WO2018186471A1 - 光偏向デバイス - Google Patents

光偏向デバイス Download PDF

Info

Publication number
WO2018186471A1
WO2018186471A1 PCT/JP2018/014586 JP2018014586W WO2018186471A1 WO 2018186471 A1 WO2018186471 A1 WO 2018186471A1 JP 2018014586 W JP2018014586 W JP 2018014586W WO 2018186471 A1 WO2018186471 A1 WO 2018186471A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
waveguide
heating
deflection device
heating mechanism
Prior art date
Application number
PCT/JP2018/014586
Other languages
English (en)
French (fr)
Inventor
馬場 俊彦
梧朗 竹内
萌江 竹内
陽祐 寺田
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2019511306A priority Critical patent/JP7134441B2/ja
Publication of WO2018186471A1 publication Critical patent/WO2018186471A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present invention relates to an optical deflection device that controls the traveling direction of light.
  • Laser radar or lidar equipment LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging)
  • LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • Laser radar or lidar equipment that uses laser measurement to acquire the distance to surrounding objects as a two-dimensional image It is used for making maps, and its basic technology can be applied to laser printers and laser displays.
  • a light beam is applied to an object, reflected light that is reflected back from the object is detected, distance information is obtained from the time difference or frequency difference, and the light beam is scanned two-dimensionally. To obtain wide-angle three-dimensional information.
  • An optical deflection device is essential for optical beam scanning.
  • mechanical mechanisms such as rotating the entire device, mechanical mirrors such as polygonal mirrors (polygon mirrors) and galvano mirrors, and small integrated mirrors using micromachine technology (MEMS technology) have been used.
  • MEMS technology micromachine technology
  • problems such as high cost and instability in a vibrating moving body.
  • non-mechanical optical deflection devices has been actively conducted.
  • phased array type and a diffraction grating type that realize optical deflection by changing the wavelength of light and the refractive index of the device have been proposed.
  • the phased array type optical deflection device has a problem that it is very difficult to adjust the phase of a large number of light emitters arranged in an array, and a high-quality sharp light beam cannot be formed.
  • the diffraction grating type optical deflection device can easily form a sharp beam, but has a problem that the optical deflection angle is small.
  • the inventors of the present invention have proposed a technique for increasing the light deflection angle by coupling a slow light waveguide to a diffraction mechanism such as a diffraction grating (Patent Document 1).
  • Slow light is generated in photonic nanostructures such as photonic crystal waveguides, has a low group velocity, and changes the propagation constant greatly by slight changes in wavelength and refractive index of the waveguide.
  • a diffractive mechanism is installed in or near the slow light waveguide, the slow light waveguide is coupled to the diffractive mechanism to form a leaky waveguide, and emits light into free space. At this time, a large change in the propagation constant is reflected in the deflection angle of the emitted light, and as a result, a large deflection angle is realized.
  • FIG. 9A shows an outline of a device structure in which a diffraction mechanism is introduced into a photonic crystal waveguide that propagates light (slow light) having a low group velocity, and a radiated light beam.
  • the optical deflection device 101 includes a photonic crystal waveguide 102 having a double periodic structure in which two types of circular holes having different diameters are repeated along the waveguide in the plane of the photonic crystal.
  • the double periodic structure constitutes a diffraction mechanism, which converts the slow light propagation light into radiation conditions and emits it into space.
  • a photonic crystal waveguide 102 is formed by a lattice arrangement 103 in which a low refractive index portion 111 is arranged on a high refractive index member 110 on a clad 113 made of a low refractive index material such as SiO 2 .
  • the lattice arrangement 103 of the low refractive index region 111 is, for example, a double periodic structure of a periodic structure in which large-diameter circular holes are repeated and a periodic structure in which small-diameter circular holes are repeated.
  • a portion where the circular hole 111 is not provided constitutes a waveguide core 112 that propagates incident light.
  • FIG. 9B and 9C are diagrams for explaining the beam intensity distribution of the emitted light beam, FIG. 9B shows the beam intensity distribution in the vertical direction, and FIG. 9C shows the beam intensity angle distribution in the horizontal direction.
  • the radiated light beam gradually leaks along the waveguide core, so that the beam intensity distribution in the vertical direction becomes a sharp beam.
  • the lateral beam intensity angular distribution has a wide angular distribution.
  • the light beam formed by the optical deflection device using the photonic crystal waveguide is longitudinally changed by the change of the wavelength of the incident light to the optical deflection device, or the refractive index of the waveguide or the equivalent refractive index of the waveguide mode.
  • the radiation angle changes. Therefore, the optical deflection device changes the radiation angle by changing the wavelength of incident light, or the refractive index of the waveguide or the equivalent refractive index of the waveguide mode at high speed and continuously, thereby changing the radiation beam. Can be scanned.
  • An optical deflection device functions as an optical deflector only when it has a function of scanning a radiated light beam.
  • the wavelength line width is, for example, a narrow width of 1 MHz or less.
  • the wavelength amplitude is a wide range of, for example, 30 nm or more.
  • the wavelength can be scanned continuously.
  • the output is a high output close to, for example, 100 mW.
  • a feasible optical deflection device is assumed to have a configuration in which a light beam is scanned by sequentially changing the refractive index of a waveguide using a specific wavelength using the semiconductor laser as a light source.
  • the number of two-dimensional pixels for obtaining a distance image is set to 320 ⁇ 32 ⁇ 10,000 points, and an image frame If the rate is 10 frames per second, it is necessary to scan a data amount of 100,000 points / second as a whole. This amount of data corresponds to a scanning speed of 100 kHz.
  • the refractive index changing speed that is changed to scan the radiation light beam needs to be high enough to correspond to the scanning speed.
  • micromachines such as micromachines, nonlinear effects (optical Kerr effect), carrier plasma effect, thermo-optic effect Etc. can be considered.
  • an optical deflection device using a micromachine such as a micromachine is difficult to operate at a high speed like the micromachine as the optical deflection mirror described above, and it is difficult to obtain the above-described scanning speed. There is also the problem of instability and low reliability.
  • An optical deflection device using a nonlinear effect requires a high optical power of 10 W class, for example, in a photonic crystal waveguide using silicon (Si) as a waveguide material.
  • Si silicon
  • an optical power of 100 mW or more is continuously introduced, there is a problem that nonlinear absorption (two-photon absorption) occurs and light is attenuated, and the waveguide is damaged.
  • the carrier plasma effect is an effect of changing the refractive index of a semiconductor by forming a pn junction diode in a semiconductor such as Si and applying a forward or reverse bias thereto to change the amount of carriers in the waveguide. is there.
  • a high-speed response of 10 GHz or more can be obtained, but the amount of change in the refractive index is as small as 10 ⁇ 3 or less, and it is difficult to obtain a sufficient scanning range.
  • thermo-optic effect is an effect in which a refractive index change occurs when a material is heated.
  • the optical deflection device using the thermo-optic effect depends on the heating temperature, for example, when Si is used, the refractive index change per 1 K of temperature change is 0.000186, which is a practically possible temperature change of 400K.
  • a temperature change is applied, a large refractive index change of 0.0744 occurs. This change in refractive index corresponds to a large deflection angle of 31 °.
  • FIG. 9D shows a change in the deflection angle ⁇ when a temperature change ⁇ T is applied to the Si layer of the Si photonic crystal slow light deflector.
  • the characteristics of FIG. 9D are as follows.
  • This is an example in which the diameter of the circular hole is 2r 210 ⁇ 5 nm in the double periodic structure in which the diameter of the circular hole is repeated.
  • FIG. 10A, FIG. 10B, and FIG. 10C show structural examples of a heating mechanism for generating a thermo-optic effect in the slow light waveguide.
  • a heating mechanism 201 ⁇ / b> A shown in FIG. 10A forms a heater 203 on the lateral side of the photonic crystal waveguide 202 and heats it by energizing with a power source 205.
  • the heater 203 can be formed, for example, by a TiN heater that can be formed by a SiCMOS process (Non-Patent Document 1).
  • a heating mechanism 201B shown in FIGS. 10B and 10C forms a heater 203 immediately above (or immediately below) a photonic crystal waveguide 202 (Non-patent Document 2).
  • the heater 203 By installing the heater 203 at a position 1 ⁇ m or more away from the waveguide in the SiO 2 cladding (not shown) above the photonic crystal waveguide 202, light absorption can be suppressed sufficiently low. Further, by providing it at a position close to the waveguide, a small heat capacity can be obtained with high heating efficiency, and a faster response than the heating mechanism 201A of FIG. 10A can be obtained.
  • reference numeral 204 denotes a heating region by the heater 203.
  • Non-Patent Document 3 discloses a technique that uses a Si layer that guides light in a Si photonic crystal as a heater.
  • the phase is controlled by heating a delay line that guides light to each antenna cell of the phased array.
  • the middle of the waveguide is bent and a current flows between both ends of the bent portion. Thus, the light absorption of the waveguide is suppressed (Non-Patent Document 3).
  • the heater 203 since the heater 203 itself is generally formed of an opaque material, light is absorbed when placed near the guided light of the photonic crystal waveguide 202. Therefore, the heater 203 is formed so as to be in contact with Si at a position sufficiently away from the center of the photonic crystal waveguide 202, and the heat is made to reach the center through Si having excellent thermal conductivity. In any configuration, since the center of the waveguide is away from the heater, the temperature at the center of the waveguide is lower than that around the heater, and the heating efficiency is low. In addition, since the heating area is increased and the overall heat capacity is increased, a high-speed response is difficult.
  • the heating mechanism 201B shown in FIGS. 10B and 10C since the heater is provided immediately above the center of the waveguide of the photonic crystal waveguide, in the optical deflector that deflects the radiation beam emitted upward, To prevent upward radiation. Therefore, it is necessary to emit light to the back side of the substrate, which restricts the overall configuration of the device.
  • the photonic crystal waveguide is formed by processing the uppermost Si of the SOI substrate composed of the SiO 2 layer and the Si layer on the Si substrate.
  • the heater is formed after the SiO 2 layer is formed on the Si substrate by a chemical vapor deposition method or the like instead of the configuration using the SOI substrate. It is necessary to form a layer structure by a procedure of forming a SiO 2 layer and forming a Si layer.
  • the Si layer serving as the waveguide layer is not a high-quality single crystal layer of the SOI substrate but an amorphous layer. For this reason, in addition to an increase in the loss of the waveguide, there is a problem that it becomes difficult to integrate an optical modulator and a photodetector required for LiDAR.
  • the waveguide is curved so that the distribution of guided light is biased to the periphery of the outer periphery of the waveguide, and current is passed through the inner periphery of the waveguide.
  • the waveguide of the photonic crystal light deflecting device that changes the radiation angle of the light beam radiated linearly is linear, it is difficult to apply a waveguide heater that requires a curved portion.
  • the optical deflection device it is difficult for the optical deflection device to satisfy the heating efficiency, the high-speed response, and the low loss of the waveguide by the conventionally proposed heating mechanism.
  • An object of the present invention is to provide a heating mechanism that improves heating efficiency, reduces the loss of a waveguide, and satisfies a high-speed response in an optical deflection device that changes the refractive index thermally.
  • the present invention relates to a heating mechanism for generating a thermo-optic effect in a slow light waveguide, and the heating mechanism is formed on a semiconductor constituting the slow light waveguide.
  • the voltage is concentrated there, and as a result, conduction is performed.
  • the center of the waveguide can be heated intensively. Heating the center of the waveguide through which light propagates improves heating efficiency and speeds up the heating response.
  • the center of the waveguide is an intrinsic region without doping, absorption of propagating light accompanying carriers can be suppressed, and the waveguide can be reduced in loss.
  • the optical deflection device of the present invention is a photonic crystal waveguide having a lattice arrangement in which low refractive index portions are periodically arranged in the plane of a high refractive index member.
  • the impurity region and the high concentration diffusion layer region sandwiching the intrinsic region on both sides are used.
  • the heating mechanism forms a heating mechanism having a current path by the impurity region and the high concentration diffusion layer region arranged on both sides with the intrinsic region as a center.
  • the high-concentration diffusion layer region is disposed outside the impurity region, includes an electrode on the upper portion, and makes ohmic contact with the electrode.
  • the impurity region and the high concentration diffusion layer region constituting the heating mechanism may be an n type impurity region and an n type high concentration diffusion layer region in addition to the p type impurity region and the p type high concentration diffusion layer region.
  • the heating mechanism for forming the p-type impurity region and the p-type high-concentration diffusion layer region has a pi-p structure, and the heating mechanism for forming the n-type impurity region and the n-type high-concentration diffusion layer region has a nin structure. is there.
  • i represents an intrinsic region.
  • a part of the impurity region may be provided in the intrinsic region.
  • a comb-like impurity region is formed in the intrinsic region.
  • the comb-like impurity region can be provided along the arrangement of the low refractive index portions provided in the intrinsic region. According to the configuration in which the impurity region is provided in the intrinsic region, light absorption can be reduced even with the same electric resistance, and further, the heat generation is concentrated in the central portion of the waveguide by the configuration in which the heating portion is located closer to the waveguide core, Heating efficiency and heating response speed can be increased. Note that no comb-like impurity region is provided in a portion where light propagates and is emitted in the waveguide core.
  • the heating mechanism is, for example, a pi-p structure
  • the impurity region on the side to which the negative electrode is connected is changed to the positive electrode on the positive side.
  • the asymmetrical arrangement is made closer to the center of the intrinsic region than the impurity region on the connected side. This asymmetric arrangement aligns the temperature distribution peak with the waveguide portion in the intrinsic region, thereby further improving heating efficiency and high-speed response.
  • the asymmetric arrangement is reversed with respect to the impurity region of the pi structure.
  • the heating mechanism includes a plurality of heating units divided in the length direction of the waveguide core, and each heating unit can individually control heating. By individually controlling the heating of each heating unit, the heating state in the length direction of the waveguide core can be adjusted, and thereby the radiation angle of the light radiation beam in the length direction of the waveguide core can be adjusted.
  • the heating mechanism of the optical deflection device of the present invention can satisfy the improvement in heating efficiency, the reduction in the loss of the waveguide, and the high-speed response.
  • FIGS. 1A and 1B schematic configuration examples of the optical deflection device and the heating mechanism of the present invention will be described with reference to FIGS. 1A and 1B, and the configuration of the heating mechanism of the present invention will be described with reference to FIG. 4B is used to explain the configuration for adjusting the temperature distribution peak of the heating mechanism of the present invention
  • FIGS. 5 and 6A to 6C are used to explain the configuration and characteristics of the comb-shaped impurity region of the heating mechanism of the present invention.
  • a configuration example and an operation example of the divided heating unit of the heating mechanism of the present invention will be described with reference to FIGS.
  • the optical deflection device 1 includes a photonic crystal waveguide 2 in which low refractive index portions 11 are periodically arranged in the plane of a high refractive index member 10.
  • the photonic crystal waveguide 2 is formed by a lattice array 3 in which low refractive index portions 11 are periodically arranged on a high refractive index member 10 made of a semiconductor such as Si.
  • the low refractive index region 11 can be, for example, a circular hole provided in the high refractive index member 10.
  • the photonic crystal waveguide 2 is provided on a clad 13 made of a semiconductor material such as Si.
  • a waveguide core 12 that propagates light is formed by providing a part where the low refractive index portion 11 is not provided in a part of the lattice array 3.
  • the waveguide core 12 is formed by providing a part where the circular hole is not disposed in a part of the lattice array 3. Incident light incident on the waveguide core 12 is radiated from the waveguide core 12 to the outside while propagating through the waveguide core 12 in the length direction. Note that arrows in FIGS. 1A and 1B schematically indicate incident light and emitted light beams.
  • the optical deflection device 1 includes a heating mechanism A for heating the waveguide core 12.
  • the heating mechanism A includes an intrinsic region 21 and a plurality of semiconductor regions of the impurity region 22 and the high concentration diffusion layer region 23 sandwiching the intrinsic region 21 on both sides in the lattice arrangement 3 constituting the photonic crystal waveguide 2.
  • the high-concentration diffusion layer region 23 includes an electrode 24 on the outer side opposite to the side where the impurity region 22 is bonded, and makes ohmic contact with the electrode 24.
  • a current path is formed from one electrode 24 toward the other electrode 24 through the high concentration diffusion layer region 23, the impurity region 22, the intrinsic region 21, the impurity region 22, and the high concentration diffusion layer region 23. Then, by causing a current to flow, heat is generated with the intrinsic region 21 having a high electrical resistance as the peak region of the temperature distribution, and the waveguide core 12 is heated to change the refractive index.
  • the impurity region 22 and the high-concentration diffusion layer region 23 constituting the heating mechanism A may be a p-type impurity region and a p-type high-concentration diffusion layer region, or an n-type impurity region and an n-type high-concentration diffusion layer region.
  • the heating mechanism for forming the p-type impurity region and the p-type high-concentration diffusion layer region has a pi-p structure, and the heating mechanism for forming the n-type impurity region and the n-type high-concentration diffusion layer region has a nin structure. is there. Note that i represents an intrinsic region.
  • the p-type impurity region 22p is provided at a sufficient distance from the center of the waveguide core 12 in order to avoid light absorption accompanying doping. Since the center of the waveguide core 12 is an intrinsic region without doping (i region), the heating mechanism A has a pi structure or an nin structure having the waveguide core 12 as the intrinsic region 21. Become. Since the intrinsic region 21 has a large electric resistance, the intrinsic region 21 is effectively heated when a voltage is applied between the electrodes 24 to pass a current.
  • the heating mechanism A can be either a pip structure or a ninn structure.
  • the n-type impurity region 22n is larger than the p-type impurity region 22p for the same doping concentration. Has a large light absorption coefficient. Therefore, in the case where the heating mechanism A is configured with the nip structure, the doping concentration of the n-type impurity region 22n is set to the p-type impurity region in order to obtain the same light intensity as that of the pi-p structure. It is necessary to lower the doping concentration of 22p.
  • a pin-type structure in which one side of the intrinsic region 21 is p-type and the opposite side is n-type may be considered.
  • the intrinsic region in the center is compared with the case of supplying a current to the pin structure or the nin structure. Since the carrier density of 21 increases, light absorption increases.
  • the carrier density of the intrinsic region (i region) is 1 ⁇ 10 17 cm ⁇ 3 or less, and hardly contributes to light absorption.
  • the carrier density in the intrinsic region (i region) in the case of the pin structure is 1 ⁇ 10 18 cm ⁇ 3 or more.
  • This carrier density of 1 ⁇ 10 18 cm ⁇ 3 or more corresponds to a large loss of 100 dB / cm or more in the slow light waveguide.
  • This loss is 10 dB or more even when the length of the optical deflection device is set to be as short as 1 mm. Therefore, the heating mechanism of the pin structure is not suitable for the optical deflection device in terms of loss.
  • FIG. 2A shows the pi-p structure of the heating mechanism
  • FIG. 2B shows the electric field strength distribution when a voltage is applied to the heating mechanism.
  • p-Si p-type impurity regions 22p are arranged on both sides of the Si intrinsic region 21, and p + -Si p-type high-concentration diffusion layer regions 23 are formed on the outer sides thereof.
  • the circular hole 11 is provided in a portion excluding the central portion of the p-type impurity region 22p and the intrinsic region 21.
  • the diameter of the circular hole 11 is 220 nm
  • the lateral width of the intrinsic region 21 is Li.
  • a part of capital letters A, B, C, D, a part of H, a part indicated by I, J, K corresponds to a p-type impurity region.
  • Part of the symbol D, part of E, F, G and H correspond to the intrinsic region, and the lower case characters a to j correspond to the doped SiO 2 holes.
  • the electric field intensity at the center of the electric field intensity distribution corresponds to the range of the high electric field intensity indicated by (i) in the index shown on the right side of FIG. 2 (b) corresponds to the range of low electric field strength shown in (ii) among the indicators shown on the right side, where the width Li of the intrinsic region is 4.0 ⁇ m and the doping of the p-type impurity region
  • the acceptor concentration of N A is 1.05 ⁇ 10 18 cm ⁇ 3 .
  • the heating mechanism A has a pi-p structure in which p-type impurity regions are arranged on both sides with respect to the intrinsic region (i region), and has a symmetric structure, but the current flows into the p-type impurity region (p region).
  • the electric field strength toward (p region) becomes larger.
  • the difference in the electric field strength causes the temperature distribution to be biased, and heat generation is greater in the i region ⁇ p region.
  • the maximum value of the temperature distribution does not become the center of the waveguide, and a deviation occurs in the peak of the temperature distribution.
  • FIG. 3 is a diagram for explaining the deviation of the peak of the temperature distribution.
  • 3A shows a configuration in which the impurity region 22 and the high-concentration diffusion layer region 23 are arranged symmetrically with respect to the intrinsic region 21, and
  • FIG. 3B schematically shows the temperature distribution of this symmetrically arranged heating mechanism. Show. Here, the temperature distribution when current is passed from left to right with respect to the heating mechanism A is shown. The peak point P of the temperature distribution is shifted to the negative side from the center point of the intrinsic region 21.
  • the heating mechanism A of the present invention uses a p-type impurity region 22p (impurity region on the right side in the figure) connecting the negative side electrode by Ls.
  • An asymmetrical configuration centered.
  • the asymmetrical arrangement of the impurity regions is not limited to the pip structure, but the temperature distribution can be made symmetric by similarly arranging the nip structure asymmetrically.
  • an asymmetric configuration is adopted in which the n-type impurity region connecting the positive side electrodes is brought to the center of the waveguide.
  • FIG. 3C shows a configuration example in which the impurity region 22 is shifted toward the center of the waveguide
  • FIG. 3D shows a temperature distribution by this configuration.
  • the center of the waveguide becomes the peak of the temperature distribution, and the temperature distribution is symmetric with respect to the waveguide.
  • 4A and 4B show an example of a temperature distribution having a configuration in which impurity regions are asymmetrically arranged.
  • 4A shows a configuration example in which the impurity region on the negative electrode side is shifted to the center side of the waveguide by Ls as in FIG. 3C
  • FIG. 4B shows a shift amount Ls of 0 nm and 300 nm in this configuration.
  • the applied voltage is 30 V
  • the lateral length Li of the intrinsic region is 2.5 ⁇ m.
  • the heating mechanism according to the present invention has an asymmetric structure in which the impurity region on the side to which the negative electrode is connected is closer to the center of the intrinsic region than the impurity region on the side to which the positive electrode is connected. With this asymmetric arrangement, the peak of the temperature distribution is matched with the waveguide portion in the intrinsic region. Thereby, heating efficiency and high-speed response are further improved.
  • the impurity region may be provided in the intrinsic region, and a comb-like impurity region is formed in the intrinsic region.
  • FIG. 5 shows a heating mechanism A having a comb-like impurity region.
  • the comb-shaped portion 6 of the impurity region is provided in the intrinsic region 21.
  • the comb portion 6 is formed along the arrangement of the circular holes 11 in the intrinsic region 21. Note that no comb-like impurity region is provided in a portion where light propagates and is emitted in the waveguide core.
  • the comb-like portion 6 can be formed by performing oblique comb-like doping along a circular hole array arranged in a triangular lattice of photonic crystals.
  • This oblique comb-like shape can reduce the electric resistance if the light absorption is the same, and can suppress the light absorption if the electric resistance is the same. Further, since the heat generating portion can be brought close to the center of the waveguide, the heat generation is concentrated near the center of the waveguide, and the heating efficiency and the heating responsiveness are improved. Further, the comb shape has an effect of reducing current limitation and limiting the doping region to reduce attenuation of light absorption.
  • FIG. 6A is an example of a temperature distribution subjected to finite element analysis.
  • the applied voltage is 15 V
  • the temperature change when the width Wc of the comb-shaped portion is 110 nm, 130 nm, and 150 nm when the gap l c between the comb-shaped portions on both sides is 200 nm and 400 nm in the central portion of the waveguide.
  • ⁇ T [K] is shown.
  • FIG. 6B shows the absorption loss with respect to the comb width Wc.
  • the total loss is about 1 dB, which is a sufficiently acceptable level.
  • the parameter and the acceptor concentration N A of the doping of the width Wc such gaps lc and combs of Figure 6B is similar to Figure 6A.
  • FIG. 6C shows the frequency characteristics of the heating response.
  • the voltage between the p-type impurity regions is 15 V
  • the comb width Wc is 130 nm
  • the gap lc is 400 nm.
  • the 3 dB cutoff frequency of the frequency characteristic of the heating is 110 kHz.
  • the frequency response satisfies a scanning speed of 100 kHz per pixel corresponding to a frame rate of 10 frames per second with 10,000 pixels.
  • the heating mechanism A can be configured to include a plurality of heating units B divided in the length direction of the waveguide core.
  • FIG. 7 shows a configuration in which the heating mechanism A includes a plurality of heating units B divided. Each heating unit B has the same configuration as the heating mechanism A described above. The heating of each heating unit B can be individually controlled.
  • FIG. 7 shows a configuration example in which A1, A2, and A3 having a plurality of heating units B as a unit are subjected to heating control by the temperature control unit 27.
  • the number of heating units B that perform the heating control may be a plurality of units such as three as shown in FIG. 7, or the heating control may be performed in units of one.
  • Each heating unit B can adjust the heating state in the longitudinal direction of the waveguide core by making the heating control individually independent, thereby adjusting the radiation angle of the light radiation beam in the longitudinal direction of the waveguide core. Can be adjusted. Further, by adjusting the radiation angle, it is possible to adjust the width of the target region in the beam scanning, or to correct the non-uniformity of the light beam accompanying the device manufacture.
  • FIG. 8A shows a state where heating by the heating mechanism is not performed
  • FIG. 8B shows a state where uniform heating is performed by each heating unit of the heating mechanism.
  • the light beam is deflected by uniform heating by the heating mechanism.
  • This uniform heating state is the same as the heating state with a single heater.
  • FIG. 8C and 8D show states when the heating state of the heating unit is adjusted and uneven heating is performed.
  • FIG. 8C shows a state in which the temperature of the heating unit located far from the incident light side is increased to increase the refractive index and the radiation angle is increased
  • FIG. 8D illustrates the heating unit located near the incident light side. This shows a state in which the temperature is increased and the refractive index is increased to increase the radiation angle.
  • the beam can be intentionally diffused or converged.
  • This heating mode provides a function of adaptively switching enlargement / reduction of a target range such as observation of a wide target region or observation of a narrow target region in LiDAR.
  • FIG. 8E shows the state of the light radiation beam in the element having non-uniformity when the optical deflection device is manufactured.
  • the light radiation beam emitted from the element having non-uniformity becomes non-uniform in the radiation direction due to diffusion and convergence.
  • FIG. 8F shows radiation from a waveguide core whose temperature is controlled by each heating unit by controlling the heating state of each heating unit in an element having non-uniformity during the fabrication of the optical deflection device.
  • the radiation direction of the emitted light beam is corrected and adjusted to the desired radiation angle to improve the quality of the light beam.
  • the optical deflection device of the present invention can be mounted on automobiles, drones, robots, etc., and can be mounted on a personal computer or smartphone to easily capture the surrounding environment, a 3D scanner, a monitoring system, a spatial matrix light for optical exchange and data center. It can be applied to switches and the like.
  • Si is used as the high refractive index member constituting the photonic crystal waveguide of the optical deflection device, and light in the near infrared wavelength range is used.
  • a visible light material as a refractive index member
  • a projector a laser display, a retina display, a 2D / 3D printer, a POS, a card reading, and the like is expected.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

光偏向デバイス(1)において、スローライト導波路に熱光学効果を発生させる加熱機構をスローライト導波路の半導体上に形成する。光偏向デバイス(1)は、高屈折率部材(10)の面内に低屈折率部位が周期的に配列される格子配列(3)を備えるフォトニック結晶導波路(2)において真性領域、及び真性領域(21)を両側で挟む不純物領域(21)及び高濃度拡散層領域(23)によって、電流路を有した加熱機構を形成する。この加熱機構はスローライトが伝搬する導波路コアを集中的に加熱するので、加熱効率を向上させると共に、加熱応答を高速化し、加熱機構の真性領域(21)を光が伝搬する導波路コアとすることによって、導波路を低損失化する。これにより、屈折率を熱変化させる光偏向デバイス(1)において、加熱効率の向上、導波路の低損失化、高速応答を満たす加熱機構を提供する。

Description

光偏向デバイス
 本発明は、光の進行方向を制御する光偏向デバイスに関する。
 周囲の物体までの距離を2次元画像として取得するレーザ計測を用いたレーザレーダーもしくはライダー装置(LiDAR(Light Detection and Ranging, Laser Imaging Detection and Ranging))の技術分野は、車の自動運転や3次元地図作製等に利用されており、その基盤技術はレーザプリンタやレーザディスプレイ等にも適用可能である。
 この技術分野では、光ビームを物体に当て、物体で反射して戻ってくる反射光を検出し、その時間差や周波数差から距離の情報を取得すると共に、光ビームを2次元的に走査することによって広角の3次元情報を取得する。
 光ビーム走査には光偏向デバイスが必須である。従来は、機器全体の回転、多角形ミラー(ポリゴンミラー)、ガルバノミラーといった機械式ミラー、マイクロマシーン技術(MEMS技術)による小型集積ミラーなど、いずれも機械式の機構が用いられているが、大型、高価、振動する移動体での不安定性などの問題があり、近年、非機械式の光偏向デバイスの研究が盛んとなっている。
 非機械式の光偏向デバイスとして、光の波長やデバイスの屈折率を変えることで光偏向を実現するフェーズド・アレイ型や回折格子型が提案されている。しかしながら、フェーズド・アレイ型の光偏向デバイスはアレイ状に並べられた多数の光放射器の位相調整が非常に難しく、高品質な鋭い光ビームを形成することができないという課題がある。一方、回折格子型の光偏向デバイスは鋭いビームの形成が容易であるが、光偏向角が小さいという課題がある。
 小さな光偏向角の課題に対して、本発明の発明者は、スローライト導波路を回折格子等の回折機構に結合させることによって光偏向角を増大させる技術を提案している(特許文献1)。スローライト光はフォトニック結晶導波路のようなフォトニックナノ構造の中で発生し、低群速度を持ち、波長や導波路の屈折率のわずかな変化により、伝搬定数を大きく変化させるという特徴を持つ。このスローライト導波路の内部、もしくは直近に回折機構を設置すると、スローライト導波路が回折機構に結合して漏れ導波路となり、自由空間に光を放射する。このとき伝搬定数の大きな変化は放射光の偏向角に反映し、結果として大きな偏向角が実現される。
 図9Aは、低群速度をもつ光(スローライト)を伝搬するフォトニック結晶導波路に回折機構を導入したデバイス構造、及び放射光ビームの概要を示している。光偏向デバイス101は、フォトニック結晶の面内に導波路に沿って2種類の異なる直径の円孔を繰り返してなる二重周期構造を有するフォトニック結晶導波路102を備える。二重周期構造は回折機構を構成し、スローライト伝搬光を放射条件に変換して空間に放射する。
 光偏向デバイス101は、SiO等の低屈折率材料からなるクラッド113上の高屈折率部材110に低屈折率部位111が配列された格子配列103によってフォトニック結晶導波路102が形成される。低屈折率部位111の格子配列103は、例えば、大径の円孔を繰り返す周期構造と、小径の円孔を繰り返す周期構造の二重周期構造である。フォトニック結晶導波路102の格子配列103において、円孔111が設けられない部分は入射光を伝搬する導波路コア112を構成する。
 図9B,図9Cは放射光ビームのビーム強度分布を説明するための図であり、図9Bは縦方向のビーム強度分布を示し、図9Cは横方向のビーム強度角度分布を示している。
 図9Bにおいて、放射光ビームは導波路コアに沿って徐々に漏れ出すことで縦方向のビーム強度分布は揃った鋭いビームとなる。図9Cにおいて、横方向のビーム強度角度分布は広い角度分布を有する。
 フォトニック結晶導波路を用いた光偏向デバイスによって形成された光ビームは、光偏向デバイスへの入射光の波長、または導波路の屈折率もしくは導波モードの等価的な屈折率の変化によって縦方向の放射角度が変化する。したがって、光偏向デバイスは、入射光の波長、または導波路の屈折率もしくは導波モードの等価的な屈折率を高速かつ連続的に変化させることで放射角度を変化させ、これによって放射光ビームを走査させることができる。
 光偏向デバイスは、放射光ビームを走査する機能を備えることによって初めて光偏向器として機能する。
 実用的な光偏向デバイスでは、入射光の波長を変える場合に、レーザ光源に求められる波長スペクトルとして以下の要件が挙げられる。
 (a) 波長線幅は、例えば1MHz 以下の狭幅である。
 (b) 波長の振り幅は、例えば30nm 以上の広範囲である。
 (c) 波長は連続的に走査可能である。
 (e) 出力は、例えば100mWに近い高出力である。
 (f) 小型である。
 しかしながら、現状ではこのような条件を満たすレーザ光源は存在しない。現在得られる実用的な半導体レーザとしては、要件(c)について、波長の連続走査はできないが、ミリ秒~秒の時間をかけて波長を特定の値に設定することができ、その他の要件を満たすものが知られている。
 したがって、現状においては、実現可能な光偏向デバイスとしては、前記した半導体レーザを光源として、特定の波長を用いて導波路の屈折率を逐次的に変えることによって光ビームを走査する構成が想定される。
 このような光偏向デバイスをライダー装置(LiDAR)に適用する場合、ライダー装置の典型的な仕様として、例えば、距離画像を得る2次元の画素数を320×32≒1万点とし、画像のフレームレートを10フレーム毎秒とすると、全体で10万点/秒のデータ量を走査する必要がある。このデータ量は100kHzの走査速度に相当する。光偏向デバイスによって光ビームを走査して画像データを取得するには、放射光ビームを走査するために変化させる屈折率の変化速度はこの走査速度に対応できる高速である必要がある。
 光偏向デバイスにおいて、導波路の屈折率もしくは導波モードの等価的な屈折率を変える手段として、現状では、マイクロマシーン等の微小機械、非線形効果(光カー効果)、キャリアプラズマ効果、熱光学効果等が検討対象となり得る。
 これらの手段のうち、マイクロマシーン等の微小機械を用いた光偏向デバイスは、前記した光偏向ミラーとしてのマイクロマシーンと同様に高速動作が難しく、上記した走査速度を得るのは困難である。また、不安定で低信頼性という問題もある。
 非線形効果(光カー効果)を用いた光偏向デバイスは、例えば、導波路材料としてシリコン(Si)を使ったフォトニック結晶導波路では10W級の高い光パワーが必要である。しかしながら、100mW以上の光パワーを連続的に導入すると、非線形吸収(二光子吸収)が発生して光が減衰するだけでなく、導波路が損傷を受けるという問題がある。
 キャリアプラズマ効果は、Siなどの半導体にp-n接合ダイオードを形成し、そこに順方向または逆方向のバイアスを掛けて導波路中のキャリアの量を変えると、半導体の屈折率が変わる効果である。キャリアプラズマ効果を用いた光偏向デバイスでは、10GHz以上の高速な応答が得られるが、屈折率の変化量は10-3以下と小さく、十分な走査範囲を得ることが難しい。また、光吸収が同時に発生し、光偏向デバイスで想定される1mm以上の長さの光偏向デバイスにスローライトを伝搬させる場合の吸収損失は10dB以上と大きくなるため、光偏向デバイスとしての利用は難しい。
 熱光学効果は、材料を加熱することで屈折率変化が起こる効果である。熱光学効果を用いた光偏向デバイスは、加熱温度にも依るが、例えばSiを使ったときには温度変化1K当たりの屈折率変化は0.000186となり、仮に現実的に可能な温度変化である400Kの温度変化を与えると0.0744という大きな屈折率変化が生じる。この屈折率変化は31°という大きな偏向角に相当する。図9Dは、Siのフォトニック結晶スローライト偏向器のSi層に温度変化ΔTを与えたときの偏向角θの変化を示している。なお、図9Dの特性は、Siフォトニック結晶スラブの屈折率を3.5、厚さを210nm、上下クラッドの屈折率を1.45、フォトニック結晶の格子定数a=400nmとし、フォトニック結晶の円孔の径の大小を繰り返す二重周期構造において、円孔の直径を2r=210±5nmとした例である。
 図10A,図10B,図10Cは、スローライト導波路に熱光学効果を発生させるための加熱機構な構造例を示している。図10Aに示す加熱機構201Aは、フォトニック結晶導波路202の横方向の側部にヒータ203を形成し、電源205により通電することで加熱を行う。ヒータ203は、例えばSiCMOSプロセスで形成可能なTiNヒータで形成することができる(非特許文献1)。
 図10B,図10Cに示す加熱機構201Bは、フォトニック結晶導波路202の直上(または直下)にヒータ203を形成するものである(非特許文献2)。フォトニック結晶導波路202の上部のSiOクラッド(図示していない)内において、導波路から1μm以上離れた位置にヒータ203を設置することで、光吸収は十分に低く抑えられる。また、導波路から至近位置に設けることによって、高い加熱効率で小さな熱容量とすることができ、図10Aの加熱機構201Aよりも高速な応答が得られる。なお、図10A,図10Bにおいて、符号204はヒータ203による加熱領域を示している。
 また、Siフォトニック結晶において、光を導波させるSi層をヒータとして利用する技術が非特許文献3に開示されている。この加熱技術は、フェーズド・アレイの各アンテナセルに光を導波する遅延線を加熱することによって位相を制御するものであり、導波路の途中を湾曲させ、湾曲部分の両端間に電流を流すことによって導波路の光の吸収を抑える構成としている(非特許文献3)。
特願2016-10844
Applied Physics Letters," Photonic crystal tunable slow light device integrated with multi-heaters" Norihiro Ishikura, Ryo Hosoi, Ryo Hayakawa, Takemasa Tamanuki, Mizuki Shinkawa, Toshihiko Baba 100,221110(2012) 221110-1~221110-3 published online 31 May 2012 (Fig1.参照) Frontiers In Physics Volume2 Article61 p1~p9 "Theoretical and experimental investigation of low-volgage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction" Yosuke Terada, Hiroyuki Ito, Hong C. Nguyen and Toshihiko Baba November 2014(Fig2., Fig7.参照) Nature LETTER "Large-scale nanophotonic phased array" Jie Sun, Erman Timurdogan, Ami Yaacobi, Ehsan Shah Hosseini Michael R. Watts vol493 p195-199, 10 JANUARY 2013 (Fig4a.参照)
 図10Aに示した加熱機構201Aは、ヒータ203自体は一般に不透明な材料で形成されるため、フォトニック結晶導波路202の導波光に近い場所に設置した場合には光が吸収される。そこで、フォトニック結晶導波路202の中央から十分に離れた位置のSiに接するようにヒータ203を形成し、熱伝導性に優れたSiを通して熱を中央に到達させる構成とする。何れの構成においても、導波路中央はヒータから離れているため、ヒータ周辺に比べると導波路中央の温度は低く、加熱効率が低い。また、加熱面積が増え、全体の熱容量が大きくなるため、高速な応答が難しい。
 図10B,図10Cに示した加熱機構201Bは、フォトニック結晶導波路の導波路中央の直上にヒータが設けられるため、上方に放射する放射光ビームを偏向させる光偏向器において、直上ヒータは光の上方放射を妨げる。したがって、光を基板裏面側に放射させる必要があり、デバイスの全体構成を制約する。
 これを避けるため、ヒータを導波路の直下のSiOクラッド層の中に形成する構成が検討される。
 しかしながら、従来、フォトニック結晶導波路はSi基板上のSiO層とSi層で構成されるSOI基板の最上層のSiを加工することで形成されている。ヒータをSi層直下のSiO層の中に形成するためには、SOI基板による構成に代えて、Si基板上に化学気相堆積法などによってSiO層を形成した後にヒータを形成し、さらにSiO層を形成し、Si層を形成するといった手順で層構造を構成する必要がある。
 この層構造において、導波路層となるSi層はSOI基板の高品質な単結晶層ではなくアモルファス層となる。そのため、導波路の損失増加に加え、LiDARで必要となる光変調器や光検出器の集積化が困難になるという問題がある。
 上記の非特許文献3においてSi層をヒータとして利用する技術は、導波路を湾曲させることで導波光の分布を導波路の外周部周辺に偏らせ、導波路の内周部に電流を通電する機構を設置することで、光吸収を抑制している。一方、直線状に放射する光ビームの放射角度を変えるフォトニック結晶光偏向デバイスの導波路は直線状であるため、湾曲部を要する導波路のヒータを適用することは困難である。
 したがって、光偏向デバイスにおいて、従来提案されている加熱機構では、加熱効率、高速応答、及び導波路の低損失を満足することは困難である。
 本発明は、屈折率を熱変化させる光偏向デバイスにおいて、加熱効率の向上、導波路の低損失化、高速応答を満たす加熱機構を提供することを目的とする。
 本発明はスローライト導波路に熱光学効果を発生させるための加熱機構に関し、スローライト導波路を構成する半導体上に加熱機構を形成する。
 フォトニック結晶導波路の材料となるシリコンにドーピングを行って通電を可能にし、導波路中央付近のみをドーピングしない真性領域とすることによって、そこに電圧が集中的にかかるようにし、結果的に導波路中央を集中的に加熱できるようにする。光が伝搬する導波路中央が加熱されることは加熱効率を向上させると共に、加熱応答を高速化することができる。また、導波路中央はドーピングがない真性領域なので、キャリアに伴う伝搬光の吸収を抑制して、導波路を低損失化することができる。
 本発明の光偏向デバイスは、高屈折率部材の面内に低屈折率部位が周期的に配列される格子配列を備えるフォトニック結晶導波路において、格子配列が形成される領域を、真性領域、及び真性領域を両側で挟む不純物領域及び高濃度拡散層領域とする。加熱機構は、この真性領域を中心として両側に配置した不純物領域及び高濃度拡散層領域によって、電流路を有した加熱機構を形成する。この加熱機構において、高濃度拡散層領域は不純物領域の外側に配置され、上部に電極を備え、電極との間でオーミック接触を行う。
 電源から電極及び高濃度拡散層領域を介して、不純物領域-真性領域-不純物領域に電流を流すことによって、電気抵抗の高い真性領域に発熱を生じさせ、加熱を行う。また、真性領域は導波路コアにあたるため、真性領域を加熱することによって、導波路の屈折率もしくは導波モードの等価的な屈折率を変えることができる。
 加熱機構を構成する不純物領域及び高濃度拡散層領域は、p型不純物領域及びp型高濃度拡散層領域とする他、n型不純物領域及びn型高濃度拡散層領域としてもよい。p型不純物領域及びp型高濃度拡散層領域とする加熱機構はp-i-p構造であり、n型不純物領域及びn型高濃度拡散層領域とする加熱機構はn-i-n構造である。なお、ここでiは真性領域を表している。
 (櫛状の不純物領域)
 加熱機構において、不純物領域の一部を真性領域に設ける構成とすることもでき、この構成では真性領域内に櫛状の不純物領域を形成する。櫛状の不純物領域は真性領域に設けられた低屈折率部位の配列に沿って設けることができる。真性領域に不純物領域を設ける構成によれば、同じ電気抵抗でも光吸収を下げることができ、さらに加熱部分を導波路コアにより近い位置に設ける構成によって、発熱を導波路の中央部分に集中させ、加熱効率及び加熱の応答速度を高めることができる。なお、導波路コアにおいて光が伝搬し、光放射する部分には櫛状の不純物領域を設けない。
 (不純物領域の非対称配置)
 加熱機構が、例えばp-i-p構造であるときは、電流の方向がp型不純物領域から真性領域に向かう場合と真性領域からp型不純物領域に向かう場合とでは電界強度に違いがあり、この電界強度の違いによって温度分布に偏りが生じ、温度分布のピークにずれが生じる。n-i-n構造の加熱機構についても同様の温度分布となる。
 本発明の加熱機構は、この温度分布のピークずれを解消するために、p-i-p構造の不純物領域においては、負側の電極が接続される側の不純物領域を、正側の電極が接続される側の不純物領域よりも真性領域の中心に近接させた非対称な配置とする。この非対称配置によって、真性領域中の導波路部分に温度分布のピークを合わせ、これによって、加熱効率性及び高速応答性がより高まる。n-i-n構造の不純物領域においては、p-i-p構造の不純物領域に対して、非対称な配置が逆になる。
 (加熱領域の分割構成)
 加熱機構は、導波路コアの長さ方向に向かって分割された複数個の加熱ユニットを備え、この各加熱ユニットは加熱制御を個別に自在とする。各加熱ユニットの加熱を個別に制御することによって導波路コアの長さ方向の加熱状態を調整し、これによって導波路コアの長さ方向の光放射ビームの放射角度を調整することができる。
 放射角度の調整によって、ビーム走査における対象領域の広さを調整したり、デバイスの製造に伴う光ビームの不均一さを補正したりすることができる。
 以上説明したように、本発明の光偏向デバイスの加熱機構は、加熱効率の向上、導波路の低損失化、高速応答を満たすことができる。
本発明の光偏向デバイスの概略構成を説明するための図である。 本発明の光偏向デバイスの概略構成を説明するための図である。 本発明の加熱機構の構成、及び二つの電極間に電圧を掛けたときの電界の分布を説明するための図である。 温度分布のピークのずれを説明するための図である。 本発明の不純物領域を非対称配置した構成を示す図である。 本発明の不純物領域を非対称配置した構成の温度分布の一例を示す図である。 本発明の櫛状の不純物領域を備える加熱機構Aを説明するための図である。 本発明の加熱機構の櫛状の不純物領域の構成による特性を説明するための図であり、有限要素解析された温度分布の一例を示す図である。 櫛の幅に対する吸収損失を示す図である。 加熱の応答の周波数特性を示す図である。 本発明の分割された複数個の加熱ユニットBを備える加熱機構の構成を説明するための図である。 各加熱ユニットの加熱の態様例を説明するための図であり、加熱機構による加熱を行わない状態を示した図である。 加熱機構の各加熱ユニットによって均一加熱した状態を示した図である。 入射光側から遠い位置にある加熱ユニットの温度を高めて屈折率を大きくして、放射角度を大きくする状態を示した図である。 入射光側に近い位置にある加熱ユニットの温度を高めて屈折率を大きくして、放射角度を大きくする状態を示した図である。 光偏向デバイスの製作時の不均一性を有した素子における光放射ビームの状態を示した図である。 各加熱ユニットで温度制御された導波路コアから放射される光放射ビームの放射方向を補正した状態を示した図である。 スローライト導波路に回折機構を導入したデバイス構造、及び放射光ビームの概要を示すための図である。 縦方向のビーム強度分布を示した図である。 横方向のビーム強度分布を示した図である。 Siのフォトニック結晶スローライト偏向器のSi層に温度変化を与えたときの偏向角の変化を示した図である。 スローライト導波路に熱光学効果を発生させるための加熱機構な構造例を示すための図である。 フォトニック結晶導波路の直上にヒータを形成した例を示す図である。 フォトニック結晶導波路の直下にヒータを形成した例を示す図である。
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。以下、図1A,図1Bを用いて本発明の光偏向デバイス及び加熱機構の概略構成例を説明し、図2を用いて本発明の加熱機構の構成を説明し、図3,図4A,図4Bを用いて本発明の加熱機構の温度分布ピークを調整する構成を説明し、図5,図6A~図6Cを用いて本発明の加熱機構の櫛状の不純物領域の構成及び特性を説明し、図7,図8A~図8Fを用いて本発明の加熱機構の分割加熱ユニットの構成例及び動作例について説明する。
(光偏向デバイスの概要)
 図1A,図1Bは本発明の光偏向デバイス及び加熱機構の概略を説明するための図である。図1Aにおいて、光偏向デバイス1は高屈折率部材10の面内に低屈折率部位11が周期的に格子配列されたフォトニック結晶導波路2を備える。
 フォトニック結晶導波路2は、Si等の半導体からなる高屈折率部材10に低屈折率部位11を周期的に配した格子配列3により形成される。低屈折率部位11は、例えば、高屈折率部材10に設けた円孔とすることができる。フォトニック結晶導波路2はSi等の半導体材からなるクラッド13上に設けられる。
 フォトニック結晶導波路2には、格子配列3の一部に低屈折率部位11を設けない部分を設けることによって光を伝搬する導波路コア12が形成される。低屈折率部位11を円孔とする構成では、格子配列3の一部に円孔を配置しない部分を設けることによって導波路コア12が形成される。導波路コア12に入射された入射光は、導波路コア12を長さ方向に伝搬しながら、導波路コア12から外部に放射される。なお、図1A,図1B中の矢印は入射光及び放射光ビームを模式的に示している。
(加熱機構の概要)
 光偏向デバイス1は、導波路コア12を加熱するための加熱機構Aを備える。図1Bにおいて、加熱機構Aは、フォトニック結晶導波路2を構成する格子配列3において、真性領域21、及び真性領域21を両側で挟む不純物領域22及び高濃度拡散層領域23の複数の半導体領域により構成される。高濃度拡散層領域23は、不純物領域22と接合する側と反対側にある外側の側部に電極24を備え、電極24との間でオーミック接触を行う。加熱機構Aは、一方の電極24から、高濃度拡散層領域23,不純物領域22、真性領域21,不純物領域22,高濃度拡散層領域23を介して他方の電極24に向かう電流路が形成され、電流を流すことによって電気抵抗の高い真性領域21を温度分布のピーク域とする発熱を行い、導波路コア12を加熱して屈折率を変化させる。
 加熱機構Aを構成する不純物領域22及び高濃度拡散層領域23は、p型不純物領域及びp型高濃度拡散層領域とする他、n型不純物領域及びn型高濃度拡散層領域としてもよい。p型不純物領域及びp型高濃度拡散層領域とする加熱機構はp-i-p構造であり、n型不純物領域及びn型高濃度拡散層領域とする加熱機構はn-i-n構造である。なお、iは真性領域を表している。
 p 型不純物領域22pは、ドーピングに伴う光吸収を避けるために導波路コア12の中央から十分な距離だけ離して設けられる。導波路コア12の中央はドーピングがない真性領域(i 領域)であるため、加熱機構Aは、導波路コア12を真性領域21とするp-i-p構造、あるいはn-i-n構造となる。真性領域21は電気抵抗が大きいため、両電極24間に電圧を印加して電流を流すと、真性領域21が効果的に加熱される。
 加熱機構Aはp-i-p構造あるいはn-i-n構造の何れの構造とすることができるが、Siフォトニクスでは、同じドーピング濃度に対してn 型不純物領域22nはp型不純物領域22pよりも光吸収係数が大きい。そのため、加熱機構Aをn-i-n構造で構成する場合には、p-i-p構造と同程度の光強度を得るためには、n型不純物領域22nのドーピング濃度をp型不純物領域22pのドーピング濃度よりも下げる必要がある。
 上記した、p-i-p構造やn-i-n構造の他に、真性領域21の片側をp型とし、反対側をn型とするp-i-n型構造とすることも考えられるが、このp-i-n型構造に順バイアスを掛けて電流を流す場合には、p-i-p構造やn-i-n構造に電流を流す場合と比較して、中央の真性領域21のキャリア密度が高くなるため、光吸収が大きくなる。例えば、p-i-p構造やn-i-n構造では、真性領域(i 領域)のキャリア密度は1×1017cm-3以下であり、光吸収にはほとんど寄与しない。一方、p-i-n構造の場合の真性領域(i 領域)のキャリア密度は1×1018cm-3以上になる。この1×1018cm-3以上のキャリア密度は、スローライト導波路では100dB/cm以上の大きな損失に相当する。この損失は、仮に光偏向デバイスの長さを1mmと短めに設定した場合においても10dB以上となる。したがって、p-i-n構造の加熱機構は損失の点で光偏向デバイスには不適である。
 図2(a)は加熱機構のp-i-p構造を示し、図2(b)はこの加熱機構に電圧を印加したときの電界強度分布を示している。図2(a)示す加熱機構Aは、Siの真性領域21の両側にp-Siのp型不純物領域22pが配され、さらにその外側にp-Siのp型高濃度拡散層領域23が配された構成であり、p型不純物領域22p、及び真性領域21の中心部を除く部分に円孔11が設けられている。図2(a)では、円孔11の直径を220nmとし、真性領域21の横方向の幅をLiとしている。
 格子配列3において、円孔11の内部を絶縁体SiOで埋めることによって低屈折率部位が構成される場合には、円孔11の内部は電界が高く、円孔11と円孔11との間も電流経路が狭くなるため、電界が高くなる。
 図2(b)に示す電界強度分布において、大文字の符号A,B,C,Dの一部,Hの一部,I,J,Kで示す部分はp型不純物領域に対応し、大文字の符号Dの一部,E,F,G,及びHの一部は真性領域に対応し、小文字の符号a~jはドーピングされたSiOの円孔に対応している。
 電界強度分布の中央部の電界強度は、図2(b)の右側に示した指標の内で(i)で示す高電界強度の範囲に対応し、電界強度分布の両側部の電界強度は図2(b)の右側に示した指標の内で(ii)で示す低電界強度の範囲に対応している、ここで、真性領域の幅Liは4.0μmであり、p型不純物領域のドーピングのアクセプタ濃度はNA=1.05×1018cm-3である。
 (不純物領域の非対称配置)
 加熱機構Aは、真性領域(i領域)に対して両側にp型不純物領域が配されたp-i-p構造 であって対称な構造であるが、電流がp型不純物領域(p 領域)から真性領域(i 領域)に向かう場合と、真性領域(i 領域)からp型不純物領域(p 領域)に向かう場合とでは電界強度に差異があり、真性領域(i 領域)からp型不純物領域(p 領域)に向かう電界強度の方が大きくなる。
 この電界強度の違いによって温度分布に偏りが生じ、熱の発生がi領域→p領域の方でより大きくなる。その結果、温度分布の最大値が導波路中心にならず、温度分布のピークにずれが生じる。
 図3は温度分布のピークのずれを説明するための図である。図3(a)は真性領域21に対して不純物領域22及び高濃度拡散層領域23を対称に配した構成を示し、図3(b)はこの対称配置した加熱機構の温度分布を模式的に示している。なお、ここでは、加熱機構Aに対して左方から右方に向かって電流を流したときの温度分布を示している。温度分布のピーク点Pは真性領域21の中心点から負側にずれる。
 非対称な温度分布は、光ビームの形成においても左右での非対称性が生じ、高品質なビームが形成できないことが予想される。導波路の中心に対して温度分布を左右対称にするために、本発明の加熱機構Aは、負側の電極をつなぐp型不純物領域22p(図では右側の不純物領域)をLsだけ導波路の中央に寄せた非対称な構成とする。この不純物領域の非対称配置は、p-i-p構造に限らずn-i-n構造についても同様に非対称配置することで温度分布を対称とすることができる。ただしn-i-n構造の場合は、正側の電極をつなぐn型不純物領域を導波路の中央に寄せた非対称な構成とする。
 図3(c)は不純物領域22を導波路の中心側にずらした構成例を示し、図3(d)はこの構成による温度分布を示している。導波路中央が温度分布のピークとなり、導波路に対して左右対称の温度分布となる。
 図4A,図4Bは不純物領域を非対称配置した構成の温度分布の一例を示している。図4Aは図3(c)と同様に負電極側の不純物領域をLsだけ導波路の中央側に位置をずらした構成例を示し、図4Bはこの構成において、ずれ量Lsを0nm,300nmとしたときの温度分布を示している、なお、ここでは、印加する電圧を30Vとし、真性領域の横方向の長さLiを2.5μmとしている。
 図4Bの温度分布によれば、左右が完全に対称な状況(Ls=0nm)では温度分布のピークは電界強度が強くなる右側にずれている。ずれ量Lsを300nmとした場合には、導波路中央が温度分布のピークとなり、導波路に対して左右対称の温度分布が得られる。
 したがって、本発明の加熱機構は、不純物領域において、負側の電極が接続される側の不純物領域を、正側の電極が接続される側の不純物領域よりも真性領域の中心に近接させた非対称な配置とし、この非対称配置によって、真性領域中の導波路部分に温度分布のピークを合わせる。これによって、加熱効率性及び高速応答性がより高まる。
 (櫛状の不純物領域)
 加熱機構において、不純物領域は真性領域に設ける構成とすることもでき、真性領域内に櫛状の不純物領域を形成する。
 図5は櫛状の不純物領域を備える加熱機構Aを示している。加熱機構Aにおいて、不純物領域の櫛状部位6を真性領域21内に設ける。櫛状部位6は、真性領域21中の円孔11の配列に沿って形成する。なお、導波路コアにおいて光が伝搬し、光放射する部分には櫛状の不純物領域を設けない。
 櫛状部位6は、フォトニック結晶の三角格子状に並べられた円孔列に沿って斜め櫛状のドーピングを行うことで形成することができる。この斜めの櫛状の形状は、同じ光吸収であれば電気抵抗を下げることができ、同じ電気抵抗であれば光吸収を抑制することができる。さらに、発熱部分を導波路の中央付近に接近させることができるため、発熱が導波路中央付近に集中し、加熱効率及び加熱の応答性が高まる。また、櫛状の形状は、電流の制限を小さくし、ドーピングの領域を限定して光吸収の減衰を減らす効果を奏する。
 図6Aは有限要素解析された温度分布の一例である。ここで、印加電圧は15Vとし、導波路の中央部分において両側の櫛状部分間のギャップlcが200nmと400nmの場合について、櫛状部分の幅Wcを110nm,130nm,150nmとした時の温度変化ΔT[K]を示している。なお、pドーピングのアクセプタ濃度はNA=1.50×1018cm-3である、
 ギャップlcが200nmの場合には現実的に可能な温度変化である400Kの温度変化を得ることができ、ギャップlcが400nmの場合においても約400Kに近い温度変化を得ることができる。
 図6Bは、櫛の幅Wcに対する吸収損失を示している。導波路中央のΔTが400Kに達した際に、櫛状部分の幅Wc=130nm、ギャップlc=400nm、のときの損失は3.5dB/cm(=0.35dB/mm)である。光偏向デバイス1の長さを高品質な縦方向ビームが形成される3mmと仮定すると全損失は約1dBとなり、十分に許容レベルとなる。なお、図6Bのギャップlcや櫛の幅Wc等のパラメータ及びドーピングのアクセプタ濃度NAは図6Aと同様である。
 図6Cは、加熱の応答の周波数特性を示している。なお、p型不純物領域間の電圧は15V、櫛の幅Wcは130nm、ギャップlcは400nmである。この加熱の周波数特性の3dB遮断周波数は110kHzであり、例えば、画素数が1万点で10フレーム毎秒のフレームレートに対応する一画素当たりの走査速度100kHzを満たす周波数応答となる。
 (加熱領域の分割構成)
 加熱機構Aは、導波路コアの長さ方向に向かって分割された複数個の加熱ユニットBを備える構成とすることができる。
 図7は、加熱機構Aが分割された複数個の加熱ユニットBを備える構成を示している。各加熱ユニットBは前記した加熱機構Aと同様の構成である。各加熱ユニットBの加熱は、それぞれ個別に制御することができる。図7では、複数個の加熱ユニットBを単位とするA1,A2,A3を温度制御部27によって加熱制御を行う構成例を示している。加熱制御を行う加熱ユニットBの個数は、図7に示すような3個等の複数個とする他、1個を単位として加熱制御を行っても良い。
 各加熱ユニットBは加熱制御を個別に自在とすることによって、導波路コアの長さ方向の加熱状態を調整することができ、これによって導波路コアの長さ方向の光放射ビームの放射角度を調整することができる。また、放射角度の調整によって、ビーム走査における対象領域の広さを調整したり、デバイスの製造に伴う光ビームの不均一さを補正することができる。
 各加熱ユニットの加熱の態様例を図8A~図8Fを用いて説明する。図8Aは加熱機構による加熱を行わない状態を示し、図8Bは加熱機構の各加熱ユニットによって均一加熱した状態を示している。加熱機構によって均一加熱することで光ビームが偏向される。この均一加熱の状態は、単一のヒータによる加熱状態と同様である。
 図8C,図8Dは加熱ユニットの加熱状態を調整して不均一加熱を行ったときの状態を示している。図8Cは、入射光側から遠い位置にある加熱ユニットの温度を高めて屈折率を大きくして、放射角度を大きくする状態を示し、図8Dは、入射光側に近い位置にある加熱ユニットの温度を高めて屈折率を大きくして、放射角度を大きくする状態を示している。この制御状態によって、ビームを意図的に拡散させたり、収束させたりすることができる。この加熱の態様は、LiDARにおいて、広い対象領域の観察、あるいは狭い対象領域の観察といった対象範囲の拡大縮小をアダプティブに切り替える機能を付与する。
 図8Eは、光偏向デバイスの製作時の不均一性を有した素子における光放射ビームの状態を示している。不均一性を有した素子から放射された光放射ビームは拡散や収束によって放射方向が不均一となる。これに対して、図8Fは、光偏向デバイスの製作時の不均一性を有した素子において、各加熱ユニットの加熱状態を制御することによって、各加熱ユニットで温度制御された導波路コアから放射される光放射ビームの放射方向は補正されて所望の放射角度に調整され、光放射ビームの品質を向上する。
 なお、本発明は前記各実施の形態に限定されるものではない。本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
 本発明の光偏向デバイスは、自動車,ドローン,ロボットなどに搭載することができ、パソコンやスマートフォンに搭載して周囲環境を手軽に取り込む3Dスキャナ、監視システム、光交換やデータセンター用の空間マトリックス光スイッチなどに適用することができる。
 上記した実施例では、光偏向デバイスのフォトニック結晶導波路を構成する高屈折率部材としてSiを想定して近赤外光の波長域の光を用いているが、光偏向デバイスを構成する高屈折率部材として可視光材料へ適用することにより、さらにプロジェクタやレーザディスプレイ、網膜ディスプレイ、2D/3Dプリンタ、POSやカード読み取り等への適用が期待される。
 この出願は、2017年4月6日に出願された日本出願特願2017-076112を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  光偏向デバイス
 2  フォトニック結晶導波路
 3  格子配列
 6  櫛状部位
 10  高屈折率部材
 11  円孔(低屈折率部位)
 12  導波路コア
 13  クラッド
 21  真性領域
 22  不純物領域
 22n    n型不純物領域
 22p    p型不純物領域
 23  高濃度拡散層領域
 23n  n型高濃度拡散層領域
 23p  p高濃度拡散層領域
 24  電極
 27  温度制御部
 101  光偏向デバイス
 102  フォトニック結晶導波路
 103  格子配列
 110  高屈折率部材
 111  円孔(低屈折率部位)
 112  導波路コア
 113  クラッド
 201A  加熱機構
 201B  加熱機構
 202  フォトニック結晶導波路
 203  ヒータ
 204  加熱領域
 205  電源
 A  加熱機構
 B  加熱ユニット

Claims (8)

  1.  高屈折率部材の面内に低屈折率部位が周期的に配列される格子配列を備えるフォトニック結晶導波路において、
     前記格子配列は、
     真性領域、及び前記真性領域を両側で挟む不純物領域及び高濃度拡散層領域を備え、加熱機構を構成する、光偏向デバイス。
  2.  前記不純物領域はp型不純物領域であり、
     前記高濃度拡散層領域はp型高濃度拡散層領域であり、
     前記加熱機構は、p-i-p構造を構成する、請求項1に記載の光偏向デバイス。
  3.  前記不純物領域はn型不純物領域であり、
     前記高濃度拡散層領域はn型高濃度拡散層領域であり、
     前記加熱機構は、n-i-n構造を構成する、請求項1に記載の光偏向デバイス。
  4.  前記加熱機構において、
     前記真性領域は櫛状の不純物領域を備える、請求項1から3の何れか一つに記載の光偏向デバイス。
  5.  前記櫛状の不純物領域は、前記真性領域に設けられた前記低屈折率部位の配列に沿って設けられる、請求項4に記載の光偏向デバイス。
  6.  前記不純物領域において、
     負側の電極が接続される側の不純物領域は、正側の電極が接続される側の不純物領域よりも前記真性領域の中心に近接した非対称配置である、請求項1から5の何れか一つに記載の光偏向デバイス。
  7.  前記高濃度拡散層領域は、前記不純物領域と接合する側と反対側に電極を備える、請求項1から3の何れか一つに記載の光偏向デバイス。
  8.  前記加熱機構は前記導波路コアの長さ方向に向かって分割された複数個の加熱ユニットを備え、当該加熱ユニットの加熱制御は個別に自在である、請求項1から7の何れか一つに記載の光偏向デバイス。
PCT/JP2018/014586 2017-04-06 2018-04-05 光偏向デバイス WO2018186471A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511306A JP7134441B2 (ja) 2017-04-06 2018-04-05 光偏向デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076112 2017-04-06
JP2017-076112 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186471A1 true WO2018186471A1 (ja) 2018-10-11

Family

ID=63712622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014586 WO2018186471A1 (ja) 2017-04-06 2018-04-05 光偏向デバイス

Country Status (2)

Country Link
JP (1) JP7134441B2 (ja)
WO (1) WO2018186471A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444903A (zh) * 2018-10-18 2019-03-08 华北水利水电大学 一种光学相控阵激光雷达装置
WO2020084869A1 (ja) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 光デバイスおよび光検出システム
CN112882330A (zh) * 2019-11-29 2021-06-01 精工爱普生株式会社 发光装置和投影仪
JPWO2022019143A1 (ja) * 2020-07-20 2022-01-27
DE112021006089T5 (de) 2021-02-01 2023-09-28 Ngk Insulators, Ltd. Optisches Abtastelement
DE112022002553T5 (de) 2021-07-14 2024-04-11 Ngk Insulators, Ltd. Wellenleitervorrichtung, optische abtastvorrichtung und optische modulationsvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084213A1 (en) * 2003-10-15 2005-04-21 Hamann Hendrik F. Method and apparatus for thermo-optic modulation of optical signals
WO2010035568A1 (ja) * 2008-09-25 2010-04-01 日本電気株式会社 光学レンズ及び光可変デバイス
US20120013962A1 (en) * 2010-07-19 2012-01-19 Omega Optics, Inc. Two-dimensional surface normal slow-light photonic crystal waveguide optical phased array
JP2014017481A (ja) * 2012-07-05 2014-01-30 Jds Uniphase Corp チューナブル・ブラッグ・グレーティング、およびそれを用いたチューナブル・レーザ・ダイオード
WO2015171125A1 (en) * 2014-05-07 2015-11-12 Hewlett-Packard Development Company, L.P. Polymer-clad optical modulators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084213A1 (en) * 2003-10-15 2005-04-21 Hamann Hendrik F. Method and apparatus for thermo-optic modulation of optical signals
WO2010035568A1 (ja) * 2008-09-25 2010-04-01 日本電気株式会社 光学レンズ及び光可変デバイス
US20120013962A1 (en) * 2010-07-19 2012-01-19 Omega Optics, Inc. Two-dimensional surface normal slow-light photonic crystal waveguide optical phased array
JP2014017481A (ja) * 2012-07-05 2014-01-30 Jds Uniphase Corp チューナブル・ブラッグ・グレーティング、およびそれを用いたチューナブル・レーザ・ダイオード
WO2015171125A1 (en) * 2014-05-07 2015-11-12 Hewlett-Packard Development Company, L.P. Polymer-clad optical modulators

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444903A (zh) * 2018-10-18 2019-03-08 华北水利水电大学 一种光学相控阵激光雷达装置
CN109444903B (zh) * 2018-10-18 2022-11-25 华北水利水电大学 一种光学相控阵激光雷达装置
WO2020084869A1 (ja) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 光デバイスおよび光検出システム
JP7394395B2 (ja) 2018-10-23 2023-12-08 パナソニックIpマネジメント株式会社 光デバイスおよび光検出システム
JPWO2020084869A1 (ja) * 2018-10-23 2021-09-16 パナソニックIpマネジメント株式会社 光デバイスおよび光検出システム
CN112882330B (zh) * 2019-11-29 2022-05-31 精工爱普生株式会社 发光装置和投影仪
CN112882330A (zh) * 2019-11-29 2021-06-01 精工爱普生株式会社 发光装置和投影仪
WO2022019143A1 (ja) * 2020-07-20 2022-01-27 日本碍子株式会社 光走査素子
JPWO2022019143A1 (ja) * 2020-07-20 2022-01-27
DE112021002832T5 (de) 2020-07-20 2023-03-02 Ngk Insulators, Ltd. Optisches Abtastelement
JP7274608B2 (ja) 2020-07-20 2023-05-16 日本碍子株式会社 光走査素子
DE112021006089T5 (de) 2021-02-01 2023-09-28 Ngk Insulators, Ltd. Optisches Abtastelement
DE112022002553T5 (de) 2021-07-14 2024-04-11 Ngk Insulators, Ltd. Wellenleitervorrichtung, optische abtastvorrichtung und optische modulationsvorrichtung

Also Published As

Publication number Publication date
JPWO2018186471A1 (ja) 2020-02-20
JP7134441B2 (ja) 2022-09-12

Similar Documents

Publication Publication Date Title
WO2018186471A1 (ja) 光偏向デバイス
CN108700790B (zh) 光偏转器及激光雷达装置
Ito et al. Wide beam steering by slow-light waveguide gratings and a prism lens
Abe et al. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide
JP4093281B2 (ja) フォトニック結晶結合欠陥導波路
CN108139646B (zh) 光扫描设备、光接收设备及光检测系统
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
Mendez-Astudillo et al. Compact thermo-optic MZI switch in silicon-on-insulator using direct carrier injection
Amin et al. A lateral MOS-capacitor-enabled ITO Mach–Zehnder modulator for beam steering
US11269236B2 (en) Tunable optical structures
JPWO2013114578A1 (ja) 光送信器および光送信器の制御方法
Tamanuki et al. Thermo-optic beam scanner employing silicon photonic crystal slow-light waveguides
KR102585256B1 (ko) 빔 스티어링 장치 및 이를 포함하는 시스템
CN106646929A (zh) 一种用于集成光学相控阵的电光单元及光学相控阵
Ito et al. Wavelength-division multiplexing Si photonic crystal beam steering device for high-throughput parallel sensing
Koyama et al. Beam steering, beam shaping, and intensity modulation based on VCSEL photonics
CN108292053B (zh) 具有适用于光相位排列天线的可调制光栅结构的纳米光学辐射器
Cao et al. High-speed silicon Michelson interferometer modulator and streamlined IMDD PAM-4 transmission of Mach-Zehnder modulators for the 2 μm wavelength band
CN105842881A (zh) 包括形成在铁电衬底中的光波导的光调制器
JP2011085916A (ja) 複数ビーム偏向器、二次元スキャナ及び複数ビーム偏向モジュール
Zhang et al. A Tri-Layer Si₃N₄-on-Si Optical Phased Array With High Angular Resolution
US20090022446A1 (en) Optical modulation element and optical modulation device having the same
EP3588929A1 (en) Non mechanical optical beam steering mechanism for laser printers
WO2018155535A1 (ja) 光偏向デバイス
JP2016031433A (ja) 光制御デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780923

Country of ref document: EP

Kind code of ref document: A1