent biocompatibility can be manufactured through 3D printing, and thus there is industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Medical Uses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention relates to a bioink which is prepared from silk fibroin, a natural protein fiber, and from which biological tissues having improved cytocompatibility and outstanding mechanical properties can be prepared by means of a 3D printer, and a preparation method therefor. By 3D printing, the present invention can prepare a biological tissue having mechanical properties such as moisture absorbency, volume expansion rate, compressive strength, tensile strength, etc. In addition, the preparation of a bioink including silk fibroin as a base skeleton allows for the construction of a biostructure which causes almost no immune response in the body and thus is superb in biocompatibility.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
바이오 잉크 및 이의 제조방법  Bio ink and preparation method thereof
【기술분야】 Technical Field
본 발명은 천연 단백질 섬유 중 하나인 실크 피브로인을 사용하여 .  The present invention uses silk fibroin, one of the natural protein fibers.
바이오 잉크로서, 3D 프린터를 사용하여 향상된 세포적합성 및 우수한 물성을 갖는 생체 조직을 제조할 수 있는 바이오 잉크 및 이의 제조방법에 것이다. As a bio ink, the present invention relates to a bio ink capable of producing a biological tissue having improved cell compatibility and excellent physical properties using a 3D printer, and a method of manufacturing the same.
【배경기술】 Background Art
삼차원 프린팅 (3D Pr int ing) 기술은, 3차원 도면을 바탕으로 실물의 입체 모양 즉, 3차원 형상으로 구현하는 것으로, 프린팅에 사용되는 잉크 소재, 경화방식, 3D 프린터의 구동원리 등에 따라 여러 가지로 분류될 수 있는데, 그 중에서도 세계적으로 널리 통용되는 미국 ASTM (Amer i can Soci ety for Test ing and Mater ial s) F2792-12a의 분류에 따라 구별될 수 있다.  3D printing technology is to realize a three-dimensional shape, that is, a three-dimensional shape, based on a three-dimensional drawing, depending on the ink material used for printing, a curing method, and the driving principle of a 3D printer. Among them, they can be classified according to the classification of the American ASTM (Amer i can Society for Testing and Materials) F2792-12a.
먼저, 빛에 반응하여 경화되는 광경화성 폴리머를 기반 소재로 사용하여 한층 한층 빛을 조사하며 경화시켜 3차원 형상을 만드는 방법인 광중합 방식의 SLACstereo l i thography) 방식와 DLP(digi tal l ight process ing)방식; 고온 가열한 소재를 노즐을 통해 압력으로 연속적으로 밀어내어 3차원 형상을 제작하는 방법인 재료 압출방식의 FDM( fused deposi t ion model ing) 방식; 가루형태의 모재 위에 액체 형태의 접착제를 토출시켜 모재를 결합, 3차원 형상을 제작하는 접착제 분사방식; 용액형태의 소재를 제팅 (jet t ing)으로 토출시키고 자외선 등으로 경화시키는 재료 분사방식; 레이저나 전자빔 등의 고에너지원으로 원료 소재를 녹여 3차원 형제기상을 제작하는 고에너지 직접조사방식; 분말형태의 모재 위에 고에너지빔을 주사하여 조사해 선택적으로 결합, 3차원 형상을 제작하는 분말적층용융방식; 얇은된한적 필름형태의 재료를 열이나 접착제 등으로 붙여가며 3차원 형상으로 적층하는 시트 라미네이션 방식; 등이 있다.  First, the photopolymerization method, SLACstereo li thography (DCR) method and DLP (digital processing process) method, which uses a photocurable polymer that is cured in response to light as a base material, creates a three-dimensional shape by irradiating and curing light. ; A fused deposi- tion ion modeling (FDM) method of a material extrusion method, which is a method of continuously pushing a heated material at high pressure through a nozzle to produce a three-dimensional shape; Adhesive spraying method for producing a three-dimensional shape by combining the base material by discharging the adhesive of the liquid form on the base material of the powder form; A material injection method for discharging the material in solution form by jet ting and curing with ultraviolet light; High-energy direct irradiation method for melting three-dimensional sibling phase by melting raw materials with high energy sources such as laser and electron beam; Powder-laminated melting method for producing a three-dimensional shape by combining the high-energy beam and irradiating it on the powder-based base material; A sheet lamination method of laminating a thin film-like material with heat or an adhesive and laminating it in a three-dimensional shape; Etc.
특히, 3D 프린팅 기술이 점차 발전함에 따라 좀 더 정밀하고 세밀한 3D 형상을 제조할 수 있게 되면서, 이를 의료 혹은 바이오 분야에 접목시켜 의료기기 부품이나 실제 인간의 조직을 거의 그대로 모방한 미세 및 거대 조직 구조체인 인체모형, 피부조직 및 신체 장기 재생을 제조하는데 활용되고 있다.  In particular, as 3D printing technology gradually develops, it is possible to manufacture more precise and detailed 3D shapes, and it is applied to the medical or bio fields, and fine and large tissue structures that almost mimic medical device parts or actual human tissues are intact. It is used to manufacture human body model, skin tissue and body organ regeneration.
초반에는 고체 필라멘트를 녹여 한층 한층 적층시킴으로써 3D 프린팅하는 방식인 FDM 기술에 열가소성 생체적합 고분자를 적용하여 조직공학용 인공지지체를 제조하였으나, 최근에는 조직공학용 지지체 이외에도 수술시뮬레이션 및 수술 임플란트 제작, 개인별 맞춤형 보형물 제작, 인공 혈관, 인공 장기 등 의학바이오 분야에서 다양하게 적용될 수 있도록 연구개발이 진행되고 있다. In the early stages, artificial supports for tissue engineering were manufactured by applying thermoplastic biocompatible polymers to FDM technology, which melted solid filaments and laminated them further to 3D printing, but recently, in addition to tissue engineering supports, surgical simulations, surgical implants, and personalized implants were manufactured. , a research and development is going to be applied in a variety of artificial blood vessels, artificial organs, such as medical biotechnology i.
특히, 조직공학용 지지체는 구성재료의 선택과 구조제어 기술이 매우 중요하다. 즉, 지지체는 자가복구기능을 통해 손실된 조직을 재생시키기 위하여 조직과 조직을 이어주는 다리와 같은 역할을 하는데, 조직재생이 원활하게 이루어지도록 세포친화성이 뛰어나야 한다. 또한, 세포가 3차원적으로 성장하기 위해서는 영양분 및 배설물 등의 교환이 잘 이루어질 수 있어야 하므로, 일정한 크기영역에서 3차원적으로 연결되어 있는 기공구조를 갖는 것이 바람직하고, 조직의 재생속도에 맞추어 분해되어 없어지는 생분해성과 조직이 재생되는 동안 형태를 유지시켜줄 수 있는 기계적 강도를 가져야하며, 생체안정성 또한 뛰어나야 한다. 특히, 뼈와 치아와 같은 경조직 재생에 있어서는 재생부위에 따른 기계적 물성확보가 중요하다. In particular, the support for tissue engineering is very important for the selection of constituent materials and structural control technology. In other words, the supporter plays a role as a bridge connecting the tissue to regenerate the tissue lost through the self-recovery function, it should be excellent in cell affinity so that tissue regeneration is smoothly performed. Also, cells grow in three dimensions In order to be able to exchange nutrients and excreta well, it is desirable to have a pore structure that is three-dimensionally connected in a certain size region, while the biodegradation and biodegradation that is decomposed to the tissue regeneration rate during It must have mechanical strength to maintain its shape, and it must have excellent biostability. In particular, in regenerating hard tissues such as bones and teeth, it is important to secure mechanical properties according to regeneration sites.
구체적으로 조직공학용 지지체는 첫째, 임플란트 부위에서 물리적으로 안정해야 하고, 둘째, 재생 효능을 조절할 수 있는 생리 활성을 나타내어야 하며, 셋째, 새로운 조직을 형성한후에는 생체 내에서 분해되어야 하고 넷째, 분해산물이 독성을 갖지 않아야 한다.  Specifically, the support for tissue engineering must first be physically stable at the implant site, secondly, exhibit physiological activity that can regulate regenerative efficacy, and thirdly, form new tissue and then degrade in vivo. It must not have this toxicity.
따라서, 이러한 조직공학용 지지체 뿐만 아니라 수술시뮬레이션 및 수술 임플란트 제작, 개인별 맞춤형 보형물 제작, 인공 혈관, 인공 장기 등의 바이오 구조체를 제조할 수 있는 재료인 바이오 잉크는 많은 한계점을 나타내고 있다.  Therefore, bioinks, which are materials for producing biostructures such as surgical simulations and surgical implants, personalized implants, artificial blood vessels, and artificial organs, have shown many limitations.
3D 바이오 프린팅에 사용되기 위해 요구되는 바이오 잉크의 특성으로는 먼저, 우수한 생체적합성이 요구되고, 노즐을 통하여 프린팅되는 3D 프린터에 적용되었을 때, 미세구경의 디스펜싱 노즐 (di spensing nozz le)을 원활히 통과하여 원하는 패턴으로 프린팅 될 수 있는 물리적 성질을 가져야 한다. 또한, 3D 프린팅 후 세포-특이적 신호를 제공하면서 기계적인 지지체 역할을 유지할 수 있어야 한다. 최근 들어 3D 바이오 프린팅 분야에서 천연 유래 또는 합성 하이드로겔 바이오 잉크가 개발되어 사용되고 있지만 (대한민국 공개특허 제 10-2017-0001444호 : 2017.01.04. ), 이러한 기존 하이드로겔을 바탕으로 한 바이오 잉크는 생체적합성, 프린팅 적합성, 기하학적 정밀성, 정밀도 등과 같은 물리적 특성 및 생물학적 측면에서 상당한 한계점을 보이고 있다. The characteristics of bio-inks required for 3D bioprinting include, firstly, excellent biocompatibility, and when applied to a 3D printer printed through a nozzle, a fine diameter dispensing nozzle (di spensing nozz le) is smoothly applied. It must have physical properties that can be passed through and printed in the desired pattern. In addition, it should be possible to maintain a mechanical support role while providing cell-specific signals after 3D printing. Recently, natural or synthetic hydrogel bio inks have been developed and used in the field of 3D bio printing (Republic of Korea Patent Publication No. 10-2017-0001444: 2017.01.04.) There are significant limitations in physical and biological aspects such as suitability, printing suitability, geometrical precision and precision.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은, 천연 단백질 고분자인 실크 피브로인을 주요 골격으로 한 바이오 잉크를 제조함으로써, 실크 피브로인의 우수한 기계적 강도와 세포 적합성이 동등 이상으로 유지되어 3D 프린터에 적용될 수 있는 바이오 잉크 및 이의 제조방법을 제공하고자 한다.  The present invention provides a bio-ink that can be applied to a 3D printer and a method of manufacturing the same, by producing a bio-ink based on silk fibroin, which is a natural protein polymer as a main skeleton, to maintain excellent mechanical strength and cellular suitability of silk fibroin. I would like to.
【기술적 해결방법】 Technical Solution
상술한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시 형태는, 3D 프린팅에 사용될 수 있는 바이오 잉크에 관한 것으로, 바람직하게는 실크 피브로인 (Si lk Fibroin)과 메타크릴레이트 (Methacryl ate)계 화합물이 중합된 고분자 중합체; 및 광개시제;를 포함할 수 있다.  One embodiment of the present invention for achieving the above object, relates to a bio ink that can be used for 3D printing, preferably silk fibroin (Si lk Fibroin) and methacrylate (Methacryl ate) compound Polymerized high polymers; And a photoinitiator.
상기 고분자 중합체는, 실크 피브로인의 아미노산 잔기에 하나 이상의 메타크릴레이트계 화합물이 공중합되어 형성된 것을 사용하는 것이 바람직하다.  It is preferable to use the polymer formed by copolymerizing at least one methacrylate compound with the amino acid residue of silk fibroin.
상기 광개시제는, 리튬 페닐 -2,4,6-트리메틸벤조일포스피네이트 ( l i thium phenyl-(2 ,4 , 6-tr imethyl benzoyl ) phosphinate , LAP) , 벤질디메틸케탈 (benzyl dimethyl ketal ) , 아세토페논 (acetophenone), 벤조인메틸에테르 (benzoin methyl ether ) , 디에록시아세토페논 (diethoxyacetophenone), 벤조일 포 옥사이드 (benzoyl phosphine oxide) 및 1-하이드록시사이클로핵실 케톤 ( 1— hydroxycyc lohexyl phenyl ketone)으로 이루어진 군 중에서 선택된 적 하나 이상을 포함할 수 있다. The photoinitiator, lithium thienyl phenyl-2,4,6-trimethylbenzoylphosphinate (li thium phenyl- (2,4,6-trimethylbenzoyl) phosphinate, LAP), benzyl dimethyl ketal, acetophenone Acetophenone , Benzoin methyl ether ether), diethoxyacetophenone, benzoyl phosphine oxide and benzoyl phosphine oxide, and may include one or more selected from the group consisting of 1-hydroxycyclohexyl phenyl ketone.
한편 , 본 발명이 다른 실시 형태는, 용매에 실크 피브로인 (Si lk Fibroin)을 용해시키는 용해단계; 실크 피브로인이 용해된 용액에 메타크릴레이트계 화합물을 투입한 후, 이를 교반시켜 고분자 증합체를 제조하는 중합단계; 상기 증합단계를 통해 제조된 고분자 중합체가 포함된 용액을 동결건조하여 분말화시키는 건조단계; 및 물에 고분자 중합체가 포함된 분말과 광개시제를 흔합하는 흔합단계;를 포함하여 바이오 잉크를 제조하는 방법에 관한 것이다.  On the other hand, another embodiment of the present invention, a dissolution step of dissolving silk fibroin (Si lk Fibroin) in a solvent; Adding a methacrylate compound to a solution in which silk fibroin is dissolved, followed by stirring to prepare a polymer polymer; A drying step of lyophilizing and powdering the solution containing the polymer prepared by the polymerization step; And a mixing step of mixing a powder containing a high molecular polymer with water and a photoinitiator in water.
상기 중합단계 후에, 제조된 고분자 중합체가 포함된 용액을 투석 튜브에 넣고, 물에 침지시켜 불순물을 제거하는 투석단계;를 더 포함할 수 있으며, 상기 투석단계는, 제조된 고분자 중합체가 포함된 용액을 12 14 kDa cutof f 투석튜브에 넣은 후, 물에 3 ~ 5일간 침지시켜 불순물을 제거하는 것이 바람직하다.  After the polymerization step, the solution containing the prepared polymer polymer in the dialysis tube, the dialysis step of removing impurities by immersing in water; The dialysis step, the dialysis step, the solution containing the prepared polymer polymer It is desirable to remove the impurities by immersing in 12 14 kDa cutof f dialysis tube, immersed in water for 3-5 days.
상기 용해단계는, 용매에 실크 피브로인을 0.05 - 0.35 g/ml 농도로 용해시킨 후, 40 - 80 분간 50 ~ 70 °C 온도로 가열할 수 있다.  In the dissolving step, after dissolving the silk fibroin at a concentration of 0.05-0.35 g / ml in a solvent, it can be heated to a temperature of 50 ~ 70 ° C for 40-80 minutes.
상기 중합단계는, 실크 피브로인이 용해된 용액에 141 ~ 705 mM 농도로 메타크릴레이트계 화합물올 투입하며, 실크 피브로인이 용해된 용액에 메타크릴레이트계 화합물을 투입한 후, 50 ~ 70 °C온도에서 2 ~ 4시간 동안 200 ~ 400 rpm 회전속도로 교반하는 것이 바람직하다.  In the polymerization step, methacrylate-based compound is added to the solution in which the silk fibroin is dissolved at a concentration of 141 to 705 mM, and after the methacrylate-based compound is added to the solution in which the silk fibroin is dissolved, the temperature is 50 to 70 ° C. It is preferable to stir at 200 to 400 rpm rotational speed for 2 to 4 hours at.
상기 흔합단계는, 물에 고분자 증합체가 포함된 분말 20 ~ 30 ^%및 광개시제 0. 1 ~ 0.3 %를 흔합하되, 상기 물, 고분자 중합체 및 광개시제의 합이 100 wt%를 넘지 않는 것이 바람직하다.  In the mixing step, 20 to 30 ^% of the powder containing the polymer polymer in water and 0.1 to 0.3% of the photoinitiator are mixed, but it is preferable that the sum of the water, the polymer and the photoinitiator does not exceed 100 wt%. .
상기 혼합단계에서 사용하는 광개시제는, 리튬 스페어 페닐 -2,4,6-트리메틸벤조일포스피네이트 ( l i thium phenyl-(2 , 4 , 6-tr imethyl benzoy도핀닐l ) phosphinate , LAP) , 벤질디메틸케탈 (benzyl dimethyl ketal ) , 아세토페논 (acetophenone) , 벤조인메틸에테르 (benzoin methyl ether ) , 디에톡시아세토페논 (diethoxyacetophenone) , 벤조일 포스핀 옥사이드 (benzoyl phosphine oxide) 및 1-하이드록시사이클로핵실 페닐 케톤 ( 1-hydroxycyclohexyl phenyl ketone)으로 이루어진 군 중에서 선택된 적어도 하나 이상을 포함하는 것을 사용할 수 있다.  The photoinitiator used in the mixing step, lithium thiphenyl phenyl-2,4,6-trimethylbenzoylphosphinate (li thium phenyl- (2,4,6-tr imethyl benzoydopinyll) phosphinate, LAP), benzyldimethyl Benzyl dimethyl ketal, acetophenone, benzoin methyl ether, diethoxyacetophenone, benzoyl phosphine oxide and 1-hydroxycyclonucleic phenyl ketone 1-hydroxycyclohexyl phenyl ketone) may be used that includes at least one selected from the group consisting of.
상기 건조단계는, 상기 고분자 중합체가 포함된 용액을 -90 ~ -70 °C 온도로 10 ~ 14시간 동안 동결한 다음, 동결온도와 동일 온도하에서 40 ~ 60 시간 동안 동결건조하는 것이 바람직하다.  In the drying step, the solution containing the polymer polymer is frozen at -90 to -70 ° C for 10 to 14 hours, and then lyophilized for 40 to 60 hours at the same temperature as the freezing temperature.
한편, 본 발명의 또 다른 실시 형태는 앞서 언급한 바이오 잉크; 또는 앞서 언급한 제조방법으로 제조된 바이오 잉크;를 사용하여 3D프린팅으로 제조된 바이오 구조체이다.  On the other hand, another embodiment of the present invention is the aforementioned bio ink; Or a bio structure manufactured by 3D printing using the bio ink prepared by the aforementioned manufacturing method.
【발명의 효과】 【Effects of the Invention】
본 발명은, 천연 단백질 섬유 중 하나인 실크 피브로인을 베이스로 중합반웅을 통해 광 노출시 겔화 또는 경화 반응을 일으킬 수 있는 액체상태의 바이오 잉크 조성물을 제조함으로써, 수분 흡수력, 부피 팽창률, 압축강도, 인장강도 등 기계적 물성을 가진 생체 조직을 제조할 수 있다. The present invention is based on the silk fibroin, one of the natural protein fibers in a liquid state that can cause a gelation or curing reaction upon exposure to light through polymerization reaction. By preparing the bio ink composition, biological tissues having mechanical properties such as moisture absorption, volume expansion ratio, compressive strength, and tensile strength can be prepared.
또한, 실크 피브로인을 기본 골격으로 하여 바이오 잉크를 제조함으로써, 체내에서 면역반응이 거의 일어나지 않아 3D 프린팅을 통해 생체적합성이 뛰어난 바이오 구조체를 제조할 수 있다.  In addition, by producing a bio ink based on silk fibroin as a basic skeleton, an immune reaction hardly occurs in the body, and thus a biostructure having excellent biocompatibility can be manufactured through 3D printing.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명의 일 실시 형태인 바이오잉크의 하이드로겔 상태를 개략적으로 나타낸 모식도이다.  1 is a schematic diagram schematically showing a hydrogel state of a bioink which is an embodiment of the present invention.
도 2는 본 발명의 바이오 잉크의 제조과정을 개략적으로 나타낸 모식도이다. 도 3은 본 발명의 일 실시 형태로, 실크 피브로인과 GMA의 중합반웅을 개략적으로 나타낸 화학구조식이다.  Figure 2 is a schematic diagram showing the manufacturing process of the bio ink of the present invention. Figure 3 is an embodiment of the present invention, a schematic chemical formula showing the polymerization reaction of silk fibroin and GMA.
도 4는 본 발명의 일 실시 형태로, 실크 피브로인과 GMA가 중합된 중합체 (SGMA)가 겔화된 상태를 개략적으로 나타낸 모식도이다.  FIG. 4 is a schematic view showing an embodiment of the present invention in which gel fibroin and GMA polymerized polymer (SGMA) are gelled.
도 5는 본 발명의 일 실시 형태로, 실크 피브로인에 투입된 GMA의 농도에 따른 SGMA의 FT-IR스펙트럼이다.  Figure 5 is an embodiment of the present invention, FT-IR spectrum of the SGMA according to the concentration of GMA injected into the silk fibroin.
도 6은 본 발명의 일 실시 형태로, 실크 피브로인에 투입된 GMA의 농도에 따른 SGMA의 -NMR스펙트럼이다.  6 is an embodiment of the present invention, which is -NMR spectrum of SGMA according to the concentration of GMA injected into silk fibroin.
도 7은 본 발명의 일 실시예로 제조된 바이오 잉크를 사용하여 DLP 방식으로 3D프린팅 과정을 개략적으로 나타낸 모식도이다. .  Figure 7 is a schematic diagram showing a 3D printing process in a DLP method using a bio ink prepared according to an embodiment of the present invention. .
도 8은 본 발명의 다른 실시예로 제조된 바이오 잉크를 사용하여 3D 프린팅으로 인쇄된 하이드로겔의 수분흡수율을 측정한 결과를 나타낸 그래프이다. 도 9는 본 발명의 다른 실시예로 제조된 바이오 잉크를 사용하여 3D 프린팅으로 인쇄된 하이드로겔의 체적팽창율을 측정한 결과를 나타낸 그래프이다. 도 10 내지 도 16은 본 발명의 다른 실시예로 제조된 바이오 잉크를 사용하여 3D 프린팅으로 인쇄된 하이드로겔의 기계적 강도를 측정한 실험과정 또는 실험결과를 나타낸 사진 또는 그래프이다.  Figure 8 is a graph showing the results of measuring the water absorption of the hydrogel printed by 3D printing using a bio ink prepared in another embodiment of the present invention. 9 is a graph showing the results of measuring the volume expansion rate of the hydrogel printed by 3D printing using a bio ink prepared according to another embodiment of the present invention. 10 to 16 are photographs or graphs showing an experimental procedure or test results of measuring the mechanical strength of a hydrogel printed by 3D printing using a bio ink prepared according to another embodiment of the present invention.
도 17은 본 발명의 다른 실시예로 제조된 바이오 잉크를 사용하여 3D 프린팅으로 인쇄된 하이드로겔의 전단변형율에 따른 저장 탄성율 (G ' )와 손실탄성율 (G ' 1 )을 나타낸 그래프이다. FIG. 17 is a graph showing storage modulus (G ′) and loss modulus (G ′ 1 ) according to the shear strain of a hydrogel printed by 3D printing using a bio ink prepared according to another embodiment of the present invention.
도 18은 본 발명의 다른 실시예로 제조된 바이오 잉크를 사용하여 3D 프린팅으로 인쇄된 하이드로겔의 주파수 변화에 따른 저장 탄성율 (G ' )와 손실탄성율 (G ' ' )을 나타낸 그래프이다.  FIG. 18 is a graph showing storage modulus (G ′) and loss modulus (G ′ ′) of a hydrogel printed by 3D printing using a bio ink prepared according to another embodiment of the present invention.
도 19은 본 발명의 또 다른 실시예로 제조된 각각 다른 광개시제 함량이 포함된 바이오 잉크를 사용하여 3D 프린팅으로 인쇄된 하이드로겔의 뻣뻣한 정도를 나타낸 그래프이다.  FIG. 19 is a graph showing the stiffness of hydrogels printed by 3D printing using bio inks containing different photoinitiator contents according to another embodiment of the present invention.
도 20은 본 발명의 또 다른 실시예로 제조된 각기 다른 SGMA-3 함량이 다른 바이오 잉크를 사용하여 3D 프린팅올 하되, UV에 따라 노출된 경화시간에 따른 하이드로겔의 뻣뻣한 정도를 나타낸 그래프이다.  20 is a graph showing the stiffness of the hydrogel according to the curing time exposed to UV under 3D printing using different SGMA-3 content of different bio inks prepared by another embodiment of the present invention.
도 21은 본 발명의 다른 실시예로 제조된 바이오 잉크의 세포독성실험 결과를 나타낸 형광 현미경 사진이다.  21 is a fluorescence micrograph showing the results of cytotoxicity test of the bio ink prepared according to another embodiment of the present invention.
도 22는 본 발명의 다른 실시예로 제조된 바이오 잉크의 세포증식실험 결과를 나타낸 그래프이다. 22 is a cell proliferation experiment of a bio ink prepared by another embodiment of the present invention A graph showing the results.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하 본 발명의 바람직한 실시 예를 통해 상세히 설명하기에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 함을 밝혀둔다.  Before describing in detail through the preferred embodiments of the present invention, the terms or words used in the present specification and claims should not be construed as being limited to the conventional or dictionary meanings, meanings corresponding to the technical spirit of the present invention To be interpreted as
본 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.  Throughout this specification, when a part "includes" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
각 단계들에 있어 식별부호는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 실시될 수도 있고 실질적으로 동시에 실시될 수도 있으며 반대의 순서대로 실시될 수도 있다. 이하에서는 본 발명의 바이오 잉크 및 이의 제조방법에 대하여 보다 상세히 설명하고자 한다.  In each step, the identification code is used for convenience of explanation, and the identification code does not describe the order of each step, and each step may be performed differently from the stated order unless the context clearly indicates a specific order. have. That is, each step may be performed in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order. Hereinafter will be described in more detail with respect to the bio ink of the present invention and its preparation method.
먼저, 본 발명의 바이오 잉크는 3D 프린터를 통해 조직공학용 지지체, 수술 임플란트, 개인별 맞춤형 보형물, 인공 혈관, 인공 장기 등 의학 ·바이오 분야에 활용될 수 있는 바이오 구조체를 프린팅할 수 있는 생체재료로서, 천연 단백질 고분자인 실크 피브로인에 화합물이 중합된 중합체를 광개시제와 함께 물에 용해시킨 액체상태의 바이오 잉크를 광 (예를 들어, UV)에 노출시켜 도 1과 같이 형성된 하이드로 겔로 이루어진 바이오 구조체를 프린팅할 수 있다.  First, the bio ink of the present invention is a biomaterial capable of printing biostructures that can be utilized in medical and bio fields such as tissue engineering supports, surgical implants, personalized implants, artificial blood vessels, artificial organs, etc., via 3D printers. The biostructure consisting of a hydrogel formed as shown in FIG. 1 can be printed by exposing a liquid bio ink obtained by dissolving a polymer polymerized in a silk fibroin, which is a protein polymer, in water together with a photoinitiator to light (for example, UV). have.
특히, 본 발명의 바이오 잉크는 다양한 방식의 3D 프린터에 적용하여 사용할 수 있으나, 바람직하게는 DLP(digi tal l ight processing) 방식의 3D 프린터를 적용하여 사용할 수 있다.  In particular, the bio ink of the present invention may be applied to various types of 3D printers, but may be preferably applied to 3D printers based on digital processing (DLP).
일반적으로 DLP(digi tal l ight process ing) 방식의 3D 프린터의 경우 마스크 투영 이미지 경화 방식으로 구조체를 제조하는 장치로 일반적으로 액체 상태의 광경화성 수지가 담긴 수조에 빔 프로젝터를 사용하여 조형하고자 하는 형상으로 빛을 투사하고, 투사한 형상대로 수지를 경화시켜 적층하는 방식으로 구조체를 제조하는 3D 프린팅 방식이다. 이와 같은 DLP 방식의 3D 프린팅 기술은 빔 프로젝터에서 나오는 이미지를 마스크 단위 (2D)로 투사하기 때문에 지지대와 같은 별도의 부재료 없이도 출력이 가능할 뿐만 아니라 표면 조도가 우수하고 프린팅 과정 중 소음이 발생되지 않는 장점이 있다.  In general, DLP (digi- tal process processing) (DLP) type 3D printer is a device for manufacturing a structure by mask projection image hardening. It is a shape to be molded by using a beam projector in a tank containing a liquid photocurable resin. It is a 3D printing method of manufacturing a structure by projecting light with light, and curing and laminating resin in the projected shape. This 3D printing technology of the DLP method projects the image from the beam projector in mask units (2D), which enables output without additional materials such as a support, and has excellent surface roughness and no noise during the printing process. There is this.
특히 DLP 방식의 3D 프린팅의 경우 액체 상태의 수지를 잉크로 사용하여 면 단위 조형방식을 통해 구조체가 성형됨으로서 작업 속도가 균일하고 빠른 속도로 조형할 수 있어 세포의 손상를을 저하시켜 세포 적합성이 우수할 뿐만 아니라, 매우 세밀한 표면 조도 및 정밀한 구조체를 프린팅할 수 있어, 3D 바이오 프린팅 방식으로 적용시 착용감이 우수한 개인별 맞춤 보형물을 제조할 수 있다.  In particular, in the case of DLP type 3D printing, the structure is molded through the surface unit molding method using the resin in the liquid state as the ink, and thus the work speed can be uniformly and rapidly formed, which reduces the damage to the cells, thereby improving the cell compatibility. In addition, it is possible to print very fine surface roughness and precise structure, it is possible to produce a personalized implant with excellent fit when applied by the 3D bio printing method.
구체적으로, 본 발명의 바이오 잉크는, 생체재료로 사용할 수 있는 생체적합성이 있는 물질 (예를 들어, 아가로즈 (agarose), 피브리노겐 (fibrinogen), 피브로인 (fibroin), 메타아크릴레이티드 히알루론산 (HAMA), 사이올레이티드 히알루론산, 젤라틴, 젤라틴 메타아크릴레이티드 (GelMA), 사이올레이티드 젤라틴, 콜라겐, 알기네이트, 메틸 셀를로오스, 키토산, 키틴, 합성펩타이드, 폴리에틸렌 글리콜 기초의 하이드로겔, PGA(Polyglycolic acid), PLGA(poly-lact ic-co-glycol ic acid) , PLA(Polylact ic acid) , PLLA(poly(L-lact ic acid)) , PCL(Polycaprolactone) , PHB ( Po 1 yhyd roxybutyrate), PHV(Polyhydroxyvalerate) , PDO ( Po 1 yd i ox anone ) , PTMC(Polytrimethylenecarbonate) 등)을 사용할 수 있는데, 바람직하게는 이들 중에서도 생체적합성과 물리적 성질이 우수한 피브로인 (fibroin)를 베이스 (base)로 사용할 수 있다. Specifically, the bio ink of the present invention can be used as a biomaterial Biocompatible materials (e.g. agarose, fibrinogen, fibroin, methacrylated hyaluronic acid (HAMA), thiolated hyaluronic acid, gelatin, gelatin methacrylate ( GelMA), Silicated Gelatin, Collagen, Alginate, Methyl Cellulose, Chitosan, Chitin, Synthetic Peptide, Polyethylene glycol based hydrogel, Polyglycolic acid (PGA), Poly-lact ic-co-glycolic acid ), Polylactic acid (PLA), poly (L-lactic acid) (PLLA), Polycaprolactone (PCL), PH 1 (Po 1 yhyd roxybutyrate), Polyhydroxyvalerate (PHV), PDO (Po 1 yd i ox anone), PTMC Polytrimethylene carbonate) and the like, and among them, fibroin having excellent biocompatibility and physical properties can be used as a base.
피브로인은, 빠른 가교 결합의 형성 및 기계적 강성을 유지할 수 있고, 하이드로 겔로 형성시 안정성 측면에서 우수한 기계적 특성을 가질 뿐만 아니라 세포가 프린팅된 이후에 세포의 부착 및 분화에 적합한 미세환경을 조성할 수 있다는 장점이 있다.  Fibroin can maintain rapid cross-link formation and mechanical stiffness, have excellent mechanical properties in terms of stability when formed into a hydrogel, and can create a microenvironment suitable for cell attachment and differentiation after the cells are printed. There is an advantage.
따라서 본 발명의 바이오 잉크는 피브로인 (fibroin). 그 증에서도 누에고치에서 수득할 수 있는 실크 피브로인 (Silk Fibroin)을 베이스 (base)하여 제조된 고분자 중합체를 포함함으로써, 우수한 세포적합성, 프린팅 후 뛰어난 압축 강도, 인장강도 및 저장 탄성률의 물리적 특성을 나타낼 뿐만 아니라, DLP방식의 3D 프린터에도 적용할 수 있다.  Thus, the bio ink of the present invention is fibroin. In addition, it contains a high molecular polymer prepared from silk fibroin obtained from silkworm cocoon, showing excellent cell compatibility, excellent compressive strength after printing, tensile strength and storage modulus. In addition, it can be applied to DLP type 3D printer.
좀 더 상세하게는, 본 발명에 따른 바이오 잉크는 실크 피브로인 (Si lk Fibroin)와 메타크릴레이트 (Methacrylate)계 화합물이 중합된 고분자 중합체; 및 광개시게;를 포함할 수 있으며, 상기 고분자 중합체 및 광개시제를 물에 용해시켜 액체 상태인 바이오 잉크를 3D 프린터에 충진하고, 상기 바이오 잉크를 광, 바람직하게는 UV lltraviolet Ray) 자외선에 노출시켜 하이드로겔 (hydrogel )시켜 구조체를 성형할 수 있다.  More specifically, the bio ink according to the present invention includes a polymer polymer in which silk fibroin and methacrylate compound are polymerized; And a photoinitiator, wherein the polymer polymer and photoinitiator are dissolved in water to fill a liquid bio ink in a 3D printer, and the bio ink is exposed to light, preferably UV lltraviolet ray ultraviolet rays. The structure may be formed by hydrogel.
본 발명의 바이오 잉크의 주요 골격을 형성하는 실크 피브로인은 누에고치에서 세리신을 제거한 천연 단백질 고분자로서, 상기 실크 피브로인 내 아미노산 잔기 증 하나와 메타크릴레이트계 화합물을 중합반웅올 통해 고분자 중합체를 제조할 수 있으며, 바람직하게는 실크 피브로인 내 아미노산기 중 라이신 잔기에 하나 이상의 메타크릴레이트계 화합물이 공중합되어 상기 실크 피브로인의 아민기에 메타크릴레이트 비닐기가 형성된 고분자 중합체를 제조할 수 있다.  Silk fibroin, which forms the main skeleton of the bio ink of the present invention, is a natural protein polymer obtained by removing sericin from silkworm cocoon, and a polymer polymer can be prepared by polymerizing a single amino acid residue and a methacrylate compound in the silk fibroin. Preferably, at least one methacrylate compound is copolymerized to the lysine residue in the amino acid group in the silk fibroin to prepare a polymer polymer in which a methacrylate vinyl group is formed in the amine group of the silk fibroin.
일 예로, 상기 고분자 중합체는 도 3과 같이 메타크릴레이트계 화합물로, 글리시딜 메타크릴레이트 (glycidyl methacrylate, GMA)를 사용하여 상기 실크 피브로인과 중합 반웅시켜 실크 피브로인 분자 내 아민 (amine)에 메타아크릴레이트기 (metacrylate groLip)가 중합된 고분자 중합체 (이하, SGMA)일 수 있다.  For example, the polymer is a methacrylate-based compound as shown in FIG. 3, and polymerized with the silk fibroin by using glycidyl methacrylate (GMA) to meta-amine the amine in the silk fibroin molecule. The acrylate group (metacrylate groLip) may be a polymerized polymer (hereinafter, SGMA).
상기 광개시제는 광에 노출시 상기 고분자 중합체를 공격하여 라디칼 반웅올 일으킬 수 있되, 화학적으로 안정하고 인체에 독성이 없는 화합물이면 특별히 한정되지 않고 사용 가능하다.  The photoinitiator may cause radical reaction by attacking the polymer when exposed to light, but may be used without particular limitation as long as it is a chemically stable compound that is not toxic to the human body.
일 예로, 본 발명의 바이오 잉크 내 포함된 광개시제로는 프리 라디컬계 광개시제로, 리튬 페닐— 2,4,6-트리메틸벤조일포스피네이트 (lithium phenyl-(2,4,6-trimethyl benzoyl) phosphinate, LAP), 벤질디메틸케탈 (benzyl dimethyl ketal ) , 아세토페논 (acetophenone), 벤조인메틸에테르 (benzoin methyl ether ) , 디에톡시아세토페논 (di ethoxyacetophenone), 벤조일 포스핀 옥사이드 (benzoyl phosphine oxide) 및 1-하이드록시사이클로핵실 페닐 케톤 ( l-hydroxycyc lohexyl phenyl ketone)으로 이루어진 군 중에서 선택된 적어도 하나 이상을 포함된 것을 사용할 수 있으나, 바람직하게는 세포 독성이 낮은 리튬 페닐 -2,4,6-트리메틸벤조일포스피네이트 ( l i thium phenyl-(2 , 4 , 6-t r imethyl benzoyl ) phosphinate , LAP)를 사용할 수 있다. For example, the photoinitiator included in the bio ink of the present invention is a free radical type photoinitiator, lithium phenyl— 2,4,6-trimethylbenzoylphosphinate (lithium phenyl- (2,4,6-trimethyl benzoyl) phosphinate, LAP), Benzyldimethyl ketal (benzyl dimethyl ketal, acetophenone, benzoin methyl ether, diethethacetophenone, benzoyl phosphine oxide and 1-hydroxycyclonuclear phenyl ketone (l- hydroxycyc lohexyl phenyl ketone) may be used that includes at least one selected from the group consisting of, but is preferably low cytotoxic lithium phenyl-2,4,6-trimethylbenzoylphosphinate (li thium phenyl- (2, 4, 6-tr imethyl benzoyl) phosphinate, LAP) can be used.
구체적으로 상기 바이오 잉크에 광 조사시, 광개시제가 상기 고분자 중합체의 비닐 모노머를 공격하여 라디칼 반웅이 발생되며, 이로 인하여 생성된 자유 라디칼에 의하여 중합반웅을 통해 경화되어 구조체를 형성할 수 있다.  Specifically, when the bio ink is irradiated with light, the photoinitiator attacks the vinyl monomer of the polymer polymer to generate radical reaction, and the free radicals are cured through the polymerization reaction to form a structure.
바람직하게는 본 발명의 바이오 잉크는 앞서 언급한 실크 피브로인과 메타크릴레이트계 화합물이 중합된 고분자 중합체 및 광개시제 외에도 3D 바이오 프린팅을 통해 제조하고자 하는 바이오 구조체의 사용양태 또는 특성에 따라 세포, 성장인자, 생분해성 고분자 등 유효한 양으로 적절히 더 포함될 수 있다.  Preferably, the bio ink according to the present invention may be a cell, growth factor, according to the use or characteristic of the biostructure to be prepared through 3D bioprinting in addition to the polymer and photoinitiator polymerized with the silk fibroin and methacrylate-based compounds mentioned above. Biodegradable polymers and the like may be further included as appropriate.
상기 바이오 잉크에 관한 구체적인 성분의 함량 및 구조는 하기 바이오 잉크의 제조방법을 통해 더욱 상세히 설명하고자 한다. 한편, 본 발명의 다른 실시 형태는 바이오 잉크의 제조방법에 관한 것으로서 도 2와 같이 용매에 실크 피브로인 (Si lk Fibroin)을 용해시키는 용해단계 (도 2의 (a) ) ; 실크 피브로인이 용해된 용액에 메타크릴레이트 투입한 후, 이를 교반시켜 고분자 중합체를 제조하는 중합단계 (도 2의 (b) ) ; 상기 중합단계를 통해 제조된 고분자 중합체가 포함된 용액을 동결건조하여 분말화시키는 건조단계 (도 2의 (d)및 (e) ; 및 물에 고분자 증합체가 포함된 분말과 광개시제를 흔합하는 흔합단계; (도 2의 ( f ) )를 포함하여 바이오 잉크를 제조할 수 있다.  The content and structure of the specific components related to the bio ink will be described in more detail through the preparation method of the bio ink. On the other hand, another embodiment of the present invention relates to a method for producing a bio ink as shown in Figure 2 dissolution step of dissolving silk fibroin (Si lk Fibroin) in a solvent (Fig. 2 (a)); After adding methacrylate to a solution in which silk fibroin is dissolved, a polymerization step of preparing a polymer by stirring it (Fig. 2 (b)); Drying step of lyophilizing and drying the solution containing the polymer prepared by the polymerization step (Fig. 2 (d) and (e); and mixing step of mixing the powder and photoinitiator containing the polymer polymer in water) (FIG. 2 (f)) may be used to produce a bio ink.
상기 실크 피브로인은, 천연 단백질 고분자로 체내에 거부반웅 및 면역반웅이 일어나지 않고, 염증반응이 적어 생체적합성이 우수하다는 장점이 있다. 상기 실크 피브로인은 누에고치 (Bombyx mor i )로부터 빼낸 그대로의 누에고치 생사를 정련과정을 통해 세리신과 불순물을 제거한 것으로서, 일반적으로 누에고치 생사를 정련하는 방법은 열탕으로 10시간 이상 끓이거나, 묽은 알칼리성 용액으로 처리하는 방법 등이 있으며, 누에고치 생사로부터 세리신 및 불순물을 제거하여 정련된 실크 피브로인을 수득하는 기술은 일반적으로 널리 알려진 방법이면 사용 가능하므로 이의 자세한 설명은 생략하기로 한다.  The silk fibroin is a natural protein polymer, rejection reaction and immune reaction does not occur in the body, there is an advantage that the biocompatibility is excellent due to less inflammatory reaction. Silk fibroin is a silkworm cocoon (Bombyx mor i) silkworm cocoon raw silk as it is removed by sericin and impurities through the refining process, the method of refining silkworm cocoon silk is usually boiled over 10 hours with boiling water, diluted alkaline There is a method of treatment with a solution, and the technique for obtaining silk fibroin refined by removing sericin and impurities from silkworm cocoon can be used if it is a widely known method, so a detailed description thereof will be omitted.
정련공정을 통해 정련된 실크 피브로인은 물, 묽은 산 또는 묽은 염기 등 묽은 수용액에서는 용해되지 않는 성질을 가지고 있어, 상기 용해단계에서 용매에 실크 피브로인을 용해시키기 위해서는 브름화리튬 용액에 50 ~ 70 °C온도로 40 ~ 80 분 동안 가열하여 용해시킬 수 있다. 이 때 용해단계에서 사용되는 용매로, 묽은 용액에는 상기 실크 피브로인이 충분히 용해되지 못하므로 바람직하게는 8.0 ~ 10.0 M의 브름화리튬 (LiBr)용액 또는 염화칼슘 (CaCl2)용액을 사용할 수 있으며, 바람직하게는 8.7 ~ 9.8 M의 브름화리튬용액을 사용할 수 있다. Silk fibroin refined through the refining process is insoluble in dilute aqueous solution such as water, dilute acid or dilute base, and in order to dissolve silk fibroin in the solvent in the dissolution step, 50 ~ 70 ° C in lithium bromide solution It can be dissolved by heating to a temperature of 40-80 minutes. At this time, as the solvent used in the dissolution step, since the silk fibroin is not sufficiently dissolved in the dilute solution, preferably a lithium bromide (LiBr) solution or calcium chloride (CaCl 2 ) solution of 8.0 to 10.0 M may be used. For example, a lithium bromide solution of 8.7 to 9.8 M may be used.
상기 용해단계를 통해 제조된 실크 피브로인이 용해된 용액에 메타크릴레이트계 화합물을 투입한 후, 이를 교반시켜 고분자 중합체를 제조하는 중합단계는, 실크 피브로인의 아미노산 잔기에 메타크릴레이트기를 중합시켜 고분자 중합체를 제조함으로써, 이를 광에 노출시 압축강도, 인장강도 및 저장 탄성를 등의 기계적 물성이 향상된 하이드로겔로 이루어진 구조체를 성형할 수 있다. After adding a methacrylate compound to a solution in which the silk fibroin is prepared through the dissolution step, to prepare a polymer by stirring In the polymerization step, a polymer may be prepared by polymerizing a methacrylate group to an amino acid residue of silk fibroin, thereby forming a structure made of a hydrogel having improved mechanical properties such as compressive strength, tensile strength, and storage elasticity when exposed to light. have.
이때, 아미노산 잔기는 실크 피브로인에 포함된 각종 아미노산의 분자 구성 중 H , 0H가 이탈한 구성 단위를 의미하며, 넓은 의미로는 펩타이드나 단백질을 구성하는 각각의 아미노산을 의미한다.  In this case, the amino acid residue refers to a structural unit from which H and 0H are separated from the molecular structure of various amino acids included in silk fibroin, and broadly means each amino acid constituting a peptide or protein.
구체적으로, 상기 중합단계는 실크 피브로인이 용해된 용매에 메타크릴레이트계 화합물을 투입한 다음, 50 ~ 70 °C온도에서 2 ~ 4시간 동안 200 ~ 400 rpm 속도로 교반하여 중합체를 제조할 수 있다.  Specifically, the polymerization step may be prepared by adding a methacrylate compound to a solvent in which the silk fibroin is dissolved, and then stirred at a speed of 200 to 400 rpm for 2 to 4 hours at a temperature of 50 ~ 70 ° C. .
본 발명의 바이오 잉크 내 포함되는 고분자 중합체는 실크 피브로인 (Sl ik Fibtoin , SF)과 메타크릴레이트계 화합물이 공중합되어 제조된 고분자 증합체로 3D 프린팅 시 제조되는 바이오 구조체의 기본 골격이 되는 고분자 중합체로, 상기 실크 피브로인 내 포함된 아미노산의 잔기에 하나 이상의 메타크릴레이트계 화합물이 공중합되어, 상기 아미노산의 잔기에 메타크릴레이트기가 결합된 코폴리머 (co-polymer )를 형성함으로써 고분자 중합체를 제조할 수 있다. 바람직하게는 상기 실크 피브로인 내 포함된 아미노산의 잔기에 2개의 메타크릴레이트계 화합물이 중합되어 고분자 중합체를 제조할 수 있으며, 이를 광개시제와 함께 광 ( l ight )에 노출시 경화반웅을 일으켜 하이드로겔을 형성할 수 있다. 이 때 사용 έᅵ는 광 ( l ight )의 파장은 상기 광개시제가 라디칼 반응을 개시할 수 있는 광파장 영역을 조사시켜 바이오 잉크의 겔화, 경화반웅을 개시할 수 있다. 일 예로, 상기 고분자 공중합체는 도 3에 제시된 바와 같이 실크 피브로인 (SF)와 글리시딜 메타크릴레이트 (glyc idyl met hacry late , GMA)를 증합시켜, 실크 피브로인 분자 내 아민 (amine) , 바람직하게는 상기 글리시딜 메타크릴레이트의 에폭시 고리가 끓어지면서 실크 피브로인 분자 내 라이신기의 아민에 메타아크릴레이트기 (metacryl ate group)가 중합된 고분자 중합체 (이하, SGMA)를 제조할 수 있다.구체적으로 실크 피브로인 (SF)의 α-나선 또는 β-시트의 라이신기의 아민 (ᅳ冊2)에 상기 메타아크릴레이트기의 에폭시 고리가 끊어지면서 친핵성 반웅올 통해 상기 아민에 메타크릴레이트기가 증합된 고분자 증합체인 SGMA를 제조할 수 있다. The polymer included in the bio ink of the present invention is a polymer polymer prepared by copolymerizing silk fibroin (Sl ik Fibtoin, SF) and a methacrylate-based compound, and is a polymer polymer that is a basic skeleton of a biostructure manufactured during 3D printing. One or more methacrylate-based compounds may be copolymerized to the residues of amino acids included in the silk fibroin, thereby forming a polymer by forming a copolymer having a methacrylate group bonded to the residues of the amino acids. . Preferably, two methacrylate-based compounds may be polymerized to the residue of the amino acid contained in the silk fibroin to prepare a polymer, which may be cured upon exposure to light with a photoinitiator to form a hydrogel. Can be formed. In this case, the wavelength of light may be used to irradiate a light wavelength region in which the photoinitiator may initiate a radical reaction, thereby initiating gelation and curing reaction of the bio ink. In one example, the polymer copolymer is a combination of silk fibroin (SF) and glycidyl methacrylate (glyc idyl met hacry late, GMA) as shown in Figure 3, the amine in the silk fibroin molecule, preferably As the epoxy ring of glycidyl methacrylate is boiled, a polymer polymer (hereinafter, SGMA) in which a methacrylate group (metacrylate group) is polymerized to an amine of a lysine group in a silk fibroin molecule may be prepared. A polymer in which a methacrylate group is bonded to the amine through a nucleophilic semiungol while the epoxy ring of the methacrylate group is broken to the amine (# 2 ) of the α-helix of the silk fibroin (SF) or the lysine group of the β-sheet. The polymer SGMA can be prepared.
따라서, 바람직한 고분자 중합체를 제조하기 위해서는 상기 중합단계에서 흔합되는 실크 피브로인과 메타크릴레이트계 화합물의 흔합비율이 가장 중요하다. 상기 용해단계에서 용매에 실크 피브로인을 0.05 ~ 0.35 g/ml농도로 용해시킨 용액에 141 ~ 705 mM 농도로 메타크릴레이트계 화합물을 투입하여 중합단계를 진행하는 것이 바람직하며, 상기 실크 피브로인과 메타크릴레이트계 화합물의 비율이 상기 범위를 벗어나게 되는 ·경우 미반웅된 실크 피브로인 또는 메타크릴레이트계 화합물이 잔존량이 증가로 경제성이 저하되거나, 제조된 바이오 잉크로 인쇄된 구조체의 기계적 강도가 저하될 수 있다.  Therefore, in order to prepare a preferred high polymer, the mixing ratio of the silk fibroin and the methacrylate-based compound mixed in the polymerization step is most important. In the dissolving step, it is preferable to add a methacrylate-based compound at a concentration of 141 to 705 mM in a solution in which silk fibroin is dissolved in a solvent at a concentration of 0.05 to 0.35 g / ml. When the ratio of the rate-based compound is out of the above range, the economic efficiency may be reduced due to the increase in the amount of unfinished silk fibroin or methacrylate-based compound, or the mechanical strength of the manufactured bio ink printed structure may be lowered. .
상기 증합단계를 통해 제조된 고분자 증합체가 포함된 용액 내 포함된 이온 성분 즉, 용해단계에서 사용된 용매 내 포함된 이온인 불순물을 제거하기 위하여 제조된 고분자 중합체가 포함된 용액을 투석 류브에 넣고, 물에 침지시키는 투석단계 (도 2의 (c) )를 더 포함하는 것이 바람직하다. 더욱 바람직하게는 상기 투석단계 전에 고분자 중합체가 포함된 용액을 필터를 사용하여 여과한 다음, 용액 내 포함된 이온성분을 제거하기 위한 투석단계를 수행할 수 있다. A solution containing the polymer prepared in order to remove impurities, which are ions contained in the solution containing the polymer polymer prepared through the polymerization step, that is, ions contained in the solvent used in the dissolution step, is placed in the dialysis stream. It is preferable to further include a dialysis step (FIG. 2 (c)) to be immersed in water. More preferably, before the dialysis step, the solution containing the polymer polymer may be filtered using a filter, and then a dialysis step may be performed to remove ions contained in the solution.
상기 투석단계는 이온성분은 통과하되 고분자 중합체는 통과하지 못하는 크기의 투석튜브를 사용할 수 있으며, 바람직하게는 12 ~ 14 kDa cutof f 투석튜브에 제조된 고분자 중합체가 포함된 용액을 투입한 후 물에 3 ~ 5일간 침지시키는 것이 바람직하다. 상기 투석시간이 3일 미만일 경우 제조된 고분자 중합체가 포함된 용액 내 포함된 이온 성분의 제거가 충분하지 못하여 생체 적합성이 저하되거나 프린팅으로 제조된 구조체의 기계적 강도가 저하되는 문제가 발생될 수 있고, 투석시간이 5일을 초과하게 되는 경우 시간 초과에 따른 이익이 없어 경제성이 저하될 수 있다. The dialysis step may use a dialysis tube that passes the ionic component but does not pass the polymer polymer, preferably in the 12 ~ 14 kDa cutof f dialysis tube containing a solution containing the polymer prepared in water It is preferable to immerse for 3-5 days. When the dialysis time is less than 3 days, the removal of the ionic components contained in the solution containing the prepared polymer may not be sufficient, resulting in a decrease in biocompatibility or a decrease in mechanical strength of the structure manufactured by printing. If the dialysis time exceeds 5 days, there is no benefit over time, which may lower the economic efficiency.
상기 투석단계를 통과한 고분자 중합체가 포함된 용액을 동결건조하여 분말화시키는 건조단계는, 액체상태의 바이오 잉크의 유통 및 저장성을 향상시키고 바이오 잉크의 화학적 안정성을 부여하기 위하여 상기 고분자 중합체가 포함된 용액올 동결건조하여 분말화시키는 것이 바람직하다.  The drying step of lyophilizing and drying the solution containing the polymer polymer passed through the dialysis step, the solution containing the polymer polymer in order to improve the circulation and storage of the liquid bio ink and to impart chemical stability of the bio ink All lyophilization and powdering are preferred.
구체적으로 상기 건조단계는, 투석이 충분히 진행되어 이온성분이 제거된 고분자 중합체가 포함된 용액을 먼저 -90 ~ -70 °C온도로 10 ~ 14시간에 걸쳐 완전히 동결시킨 다음, 40 ~ 60 시간 동안 동결온도와 동일 온도하에서 동결건조하는 것이 바람직하다. 상기 동결건조된 고분자 증합체가 포함된 용액은 파쇄, 분쇄 등의 가공을 거쳐 적절한 크기의 입도를 가지도록 분말화시키는 것이 바람직하다.  Specifically, in the drying step, the dialysis proceeds sufficiently to completely freeze the solution containing the polymer polymer from which the ionic component is removed first at -90 to -70 ° C for 10 to 14 hours, and then for 40 to 60 hours. Freeze drying is preferably performed at the same temperature as the freezing temperature. The solution containing the freeze-dried polymer polymerizer is preferably powdered to have an appropriate size particle size through processing such as crushing and grinding.
상기 건조단계를 거쳐 고분자 중합체가 포함된 분말은, 물에 광개시제와 함께 흔합하는 흔합단계를 통해 본 발명의 바이오 잉크를 제조할 수 있다. 바람직하게는 상기 흔합단계는 물에 고분자 증합체가 포함된 분말 20 ~ 30 wt% 및 광개시제 0. 1 ~ 0.3 wt%를 흔합하는 것이 바람직하며, 이 때 물, 고분자 중합체 및 광개시제의 합이 100 \^%를 넘지 않도록 하는 것이 바람직하다.  Through the drying step, the powder containing the polymer may be prepared in the bio ink of the present invention through a mixing step of mixing with a photoinitiator in water. Preferably, in the mixing step, it is preferable to mix 20-30 wt% of the powder containing the polymer polymer in water and 0.01-1.3 wt% of the photoinitiator, wherein the sum of water, the polymer polymer and the photoinitiator is 100 \. It is desirable not to exceed ^%.
상기 광개시제에 관한 구체적인 설명은 앞서 언급하였으므로 여기서는 생략하기로 한다.  Since a detailed description of the photoinitiator has been mentioned above, it will be omitted here.
이와 같은 방법으로 .제조된 본 발명의 바이오 잉크는 일 예로, 도 4와 같이 상기 광 개시제가 광중합 반웅을 개시할 수 있는 파장의 광에 노출시켜 겔화 또는 경화되어 하이드로겔을 형성할 수 있다.  In this way, the bio ink of the present invention manufactured as described above may be gelled or cured by exposure to light having a wavelength at which the photoinitiator may initiate photopolymerization reaction as shown in FIG. 4 to form a hydrogel.
상세하게는 실크 피브로인과 글리시딜 메타크릴레이트 (glyc i dyl methacryl ate , GMA)이 중합반웅되어 형성된 SGMA가 포함된 용액에 광개시제인 LAP를 투입하여 제조된 본 발명의 바이오 잉크를 광 (자외선, UV)에 노출시키면 상기 광개시제 LAP가 SGMA의 비닐기를 공격 (at t ack)하여 자유 라디칼 ( free radi cal )을 생성시키고, 이로 인하여 SGMA의 메타크릴기의 이중결합 부분의 사슬 내부의 결합, 그 사이의 공유 결합이 유발될 뿐만 아니라, 고분자 중합체의 긴 사슬 간의 물리적 얽힘 등을 통해 하이드로 겔의 구조체를 제조할 수 있다.  In detail, the bioinks of the present invention prepared by adding LAP, a photoinitiator, to a solution containing SGMA formed by polymerization of silk fibroin and glycidyl methacrylate (GMA) are used as light (ultraviolet, Exposure to UV) causes the photoinitiator LAP to attack the vinyl group of SGMA to generate free radicals, thereby binding within the chain of the double bond portion of the methacryl group of SGMA, between Not only covalent bonds are induced, but also the physical entanglement between the long chain of the polymer can be produced a structure of the hydrogel.
따라서, 앞서 언급한 바이오 잉크 또는 앞서 언급한 제조방법으로 제조된 바이오 잉크를 사용하여 3D 프린팅, 바람직하게는 DLP 방식의 3D 프린팅을 통해 하이드로 겔 상태의 바이오 구조체를 제조할 수 있다. 이하에서는,본 발명의 실시 예를 살펴본다. 그러나 본 발명의 범주가 이하의 바람직한 실시 예에 한정되는 것은 아니며, 당업자라면 본 발명의 권리범위 내에서 본 명세서에 기재된 내용의 여러 가지 변형된 형태를 실시할 수 있다. Therefore, the bio-structure in the hydrogel state may be manufactured by 3D printing, preferably DLP-type 3D printing using the aforementioned bio ink or the bio ink manufactured by the aforementioned manufacturing method. Hereinafter, an embodiment of the present invention will be described. However, the scope of the present invention is not limited to the following preferred embodiments, and those skilled in the art can implement various modified forms of the contents described herein within the scope of the present invention.
[제조예 1] [Production Example 1]
대한민국 농촌진홍청에서 가져온 누에고치 5. »or/)를 4조각으로 자른 후, 자른 누에고치 40 g을 0.05 M탄산나트륨 수용액 1L에 침지시켜 1000C온도로 30분간 가열한 뒤 이를 증류수로 수회 세정한 다음, 이를 실온에서 건조시켜 세리신이 제거된 누에 고치 즉, 실크 피브로인 31.1 g (약 80 %수득률)올 수득하였다. Silkworm cocoon from Rural Crimson Korea, Korea. Cut »or /) into 4 pieces. 40 g of the cocoon was immersed in 1 L of 0.05 M sodium carbonate solution, heated to 100 0 C for 30 minutes, and washed several times with distilled water. Then, it was dried at room temperature to obtain 31.1 g (about 80% yield) of silkworm cocoon, ie, silk fibroin, from which sericin was removed.
수득된 실크 피브로인 20 g올 9.3 M브름화리튬 수용액 100 ml에 투입시킨 후 이를 60oC온도로 1시간동안 가열하여 실크 피브로인을 브름화리튬 수용액에 완전히 용해시켰다 (도 2의 (a) 참조). 20 g of the obtained silk fibroin was added to 100 ml of an aqueous 9.3 M lithium bromide solution, which was then heated to 60 ° C. for 1 hour to completely dissolve the silk fibroin in the aqueous lithium bromide solution (see FIG. 2A). .
실크 피브로인이 용해된 브름화리튬 수용액에 GMMGlycidyl methacrylate)가 141mM, 282 mM, 424 mM, 705mM농도로 포함 ¾ 수 있도록 상기 실크 피브로인이 용해된 브롬화리륨 수용액에 GMA 용액 (Sigma-Aldrich, St. Louis, Missouri, USA)을 각각 2, 4, 6, 10 ml씩 투입한 뒤, 상기 실크 피브로인과 GMA가 층분히 중합 반웅할 수 있도록 60 °C 온도에서 300 rpm 속도로 3시간 동안 교반시켰다 (도 2의 (b) 참조). 미라클로스 (miraclothKCalbiochem, SanDiego, CA) 필터를 사용하여 여과한 다음, 13 kDa cut-off 투석 튜브에 실크 피브로인과 GMA이 증합 반웅된 SGMA가 포함된 용액을 담은 후 증류수에 상기 투석류브가 완전히 침지될 정도로 4일동안 방치하여 용액 내 포함된 이온, 불순물을 투석하여 제거하였다 (도 2의 (c) 참조). 투석이 끝난 용액은 평균 -80 0C 온도로 12시간 동안 동결한 다음, 48 시간동안 동결건조한 후 (도 2의 (d) 참조), 이를 분말화시켜 SGMA 분말 (GMA 투입량 순서대로, SGMA-l, SGMA-2, SGMA-3, SGMA-4)을 제조하였다 (도 2의 (e) 참조). GMG solution (Sigma-Aldrich, St. Louis, Missouri, USA) was added 2, 4, 6, 10 ml, respectively, and stirred for 3 hours at 300 rpm at a temperature of 60 ° C so that the silk fibroin and GMA could be fully polymerized. (b)). After filtration using a miracloth (Calbiochem, SanDiego, CA) filter, a 13 kDa cut-off dialysis tube contains a solution containing silk fibroin and SGMA, which is a combination of GMA, and then the dilution water is completely immersed in distilled water. After leaving for 4 days, the ions and impurities contained in the solution were dialyzed and removed (see FIG. 2C). The dialysis solution was frozen for 12 hours at an average temperature of -80 0 C, then lyophilized for 48 hours (see FIG. 2 (d)), and then powdered to give SGMA powder (in order of GMA dosage, SGMA-l , SGMA-2, SGMA-3, SGMA-4) were prepared (see FIG. 2 (e)).
[실험예 1] Experimental Example 1
상기 제조예 1에서 제조된 SGMA 분말의 화학 구조를 확인하기 위하여 적외선 분광광도기 (Frontier, PerkinElmer, Rodau, UK)를 사용하여 FT-IR 스펙트럼을 측정하였으며, SGMA의 메타크릴화 정도를 확인하기 위하여 Buker DPX FT-NM 장치 (Bruker Analytik GmbH, Karlsruhe, Germany)를 사용하여 ¾ NMR 스펙트럼을 측정하였다.  In order to confirm the chemical structure of the SGMA powder prepared in Preparation Example 1, an FT-IR spectrum was measured using an infrared spectrophotometer (Frontier, PerkinElmer, Rodau, UK), and to confirm the degree of methacrylation of SGMA. ¾ NMR spectra were measured using a Buker DPX FT-NM instrument (Bruker Analytik GmbH, Karlsruhe, Germany).
구체적으로 제조예 1에서 각기 다른 비율의 GMA를 투입하여 제조된 SF, SGMA-1, SGMA-2, SGMA-3, SGMA-4분말 0.001 g을 KBKPotassium bromide, FT-IR grade) 0.5 g과 함께 막자사발로 고르게 분쇄하였다. 이를 FT-IR(Froniter, PerkinElmer, Rodgau, UK)를 사용하여 스펙트럼을 측정한 결과를 도 5에 나타내었다.  Specifically, 0.001 g of SF, SGMA-1, SGMA-2, SGMA-3, and SGMA-4 powder prepared by adding different ratios of GMA in Preparation Example 1, together with 0.5 g of KBKPotassium bromide, FT-IR grade) Grinded evenly in a bowl. 5 shows the results of spectrum measurement using FT-IR (Froniter, PerkinElmer, Rodgau, UK).
또한, SGMA의 메타크릴화 정도를 확인하기 위하여 상기 제조예 1에서 제조된 SF, SGMA-1, SGMA-2, SGMA-3, SGMA— 4 분말 0.5 ing을 700 μΐ 듀테륨 용매 ( 0, Sigma-Aklrich)에 용해시킨 후, 0.45 卿 크기의 필터로 여과한 다음, Buker DPX FT-NMR 장치 (Bruker Analytik GmbH, Karlsruhe, Germany)를 사용하여 LH 匿 스펙트럼을 측정한 결과를 도 6 및 표 2에 나타내었다. FT-IR 스펙트럼인 도 5의 결과를 살펴보면, SF, SGMA-1, SGMA— 2, SGMA-3,In addition, 0.5 ing of SF, SGMA-1, SGMA-2, SGMA-3, SGMA-4 powder prepared in Preparation Example 1 to determine the degree of methacrylated SGMA 700 μΐ in a deuterium solvent (0 , Sigma-Aklrich ), And filtered with a filter of 0.45 mm 3 and then measured the L H 匿 spectrum using a Buker DPX FT-NMR apparatus (Bruker Analytik GmbH, Karlsruhe, Germany) is shown in Figure 6 and Table 2 It was. Looking at the results of Figure 5, the FT-IR spectrum, SF, SGMA-1, SGMA— 2, SGMA-3,
SGMA-4 모두 아미드 1 (1639 cm"1) , 아미드 Π(1512 cm"1), 아미드 ΠΙ(1234 cm_1)에서 피크를 확인할 수 있었으며, 이는 실크 피브로인 내 포함된 약 5000 개의 아미노산 중 1105 개의 반웅성 아미노산을 나타낸다. 또한, 1238 ατΓ1에서 약하게 측정되는 CH-0H피크는 GMA의 에폭시 링이 끊어지면서 생성된 알콜기를 나타내며, 1165 CITT1및 951 cnf1에서 나타나는 피크는 GMA의 메타크릴레이트 비닐기의 CH2의 공명에 의해 형성된다고 예상되었으며, 이러한 피크는 GMA의 포함량이 증가함에 따라 피크의 세기도 증가함을 확인할 수 있었다. All of SGMA-4 showed peaks at amide 1 (1639 cm "1 ), amide Π (1512 cm " 1 ), and amide ΠΙ (1234 cm _1 ), representing 1105 halves of about 5000 amino acids contained in silk fibroin. Male amino acid. In addition, the CH-0H peak, which is weakly measured at 1238 ατΓ 1 , represents an alcohol group formed by breaking the epoxy ring of GMA, and the peaks of 1165 CITT 1 and 951 cnf 1 show the resonance of CH 2 of the methacrylate vinyl group of GMA. It was expected that the formed by the peak, it was confirmed that the intensity of the peak also increased as the amount of GMA contained.
【표 11 Table 11
Figure imgf000012_0001
제조예 1에서 제조된 SF, SGMA-1, SGMA-2, SGMA-3, SGMA-4 분말의 NMR을 측정한 ¾ NMR 스펙트럼인 도 6의 결과를 살펴보면, 먼저 6.2~6δ=5.8~5.6 ρρι에서 관찰되는 피크는 메타크릴레이트 비닐기로 인한 것이고, δ=1·8 ppm에서 관찰되는 피크는 G 메틸기 (-CH3)의 공명에 기인한 것으로 여겨지며, 이는 GMA의 함량이 증가함에 따라 점차 피크의 강도가 증가함을 확인할 수 있었다.
Figure imgf000012_0001
Referring to the result of FIG. 6, which is the ¾ NMR spectrum of NMR of SF, SGMA-1, SGMA-2, SGMA-3, and SGMA-4 powders prepared in Preparation Example 1, first, at 6.2 to 6δ = 5.8 to 5.6 ρρι. The peak observed is due to the methacrylate vinyl group, and the peak observed at δ = 1 · 8 ppm is believed to be due to the resonance of the G methyl group (-CH 3 ), which gradually increases the intensity of the peak as the GMA content increases. It can be seen that increases.
뿐만 아니라, GMA의 함량 증가에 따라 5=2.9ppm에서 라이신 (Lysin)의 메틸렌 신호가 점차 감소함을 확인할 수 있는데, 이는 실크 피브로인 분자와 GMA가 중합되어 라이신기가 변형되는 것으로 판단된다. 이러한 피크의 정도를 통해 실크 피브로인의 라이신의 메틸렌 기의 변성도는 GMA의 함량 변화에 따라 약 22 ~ 42 %로 예상되었다.  In addition, it can be seen that the methylene signal of lysine (Lysin) gradually decreases at 5 = 2.9 ppm as the GMA content increases, which is determined to be modified by the polymerization of silk fibroin molecules and GMA. Through the degree of these peaks, the degree of denaturation of the methylene group of lysine of silk fibroin was estimated to be about 22-42% according to the change of GMA content.
상기 표 1은, NMR그래프인 도 6에서 관찰된 각각의 피크 (메타크릴레이트의 비닐기, 라이신, 메틸그룹)의 넓이를 측정한 값으로, 메타크릴레이트화의 정도는 상기 도 6의 ¾ NMR 그래프 내 라이신기의 그래프 넓이를 측정한 후, 하기 식 (1)로부터 계산하였다. 이는 실제로 중합 반웅시, 메타아크릴레이트화는 실크 피브로인 내 반웅성을 갖는 2차 아민기에서는 모두 발생될 수 있으나, 실크 피브로인 내 반웅성올 갖는 2차 아민기의 대표적인 아미노산이 라이신기이기 때문에 상기 라이신기를 기준으로 실크 피브로인 내 메타아크릴레이트화의 정도를 확인하였다.  Table 1 is a measurement of the width of each peak (vinyl group, lysine, methyl group of methacrylate) observed in FIG. 6 which is an NMR graph, and the degree of methacrylateization is ¾ NMR of FIG. 6. After measuring the graph area of the lysine group in the graph, it was calculated from the following equation (1). This is actually the case of polymerization reaction, methacrylate may occur in all secondary amine groups having semi-ungwoong in silk fibroin, but since the representative amino acid of the secondary amine group having semi-ungwoong in silk fibroin is lysine group The degree of methacrylated in silk fibroin was confirmed based on the freshness.
1-(SGMA의 라이신기 I순수 실크피브로의 라이신기 )χ100 ... 식 (1) 따라서, 상기 도 6및 표 1의 결과를 살펴보면, 앞서 언급한 제조방법을 통해 실크 피브로인과 GMA가 중합되어 SGMA이 생성됨을 확인할 수 있었다. 1- (Lysine group I of sgMA lysine group to pure silk fibro) χ 100 ... Equation (1) Therefore, looking at the results of FIG. 6 and Table 1, it was confirmed that the silk fibroin and GMA are polymerized by the above-mentioned manufacturing method to produce SGMA.
[제조예 2] [Production Example 2]
물 1L에 상기 제조예 1에서 제조된 SGMA-3 분말과 리튬 페닐 -2, 4,6-트리메틸벤조일포스피네이트 분말 (이하, LAP분말; Tokyo chemical industry, Tokyo, Japan)를 각각 하기 표 2과 같이 투입한 후, 상기 SGMAᅳ 3 분말과 LAP 분말이 완전히 용해시켜 바이오 잉크를 제조하였다.  SGMA-3 powder and lithium phenyl-2,4,6-trimethylbenzoylphosphinate powder (hereinafter referred to as LAP powder; Tokyo chemical industry, Tokyo, Japan) prepared in Preparation Example 1 were added to 1 L of water, respectively. After adding together, the SGMA '3 powder and the LAP powder were completely dissolved to prepare a bio ink.
【표 2] [Table 2]
Figure imgf000013_0001
Figure imgf000013_0001
[실험예 2] Experimental Example 2
상기 제조예 2에서 제조된 바이오 잉크의 기계적 물성을 확인하기 위하여, DLPCDigital light processing) 프로젝터 (365ι皿, 3.5mW/cm2)를 통해 도 7과 같이 제조예 2에서 제조된 바이오 잉크를 사용하여 3D구조체 (10x10x2隱 3육면체 시편)를 제조하였다. 시편은 Solid works 2016 (Dassault systenmes, Waltham, USA)으로 설계하였으며, 상기 프로젝터로 조각을 투영하여 3D 형태의 구조체 (시편)를 제조하였다 (인쇄 두께; 50 , 베이스 층 수; 3, 베이스 층 경화시간; 4 sec, 버퍼 층 수; 1, 버퍼 층 경화시간; 3sec). 제조된 3D 구조체 (시편)의 수분 흡수 능력 및 체적 팽창률 측정하기 위하여, 10 10 X 2mm3육면체로 인쇄된 시편을 370C의 PBS (인산완축식염수, ρΗ7·4)에 각각 0.3 0.5, 1, 2, 3, 4, 5시간 동안 침지한 후 중량을 측정 (Wswollen)하였고, 이를 동결건조하여 중량 (Wdry)을 측정하였다. 동결건조된 SGMA 파우더의 무게를 측정하여 이를 기준 (100%)으로 하여 수분 흡수 상태의 무게를 측정하여 하기 식 (2)를 통해 수분 흡수 능력 (Q)를 도출하였으며, 그 결과는 도 8 및 하기 표 3에 나타내었다. In order to confirm the mechanical properties of the bio-ink prepared in Preparation Example 2, using the bio-ink prepared in Preparation Example 2 as shown in Figure 7 through a DLPC Digital light processing projector (365ι 皿, 3.5mW / cm 2 ) A structure (10 × 10 × 2 × 3 hexahedral specimens) was prepared. The specimens were designed in Solid works 2016 (Dassault systenmes, Waltham, USA), and the pieces were projected by the projector to produce 3D structures (samples) (print thickness; 50, number of base layers; 3, base layer curing time). 4 sec, number of buffer layers; 1, buffer layer curing time; 3 sec). In order to measure the water absorption capacity and the volume expansion rate of the manufactured 3D structure (sample), the specimens printed with 10 10 X 2mm 3 hexahedron were 0.3 0.5, 1, respectively in 37 0 C PBS (phosphate reduced saline, ρΗ7 · 4). After soaking for 2, 3, 4, 5 hours, the weight was measured (W swollen ), which was lyophilized to measure the weight (W dry ). The weight of the lyophilized SGMA powder was measured and the weight of the water absorbed state was measured based on this (100%), and the water absorption capacity (Q) was derived through the following Equation (2). Table 3 shows.
Q = (Wswolien - Wdry)/Wdry X 100 (%) ... 식 (2) 또한, 물에 의한 체적 팽창률은, 상기 시편의 인쇄된 직후 10x10x2瞧 3 육면체의 X 축과 γ 축의 길이를 측정한 뒤, 상기 X 축과 γ 축의 길이를 기준으로 (100%) 침지 후 경과시간에 따라 팽창된 10χ10χ2ι丽 3 팽창 육면체의 팽창 X 축과 팽창 Y 축의 길이 변화를 통해 측정하였으며, 그 결과는 도 9 및 하기 표 3에 나타내었다. Q = (W swol ien-W dry ) / W dry X 100 (%) ... Equation (2) In addition, the volumetric expansion rate by water is equal to the X and γ axes of the 10x10x2 瞧3 cube immediately after the specimen is printed. after measuring the length, the expansion of the 10 10 χ χ 2ι丽3 expanded six-sided expansion in accordance with the X-axis and the elapsed time after the immersion relative to the γ-axis length (100%) X It was measured through the change in the length of the axis and expansion Y axis, the results are shown in Figure 9 and Table 3 below.
상기 도 8 및 도 9의 결과를 살펴보면, 제조된 시편은 10 % SGMA-3인 실시예 Referring to the results of FIGS. 8 and 9, the prepared specimen was 10% SGMA-3.
1의 경우 높은 수분흡수량과 높은 체적팽창율을 보였으며, SGMA-3의 함량이 증가함에 따라 수분흡수량과 체적팽창율이 낮아짐을 확인할 수 있었다. 추가로, 제조된 3D 구조체의 기계적 강도를 확인하기 위하여 압축웅력, 압축변형도, 탄성계수, 인장웅력, 연신률 및 영률 측정하였으며, 또한 잉크로서의 물성을 확인하기 위하여 유변학적 특성 (rheologi cal property)을 측정하였으며, 그 결과는 하기 표 3 및 표 4, 도 10 내지 도 20과 같다. In the case of 1, it showed a high water absorption and high volume expansion rate, and as the content of SGMA-3 increased, the water absorption and volume expansion rate were lowered. In addition, compressive stress, compressive strain, elastic modulus, tensile stress, elongation and Young's modulus were measured to confirm the mechanical strength of the manufactured 3D structure, and the rheological properties (rheologi cal property) were measured to check the physical properties as ink. The measurement was performed, and the results are shown in Table 3 and Table 4 and FIGS. 10 to 20.
먼저, 기계적 강도를 측정하기 위하여 상기 실시예 1내지 3( ( 10% SGMA-3내지 30 % SGMA— 3)의 바이오 잉크를 사용하여 3D 프린팅으로 원통형 시편 (지름; 6 隱, 높이 ; 12 睡)제조하고, 이를 lO kgf 로드쉘이 장착된 universal test ing장치 (QM100S , QMESYS, 대한민국)를 사용하여 5 隱 /min의 변위 속도로 압력을 가하여 (도 10) 압축웅력 (compress ive stress) , 탄성계수 (el ast ic modul us)를 측정하였으며, 인장웅력 (tensi le stress) 실온에서 신장 속도 ¾!im/min으로 설정하여 측정하였으며, 영률 (young' s modulus)은 50 % strain 변형의 기울기로 계산하였으며 상기 실험의 결과값은 하기 표 3 및 도 10 내지 16과 같다.  First, cylindrical specimens (diameter; 6 mm, height; 12 mm) by 3D printing using bio inks of Examples 1 to 3 ((10% SGMA-3 to 30% SGMA-3) to measure mechanical strength. It was manufactured and pressured at a displacement rate of 5 隱 / min using a universal test ing device (QM100S, QMESYS, South Korea) equipped with a lO kgf load shell (FIG. 10) compressive stress, modulus of elasticity (el ast ic modul us) was measured, and the tensile stress (tensi le stress) was measured by setting the elongation rate ¾! im / min at room temperature, and the Young's modulus was calculated as the slope of 50% strain deformation. The results of the experiment are shown in Table 3 and FIGS. 10 to 16.
【표 3] [Table 3]
Figure imgf000014_0001
상기 표 3과 도 10 내지 16의 결과를 살펴보면, 압축웅력, 압축변형도, 탄성계수, 인장응력, 연신률, 영률 등 모든 측정 결과에서 SGMA-3의 함량비가 증가함에 따라 측정값도 증가함을 보였으며, 특히 30% SGMA— 3이 포함된 실시예 3의 경우 압축웅력이 실시예 2에 비하여 약 2배가량 증가함을 확인할 수 있었다. 비록, 10% SGMA-3인 실시예 1의 질감이 너무 부드러워 인장웅력, 연신률 또는 영률 실험의 결과값은 얻지 못했지만, SGMA-3 함량이 증가함에 따라, 인장웅력, 연신률, 영률의 측정값이 증가함을 확인할 수 있었다.
Figure imgf000014_0001
Referring to Table 3 and the results of FIGS. 10 to 16, the measured values also increase as the content ratio of SGMA-3 increases in all measurement results such as compressive stress, compressive strain, elastic modulus, tensile stress, elongation, and Young's modulus. In particular, in the case of Example 3 containing 30% SGMA-3, it can be seen that the compression force is increased by about 2 times compared to Example 2. Although the texture of Example 1, which is 10% SGMA-3, was too soft, The result was not obtained, but as the SGMA-3 content increased, it was confirmed that the measured values of tensile stress, elongation and Young's modulus increased.
특히, 도 16은 하이드로겔의 강도 또는 탄성을 확인하기 위한 것으로, 30% SGMA-3인 실시예 3의 상부에 7kg의 케틀벨을 얹었을 때, 하이드로겔인 실시예 3이 상기 케들벨의 무게를 지탱할 뿐만 아니라, 일정 시간 경과 후 케를벨을 제거한 후에는 측정 전과 동일한 모양으로 되돌아 오는 것을 확인할 수 있었다. 한편, 실시예 1 내지 3의 광가교 반웅을 확인하기 위하여 0.1% 변형를, 1Hz 주파수 하에서 Anton Paar MCR 302 (Anton Paar, Zofingen, Swi tzer land)를 사용하여 레올로지 물성을 측정하였으며 그 결과는 하기 표 4 및 도 17, 18과 같다.  In particular, Figure 16 is to confirm the strength or elasticity of the hydrogel, when a 7kg kettle bell on top of Example 3 which is 30% SGMA-3, Example 3 is a hydrogel weight of the In addition to supporting, after removing Kerbell after a certain period of time, it returned to the same shape as before the measurement. On the other hand, in order to confirm the optical cross-link reaction of Examples 1 to 3, the rheological properties were measured by using 0.1% strain and Anton Paar MCR 302 (Anton Paar, Zofingen, Swi tzer land) at 1 Hz frequency. 4 and FIGS. 17 and 18.
【표 4】 Table 4
Figure imgf000015_0001
상기 표 4및 도 17, 18의 결과를 살펴보면, 전단 변형율 (shear strain)이 1 % 이하일 경우 저장 탄성율 (G')와 손실탄성율 (G' ')가 거의 일정한 값을 나타내므로 상기 실시예 1 내지 3의 하이드로겔의 탄성 및 점성은 전단웅력에 영향을 받지 않음을 알 수 있었다. 상세하게는 SGMA-3의 함량이 증가함에 따라 저장 탄성율, 손실 탄성율의 측정값이 점차 증가하였으며, 30% SGMA-3이 포함된 실시예 3이 가장 높은 측정값을 보였다.
Figure imgf000015_0001
Referring to Table 4 and the results of FIGS. 17 and 18, when the shear strain is 1% or less, the storage modulus (G ′) and the loss modulus (G ′ ′) show almost constant values. It was found that the elasticity and viscosity of the hydrogel of 3 were not affected by the shear force. In detail, as the content of SGMA-3 increased, the measured values of storage modulus and loss modulus gradually increased, and Example 3 containing 30% SGMA-3 showed the highest measured value.
특히, 실시예 1 내지 3에서 저장탄성율 (G')가 손실탄성을 (G' ')보다 약 6 배 이상 큰 것으로 보아 실시예 1 내지 3의 하이드로겔이 엘라스토머 형상으로 거동함을 예상할 수 있었다.  In particular, in Examples 1 to 3, the storage modulus (G ') is about 6 times greater than the loss modulus (G' '), so the hydrogels of Examples 1 to 3 can be expected to behave in an elastomeric form. .
한편, 상변화 각도는 물질의 상태를 나타내는 것으로 6.4 ~ 9.1°로 (고체와 같은 거동은 '00', 액체와 같은 거동은 '90ο') 실시예 1(10% SGMA-3) 내지 3(30% SGMA-3)의 바이오 잉크를 사용한 3D 프린팅을 통해 제조된 하이드로겔의 경우 고체 상태를 가지고 있음을 확인할 수 있다. 따라서, 실험예 2의 결과 (도 8 내지 도 18 및 표 3 내지 4의 결과)를 종합해보면, 상기 실시예 l(10% SGMA-3)내지 3(30% SGMA-3)의 바이오 잉크의 물리적 특성을 살펴보면, 바이오 잉크 내 SGMA의 함량이 증가할수록 하이드로겔의 수분 흡수량은 점차 감소함을 확인할 수 있었고, 반면에 팽창률은 함량이 증가할수록 줄어듬을 확인할 수 있었다. 또한, 시편의 증량 변화를 측정한 결과 3D 프린팅에 대한 SGMA의 재료 기여도가 SGMA 함량이 증가할 수록 점차 줄어듬을 확인할 수 있었으며, 이는 용액의 투명도가 증가하고 자외선의 산란도가 증가함을 유추할 수 있었다. On the other hand, the phase change angle represents the state of the material to 6.4 ~ 9.1 ° (behavior like a solid '0 0 ', behave like a liquid '90 ο ') Example 1 (10% SGMA-3) to 3 It can be seen that the hydrogel prepared through 3D printing using (30% SGMA-3) bio ink has a solid state. Therefore, when combining the results of Experimental Example 2 (results of FIGS. 8 to 18 and Tables 3 to 4), the physical properties of the bio inks of Examples l (10% SGMA-3) to 3 (30% SGMA-3) Looking at the properties, it can be seen that as the content of SGMA in the bio ink increases, the water absorption of the hydrogel gradually decreases, while the expansion rate decreases as the content increases. In addition, as a result of measuring the change in the increase of the specimen, the material contribution of SGMA to the 3D printing gradually decreased as the SGMA content was increased, which can be inferred from the increase of the transparency of the solution and the increase of the scattering of ultraviolet rays. there was.
또한, 바이오 잉크 내 SGMA의 함량 증가에 따른 압축 웅력, 압축변형도, 탄성계수, 인장웅력, 연신률, 영률 등 모든 물리적 특성을 측정한 결과, SGMA 함량 증가에 따라 측정값이 점차 증가함을 확인할 수 있었으며 이는 실크 피브로인 고분자와 GMA이 광조사를 통해 중합되어 분자 내, 분자끼리 얽힘으로 인하여 물리작으로 우수한 물성을 가짐을 예측할 수 있었다. 이로 인해 바이오 잉크 내 SGMA의 함량 증가에 따른 팽창률의 저감은 분자 내부의 화학적 결합 ½도 증가, 하이드로겔의 강성 및 탄성이 증가되어 결정화도가 증가되었음을 예상할 수 있었다 ·  In addition, as a result of measuring all the physical properties such as compressive strain, compressive strain, elastic modulus, tensile strain, elongation, and Young's modulus according to the increase of SGMA content in the bio ink, the measured value gradually increases with increasing SGMA content. It could be predicted that the silk fibroin polymer and GMA were polymerized by light irradiation and had excellent physical properties due to the entanglement between molecules and molecules. As a result, the reduction of the expansion rate according to the increase of the SGMA content in the bio ink could be expected to increase the degree of crystallization by increasing the chemical bond ½ degree in the molecule and increasing the rigidity and elasticity of the hydrogel.
또한, 바이오 잉크 내 SGMA의 함량이 증가함에 따라 레올로지 특성인 상변화각도, 저장 탄성률 (G' ) , 손실 탄성률 (G" ) 또한 현저히 증가함을 확인할 수 있었다. 상기 상변화각도, 저장 탄성를 (G' ) , 손실 탄성률 (G" )의 결과를 종합해보면, 특히 30 >의 SGMA-3인 실시예 3가 가장 높은 형태 안정성을 가질 것으로 예상할 수 있다.  In addition, as the content of SGMA in the bio ink increases, the rheological properties of phase change angle, storage modulus (G ′) and loss modulus (G ″) also increase significantly. G ') and the results of the loss modulus (G "), it can be expected that Example 3, in particular SGMA-3 of 30> has the highest form stability.
한편, 0. 1 %변형율 (strain)및 1 Hz주파수에서 UV경화 과정 내 SGMA레올로지 특성을 모니터링 하기 위해 SGMA-3과 광개시제인 LAP의 함량 변화에 따른 저장탄성율을 측정하였으며, 그 결과는 하기 도 19 및 도 20에 나타내였다.  On the other hand, to monitor the SGMA rheological properties during UV curing at 0.1% strain and 1 Hz frequency, the storage modulus was measured according to the change of SGMA-3 and LAP content of photoinitiator. 19 and FIG. 20.
상기 도 19를 통해 광개시제인 LAP의 함량 변화에 따른 하이드로겔의 뻣뻣해지는 경향을 알 수 있으며, 도 20을 통해 각각의 실시예 1 내지 3 및 30 % SGMA-3(4초간 UV노출)의 경화시간이 증가함에 따라 하이드로겔의 저장탄성율 (G' )이 증가함을 확인할 수 있었다. 이는 UV 광에 노출된 시간이 증가함에 따라 실크 피브로인 (SF)가 GMA에 의해 메타크릴화 되는 소수성 도메인 (hydrophobi c domain)이 안정화됨을 예측할 수 있었다. 추가로, 도 20의 30 % SGMA-3(4초간 UV 노출)의 경우 4초 후 UV가 차단되면 급격히 저장탄성율 (G' )가 낮아짐을 관측할 수 있었다. 다른 한편, 바이오 잉크 내 고분자 중합체인 SGMA과 광개시제인 LAP의 함량 변화에 따른 SGMA의 겔화점은 레올로지 특성 실험의 저장탄성율 (G' )와 손실 탄성를 (G" )의 교차점을 겔화점으로 정의하여 측정하였다.  19 shows a tendency of stiffness of the hydrogel according to the change in the content of LAP, a photoinitiator, and the curing time of SGMA-3 (UV exposure for 4 seconds) of Examples 1 to 3 and 30, respectively, through FIG. 20. As it increased, it was confirmed that the storage modulus (G ′) of the hydrogel was increased. This could be expected to stabilize the hydrophobi c domain in which silk fibroin (SF) methacrylated by GMA with increasing exposure to UV light. In addition, in the case of 30% SGMA-3 (UV exposure for 4 seconds) of FIG. 20, when UV was blocked after 4 seconds, the storage modulus (G ′) rapidly decreased. On the other hand, the gelation point of SGMA according to the change of the content of SGMA, a polymer polymer in bio ink, and LAP, a photoinitiator, is defined as a gelation point by defining the intersection point of storage modulus (G ') and loss elasticity (G ") Measured.
【표 5】
Figure imgf000016_0001
Table 5
Figure imgf000016_0001
(단워: ' sec) 상기 표 5의 결과를 살펴보면 겔화점은 광개시제인 LAP 함량이 증가함에 따라 1이초에서 41초 시간이 단축되었으며 , SGMA의 함량이 증가함에 따라 74초에서 135초로 증가함을 확인할 수 있었다. 이러한 겔화점은 바이오 잉크 내 광개시제인 LAP 함량, SGMA 함량, UV (광) 노출 시간에 의존함을 확인할 수 있었다. (Warning: ' sec) Looking at the results of Table 5, the gel point is shortened from 41 seconds to 1 second as the photoinitiator LAP content was increased, and increased from 74 to 135 seconds as the content of SGMA increases Could. This gelation point was confirmed to depend on the photoinitiator LAP content, SGMA content, UV (light) exposure time in the bio ink.
[실험예 3] Experimental Example 3
상기 제조예 2에서 제조된 바이오 잉크의 세포 적합성을 확인하기 위하여, 세포 독성 (생존) 및 세포 증식 실험을 진행하였다. In order to confirm the cell suitability of the bio ink prepared in Preparation Example 2, Cytotoxicity (survival) and cell proliferation experiments were conducted.
세포 독성 및 세포 증식 실험에 사용된 세포는 HeLa cell 및 NIH/3T3 cell을 사용하였으몌 이는 ATCC(Manassas, Virginia)에서 구입하였다. 세포는 DMEM(dulbecco' s modified Eagle medium) '배지에서 10v/v FBS(fetal bovine serum) , lv/v% 페니실린 스트렙토마이신 첨가한 배양액을 사용하여 370C 습윤한 C02(5% C02) 에서 배양하였고, 배지는 3일마다 교환하였다. Cells used for cytotoxicity and cell proliferation experiments were HeLa cells and NIH / 3T3 cells, which were purchased from ATCC (Manassas, Virginia). Cells DMEM (dulbecco 's modified Eagle medium )' in the medium 10v / v FBS (fetal bovine serum ), lv / v% penicillin 37 using a culture medium which streptomycin is added 0 C wetting a C0 2 (5% C0 2) Were incubated and the medium was changed every 3 days.
배양된 각각의 세포 1 X 106을 상기 제조예 2에서 제조된 바이오 잉크를 흔합하고, 흔합된 세포 현탁액 50 ,을 96 well-plate에 분주한 후 UV 광 (3.5mW/ciTi2)을 7초간조사한후, 14일 동안 세포 생존율을 관찰하였다. 1 x 10 6 of the cultured cells were mixed with the bio ink prepared in Preparation Example 2, and the mixed cell suspension 50, was dispensed into 96 well-plates, and then UV light (3.5 mW / ciTi 2 ) was applied for 7 seconds. After irradiation, cell viability was observed for 14 days.
세포 독성 실험은 LIVE/DEAD 분석 키트 (Life Technologies, USA)를 사용하여 진행하였으며, 형광현미경으로 관찰하여 녹색 형광 (calcein)을 띄는 세포, 즉 살아있는 세포를 확인하였으며 그 결과는 도 21과 같다. 또한 세포 증식실험은 CC -8분석 (Do jindo molecular technologt, Rockville, USA)을 통해 진행하였으며 그 결과는 도 22와 같다. 도 21에 나타난 바와 같이 HeLa 세포를 가지고 측정한 GelMA (비교예 1), 10% SGMA-3 실시예 1)을 비교해 보면, Day 1에서는 대부분의 세포가 녹색 형광을 나타내었으며 이는 살아있는 세포를 확인할 수 있다. 하지만, 점차 실험기간이 경과될 수록 GelMA (비교예 1)의 녹색 형광 즉, 살아있는 세포의 분포가 점차 저하됨을 확인할 수 있는 반면에, 10% SGMA-3(실시예 1)의 경우에는 7일까지 어느 정도의 세포 수를 유지하다 14일 경과 후 세포가 증식되었음을 확인할 수 있었다.  Cytotoxicity experiments were conducted using a LIVE / DEAD analysis kit (Life Technologies, USA), and observed with a fluorescence microscope to identify the cells with green fluorescence (calcein), that is, the living cells as shown in FIG. In addition, the cell proliferation experiment was carried out through CC-8 analysis (Do jindo molecular technologt, Rockville, USA) and the results are shown in FIG. As compared to GelMA (Comparative Example 1) and 10% SGMA-3 Example 1) measured with HeLa cells, as shown in FIG. 21, most cells showed green fluorescence on Day 1, indicating that living cells could be identified. have. However, as the experimental period gradually passed, the green fluorescence of GelMA (Comparative Example 1), that is, the distribution of living cells gradually decreased, whereas in the case of 10% SGMA-3 (Example 1), up to 7 days After 14 days of maintaining a certain number of cells it was confirmed that the cells proliferated.
NIH/3T3 세포를 사용한 실험에서도 이와 유사한 결과를 관찰할 수 있었다. 도 22는 세포 증식 비율을 나타낸 그래프로, 1일의 GelMA (비교예 1) 및 10% SGMA-3C실시예 1)의 세포 수를 기준으로 GelMA (비교예 1)는 점차 시간이 경과함에 따라 세포의 수가 줄어든 반면, 10% SGMA-3 실시예 1)는 7일 정도까지 세포의 수가 미미하게 증가하다가 14일 경과 후 세포의 수가 현저히 증가하여 세포가 증식되었음을 확인할 수 있었으며, 이는 HeLa세포 및 NIH/3T3세포 모두에서 확인할 수 있었다. . 따라서, 상기 실험예 2 및 실험예 3의 결과를 종합해보면, 실크 피브로인을 기본 골격으로 중합되어 형성된 고분자 중합체는 광개시제와 함께 광에 노출시 가교반웅을 할 수 있으며 이러한 고분자 중합체를 포함한 본 발명의 바이오 잉크를 사용하여 3D 프린팅을 통해 우수한 물리적 특성뿐만 아니라, 세포 적합성이 우수한 3D 바이오 구조체를 제조할 수 있다.  Similar results were observed in experiments using NIH / 3T3 cells. Figure 22 is a graph showing the rate of cell proliferation, based on the number of cells of GelMA (Comparative Example 1) and 10% SGMA-3C Example 1) per day GelMA (Comparative Example 1) cells gradually over time While the number of cells decreased, 10% SGMA-3 Example 1) showed a slight increase in the number of cells until about 7 days, but after 14 days, the number of cells increased significantly, indicating that the cells proliferated. It was confirmed in all 3T3 cells. . Therefore, summarizing the results of Experimental Example 2 and Experimental Example 3, the polymer polymer formed by polymerizing silk fibroin into a basic skeleton can cross-link upon exposure to light together with a photoinitiator. 3D printing can be used to produce 3D biostructures with excellent cell suitability as well as excellent physical properties.
【산업상 이용가능성】 Industrial Applicability
본 발명은, 천연 단백질 고분자인 실크 피브로인 (Si lk Fibroin)과 메타크릴레이트 (Methacrylate)계 화합물이 중합된 고분자 중합체; 및 광개시거];를 포함하는 바이오 잉크를 통해, 실크 피브로인의 우수한 기계적 강도와 세포 적합성이 동등 이상으로 유지되고 동시에 3D 프린터에 적용할 수 있는 바이오 잉크 조성물 및 이의 제조방법을 제시하고 있으며, 수분 흡수력, 부피 팽창률, 압축강도, 인장강도 등 기계적 물성을 가진 생체 조직을 혹은 체내에서 면역반응이 거의 일어나지 않아 3D 프린팅을 통해 생체적합성이 뛰어난 바이오 구조체를 제조할 수 있으므로, 산업상 이용가능성이 존재한다. The present invention is a polymer polymer in which the silk fibroin (Si lk Fibroin) and the methacrylate-based compound, which is a natural protein polymer, are polymerized; And photoinitiator]; and suggests a bio ink composition and a method of manufacturing the same, which can be applied to a 3D printer while maintaining excellent mechanical strength and cellular suitability of silk fibroin at an equivalent or higher. Absorption, volume expansion rate, compressive strength, Since almost no immune reaction occurs in a living tissue having mechanical properties such as tensile strength or in the body, an excellent biocompatibility can be manufactured through 3D printing, and thus there is industrial applicability.

Claims

【청구의 범위】 [Range of request]
【청구항 11  [Claim 11
실크 피브로인 (Si lk Fibroin)과 메타크릴레이트 (Methacryl ate)계 화합물이 중합된 고분자 중합체; 및 광개시제;를 포함하는, 바이오 잉크.  Polymer polymers in which silk fibroin and methacrylate compounds are polymerized; And a photoinitiator.
【청구항 2]  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 고분자 중합체는,  The high polymer,
실크 피브로인의 아미노산 잔기에 하나 이상의 메타크릴레이트계 화합물이 공중합되어 형성된 것을 특징으로 하는, 바이오 잉크.  Bio-inks, characterized in that formed by copolymerizing one or more methacrylate-based compounds in the amino acid residues of silk fibroin.
【청구항 3]  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 광개시제는,  The photoinitiator,
리튬 페닐 -2 , 4, 6-트리메틸벤조일포스피네이트 ( l i thium  Lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate (l i thium
phenyl-(2 , 4 ,6-tr imethyl benzoyl ) phosphinate , LAP) , 벤질디메틸케탈 (benzyl dimethyl ketal ) , 아세토페논 (acetophenone ), 벤조인메틸에테르 (benzoin methyl ether ) , 디에록시아세토페논 (diethoxyacetophenone) , 벤조일 포스핀 phenyl- (2,4,6-tr imethyl benzoyl) phosphinate, LAP, benzyl dimethyl ketal, acetophenone, benzoin methyl ether, diethoxyacetophenone , Benzoyl phosphine
옥사이드 (benzoyl phosphine oxide) 및 1-하이드톡시사이클로핵실 페닐 Benzoyl phosphine oxide and 1-hydroxycyclonuclear phenyl
케톤 ( 1-hydroxycyclohexyl phenyl ketone)으로 이루어진 군 증에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는, 바이오 잉크. Bio ink, characterized in that it comprises at least one or more selected from the group consisting of ketone (1-hydroxycyclohexyl phenyl ketone).
【청구항 4]  [Claim 4]
용매에 실크 피브로인 (Si lk Fibroin)을 용해시키는 용해단계;  A dissolution step of dissolving silk fibroin in a solvent;
실크 피브로인이 용해된 용액에 메타크릴레이트계 화합물을 투입한 후, 이를 교반시켜 고분자 중합체를 제조하는 중합단계;  Adding a methacrylate compound to a solution in which silk fibroin is dissolved, followed by stirring to prepare a polymer;
상기 중합단계를 통해 제조된 고분자 중합체가 포함된 용액을 동결건조하여 분말화시키는 건조단계 ; 및  A drying step of lyophilizing and powdering the solution containing the polymer prepared by the polymerization step; And
물에 고분자 중합체가 포함된 분말과 광개시제를 흔합하는 흔합단계;를 포함하는 바이오 잉크의 제조방법 .  A mixing step of mixing a powder and a photoinitiator containing a polymer polymer in water;
【청구항 5]  [Claim 5]
제 4항에 있어서,  The method of claim 4,
상기 중합단계 후에 ,  After the polymerization step,
제조된 고분자 중합체가 포함된 용액을 투석 류브에 넣고, 물에 침지시켜 불순물을 제거하는 투석단계 ;를 더 포함하는 것을 특징으로 하는, 바이오 잉크의 제조방법.  And a dialysis step of removing the impurities by placing the prepared solution containing the polymer polymer in the dialysis rib, and immersing in water.
【청구항 6]  [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 투석단계는,  The dialysis step,
제조된 고분자 중합체가 포함된 용액을 12 ~ 14 kDa cutof f 투석류브에 넣은 후  Put the solution containing the prepared polymer into 12 ~ 14 kDa cutof f dialysis flow
물에 3 ~ 5일간 침지시켜 불순물을 제거하는 것을 특징으로 하는, 바이오 잉크의 제조방법.  Method of producing a bio-ink, characterized in that impurities are removed by immersing in water for 3-5 days.
【청구항 7】  [Claim 7]
제 4항에 있어서, 상기 용해단계는, The method of claim 4, The dissolution step is,
용매에 실크 피브로인을 0.05 - 0.35 g/ml 농도로 용해시킨 후,  After dissolving silk fibroin in a solvent at a concentration of 0.05-0.35 g / ml,
40 ~ 80분간 50 ~ 70 °C온도로 가열하는 것을 특징으로 하는, 바이오 잉크의 제조방법.  The method of manufacturing a bio ink, characterized in that for heating 40 to 80 minutes at a temperature of 50 ~ 70 ° C.
【청구항 8】  [Claim 8]
거 14항에 있어서,  According to claim 14,
상기 중합단계는,  The polymerization step,
실크 피브로인이 용해된 용액에 141 ~ 705 mM농도로 메타크릴레이트계 화합물을 투입하는 것을 특징으로 하는, 바이오 잉크의 제조방법.  Method for producing a bio-ink, characterized in that the methacrylate-based compound in a concentration of 141 ~ 705 mM in a solution in which silk fibroin is dissolved.
【청구항 9】  [Claim 9]
거 14항에 있어서,  According to claim 14,
상기 중합단계는,  The polymerization step,
실크 피브로인이 용해된 용액에 메타크릴레이트계 화합물을 투입한 후, 50 ~ 70 °C온도에서 2 ~ 4시간 동안 200 ~ 400 rpm회전속도로 교반하는 것을 특징 ^로 하는, 바이오 ¾크의 제조방법 .  After adding the methacrylate compound to the solution in which the silk fibroin is dissolved, the method for producing a bio ¾, characterized in that the stirring at 200 ~ 400 rpm rotation speed for 2 to 4 hours at 50 ~ 70 ° C temperature .
【청구항 10】  [Claim 10]
제 4항에 있어서,  The method of claim 4,
상기 흔합단계는,  The mixing step,
물에 고분자 중합체가 포함된 분말 20 ~ 30 wt%및 광개시제 0. 1 ~ 0.3 %를 흔합하되,  20 to 30 wt% of a powder containing a polymer polymer in water and 0.1 to 0.3% of a photoinitiator are mixed,
상기 물, 고분자 중합체 및 광개시제의 합이 100 wt%를 넘지 않는 것을 특징으로 하는, 바이오 잉크의 제조방법 .  The sum of the water, the polymer and the photoinitiator is not more than 100 wt%, bio-ink manufacturing method.
【청구항 11】  [Claim 11]
제 4항에 있어서,  The method of claim 4,
상기 광개시제는,  The photoinitiator,
리튬 페닐 -2 , 4 , 6-트리메틸벤조일포스피네이트 ( l i thium  Lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate (l i thium
phenyl-(2 ,4 , 6-tr imethyl benzoyl ) phosphinate , LAP) , 벤질디메틸케탈 (benzyl dimethyl ketal ) , 아세토페논 (acetopherwne) , 벤조인메틸에테르 (benzoin methyl ether ) , 디에톡시아세토페논 (diethoxyacetophenone), 벤조일 포스핀 phenyl- (2, 4, 6-tr imethyl benzoyl) phosphinate, LAP, benzyl dimethyl ketal, acetopherwne, benzoin methyl ether, diethoxyacetophenone Benzoyl phosphine
옥사이드 (benzoyl phosphine oxide) 및 1-하이드록시사이클로핵실 페닐 Benzoyl phosphine oxide and 1-hydroxycyclonuclear phenyl
케톤 ( l-hydroxycyclohexyl phenyl ketone)으로 이루어진 군 중에서 선택된 적어도 하나 이상을 포함하는 것을 특징으로 하는, 바이오 잉크의 제조방법. Ketone (l-hydroxycyclohexyl phenyl ketone) comprising at least one selected from the group consisting of, bio-ink manufacturing method.
【청구항 12]  [Claim 12]
제 4항에 있어서,  The method of claim 4,
상기 건조단계는,  The drying step,
상기 고분자 중합체가 포함된 용액을 -90 ~ -70 °C 온도로 10 ~ 14시간 동안 동결한 다음,  After freezing the solution containing the polymer polymer for 10 to 14 hours at a temperature of -90 ~ -70 ° C,
동결온도와 동일 온도하에서 40 ~ 60 시간동안 동결건조하는 것을 특징으로 하는, 바이오 잉크의 제조방법 .  A freeze-drying process for 40 to 60 hours at the same temperature as the freezing temperature, bio-ink manufacturing method.
【청구항 13】  [Claim 13]
상기 게 1항 내지 제 3항 중 어느 한 항의 바이오 잉크; 또는 상기 제 4항 내지 제 12항 중 어느 한 항의 제조방법으로 제조된 바이오 잉크;를 사용하여 3D 프린팅으로 제조된 바이오 구조체. The bio ink according to any one of claims 1 to 3; or A bio structure manufactured by 3D printing using the bio ink prepared by the method of any one of claims 4 to 12.
PCT/KR2018/003353 2017-04-04 2018-03-22 Bioink and preparation method therefor WO2018186611A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0043518 2017-04-04
KR1020170043518A KR101983741B1 (en) 2017-04-04 2017-04-04 Bio-ink and manufacturing method thereof

Publications (2)

Publication Number Publication Date
WO2018186611A2 true WO2018186611A2 (en) 2018-10-11
WO2018186611A3 WO2018186611A3 (en) 2019-01-10

Family

ID=63712162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003353 WO2018186611A2 (en) 2017-04-04 2018-03-22 Bioink and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101983741B1 (en)
WO (1) WO2018186611A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111072A (en) * 2020-09-17 2020-12-22 南京工业大学 3D-printable polylysine antibacterial hydrogel and preparation method and application thereof
CN112516330A (en) * 2020-12-15 2021-03-19 上海交通大学医学院附属第九人民医院 Method for coupling grafting silk fibroin and parathyroid hormone and application thereof
CN113713179A (en) * 2021-09-06 2021-11-30 山东大学 High-comprehensive-performance photocuring biological 3D printing composite hydrogel and preparation method and application thereof
CN113956506A (en) * 2020-07-03 2022-01-21 中国科学院苏州纳米技术与纳米仿生研究所 Double-network hydrogel and preparation method and application thereof
US11891529B2 (en) 2019-03-12 2024-02-06 Unist(Ulsan National Institute Of Science And Technology) Ink composition for bioprinting and hydrogel formed from the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102124579B1 (en) 2018-12-04 2020-06-18 한국생산기술연구원 Bio-ink composition for minimizing cell necrosis and method for manufacturing a biostructure using the same
KR102211477B1 (en) * 2019-08-30 2021-02-03 충남대학교산학협력단 Bioink for 3d bioprinting and process for preparing the same
KR102180865B1 (en) * 2019-09-30 2020-11-19 한림대학교 산학협력단 Photocurable bioink with electroconductivity and a preparation thereof
CN111454614B (en) * 2020-05-28 2022-05-24 苏州大学 3D biological printing ink and preparation method and application thereof
KR102462953B1 (en) * 2020-12-03 2022-11-02 아주대학교산학협력단 Photo-crosslinked hyaluronic acid bioink for bioprinting, method for manufacturing the same, and printing biostructure for controlling physical properties using the same
KR102415399B1 (en) 2021-03-24 2022-07-01 한림대학교 산학협력단 A bio dlp 3d printer containing magnetically linked reservoir for multi cell or material printing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005667B2 (en) * 1996-11-06 2000-01-31 農林水産省蚕糸・昆虫農業技術研究所長 Modified silk protein, method for producing the same, and osteosynthetic material
US8153591B2 (en) * 2003-08-26 2012-04-10 Gel-Del Technologies, Inc. Protein biomaterials and biocoacervates and methods of making and using thereof
KR20110012204A (en) * 2009-07-30 2011-02-09 (주)라이브에이비씨 System and method for providing language study service used location information
KR101176793B1 (en) * 2010-05-03 2012-09-07 대한민국(농촌진흥청장) Bone cement composition containing silk fibroin hydrolysates and polymethylmetacrylate
WO2014123761A1 (en) * 2013-02-06 2014-08-14 Virginia Commonwealth University Photoactive silk protein and fabrication of silk protein structures using photolithography
KR101757977B1 (en) 2015-06-26 2017-07-13 아주대학교산학협력단 The method for preparing bio-ink and its application on 3D printing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891529B2 (en) 2019-03-12 2024-02-06 Unist(Ulsan National Institute Of Science And Technology) Ink composition for bioprinting and hydrogel formed from the same
CN113956506A (en) * 2020-07-03 2022-01-21 中国科学院苏州纳米技术与纳米仿生研究所 Double-network hydrogel and preparation method and application thereof
CN113956506B (en) * 2020-07-03 2023-07-21 中国科学院苏州纳米技术与纳米仿生研究所 Double-network hydrogel and preparation method and application thereof
CN112111072A (en) * 2020-09-17 2020-12-22 南京工业大学 3D-printable polylysine antibacterial hydrogel and preparation method and application thereof
CN112516330A (en) * 2020-12-15 2021-03-19 上海交通大学医学院附属第九人民医院 Method for coupling grafting silk fibroin and parathyroid hormone and application thereof
CN112516330B (en) * 2020-12-15 2023-08-04 上海交通大学医学院附属第九人民医院 Method for coupling grafting of silk fibroin and parathyroid hormone and application thereof
CN113713179A (en) * 2021-09-06 2021-11-30 山东大学 High-comprehensive-performance photocuring biological 3D printing composite hydrogel and preparation method and application thereof
CN113713179B (en) * 2021-09-06 2022-08-02 山东大学 High-comprehensive-performance photocuring biological 3D printing composite hydrogel and preparation method and application thereof

Also Published As

Publication number Publication date
WO2018186611A3 (en) 2019-01-10
KR101983741B1 (en) 2019-09-10
KR20180112436A (en) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2018186611A2 (en) Bioink and preparation method therefor
Osi et al. Three-dimensional-printable thermo/photo-cross-linked methacrylated chitosan–gelatin hydrogel composites for tissue engineering
Dubey et al. Extracellular matrix/amorphous magnesium phosphate bioink for 3D bioprinting of craniomaxillofacial bone tissue
Song et al. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering application
Han et al. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair
Jaipan et al. Gelatin-based hydrogels for biomedical applications
Lee et al. Enhanced cell ingrowth and proliferation through three-dimensional nanocomposite scaffolds with controlled pore structures
Kim et al. Synthesis and evaluation of novel biodegradable hydrogels based on poly (ethylene glycol) and sebacic acid as tissue engineering scaffolds
US20240132650A1 (en) Biodegradable elastic hydrogels for bioprinting
Shi et al. Three‐dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering
Yang et al. Emerging 3D bioprinting applications in plastic surgery
Jordan et al. In situ fabrication of fiber reinforced three-dimensional hydrogel tissue engineering scaffolds
Ghandforoushan et al. Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro
Ma et al. Mammalian and fish gelatin methacryloyl–alginate interpenetrating polymer network hydrogels for tissue engineering
KR102180865B1 (en) Photocurable bioink with electroconductivity and a preparation thereof
Guo et al. Enhanced osseointegration of double network hydrogels via calcium polyphosphate incorporation for bone regeneration
Wu et al. Novel digital light processing printing strategy using a collagen-based bioink with prospective cross-linker procyanidins
Ross et al. Novel 3D porous semi-IPN hydrogel scaffolds of silk sericin and poly (N-hydroxyethyl acrylamide) for dermal reconstruction
Sun et al. 3D-printed, bi-layer, biomimetic artificial periosteum for boosting bone regeneration
Yang et al. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds
Ahadian et al. Biomaterials in tissue engineering
Zhang et al. Facile synthesis of in situ formable alginate composite hydrogels with Ca2+-induced healing ability
Jin et al. The effect of GelMA/alginate interpenetrating polymeric network hydrogel on the performance of porous zirconia matrix for bone regeneration applications
Wang et al. Silk fibroin hydrogel membranes prepared by a sequential cross-linking strategy for guided bone regeneration
Al-Namnam et al. An injectable poly (caprolactone trifumarate-gelatin microparticles)(PCLTF-GMPs) scaffold for irregular bone defects: Physical and mechanical characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780710

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780710

Country of ref document: EP

Kind code of ref document: A2