WO2018184401A1 - 一种宏观光感应微阵列热压成型的实时控制装置及方法 - Google Patents

一种宏观光感应微阵列热压成型的实时控制装置及方法 Download PDF

Info

Publication number
WO2018184401A1
WO2018184401A1 PCT/CN2017/115398 CN2017115398W WO2018184401A1 WO 2018184401 A1 WO2018184401 A1 WO 2018184401A1 CN 2017115398 W CN2017115398 W CN 2017115398W WO 2018184401 A1 WO2018184401 A1 WO 2018184401A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
hot pressing
light
time
illuminance
Prior art date
Application number
PCT/CN2017/115398
Other languages
English (en)
French (fr)
Inventor
谢晋
卢阔
刘继楠
胡满凤
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to JP2019548264A priority Critical patent/JP6694629B2/ja
Publication of WO2018184401A1 publication Critical patent/WO2018184401A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/058Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/16Plc to applications
    • G05B2219/163Domotique, domestic, home control, automation, smart, intelligent house
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a micro-lens array polymer substrate hot-pressing micro-molding online monitoring and intelligent fault diagnosis technology, in particular to a high-efficiency and high-precision real-time control device and method based on hot-pressing micro-array micro-molding.
  • High-precision microarray structure substrate can be applied to LED Lighting, microfluidic chips, photovoltaic power generation, optoelectronics and other fields.
  • Low-cost manufacturing of microlens array polymer substrates is the mainstream of industrialization.
  • the key technology is how to quickly replicate the microstructure of micron or nano-array structures to the surface of the polymer substrate of the optical lens array.
  • micro-array topography uses physical probe method and white light interferometry, but if the micro-array forming precision of macroscopic surface is detected, it will bring about extremely low work efficiency and cannot detect and identify on-line. Therefore, in the production process of product hot press forming, it is urgent to add on-line detection of macroscopic surface, adjust the parameters of hot press forming process in real time, and realize the precision manufacturing of macroscopic products on the surface of microlens array structure.
  • the object of the present invention is to overcome the shortcomings of the prior art hot-press micro-array molding topography detection method, and provide a real-time control device and method for macroscopic photo-sensing micro-array hot-pressing, which can detect transparent polymer on-line.
  • the surface of the board has a micro-structure forming depth, and intelligently adjusts the process parameters to realize the intelligent control of the macro-product surface micro-array in the hot press forming process, thereby greatly reducing the production cost, the time cost of manual debugging, and improving the processing quality. And efficiency.
  • Real-time control device for macroscopic light-sensing microarray hot press forming including a light sensing system, a real-time analysis and control system disposed on the template under the hot pressing device, the light sensing system comprising a light source, an in-line light sensor, a fixture, the fixture is fixed on the lower template, the light source, online
  • the light sensor is fixed on the jig, wherein the light source is disposed on the light incident surface of the transparent polymer plate in the thickness direction, and the inline light sensor is respectively disposed opposite to the light incident surface of the transparent polymer plate and the two sides, And connected to the real-time analysis and control system circuit; the real-time analysis and control system is respectively connected through the circuit
  • the light source, the on-line light sensor and the hot pressing device PLC are used to adjust the hot pressing parameters of the hot pressing device according to the illumination detected by the online light sensor in real time.
  • the light source is an LED light bar.
  • the on-line optical sensor has a distance of 10 to 30 mm from the transparent polymer plate, and the illumination L has a maximum of 400000 Lux and a minimum resolution of 0.01 Lux.
  • the online light sensor is a digital light meter.
  • a real-time control method for macro-light-sensing microarray hot press forming using the real-time control device comprising the steps of:
  • the on-line light sensor senses the illuminance of the light incident, and the illuminance data is fed back to the real-time analysis and control system in real time.
  • the illuminance during the hot pressing process can be drawn. Time curve for judging analysis of processing depth and quality;
  • the real-time analysis and control system compares the key point illumination in the hot pressing process with the experience database obtained from the repeated experiment, and adjusts the corresponding hot pressing process parameters according to the comparison result, the key point illumination is the hot pressing process The corresponding illuminance at the end of the medium pressure time;
  • the real-time analysis and control system transmits the adjusted process parameters to the hot pressing device PLC
  • the control hot pressing device performs the hot pressing processing of the next transparent polymer plate according to the adjusted process parameters
  • the above steps are cycled, so that the forming height corresponding to the key point illumination of the hot press forming is gradually approached and finally coincides with the preset height, thereby realizing adaptive control of the hot pressing process.
  • the establishment of the experience database obtained by the repeated experiment includes the steps of:
  • the microstructure of various forming heights is obtained by hot pressing of a hot stamping core having a micro-groove array on the surface, and the hot pressing process parameters corresponding to various forming heights are recorded;
  • L illuminance in Lux
  • H represents the forming height of the surface microstructure of the transparent polymer plate, in units of ⁇ m, 0.03 ⁇ a ⁇ 0.12, 200 ⁇ m ⁇ b ⁇ 600 ⁇ m;
  • the measured height and key point illumination are correlated with the hot pressing process parameters of the corresponding transparent polymer plate, and the data is characterized to establish an experience database, and the key point illumination is the pressure holding time during the hot press forming process.
  • the real-time analysis and control system compares the key point illumination in the hot pressing process with the experience database obtained from the repeated experiment, and the steps of adjusting the corresponding hot pressing process parameters according to the comparison result include:
  • the extracted key point illuminance is compared with the experience database for reference, and the microstructure forming height and hot pressing process parameters corresponding to the currently extracted key point illuminance are obtained;
  • the hot pressing process parameters are adjusted and the next processing is performed.
  • hot pressing process parameters include temperature, pressure, and dwell time.
  • the working principle of the present invention is that, in the hot press forming process, even if a hot pressed core having the same surface structure is used, the forming height of the surface microstructure of the transparent polymer sheet processed by using different process parameters may be different.
  • the illuminance received by the other sides of the transparent polymer plate changes correspondingly due to the change in the beam propagation direction and path of the macroscopic surface microarray molding structure.
  • the invention monitors the illuminance change in real time by using the on-line light sensing system, and reflects the height change of the micro-array on the surface of the transparent polymer plate and the macroscopic deformation of the transparent polymer plate after processing in real time, compared with the profile shape and artificial detection by using the profiler. Observing the status quo of macroscopic deformation, greatly improving the observation efficiency and shortening the debugging cycle, thereby reducing the human and material time cost for detection;
  • the data fusion, characterization and comparison of the data of the online light sensor can intelligently adjust the process parameters in real time, thereby realizing adaptive control of the macroscopic surface microarray forming effect of the product, thereby reducing Production costs, improved processing quality and efficiency;
  • the invention intelligently selects and adjusts the process parameters through the real-time analysis and control system, does not require sensors such as pressure, temperature, position and its closed-loop control, directly optimizes the hot press micro-forming process and parameters, and judges and predicts equipment failure.
  • Figure 1 shows the connection of the light sensing system.
  • Figure 2 is a light path diagram of light in a transparent polymer plate without microstructure.
  • Figure 3 is a light path diagram of light in a transparent polymer plate with microstructure.
  • Figure 4 is a schematic diagram of the optical simulation structure.
  • Figure 5 The optical simulation results (including scatter simulation results and fitting curves) of the relationship between the microstructure height of the transparent polymer plate and the side illumination of the light source.
  • Figure 6 is a typical thermoforming process illuminance-time graph.
  • Figure 7 The experimental results (including scatter experimental data and fitting curve) of the relationship between the microstructure height of the transparent polymer plate and the side illumination of the light source.
  • microstructures with different heights have different effects on the optical path of incident light.
  • incident light 4 Irradiation into a transparent polymer sheet 5 having no microstructure 6 since the light reaches the transparent polymer sheet 5
  • the upper and lower planes have a larger incident angle, the light is totally reflected, and then illuminates the sensor of the inline light sensor 1, and the inline light sensor 1 receives a large amount of light; however, when the incident light is completely the same 4 Irradiation into a transparent polymer plate 5 having a microstructure 6 in which the microstructure 6 changes its direction of propagation by refraction and reflection of the incident ray 4, causing a portion of the incident ray to be opposite the microstructure (Fig.
  • the middle surface is emitted, and only the remaining part of the light is incident on the sensor of the line light sensor 1, and the amount of light received by the line light sensor 1 is small. Therefore, compared to the transparent polymer plate without the microstructure 6 5
  • the on-line light sensor 1 on the right side of the transparent polymer plate with microstructure 6 is less illuminating.
  • a steel upper and lower template model 9 is formed on the upper and lower sides according to the size of the transparent polymer plate model 8; finally, the receiving surface model 10 is established, and On the left side of the transparent polymer plate model 8, a Lambertian surface light source model with a wavelength of 0.5 ⁇ m, an illumination of 3 W/m 2 and a number of rays of 1,000,000 is placed.
  • a real-time control device for macroscopic photo-sensing microarray hot press forming including a light sensing system, a real-time analysis and control system disposed on the template 12 under the hot pressing device, the light sensing system includes a light source 3, an in-line light sensor 1, and a clamp 2, and the clamp 2 is fixed on the lower template 12, The light source 3 and the inline optical sensor 1 are fixed on the clamp 2, wherein The light source 3 is an LED strip with a rated voltage of 12 V.
  • the in-line light sensor is disposed opposite to the light-incident surface of the transparent polymer plate 5 in the thickness direction of the transparent polymer plate 5, and is disposed opposite to the light-incident surface of the transparent polymer plate 5, respectively.
  • the real-time analysis and control system uses a computer, and the computer is respectively connected through the circuit
  • the online light sensor 1 and the hot pressing device PLC are used to adjust the hot pressing parameters of the hot pressing device according to the illuminance detected by the online light sensor 1 in real time.
  • the distance between the in-line optical sensor 1 and the transparent polymer plate 5 is 10 to 30 mm, and the illumination L is at most 400000 Lux, and the minimum resolution is 0.01 Lux.
  • the computer connects the system to the light sensing system through a data cable, and the online light sensor 1 It can sense the illuminance of the light entering its sensor and feedback the illuminance data to the computer in real time.
  • the illuminance can be drawn in the computer - Time curve for judgment analysis of machining depth and quality.
  • the computer compares the illuminance data with the experience database obtained from repeated experiments, intelligently judges the process parameters that need to be adjusted, and transmits them to the hot press equipment PLC.
  • the hot pressing equipment modifies the processing parameters and performs the next processing of the transparent polymer plate to realize the adaptive control of the hot pressing process.
  • the real-time analysis and control system can change the illuminance according to the feedback of each point, the speed of change, especially the abnormal mutation in the curve. In the case, intelligent prediction and judgment of abnormal conditions in the process.
  • a real-time control method for macro-light-sensing microarray hot press forming using the real-time control device comprising the steps of:
  • Online light sensor during hot pressing 1 Inductively enters the illuminance of the light, and feedbacks the illuminance data in real time to the real-time analysis and control system.
  • the real-time analysis and control system can draw the illuminance during the hot pressing process - Time curve for judging analysis of processing depth and quality;
  • the real-time analysis and control system compares the key point illumination in the hot pressing process with the experience database obtained from the repeated experiment, and adjusts the corresponding hot pressing process parameters according to the comparison result, the key point illumination is the hot pressing process The corresponding illuminance at the end of the medium pressure time;
  • the real-time analysis and control system transmits the adjusted process parameters to the hot pressing device PLC
  • the control hot pressing device performs the hot pressing processing of the next transparent polymer plate according to the adjusted process parameters
  • the above steps are cycled, so that the forming height corresponding to the key point illumination of the hot press forming is gradually approached and finally coincides with the preset height, thereby realizing adaptive control of the hot pressing process.
  • the establishment of the experience database obtained by the repeated experiment includes the steps of:
  • the microstructure of various forming heights is obtained by hot pressing of a hot stamping core having a micro-groove array on the surface, and the hot pressing process parameters corresponding to various forming heights are recorded, and the microstructure forming height is detected by a Taylor profiler;
  • L illuminance in Lux
  • H represents the forming height of the surface microstructure of the transparent polymer plate, in units of ⁇ m, 0.03 ⁇ a ⁇ 0.12, 200 ⁇ m ⁇ b ⁇ 600 ⁇ m;
  • the measured forming height, key point illumination and corresponding transparent polymer plate 5 The hot pressing process parameters are associated, and the data is characterized to establish an empirical database, and the key point illumination is the corresponding illuminance at the end of the dwell time during the hot press forming process.
  • the process parameters are related, and the big data is characterized and stored in the computer to establish an experience database, which serves as a basis for subsequent intelligent adjustment of process parameters and determination of faults.
  • the real-time analysis and control system compares the key point illumination in the hot pressing process with the experience database obtained from the repeated experiment, and the steps of adjusting the corresponding hot pressing process parameters according to the comparison result include:
  • the extracted key point illuminance is compared with the experience database for reference, and the microstructure forming height and hot pressing process parameters corresponding to the currently extracted key point illuminance are obtained;
  • the hot pressing process parameters are adjusted and the next processing is performed.
  • a hot press microstructure forming experiment is performed on a working platform of a hot press apparatus.
  • the size of the transparent polymer plate 5 used is 84 ⁇ 87 ⁇ 3 mm
  • light source 3 is 1 LED strip with a rated voltage of 12 V
  • line sensor 1 is a digital illuminometer.
  • Online light sensor 1 The illuminance data of the hot pressing process is monitored in real time, and the data is transmitted to the computer, and the computer automatically selects and records the key point illumination.
  • the vacuum cover of the hot pressing equipment must be completely closed during the experiment.
  • points a and b are the starting point and ending point of pressurization respectively, and the stage before point a is the clamping process of the hot pressing process, b After the point is the demoulding process of the hot pressing process.
  • the template under the hot press is pushed upward by the oil pump, and the illuminance is slowly increased first and then rapidly decreased.
  • the transparent polymer sheet is in contact with the hot pressing core, it reaches a.
  • the oil pump begins to hold pressure according to the set pressure, and the microstructure is gradually formed.
  • the lower template moves down to the original position, and the demoulding process ends, so b
  • the point is the last moment before demolding, and the illuminance reflects the microstructure depth of the thermoforming.
  • the relationship between the side illuminance of the transparent polymer plate in Fig. 7 and the microstructure height of the transparent polymer plate is obtained by the above experiment.
  • the microstructures of various heights on the transparent polymer plate 5 have been hot-formed by a core having an array of micro-grooves (angle of 120°, depth of 100 ⁇ m), and the corresponding height values are detected by a Taylor profiler. . It is analyzed that when the forming height of the microstructure 6 of the transparent polymer plate 5 is between 70 and 80 ⁇ m, the illuminance distribution interval is 4400 ⁇ 4500 Lux.
  • the online light sensor 1 monitors the change of illumination of each point in real time and transmits it to the computer, and the computer automatically derives the illumination according to time.
  • the key point illuminance and the corresponding process parameters are compared with the data in the database, and the analysis software intelligently judges the parameters and adjustments that need to be adjusted, and automatically transmits to the hot pressing device PLC.
  • the next processing is carried out according to the new process parameters. In this cycle, the effect of adaptive control is achieved, and finally the molding height can be controlled within a certain range.
  • the key technologies for realizing the hot-pressing micro-molding control function of the on-line light-sensing macroscopic surface microarray topography of the product of the present invention include the following three points:
  • Microstructure processing of hot stamping cores In order to process a micro-array of precise size and good quality on the surface of a transparent polymer plate, and to establish a coupling law between the illumination and the surface microstructure of the transparent polymer plate, it is necessary to process the surface of the hot-pressed core by precision grinding technology. a micro-groove array and using a hot press forming technique to produce a series of transparent polymer sheets having different height microstructures on the surface;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Micromachines (AREA)

Abstract

一种宏观光感应微阵列热压成型的实时控制装置和实时控制方法,实时控制装置包括设置在热压设备下模板(12)上的光感应系统、实时分析及控制系统,光感应系统包括光源(3)、在线光感应器(1)、夹具(2),夹具(2)固定在下模板(12)上,光源(3)、在线光感应器(1)固定在夹具(2)上,其中,光源(3)相对透明聚合物板(5)厚度方向的入光面设置,在线光感应器(1)分别相对透明聚合物板(5)入光面的对面和两侧面设置,并与实时分析及控制系统电路连接;实时分析及控制系统通过电路分别连接光源(3)、在线光感应器(1)及热压设备PLC。实时控制装置和实时控制方法实现了对产品宏观表面微阵列成型效果的自适应控制,从而降低了生产成本,提高了加工质量和效率。

Description

一种宏观光感应微阵列热压成型的实时控制装置及方法
技术领域
本发明涉及微透镜阵列聚合物基板热压微成型在线监控和智能故障诊断技术,具体涉及一种基于热压微阵列微成型的高效率和高精度的 实时控制装置及方法 。
背景技术
高精度的微阵列结构基板可以应用于 LED 照明、微流控芯片、光伏发电、光电子等领域。微透镜阵列聚合物基板的低成本制造是产业化的主流。关键技术是如何快速将微米乃至纳米阵列结构形貌高精度复制到光学透镜阵列的聚合物基板表面。目前,微阵列形貌检测采用物理探针法和白光干涉法,但若检测宏观表面的微阵列成型精度会带来极低的工作效率,且无法在线检测识别。因此,在产品热压成型加工的生产过程中急需加入宏观表面的在线检测,实时调整热压成型工艺参数,实现微透镜阵列结构表面的宏观产品精密制造。
发明内容
本发明的目的在于克服现有热压微阵列成型形貌检测方法效率低的缺点,提供一种宏观光感应微阵列热压成型的实时控制装置及方法,该方法与装置可在线检测透明聚合物板表面微结构成型深度,并智能自主地调整工艺参数,实现宏观产品表面微阵列在热压成型过程中的智能控制,从而较大幅度地降低生产成本、人工调试的时间成本,同时提高加工质量和效率。
本发明实现上述目的的技术方案为:
一种宏观光感应微阵列热压成型的实时控制装置,包括 设置在热压设备下模板上的光感应系统、实时分析及控制系统,所述的光感应系统包括光源、在线光感应器、夹具,所述的夹具固定在下模板上,所述的光源、在线光感应器固定在夹具上,其中,所述光源相对透明聚合物板厚度方向的入光面设置,在线光感应器分别相对透明聚合物板入光面的对面和两侧面设置, 并与实时分析及控制系统电路连接;所述的实时分析及控制系统通过电路分别连接 光源、在线光感应器及热压设备PLC,用于根据在线光感应器实时检测的光照调节热压设备的热压参数 。
进一步地,所述的 光源为 LED 灯条。
进一步地,所述在线光感应器与透明聚合物板的距离为 10~30 mm ,其照度 L 最大为 400000 Lux ,最小分辨率为 0.01 Lux 。
进一步地,所述在线光感应器为数字照度计。
一种采用如所述实时控制装置的宏观光感应微阵列热压成型的实时控制方法,包括步骤:
热压过程中在线光感应器感应射入其的光线照度,并实时反馈照度数据至实时分析及控制系统,实时分析及控制系统中可以画出热压过程中的照度 - 时间曲线,用于对加工深度和质量的判断分析;
所述实时分析及控制系统将热压过程中的关键点照度与重复实验所得经验数据库进行参考比对,根据比对的结果调整相应的热压工艺参数,所述关键点照度为热压成型过程中保压时间结束时对应的照度;
所述实时分析及控制系统将调整的工艺参数传输至热压设备 PLC 中,控制热压设备根据所调整的工艺参数进行下一次的透明聚合物板的热压加工;
循环上述步骤,使热压成型的关键点照度所对应的成型高度逐渐逼近并最终与预设高度相一致,实现热压工艺过程的自适应控制。
进一步地,所述重复实验所得经验数据库的建立包括步骤:
通过表面具有微沟槽阵列的热压模芯热压得到各种成型高度的微结构,同时记录下各种成型高度对应的热压工艺参数;
分析微结构的各种成型高度与照度的对应关系,拟合出微结构成型高度的经验公式:
H =-aL+b ,
式中, L 代表照度,单位为 Lux , H 代表透明聚合物板表面微结构的成型高度,单位为 μm , 0.03 ≤ a ≤ 0.12 , 200μm ≤ b ≤ 600μm , ;
将所测的成型高度、关键点照度与对应透明聚合物板的热压工艺参数相关联,对数据进行特征化,以此建立经验数据库,所述关键点照度为热压成型过程中保压时间结束时对应的照度。
进一步地,所述实时分析及控制系统将热压过程中的关键点照度与重复实验所得经验数据库进行参考比对,根据比对的结果调整相应的热压工艺参数的步骤具体包括:
获取当前热压成型过程中的照度 - 时间曲线图;
提取照度 - 时间曲线图中保压时间结束时对应的关键点照度;
将提取的关键点照度与经验数据库进行参考比对,得到与当前提取的关键点照度相对应的微结构成型高度、热压工艺参数;
若当前提取的关键点照度对应的微结构成型高度与预设高度不一致时,调整热压工艺参数,并进行下一次加工。
进一步地,所述的热压工艺参数包括温度、压力和保压时间。
本发明的工作原理是:在热压成型过程中,即使采用相同表面结构的热压模芯,使用不同工艺参数加工的透明聚合物板表面微结构的成型高度亦会有所不同。当光束通过具有不同成型高度微阵列结构的透明聚合物板时,由于其宏观表面微阵列成型结构改变光束传播方向和路径,透明聚合物板另几侧所接收的照度会相应改变。利用多个方向实时采集的光感应大数据进行数据融合、特征化,与原始经验数据库进行比对,判断宏观薄板表面的微阵列高度、宏观成型质量,并预测宏观形变,而不需要压力、温度、位置等传感器及其闭环控制,直接优化热压微成型工艺及参数,判断和预测设备故障。
本发明与现有技术相比具有以下优点:
1. 本发明通过利用在线光感应系统实时监测照度变化,实时反映出透明聚合物板表面微阵列的高度变化情况及加工后透明聚合物板的宏观形变情况,相较于使用轮廓仪检测轮廓形状及人工观察宏观形变的现状,极大地提高了观测效率,缩短调试周期,从而降低了用于检测的人力物力时间成本;
2. 本发明通过利用实时分析及控制系统对在线光感应器的数据进行数据融合、特征化和比对,实时智能地调整工艺参数,实现了对产品宏观表面微阵列成型效果的自适应控制,从而降低了生产成本,提高了加工质量和效率;
3. 本发明通过实时分析及控制系统对工艺参数进行智能选择和调整,不需要压力、温度、位置等传感器及其闭环控制,直接优化热压微成型工艺及参数,判断和预测设备故障。
附图说明
图 1 为光感应系统的连接示意图。
图 2 为光线在无微结构的透明聚合物板中的光路图。
图 3 为光线在有微结构的透明聚合物板中的光路图。
图 4 为光学模拟仿真结构示意图。
图 5 为透明聚合物板微结构成型高度与光源对侧照度之间关系的光学仿真结果图(包括散点仿真结果及拟合曲线)。
图 6 为典型的热压成型过程照度 - 时间曲线图。
图 7 为透明聚合物板微结构成型高度与光源对侧照度之间关系的实验结果图(包括散点实验数据及拟合曲线)。
图中: 1- 在线光感应器; 2- 夹具; 3- 光源; 4- 入射光线; 5- 透明聚合物板; 6- 微结构; 7- 光源模型; 8- 透明聚合物板模型; 9- 钢材质的上下模板模型; 10- 接收面模型; 12- 下模板。
具体实施方式
下面结合附图和实施例对本发明做进一步的说明,但本发明要求保护的范围并不局限于此。
如图 2 和图 3 所示,具有不同高度的微结构对入射光线的光路具有不同的影响。当入射光线 4 照射至没有微结构 6 (微结构高度为 0μm )的透明聚合物板 5 中,由于光线到达透明聚合物板 5 的上下平面的入射角较大,光线全反射,而后照射到在线光感应器 1 的传感器上,在线光感应器 1 接收到光线数量较多;然而,当完全相同的入射光线 4 照射至具有微结构 6 的透明聚合物板 5 中,其中的微结构 6 通过对入射光线 4 的折射和反射改变其传播方向,使部分的入射光线从微结构对面(图 3 中为上表面)射出,只有余下的部分光线照射至在线光感应器 1 的传感器上,在线光感应器 1 接收到的光线数量较少。因此,相较于没有微结构 6 的透明聚合物板 5 ,具有微结构 6 的透明聚合物板 5 右侧的在线光感应器 1 照度较小。
如图 4 所示,利用光学模拟软件 TracePro 验证本发明所述技术方案的可行性。首先,建立 13 个表面具有微阵列结构的透明聚合物板模型 8 ,具体的参数如下:
性能 / 参数 数值
材质 PMMA
透明聚合物板几何尺寸 84×87×3 mm
微结构形状 V 型沟槽
微结构角度 120°
微结构成型高度 0~90 μm (间隔 10 μm )以及 95 、 98 和 100 μm
接着,为了模拟热压成型时透明聚合物板的实际工况,根据透明聚合物板模型 8 的大小在其上下面建立一个钢材质的上下模板模型 9 ;最后,建立接受面模型 10 ,并在透明聚合物板模型 8 左侧放置波长为 0.5 μm 、照度为 3 W/m2 、光线数为 1,000,000 条的朗伯表面光源模型 7 。
如图 5 所示,通过建立表面具有不同高度微结构的透明聚合物板模型 8 ,并模拟光线射入多种透明聚合物板侧面后所通过的光路,从而得出相应的照度(透明聚合物板的面平均照度)。经分析,随着光线逐渐远离光源模型 7 ,光线的能量会逐渐衰减,且透明聚合物板微结构的成型高度与照度近似成反比关系,即照度随微结构成型高度的增加而减小。从衰减幅度也逐渐减小的现象可知,在检测成型高度较小的微结构时,光学光感应系统的灵敏度较高,反之,灵敏度则会相对降低。
实施例一
如图 1 所示,一种宏观光感应微阵列热压成型的实时控制装置,包括 设置在热压设备下模板12上的光感应系统、实时分析及控制系统,所述的光感应系统包括光源3、在线光感应器1、夹具2,所述的夹具2固定在下模板12上,所述的光源3、在线光感应器1固定在夹具2上,其中, 所述的 光源3为 额定电压为 12 V 的 LED 灯条, 相对透明聚合物板5厚度方向的入光面设置,在线光感应器分别相对透明聚合物板5入光面的对面和两侧面设置, 并与实时分析及控制系统电路连接;本实施例中,所述的实时分析及控制系统采用计算机,所述计算机通过电路分别连接 在线光感应器1及热压设备PLC,用于根据在线光感应器1实时检测的光照度调节热压设备的热压参数 。
所述在线光感应器 1 与透明聚合物板 5 的距离为 10~30 mm ,其照度 L 最大为 400000 Lux ,最小分辨率为 0.01 Lux 。
本实施例中,计算机通过数据线缆将系统与 光感应系统 相连,在线光感应器 1 可以感应射入其传感器的光线照度,并实时反馈照度数据至计算机,在计算机中可以画出照度 - 时间曲线,用于对加工深度和质量的判断分析。计算机将照度数据与重复实验所得经验数据库进行参考比对,智能地判断需要调整的工艺参数,并传输至 热压设备PLC 中,热压设备依此修改加工参数并进行下一次的透明聚合物板加工,实现热压工艺过程的自适应控制。
热压设备加工过程中,时而会出现工件粘连模芯、位置偏移或时而机器出现故障,实时分析及控制系统可依据各点反馈的照度的变化趋势、变化快慢、尤其是曲线中反常的突变情况,对加工过程中的异常情况进行智能预测、判断。
实施例二
一种采用如所述实时控制装置的宏观光感应微阵列热压成型的实时控制方法,包括步骤:
热压过程中在线光感应器 1 感应射入其的光线照度,并实时反馈照度数据至实时分析及控制系统,实时分析及控制系统中可以画出热压过程中的照度 - 时间曲线,用于对加工深度和质量的判断分析;
所述实时分析及控制系统将热压过程中的关键点照度与重复实验所得经验数据库进行参考比对,根据比对的结果调整相应的热压工艺参数,所述关键点照度为热压成型过程中保压时间结束时对应的照度;
所述实时分析及控制系统将调整的工艺参数传输至热压设备 PLC 中,控制热压设备根据所调整的工艺参数进行下一次的透明聚合物板的热压加工;
循环上述步骤,使热压成型的关键点照度所对应的成型高度逐渐逼近并最终与预设高度相一致,实现热压工艺过程的自适应控制。
具体而言,所述重复实验所得经验数据库的建立包括步骤:
通过表面具有微沟槽阵列的热压模芯热压得到各种成型高度的微结构,同时记录下各种成型高度对应的热压工艺参数,微结构成型高度由泰勒轮廓仪检测而得;
分析微结构的各种成型高度与照度的对应关系,拟合出微结构成型高度的经验公式:
H =-aL+b ,
式中, L 代表照度,单位为 Lux , H 代表透明聚合物板表面微结构的成型高度,单位为 μm , 0.03 ≤ a ≤ 0.12 , 200μm ≤ b ≤ 600μm , ;
将所测的成型高度、关键点照度与对应透明聚合物板 5 的热压工艺参数相关联,对数据进行特征化,以此建立经验数据库,所述关键点照度为热压成型过程中保压时间结束时对应的照度。
在足够的重复实验后,将测得成型高度、关键点照度与对应透明聚合物板 5 的工艺参数相关联,对大数据进行特征化,并存入计算机,以此建立经验数据库,作为后续智能调整工艺参数及判断诊断故障的依据。
具体而言,所述实时分析及控制系统将热压过程中的关键点照度与重复实验所得经验数据库进行参考比对,根据比对的结果调整相应的热压工艺参数的步骤具体包括:
获取当前热压成型过程中的照度 - 时间曲线图;
提取照度 - 时间曲线图中保压时间结束时对应的关键点照度;
将提取的关键点照度与经验数据库进行参考比对,得到与当前提取的关键点照度相对应的微结构成型高度、热压工艺参数;
若当前提取的关键点照度对应的微结构成型高度与预设高度不一致时,调整热压工艺参数,并进行下一次加工。
本实施例中,在热压设备的工作平台上进行热压微结构成型实验。所用透明聚合物板 5 的尺寸为 84 × 87 × 3 mm ,光源 3 为 1 条额定电压为 12 V 的 LED 灯条,在线光感应器 1 为数字照度计。在线光感应器 1 实时监测热压过程的照度数据,并将数据传至计算机,计算机自动选择并记录下关键点照度。为防止外界光线射入实验环境而影响实验结果的准确性,实验过程中热压设备的真空罩须完全闭合。
如图 6 所示, a 、 b 点分别为加压的起始点和结束点, a 点前的阶段为热压工艺的合模过程, b 点后为热压工艺的脱模过程。热压机下模板由油泵推动向上移动,照度先缓慢增大后快速减小,当透明聚合物薄板与热压模芯接触,达到 a 点,油泵开始按设定压力进行保压,微结构逐渐成型。保压时间结束,达到 b 点,下模板向下移动至原位,脱模过程结束,故 b 点为脱模前最后一瞬间,其照度反应热压成型微结构深度。
图 7 中透明聚合物板侧面照度随透明聚合物板微结构成型高度的变化关系就是利用上述实验得出的。其中,透明聚合物板 5 上各种高度的微结构已通过表面具有微沟槽阵列的模芯(角度为 120° ,深度为 100 μm )热压成型,相应的高度值由泰勒轮廓仪检测得到。经分析,当透明聚合物板 5 的微结构 6 的成型高度在 70~80 μm 之间时,照度分布区间为 4400~4500 Lux 。换而言之,在热压成型中只需将上述的照度控制在 4400~4500 Lux 范围内,便可确保尺寸为 84 × 87 × 3 mm 的透明聚合物板上的微结构成型高度在 70~80 μm 之间。利用图 5 中的实验结果可拟合出微结构成型高度的经验公式: H =-0.05853L+344.6 μm 。由该公式还可计算出本发明所述的在线光感应器 1 在检测具有高度为 70~80 μm 的微结构阵列的透明聚合物板表面时的灵敏度约为 17 Lux/μm 。
在实际加工过程中, 在线光感应器1 实时监测各点照度的变化并传至计算机,计算机自动导出照度关于时间的 Excel 表格并输入分析软件。将关键点照度及对应工艺参数与数据库中数据进行比对,分析软件智能地判断需要调整的参数及调整量,并自动传输至热压设备 PLC 中,之后依照新的工艺参数进行下一次加工。以此循环,达到自适应控制的效果,最终可将成型高度控制在一定要求范围内。
实现本发明所述产品在线光感应宏观表面微阵列形貌的热压微成型控制功能的关键技术包括以下三点:
1. 建立光照与透明聚合物板表面微结构成型高度之间的耦合规律。为了提高系统的灵敏度和精确度,需合理选择光源与在线光感应器在透明聚合物板四周的摆放位置后方可进行实验;
2. 热压模芯的微结构加工。为了在透明聚合物板表面加工出尺寸精确、质量优良的微阵列,以及建立光照与透明聚合物板表面微结构成型高度之间的耦合规律,必须通过精密磨削技术在热压模芯表面加工出微沟槽阵列,并利用热压成型技术制造出表面具有不同高度微结构的一系列透明聚合物板;
3. 实时分析及控制系统的建立。为了实时分析和修改工艺参数以达到最佳的加工质量,须进行大量重复实验得出照度、照度 - 时间变化曲线与微结构成型高度之间的关系,为实时分析及控制系统建立原始经验数据库,供后续加工进行数据比对并选取合适参数作依据。
上述为本发明较佳的实施方式和实施例,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种宏观光感应微阵列热压成型的实时控制装置,其特征在于,包括设置在热压设备下模板 (12) 上的光感应系统、实时分析及控制系统,所述的光感应系统包括光源 (3) 、在线光感应器 (1) 、夹具 (2) ,所述的夹具 (2) 固定在下模板 (12) 上,所述的光源 (3) 、在线光感应器 (1) 固定在夹具 (2) 上,其中,所述光源 (3) 相对透明聚合物板 (5) 厚度方向的入光面设置,在线光感应器分别相对透明聚合物板 (5) 入光面的对面和两侧面设置,并与实时分析及控制系统电路连接;所述的实时分析及控制系统通过电路分别连接光源 (3) 、在线光感应器 (1) 及热压设备 PLC, 用于根据在线光感应器 (1) 实时检测的光照调节热压设备的热压参数。
  2. 根据权利要求 1 所述的宏观光感应微阵列热压成型的实时控制装置,其特征在于:所述的 光源 ( 3 ) 为 LED 灯条。
  3. 根据权利要求 1 所述的宏观光感应微阵列热压成型的实时控制装置,其特征在于:所述在线光感应器 (1) 与透明聚合物板 (5) 的距离为 10~30 mm ,其照度 L 最大为 400000 Lux ,最小分辨率为 0.01 Lux 。
  4. 根据权利要求 3 所述的宏观光感应微阵列热压成型的实时控制装置,其特征在于:所述在线光感应器 (1) 为数字照度计。
  5. 一种采用如权利要求 1 至 4 中任一项所述实时控制装置的宏观光感应微阵列热压成型的实时控制方法,其特征在于,包括步骤:
    热压过程中在线光感应器 (1) 感应射入其的光线照度,并实时反馈照度数据至实时分析及控制系统,实时分析及控制系统中可以画出热压过程中的照度 - 时间曲线,用于对加工深度和质量的判断分析;
    所述实时分析及控制系统将热压过程中的关键点照度与重复实验所得经验数据库进行参考比对,根据比对的结果调整相应的热压工艺参数,所述关键点照度为热压成型过程中保压时间结束时对应的照度;
    所述实时分析及控制系统将调整的工艺参数传输至热压设备 PLC 中,控制热压设备根据所调整的工艺参数进行下一次的透明聚合物板的热压加工;
    循环上述步骤,使热压成型的关键点照度所对应的成型高度逐渐逼近并最终与预设高度相一致,实现热压工艺过程的自适应控制。
  6. 根据权利要求 5 所述的宏观光感应微阵列热压成型的实时控制方法,其特征在于,所述重复实验所得经验数据库的建立包括步骤:
    通过表面具有微沟槽阵列的热压模芯热压得到各种成型高度的微结构,同时记录下各种成型高度对应的热压工艺参数;
    分析微结构的各种成型高度与照度 L 的对应关系,拟合出微结构成型高度的经验公式:
    H =-aL+b ,
    式中, L 代表照度,单位为 Lux , H 代表透明聚合物板表面微结构的成型高度,单位为 μm , 0.03 ≤ a ≤ 0.12 , 200μm ≤ b ≤ 600μm , ;
    将所测的成型高度、关键点照度与对应透明聚合物板的热压工艺参数相关联,对数据进行特征化,以此建立经验数据库,所述关键点照度为热压成型过程中保压时间结束时对应的照度。
  7. 根据权利要求 5 所述的宏观光感应微阵列热压成型的实时控制方法,其特征在于,所述实时分析及控制系统将热压过程中的关键点照度与重复实验所得经验数据库进行参考比对,根据比对的结果调整相应的热压工艺参数的步骤具体包括:
    获取当前热压成型过程中的照度 - 时间曲线图;
    提取照度 - 时间曲线图中保压时间结束时对应的关键点照度;
    将提取的关键点照度与经验数据库进行参考比对,得到与当前提取的关键点照度相对应的微结构成型高度、热压工艺参数;
    若当前提取的关键点照度对应的微结构成型高度与预设高度不一致时,调整热压工艺参数,并进行下一次加工。
  8. 根据权利要求 5 所述的宏观光感应微阵列热压成型的实时控制方法,其特征在于,所述的热压工艺参数包括温度、压力和保压时间。
    所述的宏观光感应微阵列热压成型的实时控制方法,其特征在于,所述的热压工艺参数包括温度、压力和保压时间。
PCT/CN2017/115398 2017-04-06 2017-12-11 一种宏观光感应微阵列热压成型的实时控制装置及方法 WO2018184401A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019548264A JP6694629B2 (ja) 2017-04-06 2017-12-11 感光マイクロアレイのマクロホットエンボス成形のリアルタイム制御装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710226928.5A CN106950911B (zh) 2017-04-06 2017-04-06 一种宏观光感应微阵列热压成型的实时控制装置及方法
CN201710226928.5 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018184401A1 true WO2018184401A1 (zh) 2018-10-11

Family

ID=59474241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115398 WO2018184401A1 (zh) 2017-04-06 2017-12-11 一种宏观光感应微阵列热压成型的实时控制装置及方法

Country Status (3)

Country Link
JP (1) JP6694629B2 (zh)
CN (1) CN106950911B (zh)
WO (1) WO2018184401A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950911B (zh) * 2017-04-06 2023-05-23 华南理工大学 一种宏观光感应微阵列热压成型的实时控制装置及方法
CN110262380B (zh) * 2019-07-05 2021-11-23 华南理工大学 基于经验工艺概率的微阵列热压成型精度控制系统及方法
CN110849845A (zh) * 2019-11-19 2020-02-28 佛山科学技术学院 一种在线检测控制复合微结构阵列微成型的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200427979A (en) * 2003-06-02 2004-12-16 Chen-Hong He Method and system for monitoring the mold strain in nanoimprint lithography technique
CN1638081A (zh) * 2003-12-26 2005-07-13 富士通株式会社 摄像元件测试方法及装置
CN102506996A (zh) * 2011-11-11 2012-06-20 中航华东光电有限公司 一种用于较宽亮度范围的侧背光亮度采样装置
CN106950911A (zh) * 2017-04-06 2017-07-14 华南理工大学 一种宏观光感应微阵列热压成型的实时控制装置及方法
CN206696685U (zh) * 2017-04-06 2017-12-01 华南理工大学 一种宏观光感应微阵列热压成型的实时控制装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008889A (ja) * 2006-05-31 2008-01-17 Canon Inc ギャップ測定方法、インプリント方法、及びインプリント装置
CN104113946B (zh) * 2013-04-17 2017-02-22 宝山钢铁股份有限公司 光源照度自适应控制装置及方法
JP6361970B2 (ja) * 2014-09-19 2018-07-25 大日本印刷株式会社 ナノインプリント用構造体の検査方法およびその製造方法
CN105300514A (zh) * 2014-10-20 2016-02-03 苏州大学 基于无线传感器的照度分析系统
CN105120550B (zh) * 2015-05-22 2017-10-20 许敏 一种基于超声定位的led无影灯智能调光系统
CN106061030A (zh) * 2016-07-15 2016-10-26 深圳市博适通照明有限公司 智能照明系统
CN206061205U (zh) * 2016-07-15 2017-03-29 深圳市博适通照明有限公司 智能照明系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200427979A (en) * 2003-06-02 2004-12-16 Chen-Hong He Method and system for monitoring the mold strain in nanoimprint lithography technique
CN1638081A (zh) * 2003-12-26 2005-07-13 富士通株式会社 摄像元件测试方法及装置
CN102506996A (zh) * 2011-11-11 2012-06-20 中航华东光电有限公司 一种用于较宽亮度范围的侧背光亮度采样装置
CN106950911A (zh) * 2017-04-06 2017-07-14 华南理工大学 一种宏观光感应微阵列热压成型的实时控制装置及方法
CN206696685U (zh) * 2017-04-06 2017-12-01 华南理工大学 一种宏观光感应微阵列热压成型的实时控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SI , XIANHAI: "Study on Design and Manufacturing Technology of Light Guide Plate with Optical Microlens Array", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY II, 15 February 2017 (2017-02-15) *

Also Published As

Publication number Publication date
JP6694629B2 (ja) 2020-05-20
CN106950911A (zh) 2017-07-14
JP2020509950A (ja) 2020-04-02
CN106950911B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2018184401A1 (zh) 一种宏观光感应微阵列热压成型的实时控制装置及方法
WO2017007229A1 (ko) 자동 물공급장치
US7486878B2 (en) Offset correction methods and arrangement for positioning and inspecting substrates
JP2010515027A5 (zh)
TW200611084A (en) Lithographic apparatus and device manufacturing method
CN104330417B (zh) 图像检测成像装置及图像检测设备
CN1261160A (zh) 测量光纤块的光学对准的装置和方法
US11829077B2 (en) System and method for determining post bonding overlay
US12025426B2 (en) Measuring device and method for determining the course of a bonding wave
KR102012797B1 (ko) 열풍을 이용한 프로브 카드 예열이 가능한 웨이퍼 프로버
CN106644204B (zh) 集约式钢化玻璃表面应力仪
CN206583407U (zh) 应力二次元检测一体机
CN116202883B (zh) 一种混凝土陶粒砌块抗压隔音性能测试装置
US9817216B2 (en) Method and device for producing a plurality of microlenses
CN114777693B (zh) 一种使用光来检测产品平面度的检测装置及检测方法
CN206696685U (zh) 一种宏观光感应微阵列热压成型的实时控制装置
CN110849845A (zh) 一种在线检测控制复合微结构阵列微成型的装置及方法
CN105136049A (zh) 一种用于半导体器件材料厚度的光学测量方法
CN106839983B (zh) 应力二次元检测一体机
CN216694821U (zh) 一种胶塞位置校准检查装置
WO2015088090A1 (ko) Tco 제조장치 및 제조방법
CN221199422U (zh) 一种多位置便于调节式视觉检测装置
CN219608380U (zh) 一种盖板自动开关机构
KR100195211B1 (ko) 반도체 기판의 온도 측정 장치 및 방법
TWI752732B (zh) 穿孔對位總成及穿孔對位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17904543

Country of ref document: EP

Kind code of ref document: A1