WO2018186088A1 - Battery control device - Google Patents

Battery control device Download PDF

Info

Publication number
WO2018186088A1
WO2018186088A1 PCT/JP2018/008461 JP2018008461W WO2018186088A1 WO 2018186088 A1 WO2018186088 A1 WO 2018186088A1 JP 2018008461 W JP2018008461 W JP 2018008461W WO 2018186088 A1 WO2018186088 A1 WO 2018186088A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
socv
soci
calculation unit
Prior art date
Application number
PCT/JP2018/008461
Other languages
French (fr)
Japanese (ja)
Inventor
大川 圭一朗
亮平 中尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019511104A priority Critical patent/JP6827527B2/en
Publication of WO2018186088A1 publication Critical patent/WO2018186088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery control device.
  • Examples of devices using batteries such as lithium secondary batteries, nickel hydride batteries, lead batteries, and electric double layer capacitors include battery systems, distributed power storage devices, and electric vehicles.
  • a battery state detection device for detecting the state of the battery is used.
  • SOC state of charge
  • SOH health state
  • the SOC in a battery system such as an electric vehicle is calculated by calculating the ratio of the amount of charge remaining in the battery (remaining capacity) to the amount of charge (total capacity) that can be fully charged by integrating the discharge current from full charge. Can be obtained.
  • the SOC thus determined is referred to as SOCi.
  • the relationship between the voltage across the battery (open circuit voltage) and the remaining capacity of the battery is defined in advance in a data table or the like, and the current remaining capacity can be calculated by referring to this. it can.
  • the SOC thus obtained is referred to as SOCv.
  • the state of charge can also be obtained by combining these methods.
  • Patent Document 1 describes that when SOCi and SOCv are combined, they are weighted and added according to the battery temperature.
  • the battery control device includes an SOCv calculation unit that calculates the state of charge of the battery using a voltage across the battery, and an SOCi calculation unit that calculates the state of charge of the battery by integrating the current I flowing through the battery.
  • the first coefficient G1 of the calculation formula is related to the whole calculation formula
  • the second coefficient G2 is related to the absolute value of the magnitude of the current I in the calculation formula.
  • FIG. 1 is a block configuration diagram of a battery system 1000 according to the first embodiment.
  • the battery system 1000 includes a battery 400, a measurement unit 200, a battery control device 100, and an output unit 300, and supplies the electric charge accumulated in the battery 400 from the output unit 300 as electric power.
  • an electric vehicle, a hybrid vehicle, a train, and the like can be considered.
  • the battery 400 is a rechargeable battery such as a lithium ion secondary battery.
  • the present embodiment can be applied to devices having a power storage function such as a nickel metal hydride battery, a lead battery, and an electric double layer capacitor.
  • the battery 400 may be a single battery cell or a module structure in which a plurality of single battery cells are combined.
  • the measuring unit 200 is a functional unit that measures the physical characteristics of the battery 400, for example, the voltage V across the battery 400, the current (battery current) I flowing through the battery 400, the battery temperature T of the battery 400, and the like. It is composed of sensors and necessary electrical circuits.
  • the output unit 300 is a functional unit that outputs the output of the battery control device 100 to an external device (for example, a host device such as a vehicle control device provided in an electric vehicle).
  • an external device for example, a host device such as a vehicle control device provided in an electric vehicle.
  • the battery control device 100 is a device that controls the operation of the battery 400, and includes a battery state estimation device 110 and a storage unit 120. As will be described later, the battery state estimation requires the internal resistance R of the battery 400, but in the present embodiment, the battery state estimation device 110 uses other measurement parameters to calculate.
  • the battery state estimation device 110 includes the battery 400 stored in the storage unit 120 based on the voltage V across the battery 400 measured by the measurement unit 200, the battery current I flowing through the battery 400, and the battery temperature T of the battery 400.
  • the SOC of the battery 400 is calculated with reference to the characteristic information. Details of the SOC calculation method will be described later.
  • the storage unit 120 stores the characteristic information of the battery 400 that can be known in advance such as the internal resistance R and the polarization voltage Vp of the battery 400 according to the battery 400. Furthermore, the storage unit 120 stores a resistance table indicating the relationship between the internal resistance R of the battery 400 and the battery temperature T, an SOC table indicating the relationship between the open circuit voltage OCV and the SOC of the battery 400, and the like.
  • the battery control device 100 and the battery state estimation device 110 can be configured using hardware such as a circuit device that realizes the function. Moreover, it is also possible to configure the software in which the function is implemented by executing an arithmetic device such as a CPU (Central Processing Unit). In the latter case, the software is stored in the storage unit 120, for example.
  • an arithmetic device such as a CPU (Central Processing Unit).
  • the software is stored in the storage unit 120, for example.
  • the storage unit 120 is configured using a storage device such as a flash memory, an EEPROM (Electrically-Erasable-Programmable-Read-Only Memory), or a magnetic disk.
  • the storage unit 120 may be provided outside the battery state estimation device 110, or may be realized as a memory device provided inside the battery state estimation device 110.
  • the storage unit 120 may be removable. When the storage unit 120 is removable, the characteristic information and software can be easily changed by replacing the storage unit 120. Further, by storing a plurality of storage units 120 and storing the characteristic information and software in the replaceable storage unit 120, the characteristic information and software can be updated for each small unit.
  • FIG. 2 is a functional block diagram showing details of the battery state estimation device 110.
  • the battery state estimation device 110 includes an SOCv calculation unit 111, an SOCi calculation unit 112, and a weight coefficient calculation unit 114, and outputs a charge state SOCw that is a result of estimating the charge state of the battery 400. Other arithmetic units will be described later.
  • the SOCv calculation unit 111 calculates the SOC of the battery 400 using the voltage V across the battery 400 measured by the measurement unit 200. Hereinafter, this is referred to as SOCv.
  • the SOCi calculation unit 112 calculates the SOC of the battery 400 by integrating the battery current I of the battery 400 measured by the measurement unit 200. Hereinafter, this is referred to as SOCi. The calculation method of SOCv and SOCi will be described later.
  • the weighting factor calculation unit 114 calculates a weighting factor W for weighting and adding SOCv and SOCi based on the battery current I and the battery temperature T. A method for calculating the weighting factor W will be described later.
  • Multiplier MP1 multiplies SOCv and weighting factor W to obtain W ⁇ SOCv.
  • the subtractor DF obtains (1-W).
  • Multiplier MP2 multiplies SOCi and (1-W) to obtain (1-W) ⁇ SOCi.
  • the adder AD adds these to obtain SOCw. That is, SOCw is expressed by the following equation (1).
  • SOCw W ⁇ SOCv + (1 ⁇ W) ⁇ SOCi (1)
  • FIG. 3 is an equivalent circuit diagram of the battery 400.
  • the battery 400 can be represented by a parallel connection pair of an impedance Z and a capacitance component C, an internal resistance R, and an open circuit voltage OCV connected in series.
  • the closed circuit voltage CCV that is the voltage between the terminals of the battery 400 is expressed by the following equation (2).
  • Vp is a polarization voltage and corresponds to the voltage across the parallel connection pair of the impedance Z and the capacitance component C.
  • CCV OCV + I ⁇ R + Vp (2)
  • the open circuit voltage OCV is used to calculate the SOCv, but cannot be directly measured while the battery 400 is being charged / discharged. Therefore, the SOCv calculation unit 111 obtains the open circuit voltage OCV by subtracting the IR drop and the polarization voltage Vp from the closed circuit voltage CCV as in the following equation (3).
  • OCV CCV-I / R-Vp (3)
  • the internal resistance R and the polarization voltage Vp are stored in advance as characteristic information of the battery 400 in the storage unit 120. Since the internal resistance R and the polarization voltage Vp differ depending on the state of charge of the battery 400, the battery temperature T, and the like, individual values are stored in the storage unit 120 for each of these combinations.
  • characteristic information that defines the correspondence between the internal resistance R and the battery temperature T is stored as a resistance table. As shown in FIG. 2, the SOCv calculation unit 111 acquires the internal resistance R from the resistance table based on the battery temperature T, and obtains an IR drop. To do.
  • FIG. 4 is a diagram showing the relationship between the open circuit voltage OCV and the SOC of the battery 400. This correspondence is determined by the characteristics of the battery 400, and data defining the correspondence is stored in advance in the storage unit 120 as an SOC table.
  • the SOCv calculator 111 calculates the open circuit voltage OCV using the above-described equation (3), and calculates the SOCv of the battery 400 by referring to the SOC table using this as a key.
  • the SOCi calculation unit 112 calculates the SOCi of the battery 400 by accumulating the battery current I charged and discharged by the battery 400 according to the following equation (4).
  • Qmax is the full charge capacity of the battery 400 and is stored in the storage unit 120 in advance.
  • SOCold is a value of SOCw calculated by the equation (1) in the previous calculation cycle.
  • SOCi SOCold + 100 ⁇ ⁇ I / Qmax (4)
  • FIG. 5 is a diagram showing the relationship between the internal resistance R of the battery 400 and the battery temperature T.
  • the battery 400 has a high internal resistance R in a low SOC state and a large value of the internal resistance R in a low temperature state. Therefore, in such a case, it is considered desirable to use SOCi instead of SOCv which is easily affected by the error of the internal resistance R. Further, when the absolute value of the battery current I is small, it is influenced by a slight measurement error of the current sensor, so it is considered desirable to use SOCv instead of SOCi.
  • the weighting factor calculation unit 114 calculates SOCw mainly using the SOCv when the absolute value of the battery current I is small, and mainly uses SOCi when the absolute value of the battery current I is large.
  • the weighting factor W is set so as to calculate the SOCw.
  • the weighting factor W is set so that the SOCw is calculated mainly using the SOCv when the internal resistance R is small, and the SOCw is calculated mainly using the SOCi when the internal resistance R is large.
  • the correction coefficient G1 is a value of 1 or more in the present embodiment and the following embodiments, and is set to a value equal to or less than a predetermined value such as 100, for example.
  • the correction coefficient G2 is set to a value of 0 or more.
  • the correction coefficients G 1 and G 2 values corresponding to the characteristics of the battery 400 are stored in the storage unit 120 in advance.
  • the correction coefficient G1 is assumed to be 1. However, it may be a value equal to or smaller than a predetermined value such as 100, for example. By setting the correction coefficient G1 to a value equal to or less than a predetermined value, the setting by the correction coefficient G2 can be made more effective.
  • the SOCv is reflected by 1/5, and the specific gravity of the SOCv is larger than when the current described later is large.
  • the specific gravity of SOCi is large in the previous state and the SOC error is accumulated due to the current integration error based on the equation (4), the specific gravity of SOCv is large when the current is small.
  • the SOC error can be eliminated by the SOCv obtained using the equation (3) as a key. That is, the SOC is calibrated by the SOCv.
  • the SOCv is expressed by the function f of (CCV-I ⁇ R) as in the following equation (6).
  • SOCv f (CCV ⁇ I ⁇ R) (6) Therefore, when the battery current I is very small, I ⁇ R is small, and it is difficult to be influenced by the error of the internal resistance R, and the error of the SOCv itself is also reduced.
  • the internal resistance R of the battery takes a large value especially at a low temperature. Therefore, if there is an error such as a temperature sensor, it becomes a large error factor.
  • SOCv is only reflected by 1/401, and the specific gravity of SOCi is larger than when the current is small.
  • SOCw substantially reflects the result of SOCi.
  • SOCi is expressed by equation (4). Since SOCi is not affected by the voltage and the internal resistance R, SOCw shows a very stable value.
  • Embodiment- the block configuration diagram of the battery system of FIG. 1 described in the first embodiment, the functional block diagram showing the details of the battery state estimation device of FIG. 2, and the equivalent circuit of the battery of FIG. 3 are shown. Since the figure, the figure which shows the relationship between OCV and SOC of FIG. 4, and the figure which shows the relationship between the internal resistance of the battery of FIG. 5 and battery temperature are the same, the description is abbreviate
  • FIG. 6 is a diagram showing a correction coefficient G2 table 130 in the second embodiment.
  • the correction coefficient G2 shown in the table 130 is an example and is stored in the storage unit 120.
  • the correction coefficient G2 of the range 131 in which the battery temperature T is ⁇ 10 ° C. or more and 10 ° C. or less and the absolute value of the battery current I is 20 A or more is set to a value of 5 to 100, and the other ranges are corrected.
  • the coefficient G2 is set to a value of 1.
  • the weighting factor calculation unit 114 reads the correction factor G2 by referring to the table 130 in the storage unit 120 based on the detected battery current I and the battery temperature T, and calculates the weighting factor W based on Expression (5). To do.
  • weighting factor W is sufficient even when the current is large. Therefore, the specific gravity of SOCi does not increase and the accuracy of SOC deteriorates. Therefore, in the present embodiment, when the battery temperature T is equal to or higher than a predetermined value and equal to or lower than the predetermined value, and the absolute value of the battery current I is equal to or higher than the predetermined value, the correction coefficient G2 is set so that the specific gravity of SOCi increases.
  • the battery 400 is a low-temperature region (for example, ⁇ 10 ° C. or more and 10 ° C. or less) and has a low internal resistance (for example, a negative electrode having a graphite-based battery) and a large battery current.
  • the battery current I is 30 A and the battery temperature is 0 ° C.
  • the value 50 of the correction coefficient G 2 is read from the table 130.
  • SOCw (1/1501) ⁇ SOCv + (1500/1501) ⁇ SOCi
  • SOCv reflects only 1/1501, and the specific gravity of SOCi is large. Therefore, SOCi improves the accuracy of the SOC.
  • SOCw (1/31) ⁇ SOCv + (30/31) ⁇ SOCi
  • SOCv reflects 1/31 as compared with the present embodiment, and calibration by the SOCv occurs little by little, so that the specific gravity of the SOCi does not increase and the accuracy of the SOC deteriorates.
  • the battery 400 is a low-temperature region (for example, ⁇ 10 ° C. or more and 10 ° C. or less) and a low internal resistance (for example, a negative electrode having a graphite-based battery) and a small current.
  • the battery current I is 10 A and the battery temperature T is 0 ° C.
  • the value 1 of the correction coefficient G 2 is read from the table 130.
  • the weighting factor W is sufficiently small when the battery current is large, the specific gravity of SOCi is large, and the accuracy of the SOC is improved. To do. When the current is small, calibration by SOCv can be expected by the conventional operation.
  • the block configuration diagram of the battery system of FIG. 1 described in the first embodiment, the functional block diagram showing the details of the battery state estimation device of FIG. 2, and the equivalent circuit of the battery of FIG. 3 are shown. Since the figure, the figure which shows the relationship between OCV and SOC of FIG. 4, and the figure which shows the relationship between the internal resistance of the battery and battery temperature of FIG. 5 are the same, the description is omitted.
  • FIG. 7 is a view showing a correction coefficient G2 table 140 in the third embodiment.
  • the correction coefficient G2 shown in the table 140 is an example and is stored in the storage unit 120.
  • the correction coefficient G2 of the range 141 in which the absolute value of the battery current I is within 10 A is set to 0, and the correction coefficient G2 is set to 1 for the other ranges.
  • the weighting factor calculation unit 114 reads the correction factor G2 by referring to the table 140 in the storage unit 120 based on the detected battery current I and the battery temperature T, and calculates the weighting factor W based on the equation (5). To do.
  • the weighting factor W is not sufficiently increased, and the specific gravity of the SOCv is not increased, so that the SOC calibration frequency is low. For this reason, when the SOCi current accumulation error is accumulated due to the error of the current sensor, the accuracy of the SOC deteriorates due to the low calibration frequency. For this reason, in the present embodiment, when the absolute value of the battery current I is equal to or less than a predetermined value, the correction coefficient G2 is set so that the specific gravity of the SOCv is increased.
  • the table 140 is set so that the specific gravity of the SOCv is increased when the absolute value of the battery current I is not more than a predetermined value in accordance with the battery characteristic.
  • the SOC calibration frequency can be improved.
  • the block configuration diagram of the battery system of FIG. 1 described in the first embodiment, the functional block diagram showing the details of the battery state estimation device of FIG. 2, and the equivalent circuit of the battery of FIG. 3 are shown. Since the figure, the figure which shows the relationship between OCV and SOC of FIG. 4, and the figure which shows the relationship between the internal resistance of the battery of FIG. 5 and battery temperature are the same, the description is abbreviate
  • FIG. 8 is a view showing a table 150 of the correction coefficient G2 in the fourth embodiment.
  • the correction coefficient G2 shown in the table 150 is an example and is stored in the storage unit 120.
  • the correction coefficient G2 in the range 151 in which the battery temperature T is 0 ° C. or less and the absolute value of the battery current I is 10 A or more is set to a value of 50 to 100, and the correction coefficient G2 is set to a value of 1 in other ranges. Is set.
  • the weighting factor calculation unit 114 reads the correction factor G2 by referring to the table 150 in the storage unit 120 based on the detected battery current I and the battery temperature T, and calculates the weighting factor W based on the equation (5). To do.
  • the value 1 of the correction coefficient G2 is read from the table 150.
  • the value 100 of the correction coefficient G 2 is read from the table 150.
  • the battery temperature T is predetermined even if the battery voltage has a characteristic that causes an event that the battery voltage greatly deviates from the relationship of the expression (3). If the absolute value of the battery current I is less than or equal to a predetermined current, the table 150 is set so that the specific gravity of SOCi increases. Thereby, the precision of SOC can be improved. Furthermore, since the specific gravity of SOCv increases when the battery current is 0 A, the calibration frequency can be secured.
  • FIG. 9 is a diagram showing a summary of the first to fourth embodiments.
  • the value of the correction coefficient G2 to be set is shown according to the magnitude of the absolute value of the battery current I, the magnitude of the internal resistance R, and the range of the battery temperature T.
  • the specific gravity of SOCv can be increased, or the specific gravity of SOCi can be increased.
  • the SOCv is appropriately set.
  • the specific gravity of SOCi can be increased.
  • the battery control device 100 calculates the state of charge of the battery 400 by integrating the SOCv calculation unit 111 that calculates the state of charge of the battery 400 using the voltage across the battery 400 and the current I flowing through the battery 400.
  • a weight for calculating the weighting coefficient W based on a calculation formula including the arithmetic unit 112, the absolute value of the magnitude of the current I, the internal resistance R of the battery, the first coefficient G1, and the second coefficient G2.
  • the first coefficient G1 of the calculation formula is related to the whole calculation formula
  • the second coefficient G2 is related to the absolute value of the magnitude of the current I in the calculation formula. This facilitates setting of weights for calculating the SOC with high accuracy.
  • the calculation formula is the following formula, and the weighting factor calculation unit 114 calculates the weighting factor W based on the calculation formula. This facilitates setting of weights for calculating the SOC with high accuracy.
  • W 1 / ⁇ (1+
  • the SOCw calculation units MP1, MP2, DF, and AD are the state of charge SOCv of the battery 400 calculated by the SOCv calculation unit 111 and the state of charge SOCi of the battery 400 calculated by the SOCi calculation unit 112.
  • W the weighting factor
  • the weighting factor calculation unit 114 is a current that flows in the battery 400 when the temperature T of the battery 400 is in the range of the first predetermined value or higher on the low temperature side and the second predetermined value or lower on the high temperature side.
  • the second coefficient G2 is set to a value greater than 1
  • the SOCw calculation units MP1, MP2, DF, and AD have the first predetermined value when the temperature T is low.
  • the specific gravity of the state of charge of the battery calculated by the SOCi calculation unit 112 is increased. To do. Thereby, even if the battery has a low low temperature region and a small internal resistance, the weighting factor W is sufficiently small when the battery current is large, the specific gravity of SOCi is increased, and the accuracy of the SOC is improved.
  • the weighting coefficient calculation unit 114 sets the second coefficient G2 to 0 when the absolute value of the current I flowing through the battery 400 is equal to or less than a predetermined current, and calculates SOCw.
  • the units MP1, MP2, DF, and AD increase the specific gravity of the state of charge of the battery 400 calculated by the SOCv calculation unit 111 when the absolute value of the current I flowing through the battery 400 is equal to or less than a predetermined current.
  • the table 140 is set so that the specific gravity of the SOCv increases. By setting, the SOC calibration frequency can be improved.
  • the weighting factor calculation unit 114 determines that the first value when the temperature T of the battery 400 is equal to or lower than the predetermined temperature and the absolute value of the current I flowing through the battery 400 is equal to or lower than the predetermined current.
  • the coefficient G2 of 2 is set to a value greater than 1, and the SOCw calculation units MP1, MP2, DF, and AD have the temperature T of the battery 400 equal to or lower than a predetermined temperature and the absolute value of the current I flowing through the battery 400 is predetermined.
  • the specific gravity of the state of charge of the battery 400 calculated by the SOCi calculation unit 112 is increased. Thereby, the precision of SOC can be improved by this.
  • the weighting coefficient calculation unit 114 sets the first coefficient G1 to a value equal to or less than a predetermined value. Thereby, the setting by the second coefficient G2 can be made more effective.
  • the present invention can be implemented by modifying the first to fourth embodiments described above as follows.
  • (1) The weighting factor calculation unit 114 has been described as an example in which the weighting factor W is calculated based on Expression (5). However, the weighting factor W may be calculated based on the following equation (5 ′).
  • the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and a modification.

Abstract

It has conventionally been difficult to set a weighting for calculating an SOC with high accuracy. This battery control device has a weighting factor computation unit 114 that calculates a weighting factor W on the basis of a formula (5) so that an SOCv specific gravity and SOCi specific gravity are automatically selected in accordance with the magnitude of a current I. Formula (5): W=1/{(1+|I|×R×G2)×G1} Herein, the correction factor G1 is set to a value 1 or greater and a value not greater than a prescribed value such as, for example, 100 in the present embodiment and subsequent embodiments. The correction factor G2 is set to a value 0 or greater. For the correction factors G1 and G2, values corresponding to a characteristic of a battery 400 are stored in advance in a storage unit 120. It suffices for the value of the correction factor G1 to be a value not greater than a prescribed value such as, for example, 100.

Description

電池制御装置Battery control device
 本発明は、電池制御装置に関する。 The present invention relates to a battery control device.
 リチウムニ次電池、ニッケル水素電池、鉛電池、電気二重層キャパシタなどの電池を用いた装置には、例えば、電池システム、分散型電力貯蔵装置、電気自動車等がある。これらの装置では、電池を安全かつ有効に使用するために、電池の状態を検知する電池状態検知装置が用いられている。電池の状態としては、どの程度まで充電されているか、あるいはどの程度放電可能な電荷量が残っているのかを示す充電状態(State of Charge:以下ではSOCと称す)、どの程度まで劣化しているのかを示す健康状態(State of Health:以下ではSOHと称す)などがある。 Examples of devices using batteries such as lithium secondary batteries, nickel hydride batteries, lead batteries, and electric double layer capacitors include battery systems, distributed power storage devices, and electric vehicles. In these devices, in order to use the battery safely and effectively, a battery state detection device for detecting the state of the battery is used. As the state of the battery, the state of charge (State 程度 of Charge: hereinafter referred to as SOC) indicating how much the battery has been charged or how much charge can be discharged remains. There is a health state (State of Health: hereinafter referred to as SOH).
 電気自動車等の電池システムにおけるSOCは、満充電からの放電電流を積算し、最大限充電可能な電荷量(全容量)に対し、電池に残っている電荷量(残存容量)の比を算出して求めることができる。このようにして求められたSOCをSOCiと称する。また、SOCiとは別に、電池の両端電圧(開回路電圧)と電池の残存容量の関係を予めデータテーブルなどに定義しておき、これを参照することにより、現在の残存容量を算出することもできる。このようにして求められたSOCをSOCvと称する。さらには、これら手法を組み合わせて充電状態を求めることもできる。例えば、特許文献1には、SOCiとSOCvとを組み合わせる際に、電池の温度に応じてこれらを重み付け加算することが記載されている。 The SOC in a battery system such as an electric vehicle is calculated by calculating the ratio of the amount of charge remaining in the battery (remaining capacity) to the amount of charge (total capacity) that can be fully charged by integrating the discharge current from full charge. Can be obtained. The SOC thus determined is referred to as SOCi. In addition to the SOCi, the relationship between the voltage across the battery (open circuit voltage) and the remaining capacity of the battery is defined in advance in a data table or the like, and the current remaining capacity can be calculated by referring to this. it can. The SOC thus obtained is referred to as SOCv. Furthermore, the state of charge can also be obtained by combining these methods. For example, Patent Document 1 describes that when SOCi and SOCv are combined, they are weighted and added according to the battery temperature.
特開2014-44074号公報JP 2014-44074 A
 上述した特許文献1に記載の方法を用いた場合、SOCを高い精度で算出するための重み付けの設定が困難であった。 When the method described in Patent Document 1 described above is used, it is difficult to set weights for calculating the SOC with high accuracy.
 本発明による電池制御装置は、電池の両端電圧を用いて前記電池の充電状態を算出するSOCv演算部と、前記電池に流れる電流Iを積算して前記電池の充電状態を算出するSOCi演算部と、前記電流Iの大きさの絶対値と、前記電池の内部抵抗Rと、第1の係数G1と、第2の係数G2とを備えた計算式に基づいて重み係数Wを算出する重み係数演算部と、前記SOCv演算部が算出した前記電池の充電状態と前記SOCi演算部が算出した前記電池の充電状態を前記重み係数Wを用いて重み付け加算するSOCw演算部と、を備え、
前記計算式の前記第1の係数G1は、前記計算式の全体に係り、前記第2の係数G2は、前記計算式内の前記電流Iの大きさの絶対値に係る。
The battery control device according to the present invention includes an SOCv calculation unit that calculates the state of charge of the battery using a voltage across the battery, and an SOCi calculation unit that calculates the state of charge of the battery by integrating the current I flowing through the battery. A weighting factor calculation for calculating a weighting factor W based on a calculation formula including an absolute value of the magnitude of the current I, an internal resistance R of the battery, a first factor G1, and a second factor G2. And a SOCw calculation unit that weights and adds the state of charge of the battery calculated by the SOCv calculation unit and the state of charge of the battery calculated by the SOCi calculation unit using the weighting factor W,
The first coefficient G1 of the calculation formula is related to the whole calculation formula, and the second coefficient G2 is related to the absolute value of the magnitude of the current I in the calculation formula.
 本発明によれば、SOCを高い精度で算出するための重み付けの設定が容易になる。 According to the present invention, it is easy to set a weight for calculating the SOC with high accuracy.
電池システムのブロック構成図である。It is a block block diagram of a battery system. 電池状態推定装置の詳細を示す機能ブロック図である。It is a functional block diagram which shows the detail of a battery state estimation apparatus. 電池の等価回路を示す図である。It is a figure which shows the equivalent circuit of a battery. OCVとSOCとの関係を示す図である。It is a figure which shows the relationship between OCV and SOC. 電池の内部抵抗と電池温度との関係を示す図である。It is a figure which shows the relationship between the internal resistance of a battery, and battery temperature. 第2の実施形態における補正係数G2のテーブルを示す図である。It is a figure which shows the table of the correction coefficient G2 in 2nd Embodiment. 第3の実施形態における補正係数G2のテーブルを示す図である。It is a figure which shows the table of the correction coefficient G2 in 3rd Embodiment. 第4の実施形態における補正係数G2のテーブルを示す図である。It is a figure which shows the table of the correction coefficient G2 in 4th Embodiment. 各実施形態のまとめを示す図である。It is a figure which shows the summary of each embodiment.
-第1の実施形態-
 図1は、第1の実施形態における電池システム1000のブロック構成図である。電池システム1000は、電池400、計測部200、電池制御装置100、出力部300を備え、電池400が蓄積している電荷を出力部300より電力として供給するシステムである。電池システム1000が電力を供給する対象としては、例えば電気自動車やハイブリッド自動車、電車などが考えられる。
-First embodiment-
FIG. 1 is a block configuration diagram of a battery system 1000 according to the first embodiment. The battery system 1000 includes a battery 400, a measurement unit 200, a battery control device 100, and an output unit 300, and supplies the electric charge accumulated in the battery 400 from the output unit 300 as electric power. As an object to which the battery system 1000 supplies power, for example, an electric vehicle, a hybrid vehicle, a train, and the like can be considered.
 電池400は、例えばリチウムイオン2次電池などの充電可能な電池である。その他、ニッケル水素電池、鉛電池、電気2重層キャパシタなどの電力貯蔵機能を有するデバイスに対しても、本実施形態を適用することができる。電池400は、単電池セルであっても良いし、単電池セルを複数組み合わせたモジュール構造でも良い。 The battery 400 is a rechargeable battery such as a lithium ion secondary battery. In addition, the present embodiment can be applied to devices having a power storage function such as a nickel metal hydride battery, a lead battery, and an electric double layer capacitor. The battery 400 may be a single battery cell or a module structure in which a plurality of single battery cells are combined.
 計測部200は、電池400の物理特性、例えば電池400の両端電圧V、電池400に流れる電流(電池電流)I、電池400の電池温度Tなどを計測する機能部であり、各値を計測するセンサ、必要な電気回路などによって構成されている。 The measuring unit 200 is a functional unit that measures the physical characteristics of the battery 400, for example, the voltage V across the battery 400, the current (battery current) I flowing through the battery 400, the battery temperature T of the battery 400, and the like. It is composed of sensors and necessary electrical circuits.
 出力部300は、電池制御装置100の出力を外部装置(例えば、電気自動車が備える車両制御装置などの上位装置)に対して出力する機能部である。 The output unit 300 is a functional unit that outputs the output of the battery control device 100 to an external device (for example, a host device such as a vehicle control device provided in an electric vehicle).
 電池制御装置100は、電池400の動作を制御する装置であり、電池状態推定装置110と記憶部120とを備える。なお、後述するように電池状態の推定には電池400の内部抵抗Rも必要であるが、本実施形態では、電池状態推定装置110において、その他の計測パラメータを用いて算出する。 The battery control device 100 is a device that controls the operation of the battery 400, and includes a battery state estimation device 110 and a storage unit 120. As will be described later, the battery state estimation requires the internal resistance R of the battery 400, but in the present embodiment, the battery state estimation device 110 uses other measurement parameters to calculate.
 電池状態推定装置110は、計測部200により計測された電池400の両端電圧V、電池400に流れる電池電流I、及び電池400の電池温度Tに基づいて、記憶部120に格納されている電池400の特性情報を参照して、電池400のSOCを算出する。SOCの算出手法の詳細については後述する。 The battery state estimation device 110 includes the battery 400 stored in the storage unit 120 based on the voltage V across the battery 400 measured by the measurement unit 200, the battery current I flowing through the battery 400, and the battery temperature T of the battery 400. The SOC of the battery 400 is calculated with reference to the characteristic information. Details of the SOC calculation method will be described later.
 記憶部120は、電池400の内部抵抗R、分極電圧Vpなどの予め知ることができる電池400の特性情報を電池400に応じて記憶している。さらに、記憶部120は、電池400の内部抵抗Rと電池温度Tとの関係を示す抵抗テーブル、電池400の開回路電圧OCVとSOCとの関係を示すSOCテーブル等を記憶している。 The storage unit 120 stores the characteristic information of the battery 400 that can be known in advance such as the internal resistance R and the polarization voltage Vp of the battery 400 according to the battery 400. Furthermore, the storage unit 120 stores a resistance table indicating the relationship between the internal resistance R of the battery 400 and the battery temperature T, an SOC table indicating the relationship between the open circuit voltage OCV and the SOC of the battery 400, and the like.
 電池制御装置100および電池状態推定装置110は、その機能を実現する回路デバイスなどのハードウェアを用いて構成することができる。また、その機能を実装したソフトウェアを、CPU(Central Processing Unit)などの演算装置が実行することによって構成することもできる。後者の場合は、当該ソフトウェアは例えば記憶部120に格納される。 The battery control device 100 and the battery state estimation device 110 can be configured using hardware such as a circuit device that realizes the function. Moreover, it is also possible to configure the software in which the function is implemented by executing an arithmetic device such as a CPU (Central Processing Unit). In the latter case, the software is stored in the storage unit 120, for example.
 記憶部120は、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read-Only Memory)、磁気ディスクなどの記憶装置を用いて構成される。記憶部120は、電池状態推定装置110の外部に設けてもよいし、電池状態推定装置110の内部に備えるメモリ装置として実現してもよい。記憶部120は、取り外し可能にしてもよい。取り外し可能にした場合、記憶部120を取り替えることによって、特性情報とソフトウェアを簡単に変更することができる。また、記憶部120を複数有し、特性情報とソフトウェアを取り替え可能な記憶部120に分散させて格納することにより、特性情報とソフトウェアを小単位毎に更新することができる。 The storage unit 120 is configured using a storage device such as a flash memory, an EEPROM (Electrically-Erasable-Programmable-Read-Only Memory), or a magnetic disk. The storage unit 120 may be provided outside the battery state estimation device 110, or may be realized as a memory device provided inside the battery state estimation device 110. The storage unit 120 may be removable. When the storage unit 120 is removable, the characteristic information and software can be easily changed by replacing the storage unit 120. Further, by storing a plurality of storage units 120 and storing the characteristic information and software in the replaceable storage unit 120, the characteristic information and software can be updated for each small unit.
 図2は、電池状態推定装置110の詳細を示す機能ブロック図である。電池状態推定装置110は、SOCv演算部111、SOCi演算部112、重み係数演算部114を備え、電池400の充電状態を推定した結果である充電状態SOCwを出力する。その他の演算器については後述する。 FIG. 2 is a functional block diagram showing details of the battery state estimation device 110. The battery state estimation device 110 includes an SOCv calculation unit 111, an SOCi calculation unit 112, and a weight coefficient calculation unit 114, and outputs a charge state SOCw that is a result of estimating the charge state of the battery 400. Other arithmetic units will be described later.
 SOCv演算部111は、計測部200が計測した電池400の両端電圧Vを用いて、電池400のSOCを算出する。以下ではこれをSOCvと称する。SOCi演算部112は、計測部200が計測した電池400の電池電流Iを積算することにより、電池400のSOCを算出する。以下ではこれをSOCiと称する。SOCvとSOCiの算出方法については後述する。 The SOCv calculation unit 111 calculates the SOC of the battery 400 using the voltage V across the battery 400 measured by the measurement unit 200. Hereinafter, this is referred to as SOCv. The SOCi calculation unit 112 calculates the SOC of the battery 400 by integrating the battery current I of the battery 400 measured by the measurement unit 200. Hereinafter, this is referred to as SOCi. The calculation method of SOCv and SOCi will be described later.
 重み係数演算部114は、電池電流Iと電池温度Tに基づいて、SOCvとSOCiを重み付け加算するための重み係数Wを算出する。重み係数Wの算出方法については後述する。 The weighting factor calculation unit 114 calculates a weighting factor W for weighting and adding SOCv and SOCi based on the battery current I and the battery temperature T. A method for calculating the weighting factor W will be described later.
 乗算器MP1は、SOCvと重み係数Wを乗算してW×SOCvを求める。減算器DFは、(1-W)を求める。乗算器MP2は、SOCiと(1-W)を乗算して(1-W)×SOCiを求める。加算器ADは、これらを足し合わせてSOCwを求める。すなわち、SOCwは次式(1)によって表される。
  SOCw=W×SOCv+(1-W)×SOCi ・・・(1)
Multiplier MP1 multiplies SOCv and weighting factor W to obtain W × SOCv. The subtractor DF obtains (1-W). Multiplier MP2 multiplies SOCi and (1-W) to obtain (1-W) × SOCi. The adder AD adds these to obtain SOCw. That is, SOCw is expressed by the following equation (1).
SOCw = W × SOCv + (1−W) × SOCi (1)
[SOCv演算部111の動作]
 次に、SOCv演算部111の動作について説明する。図3は、電池400の等価回路図である。電池400は、インピーダンスZとキャパシタンス成分Cの並列接続対、内部抵抗R、開回路電圧OCVの直列接続によって表すことができる。電池400に電池電流Iを印加すると、電池400の端子間電圧である閉回路電圧CCVは次式(2)で表される。式(2)において、Vpは分極電圧であり、インピーダンスZとキャパシタンス成分Cの並列接続対の両端電圧に相当する。
  CCV=OCV+I・R+Vp ・・・(2)
[Operation of SOCv Calculation Unit 111]
Next, the operation of the SOCv calculation unit 111 will be described. FIG. 3 is an equivalent circuit diagram of the battery 400. The battery 400 can be represented by a parallel connection pair of an impedance Z and a capacitance component C, an internal resistance R, and an open circuit voltage OCV connected in series. When the battery current I is applied to the battery 400, the closed circuit voltage CCV that is the voltage between the terminals of the battery 400 is expressed by the following equation (2). In Expression (2), Vp is a polarization voltage and corresponds to the voltage across the parallel connection pair of the impedance Z and the capacitance component C.
CCV = OCV + I · R + Vp (2)
 SOCvの算出には開回路電圧OCVが用いられるが、電池400が充放電している間は直接測定することができない。そこで、SOCv演算部111は、次式(3)のように閉回路電圧CCVからIRドロップと分極電圧Vpを差し引くことにより、開回路電圧OCVを求める。
  OCV=CCV-I・R-Vp ・・・(3)
The open circuit voltage OCV is used to calculate the SOCv, but cannot be directly measured while the battery 400 is being charged / discharged. Therefore, the SOCv calculation unit 111 obtains the open circuit voltage OCV by subtracting the IR drop and the polarization voltage Vp from the closed circuit voltage CCV as in the following equation (3).
OCV = CCV-I / R-Vp (3)
 内部抵抗Rと分極電圧Vpは、記憶部120に予め電池400の特性情報として格納されている。内部抵抗Rと分極電圧Vpは、電池400の充電状態や電池温度Tなどに応じて異なるので、これらの組合せ毎に個別の値が記憶部120に格納されている。本実施形態では、内部抵抗Rと電池温度Tとの対応関係を定義する特性情報が抵抗テーブルとして格納されている。図2に示すように、SOCv演算部111は、電池温度Tに基づいて、抵抗テーブルから内部抵抗Rを取得し、IRドロップを求める。
する。
The internal resistance R and the polarization voltage Vp are stored in advance as characteristic information of the battery 400 in the storage unit 120. Since the internal resistance R and the polarization voltage Vp differ depending on the state of charge of the battery 400, the battery temperature T, and the like, individual values are stored in the storage unit 120 for each of these combinations. In the present embodiment, characteristic information that defines the correspondence between the internal resistance R and the battery temperature T is stored as a resistance table. As shown in FIG. 2, the SOCv calculation unit 111 acquires the internal resistance R from the resistance table based on the battery temperature T, and obtains an IR drop.
To do.
 図4は、電池400の開回路電圧OCVとSOCとの関係を示す図である。この対応関係は電池400の特性によって定まるものであり、記憶部120には、その対応関係を定義するデータがSOCテーブルとして予め格納されている。SOCv演算部111は、上述の式(3)を用いて開回路電圧OCVを算出し、これをキーにしてSOCテーブルを参照することにより、電池400のSOCvを算出する。 FIG. 4 is a diagram showing the relationship between the open circuit voltage OCV and the SOC of the battery 400. This correspondence is determined by the characteristics of the battery 400, and data defining the correspondence is stored in advance in the storage unit 120 as an SOC table. The SOCv calculator 111 calculates the open circuit voltage OCV using the above-described equation (3), and calculates the SOCv of the battery 400 by referring to the SOC table using this as a key.
[SOCi演算部112の動作]
 次いで、SOCi演算部112の動作について説明する。SOCi演算部112は、電池400が充放電する電池電流Iを次式(4)にしたがって積算することにより、電池400のSOCiを求める。式(4)において、Qmaxは電池400の満充電容量であり、予め記憶部120に格納されている。SOColdは、前回の演算周期において式(1)により算出されたSOCwの値である。
  SOCi=SOCold+100×∫I/Qmax ・・・(4)
[Operation of SOCi Operation Unit 112]
Next, the operation of the SOCi calculation unit 112 will be described. The SOCi calculation unit 112 calculates the SOCi of the battery 400 by accumulating the battery current I charged and discharged by the battery 400 according to the following equation (4). In Expression (4), Qmax is the full charge capacity of the battery 400 and is stored in the storage unit 120 in advance. SOCold is a value of SOCw calculated by the equation (1) in the previous calculation cycle.
SOCi = SOCold + 100 × ∫I / Qmax (4)
[重み係数演算部114の動作]
 図5は、電池400の内部抵抗Rと電池温度Tとの関係を示す図である。一般的に、電池400は、図5に示すように低SOC状態では内部抵抗Rが高く、低温状態のときに内部抵抗Rの値が大きい。したがって、そのような場合には、内部抵抗Rの誤差の影響を受け易いSOCvではなくSOCiを用いることが望ましいと考えられる。また、電池電流Iの絶対値が小さいときは電流センサの僅かな計測誤差によって影響を受けるので、SOCiではなくSOCvを用いることが望ましいと考えられる。
[Operation of Weighting Factor Calculation Unit 114]
FIG. 5 is a diagram showing the relationship between the internal resistance R of the battery 400 and the battery temperature T. In general, as shown in FIG. 5, the battery 400 has a high internal resistance R in a low SOC state and a large value of the internal resistance R in a low temperature state. Therefore, in such a case, it is considered desirable to use SOCi instead of SOCv which is easily affected by the error of the internal resistance R. Further, when the absolute value of the battery current I is small, it is influenced by a slight measurement error of the current sensor, so it is considered desirable to use SOCv instead of SOCi.
 以上に基づき、一般に、重み係数演算部114は、電池電流Iの絶対値が小さいときはSOCvを主に用いてSOCwを算出し、電池電流Iの絶対値が大きいときはSOCiを主に用いてSOCwを算出するように、重み係数Wを設定する。同様に、内部抵抗Rが小さいときはSOCvを主に用いてSOCwを算出し、内部抵抗Rが大きいときはSOCiを主に用いてSOCwを算出するように、重み係数Wを設定する。 Based on the above, generally, the weighting factor calculation unit 114 calculates SOCw mainly using the SOCv when the absolute value of the battery current I is small, and mainly uses SOCi when the absolute value of the battery current I is large. The weighting factor W is set so as to calculate the SOCw. Similarly, the weighting factor W is set so that the SOCw is calculated mainly using the SOCv when the internal resistance R is small, and the SOCw is calculated mainly using the SOCi when the internal resistance R is large.
 本実施形態では、電池電流Iの大きさに応じてSOCvの比重とSOCiの比重が自動的に選択されるように、重み係数演算部114は式(5)に基づいて重み係数Wを算出する。
  W=1/{(1+|I|×R×G2)×G1} ・・・(5)
In the present embodiment, the weight coefficient calculation unit 114 calculates the weight coefficient W based on the equation (5) so that the specific gravity of SOCv and the specific gravity of SOCi are automatically selected according to the magnitude of the battery current I. .
W = 1 / {(1+ | I | × R × G2) × G1} (5)
 ここで、補正係数G1は、本実施形態及び以下の実施形態では、1以上の値であり、且つ、例えば100など所定値以下の値に設定する。補正係数G2は、0以上の値に設定する。補正係数G1、G2は、電池400の特性に応じた値を予め記憶部120に記憶している。なお、本実施形態及び以下の実施形態では補正係数G1の値は1として説明するが、例えば100など所定値以下の値であればよい。補正係数G1を所定値以下の値することにより、補正係数G2による設定をより有効にすることができる。 Here, the correction coefficient G1 is a value of 1 or more in the present embodiment and the following embodiments, and is set to a value equal to or less than a predetermined value such as 100, for example. The correction coefficient G2 is set to a value of 0 or more. As the correction coefficients G 1 and G 2, values corresponding to the characteristics of the battery 400 are stored in the storage unit 120 in advance. In the present embodiment and the following embodiments, the correction coefficient G1 is assumed to be 1. However, it may be a value equal to or smaller than a predetermined value such as 100, for example. By setting the correction coefficient G1 to a value equal to or less than a predetermined value, the setting by the correction coefficient G2 can be made more effective.
 式(5)によれば、G2を0~1未満に設定すると、例えばG2=0、G1=1にしたときは、W=1となり、式(1)よりSOCw=SOCvとなり、電流の大きさによらずにSOCvの比重が高いSOCとなる。
 また、式(5)によれば、1を超える値にG2を設定すると、例えばG2=2、G1=1にしたときは、電流の大きさに応じてSOCvの比重とSOCiの比重が自動的に選択されるようになる。以下に、電流の大きさが小さい場合と大きい場合について説明する。
According to equation (5), when G2 is set to 0 to less than 1, for example, when G2 = 0 and G1 = 1, W = 1, and from equation (1), SOCw = SOCv, and the magnitude of the current Regardless, the SOC has a high specific gravity.
Also, according to equation (5), when G2 is set to a value exceeding 1, for example, when G2 = 2 and G1 = 1, the specific gravity of SOCv and the specific gravity of SOCi are automatically set according to the magnitude of the current. Will be selected. Below, the case where the magnitude | size of an electric current is small and large is demonstrated.
(a)<電流が小さい場合>
 電流の大きさが小さい場合、たとえば電流=1A、内部抵抗=2mΩのとき、式(5)より重み係数Wを算出すると以下のようになる。
  W=1/{(1+1×2×2)×1}=1/5
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/5)×SOCv+(4/5)×SOCi
(A) <When current is small>
When the magnitude of the current is small, for example, when the current is 1 A and the internal resistance is 2 mΩ, the weighting factor W is calculated from the equation (5) as follows.
W = 1 / {(1 + 1 × 2 × 2) × 1} = 1/5
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/5) × SOCv + (4/5) × SOCi
 このSOCwの式から分かるように、SOCvは1/5反映され、後述の電流が大きい場合と比較して、SOCvの比重が大きい。この場合、仮にそれ以前の状態でSOCiの比重が大きくなっていて、式(4)に基づく電流積算誤差によりSOC誤差が蓄積していたとしても、電流が小さい場合はSOCvの比重が大きくなる。このため式(3)をキーにして求めたSOCvによって、SOC誤差を解消できる。すなわち、SOCvによって、SOCが校正される。 As can be seen from the SOCw equation, the SOCv is reflected by 1/5, and the specific gravity of the SOCv is larger than when the current described later is large. In this case, if the specific gravity of SOCi is large in the previous state and the SOC error is accumulated due to the current integration error based on the equation (4), the specific gravity of SOCv is large when the current is small. For this reason, the SOC error can be eliminated by the SOCv obtained using the equation (3) as a key. That is, the SOC is calibrated by the SOCv.
 また、このとき電流が小さいため、SOCv自体の誤差も少ない。その理由は以下のとおりである。SOCvは次の式(6)のように(CCV-I×R)の関数fで表される。
  SOCv=f(CCV-I×R) ・・・(6)
 そのため、電池電流Iが非常に小さい状態ではI×Rが小さくなり、内部抵抗Rの誤差の影響を受けにくくなり、SOCv自体の誤差も少なくなる。なお、電池の内部抵抗Rは、特に低温では大きい値をとるため、温度センサなどの誤差があると、大きな誤差要因となる。
Further, since the current is small at this time, the error of the SOCv itself is small. The reason is as follows. The SOCv is expressed by the function f of (CCV-I × R) as in the following equation (6).
SOCv = f (CCV−I × R) (6)
Therefore, when the battery current I is very small, I × R is small, and it is difficult to be influenced by the error of the internal resistance R, and the error of the SOCv itself is also reduced. The internal resistance R of the battery takes a large value especially at a low temperature. Therefore, if there is an error such as a temperature sensor, it becomes a large error factor.
(b) <電流が大きい場合>
 電流の大きさが大きい場合、たとえば電流=100A、内部抵抗=2mΩのとき、式(5)より重み係数Wを算出すると以下のようになる。
  W=1/{(1+100×2×2)×1}=1/401
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/401)×SOCv+(400/401)×SOCi
(B) <When current is large>
When the magnitude of the current is large, for example, when the current is 100 A and the internal resistance is 2 mΩ, the weighting factor W is calculated from the equation (5) as follows.
W = 1 / {(1 + 100 × 2 × 2) × 1} = 1/401
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/401) × SOCv + (400/401) × SOCi
 このSOCwの式から分かるように、SOCvは1/401しか反映されず、電流が小さい場合と比較して、SOCiの比重が大きい。この場合、SOCvの影響をほとんど受けないため、SOCwは略SOCiの結果が反映される。SOCiは式(4)で表され、SOCiが電圧や内部抵抗Rの影響を受けないため、SOCwは非常に安定した値を示す。 As can be seen from the SOCw equation, SOCv is only reflected by 1/401, and the specific gravity of SOCi is larger than when the current is small. In this case, since it is hardly affected by SOCv, SOCw substantially reflects the result of SOCi. SOCi is expressed by equation (4). Since SOCi is not affected by the voltage and the internal resistance R, SOCw shows a very stable value.
 以上のように、1を超える値にG2を設定すると、電流の大きさに応じて、SOCvの比重とSOCiの比重が自動的に切り替わる。電流の大きさが小さい場合は、SOCvの比重が大きくなり、誤差の少ないSOCvがSOCwに反映される。電流の大きさが大きい場合は、SOCiの比重が大きくなり、電圧や内部抵抗Rの影響を受けないSOCiがSOCwに反映される。仮に電流センサの誤差による積算誤差がある場合であっても、ハイブリッド車両や電気自動車においては、電流の大きさは小および大がある頻度で交互に発生するため、電流が大きい場合のみが連続することはなく、積算誤差は、電流が小さくなった時点で解消される。よって、本実施形態を用いると、電流の大きさに応じて、SOCvによる誤差の校正とSOCiによる安定性を自動的に選択しながら精度の高いSOCwを得ることができる。 As described above, when G2 is set to a value exceeding 1, the specific gravity of SOCv and the specific gravity of SOCi are automatically switched according to the magnitude of the current. When the magnitude of the current is small, the specific gravity of the SOCv is large, and the SOCv with little error is reflected in the SOCw. When the current is large, the specific gravity of SOCi increases, and SOCi that is not affected by the voltage or internal resistance R is reflected in SOCw. Even if there is an integration error due to an error of the current sensor, in a hybrid vehicle or an electric vehicle, the magnitude of the current is alternately generated with a small frequency and a large frequency, so that only when the current is large continues. In other words, the integration error is eliminated when the current decreases. Therefore, when this embodiment is used, it is possible to obtain highly accurate SOCw while automatically selecting the error calibration by SOCv and the stability by SOCi according to the magnitude of the current.
-第2の実施形態-
 第2の実施形態において、第1の実施形態で説明した、図1の電池システムのブロック構成図、図2の電池状態推定装置の詳細を示す機能ブロック図、図3の電池の等価回路を示す図、図4のOCVとSOCとの関係を示す図、図5の電池の内部抵抗と電池温度との関係を示す図は同様であるのでその説明を省略する。
-Second Embodiment-
In the second embodiment, the block configuration diagram of the battery system of FIG. 1 described in the first embodiment, the functional block diagram showing the details of the battery state estimation device of FIG. 2, and the equivalent circuit of the battery of FIG. 3 are shown. Since the figure, the figure which shows the relationship between OCV and SOC of FIG. 4, and the figure which shows the relationship between the internal resistance of the battery of FIG. 5 and battery temperature are the same, the description is abbreviate | omitted.
 図6は、第2の実施形態における補正係数G2のテーブル130を示す図である。このテーブル130に示す補正係数G2は一例であり、記憶部120に記憶される。このテーブル130では、電池温度Tが-10℃以上、かつ10℃以下で、電池電流Iの絶対値が20A以上の範囲131の補正係数G2を、5~100の値に、その他の範囲は補正係数G2を1の値に設定している。重み係数演算部114は、検出された電池電流Iと電池温度Tとに基づいて記憶部120内のテーブル130を参照して補正係数G2を読み出し、式(5)に基づいて重み係数Wを算出する。 FIG. 6 is a diagram showing a correction coefficient G2 table 130 in the second embodiment. The correction coefficient G2 shown in the table 130 is an example and is stored in the storage unit 120. In this table 130, the correction coefficient G2 of the range 131 in which the battery temperature T is −10 ° C. or more and 10 ° C. or less and the absolute value of the battery current I is 20 A or more is set to a value of 5 to 100, and the other ranges are corrected. The coefficient G2 is set to a value of 1. The weighting factor calculation unit 114 reads the correction factor G2 by referring to the table 130 in the storage unit 120 based on the detected battery current I and the battery temperature T, and calculates the weighting factor W based on Expression (5). To do.
 電池400が、弱低温領域(例えば、-10℃以上、かつ10℃以下)で、且つ内部抵抗が小さい(例えば、負極が黒鉛系の電池)ものでは、電流が大きい場合でも重み係数Wが十分に小さくならず、そのためSOCiの比重が大きくならずSOCの精度が悪化する。そのために、本実施形態では、電池温度Tが所定値以上、所定値以下、かつ電池電流Iの絶対値が所定値以上の場合は、SOCiの比重が大きくなるように補正係数G2を設定する。 When battery 400 is in a low-temperature region (for example, −10 ° C. or more and 10 ° C. or less) and has low internal resistance (for example, a negative electrode is a graphite-based battery), weighting factor W is sufficient even when the current is large. Therefore, the specific gravity of SOCi does not increase and the accuracy of SOC deteriorates. Therefore, in the present embodiment, when the battery temperature T is equal to or higher than a predetermined value and equal to or lower than the predetermined value, and the absolute value of the battery current I is equal to or higher than the predetermined value, the correction coefficient G2 is set so that the specific gravity of SOCi increases.
 電池400が、弱低温領域(例えば、-10℃以上、かつ10℃以下)で、且つ内部抵抗が小さい電池(例えば、負極が黒鉛系の電池)で、電池電流が大きい場合を説明する。例えば、電池電流Iが30A、電池温度が0℃の場合、テーブル130より補正係数G2の値50を読み出す。ここで内部抵抗=1mΩ、G1=1のとき、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+30×1×50)×1}=1/1501
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/1501)×SOCv+(1500/1501)×SOCi
 このSOCwの式から分かるように、SOCvは1/1501しか反映されず、SOCiの比重が大きい。したがって、SOCiによって、SOCの精度が向上する。
A case will be described in which the battery 400 is a low-temperature region (for example, −10 ° C. or more and 10 ° C. or less) and has a low internal resistance (for example, a negative electrode having a graphite-based battery) and a large battery current. For example, when the battery current I is 30 A and the battery temperature is 0 ° C., the value 50 of the correction coefficient G 2 is read from the table 130. Here, when the internal resistance = 1 mΩ and G1 = 1, the weighting coefficient W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 30 × 1 × 50) × 1} = 1/1501
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/1501) × SOCv + (1500/1501) × SOCi
As can be seen from the SOCw equation, SOCv reflects only 1/1501, and the specific gravity of SOCi is large. Therefore, SOCi improves the accuracy of the SOC.
 ここで、本実施形態との比較の為に、G2=1とした場合を説明する。電池電流Iが30A、電池温度が0℃の場合に、G2=1とする。また、内部抵抗=1mΩ、G1=1とする。この場合は、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+30×1×1)×1}=1/31
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/31)×SOCv+(30/31)×SOCi
 このSOCwの式から分かるように、本実施形態と比較して、SOCvは1/31が反映され、少しずつSOCvによる校正が発生するため、SOCiの比重が大きくならずSOCの精度が悪化する。
Here, a case where G2 = 1 is described for comparison with the present embodiment. When the battery current I is 30 A and the battery temperature is 0 ° C., G2 = 1. Further, it is assumed that the internal resistance = 1 mΩ and G1 = 1. In this case, the weighting factor W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 30 × 1 × 1) × 1} = 1/31
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/31) × SOCv + (30/31) × SOCi
As can be seen from the SOCw equation, the SOCv reflects 1/31 as compared with the present embodiment, and calibration by the SOCv occurs little by little, so that the specific gravity of the SOCi does not increase and the accuracy of the SOC deteriorates.
 電池400が、弱低温領域(例えば、-10℃以上、かつ10℃以下)で、且つ内部抵抗が小さい電池(例えば、負極が黒鉛系の電池)で、電流が小さい場合を説明する。例えば、電池電流Iが10Aで、電池温度Tが0℃ の場合は、テーブル130より補正係数G2の値1を読み出す。ここで内部抵抗=1mΩ、G1=1のとき、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+10×1×1)×1}=1/11
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/11)×SOCv+(10/11)×SOCi
 このSOCwの式から分かるように、SOCvによる校正が発生する。このように、テーブル130の電流が小さい領域ではG2=1とすることで、補正係数G2の影響を受けない従来どおりの動作によって、SOCvによる校正を期待できる。
A case will be described in which the battery 400 is a low-temperature region (for example, −10 ° C. or more and 10 ° C. or less) and a low internal resistance (for example, a negative electrode having a graphite-based battery) and a small current. For example, when the battery current I is 10 A and the battery temperature T is 0 ° C., the value 1 of the correction coefficient G 2 is read from the table 130. Here, when the internal resistance = 1 mΩ and G1 = 1, the weighting coefficient W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 10 × 1 × 1) × 1} = 1/1
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/11) × SOCv + (10/11) × SOCi
As can be seen from this SOCw equation, calibration by SOCv occurs. Thus, by setting G2 = 1 in the region where the current of the table 130 is small, calibration by SOCv can be expected by the conventional operation that is not affected by the correction coefficient G2.
 本実施形態によれば、弱低温領域、かつ内部抵抗が小さい電池であっても、電池電流が大きい場合には重み係数Wが十分に小さくなり、SOCiの比重が大きくなってSOCの精度が向上する。電流が小さい場合は、従来どおりの動作によって、SOCvによる校正を期待できる。 According to this embodiment, even if the battery has a low low temperature region and a small internal resistance, the weighting factor W is sufficiently small when the battery current is large, the specific gravity of SOCi is large, and the accuracy of the SOC is improved. To do. When the current is small, calibration by SOCv can be expected by the conventional operation.
-第3の実施形態-
 第3の実施形態において、第1の実施形態で説明した、図1の電池システムのブロック構成図、図2の電池状態推定装置の詳細を示す機能ブロック図、図3の電池の等価回路を示す図、図4のOCVとSOCとの関係を示す図、図5の電池の内部抵抗と電池温度との関係を示す図は同様であるのでその説明を省略する。
-Third embodiment-
In the third embodiment, the block configuration diagram of the battery system of FIG. 1 described in the first embodiment, the functional block diagram showing the details of the battery state estimation device of FIG. 2, and the equivalent circuit of the battery of FIG. 3 are shown. Since the figure, the figure which shows the relationship between OCV and SOC of FIG. 4, and the figure which shows the relationship between the internal resistance of the battery and battery temperature of FIG. 5 are the same, the description is omitted.
 図7は、第3の実施形態における補正係数G2のテーブル140を示す図である。このテーブル140に示す補正係数G2は一例であり、記憶部120に記憶される。このテーブル140では、電池温度Tに依らず、電池電流Iの絶対値が10A以内の範囲141の補正係数G2を、0の値に、その他の範囲は補正係数G2を1の値に設定している。重み係数演算部114は、検出された電池電流Iと電池温度Tとに基づいて記憶部120内のテーブル140を参照して補正係数G2を読み出し、式(5)に基づいて重み係数Wを算出する。 FIG. 7 is a view showing a correction coefficient G2 table 140 in the third embodiment. The correction coefficient G2 shown in the table 140 is an example and is stored in the storage unit 120. In this table 140, regardless of the battery temperature T, the correction coefficient G2 of the range 141 in which the absolute value of the battery current I is within 10 A is set to 0, and the correction coefficient G2 is set to 1 for the other ranges. Yes. The weighting factor calculation unit 114 reads the correction factor G2 by referring to the table 140 in the storage unit 120 based on the detected battery current I and the battery temperature T, and calculates the weighting factor W based on the equation (5). To do.
 電池特性として内部抵抗が大きい電池400では、式(5)に示すように、電流が小さい場合でも重み係数Wが十分に大きくならず、SOCvの比重が大きくならないためにSOCの校正頻度が少ない。このため電流センサの誤差によってSOCiの電流積算誤差が蓄積している場合に、校正頻度が少ないことによってSOCの精度が悪化する。そのために、本実施形態では、電池電流Iの絶対値が所定値以下の場合は、SOCvの比重が大きくなるように補正係数G2を設定する。 In the battery 400 having a large internal resistance as a battery characteristic, as shown in the equation (5), even when the current is small, the weighting factor W is not sufficiently increased, and the specific gravity of the SOCv is not increased, so that the SOC calibration frequency is low. For this reason, when the SOCi current accumulation error is accumulated due to the error of the current sensor, the accuracy of the SOC deteriorates due to the low calibration frequency. For this reason, in the present embodiment, when the absolute value of the battery current I is equal to or less than a predetermined value, the correction coefficient G2 is set so that the specific gravity of the SOCv is increased.
 内部抵抗が大きい電池400で、電池電流が小さい場合を説明する。例えば、電池電流Iが10A、電池温度が25℃ の場合、テーブル140より補正係数G2の値0を読み出す。ここで内部抵抗=10mΩ、G1=1のとき、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+10×10×0)×1}=1
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=1×SOCv+0×SOCi=SOCv
 このSOCwの式から分かるように、電池電流Iの絶対値が所定値以下の場合は、SOCvの比重が大きくなる。
A case where the battery 400 has a large internal resistance and the battery current is small will be described. For example, when the battery current I is 10 A and the battery temperature is 25 ° C., the value 0 of the correction coefficient G 2 is read from the table 140. Here, when the internal resistance = 10 mΩ and G1 = 1, the weighting coefficient W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 10 × 10 × 0) × 1} = 1
Therefore, SOCw is as follows from the equation (1).
SOCw = 1 × SOCv + 0 × SOCi = SOCv
As can be seen from the SOCw equation, when the absolute value of the battery current I is less than or equal to a predetermined value, the specific gravity of the SOCv increases.
 ここで、本実施形態との比較の為に、G2=1とした場合を説明する。電池電流Iが10A、電池温度が25℃ の場合、G2=1とする。また、内部抵抗=10mΩ、G1=1とする。この場合は、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+10×10×1)×1}=1/101
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/101)×SOCv+(100/101)×SOCi
 このSOCwの式から分かるように、本実施形態と比較して、SOCvの校正頻度が少なく、SOCiの比重が大きく、SOCの精度が悪化する。
Here, a case where G2 = 1 is described for comparison with the present embodiment. When the battery current I is 10 A and the battery temperature is 25 ° C., G2 = 1. Further, it is assumed that the internal resistance = 10 mΩ and G1 = 1. In this case, the weighting factor W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 10 × 10 × 1) × 1} = 1/101
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/101) × SOCv + (100/101) × SOCi
As can be seen from this SOCw equation, the SOCv calibration frequency is less, the specific gravity of SOCi is greater, and the accuracy of the SOC is worse than in the present embodiment.
 内部抵抗が大きい電池400で、電池電流が大きい場合を説明する。例えば、電池電流Iが50A、電池温度が25℃ の場合、テーブル140より補正係数G2の値1を読み出す。ここで内部抵抗=10mΩ、G1=1のとき、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+50×10×1)×1}=1/501
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/501)×SOCv+(500/501)×SOCi 
 このSOCwの式から分かるように、電池電流Iの絶対値が所定値以上の場合は、SOCiの比重が大きくなる。このように、電池電流Iが大きい補正係数G2のテーブル140の値を1にすることで、補正係数G2の影響を受けない従来どおりの動作によって、SOCiの比重を大きくして精度の高いSOCを得ることができる。
A case where the battery current is large in the battery 400 having a large internal resistance will be described. For example, when the battery current I is 50 A and the battery temperature is 25 ° C., the value 1 of the correction coefficient G 2 is read from the table 140. Here, when the internal resistance = 10 mΩ and G1 = 1, the weighting coefficient W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 50 × 10 × 1) × 1} = 1/501
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/501) × SOCv + (500/501) × SOCi
As can be seen from this SOCw equation, when the absolute value of the battery current I is greater than or equal to a predetermined value, the specific gravity of SOCi increases. In this way, by setting the value of the correction coefficient G2 table 140 having a large battery current I to 1, the operation of the conventional method that is not affected by the correction coefficient G2 increases the specific gravity of the SOCi to achieve a highly accurate SOC. Obtainable.
 このように、電池特性として内部抵抗が大きい電池であっても、その電池特性に合わせて、電池電流Iの絶対値が所定の値以下である場合は、SOCvの比重が大きくなるようにテーブル140を設定することで、SOCの校正頻度を向上させることができる。  As described above, even if the battery has a large internal resistance as a battery characteristic, the table 140 is set so that the specific gravity of the SOCv is increased when the absolute value of the battery current I is not more than a predetermined value in accordance with the battery characteristic. By setting, the SOC calibration frequency can be improved. *
-第4の実施形態-
 第4の実施形態において、第1の実施形態で説明した、図1の電池システムのブロック構成図、図2の電池状態推定装置の詳細を示す機能ブロック図、図3の電池の等価回路を示す図、図4のOCVとSOCとの関係を示す図、図5の電池の内部抵抗と電池温度との関係を示す図は同様であるのでその説明を省略する。
-Fourth Embodiment-
In the fourth embodiment, the block configuration diagram of the battery system of FIG. 1 described in the first embodiment, the functional block diagram showing the details of the battery state estimation device of FIG. 2, and the equivalent circuit of the battery of FIG. 3 are shown. Since the figure, the figure which shows the relationship between OCV and SOC of FIG. 4, and the figure which shows the relationship between the internal resistance of the battery of FIG. 5 and battery temperature are the same, the description is abbreviate | omitted.
 図8は、第4の実施形態における補正係数G2のテーブル150を示す図である。このテーブル150に示す補正係数G2は一例であり、記憶部120に記憶される。このテーブル150では、電池温度Tが0℃以下で、電池電流Iの絶対値が10A以上の範囲151の補正係数G2を、50~100の値に、その他の範囲は補正係数G2を1の値に設定している。重み係数演算部114は、検出された電池電流Iと電池温度Tとに基づいて記憶部120内のテーブル150を参照して補正係数G2を読み出し、式(5)に基づいて重み係数Wを算出する。 FIG. 8 is a view showing a table 150 of the correction coefficient G2 in the fourth embodiment. The correction coefficient G2 shown in the table 150 is an example and is stored in the storage unit 120. In this table 150, the correction coefficient G2 in the range 151 in which the battery temperature T is 0 ° C. or less and the absolute value of the battery current I is 10 A or more is set to a value of 50 to 100, and the correction coefficient G2 is set to a value of 1 in other ranges. Is set. The weighting factor calculation unit 114 reads the correction factor G2 by referring to the table 150 in the storage unit 120 based on the detected battery current I and the battery temperature T, and calculates the weighting factor W based on the equation (5). To do.
 電池によっては、電池温度が低く電池電流が小さい場合において、電池電圧が式(3)の関係性から大きく外れる事象が発生するものがある。このような電池に対して、式(5)に相当する従来の式(補正係数G2を含まない式)によれば、電池電流が小さいために重み係数WによってSOCvの比重が大きくなるが、前述したように式(3)の関係性から外れているため、SOCvの誤差が大きくなり、これが最終的なSOCとなるのでSOCの誤差が大きくなってしまう。そのために、本実施形態では、電池温度Tが所定値以下、かつ電池電流Iの絶対値が所定値以下の場合は、SOCiの比重が大きくなるに補正係数G2を設定する。 Depending on the battery, when the battery temperature is low and the battery current is small, an event may occur in which the battery voltage greatly deviates from the relationship of equation (3). For such a battery, according to the conventional expression corresponding to Expression (5) (expression not including the correction coefficient G2), the specific gravity of the SOCv is increased by the weighting coefficient W because the battery current is small. As described above, since the relationship of Formula (3) is not satisfied, the SOCv error becomes large, and this becomes the final SOC, so that the SOC error becomes large. Therefore, in the present embodiment, when the battery temperature T is equal to or lower than a predetermined value and the absolute value of the battery current I is equal to or lower than the predetermined value, the correction coefficient G2 is set so that the specific gravity of SOCi increases.
 図8に示す補正係数G2のテーブル150を参照して説明する。電池電流Iが小さい場合、例えば、電池電流Iが 10A、電池温度Tが-10℃ の場合、テーブル150より補正係数G2の値50を読み出す。ここで内部抵抗=3mΩ、G1=1のとき、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+10×3×50)×1}=1/1501
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/1501)×SOCv+(1500/1501)×SOCi
 このSOCwの式から分かるように、SOCvは1/1501ずつしか反映されず校正頻度が少なく、SOCiの比重が大きい。
This will be described with reference to the correction coefficient G2 table 150 shown in FIG. When the battery current I is small, for example, when the battery current I is 10 A and the battery temperature T is −10 ° C., the value 50 of the correction coefficient G 2 is read from the table 150. Here, when the internal resistance = 3 mΩ and G1 = 1, the weighting factor W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 10 × 3 × 50) × 1} = 1/1501
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/1501) × SOCv + (1500/1501) × SOCi
As can be seen from the SOCw equation, the SOCv is reflected only by 1/1501, the calibration frequency is low, and the specific gravity of SOCi is large.
 ここで、本実施形態との比較の為に、G2=1とした場合を説明する。電池電流Iが10A、電池温度Tが-10℃ で、G2=1とする。ここで内部抵抗=3mΩ、G1=1のとき、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+10×3×1)×1}=1/31
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/31)×SOCv+(30/31)×SOCi 
 このSOCwの式から分かるように、SOCvは、1/31ずつ反映され、少しずつSOCvによる校正が発生するため、SOCiの比重が大きいとはいえない。
Here, a case where G2 = 1 is described for comparison with the present embodiment. Assume that the battery current I is 10 A, the battery temperature T is −10 ° C., and G2 = 1. Here, when the internal resistance = 3 mΩ and G1 = 1, the weighting factor W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 10 × 3 × 1) × 1} = 1/31
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/31) × SOCv + (30/31) × SOCi
As can be seen from this SOCw equation, SOCv is reflected by 1/31 and calibration by SOCv occurs little by little, so it cannot be said that the specific gravity of SOCi is large.
 一方、本実施形態において、電池電流Iが大きい場合、例えば、電池電流Iが20A、電池温度が-10℃ の場合、テーブル150より補正係数G2の値1を読み出す。ここで内部抵抗=3mΩ、G1=1のとき、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+20×3×1)×1}=1/61
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=(1/61)×SOCv+(60/61)×SOCi
 このSOCwの式から分かるように、電池電流Iが小さい場合に比較して、SOCvは1/61ずつ反映されて校正頻度が多くなり、SOCiの比重が小さい。
On the other hand, in this embodiment, when the battery current I is large, for example, when the battery current I is 20 A and the battery temperature is −10 ° C., the value 1 of the correction coefficient G2 is read from the table 150. Here, when the internal resistance = 3 mΩ and G1 = 1, the weighting factor W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 20 × 3 × 1) × 1} = 1/61
Therefore, SOCw is as follows from the equation (1).
SOCw = (1/61) × SOCv + (60/61) × SOCi
As can be seen from this SOCw equation, compared to the case where the battery current I is small, the SOCv is reflected by 1/61, the calibration frequency increases, and the specific gravity of SOCi is small.
 また、本実施形態において、例えば、電池電流Iが0A、電池温度が-10℃ の場合、テーブル150より補正係数G2の値100を読み出す。ここで内部抵抗=3mΩ、G1=1のとき、式(5)に基づいて重み係数Wを算出すると以下のようになる。
  W=1/{(1+0×3×100)×1}=1
 したがって、SOCwは式(1)より以下のようになる。
  SOCw=1×SOCv+0×SOCi
 このSOCwの式から分かるように、SOCvが反映される状態となる。電池電流Iが0Aのときは、式(3)から、OCV=CCV‐Vpとなり、電流の影響をほとんど受けずに電圧からSOCを演算することが可能であり、SOCvの誤差は小さい。したがって、SOCvをSOCに反映しても精度が悪化する懸念が少ないため、校正によるSOC精度が向上する。
In this embodiment, for example, when the battery current I is 0 A and the battery temperature is −10 ° C., the value 100 of the correction coefficient G 2 is read from the table 150. Here, when the internal resistance = 3 mΩ and G1 = 1, the weighting factor W is calculated based on the equation (5) as follows.
W = 1 / {(1 + 0 × 3 × 100) × 1} = 1
Therefore, SOCw is as follows from the equation (1).
SOCw = 1 × SOCv + 0 × SOCi
As can be seen from the SOCw equation, SOCv is reflected. When the battery current I is 0 A, from Equation (3), OCV = CCV−Vp, and it is possible to calculate the SOC from the voltage with almost no influence of the current, and the error of the SOCv is small. Therefore, there is little concern that the accuracy will deteriorate even if the SOCv is reflected in the SOC, so that the SOC accuracy by calibration is improved.
 本実施形態によれば、電池温度が低く電池電流が小さい場合において電池電圧が式(3)の関係性から大きく外れる事象が発生するような特性を有する電池であっても、電池温度Tが所定値以下であり、かつ電池電流Iの絶対値が所定の電流以下である場合は、SOCiの比重が多くなるようにテーブル150を設定する。これにより、SOCの精度を向上させることができる。さらに、電池電流が0AのときはSOCvの比重が多くなるため、校正頻度も確保することができる。 According to the present embodiment, even when the battery temperature is low and the battery current is small, the battery temperature T is predetermined even if the battery voltage has a characteristic that causes an event that the battery voltage greatly deviates from the relationship of the expression (3). If the absolute value of the battery current I is less than or equal to a predetermined current, the table 150 is set so that the specific gravity of SOCi increases. Thereby, the precision of SOC can be improved. Furthermore, since the specific gravity of SOCv increases when the battery current is 0 A, the calibration frequency can be secured.
-各実施形態のまとめ-
 図9は第1~第4の実施形態のまとめを示す図である。各実施形態について、電池電流Iの絶対値の大きさ、内部抵抗Rの大きさ、電池温度Tの範囲に応じて、設定する補正係数G2の値を示す。その結果、SOCvの比重を大きくしたり、SOCiの比重を大きくしたりすることができ、比重が大きくなる箇所に○印を示す。このように、電池電流Iの絶対値の大きさ、内部抵抗Rの大きさ、電池温度Tの範囲などの電池400の特性に応じて、補正係数G2の値を設定することにより、適宜、SOCv若しくはSOCiの比重を大きくすることができる。
-Summary of each embodiment-
FIG. 9 is a diagram showing a summary of the first to fourth embodiments. For each embodiment, the value of the correction coefficient G2 to be set is shown according to the magnitude of the absolute value of the battery current I, the magnitude of the internal resistance R, and the range of the battery temperature T. As a result, the specific gravity of SOCv can be increased, or the specific gravity of SOCi can be increased. Thus, by setting the value of the correction coefficient G2 according to the characteristics of the battery 400 such as the magnitude of the absolute value of the battery current I, the magnitude of the internal resistance R, the range of the battery temperature T, etc., the SOCv is appropriately set. Alternatively, the specific gravity of SOCi can be increased.
 以上説明した第1~第4の実施形態によれば、次の作用効果が得られる。
(1)電池制御装置100は、電池400の両端電圧を用いて電池400の充電状態を算出するSOCv演算部111と、電池400に流れる電流Iを積算して電池400の充電状態を算出するSOCi演算部112と、電流Iの大きさの絶対値と、電池の内部抵抗Rと、第1の係数G1と、第2の係数G2とを備えた計算式に基づいて重み係数Wを算出する重み係数演算部114と、SOCv演算部111が算出した電池400の充電状態とSOCi演算部112が算出した電池400の充電状態を重み係数Wを用いて重み付け加算するSOCw演算部MP1、MP2、DF、ADと、を備え、計算式の第1の係数G1は、計算式の全体に係り、第2の係数G2は、計算式内の電流Iの大きさの絶対値に係る。これにより、SOCを高い精度で算出するための重み付けの設定が容易になる。
According to the first to fourth embodiments described above, the following operational effects can be obtained.
(1) The battery control device 100 calculates the state of charge of the battery 400 by integrating the SOCv calculation unit 111 that calculates the state of charge of the battery 400 using the voltage across the battery 400 and the current I flowing through the battery 400. A weight for calculating the weighting coefficient W based on a calculation formula including the arithmetic unit 112, the absolute value of the magnitude of the current I, the internal resistance R of the battery, the first coefficient G1, and the second coefficient G2. A coefficient calculation unit 114, and SOCw calculation units MP1, MP2, DF, and a weighting addition of the charge state of the battery 400 calculated by the SOCv calculation unit 111 and the charge state of the battery 400 calculated by the SOCi calculation unit 112 using the weight coefficient W The first coefficient G1 of the calculation formula is related to the whole calculation formula, and the second coefficient G2 is related to the absolute value of the magnitude of the current I in the calculation formula. This facilitates setting of weights for calculating the SOC with high accuracy.
(2)電池制御装置100において、計算式は以下の式であり、重み係数演算部114は、計算式に基づいて重み係数Wを算出する。これにより、SOCを高い精度で算出するための重み付けの設定が容易になる。
  W=1/{(1+|I|×R×G2)×G1}
(2) In the battery control apparatus 100, the calculation formula is the following formula, and the weighting factor calculation unit 114 calculates the weighting factor W based on the calculation formula. This facilitates setting of weights for calculating the SOC with high accuracy.
W = 1 / {(1+ | I | × R × G2) × G1}
(3)電池制御装置100において、SOCw演算部MP1、MP2、DF、ADは、SOCv演算部111が算出した電池400の充電状態SOCvと、SOCi演算部112が算出した電池400の充電状態SOCiと、重み係数演算部114が算出した重み係数Wとを用いて以下の式に基づいて重み付け加算する。これにより、SOCを高い精度で算出するための重み付けの設定が容易になる。
  SOCw=W×SOCv+(1-W)×SOCi
(3) In the battery control device 100, the SOCw calculation units MP1, MP2, DF, and AD are the state of charge SOCv of the battery 400 calculated by the SOCv calculation unit 111 and the state of charge SOCi of the battery 400 calculated by the SOCi calculation unit 112. Using the weighting factor W calculated by the weighting factor calculation unit 114, weighting addition is performed based on the following equation. This facilitates setting of weights for calculating the SOC with high accuracy.
SOCw = W × SOCv + (1-W) × SOCi
(4)電池制御装置100において、重み係数演算部114は、電池400の温度Tが低温側で第1所定値以上かつ高温側で第2所定値以下の範囲であり、かつ電池400に流れる電流Iの絶対値が所定の電流以上である場合は、第2の係数G2を1より大きな値に設定し、SOCw演算部MP1、MP2、DF、ADは、温度Tが低温側で第1所定値以上かつ高温側で第2所定値以下の範囲であり、かつ電池400に流れる電流Iの絶対値が所定の電流以上である場合は、SOCi演算部112が算出した電池の充電状態の比重を大きくする。これにより、弱低温領域、かつ内部抵抗が小さい電池であっても、電池電流が大きい場合には重み係数Wが十分に小さくなり、SOCiの比重が大きくなってSOCの精度が向上する。 (4) In the battery control apparatus 100, the weighting factor calculation unit 114 is a current that flows in the battery 400 when the temperature T of the battery 400 is in the range of the first predetermined value or higher on the low temperature side and the second predetermined value or lower on the high temperature side. When the absolute value of I is greater than or equal to a predetermined current, the second coefficient G2 is set to a value greater than 1, and the SOCw calculation units MP1, MP2, DF, and AD have the first predetermined value when the temperature T is low. If the absolute value of the current I flowing through the battery 400 is greater than or equal to the predetermined current when the temperature is higher than the second predetermined value on the high temperature side, the specific gravity of the state of charge of the battery calculated by the SOCi calculation unit 112 is increased. To do. Thereby, even if the battery has a low low temperature region and a small internal resistance, the weighting factor W is sufficiently small when the battery current is large, the specific gravity of SOCi is increased, and the accuracy of the SOC is improved.
(5)電池制御装置100において、重み係数演算部114は、電池400に流れる電流Iの絶対値が所定の電流以下である場合は、第2の係数G2を0の値に設定し、SOCw演算部MP1、MP2、DF、ADは、電池400に流れる電流Iの絶対値が所定の電流以下である場合は、SOCv演算部111が算出した電池400の充電状態の比重を大きくする。これにより、電池特性として内部抵抗が大きい電池であっても、その電池特性に合わせて、電池電流Iの絶対値が所定の値以下である場合は、SOCvの比重が大きくなるようにテーブル140を設定することで、SOCの校正頻度を向上させることができる。 (5) In the battery control device 100, the weighting coefficient calculation unit 114 sets the second coefficient G2 to 0 when the absolute value of the current I flowing through the battery 400 is equal to or less than a predetermined current, and calculates SOCw. The units MP1, MP2, DF, and AD increase the specific gravity of the state of charge of the battery 400 calculated by the SOCv calculation unit 111 when the absolute value of the current I flowing through the battery 400 is equal to or less than a predetermined current. As a result, even if the battery has a large internal resistance as a battery characteristic, if the absolute value of the battery current I is less than or equal to a predetermined value in accordance with the battery characteristic, the table 140 is set so that the specific gravity of the SOCv increases. By setting, the SOC calibration frequency can be improved.
(6)電池制御装置100において、重み係数演算部114は、電池400の温度Tが所定の温度以下であり、かつ電池400に流れる電流Iの絶対値が所定の電流以下である場合は、第2の係数G2を1より大きな値に設定し、SOCw演算部MP1、MP2、DF、ADは、電池400の温度Tが所定の温度以下であり、かつ電池400に流れる電流Iの絶対値が所定の電流以下である場合は、SOCi演算部112が算出した電池400の充電状態の比重を大きくする。これにより、これにより、SOCの精度を向上させることができる。 (6) In the battery control device 100, the weighting factor calculation unit 114 determines that the first value when the temperature T of the battery 400 is equal to or lower than the predetermined temperature and the absolute value of the current I flowing through the battery 400 is equal to or lower than the predetermined current. The coefficient G2 of 2 is set to a value greater than 1, and the SOCw calculation units MP1, MP2, DF, and AD have the temperature T of the battery 400 equal to or lower than a predetermined temperature and the absolute value of the current I flowing through the battery 400 is predetermined. When the current is less than the current, the specific gravity of the state of charge of the battery 400 calculated by the SOCi calculation unit 112 is increased. Thereby, the precision of SOC can be improved by this.
(7)電池制御装置100において、重み係数演算部114は、第1の係数G1を、所定値以下の値に設定する。これにより、第2の係数G2による設定をより有効にすることができる。 (7) In the battery control device 100, the weighting coefficient calculation unit 114 sets the first coefficient G1 to a value equal to or less than a predetermined value. Thereby, the setting by the second coefficient G2 can be made more effective.
(変形例)
 本発明は、以上説明した第1~第4の実施形態を次のように変形して実施することができる。
(1)重み係数演算部114は、式(5)に基づいて重み係数Wを算出する例で説明した。しかし、次式(5’)に基づいて重み係数Wを算出してもよい。ここで、K1=1/G1である。すなわち、係数K1、G1は、ともに計算式の全体に係る係数である。
  W=K1×1/(1+|I|×R×G2)   ・・・(5’)
(Modification)
The present invention can be implemented by modifying the first to fourth embodiments described above as follows.
(1) The weighting factor calculation unit 114 has been described as an example in which the weighting factor W is calculated based on Expression (5). However, the weighting factor W may be calculated based on the following equation (5 ′). Here, K1 = 1 / G1. That is, the coefficients K1 and G1 are both coefficients related to the entire calculation formula.
W = K1 × 1 / (1+ | I | × R × G2) (5 ′)
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and a modification.
100…電池制御装置、
110…電池状態推定装置、
111…SOCv演算部、
112…SOCi演算部、
114…重み係数演算部、
130…第2の実施形態における補正係数G2のテーブル
140…第3の実施形態における補正係数G2のテーブル
150…第4の実施形態における補正係数G2のテーブル
200…計測部、
300…出力部、
400…電池、
1000…電池システム
100: Battery control device,
110 ... Battery state estimation device,
111 ... SOCv calculation unit,
112 ... SOCi calculation part,
114... Weight coefficient calculation unit,
130 ... Correction coefficient G2 table 140 in the second embodiment ... Correction coefficient G2 table 150 in the third embodiment ... Correction coefficient G2 table 200 in the fourth embodiment ... Measurement unit,
300 ... output section,
400 ... Battery,
1000 ... Battery system

Claims (7)

  1.  電池の両端電圧を用いて前記電池の充電状態を算出するSOCv演算部と、
     前記電池に流れる電流Iを積算して前記電池の充電状態を算出するSOCi演算部と、
     前記電流Iの大きさの絶対値と、前記電池の内部抵抗Rと、第1の係数G1と、第2の係数G2とを備えた計算式に基づいて重み係数Wを算出する重み係数演算部と、
     前記SOCv演算部が算出した前記電池の充電状態と前記SOCi演算部が算出した前記電池の充電状態を前記重み係数Wを用いて重み付け加算するSOCw演算部と、を備え、
     前記計算式の前記第1の係数G1は、前記計算式の全体に係り、前記第2の係数G2は、前記計算式内の前記電流Iの大きさの絶対値に係る電池制御装置。
    An SOCv calculator that calculates the state of charge of the battery using the voltage across the battery;
    An SOCi computing unit that calculates the state of charge of the battery by integrating the current I flowing through the battery;
    A weighting factor calculation unit that calculates a weighting factor W based on a calculation formula including an absolute value of the magnitude of the current I, an internal resistance R of the battery, a first coefficient G1, and a second coefficient G2. When,
    An SOCw computing unit that weights and adds the state of charge of the battery calculated by the SOCv computing unit and the state of charge of the battery calculated by the SOCi computing unit using the weighting factor W;
    The first coefficient G1 of the calculation formula relates to the whole calculation formula, and the second coefficient G2 is a battery control device according to an absolute value of the magnitude of the current I in the calculation formula.
  2.  請求項1に記載の電池制御装置において、
     前記計算式は以下の式であり、前記重み係数演算部は、前記計算式に基づいて前記重み係数Wを算出する電池制御装置。
      W=1/{(1+|I|×R×G2)×G1}
    The battery control device according to claim 1,
    The calculation formula is the following formula, and the weight coefficient calculation unit calculates the weight coefficient W based on the calculation formula.
    W = 1 / {(1+ | I | × R × G2) × G1}
  3.  請求項1または請求項2に記載の電池制御装置において、
     前記SOCw演算部は、前記SOCv演算部が算出した前記電池の充電状態SOCvと、前記SOCi演算部が算出した前記電池の充電状態SOCiと、前記重み係数演算部が算出した前記重み係数Wとを用いて以下の式に基づいて重み付け加算する電池制御装置。
      SOCw=W×SOCv+(1-W)×SOCi
    The battery control device according to claim 1 or 2,
    The SOCw calculation unit includes the battery state of charge SOCv calculated by the SOCv calculation unit, the battery state of charge SOCi calculated by the SOCi calculation unit, and the weighting factor W calculated by the weighting factor calculation unit. A battery control apparatus that uses and weights and adds based on the following equation.
    SOCw = W × SOCv + (1-W) × SOCi
  4.  請求項1から請求項3までのいずれか一項に記載の電池制御装置において、
     前記重み係数演算部は、前記電池の温度Tが低温側で第1所定値以上かつ高温側で第2所定値以下の範囲であり、かつ前記電池に流れる電流Iの絶対値が所定の電流以上である場合は、前記第2の係数G2を1より大きな値に設定し、
     前記SOCw演算部は、前記温度Tが低温側で第1所定値以上かつ高温側で第2所定値以下の範囲であり、かつ前記電池に流れる電流Iの絶対値が所定の電流以上である場合は、前記SOCi演算部が算出した前記電池の充電状態の比重を大きくする電池制御装置。
    In the battery control device according to any one of claims 1 to 3,
    The weighting factor calculation unit has a temperature T of the battery in a range not lower than a first predetermined value on the low temperature side and not higher than a second predetermined value on the high temperature side, and an absolute value of the current I flowing through the battery is not lower than a predetermined current. The second coefficient G2 is set to a value larger than 1,
    When the temperature T is in the range of the first predetermined value or higher on the low temperature side and the second predetermined value or lower on the high temperature side, and the absolute value of the current I flowing through the battery is equal to or higher than the predetermined current Is a battery control device that increases the specific gravity of the state of charge of the battery calculated by the SOCi calculation unit.
  5.  請求項1から請求項3までのいずれか一項に記載の電池制御装置において、
     前記重み係数演算部は、前記電池に流れる電流Iの絶対値が所定の電流以下である場合は、前記第2の係数G2を0の値に設定し、
     前記SOCw演算部は、前記電池に流れる電流Iの絶対値が所定の電流以下である場合は、前記SOCv演算部が算出した前記電池の充電状態の比重を大きくする電池制御装置。
    In the battery control device according to any one of claims 1 to 3,
    The weighting factor calculation unit sets the second coefficient G2 to a value of 0 when the absolute value of the current I flowing through the battery is equal to or less than a predetermined current;
    The SOCw calculation unit increases the specific gravity of the state of charge of the battery calculated by the SOCv calculation unit when the absolute value of the current I flowing through the battery is equal to or less than a predetermined current.
  6.  請求項1から請求項3までのいずれか一項に記載の電池制御装置において、
     前記重み係数演算部は、前記電池の温度Tが所定の温度以下であり、かつ前記電池に流れる電流Iの絶対値が所定の電流以下である場合は、前記第2の係数G2を1より大きな値に設定し、
     前記SOCw演算部は、前記電池の温度Tが所定の温度以下であり、かつ前記電池に流れる電流Iの絶対値が所定の電流以下である場合は、前記SOCi演算部が算出した前記電池の充電状態の比重を大きくする電池制御装置。
    In the battery control device according to any one of claims 1 to 3,
    The weight coefficient calculation unit sets the second coefficient G2 to be greater than 1 when the battery temperature T is equal to or lower than a predetermined temperature and the absolute value of the current I flowing through the battery is equal to or lower than a predetermined current. Set the value to
    When the battery temperature T is equal to or lower than a predetermined temperature and the absolute value of the current I flowing through the battery is equal to or lower than the predetermined current, the SOCw calculation unit calculates the battery charge calculated by the SOCi calculation unit. A battery control device that increases the specific gravity of the state.
  7.  請求項4から請求項6までのいずれか一項に記載の電池制御装置において、
     前記重み係数演算部は、前記第1の係数G1を、所定値以下の値に設定する電池制御装置。
    In the battery control device according to any one of claims 4 to 6,
    The weight control unit is a battery control device that sets the first coefficient G1 to a value equal to or less than a predetermined value.
PCT/JP2018/008461 2017-04-07 2018-03-06 Battery control device WO2018186088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511104A JP6827527B2 (en) 2017-04-07 2018-03-06 Battery control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017077137 2017-04-07
JP2017-077137 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186088A1 true WO2018186088A1 (en) 2018-10-11

Family

ID=63713486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008461 WO2018186088A1 (en) 2017-04-07 2018-03-06 Battery control device

Country Status (2)

Country Link
JP (1) JP6827527B2 (en)
WO (1) WO2018186088A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111098755A (en) * 2019-11-21 2020-05-05 南通大学 SOC estimation method for power battery of electric vehicle
JP2020076628A (en) * 2018-11-07 2020-05-21 トヨタ自動車株式会社 Battery control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222668A (en) * 2000-11-17 2002-08-09 Robert Bosch Gmbh Method of determining battery charging status and device for putting this method into operation
US20120109556A1 (en) * 2010-10-29 2012-05-03 GM Global Technology Operations LLC Band select state of charge weighted scaling method
JP2014044074A (en) * 2012-08-24 2014-03-13 Hitachi Vehicle Energy Ltd Battery state estimation device, battery control device, battery system, and battery state estimation method
WO2014115294A1 (en) * 2013-01-25 2014-07-31 日立ビークルエナジー株式会社 Battery control device, battery system
WO2017195760A1 (en) * 2016-05-12 2017-11-16 日立オートモティブシステムズ株式会社 Battery condition estimation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222668A (en) * 2000-11-17 2002-08-09 Robert Bosch Gmbh Method of determining battery charging status and device for putting this method into operation
US20120109556A1 (en) * 2010-10-29 2012-05-03 GM Global Technology Operations LLC Band select state of charge weighted scaling method
JP2014044074A (en) * 2012-08-24 2014-03-13 Hitachi Vehicle Energy Ltd Battery state estimation device, battery control device, battery system, and battery state estimation method
WO2014115294A1 (en) * 2013-01-25 2014-07-31 日立ビークルエナジー株式会社 Battery control device, battery system
WO2017195760A1 (en) * 2016-05-12 2017-11-16 日立オートモティブシステムズ株式会社 Battery condition estimation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076628A (en) * 2018-11-07 2020-05-21 トヨタ自動車株式会社 Battery control device
JP7119921B2 (en) 2018-11-07 2022-08-17 トヨタ自動車株式会社 battery controller
CN111098755A (en) * 2019-11-21 2020-05-05 南通大学 SOC estimation method for power battery of electric vehicle

Also Published As

Publication number Publication date
JPWO2018186088A1 (en) 2020-05-14
JP6827527B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP5863603B2 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
JP5287844B2 (en) Secondary battery remaining capacity calculation device
CN108291944B (en) Battery management device
US8269502B2 (en) Method for determining the state of health of a battery using determination of impedance and/or battery state
JP5356465B2 (en) Storage battery charge state detection method and storage battery charge state detection device
WO2015033504A1 (en) Battery soundness estimation device and soundness estimation method
JP6895541B2 (en) Secondary battery monitoring device, secondary battery status calculation device and secondary battery status estimation method
JP6947937B2 (en) Battery state estimation device, battery control device
JP6867478B2 (en) Battery control and vehicle system
CN116113837A (en) Method for estimating state of charge of battery
WO2016038880A1 (en) Device and method for computing residual capacity of cell, and recording medium
JP4509670B2 (en) Remaining capacity calculation device for power storage device
WO2018186088A1 (en) Battery control device
JP5886225B2 (en) Battery control device and battery control method
JP2006098134A (en) Residual capacity arithmetic unit for charge accumulation device
WO2017195760A1 (en) Battery condition estimation device
CN112189143B (en) Device for estimating the state of charge of a battery
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
WO2019097938A1 (en) Battery state estimation device
JPWO2019123904A1 (en) Management device and power storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781927

Country of ref document: EP

Kind code of ref document: A1