WO2018182393A1 - Sistema y método para medir la fertilidad del suelo y calidad del agua - Google Patents

Sistema y método para medir la fertilidad del suelo y calidad del agua Download PDF

Info

Publication number
WO2018182393A1
WO2018182393A1 PCT/MX2017/000041 MX2017000041W WO2018182393A1 WO 2018182393 A1 WO2018182393 A1 WO 2018182393A1 MX 2017000041 W MX2017000041 W MX 2017000041W WO 2018182393 A1 WO2018182393 A1 WO 2018182393A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
housing
measuring
conditions
ground
Prior art date
Application number
PCT/MX2017/000041
Other languages
English (en)
French (fr)
Inventor
Francisco Alberto CASTRO ROQUEÑI
Ana Carolina CASTRO CASTAÑEDA
Original Assignee
Castro Roqueni Francisco Alberto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castro Roqueni Francisco Alberto filed Critical Castro Roqueni Francisco Alberto
Publication of WO2018182393A1 publication Critical patent/WO2018182393A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the present invention relates to an electronic system capable of measuring the elements that determine soil fertility and water quality through an array of different sensors.
  • the system is defined as a measurement tool linked to a results interpretation platform.
  • the objective is to avoid the loss of fertility of agricultural land through constant analysis and proper treatment.
  • An adequate way to verify the fertility conditions of the cultivation land is through the analysis of available nutrients that are essential for obtaining good yields.
  • the periodic analysis of the soil allows to detect the deficiencies in the nutrients and to implement the corrective actions to recover it.
  • International Publication WO 2000033071 (Fowles et al.) Describes a method for controlling soil moisture content, which consists in measuring a first and second soil property that vary with moisture content; deriving from a respective predetermined relationship between the first property and the moisture content for each of a plurality of different soil types, a first content value of humidity for each of these types of soil; deriving from a respective predetermined relationship between the second property and the moisture content for each of the plurality of different soil types, a second moisture content value for each of the soil types; compare the first and second values for each type of soil and select the pair of values for which the difference is smaller; and calculate the average of the selected pair of first and second moisture content values to give the soil moisture content.
  • a device (1) is used for monitoring the moisture content of the soil, which comprises a control means (60) and a plurality of moisture detecting elements (35, 36, 37) that are inserted into the ground and that are connected to the control means (60).
  • Each element (35, 36, 37) is adapted to detect the moisture content at a different depth in the ground with respect to the other detectors, the control means (60) cooperating with the sensor elements (35, 36, 37) to provide data representative of the moisture content in the soil at different depths.
  • the control means (60) is connected to a radio transmitter (65) to transmit the data together with an identification code for the device.
  • Korean patent document KR1402001B1 describes an apparatus having a sensor unit (10), in which a cable connection for a radio frequency antenna for wireless telecommunication of a communication unit is provided.
  • a data processing module (30) is physically connected to a sensor processing module (20) and some processing data is received from the sensor processing module.
  • a data processing unit is provided in which data is processed using wired or wireless communication. Oxygen, nitrogen, phosphorus and potassium sensors are expected.
  • the new system presents some important technical differences such as the elements that allow the user to clearly visualize the results of the information obtained from the measurement of the soil conditions automatically interpreted by means of an interpretation platform enabled on an external device, such as a smartphone, a Tablet or a computer, which has previously been introduced with specific information on the ideal conditions (humidity, pH, electrical conductivity and nutrients) that the soil must have for a good yield according to the type of product that you want to grow.
  • an external device such as a smartphone, a Tablet or a computer
  • the new system to measure soil fertility allows the farmer to keep a history of soil conditions, which reflects the deterioration or recovery of the soil, over time, history that is also generated automatically without require beyond storing the data of the values that have been obtained during the measurements that have been made to the field.
  • the new system automatically recommends to the farmer the actions to be implemented (nutrient fertilizer, the type of these, the substances to adjust the pH, quantities, etc. ) to maintain or restore soil fertility. It is important to mention that, unlike the known systems, the new measurement system does not require a special installation process or wiring to carry out the measurements of the conditions of a terrain, which reports greater advantages due to the simplicity and practicality in its implementation
  • the new system measures not only the nutrients present in the soil, but also the pH and electrical conductivity, which are very important elements for the objective pursued as their levels they are related to the behavior that nutrients will have in the soil.
  • the above represent notable advantages that greatly facilitate farmers' care and monitoring of their farmland without requiring specialized technological knowledge. Such utilities have not been anticipated or suggested in the prior art documents referred to above.
  • a new system is proposed to measure soil health through sensors and provide immediate guidance for proper treatment.
  • the objective is to avoid the accelerated loss of soil fertility through the Constant analysis guided by the proposed system, which will allow the farmer to know what elements he absorbs from his soil to be able to replenish them in time, thus preserving the balance of the nutrients necessary for sustainable production.
  • the new system for measuring soil fertility and water quality is characterized in that it comprises:
  • a measuring device comprising:
  • a metal body (20) provided with tips (22) and a central housing (23); said tips (22) define among themselves a groove (25) extending longitudinally in the direction of the housing (23);
  • processing unit housed in a housing (31) and this contained in the housing of said body; said processing unit controls and comprises interconnects:
  • M a microcontroller that receives, captures and stores information from the sensors and transmits it wirelessly or via USB to an external device
  • a geolocation device to divide the terrain to be analyzed, which includes means for mapping sampling points;
  • an external electronic device (40) that is responsible for receiving the data transmitted by the processing unit to review them and see the recommendations of specific agrochemicals and techniques to treat the soil analyzed;
  • the sampling process allows obtaining and comparing results from each area of the land.
  • Figure 1 is a perspective view of the device and its basis for measuring soil fertility and water quality.
  • Figure 2 is a front view of the electronic device mounted on the base.
  • Figure 3 is a front view only of the electronic measuring device.
  • Figure 4 is a perspective view from the bottom of the device to allow viewing of the sensors.
  • Figure 5 is a perspective view of the device in which it is shown with its main components separated.
  • Figure 6 is an enlarged and exploded view of the part that contains the processing unit of the device to allow seeing all its constituent elements.
  • Figure 7 is a view showing the way in which the measuring device is partially buried in the ground with the help of the foot.
  • Figure 8 is a front elevation view of the measuring device half buried in the ground for measurements.
  • Figure 9 is a perspective view in which the interaction of the measuring device is observed wirelessly with an external device that is responsible for interpreting the results.
  • Figures 10A to 10D show a series of screens that the user accesses through an application installed on a mobile device or a fixed or portable computer to interpret the results obtained with the device for measuring the terrain conditions and see the recommendations to recover it.
  • the measurement system is composed of a measuring device (10), an external device (40) that receives the information of the measured terrain conditions by the device (10) and a platform for interpreting the results implemented in the device external or a computer, to which the farmer or an authorized user has controlled access.
  • the measuring device (10) comprises a body (20), preferably, although not necessarily, of stainless steel, or another suitable one that prevents the alteration of the sample, and which has a central housing (23).
  • the body (20) ends at points (22) that facilitate it to be buried in the ground and ensure its entry and vertical positioning during the soil sampling process (Figure 7).
  • the tips (22) define a groove (25) that extends longitudinally towards the housing (23) and thanks to the design of the tips (22) and the shape of the body (20) of the device, it can be buried in the soil at depths close to 30 cm, what is necessary to access the layer (S) in which the nutrients that determine the fertility of the soil are found, and where the crops develop. This allows the internal sensors (32, 33, 34) of the device (10) to have access to said soil layer (S).
  • the upper end of the device (10) may consist of a flat and non-skid surface (24) on which force is applied with the foot to bury said device in the ground.
  • the device may also include a base (5) with a perforation (6) in its upper part through which the measuring device is inserted.
  • a rope (15) is provided that serves to hold it during the soil sampling process and that facilitates transporting it from one side to the other.
  • the device (10) has buttons (B) for the control of its functions, namely, on and off (35), for the transmission of information (38) and choice of sensors (39).
  • Another important component of the device (10) consists of a processing unit consisting of a microcontroller (M), which, together with the connections of the same with the sensors (32, 33, 34), are encapsulated in a plastic housing (31), to avoid their contact with the metal and protects them from the outside environment.
  • M microcontroller
  • the housing (31) is fixed in the housing (23) of the body (20), and the sensors (32, 33, 34) are surrounded and protected by the lower part of said body, significantly increasing its life time and giving greater durability and robustness to the device and its components.
  • the processing unit has a microcontroller (M) responsible for carrying out the control of all peripherals, capturing and storing the information from the sensors (32, 33, 34) as well as transmitting it to an external electronic device (40 ).
  • the device (10) has a rechargeable battery that is powered by a micro USB port.
  • the sensors (32, 33, 34) contained in the device for the analysis of the elements that determine soil fertility consist of sensors capable of recovering measurements of pH, humidity, electrical conductivity and nutrients available with a high resistance to weathering and high operating temperatures, in addition to high measurement accuracy.
  • the sensors (32, 33, 34) yield results that subsequently go through an analog-digital coupling to send the information to the microcontroller (M), which will translate it into data to be sent via Bluetooth or USB to the external device (40) , whether computer, tablet or smartphone.
  • the hardware architecture and the system of interpretation of results of the system of the present invention allow said sensors (32, 33, 34) to relate the levels of pH, humidity and conductivity with the rest of the nutrients present in the soil, so Perform a complete and accurate fertility analysis. It also makes possible the integration of the data obtained in each terrain spot. In addition, feedback and recommendations are made based on the results produced by the sensors and the comparison with the ideal levels that are sought to be achieved for the type of related crop.
  • the present invention provides the ability to feed the information retrieved and processed by the device (10), either to a mobile user interface or to a remote online storage unit, whereby the user can generate a history that determines the change of the elements in your soil over time, in addition to projections and future benefits if the suggested processes are applied.
  • the data obtained by the different users in a given geographical area can be used to generate a mapping of the land status at regional, national and even international levels.
  • the measurement process in a given area of land can be done in an average of three hours, and it is started by turning on the device (10) by pressing the on / off button (35); Sampling plan is made and subsequently the terrain to be analyzed is divided with the help of GPS technology for which the device is enabled with a GPS device (36) and the mobile application or Web platform, applying a similar sampling point mapping methodology to the one used for sampling in the laboratory. Subsequently, the device is buried in the ground, at the first point that has been determined, and it is expected approximately ten seconds until the upper LED (37) stops flashing to remove it and repeat the process at the following strategic points identified above.
  • the location and measurements of each point will be stored in the device (10) and when the land is completely covered, the data can be transferred to the external device (40) to review the results in the form of graphs, and based on them Automatically generate recommendations for agrochemicals and specific techniques to treat the soil analyzed.
  • the data can be transferred from the device (10) to the external device (40) wirelessly by linking via bluetooth - the button (38) is operated - or by a storage device or a memory (not shown) that connects to the USB port (41) provided in said device (10).
  • the device does not need to be buried in the sueb to carry out the analysis of the land since it would be enough that portions or samples of the latter are put in contact with the sensors of the device so that they detect the conditions (pH, humidity, electrical conductivity, nutrients, etc.) of the soil and transmit that information to the processing unit.
  • the design and technology applied in the system allow the analysis to be immediate and accurate.
  • the design facilitates the work of sampling, on the other hand, the technology allows all the data obtained to be integrated and this is how the system is distinguished by having the ability to cover the necessary hectares with a single device and in a span of very short time.
  • the composition and assembly of the parts of the device ensure its durability and robustness allowing a single device to have a long service life.
  • the platform is responsible for interpreting the numbers thrown by the sensors to project them on an easily understood board.
  • the system provides the option to read the results through the mobile application or through the website of an authorized service provider.
  • Automated interpretation is produced from a database generated with the help of experts, where formulas that work based on established parameters were defined to achieve correct terrain performance.
  • Figure 10A shows an example of a screen that is accessed when, through the system's interpretation platform, it is desired to obtain graphical information of the results and conclusions that the measurement made with the device (10) yielded in order to Verify the soil conditions analyzed.
  • the user must first load the data obtained from the measurements made on the ground with the measuring device (10) into the external device (40) so that they can be compared against the ideal values of humidity, electrical conductivity, nutrients, etc. for a particular type of crop.
  • the type of crop is selected (for example, lettuce, tomato or potatoes) for which it is desired to obtain the interpretation of these results, which are compared against the information of the ideal values.
  • the interpretation platform displays a series of graphs on the screen, for example, one corresponding to a comparison of the measured values, such as humidity, pH and electrical conductivity of the land, against the predetermined ideal value of that same variable for that particular type of crop.
  • the system offers the user a geographical summary or mapping of each of the points where the device was buried, represented by an easily interpretable image of the analyzed terrain in which its fertility conditions are clearly appreciated (good, regular or bad ) in each zone of it.
  • the graphic interpretation of the information obtained from the measurements of the device (10) of the soil for tomato cultivation is represented.
  • the geographical summary generated by the system allows us to observe the fertility conditions of the soil analyzed by areas and recommendations for those who require immediate attention from specialists due to their poor conditions.
  • the system can also generate a graph that shows the historical summary of the different fertility measurements that have been made in the soil, which allows adequate control of its humidity, pH conditions. , electrical conductivity and nutrients, to take the necessary recovery measures in a timely manner.
  • the system can display on-screen projections of analyzed soil productivity and related costs, which are calculated by comparing the data of the soil conditions obtained with the measuring device (10) and the ideal values for that type. of cultivation In addition, you can generate a history of the status of your land over time.
  • the system of the present invention can display ( Figure 10D) the recommendations for the correct treatment of the soil based on the results obtained, both of products and techniques.
  • the method of the present invention developed to measure soil fertility, interpret the results and recommend recovery actions, consists of the following steps:
  • the method displays to the user the projections of land productivity over time calculated based on the results obtained from the measurements.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

La presente invención se refiere a un sistema electrónico y un método para medir los elementos que determinan la fertilidad del suelo y calidad del agua a través de un dispositivo que comprende unos sensores y una unidad de procesamiento operativamente relacionados, así como una plataforma para interpretación de los resultados. En una modalidad, el dispositivo se entierra en el suelo hasta una profundidad determinada, quedando los sensores en contacto con el terreno para enviar información sobre las condiciones de éste a la unidad de procesamiento que la almacena y puede transmitirla a un dispositivo externo. El sistema se define como una herramienta de medición ligada a una plataforma de interpretación de resultados. El objetivo es evitar la pérdida de fertilidad del suelo agrícola por medio del constante análisis y tratamiento adecuado.

Description

SISTEMA Y MÉTODO PARA MEDIR LA FERTILIDAD DEL SUELO Y CALIDAD
DEL AGUA
ANTECEDENTES DE LA INVENCIÓN
Campo de la Invención.
La presente invención se refiere a un sistema electrónico capaz de medir los elementos que determinan la fertilidad del suelo y calidad del agua a través de un arreglo de diferentes sensores. El sistema se define como una herramienta de medición ligada a una plataforma de interpretación de resultados. El objetivo es evitar la pérdida de fertilidad del suelo agrícola por medio del constante análisis y tratamiento adecuado.
Estado de la Técnica.
La constante sobre-explotación del suelo para satisfacer la creciente demanda de alimentos, además de los efectos del cambio climático, han posicionado a la agricultura como principal amenaza de degradación del suelo.
Se estima que en 60 arlos se perderá el suelo fértil alrededor del mundo.
Una forma adecuada para verificar las condiciones de fertilidad de los terrenos de cultivo es a través del análisis de tos nutrientes disponibles que son esenciales para la obtención de buenos rendimientos. El análisis periódico del suelo permite detectar las deficiencias en los nutrientes e implementar las acciones correctivas para recuperarlo.
En este campo tecnológico se conocen algunas propuestas enfocadas a determinar las condiciones de fertilidad del suelo, cada una con una aportación tecnológica propia que la hace distinta en cuanto a su inventiva, su estructura y forma de funcionamiento. Existen dispositivos de medición de ciertas propiedades del suelo que van desde los más básicos hasta otros medianamente tecnificados.
Por ejemplo, La publicación internacional WO 2000033071 (Fowles et al.) describe un método para controlar el contenido de humedad del suelo, el cual consiste en medir una primera y una segunda propiedad de suelo que varían con el contenido de humedad; derivar de una relación predeterminada respectiva entre la primera propiedad y el contenido de humedad para cada uno de una pluralidad de tipos de suelos diferentes, un primer valor de contenido de humedad para cada uno de dichos tipos de suelo; derivar de una relación predeterminada respectiva entre la segunda propiedad y el contenido de humedad para cada uno de la pluralidad de tipos de suelo diferentes, un segundo valor de contenido de humedad para cada uno de los tipos de suelo; comparar el primero y segundo valores para cada tipo de suelo y seleccionar el par de valores para los cuales la diferencia es menor; y calcular el promedio del par seleccionado de primer y segundo valores de contenido de humedad para dar el contenido de humedad del suelo. Para ello, se utiliza un dispositivo (1) para monitorización del contenido de humedad del suelo, el cual comprende un medio de control (60) y una pluralidad de elementos detectores de humedad (35, 36, 37) que se insertan en el suelo y que están conectados al medio de control (60). Cada elemento (35, 36, 37) está adaptado para detectar el contenido de humedad a una profundidad diferente en el suelo con respecto a los otros detectores, cooperando el medio de control (60) con los elementos sensores (35, 36, 37) para proporcionar datos representativos del contenido de humedad en el suelo a diferentes profundidades. El medio de control (60) está conectado a un transmisor de radio (65) para transmitir los datos junto con un código de identificación para el dispositivo.
El documento de patente Coreano KR1402001B1 describe un aparato que tiene una unidad sensora (10), en el que se prevé un conectar de cable para una antena de radio frecuencia para telecomunicación inalámbrica de una unidad de comunicación. Un módulo de procesamiento de datos (30) está conectado físicamente a un módulo de procesamiento de sensores (20) y unos datos de procesamiento se reciben desde el módulo de procesamiento de sensores. Se provee una unidad de procesamiento de datos en la que se procesan unos datos usando una comunicación alámbrica o inalámbrica. Se prevén sensores de oxigeno, nitrógeno, fósforo y potasio.
Aunque en algunos conceptos puede existir cierta semejanza de los dispositivos de medición antes descritos con el del sistema de la presente invención, el nuevo sistema presenta algunas diferencias técnicas importantes como los elementos que permiten al usuario visualizar claramente los resultados de la información obtenida de la medición de las condiciones del suelo interpretados automáticamente por medio de una plataforma de interpretación habilitada en un dispositivo extemo, como puede ser un teléfono inteligente, una Tablet o una computadora, a la cual previamente se le ha introducido información específica de las condiciones ideales (humedad, pH, conductividad eléctrica y nutrientes) que debe tener el terreno para un buen rendimiento según el tipo de producto que se desee cultivar.
Además de lo anterior, el nuevo sistema para medir la fertilidad del suelo permite al agricultor llevar un historial de las condiciones del suelo, en el que se refleja el deterioro o recuperación del mismo, a través del tiempo, historial que se genera también automáticamente sin requerir más allá de almacenar los datos de los valores que se han ido obteniendo durante las mediciones que se le han hecho al terreno.
También, con base en las mediciones obtenidas y en los datos ideales predeterminados para cada cultivo, el nuevo sistema recomienda automáticamente al agricultor las acciones a implementar (abono de nutrientes, el tipo de éstos, las sustancias para ajustar el pH, cantidades, etc.) para mantener o recuperar la fertilidad del suelo. Es importante mencionar que, a diferencia de los sistemas conocidos, el nuevo sistema de medición no requiere un proceso de instalación especial ni cableado para llevar a cabo las mediciones de las condiciones de un terreno, lo cual reporta mayores ventajas por la sencillez y practicidad en su implementación.
Además de lo anterior, a diferencia de los dispositivos antes mencionados, el nuevo sistema mide no solo los nutrientes presentes en el suelo, sino también el pH y la conductividad eléctrica, que son elementos muy importantes para el objetivo que se persigue ya que sus niveles se relacionan al comportamiento que los nutrientes tendrán en el suelo. Los anteriores representan ventajas notables que facilitan enormemente a los agricultores el cuidado y monitoreo de sus tierras de cultivo sin que requieran de conocimientos tecnológicos especializados. Tales utilidades no se hayan anticipadas ni sugeridas en los documentos del estado de la técnica antes referidos. OBJETOS DE LA INVENCIÓN
Se propone un novedoso sistema para medir la salud del suelo a través de sensores y proporcionar una guía inmediata para su correcto tratamiento. El objetivo es evitar la acelerada pérdida de fertilidad del suelo a través del constante análisis guiado por el sistema propuesto, el cual permitirá al agricultor saber que elementos absorbe de su suelo para poder reponerlos a tiempo, conservando así el equilibrio de los nutrientes necesarios para una producción sustentable.
En una forma de realización preferida, sin que ello implique alguna limitación, el nuevo sistema para medir la fertilidad del suelo y la calidad del agua se caracteriza porque comprende:
a) un dispositivo de medición (10) que comprende:
- un cuerpo metálico (20) dotado de unas puntas (22) y un alojamiento central (23); dichas puntas (22) definen entre si una ranura (25) que se extiende longitudinalmente en dirección hacia el alojamiento (23);
- una unidad de procesamiento alojada en una carcasa (31) y ésta contenida en el alojamiento de dicho cuerpo; dicha unidad de procesamiento controla y comprende ¡nterconectados:
- unos sensores (32, 33, 34) que entran en contacto con el suelo y registran mediciones de ciertas variables del mismo;
un microcontrolador (M) que recibe, captura y almacena la información proveniente de los sensores y la transmite inalámbricamente o por USB a un dispositivo externo; y
- un dispositivo de geolocalización (36) para dividir el terreno que se va analizar, el cual incluye unos medios para el mapeado de puntos de muestreo;
b) un dispositivo electrónico extemo (40) que se encarga de recibir los datos transmitidos por la unidad de procesamiento para revisarlos y ver las recomendaciones de productos agroquímicos y técnicas específicas para tratar el suelo analizado; y
c) una plataforma de interpretación de resultados mediante el uso de una aplicación móvil descargable o un sitio de internet autorizado. Algunas ventajas competitivas del sistema de medición:
- No requiere de instalación y un sistema es capaz de cubrir cientos de hectáreas con un solo dispositivo.
- Rapidez en el análisis del terreno, ya que le lleva aproximadamente 10 segundos por cada muestreo. - Facilidad en la lectura e interpretación de los resultados del análisis del terreno.
- El proceso de muestreo permite obtener y comparar resultados de cada área del terreno.
- Permite darle seguimiento adecuado al tipo de suelo analizado e implementar oportunamente las acciones necesarias para restituir al terreno a las condiciones adecuadas para su cultivo.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 es una vista en perspectiva del dispositivo y su base para medir la fertilidad del suelo y calidad del agua.
La figura 2 es una vista frontal del dispositivo electrónico montado en la base.
La figura 3 es una vista frontal únicamente del dispositivo electrónico de medición.
La figura 4 es una vista en perspectiva desde la parte inferior del dispositivo para permitir ver los sensores.
La figura 5 es una vista en perspectiva del dispositivo en la que se muestra con sus componentes principales separados.
La figura 6 es una vista amplificada y en despiece de la pieza que contiene a la unidad de procesamiento del dispositivo para permitir ver todos sus elementos constitutivos.
La figura 7 es una vista en la que se observa el modo en que el dispositivo de medición es parcialmente enterrado en el suelo con ayuda del pie.
La figura 8 es una vista en elevación frontal del dispositivo de medición semienterrado en el suelo para realizar las mediciones.
La figura 9 es una vista en perspectiva en la que se observa la interacción inalámbricamente del dispositivo de medición con un dispositivo extemo que se va a encargar de la interpretación de los resultados.
Las figuras 10A a 10D muestran una serie de pantallas a las que accede el usuario a través de una aplicación instalada en un dispositivo móvil o una computadora fija o portátil para interpretar los resultados obtenidos con el dispositivo de medición de las condiciones del terreno y ver las recomendaciones para recuperarlo. DESCRIPCIÓN DETALLADA DE LA MODALIDAD PREFERIDA
DE LA INVENCIÓN
Con ayuda de las figuras que se acompañan a este documento, y que deberán tomarse a manera de ejemplo para propósitos ilustrativos y no limitativos, se describirá la presente invención.
El sistema de medición está compuesto de un dispositivo de medición (10), un dispositivo externo (40) que recibe la información de las condiciones medidas del terreno por parte del dispositivo (10) y una plataforma de interpretación de los resultados implementada en el dispositivo externo o una computadora, a la que tiene acceso controlado el agricultor o un usuario autorizado.
Por su parte, el dispositivo de medición (10) comprende un cuerpo (20), preferentemente, aunque no necesariamente, de acero inoxidable, u otro adecuado que evite la alteración de la muestra, y que tiene un alojamiento central (23). El cuerpo (20) termina en unas puntas (22) que facilitan que sea enterrado en el suelo y aseguran su entrada y posicionamiento vertical durante el proceso de muestreo de suelos (Figura 7). Las puntas (22) definen entre sí una ranura (25) que se extiende longitudinalmente en dirección hacia el alojamiento (23) y gracias al diseño de las puntas (22) y la forma del cuerpo (20) del dispositivo, éste puede ser enterrado en el suelo a profundidades cercanas a los 30 cm, lo necesario para acceder a la capa (S) en la que se encuentran los nutrientes que determinan la fertilidad del terreno, y donde se desarrollan los cultivos. Ello permite que los sensores internos (32, 33, 34) del dispositivo (10) tengan acceso a dicha capa del suelo (S).
El extremo superior del dispositivo (10) puede consistir en una superficie plana y antiderrapante (24) sobre la cual se aplica fuerza con el pie para enterrar dicho dispositivo en ei suelo. El dispositivo puede incluir también una base (5) con una perforación (6) en su parte superior a través de la cual se inserta el dispositivo de medición. Opcionalmente, se tiene prevista una cuerda (15) que sirve para sujetarlo durante el proceso de muestreo de suelos y que facilita transportarlo de un lado a otro. El dispositivo (10) cuenta con unos botones (B) para el control de sus funciones, a saber, encendido y apagado (35), para la transmisión de información (38) y elección de los sensores (39).
Otro componente importante del dispositivo (10) consiste en una unidad de procesamiento que consta de un microcontrolador (M), la cual, junto con las conexiones de la misma con los sensores (32, 33, 34), se encuentran encapsulados en una carcasa de plástico (31), para evitar su contacto con el metal y los protege del medio ambiente exterior. La carcasa (31) se fija en el alojamiento (23) del cuerpo (20), y los sensores (32, 33, 34) quedan rodeados y protegidos por la parte inferior de dicho cuerpo, incrementando significativamente su tiempo de vida y dando mayor durabilidad y robustez al dispositivo y sus componentes.
Como se observa en la figura 7, al enterrar el dispositivo (10) en el suelo que se va a analizar, la tierra entra en el cuerpo (20) y con ello se genera el contacto con los sensores (32, 33, 34) iniciando asi la medición de las distintas variables del terreno (humedad conductividad, pH del suelo, pH del agua, y nutrientes, a saber nitrógeno, potasio y fósforo, etc.) que van a ser analizadas. La ranura (25) se extiende hasta las puntas (22), lo que facilita la salida de la muestra térrea al desenterrar el dispositivo (10).
La unidad de procesamiento cuenta con un microcontrolador (M) encargado de llevar a cabo el control de todos los periféricos, captura y almacenamiento de la información proveniente de los sensores (32, 33, 34) asf como transmitirla a un dispositivo electrónico externo (40). El dispositivo (10) cuenta con una batería recargable que se alimenta por medio de un puerto micro USB.
Los sensores (32, 33, 34) contenidos en el dispositivo para el análisis de los elementos que determinan la fertilidad del suelo consisten en sensores capaces de recuperar mediciones de pH, humedad, conductividad eléctrica y nutrientes disponibles con una alta resistencia a la intemperie y a temperaturas de operación elevadas, además de una alta precisión en la medición. Los sensores (32, 33, 34) arrojan resultados que pasan posteriormente por un acoplamiento analógico-digital para enviar la información al microcontrolador (M), el cual la traducirá en datos para enviarlos por medio de Bluetooth o USB al dispositivo extemo (40), ya sea computadora, Tablet o Smartphone.
La arquitectura de hardware y la plataforma de interpretación de resultados del sistema de la presente invención permiten que dichos sensores (32, 33, 34) relacionen los niveles de pH, humedad y conductividad con el resto de los nutrientes presentes en el suelo, para asi realizar un análisis completo y preciso de fertilidad. También, hace posible la integración de los datos obtenidos en cada punto del terreno. Además, la retroalimentación y recomendaciones se hacen en base a los resultados arrojados por los sensores y la comparación con los niveles ideales que buscan alcanzarse para el tipo de cultivo relacionado.
La presente invención proporciona la capacidad de alimentar la información recuperada y procesada por el dispositivo (10), ya sea a una ¡nterfaz de usuario móvil o a una unidad remota de almacenamiento en línea, mediante lo cual el usuario puede generar un historial que determine el cambio de los elementos en su suelo a través del tiempo, además de proyecciones y beneficios a futuro si se aplican los procesos sugeridos. Los datos obtenidos por los diferentes usuarios en una zona geográfica determinada pueden servir para generar un mapeo del status del suelo a nivel regional, nacional e incluso internacional.
El proceso de medición en un área de terreno determinada se puede realizar en un promedio de tres horas, y se inicia encendiendo el dispositivo (10) pulsando el botón (35) de encendido/apagado; se hace plan de muestreo y posteriormente se divide el terreno a analizar con ayuda de tecnología GPS para lo cual el dispositivo está habilitado con un dispositivo GPS (36) y la aplicación móvil o plataforma Web, aplicando una metodología de mapeado de puntos de muestreo similar a la empleada para la toma de muestras en laboratorio. Posteriormente, se entierra el dispositivo en el suelo, en el primer punto que haya sido determinado, y se espera diez segundos aproximadamente hasta que el LED superior (37) deje de parpadear para retirarlo y repetir el proceso en los siguientes puntos estratégicos identificados anteriormente. La ubicación y mediciones de cada punto, serán almacenadas en el dispositivo (10) y cuando el terreno se cubre por completo, se pueden transferir los datos al dispositivo extemo (40) para revisar los resultados en forma de gráficas, y con base en ellos generar automáticamente recomendaciones de productos agroquímicos y técnicas especificas para tratar el suelo analizado. Los datos pueden ser transferidos desde el dispositivo (10) al dispositivo extemo (40) inalámbricamente enlazándolos por bluetooth -se acciona el botón (38)- o bien mediante un dispositivo de almacenamiento o una memoria (no mostrado) que se conecta al puerto USB (41) provisto en dicho dispositivo (10).
Es importante señalar que aunque el uso del dispositivo ha sido descrito en una forma de utilización preferida, el dispositivo no requiere ser enterrado en el sueb para llevar a cabo el análisis del terreno ya que bastaría que porciones o muestras de este último sean puestas en contacto con los sensores del dispositivo para que éstos detecten las condiciones (pH, humedad, conductividad eléctrica, nutrientes, etc.) del suelo y transmitan esa información a la unidad de procesamiento.
El diseño y tecnología aplicada en el sistema, permiten que el análisis sea inmediato y preciso. El diseño facilita el trabajo de la toma de muestras, por otra parte, la tecnología permite que todos los datos obtenidos se integren y es así como el sistema se distingue por tener la capacidad de cubrir las hectáreas necesarias con un solo dispositivo y en un lapso de tiempo muy corto. Además, la composición y ensamblado de las partes del dispositivo, aseguran su durabilidad y robustez permitiendo que un solo equipo tenga una larga vida útil.
Plataforma de interpretación.
La plataforma se encarga de interpretar los números arrojados por los sensores para proyectarlos en un tablero de fácil entendimiento. El sistema proporciona la opción de leer los resultados por medio de la aplicación móvil o a través de la página web de un proveedor del servicio autorizado. La interpretación automatizada se produce a partir de una base de datos generada con la ayuda de expertos, donde se definieron fórmulas que funcionan en base a parámetros establecidos para lograr un correcto rendimiento del terreno.
En la figura 10A se representa un ejemplo de pantalla a la que se accede cuando a través de la plataforma de interpretación del sistema se desea obtener información gráfica de los resultados y conclusiones que arrojó la medición realizada con el dispositivo (10) con el fin de verificar las condiciones del suelo analizado. Para ello, el usuario deberá primero cargar en el dispositivo externo (40) los datos obtenidos de las mediciones realizadas en el suelo con el dispositivo de medición (10) para que puedan ser comparados contra los valores ideales de humedad, conductividad eléctrica, nutrientes, etc. para un tipo de cultivo en particular. Enseguida, se selecciona el tipo de cultivo (por ejemplo, lechuga, tomate o papas) para el que se desea obtener la interpretación de dichos resultados, los cuales se comparan contra la información de los valores ideales. Automáticamente, la plataforma de interpretación despliega en pantalla una serie de gráficas, por ejemplo, una correspondiente a una comparativa de los valores medidos, como humedad, pH y conductividad eléctrica del terreno, contra el valor ideal predeterminado de esa misma variable para ese tipo de cultivo en particular. También, el sistema ofrece al usuario un resumen geográfico o mapeo de cada uno de los puntos en donde se enterró el dispositivo, representado por una imagen fácilmente interpretable del terreno analizado en la que se aprecian claramente sus condiciones de fertilidad (bien, regular o mal) en cada zona del mismo.
En forma similar, en el ejemplo de la figura 10B, se representa la interpretación gráfica de la información obtenida de las mediciones del dispositivo (10) del suelo para cultivo de tomates. En este caso, el resumen geográfico generado por el sistema permite observar por zonas las condiciones de fertilidad del suelo analizado y recomendaciones para aquellas que requieren de atención inmediata de especialistas debido a sus pobres condiciones.
Como se observa en la figura 10A y 10B, el sistema puede también generar una gráfica que muestra el resumen histórico de las diferentes mediciones de fertilidad que han sido realizadas en el suelo, lo que permite llevar un control adecuado de sus condiciones de humedad, pH, conductividad eléctrica y nutrientes, para tomar las medidas de recuperación necesarias oportunamente.
En la figura 10C, el sistema puede desplegar en pantalla las proyecciones de productividad del suelo analizado y costos relacionados, las cuales se calculan comparando los datos de las condiciones del suelo obtenidos con el dispositivo de medición (10) y los valores ideales para ese tipo de cultivo. Además, podrá generar un historial del status de su terreno con el paso del tiempo.
Finalmente, el sistema de la presente invención puede desplegar (Figura 10D) las recomendaciones para el correcto tratamiento del suelo en base a los resultados obtenidos, tanto de productos como técnicas.
Implementación del Método.
En una forma de realización preferida, el método de la presente invención, desarrollado para medir la fertilidad del suelo, interpretar tos resultados y recomendar acciones de recuperación, consiste en las siguientes etapas:
- hacer un plan de muestreo del terreno para determinar como se va a
dividir el terreno y la cantidad de puntos de muestreo; - enterrar el dispositivo de medición, previamente encendido, en los sitios predeterminados hasta una profundidad seleccionada y retirarlo una vez obtenida la medición de ciertas condiciones del terreno, como humedad, pH del suelo y del agua, conductividad eléctrica y nutrientes presentes; - capturar la información de las mediciones realizadas y procesarla en dicho dispositivo de medición para transmitirla a un dispositivo externo habilitado con una plataforma de interpretación que contiene información sobre los valores ideales de las condiciones de fertilidad del suelo para distintos tipos de cultivo;
- transferir o cargar al dispositivo extemo la información de los resultados obtenidos con el dispositivo de medición; e
- interpretar los resultados de las mediciones mediante la comparación de los datos obtenidos contra los valores ideales y automáticamente generar información gráfica, desplegable en pantalla, mostrando:
las diferencias entre los datos obtenidos y los valores ideales de las condiciones del terreno para un cultivo preseleccionado;
un resumen geográfico de las áreas del terreno analizado, identificándolas en un mapa con las condiciones de fertilidad que guardan; un resumen histórico de las condiciones del terreno con el paso del tiempo; y
las recomendaciones de productos y técnicas idóneas para el tratamiento y recuperación de las condiciones de fertilidad del terreno.
Además de las anteriores características, el método despliega al usuario las proyecciones de productividad del terreno en el tiempo calculadas en base a los resultados obtenidos de las mediciones.
Aunque esta invención ha sido descrita en el contexto de la modalidad o forma de realización preferida, será evidente para un experto en la materia que el alcance del concepto descrito a título de ejemplo se extiende más ailá de lo específicamente descrito e ilustrado a otras posibles formas alternas de materialización de la invención que puedan ser deducibles o derivables a partir de los principios previamente señalados. De esta forma, aunque la invención se ha descrito en detalle en su concepción preferida, se deducirá que algunos componentes del sistema pueden ser sustituidos por otros análogos o bien otros distintos incorporados a ellos a la luz de la descripción que antecede sin que ello implique que se modifica la esencia o naturaleza de la invención reivindicada. En forma similar, el método ha sido descrito en su forma de realización preferida, sin embargo, ello no deberá interpretarse limitado al contenido y etapas descritas en el mismo.
Por consiguiente, se pretende que el alcance de la protección de la presente invención no se interprete con base únicamente en la forma de realización antes descrita e ilustrada sino que quede determinado por una interpretación razonable del contenido de las siguientes reivindicaciones.
Se hace la atenta aclaración que el mejor método para llevar a la práctica la invención es aquel que se ha descrito e ilustrado.

Claims

REIVINDICACIONES
1. - Sistema electrónico para medir la fertilidad del suelo y la calidad del agua, el cual comprende:
a) un dispositivo de medición (10) que comprende:
- un cuerpo metálico (20) dotado de unas puntas (22) y un alojamiento central (23); dichas puntas definiendo entre si una ranura que se extiende longitudinalmente en dirección hacia el alojamiento;
- una unidad de procesamiento alojada en una carcasa (31) y ésta contenida en el alojamiento de dicho cuerpo; dicha unidad de procesamiento controla y comprende interconectados:
unos sensores (32, 33, 34) que entran en contacto con el suelo y registran mediciones de ciertas variables del mismo;
un microcontrolador (M) que recibe, captura y almacena la información proveniente de los sensores y la transmite inalámbricamente o por USB a un dispositivo externo; y
un dispositivo de geolocalización (36) para dividir el terreno que se va analizar, el cual incluye unos medios para el mapeado de puntos de muesíreo;
b) un dispositivo electrónico extemo (40) que se encarga de recibir los datos transmitidos por la unidad de procesamiento para revisarlos y ver las recomendaciones de productos agroquimicos y técnicas especificas para tratar el suelo analizado; y
c) una plataforma de interpretación de resultados mediante el uso de una aplicación descargable a un dispositivo móvil o un sitio de internet autorizado; en donde la plataforma de interpretación contiene información sobre los valores ideales de las condiciones de fertilidad del suelo para distintos tipos de cultivo.
2. - El sistema de medición de la reivindicación 1, caracterizado porque comprende además una base (5) que tiene una perforación a través de la cual se inserta el dispositivo de medición para posicionarlo en el suelo.
3.- El sistema de medición de la reivindicación 1 , caracterizado porque el cuerpo tiene una superficie superior antiderrapante sobre la que se ejerce una fuerza de presión suficiente para que el dispositivo se entierre en el suelo hasta una profundidad determinada.
4.- El sistema de medición de la reivindicación 1 , caracterizado porque el cuerpo se selecciona de un material que no afecte las mediciones tomadas por el dispositivo.
5.- El sistema de medición de la reivindicación 1 , caracterizado porque el dispositivo extemo puede consistir en una computadora, Tablet o Smartphone.
6.- Un dispositivo de medición de la fertilidad del suelo y de la calidad del agua, que comprende:
a) un cuerpo metálico dotado de unas puntas y un alojamiento central; dichas puntas definiendo entre si una ranura que se extiende longitudinalmente en dirección hacia el alojamiento; y
b) una unidad de procesamiento alojada en una carcasa y ésta contenida en el alojamiento de dicho cuerpo; dicha unidad de procesamiento controla y comprende interconectados:
unos sensores que entran en contacto con el suelo y registran mediciones de ciertas variables del mismo;
- un microcontrolador que recibe, captura y almacena la información proveniente de los sensores y/o la transmite a un dispositivo electrónico extemo; y
un dispositivo de geolocalización para dividir el terreno que se va analizar, el cual incluye unos medios para el mapeado de puntos de muestreo.
7. - El sistema de medición de la reivindicación 1, caracterizado porque incluye además una base que tiene una perforación en su parte superior a través de la cual se inserta el dispositivo de medición para posicionarlo en el suelo.
8. - El sistema de medición de la reivindicación 1, caracterizado porque el cuerpo tiene una superficie superior antiderrapante sobre la que se ejerce una fuerza de presión suficiente para que el dispositivo se entierre en el suelo hasta una profundidad determinada.
9. - El sistema de medición de la reivindicación 1 , caracterizado porque el cuerpo se selecciona de un material que no afecte las mediciones tomadas por el dispositivo.
10. - Método para medir la fertilidad del suelo, interpretar los resultados y recomendar acciones de recuperación, el cual consiste en:
- hacer un plan de muestreo del terreno para determinar como se va a dividir el terreno y la cantidad de puntos de muestreo;
- enterrar el dispositivo de medición, previamente encendido, en los sitios predeterminados hasta una profundidad seleccionada y retirarlo una vez obtenida la medición de ciertas condiciones del terreno, como humedad, pH del suelo y del agua, conductividad eléctrica y nutrientes presentes;
- capturar la información de las mediciones realizadas y procesarla en dicho dispositivo de medición para transmitirla a un dispositivo externo habilitado con una plataforma de interpretación que contiene información sobre los valores ideales de las condiciones de fertilidad del suelo para distintos tipos de cultivo;
- transferir o cargar al dispositivo extemo la información de los resultados obtenidos con el dispositivo de medición; e
- interpretar los resultados de las mediciones y automáticamente generar información gráfica, desplegable en pantalla, mostrando:
las diferencias entre los datos obtenidos y los valores ideales de las condiciones del terreno para un cultivo preseleccionado;
un resumen geográfico de las áreas del terreno analizado, identificándolas en un mapa con las condiciones de fertilidad que guardan; un resumen histórico de las condiciones del terreno con el paso del tiempo; y
las recomendaciones de productos y técnicas idóneas para el tratamiento y recuperación de las condiciones de fertilidad del terreno.
11.- El método de la reivindicación 10, que ofrece las proyecciones de productividad del terreno en el tiempo calculadas en base a los resultados obtenidos de las mediciones.
PCT/MX2017/000041 2017-03-30 2017-03-31 Sistema y método para medir la fertilidad del suelo y calidad del agua WO2018182393A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2017004187A MX2017004187A (es) 2017-03-30 2017-03-30 Sistema y método para medir la fertilidad del suelo y calidad del agua.
MXMX/A/2017/004187 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018182393A1 true WO2018182393A1 (es) 2018-10-04

Family

ID=63676448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000041 WO2018182393A1 (es) 2017-03-30 2017-03-31 Sistema y método para medir la fertilidad del suelo y calidad del agua

Country Status (2)

Country Link
MX (1) MX2017004187A (es)
WO (1) WO2018182393A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112655344A (zh) * 2020-12-11 2021-04-16 李广远 一种轨道式田间管理养护机器人系统及方法
US11871691B2 (en) 2016-11-07 2024-01-16 Climate Llc Agricultural implements for soil and vegetation analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035370A1 (en) * 2013-09-09 2015-03-12 Soil IQ, Inc. Monitoring device and method of use
US20150081058A1 (en) * 2013-09-13 2015-03-19 Mr. Ian James Oliver Plant profile game system
US20150330932A1 (en) * 2014-05-19 2015-11-19 Fiskars Oyj Abp Soil moisture sensor
US20150359185A1 (en) * 2014-06-17 2015-12-17 Jonathan Guy Untethered Irrigation Device and Method
US20170061052A1 (en) * 2015-07-15 2017-03-02 The Climate Corporation Generating Digital Models Of Nutrients Available To A Crop Over The Course Of The Crop's Development Based On Weather And Soil Data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035370A1 (en) * 2013-09-09 2015-03-12 Soil IQ, Inc. Monitoring device and method of use
US20150081058A1 (en) * 2013-09-13 2015-03-19 Mr. Ian James Oliver Plant profile game system
US20150330932A1 (en) * 2014-05-19 2015-11-19 Fiskars Oyj Abp Soil moisture sensor
US20150359185A1 (en) * 2014-06-17 2015-12-17 Jonathan Guy Untethered Irrigation Device and Method
US20170061052A1 (en) * 2015-07-15 2017-03-02 The Climate Corporation Generating Digital Models Of Nutrients Available To A Crop Over The Course Of The Crop's Development Based On Weather And Soil Data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871691B2 (en) 2016-11-07 2024-01-16 Climate Llc Agricultural implements for soil and vegetation analysis
CN112655344A (zh) * 2020-12-11 2021-04-16 李广远 一种轨道式田间管理养护机器人系统及方法

Also Published As

Publication number Publication date
MX2017004187A (es) 2018-11-09

Similar Documents

Publication Publication Date Title
US10028426B2 (en) Agronomic systems, methods and apparatuses
Salam et al. Internet of things in agricultural innovation and security
Paul et al. Viable smart sensors and their application in data driven agriculture
US20180014452A1 (en) Agronomic systems, methods and apparatuses
US20160086032A1 (en) Method and system for collecting image data
ES2961241T3 (es) Sistema y método de control de crecimiento de plantas
US20180143130A1 (en) Plant matter sensor
MX2015002372A (es) Sistema de recomendaciones especificas para la agricultura.
KR101651919B1 (ko) 토양 pH 측정 장치
WO2018182393A1 (es) Sistema y método para medir la fertilidad del suelo y calidad del agua
ES2865492T3 (es) Sistema para predecir la aparición de una enfermedad de árboles y método para el mismo
ES2901641T3 (es) Sistema para determinar o vigilar una magnitud de estado de un objeto a medir y procedimiento correspondiente
Ramil Brick et al. A review of agroforestry, precision agriculture, and precision livestock farming—The case for a data-driven agroforestry strategy
Liakos et al. A decision support tool for managing precision irrigation with center pivots
Montilla et al. Precision agriculture for rice crops with an emphasis in low health index areas
Sharma et al. Investigations of precision agriculture technologies with application to developing countries
Mahmood et al. Within-field variations in sugar beet yield and quality and their correlation with environmental variables in the East of England
CN117794354A (zh) 识别播种种子萌发的装置、农业传感器装置以及农业监测和/或农业控制方法和系统
ES2684843B1 (es) Procedimiento de tratamiento de cultivos
US20220183216A1 (en) An above and below ground autonomous sensor system for crop management
WO2018173016A2 (es) Dispositivo de caracterización de propiedades edafológicas de suelos en agricultura
Agajo et al. A modified web-based agro-climatic remote monitoring system via wireless sensor network
ES2918007T3 (es) Procedimiento para determinar las propiedades vegetales de una planta útil
O’Shaughnessy et al. Advanced tools for irrigation scheduling
Kar et al. Farmbot: an IoT-Based Wireless Agricultural Robot for Smart Cultivation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17903415

Country of ref document: EP

Kind code of ref document: A1