KR102211477B1 - Bioink for 3d bioprinting and process for preparing the same - Google Patents

Bioink for 3d bioprinting and process for preparing the same Download PDF

Info

Publication number
KR102211477B1
KR102211477B1 KR1020190107451A KR20190107451A KR102211477B1 KR 102211477 B1 KR102211477 B1 KR 102211477B1 KR 1020190107451 A KR1020190107451 A KR 1020190107451A KR 20190107451 A KR20190107451 A KR 20190107451A KR 102211477 B1 KR102211477 B1 KR 102211477B1
Authority
KR
South Korea
Prior art keywords
temperature
group
sensitive polymer
aqueous solution
methylcellulose
Prior art date
Application number
KR1020190107451A
Other languages
Korean (ko)
Inventor
박원호
신지연
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020190107451A priority Critical patent/KR102211477B1/en
Application granted granted Critical
Publication of KR102211477B1 publication Critical patent/KR102211477B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a manufacture of a new bioink for 3D bioprinting using methylcellulose, which is a temperature-sensitive polymer, and an object of the present invention is to manufacture a new bioink for 3D bioprinting that is easy to control physical properties and has excellent printability and structural stability by introducing a tyrosine group to methyl cellulose to additionally provide light-sensitive properties while maintaining temperature-sensitive properties. The physical properties of the bioink can be controlled before printing by forming a physical hydrogel based on the temperature, so that it is possible to improve printability and to manufacture the bioink with excellent structural stability by forming chemical hydrogel through photocrosslinking after printing. Vitamin derivatives serving as photoinitiators are added to natural polymers and visible light crosslinking is used, so that it is possible to manufacture a 3D structure that does not show cytotoxicity.

Description

3D 바이오프린팅용 바이오잉크 및 그의 제조방법{BIOINK FOR 3D BIOPRINTING AND PROCESS FOR PREPARING THE SAME}Bioink for 3D bioprinting and its manufacturing method {BIOINK FOR 3D BIOPRINTING AND PROCESS FOR PREPARING THE SAME}

본 발명은 3D 바이오프린팅용 바이오잉크 및 그의 제조방법에 관한 것이다.The present invention relates to a bioink for 3D bioprinting and a method of manufacturing the same.

3D 프린팅 기술이란, "컴퓨터 내에서 작업된 3차원 모델링 데이터를 직접 손으로 만질 수 있는 물리적인 형상으로 빠르게 제작하는 기술"로 정의할 수 있으며, 1980년대 초반 플라스틱 액체를 굳혀 물건을 제작하는 3D 프린터가 개발된 이래로 자동차, 항공/우주, 건축뿐만 아니라 패션 및 의료분야까지 끊임없이 발전하고 있는 산업이다. 3D printing technology can be defined as "a technology that rapidly produces 3D modeling data worked in a computer into a physical shape that can be directly touched". In the early 1980s, a 3D printer that made objects by solidifying plastic liquid Since its development, it is an industry that is constantly developing not only in automobile, aviation/space, architecture, but also fashion and medical fields.

3D 프린터는 단순한 공정으로 비용이 저렴하고 제작형태에 제한이 없어서 다품종 소량생산이 가능하다는 장점이 있지만, 의료분야인 3D 바이오프린팅으로의 응용에 있어서 바이오잉크의 재료에 제한이 크다는 한계점이 있다.The 3D printer has the advantage of being able to produce a small amount of various types because it is inexpensive due to a simple process and there is no limitation in the form of manufacture, but there is a limitation in that the material of bioink is large in its application to 3D bioprinting, which is a medical field.

바이오잉크는 세포와 고분자 및 가교제가 혼합된 3D 바이오프린팅용 재료로써 생체적합성과 적당한 점도와 점탄성 특성 등 다양하고 우수한 물성이 요구된다. 합성고분자의 경우 물성 조절이 용이하여 인쇄성이 좋다는 장점이 있지만, 생체적합성이 낮아 부작용의 문제점이 있다. 또한 종래의 천연고분자는 물성이 매우 낮기 때문에 추가적인 지지체를 사용한다거나 증점제 및 물성 향상을 위한 또 다른 고분자를 혼합해야 한다는 번거로움이 있다.Bio-ink is a material for 3D bioprinting in which cells, polymers, and crosslinking agents are mixed, and a variety of excellent physical properties such as biocompatibility, appropriate viscosity and viscoelastic properties are required. Synthetic polymers have an advantage in that their physical properties are easy to control and thus printability is good, but there is a problem of side effects due to low biocompatibility. In addition, since conventional natural polymers have very low physical properties, there is an inconvenience of using an additional support or mixing a thickener and another polymer to improve physical properties.

따라서 현재는 천연고분자를 개질한 후 광 또는 효소 가교를 통해 화학적 수화젤을 형성함으로써 물성을 보완하고자 하는 노력이 있지만, 방사선, 자외선 및 가교제의 독성, 효소의 높은 가격 및 기질 특이성으로 인해 추가적인 3D 바이오프린팅에 적합한 바이오잉크의 개발이 요구된다.Therefore, there is currently an effort to supplement the physical properties by modifying the natural polymer and then forming a chemical hydration gel through light or enzyme crosslinking, but due to the toxicity of radiation, ultraviolet rays and crosslinking agents, the high cost of enzymes, and substrate specificity, additional 3D biotechnology There is a need to develop bioinks suitable for printing.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여, 온도감응성 천연고분자인 메틸셀룰로스를 2단계 반응을 통해 티로신기를 도입하고 광개시제로 비타민 유도체를 사용하여 이중가교가 가능한 천연고분자를 제조하는 방법을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, the present invention introduces a tyrosine group through a two-step reaction of methylcellulose, a temperature-sensitive natural polymer, and a method for producing a natural polymer capable of double crosslinking by using a vitamin derivative as a photoinitiator. It aims to provide.

또한, 상기 제조방법으로 제조되며 물성 조절이 용이하고 구조적 안정성 및 생체적합성이 우수한 3D 바이오프린팅용 바이오잉크를 제공하는 것도 목적으로 한다.It is also an object of the present invention to provide a bioink for 3D bioprinting that is manufactured by the above manufacturing method and is easy to control physical properties, has excellent structural stability and biocompatibility.

본 발명에 따른 3D 바이오프린팅용 바이오잉크의 제조방법은 (a) 온도감응성 고분자에 티로신기를 도입하여 티로신기가 도입된 온도감응성 고분자 수용액을 제조하는 단계; (b) 상기 수용액에 광개시제를 첨가하는 단계; 를 포함한다.The manufacturing method of the bio-ink for 3D bioprinting according to the present invention comprises the steps of: (a) introducing a tyrosine group into a temperature-sensitive polymer to prepare an aqueous solution of a temperature-sensitive polymer into which a tyrosine group is introduced; (b) adding a photoinitiator to the aqueous solution; Includes.

이 때 상기 온도감응성 고분자는 메틸셀룰로스(Methylcellulose, MC) 및 그 유사체, 폴리나이팜(Poly(N-isopropylacrylamide), PNIPAM) 및 젤라틴(gelatin)을 포함하는 군에서 선택되는 1종일 수 있다.At this time, the temperature-sensitive polymer may be one selected from the group including methylcellulose (MC) and its analogs, poly (N-isopropylacrylamide), PNIPAM), and gelatin.

또한, 상기 (a) 단계는, 상기 온도감응성 고분자에 카복실산기(-COOH)를 도입하는 단계; 카복실산기에 티로신기를 치환시키는 단계; 및 티로신기가 도입된 온도감응성 고분자를 증류수에 투입하여 수용액을 제조하는 단계; 를 포함할 수 있다.In addition, the step (a), the step of introducing a carboxylic acid group (-COOH) to the temperature-sensitive polymer; Substituting a tyrosine group on a carboxylic acid group; And preparing an aqueous solution by adding a temperature-sensitive polymer into which a tyrosine group is introduced into distilled water. It may include.

또한 상기 광개시제는 Riboflavin(RF), Riboflavin 5'-monophosphate sodium salt(RFp), Eosin Y(EY), Irgacure 2959(I2959), 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide](VA-086), Ruthenium complex(Ru), Lithium phenyl-2,4,6-trimethylbensoylphosphinate(LAP)을 포함하는 군에서 선택되는 1종 이상일 수 있다.In addition, the photoinitiator is Riboflavin (RF), Riboflavin 5'-monophosphate sodium salt (RFp), Eosin Y (EY), Irgacure 2959 (I2959), 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl) propionamide] (VA-086), Ruthenium complex (Ru), Lithium phenyl-2,4,6-trimethylbensoylphosphinate (LAP), it may be one or more selected from the group.

또한 본 발명은 본 발명에 따른 제조방법에 의해 제조된 3D 바이오프린팅용 바이오잉크를 제공하는 바, 상기 3D 바이오프린팅용 바이오잉크는 티로신기가 도입된 온도감응성 고분자 및 광개시제로서 비타민 유도체를 포함할 수 있다.In addition, the present invention provides a bioink for 3D bioprinting prepared by the manufacturing method according to the present invention, wherein the bioink for 3D bioprinting may include a temperature-sensitive polymer into which a tyrosine group is introduced and a vitamin derivative as a photoinitiator. .

또한 본 발명은 상기 바이오잉크를 사용한 3D 구조물의 제조방법을 제공하는 바, 상기 3D 구조물의 제조방법은 (a) 온도감응성 고분자에 티로신기를 도입하여 티로신기가 도입된 온도감응성 고분자 수용액을 제조하는 단계; (b) 상기 수용액에 광개시제를 첨가하는 단계; (c) 상기 광개시제가 첨가된 수용액을 하한 임계 용액 온도 이상으로 가열하는 단계; (d) 상기 가열된 수용액을 인쇄하여 구조물을 제조하는 단계; 및 (e) 상기 구조물에 광을 조사하는 단계; 를 포함할 수 있다.In addition, the present invention provides a method of manufacturing a 3D structure using the bio-ink, the method of manufacturing a 3D structure comprising the steps of: (a) introducing a tyrosine group into a temperature-sensitive polymer to prepare a temperature-sensitive polymer aqueous solution into which a tyrosine group is introduced; (b) adding a photoinitiator to the aqueous solution; (c) heating the aqueous solution to which the photoinitiator is added to a lower limit critical solution temperature; (d) printing the heated aqueous solution to prepare a structure; And (e) irradiating light to the structure. It may include.

본 발명은 2단계 반응을 통해 광가교 특성이 부여된 메틸셀룰로스에 호프마이스터 시리즈에 해당하는 비타민 유도체를 첨가하여 젤화촉진 및 광개시 특성을 동시에 발현시킴으로써 물성조절이 용이하고 물성이 향상되며 구조적 안정성 및 생체적합성이 우수한 3D 바이오프린팅용 바이오잉크를 제조할 수 있다.In the present invention, by adding a vitamin derivative corresponding to the Hofmeister series to methylcellulose that has been given a photocrosslinking property through a two-step reaction, it is easy to control physical properties, improve physical properties, and improve structural stability by simultaneously expressing gelation promotion and photoinitiation properties. Bio-ink for 3D bioprinting with excellent biocompatibility can be prepared.

도 1은 메틸셀룰로스 수용액의 온도에 따른 졸-겔 전이 현상을 나타내는 사진이다.
도 2는 메틸셀룰로스에 티로신기를 도입하는 메커니즘을 개략적으로 나타낸 개념도이다.
도 3은 티로신기가 도입된 메틸셀룰로스 수용액의 젤화 메커니즘을 개략적으로 나타낸 개념도이다.
도 4는 메틸셀룰로스의 말단기 종류에 따른 젤화거동 변화를 나타낸 그래프이다.
도 5는 티로신기가 도입된 메틸셀룰로스의 광개시제 종류에 따른 젤화거동 변화를 나타낸 개념도이다.
도 6은 본 발명에 따른 광개시제의 화학구조를 나타내는 그림이다.
도 7은 티로신기가 도입된 메틸셀룰로스의 각 변수에 따른 젤화거동 변화를 나타낸 그래프이다.
도 8은 티로신기가 도입된 메틸셀룰로스의 가교방법에 따른 기계적 강도 변화를 나타낸 그래프이다.
도 9는 티로신기가 도입된 메틸셀룰로스의 가교방법에 따른 가교밀도를 나타낸 그래프이다.
도 10은 본 발명에 따른 바이오잉크로 제조된 3D 구조물의 구조를 나타낸 사진이다.
도 11은 본 발명에 따른 바이오잉크로 제조된 3D 구조물의 생체적합성을 나타낸 사진 및 그래프이다.
1 is a photograph showing a sol-gel transition phenomenon according to the temperature of an aqueous methylcellulose solution.
2 is a conceptual diagram schematically showing a mechanism for introducing a tyrosine group into methylcellulose.
3 is a conceptual diagram schematically showing a gelation mechanism of an aqueous methylcellulose solution into which a tyrosine group is introduced.
4 is a graph showing changes in gelation behavior according to the type of terminal group of methylcellulose.
5 is a conceptual diagram showing a change in gelation behavior of methylcellulose into which a tyrosine group is introduced according to the type of photoinitiator.
6 is a diagram showing the chemical structure of a photoinitiator according to the present invention.
7 is a graph showing changes in gelation behavior according to each variable of methylcellulose into which a tyrosine group is introduced.
8 is a graph showing changes in mechanical strength according to a crosslinking method of methylcellulose into which a tyrosine group is introduced.
9 is a graph showing the crosslinking density of methylcellulose into which a tyrosine group is introduced according to a crosslinking method.
10 is a photograph showing the structure of a 3D structure made with bio-ink according to the present invention.
11 is a photograph and graph showing the biocompatibility of the 3D structure made with the bio-ink according to the present invention.

본 발명은 다양한 변형을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In the present invention, various modifications may be made and various forms may be applied, and specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific form disclosed, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.

본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부뿐 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.In the present application, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance the possibility of being added. Further, when a part such as a layer, film, region, plate, etc. is said to be "on" another part, this includes not only the case where the other part is "directly above", but also the case where there is another part in the middle. Conversely, when a part such as a layer, film, region, plate, etc. is said to be "under" another part, this includes not only the case where the other part is "directly below", but also the case where there is another part in the middle. In addition, in the present application, the term "above" may include a case where it is disposed not only above but also below.

이하 본 발명에 대하여 자세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 3D 바이오프린팅용 바이오잉크의 제조방법은 (a) 온도감응성 고분자에 티로신기를 도입하여 티로신기가 도입된 온도감응성 고분자 수용액을 제조하는 단계; (b)상기 수용액에 광개시제를 첨가하는 단계; 를 포함한다.The manufacturing method of the bio-ink for 3D bioprinting according to the present invention comprises the steps of: (a) introducing a tyrosine group into a temperature-sensitive polymer to prepare an aqueous solution of a temperature-sensitive polymer into which a tyrosine group is introduced; (b) adding a photoinitiator to the aqueous solution; Includes.

즉 2단계 반응을 통해 제조된 이중가교가 가능한 천연고분자 및 광 개시제를 포함하는 물성 조절이 용이하고 생체적합성이 우수한 3D 바이오프린팅용 바이오잉크를 제공할 수 있다.That is, it is possible to provide a bio-ink for 3D bioprinting that is easy to control physical properties including a natural polymer and a photoinitiator that can be double-crosslinked and has excellent biocompatibility, prepared through a two-step reaction.

상기 온도감응성 고분자는 메틸셀룰로스(Methylcellulose, MC) 및 그 유사체, 폴리나이팜(Poly(N-isopropylacrylamide), PNIPAM) 및 젤라틴(gelatin)을 포함하는 군에서 선택되는 1종일 수 있다.The temperature-sensitive polymer may be one selected from the group including methylcellulose (MC) and its analogs, poly (N-isopropylacrylamide), PNIPAM), and gelatin.

상기 온도감응성 고분자는 상한 임계 용액 온도(Upper critical solution teperature, UCST)가 아닌 하한 임계 용액 온도(Lower critical solution temperature, LCST)를 갖는 고분자이며, 이중 젤화거동 등의 측면에서 메틸셀룰로스가 가장 바람직하다.The temperature-sensitive polymer is a polymer having a lower critical solution temperature (LCST) rather than an upper critical solution temperature (UCST), and methylcellulose is most preferred in terms of double gelation behavior.

메틸셀룰로스는 대표적인 온도감응성 셀룰로스 유도체로 온도가 증가함에 따라 분자 내/간 소수성 상호작용이 증가하며 특정온도 이상에서 졸-겔 전이가 일어난다. 이러한 온도감응 특성은 고분자의 농도, 분자량, 첨가제 등에 의해 조절이 가능하며 첨가제의 경우 용액 내에서 염석효과를 촉진시킴에 따라 젤화를 촉진시킨다. 도 1은 저분자량 메틸셀룰로스 수용액의 온도에 따른 젤화거동을 나타내며 상온에서는 용액상태를 유지하지만 온도가 37

Figure 112019089612583-pat00001
로 증가함에 따라 분자 내/간 소수성 상호작용의 증가로 젤화가 일어나는 것을 확인할 수 있다.Methylcellulose is a representative temperature-sensitive cellulose derivative. As the temperature increases, the intramolecular/intermolecular hydrophobic interaction increases, and a sol-gel transition occurs above a certain temperature. These temperature-sensitive properties can be controlled by the concentration, molecular weight, and additives of the polymer, and in the case of additives, the gelation is accelerated by promoting the salting out effect in the solution. 1 shows the gelation behavior according to the temperature of a low molecular weight methylcellulose aqueous solution, and maintains the solution state at room temperature, but the temperature is 37
Figure 112019089612583-pat00001
It can be seen that gelation occurs due to an increase in intramolecular/intermolecular hydrophobic interactions as it increases.

상기 온도감응성 고분자가 메틸셀룰로스일 경우, 상기 메틸셀룰로스는 치환도(DS)가 1.5~1.8인 것이 바람직하며, 1.6~1.7인 것이 더욱 바람직하다. 메틸셀룰로스의 치환도가 상기 범위일 경우 찬물에도 용해가 잘 이루어진다. 또한, 저분자량 메틸셀룰로스의 점도는 10~50 cP인 것이 바람직하며, 15~20 cP인 것이 더욱 바람직하다. 또한, 저분자량 메틸셀룰로스의 분자량은 50,000~200,000 Dalton 인 것이 바람직하며, 100,000~150,000 Dalton 인 것이 더욱 바람직하다. 만약, 저분자량 메틸셀룰로스의 분자량이 200,000 Dalton을 초과하는 경우에는 고분자량 메틸셀룰로스의 경우 용해도가 3중량%가 채 되지 않아 바람직하지 않다.When the temperature-sensitive polymer is methylcellulose, the degree of substitution (DS) of the methylcellulose is preferably 1.5 to 1.8, and more preferably 1.6 to 1.7. When the degree of substitution of methylcellulose is within the above range, it is well dissolved in cold water. In addition, the viscosity of the low molecular weight methylcellulose is preferably 10 to 50 cP, more preferably 15 to 20 cP. In addition, the molecular weight of the low molecular weight methylcellulose is preferably 50,000 to 200,000 Dalton, more preferably 100,000 to 150,000 Dalton. If the molecular weight of low molecular weight methylcellulose exceeds 200,000 Daltons, the solubility of high molecular weight methylcellulose is less than 3% by weight, which is not preferable.

도 2는 메틸셀룰로스에 티로신기를 도입하는 메커니즘을 개략적으로 나타낸 개념도이다.2 is a conceptual diagram schematically showing a mechanism for introducing a tyrosine group into methylcellulose.

도 2를 참조하면, 상기 (a) 단계는, 상기 온도감응성 고분자(예를 들어, 메틸셀룰로스)에 카복실산기(-COOH)를 도입하는 단계; 카복실산기에 티로신기를 치환시키는 단계; 및 티로신기가 도입된 온도감응성 고분자를 증류수에 투입하여 수용액을 제조하는 단계; 를 포함할 수 있다. 즉 본 발명에서 온도감응성 고분자, 바람직하게는 메틸셀룰로오스에 티로신기를 도입시키는 단계는 카복실산기(-COOH)를 도입하는 1단계 반응 및 카복실산기에 티로신기를 치환시키는 2단계 반응으로 이루어질 수 있다.Referring to Figure 2, the step (a), the step of introducing a carboxylic acid group (-COOH) to the temperature-sensitive polymer (eg, methylcellulose); Substituting a tyrosine group on a carboxylic acid group; And preparing an aqueous solution by adding a temperature-sensitive polymer into which a tyrosine group is introduced into distilled water. It may include. That is, in the present invention, the step of introducing a tyrosine group to a temperature-sensitive polymer, preferably methylcellulose, may consist of a one-step reaction of introducing a carboxylic acid group (-COOH) and a two-step reaction of substituting a tyrosine group to a carboxylic acid group.

1단계 반응은 온도감응성 고분자에 숙신산(Succinic acid, SA)과 트리에틸아민(Triethylamine, TEA)을 1:0.01~100의 몰비로 첨가하는 것이 바람직하며, 1:0.4~4의 몰비로 첨가하는 것이 더욱 바람직하다. 반응시간은 1~120시간이 바람직하며, 12~24시간이 더욱 바람직하다.In the first step reaction, it is preferable to add succinic acid (SA) and triethylamine (TEA) to the temperature-sensitive polymer in a molar ratio of 1:0.01 to 100, and to add a molar ratio of 1:0.4 to 4. More preferable. The reaction time is preferably 1 to 120 hours, more preferably 12 to 24 hours.

2단계 반응은 카복실산기가 도입된 온도감응성 고분자에 카보디이미드(1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide, EDC)와 하이드록시숙신이미드(N-hydroxysuccinimide, NHS) 및 티로신 도입 물질을 첨가하는 반응으로, 카보디이미드와 하이드록시숙신이미드는 고분자의 반복단위 개수 당 1:0.01~100의 몰비로 첨가하는 것이 바람직하며, 1:1~10의 몰비로 첨가하는 것이 더욱 바람직하다. 반응시간은 5분~120시간이 바람직하며, 1~12시간이 더욱 바람직하다. 그 후, 티로신 도입물질은 고분자의 반복단위 개수 당 1:0.01~100의 몰비로 첨가하는 것이 바람직하며, 1:1~10의 몰비로 첨가하는 것이 더욱 바람직하다. 반응시간은 1~120시간이 바람직하며, 12~48시간이 더욱 바람직하다. 상기 티로신 도입물질로는 티라민, 도파민, 하이드록시페닐아세트산, 하이드록시프로피온산, 에피네프린 및 하이드록시에틸아닐린을 포함하는 군에서 선택된 1종일 수 있으며, 티라민이 바람직하다.In the two-step reaction, carbodiimide (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide, EDC), hydroxysuccinimide (NHS), and tyrosine-introduced materials were added to a temperature-sensitive polymer into which a carboxylic acid group was introduced. As an addition reaction, the carbodiimide and hydroxysuccinimide are preferably added in a molar ratio of 1:0.01 to 100 per number of repeating units of the polymer, and more preferably in a molar ratio of 1:1 to 10. The reaction time is preferably 5 minutes to 120 hours, more preferably 1 to 12 hours. Thereafter, the tyrosine-introducing material is preferably added in a molar ratio of 1:0.01 to 100 per number of repeating units of the polymer, and more preferably in a molar ratio of 1:1 to 10. The reaction time is preferably 1 to 120 hours, more preferably 12 to 48 hours. The tyrosine introduction material may be one selected from the group containing tyramine, dopamine, hydroxyphenylacetic acid, hydroxypropionic acid, epinephrine, and hydroxyethylaniline, and tyramine is preferred.

온도감응성 고분자에 티로신기가 도입되면, 증류수에 분말형태의 온도감응성 고분자를 투입하고, 상온에서 교반하여 수용액을 제조한다. 상기 수용액에서 온도감응성 고분자의 함량은 1~15 중량%인 것이 바람직하며, 8~10 중량%인 것이 더욱 바람직하다.When a tyrosine group is introduced into the temperature-sensitive polymer, a powdery temperature-sensitive polymer is added to distilled water and stirred at room temperature to prepare an aqueous solution. The content of the temperature-sensitive polymer in the aqueous solution is preferably 1 to 15% by weight, more preferably 8 to 10% by weight.

티로신기가 도입된 온도감응성 고분자 수용액이 제조되면, 상기 수용액에 광 개시제가 첨가될 수 있다. When a temperature-sensitive polymer aqueous solution into which a tyrosine group is introduced is prepared, a photoinitiator may be added to the aqueous solution.

이 때 광개시제로는 Riboflavin(RF), Riboflavin 5'-monophosphate sodium salt(RFp), Eosin Y(EY), Irgacure 2959(I2959), 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide](VA-086), Ruthenium complex(Ru), Lithium phenyl-2,4,6-trimethylbensoylphosphinate(LAP)을 포함하는 군에서 선택되는 1종 이상이 사용될 수 있으며 Riboflavin(RF), riboflavin 5'-monophosphate sodium salt(RFp)이 바람직하다. 즉 광개시제로서 비타민 유도체를 사용함으로써 생체적합성이 우수한 바이오잉크를 제조할 수 있으며, 염석효과 및 온도감응성 고분자 간 소수성 상호작용을 촉진하여 젤화속도 및 젤 강도를 향상시킴과 동시에 가시광 영역에서 광가교를 가능하게 한다.In this case, as photoinitiators, Riboflavin (RF), Riboflavin 5'-monophosphate sodium salt (RFp), Eosin Y (EY), Irgacure 2959 (I2959), 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl) )propionamide] (VA-086), Ruthenium complex (Ru), Lithium phenyl-2,4,6-trimethylbensoylphosphinate (LAP), and at least one selected from the group containing Riboflavin (RF), riboflavin 5' -monophosphate sodium salt (RFp) is preferred. That is, by using a vitamin derivative as a photoinitiator, bio-inks with excellent biocompatibility can be prepared, and by promoting the salting out effect and hydrophobic interactions between temperature-sensitive polymers, the gelation rate and gel strength are improved, and photocrosslinking is possible in the visible light region. Let's do it.

또한 상기 온도감응성 고분자 수용액에는 광개시제 외에도 공개시제를 더 첨가할 수 있다. 이 때 공개시제로는 아르기닌(2-Amino-5-guanidinopentanoic acid, L-arginine), Dimethylaminoethyl acrylate(DMAEMA), Neopenthyl Glycol(NPG), 소듐 퍼설페이트(Sodium persulfate, SPS)를 포함하는 군에서 선택되는 1종 이상이 사용될 수 있으며 소듐 퍼설페이트(Sodium persulfate, SPS)가 바람직하다.In addition, in addition to the photoinitiator, a co-initiator may be further added to the temperature-sensitive polymer aqueous solution. At this time, the open initiator is selected from the group including arginine (2-Amino-5-guanidinopentanoic acid, L-arginine), Dimethylaminoethyl acrylate (DMAEMA), Neopenthyl Glycol (NPG), and sodium persulfate (SPS). More than one type may be used, and sodium persulfate (SPS) is preferred.

공개시제인 소듐 퍼설페이트(Sodium persulfate, SPS)는 1~500 mM을 첨가하는 것이 바람직하며, 10~200 mM이 더욱 바람직하다. 광개시제인 riboflavin(RF) 및 riboflavin 5'-monophosphate sodium salt(RFp)는 0.01~110 mM을 첨가하는 것이 바람직하며, 0.05~10 mM이 더욱 바람직하다.Sodium persulfate (SPS), which is a co-agent, is preferably added to 1 to 500 mM, more preferably 10 to 200 mM. The photoinitiators riboflavin (RF) and riboflavin 5'-monophosphate sodium salt (RFp) are preferably 0.01 to 110 mM, and more preferably 0.05 to 10 mM.

또한 본 발명은 상기 바이오잉크를 사용한 3D구조물의 제조방법을 제공하는 바, 상기 3D 구조물의 제조방법은 (a) 온도감응성 고분자에 티로신기를 도입하여 티로신기가 도입된 온도감응성 고분자 수용액을 제조하는 단계; (b) 상기 수용액에 광개시제를 첨가하는 단계; (c) 상기 광개시제가 첨가된 수용액을 하한 임계 용액 온도 이상으로 가열하는 단계; (d) 상기 가열된 수용액을 인쇄하여 구조물을 제조하는 단계; 및 (e) 상기 구조물에 광을 조사하는 단계; 를 포함할 수 있다.In addition, the present invention provides a method of manufacturing a 3D structure using the bio-ink, the method of manufacturing a 3D structure comprising the steps of: (a) introducing a tyrosine group into a temperature-sensitive polymer to prepare a temperature-sensitive polymer aqueous solution into which a tyrosine group is introduced; (b) adding a photoinitiator to the aqueous solution; (c) heating the aqueous solution to which the photoinitiator is added to a lower limit critical solution temperature; (d) printing the heated aqueous solution to prepare a structure; And (e) irradiating light to the structure. It may include.

즉 본 발명에 따른 3D 바이오프린팅용 바이오잉크에 대하여 온도에 의해 물리적 수화젤을 형성하여 인쇄 전 바이오잉크의 물성을 조절함으로써 인쇄성을 높이고 인쇄 후 광가교를 통해 화학적 하이드로겔을 형성함으로써 구조적 안정성이 우수한 3D 구조물을 제조할 수 있다.That is, the physical hydration gel for the bioink for 3D bioprinting according to the present invention is formed by temperature to increase printability by controlling the physical properties of the bioink before printing, and structural stability by forming a chemical hydrogel through photocrosslinking after printing. Can manufacture excellent 3D structures.

도 3은 티로신기가 도입된 메틸셀룰로스 수용액의 젤화 메커니즘을 개략적으로 나타낸 개념도이다.3 is a conceptual diagram schematically showing a gelation mechanism of an aqueous methylcellulose solution into which a tyrosine group is introduced.

도 3을 참조하면, 온도감응 특성과 광감응 특성을 둘 다 갖는 메틸셀룰로스 유도체 수용액을 하한 임계 용액 온도(Lower critical solution temperature, LCST) 이상의 온도를 가하면 소수성 상호작용의 물리적 가교로 인한 물리적 수화젤을 형성하고, 추가적으로 광을 조사하면 티로신기의 화학적 가교로 인한 화학적 수화젤을 형성할 수 있다. 이때, 티로신기가 도입된 메틸셀룰로스 수용액에 공개시제와 광개시제를 첨가함으로써 광가교를 형성할 수 있다.Referring to FIG. 3, when a temperature higher than the lower critical solution temperature (LCST) is applied to an aqueous methylcellulose derivative having both temperature-sensitive and light-sensitive properties, a physical hydrogel due to physical crosslinking of hydrophobic interactions is formed. And additionally irradiated with light to form a chemical hydrogel due to chemical crosslinking of tyrosine groups. At this time, photo-crosslinking can be formed by adding a co-initiator and a photo-initiator to the methylcellulose aqueous solution into which the tyrosine group is introduced.

광가교시간은 10~600초가 바람직하며, 30~360초가 더욱 바람직하다. 파장대는 200~800 nm가 바람직하며, 380~780 nm가 더욱 바람직하며, 더더욱 바람직하게는 400~500 nm(가시광선) 일 수 있다.The optical crosslinking time is preferably 10 to 600 seconds, more preferably 30 to 360 seconds. The wavelength band is preferably 200 to 800 nm, more preferably 380 to 780 nm, and even more preferably 400 to 500 nm (visible light).

또한 본 발명은 본 발명에 따른 제조방법에 의해 제조된 3D 바이오프린팅용 바이오잉크를 제공하는 바, 상기 3D 바이오프린팅용 바이오잉크는 티로신기가 도입된 온도감응성 고분자 및 광 개시제로서 비타민 유도체를 포함할 수 있다. 즉 상기 바이오잉크는 티로신기가 도입된 온도감응성 고분자가 열 및 광에 의해 이중으로 가교되며, 광 개시제로 비타민 유도체를 사용하는 바, 구조적 안정성이 우수하며, 무독성이고 생체적합성이 뛰어난 3D 구조물을 제조할 수 있다.In addition, the present invention provides a bioink for 3D bioprinting prepared by the manufacturing method according to the present invention, wherein the bioink for 3D bioprinting may include a temperature-sensitive polymer into which a tyrosine group is introduced and a vitamin derivative as a photoinitiator. have. That is, in the bioink, a temperature-sensitive polymer into which a tyrosine group is introduced is double-crosslinked by heat and light, and a vitamin derivative is used as a photoinitiator, so that a 3D structure with excellent structural stability, non-toxicity and excellent biocompatibility can be produced. I can.

이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only illustrative of the present invention, and the present invention is not limited by the following examples.

[실시예1][Example 1]

티로신기가 도입된 온도감응성 고분자의 제조Preparation of temperature-sensitive polymer with tyrosine group introduced

온도감응성 고분자로서 메틸셀룰로스(치환도 1.6~1.7, 점도 15 cP, 분자량 110,000 Dalton)에 숙신산(Succinic acid, SA)과 트리에틸아민(Triethylamine, TEA)을 1:0.4의 몰비로 첨가하고, 12시간동안 반응시킴으로써, 메틸셀룰로스에 카복실산기를 도입하였다.As a temperature-sensitive polymer, succinic acid (SA) and triethylamine (TEA) were added to methylcellulose (substitution degree 1.6-1.7, viscosity 15 cP, molecular weight 110,000 Dalton) in a molar ratio of 1:0.4, and 12 hours During the reaction, a carboxylic acid group was introduced into methylcellulose.

상기 카복실산기가 도입된 메틸셀룰로스에 카보디이미드(1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide, EDC)와 하이드록시숙신이미드(N-hydroxysuccinimide, NHS)을 1:1.8의 몰비로 첨가하여 1시간동안 반응시킨 후, 상기 반응물에 티라민(Tyramine, Tyr)을 1:0.9의 몰비로 첨가한 후 24시간동안 반응을 진행하여 티로신기가 도입된 온도감응성 고분자를 제조하였다.Carbodiimide (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide, EDC) and hydroxysuccinimide (NHS) were added to the methylcellulose into which the carboxylic acid group was introduced in a molar ratio of 1:1.8. After reacting for 1 hour, tyramine (Tyr) was added to the reactant at a molar ratio of 1:0.9, and the reaction was carried out for 24 hours to prepare a temperature-sensitive polymer into which a tyrosine group was introduced.

티로신기가 도입된 온도감응성 고분자 수용액의 제조Preparation of a temperature-sensitive polymer aqueous solution into which tyrosine groups are introduced

증류수에 분말형태의 메틸셀룰로스 유도체를 투입하고, 상온에서 24시간 동안 교반하여 8중량%의 메틸셀룰로스 수용액을 제조하였다.A methylcellulose derivative in powder form was added to distilled water and stirred at room temperature for 24 hours to prepare an 8% by weight aqueous methylcellulose solution.

티로신기가 도입된 온도감응성 고분자 수용액의 젤화Gelation of temperature-sensitive polymer aqueous solution with tyrosine group introduced

상기 메틸셀룰로스 수용액에 공개시제로서 소듐퍼설페이트(Sodium persulfate, SPS) 100mM 및 광개시제로서 Riboflavin(RF) 및 Riboflavin 5'-monophosphate sodium salt(RFp) 0.25 mM을 첨가 후 수용액을 하한 임계 용액 온도(Lower critical solution temperature, LCST) 이상의 온도로 가열하였다. 이후 400-500nm의 파장을 갖는 가시광선을 120초간 조사하여 광가교를 진행하여 이중가교된 티로신기가 도입된 메틸셀룰로스를 얻었다.After adding 100 mM sodium persulfate (SPS) as a co-initiator and 0.25 mM Riboflavin (RF) and Riboflavin 5'-monophosphate sodium salt (RFp) as a photoinitiator to the methylcellulose aqueous solution, the aqueous solution was added to the lower critical solution temperature. solution temperature, LCST) or higher. Thereafter, photocrosslinking was performed by irradiating visible light having a wavelength of 400-500nm for 120 seconds to obtain methylcellulose into which a double-crosslinked tyrosine group was introduced.

[실험예 1][Experimental Example 1]

상기 메틸셀룰로스 유도체의 말단기 종류에 따른 젤화거동을 레오미터를 이용하여 측정하였다. 이 때 변형율과 주파수는 0.3%와 1 rad/s 이었으며, 젤화 온도는 1

Figure 112019089612583-pat00002
의 가열속도로 측정되었고 젤화시간은 37
Figure 112019089612583-pat00003
조건 하에서 측정되었다. 그 결과는 도 4에 나타내었다.The gelation behavior according to the type of terminal group of the methylcellulose derivative was measured using a rheometer. At this time, the strain and frequency were 0.3% and 1 rad/s, and the gelation temperature was 1
Figure 112019089612583-pat00002
It was measured at the heating rate of and the gelation time was 37
Figure 112019089612583-pat00003
Measured under conditions. The results are shown in FIG. 4.

도 4를 참조하면, 메틸셀룰로스 유도체의 젤화온도 및 시간은 말단기에 의해 젤화가 억제되는 것을 확인하였으며 카복실산기 (-COOH) 보다, 티로신기에 의한 젤화 억제가 더 크게 나타났으며 이는 말단기가 더 커지고 단단해졌기 때문임을 알 수 있었다. 하지만 말단기 종류에 따라 젤화거동이 느려졌음에도 불구하고 여전히 체온부근에서 젤화가 일어난다는 것을 확인하였고 따라서 본 발명에서 제조한 이중가교형 메틸셀룰로스는 여전히 온도감응특성을 갖는다는 것을 확인하였다.Referring to FIG. 4, the gelation temperature and time of the methylcellulose derivative confirmed that gelation was suppressed by the terminal group, and the suppression of gelation by the tyrosine group was greater than that of the carboxylic acid group (-COOH), which resulted in a larger terminal group. I could see that it was because it became hard. However, even though the gelling behavior was slowed according to the type of terminal group, it was confirmed that gelation still occurred near body temperature, and thus it was confirmed that the double-crosslinked methylcellulose prepared in the present invention still has a temperature-sensitive characteristic.

[실험예 2][Experimental Example 2]

이중가교형 메틸셀룰로스의 광개시제 종류에 따른 젤화거동을 레오미터를 이용하여 측정하였다 이 때 변형율과 주파수는 0.3%와 1 rad/s였으며 젤화온도는 1

Figure 112019089612583-pat00004
의 가열속도로 측정되었고 젤화시간은 37
Figure 112019089612583-pat00005
조건 하에서 측정되었다. G'과 G"의 교차점은 젤화지점을 나타내며 광개시제인 비타민유도체의 화학구조식은 도 6에 제시하였다.The gelation behavior of the double-crosslinked methylcellulose according to the photoinitiator type was measured using a rheometer. At this time, the strain and frequency were 0.3% and 1 rad/s, and the gelation temperature was 1
Figure 112019089612583-pat00004
It was measured at the heating rate of and the gelation time was 37
Figure 112019089612583-pat00005
Measured under conditions. The intersection of G'and G" represents the gelation point, and the chemical structural formula of the vitamin derivative as a photoinitiator is shown in FIG.

도 5를 참조하면, 도 6의 (B)와 같이 비타민 유도체에 포스페이트기를 포함하는 경우 젤화온도 및 시간이 촉진된다는 것을 확인하였으며 이는 호프마이스터 시리즈에 의한 염효과 때문임을 알 수 있었다. 이처럼 비타민 유도체에 포스페이트기를 포함하고 있으면, 수용액의 물을 끌어들여 메틸셀룰로스의 소수성기의 소수성 상호작용을 촉진시키기 때문에 젤화가 촉진되며 이 현상을 이용해 물리적 수화젤의 형성거동을 쉽게 조절할 수 있으며 말단기에 따른 젤화지연을 보완할 수 있음을 확인하였다.Referring to FIG. 5, it was confirmed that gelation temperature and time were accelerated when a phosphate group was included in the vitamin derivative as shown in FIG. 6(B), and this was found to be due to the salt effect by the Hofmeister series. In this way, if the vitamin derivative contains a phosphate group, gelation is promoted because it attracts water from the aqueous solution and promotes the hydrophobic interaction of the hydrophobic group of methylcellulose. Using this phenomenon, the formation behavior of the physical hydrogel can be easily controlled. It was confirmed that the resulting gelation delay can be compensated.

[실험예 3][Experimental Example 3]

상기 티로신기가 도입된 메틸셀룰로스의 다양한 변수에 따른 젤화거동을 레오미터를 이용하여 측정하였다 이 때 변형율과 주파수는 0.3%와 1 rad/s이었으며 37

Figure 112019089612583-pat00006
조건 하에서 젤화시간이 측정되었다. The gelation behavior of methylcellulose into which the tyrosine group was introduced was measured using a rheometer. At this time, the strain and frequency were 0.3% and 1 rad/s, and 37
Figure 112019089612583-pat00006
The gelation time was measured under conditions.

도 7에 따르면 공개시제 농도, 광개시제 농도 및 광조사 시간이 증가할수록 젤화촉진을 보였으며 젤 강도 또한 증가하는 것을 확인하였다. 이러한 다양한 변수를 조절하여 쉽게 화학적 수화젤의 물성 조절을 할 수 있음을 확인하였다.According to FIG. 7, it was confirmed that gelation was promoted as the concentration of the open initiator, the concentration of the photoinitiator, and the light irradiation time increased, and the gel strength also increased. It was confirmed that the physical properties of the chemical hydrogel can be easily controlled by adjusting these various variables.

[실험예 4][Experimental Example 4]

도 8은 티로신기가 도입된 메틸셀룰로스의 가교방법에 따른 기계적 강도 변화를 나타낸 그래프이다.8 is a graph showing changes in mechanical strength according to a crosslinking method of methylcellulose into which a tyrosine group is introduced.

도 8을 참조하면 물리적, 화학적 단일가교로 수화젤을 형성했을 때와 비교하여 이중가교를 진행한 수화젤의 경우 눈에 띄게 향상된 물성을 확인할 수 있었고, 광개시제 종류에 따라서도 비타민 유도체를 광개시제로 첨가하였을 경우가 기계적 강도가 더욱 높은 것을 확인하였다.Referring to FIG. 8, compared to the case of forming the hydration gel by physical and chemical single crosslinking, the hydration gel subjected to double crosslinking was significantly improved in physical properties, and vitamin derivatives were added as photoinitiators according to the type of photoinitiator. It was confirmed that the mechanical strength was higher when it was done.

[실험예 5][Experimental Example 5]

도 9는 티로신기가 도입된 메틸셀룰로스의 가교방법에 따른 가교밀도를 나타낸 그래프이다.9 is a graph showing the crosslinking density of methylcellulose into which a tyrosine group is introduced according to a crosslinking method.

도 9를 참조하면, 이중가교의 경우 약 80%의 가교밀도를 갖는 것으로 보아 광 효율이 매우 좋은 것을 알 수 있다. 도입된 티라민이 전체 반복단위의 2.6%밖에 되지 않기 때문에 큰 영향이 없으나, 광 효율도 매우 좋아 가교 및 인쇄 후 남아있는 광가교되지 않은 티라민기가 많지 않기 때문에 생체적합성이 우수하고 부반응이 존재하지 않는다.Referring to FIG. 9, it can be seen that the light efficiency is very good as it has a crosslinking density of about 80% in the case of double crosslinking. Since the introduced tyramine is only 2.6% of the total repeating unit, there is no significant effect, but the light efficiency is also very good, and since there are not many unphotocrosslinked tyramine groups remaining after crosslinking and printing, it is excellent in biocompatibility and there are no side reactions.

[실험예 6][Experimental Example 6]

앞서 제조한 이중가교형 메틸셀룰로스 기반 잉크를 이용하여 다양한 모양을 제조하였다. 구체적으로 두 종류의 3D 구조물(제조예 1 및 제조예 2)을 제작하였으며, 도 10은 본 발명에 따른 바이오잉크로 제조된 3D 구조물의 구조를 나타낸 사진이다. 도 10을 참조하면 도 10의 (a)는 제조예 1의 구조를 나타낸 사진이고, (b)는 제조예 2의 구조를 나타낸 사진이다.Various shapes were prepared using the previously prepared double-crosslinked methylcellulose-based ink. Specifically, two types of 3D structures (Preparation Example 1 and Preparation Example 2) were produced, and FIG. 10 is a photograph showing the structure of a 3D structure made with bio-ink according to the present invention. Referring to FIG. 10, (a) of FIG. 10 is a photograph showing the structure of Preparation Example 1, and (b) is a photograph showing the structure of Preparation Example 2.

도 10을 참조하면, 구체적으로 모양 및 크기에 관계없이 인쇄성이 좋은 잉크를 제조하였다는 것을 확인하였다. 이 때 인쇄조건은 다양한 변수(온도, 니들 직경, 속도, 압출량 등)에 의한 분석을 통해 최적조건을 수립하였고, 주사기에 이중가교형 메틸셀룰로스 수용액을 넣은 다음 인쇄 전 압출 기반 프린팅에 적당한 점도 및 표면장력을 가질 수 있도록 온도를 가하여 물리적인 수화젤을 형성시킨 다음 프린팅하여 인쇄된 필라멘트의 표면 특성이나 필라멘트간 상호작용이 우수한 구조물을 제조할 수 있었고, 필라멘트를 인쇄함과 동시에 가시광선을 조사하여 구조적 안정성이 우수한 3D 구조물을 얻을 수 있었다.Referring to FIG. 10, it was confirmed that ink having good printability was prepared regardless of the shape and size. At this time, the optimum conditions were established through analysis of various variables (temperature, needle diameter, speed, extrusion volume, etc.), and a double-crosslinked methylcellulose aqueous solution was added to the syringe, and the viscosity and viscosity suitable for extrusion-based printing before printing. By applying temperature so as to have surface tension, a physical hydrogel was formed and then printed to produce a structure with excellent surface characteristics of the printed filaments or interactions between filaments, and by irradiating visible light while printing the filaments. A 3D structure with excellent structural stability could be obtained.

[실험예 7][Experimental Example 7]

실험예 6에서 제조한 3D 구조물의 생체적합성을 확인하였다. 그 결과는 도 11에 도시되어 있다. The biocompatibility of the 3D structure prepared in Experimental Example 6 was confirmed. The results are shown in FIG. 11.

도 11을 참조하면, (a)는 제조예 1의 생체적합성을 측정한 결과이고, (b)는 제조예 2의 생체적합성을 측정한 결과로서, 제조예 1 및 제조예 2 모두 높은 세포생존율을 보였으며, 시간이 4시간에서 72시간으로 지남에 따라 세포가 증가하는 것으로 보아 증식이 일어난다는 것을 확인할 수 있었다.Referring to FIG. 11, (a) is a result of measuring the biocompatibility of Preparation Example 1, and (b) is a result of measuring the biocompatibility of Preparation Example 2, and both Preparation Example 1 and Preparation Example 2 have high cell viability. As the time passed from 4 hours to 72 hours, the number of cells increased, confirming that proliferation occurred.

이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art or those of ordinary skill in the art will not depart from the spirit and scope of the invention described in the claims to be described later. It will be understood that various modifications and changes can be made to the present invention within the scope of the invention.

따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.Therefore, the technical scope of the present invention should not be limited to the content described in the detailed description of the specification, but should be determined by the claims.

Claims (6)

(a) 온도감응성 고분자에 티로신기를 도입하여 티로신기가 도입된 온도감응성 고분자 수용액을 제조하는 단계;
(b) 상기 수용액에 광개시제를 첨가하는 단계; 를 포함하며,
상기 온도감응성 고분자는 메틸셀룰로스(Methylcellulose, MC) 및 그 유사체, 폴리나이팜(Poly(N-isopropylacrylamide), PNIPAM) 및 젤라틴(gelatin)을 포함하는 군에서 선택되는 1종인 것을 특징으로 하는 3D 바이오프린팅용 바이오잉크의 제조방법.
(a) preparing an aqueous solution of a temperature-sensitive polymer into which a tyrosine group is introduced by introducing a tyrosine group into the temperature-sensitive polymer;
(b) adding a photoinitiator to the aqueous solution; Including,
The temperature-sensitive polymer is one selected from the group including methylcellulose (MC) and its analogues, poly (N-isopropylacrylamide), PNIPAM), and gelatin for 3D bioprinting. Method for producing bio-ink.
삭제delete 제 1항에 있어서,
상기 (a) 단계는,
상기 온도감응성 고분자에 카복실산기(-COOH)를 도입하는 단계;
카복실산기에 티로신기를 치환시키는 단계; 및
티로신기가 도입된 온도감응성 고분자를 증류수에 투입하여 수용액을 제조하는 단계; 를 포함하는 것을 특징으로 하는 3D 바이오프린팅용 바이오잉크의 제조방법.
The method of claim 1,
The step (a),
Introducing a carboxylic acid group (-COOH) to the temperature-sensitive polymer;
Substituting a tyrosine group on a carboxylic acid group; And
Preparing an aqueous solution by introducing a temperature-sensitive polymer into which a tyrosine group is introduced into distilled water; Method for producing a bio-ink for 3D bioprinting, characterized in that it comprises a.
제 1항에 있어서,
상기 광개시제는 Riboflavin(RF), Riboflavin 5'-monophosphate sodium salt(RFp), Eosin Y(EY), Irgacure 2959(I2959), 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide](VA-086), Ruthenium complex(Ru), Lithium phenyl-2,4,6-trimethylbensoylphosphinate(LAP)을 포함하는 군에서 선택되는 1종 이상인 것을 특징으로 하는 3D 바이오프린팅용 바이오잉크의 제조방법.
The method of claim 1,
The photoinitiator is Riboflavin (RF), Riboflavin 5'-monophosphate sodium salt (RFp), Eosin Y (EY), Irgacure 2959 (I2959), 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide ](VA-086), Ruthenium complex (Ru), Lithium phenyl-2,4,6-trimethylbensoylphosphinate (LAP) A method for producing a bio-ink for 3D bioprinting, characterized in that at least one selected from the group containing.
(a) 온도감응성 고분자에 티로신기를 도입하여 티로신기가 도입된 온도감응성 고분자 수용액을 제조하는 단계;
(b) 상기 수용액에 광개시제를 첨가하는 단계;
(c) 상기 광개시제가 첨가된 수용액을 하한 임계 용액 온도 이상으로 가열하는 단계;
(d) 상기 가열된 수용액을 인쇄하여 구조물을 제조하는 단계; 및
(e) 상기 구조물에 광을 조사하는 단계; 를 포함하며,
상기 온도감응성 고분자는 메틸셀룰로스(Methylcellulose, MC) 및 그 유사체, 폴리나이팜(Poly(N-isopropylacrylamide), PNIPAM) 및 젤라틴(gelatin)을 포함하는 군에서 선택되는 1종인 것을 특징으로 하는 3D 구조물의 제조방법.
(a) preparing an aqueous solution of a temperature-sensitive polymer into which a tyrosine group is introduced by introducing a tyrosine group into the temperature-sensitive polymer;
(b) adding a photoinitiator to the aqueous solution;
(c) heating the aqueous solution to which the photoinitiator is added to a lower limit critical solution temperature;
(d) printing the heated aqueous solution to prepare a structure; And
(e) irradiating light to the structure; Including,
The temperature-sensitive polymer is methylcellulose (MC) and its analogues, poly(N-isopropylacrylamide), PNIPAM), and gelatin (gelatin). Way.
제 1항, 제3항 및 제 4항 중 어느 한 항에 기재된 제조방법으로 제조되는 3D 바이오프린팅용 바이오잉크로서, 티로신기가 도입된 온도감응성 고분자 및 광 개시제로서 비타민 유도체를 포함하며,
상기 온도감응성 고분자는 메틸셀룰로스(Methylcellulose, MC) 및 그 유사체, 폴리나이팜(Poly(N-isopropylacrylamide), PNIPAM) 및 젤라틴(gelatin)을 포함하는 군에서 선택되는 1종인 것을 특징으로 하는 3D 바이오프린팅용 바이오잉크.

A bioink for 3D bioprinting prepared by the manufacturing method according to any one of claims 1, 3 and 4, comprising a temperature-sensitive polymer into which a tyrosine group is introduced and a vitamin derivative as a photoinitiator,
The temperature-sensitive polymer is one selected from the group including methylcellulose (MC) and its analogues, poly (N-isopropylacrylamide), PNIPAM), and gelatin for 3D bioprinting. Bioink.

KR1020190107451A 2019-08-30 2019-08-30 Bioink for 3d bioprinting and process for preparing the same KR102211477B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190107451A KR102211477B1 (en) 2019-08-30 2019-08-30 Bioink for 3d bioprinting and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190107451A KR102211477B1 (en) 2019-08-30 2019-08-30 Bioink for 3d bioprinting and process for preparing the same

Publications (1)

Publication Number Publication Date
KR102211477B1 true KR102211477B1 (en) 2021-02-03

Family

ID=74571764

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190107451A KR102211477B1 (en) 2019-08-30 2019-08-30 Bioink for 3d bioprinting and process for preparing the same

Country Status (1)

Country Link
KR (1) KR102211477B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160118631A (en) * 2015-04-02 2016-10-12 경북대학교 산학협력단 Stimuli-responsive and fluorescent polymer-carbon dots composite, and uses thereof
KR20170090755A (en) * 2016-01-29 2017-08-08 고려대학교 산학협력단 Bio-ink for fast gelation based on functional hydrogels and manufacturing method thereof
KR20180037355A (en) * 2016-10-04 2018-04-12 주식회사 랩311 Hydrogel ink composition for 3d printer and method for preparing hydrogel structure using same
KR20180112436A (en) * 2017-04-04 2018-10-12 한림대학교 산학협력단 Bio-ink and manufacturing method thereof
KR20190054487A (en) * 2017-11-13 2019-05-22 포항공과대학교 산학협력단 Inkjet printable bioink and method of preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160118631A (en) * 2015-04-02 2016-10-12 경북대학교 산학협력단 Stimuli-responsive and fluorescent polymer-carbon dots composite, and uses thereof
KR20170090755A (en) * 2016-01-29 2017-08-08 고려대학교 산학협력단 Bio-ink for fast gelation based on functional hydrogels and manufacturing method thereof
KR20180037355A (en) * 2016-10-04 2018-04-12 주식회사 랩311 Hydrogel ink composition for 3d printer and method for preparing hydrogel structure using same
KR20180112436A (en) * 2017-04-04 2018-10-12 한림대학교 산학협력단 Bio-ink and manufacturing method thereof
KR20190054487A (en) * 2017-11-13 2019-05-22 포항공과대학교 산학협력단 Inkjet printable bioink and method of preparing the same

Similar Documents

Publication Publication Date Title
Chen et al. 3D printing of multifunctional hydrogels
Noh et al. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering
Xu et al. Poly (N-acryloyl glycinamide): a fascinating polymer that exhibits a range of properties from UCST to high-strength hydrogels
Sacco et al. Concepts for developing physical gels of chitosan and of chitosan derivatives
Cernencu et al. Bioinspired 3D printable pectin-nanocellulose ink formulations
Li et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication
Wang et al. 3D printed agar/calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties
Li et al. Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose
CN106317263B (en) Visible light initiation system and its process for photocuring in a kind of medical photocuring hydrogel
Zhou et al. A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl
CN110103463B (en) Full-support hydrogel 3D printing method based on equal rheological properties
CN107236135A (en) Gelatin hydrogel and preparation method and application thereof
CN110913919B (en) Additive manufacturing based on fluid-fluid interface
CN109942752A (en) Modified carboxy methyl cellulose biocompatibility composite hydrogel precursor liquid, composite hydrogel and its application
Tan et al. Preheating of gelatin improves its printability with transglutaminase in direct ink writing 3D printing
Gantumur et al. Extrusion-based bioprinting through glucose-mediated enzymatic hydrogelation
He et al. Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting
Jeon et al. Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries
CN106749982A (en) Bio-ink
CN109575315A (en) A kind of PVA supramolecular hydrogel and the preparation method and application thereof
Jongprasitkul et al. Sequential cross-linking of gallic acid-functionalized GelMA-based bioinks with enhanced printability for extrusion-based 3D bioprinting
Siwal et al. Additive manufacturing of bio-based hydrogel composites: recent advances
KR102211477B1 (en) Bioink for 3d bioprinting and process for preparing the same
Zhaoxuan et al. A novel photocurable pullulan-based bioink for digital light processing 3D printing
Shen et al. Fabrication of triple-crosslinked gelatin/alginate hydrogels for controlled release applications

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant