WO2018184343A1 - 应用于卫星导航的双频四臂螺旋天线 - Google Patents

应用于卫星导航的双频四臂螺旋天线 Download PDF

Info

Publication number
WO2018184343A1
WO2018184343A1 PCT/CN2017/100178 CN2017100178W WO2018184343A1 WO 2018184343 A1 WO2018184343 A1 WO 2018184343A1 CN 2017100178 W CN2017100178 W CN 2017100178W WO 2018184343 A1 WO2018184343 A1 WO 2018184343A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
line
dual
frequency
coupling line
Prior art date
Application number
PCT/CN2017/100178
Other languages
English (en)
French (fr)
Inventor
曲美君
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018184343A1 publication Critical patent/WO2018184343A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • Future satellite navigation systems will achieve compatible operation, achieve a certain degree of resource sharing, and establish a joint navigation system to further improve navigation accuracy.
  • a multi-system compatible navigation system integrating multiple satellite navigation systems can greatly improve positioning accuracy, reliability, security, continuity, and efficiency. This makes multi-system compatible navigation a trend in the future development of satellite navigation.
  • the antenna system can realize the mutual communication between the satellite and the ground, as well as the remote control of the satellite and the transmission of telemetry commands. Therefore, the stability and reliability of the antenna system To a large extent, it determines whether the satellite can successfully perform the predetermined tasks. It can be seen that the performance of the antenna has a huge impact on the performance of the navigation system. Therefore, the design of satellite antennas has also become a crucial research topic.
  • the four-arm helical antenna has a large size disadvantage compared with the microstrip antenna, but it has good directivity and wide-angle circular polarization.
  • the research interests of the four-arm helical antenna have attracted attention, especially the four-arm helical antenna used in multi-system compatible satellite navigation is extremely popular.
  • the existing four-arm helical antenna to realize multi-frequency technology it is necessary to use two or more resonance four-arm helical antennas of different frequencies stacked on each other or combined internally and externally to achieve multi-frequency.
  • a primary object of the present invention is to provide a dual-frequency four-arm helical antenna for satellite navigation, which aims to solve the technical problem of the dual-frequency characteristics and the circular polarization characteristics of the four-arm helical antenna in the prior art.
  • the present invention provides a dual-frequency four-arm helical antenna for satellite navigation, comprising a PCB board, a cylindrical dielectric body and an antenna metal ground, the antenna being metally disposed on the PCB board. lower surface
  • the outer surface of the side wall of the cylindrical medium body is spirally wound with four monopole radiation arms, and the end of each monopole radiation arm is provided with a metal copper column, and the cylindrical medium body
  • the bottom of the bottom is fixed on the PCB by four metal copper pillars, and each monopole radiating arm includes a first coupling line and a second coupling line.
  • the four metal copper pillars are equidistantly disposed on the bottom circumference of the cylindrical dielectric body, and the four metal copper pillars serve as four input ports of the dual-frequency four-arm helical antenna, and signals input from each input port
  • the amplitudes are the same and the phases are 90 degrees out of order;
  • the first coupling line and the second coupling line are metal copper sheets of a width-graded strip structure, and the first microstrip line and the second microstrip line are metal copper sheets of a rectangular structure.
  • the length of the first coupling line is L a
  • the thickness of the metal copper sheets constituting the first coupling line, the second coupling line, the first microstrip line and the second microstrip line is 35 um.
  • the cylindrical medium body has a cylindrical radius of 7 to 10 cm.
  • the antenna metal is a copper-clad metal piece disposed on a lower surface of the PCB.
  • the PCB board is etched with four circular holes for feeding at a position where four metal copper pillars are connected, and four metal copper pillars are penetrated from the upper surface of the PCB board through four circular holes to The lower surface of the PCB board is not in metal contact with the antenna.
  • the relative dielectric constant of the PCB board is 0.762 mm.
  • the cylindrical medium body is made of a dielectric plate of the type FR4, having a relative dielectric constant of 2.2 and a thickness of 0.2 mm.
  • the dual-frequency four-arm helical antenna applied to satellite navigation according to the present invention adopts four monopole radiation arms on the sidewall surface of the cylindrical medium body, and has a good antenna pattern. Characteristics and circular polarization characteristics, and can improve the antenna gain; meanwhile, two unequal length coupling lines are used as the monopole radiating arm. The designer can change the length of the two coupling lines to make the antenna work at the same time. Two different operating frequencies, thus achieving the dual frequency characteristics of the antenna.
  • FIG. 1 is a schematic perspective view showing a preferred embodiment of a dual-frequency quadrifilar helical antenna applied to satellite navigation according to the present invention
  • FIG. 2 is a plan view showing a planar structure of a monopole radiating arm of a dual-frequency quadrifilar helical antenna applied to satellite navigation according to the present invention
  • FIG. 3 is a plan view showing a plane size of a monopole radiating arm of a dual-frequency quadrifilar helical antenna applied to satellite navigation according to the present invention
  • FIG. 4 is a first schematic diagram showing a reflection coefficient corresponding to a change in arm length of a radiation arm of a dual-frequency four-arm helical antenna applied to satellite navigation according to the present invention
  • FIG. 5 is a second schematic diagram of a reflection coefficient corresponding to a change in arm length of a radiation arm of a dual-frequency quadrifilar helical antenna applied to satellite navigation according to the present invention.
  • Fig. 1 is a perspective view showing a preferred embodiment of a dual-frequency four-arm helical antenna applied to satellite navigation according to the present invention.
  • the dual-frequency four-arm helical antenna includes a PCB board 1, an antenna metal ground 10, and a cylindrical dielectric body 20, and the antenna is metally disposed on a lower surface of the PCB board 1, the cylindrical shape
  • the outer surface of the side wall of the dielectric body 20 is provided with four monopole radiating arms 30 (only two monopole radiating arms 30 in front of the cylindrical dielectric body 20 are shown in Fig. 1, the latter two are not shown).
  • a metal copper post 40 is disposed at the end of each of the monopole radiating arms 30, and the bottom of the cylindrical dielectric body 20 is fixed to the PCB 1 by four metal copper posts 40.
  • four metal copper pillars 40 are symmetrically disposed on the bottom circumference of the cylindrical dielectric body 20 and fixed to the PCB board 1.
  • the antenna metal ground 10 is a copper-clad metal piece disposed on a lower surface of the PCB board 1.
  • the PCB board 1 is etched with four circular holes 41 for feeding at a position where four metal copper pillars 40 are connected, and the circular hole 41 is The radius is larger than the radius of the metal copper post 40, and the four metal copper posts 40 penetrate from the upper surface of the PCB board 1 to the lower surface of the PCB board 1 through the four circular holes 41, and are not in contact with the antenna metal ground 10.
  • the PCB board 1 adopts a specific plate type of RO4350B, wherein the relative dielectric constant is 3.
  • the cylindrical medium body 20 is made of a soft and light dielectric plate, and the specific plate type is a FR4 type dielectric plate, wherein the relative dielectric constant is 2.2 and the thickness is 0.2 mm, and the dielectric plate is bent into a hollow cylindrical shape.
  • the dielectric body 20, the four monopole radiating arms 30 are spirally wound around the outer surface of the side wall of the cylindrical dielectric body 20.
  • the cylindrical medium body 20 preferably has a cylindrical radius of 7 to 10 cm.
  • the cylindrical dielectric body 20 is filled with a plastic foam for fixing and supporting the antenna, and the antenna gain can be improved.
  • the four metal copper pillars 40 serve as four input ports of the four-arm helical antenna, and the four metal copper pillars 40 are equidistantly disposed on the bottom circumference of the cylindrical dielectric body 20, and the input signals have the same amplitude and phase in sequence. With a difference of 90 degrees, it has good antenna pattern characteristics and circular polarization characteristics, which can effectively counter the signal multipath weakening effect.
  • FIG. 2 is a schematic plan view showing a planar structure of a monopole radiating arm of a dual-frequency four-arm helical antenna applied to satellite navigation according to the present invention.
  • each monopole radiating arm 30 includes a first coupling line 31, a second coupling line 32, a first microstrip line 33, and a second microstrip line 34.
  • the first coupling line 31 The connecting end is connected to one end of the first microstrip line 33 such that the first coupling line 31 and the first microstrip line 33 form an L-shaped or quasi-L shape, and the connecting end of the second coupling line 32 is connected to the second microstrip One end of the line 34 forms the L-shaped or quasi-L-shaped shape of the second coupling line 32 and the second microstrip line 34, and the other end of the second microstrip line 34 is connected to the first microstrip line 33 and the first coupling line 31. Connection.
  • the quasi-L shape defined in this embodiment is approximately L-shaped as a whole, for example, the first coupling line 31 and the first microstrip line 33 form a quasi-L shape ⁇ , and the angle between the two is slightly greater than 90 degrees;
  • the second coupling line 32 and the second microstrip line 34 form a quasi-L-shaped shape, and the angle between the two is slightly greater than 90 degrees.
  • the first coupling line 31 and the second coupling line 32 are metal copper sheets of a width-graded strip structure.
  • the present invention defines that the width-graded strip-like structure of the first coupling line 31 refers to a shape structure in which the width of the first coupling line 31 is gradually narrowed along the connecting end of the first coupling line 31 to the connecting end of the first coupling line 31.
  • the width-graded strip-like structure of the second coupling line 32 refers to a shape structure of the width of the second coupling line 32 along the connection end of the second coupling line 32 to the connection end of the second coupling line 32.
  • connection end of the first coupling line 31 refers to one end connected to the first microstrip line 33, and the free end of the first coupling line 31 refers to one end not connected to the first microstrip line 33;
  • connection end of the second coupling line 32 refers to one end connected to the second microstrip line 34, and the free end of the second coupling line 32 refers to one end not connected to the second microstrip line 34.
  • FIG. 3 is a schematic plan view showing a planar structure of a monopole radiating arm of a dual-frequency quadrifilar helical antenna applied to satellite navigation according to the present invention.
  • the dual-frequency four-arm helical antenna designed for satellite navigation according to the present invention takes the working frequency band of the working GPS satellite navigation system and the working frequency band of the Beidou-2 satellite navigation system to realize the dual-frequency characteristics of the antenna as an example, through a specific embodiment.
  • the length and width of the first coupling line 31, the second coupling line 3, the first microstrip line 33, and the second microstrip line 34 will be described.
  • the first coupling line 31 and the second coupling line 32 are metal copper sheets of a width-graded strip structure, and the metal copper constituting the first coupling line 31 and the second coupling line 32.
  • the thickness of the sheets is 35um.
  • the first microstrip line 33 and the second microstrip line 34 are metal copper sheets of a rectangular structure, which constitutes the first
  • the thickness of the metal copper sheets of one microstrip line 33 and the second microstrip line 34 is 35 um.
  • FIG. 4 is a first schematic diagram showing a reflection coefficient corresponding to a change in arm length of a monopole radiation arm of a dual-frequency quadrifilar helical antenna according to the present invention.
  • the length L b of the second coupling line 32 is fixed to be 101 mm
  • the length of the first coupling line 31 is obtained!
  • is equal to 147.8 mm, 158.7 mm, and 169.6 mm, respectively
  • FIG. 4 reflects the change in the reflection coefficient corresponding to the change in the length of the first coupling line 31 of the monopole radiating arm 30.
  • the length of the first coupling line 31! ⁇ becomes larger, the high-frequency resonance point hardly changes, and the low-frequency resonance point moves to the low frequency, that is, from 1.19 GHz to 1.09 GHz.
  • FIG. 5 is a second schematic diagram showing the reflection coefficient corresponding to the arm length variation ⁇ of the monopole radiation arm of the dual-frequency quadrifilar helical antenna of the present invention.
  • the length L a of the first coupling line 31 is fixed, the length L b of the second coupling line 32 is equal to 101 mm, 98.8 mm, and 92.5 mm, respectively, and FIG. 5 reflects the monopole radiation.
  • the length of the second coupling line 32 of the arm 30 changes by a corresponding change in the reflection coefficient.
  • the designer can operate the dual-frequency four-arm helical antenna at the same time by changing the length L nL b design of the two coupling lines constituting each of the monopole radiating arms 30. Two different working frequencies. Since four monopole radiating arms 30 are provided on the side surface of the cylindrical dielectric body 20, and two unequal length coupling lines are used as the monopole radiating arms 30, the antenna has good dual frequency characteristics.
  • the dual-frequency quadrifilar helical antenna of the present invention has four antenna monopole radiation arms 30 disposed on the side surface of the cylindrical dielectric body 20, and has excellent antenna pattern and circular polarization characteristics, and can be improved. Antenna gain; Similarly, two unequal length coupling lines are used as the monopole radiating arm 30. The designer can change the length of the two coupling lines to make the antenna work at two different working frequencies.
  • the dual-frequency characteristics of the antenna can be widely used in satellite navigation systems.
  • the dual-frequency four-arm helical antenna applied to satellite navigation of the present invention adopts four monopole radiating arms on the sidewall surface of the cylindrical medium body, and has good antenna pattern characteristics and a circle. Polarization characteristics, and can improve the antenna gain; meanwhile, using two unequal length coupling lines as the monopole radiating arm, the designer can change the length of the two coupling lines to make the antenna work in two different ways.
  • the operating frequency is such that the dual frequency characteristics of the antenna are achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开一种应用于卫星导航的双频四臂螺旋天线,包括PCB板、圆筒状介质体和设置在PCB板下表面的天线金属地,圆筒状介质体的侧壁螺旋式环绕印制四个单极子辐射臂,每一个单极子辐射臂的末端设置金属铜柱,圆筒状介质体的底部通过四个金属铜柱固定在PCB板上,每一个单极子辐射臂包括第一耦合线、第二耦合线、第一微带线和第二微带线。第一耦合线的连接端连接第一微带线的一端,第一微带线的另一端连接一个金属铜柱;第二耦合线的连接端连接第二微带线的一端,第二微带线的另一端连接第一微带线与第一耦合线的连接处,四个金属铜柱等距离对称设置在圆筒状介质体的底部圆周上。本发明所述天线具有良好的方向图特性、圆极化特性和双频特性。

Description

应用于卫星导航的双频四臂螺旋天线 技术领域
[0001] 本发明涉及卫星通信技术领域, 尤其涉及一种应用于卫星导航的双频四臂螺旋 天线。
背景技术
[0002] 未来的卫星导航系统间将会实现兼容运行, 实现一定程度的资源共享, 并且建 立起联合导航体系, 进一步提高导航精度。 相较于单一的卫星导航系统, 同一 地区空间内的可见卫星数量增多, 所以集成多个卫星导航系统的多系统兼容导 航系统可以使定位精度、 可靠性、 安全性、 连续性、 效率大幅提高, 这使得多 系统兼容导航成为未来卫星导航发展的趋势。
[0003] 天线系统作为卫星系统组成中非常重要的一部分, 可以实现卫星与地面之间的 相互通信, 以及地面对卫星的遥控和遥测指令的发送等, 因此, 天线系统的稳 定性及可靠性很大程度上决定了卫星是否能成功执行预定的任务, 可以看出天 线性能的优劣对导航系统的性能有着巨大的影响。 所以卫星天线的设计也成为 一个至关重要的研究课题。 四臂螺旋天线较于微带天线虽具有体积大的不利因 素, 但它具有较好的方向性、 广角圆极化特性。 所以, 四臂螺旋天线的研究曰 益受到关注, 特别是应用于多系统兼容卫星导航中的四臂螺旋天线极受热捧。 对于现有的四臂螺旋天线实现多频技术, 需要使用两个或多个谐振在不同频率 的四臂螺旋天线相互叠放或内外组合放置来达到多频的目的。
技术问题
[0004] 本发明的主要目的提供一种应用于卫星导航的双频四臂螺旋天线, 旨在解决现 有技术中的四臂螺旋天线的双频特性与圆极化特性不佳的技术问题。
问题的解决方案
技术解决方案
[0005] 为实现上述目的, 本发明提供了一种应用于卫星导航的双频四臂螺旋天线, 包 括 PCB板、 圆筒状介质体和天线金属地, 所述天线金属地设置在 PCB板的下表面 , 所述圆筒状介质体的侧壁外表面螺旋式环绕印制有四个单极子辐射臂, 每一 个单极子辐射臂的末端设置有一个金属铜柱, 所述圆筒状介质体的底部通过四 个金属铜柱固定在 PCB板上, 每一个单极子辐射臂包括第一耦合线、 第二耦合线
、 第一微带线和第二微带线, 其中:
[0006] 所述第一耦合线的连接端连接至第一微带线的一端使第一耦合线与第一微带线 形成 L形或准 L形的形状, 所述第一微带线的另一端连接一个所述金属铜柱; [0007] 所述第二耦合线的连接端连接至第二微带线的一端使第二耦合线与第二微带线 形成 L形或准 L形的形状, 所述第二微带线的另一端连接至第一微带线与第一耦 合线的连接处;
[0008] 所述四个金属铜柱等距离对称设置在圆筒状介质体的底部圆周上, 四个金属铜 柱作为双频四臂螺旋天线的四个输入端口, 每个输入端口输入的信号幅度相同 且相位依次相差 90度;
[0009] 所述第一耦合线和第二耦合线均为宽度渐变式长条状结构的金属铜片, 所述第 一微带线和第二微带线为矩形结构的金属铜片。
[0010] 优选的, 所述第一耦合线的长度为 L a
= 147.8mm, 第一耦合线的自由端的宽度 W a=15mm, 第一耦合线的连接端的宽度 等于第一微带线的宽度, 均为 W。=10mm。
[0011] 优选的, 所述第二耦合线的长度为 L b=101mm, 第二耦合线的自由端的宽度 W b=15mm, 第二耦合线的连接端的宽度等于第二微带线的宽度, 均为 W d=5mm。
[0012] 优选的, 所述第一微带线的长度为 L。=23mm, 第一微带线的宽度为 W。=10mm
, 第二微带线的长度为 L d=27.5mm, 第二微带线的宽度为 W d=5mm。
[0013] 优选的, 所述构成第一耦合线、 第二耦合线、 第一微带线和第二微带线的金属 铜片的厚度均为 35um。
[0014] 优选的, 所述圆筒状介质体的圆筒半径为 7〜10cm。 优选的, 所述天线金属地 为设置在 PCB板下表面的敷铜金属片。
[0015] 优选的, 所述 PCB板在连接四个金属铜柱的位置处腐蚀有四个圆孔用以馈电, 四个金属铜柱通过四个圆孔从 PCB板的上表面穿透至 PCB板的下表面并没有与所 述天线金属地接触。 [0016] 优选的, 所述 PCB板的相对介电常数, 板厚为 0.762mm。
[0017] 优选的, 所述圆筒状介质体采用板材类型为 FR4型的介质板制成, 相对介电常 数 2.2, 厚度为 0.2mm。
发明的有益效果
有益效果
[0018] 相较于现有技术, 本发明所述应用于卫星导航的双频四臂螺旋天线采用圆筒状 介质体的侧壁表面设置四个单极子辐射臂, 具有良好的天线方向图特性和圆极 化特性, 并且能够改善天线增益; 同吋, 采用两根不等长的耦合线作为单极子 辐射臂, 设计者通过改变两根耦合线的长度设计可以使天线同吋工作在两个不 同的工作频率上, 从而实现天线的双频特性。
对附图的简要说明
附图说明
[0019] 图 1是本发明应用于卫星导航的双频四臂螺旋天线优选实施例的立体结构示意 图;
[0020] 图 2是本发明应用于卫星导航的双频四臂螺旋天线中一个单极子辐射臂的平面 结构示意图;
[0021] 图 3是本发明应用于卫星导航的双频四臂螺旋天线中一个单极子辐射臂的平面 尺寸示意图;
[0022] 图 4是本发明应用于卫星导航的双频四臂螺旋天线的辐射臂的臂长变化吋对应 的反射系数第一示意图;
[0023] 图 5是本发明应用于卫星导航的双频四臂螺旋天线的辐射臂的臂长变化吋对应 的反射系数第二示意图。
[0024] 本发明目的实现、 功能特点及优点将结合实施例, 将在具体实施方式部分一并 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0025] 为更进一步阐述本发明为达成上述目的所采取的技术手段及功效, 以下结合附 图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效进行详细说 明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定 本发明。
[0026] 参照图 1所示, 图 1是本发明应用于卫星导航的双频四臂螺旋天线优选实施例的 立体结构示意图。 在本实施例中, 所述双频四臂螺旋天线包括 PCB板 1、 天线金 属地 10和圆筒状介质体 20, 所述天线金属地设置在 PCB板 1的下表面, 所述圆筒 状介质体 20的侧壁外表面设置有四个单极子辐射臂 30 (图 1中仅示出圆筒状介质 体 20前面两个单极子辐射臂 30, 后面两个未能示出) 。 每一个单极子辐射臂 30 的末端设置有一个金属铜柱 40, 所述圆筒状介质体 20的底部通过四个金属铜柱 4 0固定在 PCB板 1上。 在本实施例中, 四个金属铜柱 40等距离对称设置在圆筒状介 质体 20的底部圆周上并固定在 PCB板 1上。 所述天线金属地 10为设置在 PCB板 1下 表面的敷铜金属片, PCB板 1在连接四个金属铜柱 40的位置处腐蚀有四个圆孔 41 用以馈电, 圆孔 41的半径大于金属铜柱 40的半径, 四个金属铜柱 40通过四个圆 孔 41从 PCB板 1的上表面穿透至 PCB板 1的下表面, 并没有与所述天线金属地 10接 触。
[0027] 在本实施例中, PCB板 1采用具体的板材类型为 RO4350B , 其中相对介电常数 3.
48, 板厚为 0.762mm。 所述圆筒状介质体 20由柔软轻薄的介质板制成, 具体的板 材类型为 FR4型的介质板, 其中相对介电常数 2.2, 厚度为 0.2mm, 将介质板弯曲 成中空的圆筒状介质体 20, 所述四个单极子辐射臂 30螺旋式环绕印制在圆筒状 介质体 20的侧壁外表面上。 所述圆筒状介质体 20的圆筒半径优选为 7〜10cm, 该 圆筒状介质体 20内填充有塑料泡沫, 用来固定和支撑天线, 并能改善天线增益 。 四个金属铜柱 40作为四臂螺旋天线的四个输入端口, 四个金属铜柱 40等距离 对称设置在圆筒状介质体 20的底部圆周上, 每个端口输入的信号幅度相同且相 位依次相差 90度, 所以具有良好的天线方向图特性和圆极化特性, 可以有效对 抗信号多径衰弱效应。
[0028] 参照图 2所示, 图 2是本发明应用于卫星导航的双频四臂螺旋天线中一个单极子 辐射臂的平面结构示意图。 在本实施例中, 每一个单极子辐射臂 30包括第一耦 合线 31、 第二耦合线 32、 第一微带线 33和第二微带线 34。 其中, 第一耦合线 31 的连接端连接至第一微带线 33的一端使第一耦合线 31与第一微带线 33形成 L形或 准 L形的形状, 第二耦合线 32的连接端连接至第二微带线 34的一端使第二耦合线 32与第二微带线 34形成 L形或准 L形的形状, 第二微带线 34的另一端连接至第一 微带线 33与第一耦合线 31的连接处。 本实施例中定义的准 L形为整体上近似于 L 形, 例如, 第一耦合线 31与第一微带线 33形成准 L形形状吋, 两者之间的夹角略 大于 90度; 第二耦合线 32与第二微带线 34形成准 L形形状吋, 两者之间的夹角略 大于 90度。
[0029] 所述第一耦合线 31和第二耦合线 32均为宽度渐变式长条状结构的金属铜片。 本 发明定义第一耦合线 31的宽度渐变式长条状结构是指第一耦合线 31的宽度沿着 第一耦合线 31的自由端到第一耦合线 31的连接端逐渐变窄的形状结构, 第二耦 合线 32的宽度渐变式长条状结构是指第二耦合线 32的宽度沿着第二耦合线 32的 自由端到第二耦合线 32的连接端的的形状结构。 在本实施例中, 第一耦合线 31 的连接端是指连接到第一微带线 33的一端, 第一耦合线 31的自由端是指未连接 到第一微带线 33的一端; 第二耦合线 32的连接端是指连接到第二微带线 34的一 端, 第二耦合线 32的自由端是指未连接到第二微带线 34的一端。
[0030] 参照图 3所示, 图 3是本发明应用于卫星导航的双频四臂螺旋天线中一个单极子 辐射臂的平面结构示意图。 本发明设计的应用于卫星导航的双频四臂螺旋天线 , 以工作 GPS卫星导航系统的工作频段和北斗二号卫星导航系统的工作频段来实 现天线的双频特性为例, 通过具体的实施例来说明第一耦合线 31、 第二耦合线 3 2、 第一微带线 33和第二微带线 34的长度和宽度。
[0031] 在本实施例中, 所述第一耦合线 31和第二耦合线 32为宽度渐变式长条状结构的 金属铜片, 构成第一耦合线 31和第二耦合线 32的金属铜片的厚度均为 35um。 其 中, 第一耦合线 31的长度为1^=147.81^^ 第一耦合线 31的自由端的宽度\¥ = 15mm, 第一耦合线 31的连接端的宽度等于第一微带线 33的宽度, 均为 W。 = 10mm; 第二耦合线 32的长度为 L b=101mm, 第二耦合线 32的自由端的宽度 W b = 15mm, 第二耦合线 32的连接端的宽度等于第二微带线 34的宽度, 均为 W d =5mm。
[0032] 在本实施例中, 第一微带线 33和第二微带线 34为矩形结构的金属铜片, 构成第 一微带线 33和第二微带线 34的金属铜片的厚度均为 35um。 其中, 第一微带线 33 的长度为!^=23!! 111, 第一微带线 33的宽度为\¥。
= 10mm; 第二微带线 33的长度为 L d=27.5mm, 第二微带线 34的宽度为 W d=5mm
[0033] 参照图 4所示, 图 4是本发明双频四臂螺旋天线的单极子辐射臂的臂长变化吋对 应的反射系数第一示意图。 如图 4所示, 当固定第二耦合线 32的长度 L b=101mm 曰寸, 第一耦合线 31的长度!^分别等于 147.8mm、 158.7mm和 169.6mm吋, 图 4反 应了单极子辐射臂 30的第一耦合线 31的长度发生变化吋所对应的反射系数的变 化。 同吋从图 4中可以看出, 当第一耦合线 31的长度!^变大吋, 高频谐振点几乎 没有变化, 低频谐振点向低频移动, 即从 1.19GHz移动到 1.09GHz。
[0034] 参照图 5所示, 图 5是本发明双频四臂螺旋天线的单极子辐射臂的臂长变化吋对 应的反射系数第二示意图。 如图 5所示, 当固定第一耦合线 31的长度 L a = 147.8mm吋, 第二耦合线 32的长度 L b分别等于 101mm、 98.8mm和 92.5mm吋, 图 5反应了单极子辐射臂 30的第二耦合线 32的长度发生变化吋所对应的反射系数 的变化。 同吋从图 5中可以看出, 当第二耦合线 32的长度 L b变小吋, 低频谐振点 几乎没有变化, 高频谐振点向高频移动, 即从 1.58GHz移动到 1.69GHz。
[0035] 根据图 4和图 5可知, 设计者可以通过改变构成每一个单极子辐射臂 30的两根耦 合线的长度 L nL b设计, 就可以使双频四臂螺旋天线同吋工作在两个不同的工 作频率上。 由于采用圆筒状介质体 20的侧表面设置四个单极子辐射臂 30, 且采 用两根不等长的耦合线作为单极子辐射臂 30, 因此使天线具有良好的双频特性
[0036] 本发明所述双频四臂螺旋天线通过采用圆筒状介质体 20的侧表面设置四个单极 子辐射臂 30, 具有很好的天线方向图和圆极化特性, 并且能够改善天线增益; 同吋, 采用两根不等长的耦合线作为单极子辐射臂 30, 设计者通过改变两根耦 合线的长度设计可以使天线同吋工作在两个不同的工作频率上, 实现天线的双 频特性, 可以广泛应用于卫星导航系统中。
[0037] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
相较于现有技术, 本发明所述应用于卫星导航的双频四臂螺旋天线采用圆筒状 介质体的侧壁表面设置四个单极子辐射臂, 具有良好的天线方向图特性和圆极 化特性, 并且能够改善天线增益; 同吋, 采用两根不等长的耦合线作为单极子 辐射臂, 设计者通过改变两根耦合线的长度设计可以使天线同吋工作在两个不 同的工作频率上, 从而实现天线的双频特性。

Claims

权利要求书
一种应用于卫星导航的双频四臂螺旋天线, 包括 PCB板、 圆筒状介质 体和天线金属地, 所述天线金属地设置在 PCB板的下表面, 其特征在 于, 所述圆筒状介质体的侧壁外表面螺旋式环绕印制有四个单极子辐 射臂, 每一个单极子辐射臂的末端设置有一个金属铜柱, 所述圆筒状 介质体的底部通过四个金属铜柱固定在 PCB板上, 每一个单极子辐射 臂包括第一耦合线、 第二耦合线、 第一微带线和第二微带线, 其中: 所述第一耦合线的连接端连接至第一微带线的一端使第一耦合线与第 一微带线形成 L形或准 L形的形状, 所述第一微带线的另一端连接一 个所述金属铜柱; 所述第二耦合线的连接端连接至第二微带线的一端 使第二耦合线与第二微带线形成 L形或准 L形的形状, 所述第二微带 线的另一端连接至第一微带线与第一耦合线的连接处; 所述第一耦合 线和第二耦合线均为宽度渐变式长条状结构的金属铜片, 所述第一微 带线和第二微带线为矩形结构的金属铜片; 所述四个金属铜柱等距离 对称设置在圆筒状介质体的底部圆周上, 四个金属铜柱作为所述双频 四臂螺旋天线的四个输入端口, 每个输入端口输入的信号幅度相同且 相位依次相差 90度。
如权利要求 1所述的应用于卫星导航的双频四臂螺旋天线, 其特征在 于, 所述第一耦合线的长度为 L a=147.8mm, 第一耦合线的自由端的 宽度 W a=15mm, 第一耦合线的连接端的宽度等于第一微带线的宽度 , 均为 W。=10mm。
如权利要求 2所述的应用于卫星导航的双频四臂螺旋天线, 其特征在 于, 所述第二耦合线的长度为 L b=101mm, 第二耦合线的自由端的宽 度 W b=15mm, 第二耦合线的连接端的宽度等于第二微带线的宽度, 均为 W d=5mm。
如权利要求 3所述的应用于卫星导航的双频四臂螺旋天线, 其特征在 于, 所述第一微带线的长度为 L。=23mm, 第一微带线的宽度为 W c =10mm, 第二微带线的长度为 L d=27.5mm, 第二微带线的宽度为 W d =5mm°
[权利要求 5] 如权利要求 1所述的应用于卫星导航的双频四臂螺旋天线, 其特征在 于, 所述构成第一耦合线、 第二耦合线、 第一微带线和第二微带线的 金属铜片的厚度均为 35um。
[权利要求 6] 如权利要求 1所述的应用于卫星导航的双频四臂螺旋天线, 其特征在 于, 所述圆筒状介质体的圆筒半径为 7〜10cm。
[权利要求 7] 如权利要求 1所述的应用于卫星导航的双频四臂螺旋天线, 其特征在 于, 所述天线金属地为设置在 PCB板下表面的敷铜金属片。
[权利要求 8] 如权利要求 1所述的应用于卫星导航的双频四臂螺旋天线, 其特征在 于, 所述 PCB板在连接四个金属铜柱的位置处腐蚀有四个圆孔用以馈 电, 四个金属铜柱通过四个圆孔从 PCB板的上表面穿透至 PCB板的下 表面并没有与所述天线金属地接触。
[权利要求 9] 如权利要求 1至 8任一项所述的应用于卫星导航的双频四臂螺旋天线, 其特征在于, 所述 PCB板的相对介电常数, 板厚为 0.762mm。
[权利要求 10] 如权利要求 1至 8任一项所述的应用于卫星导航的双频四臂螺旋天线, 其特征在于, 所述圆筒状介质体采用板材类型为 FR4型的介质板制成
, 相对介电常数 2.2, 厚度为 0.2mm。
PCT/CN2017/100178 2017-04-07 2017-09-01 应用于卫星导航的双频四臂螺旋天线 WO2018184343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710225848.8A CN107146942A (zh) 2017-04-07 2017-04-07 应用于卫星导航的双频四臂螺旋天线
CN201710225848.8 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018184343A1 true WO2018184343A1 (zh) 2018-10-11

Family

ID=59773843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100178 WO2018184343A1 (zh) 2017-04-07 2017-09-01 应用于卫星导航的双频四臂螺旋天线

Country Status (2)

Country Link
CN (1) CN107146942A (zh)
WO (1) WO2018184343A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904103A (zh) * 2021-09-08 2022-01-07 南京信息工程大学 一种双频段双模式纽扣天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171059A (zh) * 2017-04-07 2017-09-15 深圳市景程信息科技有限公司 具有圆极化特性的四臂螺旋天线
CN107611590A (zh) * 2017-10-16 2018-01-19 福建福大北斗通信科技有限公司 小型化双频卫星通信手持终端天线及其使用方法
CN110690561B (zh) * 2019-10-28 2023-09-22 国网思极神往位置服务(北京)有限公司 应用于卫星导航终端的宽带小型化天线及其工作方法
CN114784490B (zh) * 2022-05-05 2023-03-21 北京华镁钛科技有限公司 一种双频四臂螺旋天线及包含该天线的手持终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080027052A (ko) * 2006-09-22 2008-03-26 민상보 쿼드리필러 나선형 안테나 구조
CN203180074U (zh) * 2013-04-09 2013-09-04 四川九鼎数码科技有限公司 一种臂宽渐宽式四方形四臂螺旋天线
CN105514582A (zh) * 2015-12-10 2016-04-20 上海海积信息科技股份有限公司 四臂螺旋天线
CN105576353A (zh) * 2015-12-17 2016-05-11 上海海积信息科技股份有限公司 一种螺旋天线
CN205282639U (zh) * 2015-10-19 2016-06-01 深圳市华颖泰科电子技术有限公司 一种双频螺旋天线
CN107093791A (zh) * 2017-04-07 2017-08-25 深圳市景程信息科技有限公司 具有双频特性的四臂螺旋天线
CN107171059A (zh) * 2017-04-07 2017-09-15 深圳市景程信息科技有限公司 具有圆极化特性的四臂螺旋天线
CN206610909U (zh) * 2017-04-07 2017-11-03 深圳市景程信息科技有限公司 双频四臂螺旋天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614293B2 (en) * 2012-10-17 2017-04-04 The Mitre Corporation Multi-band helical antenna system
CN203180086U (zh) * 2013-04-09 2013-09-04 四川九鼎数码科技有限公司 一种臂宽渐宽式圆柱形四臂螺旋天线
CN104332704B (zh) * 2014-11-10 2017-04-05 中国电子科技集团公司第五十四研究所 一种用于移动卫星通信系统的手持机终端天线
CN106058472A (zh) * 2016-06-01 2016-10-26 深圳市华信天线技术有限公司 一种双频四臂螺旋天线及其应用的手持机终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080027052A (ko) * 2006-09-22 2008-03-26 민상보 쿼드리필러 나선형 안테나 구조
CN203180074U (zh) * 2013-04-09 2013-09-04 四川九鼎数码科技有限公司 一种臂宽渐宽式四方形四臂螺旋天线
CN205282639U (zh) * 2015-10-19 2016-06-01 深圳市华颖泰科电子技术有限公司 一种双频螺旋天线
CN105514582A (zh) * 2015-12-10 2016-04-20 上海海积信息科技股份有限公司 四臂螺旋天线
CN105576353A (zh) * 2015-12-17 2016-05-11 上海海积信息科技股份有限公司 一种螺旋天线
CN107093791A (zh) * 2017-04-07 2017-08-25 深圳市景程信息科技有限公司 具有双频特性的四臂螺旋天线
CN107171059A (zh) * 2017-04-07 2017-09-15 深圳市景程信息科技有限公司 具有圆极化特性的四臂螺旋天线
CN206610909U (zh) * 2017-04-07 2017-11-03 深圳市景程信息科技有限公司 双频四臂螺旋天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904103A (zh) * 2021-09-08 2022-01-07 南京信息工程大学 一种双频段双模式纽扣天线
CN113904103B (zh) * 2021-09-08 2023-05-16 南京信息工程大学 一种双频段双模式纽扣天线

Also Published As

Publication number Publication date
CN107146942A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
WO2018184343A1 (zh) 应用于卫星导航的双频四臂螺旋天线
WO2018184345A1 (zh) 具有双频特性的四臂螺旋天线
US8742990B2 (en) Circular polarization antenna
JP4394278B2 (ja) 2つの活動的な放射体を有するアンテナ
JP2014212562A (ja) アンテナ放射素子
US11289823B2 (en) Antenna and electronic device using same
CN104157968A (zh) 一种新概念宽带圆极化天线
CN108134197A (zh) 一体化四点差分馈电低剖面双极化振子单元及基站天线
CN114122705B (zh) 一种超宽带圆极化叠层贴片阵列
WO2018184346A1 (zh) 双频四臂螺旋天线
WO2012097623A2 (zh) 一种天线和终端
US20020021255A1 (en) Antenna apparatus
CN106486753B (zh) 一种支持多系统低剖面高增益的导航天线
CN110265779A (zh) 一种双十字形宽频带高低仰角增益卫星导航终端天线
WO2018184344A1 (zh) 具有圆极化特性的四臂螺旋天线
CN105449354B (zh) 一种采用费马‑阿基米德螺旋槽线双过孔电磁带隙结构的低互耦天线阵
WO2024051434A1 (zh) 一种圆极化天线、通信设备及圆极化天线制造方法
WO2021238216A1 (zh) 一种圆极化定位天线和可穿戴设备
JP2010103871A (ja) アンテナ装置、及びアレーアンテナ装置
CN216750286U (zh) 小型化圆极化天线
CN204596949U (zh) 一种双谐振圆极化短背射天线
CN111987448B (zh) 一种双极化Vivaldi天线
JP2016140046A (ja) 偏波共用アンテナ
CN104319463B (zh) 一种双谐振圆极化短背射c波段天线
CN210866474U (zh) 一种应用于全球定位卫星应用的开槽螺旋天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904959

Country of ref document: EP

Kind code of ref document: A1