WO2018181975A1 - Reciprocating booster compressor - Google Patents

Reciprocating booster compressor Download PDF

Info

Publication number
WO2018181975A1
WO2018181975A1 PCT/JP2018/013815 JP2018013815W WO2018181975A1 WO 2018181975 A1 WO2018181975 A1 WO 2018181975A1 JP 2018013815 W JP2018013815 W JP 2018013815W WO 2018181975 A1 WO2018181975 A1 WO 2018181975A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
cylinder
pressurized gas
passage
booster compressor
Prior art date
Application number
PCT/JP2018/013815
Other languages
French (fr)
Japanese (ja)
Inventor
井上 弘
Original Assignee
アネスト岩田株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネスト岩田株式会社 filed Critical アネスト岩田株式会社
Priority to JP2019509400A priority Critical patent/JPWO2018181975A1/en
Priority to EP18777319.7A priority patent/EP3604807A4/en
Priority to CN201880018655.8A priority patent/CN110431306A/en
Publication of WO2018181975A1 publication Critical patent/WO2018181975A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/02Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders arranged oppositely relative to main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/128Crankcases

Definitions

  • This disclosure relates to a reciprocating booster compressor capable of further compressing pressurized gas supplied from the outside by reciprocating movement of a piston in a cylinder.
  • a reciprocating compressor In a reciprocating compressor, the rotational movement of an input shaft to which power is input from a power source such as an electric motor is converted into the reciprocating movement of a piston in a cylinder by a crank mechanism housed in the crankcase. Thereby, compression of the gas supplied from the outside is performed.
  • a so-called booster compressor for further boosting a gas that has been previously pressurized to atmospheric pressure or higher from the viewpoint of energy saving.
  • a multistage reciprocating booster compressor is required to meet the demand for pressurized gas at higher pressure.
  • the pressurized gas supplied from the outside is the first After being compressed in the cylinder, it is further compressed in the second cylinder.
  • the first cylinder and the second cylinder that perform such compression may be driven by a common crank mechanism.
  • At least one embodiment of the present invention has been made in view of the above circumstances, and in each cylinder that performs multi-stage compression, by appropriately setting the internal pressure of the crankcase, it is possible to achieve a long life and achieve high energy savings.
  • An object of the present invention is to provide a reciprocating booster compressor capable of obtaining an effect.
  • a reciprocating booster compressor includes a crank mechanism for converting rotational motion of an input shaft to which power is input into reciprocating motion, And a plurality of cylinders capable of compressing gas by being driven by a reciprocating motion converted by the crank mechanism, wherein the plurality of cylinders are supplied from outside.
  • a first cylinder that generates a first pressurized gas having a pressure higher than that of the pressurized gas by compressing the pressurized gas is connected in series to the first cylinder, and the first pressurized gas is further reduced.
  • crankcase has a first space corresponding to the first cylinder. And corresponding to the second cylinder And the first space and the second space are separated from each other by a partition wall provided inside the crankcase, and at least the first space or the second space.
  • One is pressurized by introducing any one of the pressurized gas, the first pressurized gas, or the second pressurized gas.
  • the crankcase has a first space and a second space corresponding to a plurality of cylinders. Since the first space and the second space are separated from each other by the partition wall, the first space and the second space can form independent pressures. At least one of the first space and the second space is pressurized by introducing any one of a pressurized gas, a first pressurized gas, and a second pressurized gas, whereby each cylinder The pressure difference from the crankcase side can be suppressed.
  • the pressurized gas is introduced into the first space, and the first pressurized gas is introduced into the second space. Is done.
  • the pressure corresponding to the intake pressure of the first cylinder is set by introducing the pressurized gas supplied to the first cylinder into the first space.
  • the pressure is set to be different from that of the first space corresponding to the intake pressure of the second cylinder.
  • the first passage connecting the intake port of the pressurized gas and the first space, the first space, and the first space And a second passage connecting the suction side of the cylinder.
  • the pressurized gas that is the compression target of the booster compressor is supplied to the first space via the first passage.
  • the pressurized gas supplied to the first space passes through the first space and is supplied to the first cylinder via the second passage.
  • the pressure corresponding to the first cylinder is effective in the first space by the dynamic pressure of the pressurized gas. Can be formed.
  • a third passage connecting the discharge side of the first cylinder and the second space, and the second space And a fourth passage connecting the suction side of the second cylinder.
  • the first pressurized gas discharged from the first cylinder is supplied to the second space via the third passage.
  • the pressurized gas supplied to the second space passes through the second space and is supplied to the second cylinder via the fourth passage.
  • the 1st pressurized gas is supplied to the 2nd cylinder via the 2nd space, in the 2nd space, it corresponds to the 2nd cylinder with the dynamic pressure which pressurized gas has. Pressure can be formed effectively.
  • a heat radiating fin is provided on the outer surface of the third passage.
  • the first pressurized gas is heated by being compressed in the first cylinder, it is preferably cooled before being supplied to the second cylinder.
  • the first pressurized gas since the radiation fins are provided on the outer surface of the third passage through which the first pressurized gas discharged from the first cylinder passes, the first pressurized gas The cooling is promoted by the radiation fins when passing through the third passage.
  • the intermediate cooler provided between the first cylinder and the second cylinder can be reduced in size, or if the cooling effect by the radiation fins is sufficient, it is not necessary to provide the intermediate cooler.
  • the apparatus can be reduced in size.
  • a fifth passage connecting the discharge side of the first cylinder and the suction side of the second cylinder; And a sixth passage branched from the fifth passage and connected to the second space.
  • the first pressurized gas discharged from the first cylinder is supplied to the second cylinder via the fifth passage.
  • the fifth passage is provided with a sixth passage that branches into the second space, and a part of the first pressurized gas is supplied to the second space, whereby the second space is provided.
  • the sixth passage can be designed independently of the fifth passage for supplying the first pressurized gas to the second cylinder, a more flexible device configuration can be obtained.
  • a heat radiating fin is provided on the outer surface of the sixth passage.
  • the first pressurized gas is heated by being compressed in the first cylinder, it is preferably cooled before being supplied to the second cylinder.
  • the heat radiation fin is provided on the outer surface of the sixth passage through which a part of the first pressurized gas discharged from the first cylinder passes, the first When the pressurized gas passes through the sixth passage, cooling is promoted by the radiation fins.
  • the intermediate cooler provided between the first cylinder and the second cylinder can be reduced in size, or if the cooling effect by the radiation fins is sufficient, it is not necessary to provide the intermediate cooler.
  • the apparatus can be reduced in size.
  • the partition wall includes an opening through which the input shaft passes, and the input shaft rotatably supported. And a sealing member that seals the opening.
  • the input shaft passes through the opening provided in the partition wall, so that power can be input to the first cylinder and the second cylinder separated by the partition wall.
  • the input shaft is sealed while being rotatably supported by the seal member, so that the independence of the first space and the second space partitioned by the partition wall can be ensured.
  • the first space and the second space can be appropriately pressurized to the pressure corresponding to each cylinder.
  • the first space is configured such that the pressurized air introduced into the first space is injected toward the seal member. Is done.
  • the seal member that seals the opening provided in the partition wall while rotatably supporting the input shaft is likely to become hot when the input shaft rotates.
  • the pressurized air introduced into the first space is jetted toward the seal member with respect to such a seal member, so that the seal member is pressed together with the pressure in the first space. Can be cooled.
  • the second space is configured such that the first pressurized air introduced into the second space is directed toward the seal member. Configured to be injected.
  • the seal member that seals the opening provided in the partition wall while rotatably supporting the input shaft is likely to become hot when the input shaft rotates.
  • the first space is pressurized by injecting the first pressurized air introduced into the second space toward the seal member. At the same time, the sealing member can be cooled.
  • the first pressurized gas is introduced into the first space, and the second pressurized gas is introduced into the second space. Gas is introduced.
  • the first space is pressurized by introducing the first pressurized gas discharged from the first cylinder, so that the first cylinder and the first The pressure difference between the space and the second space can be suppressed
  • the second space is pressurized by introducing the second pressurized gas discharged from the second cylinder, so that the second cylinder And the pressure difference between the second space can be suppressed.
  • the pressurized gas is introduced into the first space, and the second pressurized gas is introduced into the second space. Is done.
  • the first space is pressurized by introducing pressurized gas that is intake air into the first cylinder, so that the first cylinder and the first space are And the second space is pressurized by introducing a second pressurized gas discharged from the second cylinder, so that the second cylinder and the second cylinder are pressurized.
  • the pressure difference between the two spaces can be suppressed.
  • the second pressurized gas is introduced into the first space and the second space.
  • the first space and the second space are pressurized by introducing the second pressurized gas discharged from the second cylinder, The pressure difference between the crankcase side can be suppressed.
  • the oil-free compressor is used.
  • a reciprocating booster compression that can avoid excessive design and achieve a long life Can provide a machine.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within the range where the same effect can be obtained. A shape including a chamfered portion or the like is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.
  • FIG. 1 is a cross-sectional view showing a configuration of a reciprocating booster compressor (hereinafter referred to as “compressor” as appropriate) according to the first embodiment.
  • the compressor 1 is an oil-free reciprocating compressor, and pressurized gas higher than atmospheric pressure is introduced from an external gas supply source (not shown) through a first passage 2 that is a supply pipe. .
  • the compressor 1 compresses the pressurized gas introduced from the first passage 2 in a plurality of cylinders (first cylinder LP and second cylinder HP) connected in series with each other, and is discharged from the discharge pipe 4 to the outside. It discharges toward the supply destination (not shown).
  • the oil-free compressor 1 is mainly described. However, the oil-free compressor 1 is applicable unless otherwise specified.
  • the compressor 1 has an input shaft 5 that can be rotationally driven by power input from an external power source (not shown) such as an electric motor.
  • the input shaft 5 is formed integrally with a crankshaft 10 constituting a crank mechanism 8 housed in a crankcase 6 provided at the lower portion of the compressor 1.
  • the crankshaft 10 is rotatably supported by bearings 12 and 14 provided in the crankcase 6. Further, the crankcase 6 has the input shaft 5 passing through on the bearing 12 side, and the inside of the crankcase 6 is tightly sealed with respect to the outside by a seal member 16.
  • connecting rods 18 and 20 corresponding to the first cylinder LP and the second cylinder HP provided above the crankcase 6 is pivotally supported on the crankshaft 6 via seal members 22 and 24, respectively. ing.
  • the other ends of the connecting rods 18 and 20 are pivotally supported by pistons 30 and 32 inserted into the cylinders 26 and 28 constituting the first cylinder LP and the second cylinder HP.
  • the compressor 1 is an oil-free type, in order to suppress leakage from the compression chamber, for example, a composite piston (composite resin piston) is used as the pistons 30 and 32, and a piston ring abutment not shown is compressed. Sometimes, a method of fixing at a position where theoretical leakage is not possible is adopted.
  • a partition wall 34 is provided on the inner wall of the crankcase 6.
  • the partition wall 34 is formed with an opening 40 through which the crankshaft 10 configured integrally with the input shaft 5 passes.
  • the opening 40 is provided with a sealing member 42 for sealing the opening 40 while the crankshaft 10 is rotatably supported. Accordingly, the first space 36 and the second space 38 are separated from each other by the partition wall 34 provided inside the crankcase 6.
  • the first cylinder LP has an intake chamber 46 having an inlet for introducing intake air on the top wall of the cylinder 26 and a guide for discharging the first pressurized gas compressed by the first cylinder LP.
  • An air discharge chamber 50 having an outlet is defined by a partition wall 52.
  • the intake chamber 46 and the exhaust chamber 50 communicate with the inside of the cylinder 26 through an intake port 53 and an exhaust port 54.
  • the intake port 53 and the exhaust port 54 are each provided with a backflow prevention valve (not shown).
  • the second cylinder HP has, on the top wall of the cylinder 28, an intake chamber 58 having an inlet for introducing intake air, and a guide for discharging the second pressurized gas compressed in the second cylinder HP.
  • An air discharge chamber 62 having an outlet is defined by a partition wall 64.
  • the intake chamber 58 and the exhaust chamber 62 communicate with the cylinder 28 through an intake port 66 and an exhaust port 68.
  • the intake port 66 and the exhaust port 68 are each provided with a backflow prevention valve (not shown).
  • the first passage 2 to which the pressurized gas is supplied is connected so as to communicate with the first space 36 in the crankcase 6, and the first space 36 is connected to the first passage 36 via the second passage 70. Connected to the suction side of one cylinder LP. Therefore, the pressurized gas supplied from the first passage 2 is sucked into the first cylinder LP through the first space 36. As a result, the first space 36 is pressurized to approximately the same pressure as the intake chamber 46 by the pressurized gas. As a result, the pressure difference between the first space 36 and the intake chamber 46 is reduced, and the load on the first cylinder LP during driving is reduced.
  • the discharge side of the first cylinder LP is connected to the second space 38 in the crankcase 6 by the third passage 72, and the second space 38 is connected to the second cylinder HP by the fourth passage 74. Connected to the intake side. Therefore, the first pressurized gas discharged from the first cylinder LP is sucked into the second cylinder HP through the second space 38. As a result, the second space 38 is pressurized to a pressure substantially equal to that of the intake chamber 58 by the first pressurized gas. As a result, the pressure difference between the second space 38 and the intake chamber 58 is reduced, and the load on the second cylinder HP during driving is reduced.
  • an intermediate cooler (not shown) may be provided in the third passage 72.
  • the crankcase 6 can be divided into a plurality of spaces corresponding to each cylinder and set to a pressure corresponding to each cylinder, so that the pressure difference from the crankcase 6 side is appropriately suppressed in each cylinder. be able to. Therefore, it is possible to reduce the load applied to components such as the bearings 12 and 14 of the crankshaft 10 constituting the crank mechanism 8, and to achieve a long product life. Furthermore, a high energy saving effect can be obtained.
  • FIG. 2 is a modification of FIG.
  • the third passage 72 is made of a tubular member through which the first pressurized gas discharged from the first cylinder LP passes, and heat radiating fins 76 are provided on the outer surface thereof.
  • the first pressurized gas discharged from the first cylinder LP has a high temperature, it is preferably cooled when supplied to the second cylinder HP on the high pressure side.
  • the radiating fins 76 are formed on the outer surface of the third passage 72.
  • the intermediate cooler when an intermediate cooler (not shown) is provided between the first cylinder LP and the second cylinder HP, the intermediate cooler can be reduced in size.
  • the cooling effect by the radiating fins 76 is sufficient, there is no need to provide an intermediate cooler. As a result, the apparatus can be reduced in size.
  • the third passage 72 is connected between the partition wall 34 and the second cylinder HP in the crankcase 6, and an outlet side thereof opens toward the seal member 42. Since the seal member 42 seals the opening 32 provided in the partition wall 34 while rotatably supporting the crankshaft 10, the seal member 42 tends to become high temperature during driving. Therefore, the first pressurized air introduced into the first space 36 is jetted toward the seal member 42 with respect to the seal member 42, so that the seal member 42 is pressurized together with the second space 38. Can be cooled. In particular, when the heat dissipating fins 76 are provided in the third passage 72 as shown in FIG. 2, since the first pressurized gas after cooling can be supplied from the third passage 72, the seal member 42 can be cooled more effectively.
  • the first passage 2 is also connected between the partition wall 34 and the first cylinder LP in the crankcase 6 in the same manner as the third passage 72 described above, and its outlet side opens toward the seal member 42. You may comprise. As described above, also in the first space 36, the introduced pressurized gas is jetted toward the seal member 42, so that the seal member 42 can be cooled together with the pressurization of the first space 36.
  • the seal member 42 has both sides (first space 36 and second space 38). Therefore, the temperature can be more effectively suppressed.
  • FIG. 3 is a cross-sectional view showing a configuration of a reciprocating booster compressor (hereinafter referred to as “compressor” as appropriate) according to the second embodiment.
  • compressor reciprocating booster compressor
  • the discharge-side exhaust chamber 50 of the first cylinder LP is connected to the intake-side intake chamber 58 of the second cylinder HP by a fifth passage 82. That is, in the first embodiment, the exhaust side of the first cylinder LP is connected to the intake side of the second cylinder HP via the second space 38, but in the second embodiment, the second space It is directly connected without going through 38.
  • a sixth passage 86 connected to the second space 38 branches from a branch point 84 in the middle of the fifth passage 82.
  • a part of the first pressurized gas flowing through the fifth passage 82 is supplied to the second space 38 via the sixth passage 86.
  • the sixth passage 86 can be designed independently of the fifth passage 82 for supplying the first pressurized gas to the second cylinder HP, a more flexible device configuration can be obtained.
  • the sixth passage 86 connected to the second space 38 may be provided with radiating fins 76 on the outer surface thereof, similarly to the third passage 72 shown in FIG. Thereby, the 1st pressurized gas supplied to the 2nd space 38 can be cooled, and the cooling effect of the 2nd space 38 (especially seal member 42) can be heightened.
  • the sixth passage 86 connected to the second space 38 is also the first passage supplied from the sixth passage 86 to the second space 38 in the same manner as the third passage 72 of the first embodiment.
  • the pressurized gas may be configured to be injected from the second space 38 side toward the seal member 42 provided in the partition wall 34. Also in this case, the first pressurized gas supplied from the sixth passage 86 is supplied to the seal member 42, so that the seal member 42 is effectively cooled.
  • FIG. 4 is a cross-sectional view showing a configuration of a reciprocating booster compressor according to the third embodiment.
  • components corresponding to the above-described embodiments are denoted by common reference numerals, and redundant descriptions are omitted as appropriate.
  • the first pressurized gas discharged from the first cylinder LP is introduced into the first space 36.
  • the first pressurized gas introduced into the first space 36 has a pressure that is at least higher than that of the first space 36.
  • the first pressurized gas supplied to the first space 36 is from a fifth passage 82 that connects the discharge side of the first cylinder LP and the intake side of the second cylinder HP. It is configured to be introduced through a sixth passage 86 that branches.
  • a pressure reducing valve for adjusting the pressure of the first pressurized gas to an appropriate value is disposed on the sixth passage 86 for supplying the first pressurized gas to the first space 36. It may be. Accordingly, the first space 36 is pressurized using the first pressurized gas discharged from the first cylinder LP, so that the first space 36 is interposed between the first cylinder LP and the first space 36. The pressure difference can be suppressed.
  • the second pressurized gas discharged from the second cylinder HP is introduced into one second space 38.
  • the second pressurized gas introduced into the second space 38 has a pressure that is at least higher than that of the second space 38.
  • the second pressurized gas supplied to the second space 38 is configured to be introduced through a seventh passage 88 branched from the discharge pipe 4 of the second cylinder HP. ing.
  • a pressure reducing valve for adjusting the pressure of the second pressurized gas to an appropriate value is disposed on the seventh passage 88 for supplying the first pressurized gas to the second space 38. It may be. Accordingly, the second space 38 is pressurized using the second pressurized gas discharged from the second cylinder HP, so that the space between the second cylinder HP and the second space 38 is increased. The pressure difference can be suppressed.
  • FIG. 5 is a cross-sectional view showing a configuration of a reciprocating booster compressor according to the fourth embodiment.
  • components corresponding to the above-described embodiments are denoted by common reference numerals, and redundant descriptions are omitted as appropriate.
  • the pressurized gas supplied from the first passage (supply pipe) 2 is introduced into the first space 36 as in the first and second embodiments described above.
  • the first space 36 is pressurized using the pressurized gas supplied from the supply pipe 2, thereby suppressing a pressure difference between the first cylinder LP and the first space 36. Can do.
  • the second pressurized gas discharged from the second cylinder HP is introduced into one second space 38.
  • the second pressurized gas introduced into the second space 38 has a pressure that is at least higher than that of the second space 38.
  • the second pressurized gas supplied to the second space 38 is the seventh passage 88 branched from the discharge pipe 4 of the second cylinder HP. It is comprised so that it may be introduced via.
  • a pressure reducing valve for adjusting the pressure of the second pressurized gas to an appropriate value is disposed on the seventh passage 88 for supplying the first pressurized gas to the second space 38. It may be. Accordingly, the second space 38 is pressurized using the second pressurized gas discharged from the second cylinder HP, so that the space between the second cylinder HP and the second space 38 is increased. The pressure difference can be suppressed.
  • FIG. 6 is a cross-sectional view showing a configuration of a reciprocating booster compressor according to the fifth embodiment.
  • components corresponding to the above-described embodiments are denoted by common reference numerals, and redundant descriptions are omitted as appropriate.
  • the second pressurized gas discharged from the second cylinder HP is introduced into the first space 36.
  • the second pressurized gas introduced into the first space 36 has a pressure that is at least higher than that of the first space 36.
  • the second pressurized gas supplied to the first space 36 is configured to be introduced through an eighth passage 90 branched from the discharge pipe 4 of the second cylinder HP. ing.
  • a pressure reducing valve for adjusting the pressure of the second pressurized gas to an appropriate value is disposed on the eighth passage 90 for supplying the second pressurized gas to the first space 36. It may be.
  • the first space 36 is pressurized using the second pressurized gas discharged from the second cylinder HP, so that the first space 36 is interposed between the first cylinder LP and the first space 36. The pressure difference can be suppressed.
  • the second pressurized gas discharged from the second cylinder HP is introduced into one second space 38.
  • the second pressurized gas introduced into the second space 38 has a pressure that is at least higher than that of the second space 38.
  • the second pressurized gas supplied to the second space 38 is branched from the discharge pipe 4 of the second cylinder HP. It is configured to be introduced through the passage 88.
  • a pressure reducing valve for adjusting the pressure of the second pressurized gas to an appropriate value is disposed on the seventh passage 88 for supplying the first pressurized gas to the second space 38. It may be. Accordingly, the second space 38 is pressurized using the second pressurized gas discharged from the second cylinder HP, so that the space between the second cylinder HP and the second space 38 is increased. The pressure difference can be suppressed.
  • each cylinder that performs multi-stage compression it is possible to achieve a long life and obtain a high energy saving effect by appropriately setting the internal pressure of the crankcase.
  • a reciprocating booster compressor can be provided.
  • At least one embodiment of the present invention can be used in a reciprocating booster compressor capable of further compressing pressurized gas supplied from the outside by reciprocating movement of a piston in a cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

In this reciprocating booster compressor, the interior of a crank case, which accommodates a crank mechanism, is divided by a dividing wall into a first space and a second space. At least one of the first space and the second space is pressurized by the introduction of a gas pressurized in a first cylinder or a second cylinder, and is thereby set to a pressure corresponding to the first cylinder and the second cylinder.

Description

往復動式ブースター圧縮機Reciprocating booster compressor
 本開示は、外部から供給される加圧気体を、シリンダ内のピストンの往復動により更に圧縮可能な往復動式ブースター圧縮機に関する。 This disclosure relates to a reciprocating booster compressor capable of further compressing pressurized gas supplied from the outside by reciprocating movement of a piston in a cylinder.
 一般に、往復動式の圧縮機では、電動モータ等の動力源から動力が入力される入力軸の回転運動を、クランクケース内に収容されたクランク機構によって、シリンダ内のピストンの往復運動に変換することにより、外部から供給される気体の圧縮が行われる。近年、この種の圧縮機では、より高圧の圧縮気体の需要が増えていることに加え、省エネの観点から予め大気圧以上に加圧された気体を更に昇圧するための、いわゆるブースター圧縮機が知られている。 Generally, in a reciprocating compressor, the rotational movement of an input shaft to which power is input from a power source such as an electric motor is converted into the reciprocating movement of a piston in a cylinder by a crank mechanism housed in the crankcase. Thereby, compression of the gas supplied from the outside is performed. In recent years, in this type of compressor, in addition to the increasing demand for compressed gas at a higher pressure, there is a so-called booster compressor for further boosting a gas that has been previously pressurized to atmospheric pressure or higher from the viewpoint of energy saving. Are known.
 往復動式のブースター圧縮機では、大気圧以上の気体を圧縮対象としている。したがって、仮にクランクケース内が大気圧であると、シリンダ及びピストンにより規定される圧縮室とクランクケースとの圧力差が大きくなり、クランク機構を構成するクランクシャフトの軸受部材等の部品に大きな負荷がかかる。その結果、製品寿命が短縮される。また、仮にクランクケース内が大気圧であると、省エネ効果も得られにくい。そこで、この種の往復動式ブースター圧縮機では、クランクケース内を加圧し、圧縮室との圧力差を低減することにより、吸い込み行程時の負荷を抑制するとともに、高い省エネ効果も得ている。例えば特許文献1では、圧縮室で形成された加圧気体をタンクに蓄積し、その一部をクランクケース内に供給することにより、圧縮室とクランクケースとの圧力差を軽減している。 In reciprocating booster compressors, gas above atmospheric pressure is targeted for compression. Therefore, if the inside of the crankcase is at atmospheric pressure, the pressure difference between the compression chamber defined by the cylinder and the piston and the crankcase increases, and a large load is applied to components such as the crankshaft bearing member constituting the crank mechanism. Take it. As a result, the product life is shortened. Further, if the crankcase is at atmospheric pressure, it is difficult to obtain an energy saving effect. Therefore, this type of reciprocating booster compressor pressurizes the inside of the crankcase and reduces the pressure difference with the compression chamber, thereby suppressing the load during the suction stroke and obtaining a high energy saving effect. For example, in Patent Document 1, the pressure difference between the compression chamber and the crankcase is reduced by accumulating the pressurized gas formed in the compression chamber in a tank and supplying a part thereof into the crankcase.
特開2009-133282号公報JP 2009-133282 A
 この種の圧縮機では、より高圧な加圧気体需要に対応するために、多段式の往復動式ブースター圧縮機が求められている。例えば、低圧側圧縮室を有する第1の気筒と、高圧側圧縮室を有する第2の気筒とが直列接続されてなる2段式の場合、外部から供給される加圧気体は、第1の気筒で圧縮された後、第2の気筒で更に圧縮される。このような圧縮を行う第1の気筒及び第2の気筒は、共通のクランク機構によって駆動することが考えられる。しかしながら、第1の気筒及び第2の気筒は互いに異なる圧力の加圧気体を取り扱うため、クランクケースの圧力を一方の気筒に対して適正な圧力になるように加圧すると、そのクランクケースの圧力は、他方の気筒に対して適正な圧力にはならず、クランクケースと他方の気筒との間の圧力差は不適切になる。そのため、特許文献1のように単気筒における構成を、複数の気筒を有する構成にそのまま適用したのでは、このような不適切な圧力差が生じることは避けられない。その結果、駆動軸等への負荷が大きくなり、高い省エネ効果も得られにくくなる。 In this type of compressor, a multistage reciprocating booster compressor is required to meet the demand for pressurized gas at higher pressure. For example, in the case of a two-stage system in which a first cylinder having a low pressure side compression chamber and a second cylinder having a high pressure side compression chamber are connected in series, the pressurized gas supplied from the outside is the first After being compressed in the cylinder, it is further compressed in the second cylinder. The first cylinder and the second cylinder that perform such compression may be driven by a common crank mechanism. However, since the first cylinder and the second cylinder handle pressurized gases having different pressures, if the pressure of the crankcase is increased to an appropriate pressure for one cylinder, the pressure of the crankcase Is not an appropriate pressure for the other cylinder, and the pressure difference between the crankcase and the other cylinder is inappropriate. Therefore, if the configuration in the single cylinder as in Patent Document 1 is applied as it is to the configuration having a plurality of cylinders, it is inevitable that such an inappropriate pressure difference occurs. As a result, the load on the drive shaft and the like is increased, and it is difficult to obtain a high energy saving effect.
 尚、このような大きな負荷は、上述したように製品寿命を短くする要因となってしまう。製品寿命の低下を防ぐためには、例えば圧力差に耐えるだけの重厚な設計にすることが考えられるが、これは過重設計をもたらし、製品コストが増大してしまう。 Note that such a large load is a factor that shortens the product life as described above. In order to prevent the product life from being shortened, for example, it is conceivable to make a heavy-duty design capable of withstanding a pressure difference.
 本発明の少なくとも一実施形態は上述の事情に鑑みなされたものであり、多段圧縮を行う各気筒において、クランクケースの内部圧力を適切に設定することにより、長寿命化を達成でき、かつ高い省エネ効果を得ることが可能な往復動式ブースター圧縮機を提供することを目的とする。 At least one embodiment of the present invention has been made in view of the above circumstances, and in each cylinder that performs multi-stage compression, by appropriately setting the internal pressure of the crankcase, it is possible to achieve a long life and achieve high energy savings. An object of the present invention is to provide a reciprocating booster compressor capable of obtaining an effect.
 (1)本発明の少なくとも一実施形態に係る往復動式ブースター圧縮機は上記課題を解決するために、動力が入力される入力軸の回転運動を往復運動に変換するためのクランク機構と、前記クランク機構を収容するクランクケースと、前記クランク機構で変換された往復運動によって駆動されることで、気体を圧縮可能な複数の気筒と、を備え、前記複数の気筒は、外部から供給される加圧気体を圧縮することにより、前記加圧気体より高圧な第1の加圧気体を生成する第1の気筒と、前記第1の気筒に直列に接続され、前記第1の加圧気体を更に圧縮することにより、前記第1の加圧気体より高圧な第2の加圧気体を生成する第2の気筒と、を含み、前記クランクケースは、前記第1の気筒に対応する第1の
空間と、前記第2の気筒に対応する第2の空間とを含み、前記第1の空間及び前記第2の空間は、前記クランクケースの内側に設けられた隔壁によって互いに隔離され、前記第1の空間又は前記第2の空間の少なくとも一方は、前記加圧気体、前記第1の加圧気体或いは前記第2の加圧気体のいずれか一つが導入されることにより加圧される。
(1) In order to solve the above problems, a reciprocating booster compressor according to at least one embodiment of the present invention includes a crank mechanism for converting rotational motion of an input shaft to which power is input into reciprocating motion, And a plurality of cylinders capable of compressing gas by being driven by a reciprocating motion converted by the crank mechanism, wherein the plurality of cylinders are supplied from outside. A first cylinder that generates a first pressurized gas having a pressure higher than that of the pressurized gas by compressing the pressurized gas is connected in series to the first cylinder, and the first pressurized gas is further reduced. And a second cylinder that generates a second pressurized gas having a pressure higher than that of the first pressurized gas by compression, wherein the crankcase has a first space corresponding to the first cylinder. And corresponding to the second cylinder And the first space and the second space are separated from each other by a partition wall provided inside the crankcase, and at least the first space or the second space. One is pressurized by introducing any one of the pressurized gas, the first pressurized gas, or the second pressurized gas.
 上記(1)の構成によれば、クランクケースは複数の気筒に対応する第1の空間及び第2の空間を有する。第1の空間及び第2の空間は隔壁によって互いに隔離されているため、第1の空間及び第2の空間はそれぞれ独立した圧力を形成することができる。第1の空間又は第2の空間の少なくとも一方は、加圧気体、第1の加圧気体或いは第2の加圧気体のいずれか一つが導入されることにより加圧されることで、各気筒においてクランクケース側との圧力差を抑えることができる。 According to the configuration of (1) above, the crankcase has a first space and a second space corresponding to a plurality of cylinders. Since the first space and the second space are separated from each other by the partition wall, the first space and the second space can form independent pressures. At least one of the first space and the second space is pressurized by introducing any one of a pressurized gas, a first pressurized gas, and a second pressurized gas, whereby each cylinder The pressure difference from the crankcase side can be suppressed.
(2)幾つかの実施形態では上記(1)の構成において、前記第1の空間には、前記加圧気体が導入され、前記第2の空間には、前記第1の加圧気体が導入される。 (2) In some embodiments, in the configuration of (1), the pressurized gas is introduced into the first space, and the first pressurized gas is introduced into the second space. Is done.
 上記(2)の構成によれば、第1の空間には第1の気筒に供給される加圧気体が導入されることにより、第1の気筒の吸気圧に対応した圧力に設定される。一方、第2の空間には第2の気筒に供給される第1の加圧気体が導入されることにより、第2の気筒の吸気圧に対応した第1の空間とは異なる圧力に設定される。 According to the configuration of (2) above, the pressure corresponding to the intake pressure of the first cylinder is set by introducing the pressurized gas supplied to the first cylinder into the first space. On the other hand, by introducing the first pressurized gas supplied to the second cylinder into the second space, the pressure is set to be different from that of the first space corresponding to the intake pressure of the second cylinder. The
 (3)幾つかの実施形態では上記(2)の構成において、前記加圧気体の吸気口と前記第1の空間とを接続する第1の通路と、前記第1の空間と前記第1の気筒の吸入側とを接続する第2の通路と、を備える。 (3) In some embodiments, in the configuration of (2) above, the first passage connecting the intake port of the pressurized gas and the first space, the first space, and the first space And a second passage connecting the suction side of the cylinder.
 上記(3)の構成によれば、ブースター圧縮機の圧縮対象である加圧気体は、第1の通路を介して第1の空間に供給される。そして第1の空間に供給された加圧気体は、第1の空間を通過して、第2の通路を介して第1の気筒に供給される。このように、加圧気体は第1の空間を経由して第1の気筒に供給されるため、第1の空間では、加圧気体が有する動圧によって第1の気筒に対応する圧力を効果的に形成できる。 According to the configuration of (3) above, the pressurized gas that is the compression target of the booster compressor is supplied to the first space via the first passage. The pressurized gas supplied to the first space passes through the first space and is supplied to the first cylinder via the second passage. As described above, since the pressurized gas is supplied to the first cylinder via the first space, the pressure corresponding to the first cylinder is effective in the first space by the dynamic pressure of the pressurized gas. Can be formed.
 (4)幾つかの実施形態では上記(2)又は(3)の構成において、前記第1の気筒の吐出側と前記第2の空間とを接続する第3の通路と、前記第2の空間と前記第2の気筒の吸入側とを接続する第4の通路と、を備える。 (4) In some embodiments, in the above configuration (2) or (3), a third passage connecting the discharge side of the first cylinder and the second space, and the second space And a fourth passage connecting the suction side of the second cylinder.
 上記(4)の構成によれば、第1の気筒から吐出される第1の加圧気体は、第3の通路を介して第2の空間に供給される。そして第2の空間に供給された加圧気体は、第2の空間を通過して、第4の通路を介して第2の気筒に供給される。このように、第1の加圧気体は第2の空間を経由して第2の気筒に供給されるため、第2の空間では、加圧気体が有する動圧によって第2の気筒に対応する圧力を効果的に形成できる。 According to the configuration of (4) above, the first pressurized gas discharged from the first cylinder is supplied to the second space via the third passage. The pressurized gas supplied to the second space passes through the second space and is supplied to the second cylinder via the fourth passage. Thus, since the 1st pressurized gas is supplied to the 2nd cylinder via the 2nd space, in the 2nd space, it corresponds to the 2nd cylinder with the dynamic pressure which pressurized gas has. Pressure can be formed effectively.
 (5)幾つかの実施形態では上記(4)の構成において、前記第3の通路の外表面には放熱フィンが設けられている。 (5) In some embodiments, in the configuration of (4) above, a heat radiating fin is provided on the outer surface of the third passage.
 第1の加圧気体は第1の気筒で圧縮されることで高温となっているため、第2の気筒に供給される前に冷却されることが好ましい。上記(5)の構成によれば、第1の気筒から吐出される第1の加圧気体が通過する第3の通路の外表面に放熱フィンが設けられているため、第1の加圧気体は第3の通路を通過する際に放熱フィンによって冷却が促進される。これにより、第1の気筒と第2の気筒との間に設けられる中間冷却器を小型化することができ、または、放熱フィンによる冷却効果が十分であれば、中間冷却器を設ける必要がなくなり、装置を小型化することができる。 Since the first pressurized gas is heated by being compressed in the first cylinder, it is preferably cooled before being supplied to the second cylinder. According to the configuration of (5) above, since the radiation fins are provided on the outer surface of the third passage through which the first pressurized gas discharged from the first cylinder passes, the first pressurized gas The cooling is promoted by the radiation fins when passing through the third passage. Thereby, the intermediate cooler provided between the first cylinder and the second cylinder can be reduced in size, or if the cooling effect by the radiation fins is sufficient, it is not necessary to provide the intermediate cooler. The apparatus can be reduced in size.
(6)幾つかの実施形態では上記(2)又は(3)の構成において、前記第1の気筒の吐出側と前記第2の気筒の吸入側とを接続する第5の通路と、前記第5の通路から分岐し、前記第2の空間に接続される第6の通路と、を備える。 (6) In some embodiments, in the above configuration (2) or (3), a fifth passage connecting the discharge side of the first cylinder and the suction side of the second cylinder; And a sixth passage branched from the fifth passage and connected to the second space.
 上記(6)の構成によれば、第1の気筒から吐出される第1の加圧気体は、第5の通路を介して第2の気筒に供給される。ここで第5の通路には、第2の空間に分岐する第6の通路が設けられており、第1の加圧気体の一部が第2の空間に供給されることで第2の空間を加圧可能に構成されている。この場合、第2の気筒に第1の加圧気体を供給するための第5の通路とは独立に、第6の通路を設計できるため、より柔軟な装置構成が得られる。 According to the configuration of (6) above, the first pressurized gas discharged from the first cylinder is supplied to the second cylinder via the fifth passage. Here, the fifth passage is provided with a sixth passage that branches into the second space, and a part of the first pressurized gas is supplied to the second space, whereby the second space is provided. Can be pressurized. In this case, since the sixth passage can be designed independently of the fifth passage for supplying the first pressurized gas to the second cylinder, a more flexible device configuration can be obtained.
(7)幾つかの実施形態では上記(6)の構成において、前記第6の通路の外表面には放熱フィンが設けられている。 (7) In some embodiments, in the configuration of (6) above, a heat radiating fin is provided on the outer surface of the sixth passage.
 第1の加圧気体は第1の気筒で圧縮されることで高温となっているため、第2の気筒に供給される前に冷却されることが好ましい。上記(7)の構成によれば、第1の気筒から吐出される第1の加圧気体の一部が通過する第6の通路の外表面に放熱フィンが設けられているため、第1の加圧気体は第6の通路を通過する際に放熱フィンによって冷却が促進される。これにより、第1の気筒と第2の気筒との間に設けられる中間冷却器を小型化することができ、または、放熱フィンによる冷却効果が十分であれば、中間冷却器を設ける必要がなくなり、装置を小型化することができる。 Since the first pressurized gas is heated by being compressed in the first cylinder, it is preferably cooled before being supplied to the second cylinder. According to the configuration of (7) above, since the heat radiation fin is provided on the outer surface of the sixth passage through which a part of the first pressurized gas discharged from the first cylinder passes, the first When the pressurized gas passes through the sixth passage, cooling is promoted by the radiation fins. Thereby, the intermediate cooler provided between the first cylinder and the second cylinder can be reduced in size, or if the cooling effect by the radiation fins is sufficient, it is not necessary to provide the intermediate cooler. The apparatus can be reduced in size.
(8)幾つかの実施形態では上記(1)から(7)のいずれか一構成において、前記隔壁は、前記入力軸が貫通する開口部と、前記入力軸が回転可能に支持しながら、前記開口部を封止するシール部材と、を備える。 (8) In some embodiments, in any one of the configurations (1) to (7), the partition wall includes an opening through which the input shaft passes, and the input shaft rotatably supported. And a sealing member that seals the opening.
 上記(8)の構成によれば、入力軸が隔壁に設けられた開口部を貫通することで、隔壁によって隔離された第1の気筒及び第2の気筒に動力を入力可能となる。一方、開口部では、シール部材によって入力軸が回転可能に支持しながら封止されるため、隔壁で仕切られる第1の空間及び第2の空間の独立性を確保できる。これにより、第1の空間及び第2の空間を各気筒に対応する圧力にそれぞれ適切に加圧することができる。 According to the configuration of (8) above, the input shaft passes through the opening provided in the partition wall, so that power can be input to the first cylinder and the second cylinder separated by the partition wall. On the other hand, in the opening portion, the input shaft is sealed while being rotatably supported by the seal member, so that the independence of the first space and the second space partitioned by the partition wall can be ensured. Thereby, the first space and the second space can be appropriately pressurized to the pressure corresponding to each cylinder.
 (9)幾つかの実施形態では上記(8)の構成において、前記第1の空間は、前記第1の空間に導入される前記加圧空気が前記シール部材に向けて噴射されるように構成される。 (9) In some embodiments, in the configuration of the above (8), the first space is configured such that the pressurized air introduced into the first space is injected toward the seal member. Is done.
 入力軸を回転可能に支持しながら、隔壁に設けられた開口部を封止するシール部材は、入力軸の回転時に高温になりやすい。上記(9)の構成によれば、このようなシール部材に対して第1の空間に導入される加圧空気をシール部材に向けて噴射することで、第1の空間の加圧とともにシール部材の冷却を行うことができる。 The seal member that seals the opening provided in the partition wall while rotatably supporting the input shaft is likely to become hot when the input shaft rotates. According to the configuration of (9) above, the pressurized air introduced into the first space is jetted toward the seal member with respect to such a seal member, so that the seal member is pressed together with the pressure in the first space. Can be cooled.
 (10)幾つかの実施形態では上記(8)又は(9)の構成において、前記第2の空間は、前記第2の空間に導入される前記第1の加圧空気が前記シール部材に向けて噴射されるように構成される。 (10) In some embodiments, in the configuration according to (8) or (9), the second space is configured such that the first pressurized air introduced into the second space is directed toward the seal member. Configured to be injected.
 入力軸を回転可能に支持しながら、隔壁に設けられた開口部を封止するシール部材は、入力軸の回転時に高温になりやすい。上記(10)の構成によれば、このようなシール部材に対して第2の空間に導入される第1の加圧空気をシール部材に向けて噴射することで、第2の空間の加圧とともにシール部材の冷却を行うことができる。 The seal member that seals the opening provided in the partition wall while rotatably supporting the input shaft is likely to become hot when the input shaft rotates. According to the configuration of (10), the first space is pressurized by injecting the first pressurized air introduced into the second space toward the seal member. At the same time, the sealing member can be cooled.
(11)幾つかの実施形態では上記(1)の構成において、前記第1の空間には、前記第1の加圧気体が導入され、前記第2の空間には、前記第2の加圧気体が導入される。 (11) In some embodiments, in the configuration of (1), the first pressurized gas is introduced into the first space, and the second pressurized gas is introduced into the second space. Gas is introduced.
 上記(11)の構成によれば、第1の空間は第1の気筒から吐出される第1の加圧気体が導入されることにより加圧されることで、第1の気筒と第1の空間との間における圧力差を抑えることができるとともに、第2の空間は第2の気筒から吐出される第2の加圧気体が導入されることにより加圧されることで、第2の気筒と第2の空間との間における圧力差を抑えることができる。 According to the configuration of (11) above, the first space is pressurized by introducing the first pressurized gas discharged from the first cylinder, so that the first cylinder and the first The pressure difference between the space and the second space can be suppressed, and the second space is pressurized by introducing the second pressurized gas discharged from the second cylinder, so that the second cylinder And the pressure difference between the second space can be suppressed.
(12)幾つかの実施形態では上記(1)の構成において、前記第1の空間には、前記加圧気体が導入され、前記第2の空間には、前記第2の加圧気体が導入される。 (12) In some embodiments, in the configuration of (1) above, the pressurized gas is introduced into the first space, and the second pressurized gas is introduced into the second space. Is done.
 上記(12)の構成によれば、第1の空間は第1の気筒への吸気である加圧気体が導入されることにより加圧されることで、第1の気筒と第1の空間との間における圧力差を抑えることができるとともに、第2の空間は第2の気筒から吐出される第2の加圧気体が導入されることにより加圧されることで、第2の気筒と第2の空間との間における圧力差を抑えることができる。 According to the configuration of (12) above, the first space is pressurized by introducing pressurized gas that is intake air into the first cylinder, so that the first cylinder and the first space are And the second space is pressurized by introducing a second pressurized gas discharged from the second cylinder, so that the second cylinder and the second cylinder are pressurized. The pressure difference between the two spaces can be suppressed.
(13)幾つかの実施形態では上記(1)の構成において、前記第1の空間及び前記第2の空間には、前記第2の加圧気体が導入される。 (13) In some embodiments, in the configuration of (1), the second pressurized gas is introduced into the first space and the second space.
 上記(13)の構成によれば、第1の空間及び第2の空間は第2の気筒から吐出される第2の加圧気体が導入されることにより加圧されることで、各気筒とクランクケース側との間における圧力差を抑えることができる。 According to the configuration of (13) above, the first space and the second space are pressurized by introducing the second pressurized gas discharged from the second cylinder, The pressure difference between the crankcase side can be suppressed.
 (14)幾つかの実施形態では上記(1)から(13)のいずれか一構成において、オイルフリー圧縮機である。 (14) In some embodiments, in any one of the configurations (1) to (13), the oil-free compressor is used.
 上記(14)の構成によれば、将来的に吐出圧力の高圧化が望まれているオイルフリー方式のブースター圧縮機において、クランクケース内の圧力を適切に設定することで、動作時の負荷を軽減でき、ベアリングやピストン等の各部の過重設計を回避するとともに、長い製品寿命が得られる。 According to the configuration of (14) above, in an oil-free booster compressor for which a higher discharge pressure is desired in the future, by appropriately setting the pressure in the crankcase, the load during operation is reduced. This can be mitigated, avoiding excessive design of parts such as bearings and pistons, and providing a long product life.
 本発明の少なくとも一実施形態によれば、多段圧縮を行う各気筒において、クランクケースの内部圧力を適切に設定することにより、過重設計を避けるとともに、長寿命化を達成可能な往復動式ブースター圧縮機を提供できる。 According to at least one embodiment of the present invention, in each cylinder that performs multi-stage compression, by appropriately setting the internal pressure of the crankcase, a reciprocating booster compression that can avoid excessive design and achieve a long life Can provide a machine.
第1実施形態に係る往復動式ブースター圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the reciprocating booster compressor which concerns on 1st Embodiment. 図1の一変形例である。It is a modification of FIG. 第2実施形態に係る往復動式ブースター圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the reciprocating booster compressor which concerns on 2nd Embodiment. 第3実施形態に係る往復動式ブースター圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the reciprocating type booster compressor which concerns on 3rd Embodiment. 第4実施形態に係る往復動式ブースター圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the reciprocating booster compressor which concerns on 4th Embodiment. 第5実施形態に係る往復動式ブースター圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the reciprocating booster compressor which concerns on 5th Embodiment.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
In addition, for example, expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within the range where the same effect can be obtained. A shape including a chamfered portion or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.
<第1実施形態>
 図1は第1実施形態に係る往復動式ブースター圧縮機(以下、適宜「圧縮機」と称する)の構成を示す断面図である。圧縮機1はオイルフリー式の往復動圧縮機であり、外部の気体供給源(不図示)から大気圧より高圧な加圧気体が、供給管である第1の通路2を介して導入される。圧縮機1は、第1の通路2から導入された加圧気体を、互いに直列接続された複数の気筒(第1の気筒LP及び第2の気筒HP)にて圧縮し、吐出管4から外部の供給先(不図示)に向けて吐出する。
 尚、以下の説明ではオイルフリー式の圧縮機1について主に述べるが、特段の記載がない限りにおいて、油潤滑式の圧縮機1についても適用可能である。
<First Embodiment>
FIG. 1 is a cross-sectional view showing a configuration of a reciprocating booster compressor (hereinafter referred to as “compressor” as appropriate) according to the first embodiment. The compressor 1 is an oil-free reciprocating compressor, and pressurized gas higher than atmospheric pressure is introduced from an external gas supply source (not shown) through a first passage 2 that is a supply pipe. . The compressor 1 compresses the pressurized gas introduced from the first passage 2 in a plurality of cylinders (first cylinder LP and second cylinder HP) connected in series with each other, and is discharged from the discharge pipe 4 to the outside. It discharges toward the supply destination (not shown).
In the following description, the oil-free compressor 1 is mainly described. However, the oil-free compressor 1 is applicable unless otherwise specified.
 圧縮機1は、電動モータ等の外部の動力源(不図示)から入力される動力により回転駆動可能な入力軸5を有する。入力軸5は、圧縮機1の下部に設けられたクランクケース6内に収容されるクランク機構8を構成するクランク軸10と一体的に形成されている。クランク軸10は、クランクケース6内に設けられたベアリング12、14により回転可能に支持されている。またクランクケース6は、ベアリング12側で入力軸5が貫通しており、シール部材16によってクランクケース6の内部が外部に対して密に封止されている。 The compressor 1 has an input shaft 5 that can be rotationally driven by power input from an external power source (not shown) such as an electric motor. The input shaft 5 is formed integrally with a crankshaft 10 constituting a crank mechanism 8 housed in a crankcase 6 provided at the lower portion of the compressor 1. The crankshaft 10 is rotatably supported by bearings 12 and 14 provided in the crankcase 6. Further, the crankcase 6 has the input shaft 5 passing through on the bearing 12 side, and the inside of the crankcase 6 is tightly sealed with respect to the outside by a seal member 16.
 クランク軸10には、クランクケース6の上方に設けられた第1の気筒LP及び第2の気筒HPに対応するコネクティングロッド18、20の一端が、それぞれシール部材22、24を介して枢支されている。コネクティングロッド18、20の他端は、第1の気筒LP及び第2の気筒HPを構成するシリンダ26、28内に挿入されたピストン30、32に枢支されている。
 尚、圧縮機1はオイルフリー式であるため、圧縮室からの漏れを抑えるために、ピストン30及び32は、例えばコンポジットピストン(複合樹脂ピストン)が用いられ、不図示のピストンリング合い口を圧縮時に、理論的に洩れない位置で固定する方法が採用されている。
One end of connecting rods 18 and 20 corresponding to the first cylinder LP and the second cylinder HP provided above the crankcase 6 is pivotally supported on the crankshaft 6 via seal members 22 and 24, respectively. ing. The other ends of the connecting rods 18 and 20 are pivotally supported by pistons 30 and 32 inserted into the cylinders 26 and 28 constituting the first cylinder LP and the second cylinder HP.
Since the compressor 1 is an oil-free type, in order to suppress leakage from the compression chamber, for example, a composite piston (composite resin piston) is used as the pistons 30 and 32, and a piston ring abutment not shown is compressed. Sometimes, a method of fixing at a position where theoretical leakage is not possible is adopted.
 またクランクケース6の内壁には隔壁34が設けられている。これにより、クランクケース6の内側は、第1の気筒LPに対応する第1の空間36と、第2の気筒HPに対応する第2の空間38とに分割されている。隔壁34には、入力軸5と一体的に構成されたクランク軸10が貫通する開口部40が形成されている。開口部40には、クランク軸10が回転可能に支持しながら、開口部40を封止するためのシール部材42が配設されている。これにより、第1の空間36及び第2の空間38は、クランクケース6の内側に設けられた隔壁34によって互いに隔離されている。 Further, a partition wall 34 is provided on the inner wall of the crankcase 6. Thereby, the inside of the crankcase 6 is divided into a first space 36 corresponding to the first cylinder LP and a second space 38 corresponding to the second cylinder HP. The partition wall 34 is formed with an opening 40 through which the crankshaft 10 configured integrally with the input shaft 5 passes. The opening 40 is provided with a sealing member 42 for sealing the opening 40 while the crankshaft 10 is rotatably supported. Accordingly, the first space 36 and the second space 38 are separated from each other by the partition wall 34 provided inside the crankcase 6.
 第1の気筒LPはシリンダ26の頂壁上に、吸気を導入するための導入口を有する吸気室46と、第1の気筒LPで圧縮後の第1の加圧気体を吐出するための導出口を有する吐気室50とが、隔壁52を介して区画形成されている。吸気室46及び吐気室50は、吸気ポート53及び排気ポート54をもってシリンダ26内に連通している。吸気ポート53及び排気ポート54には、逆流防止用の弁(不図示)がそれぞれ設けられている。 The first cylinder LP has an intake chamber 46 having an inlet for introducing intake air on the top wall of the cylinder 26 and a guide for discharging the first pressurized gas compressed by the first cylinder LP. An air discharge chamber 50 having an outlet is defined by a partition wall 52. The intake chamber 46 and the exhaust chamber 50 communicate with the inside of the cylinder 26 through an intake port 53 and an exhaust port 54. The intake port 53 and the exhaust port 54 are each provided with a backflow prevention valve (not shown).
 第2の気筒HPはシリンダ28の頂壁上に、吸気を導入するための導入口を有する吸気室58と、第2の気筒HPで圧縮後の第2の加圧気体を吐出するための導出口を有する吐気室62とが、隔壁64を介して区画形成されている。吸気室58及び吐気室62は、吸気ポート66及び排気ポート68をもってシリンダ28内に連通している。吸気ポート66及び排気ポート68には、逆流防止用の弁(不図示)がそれぞれ設けられている。 The second cylinder HP has, on the top wall of the cylinder 28, an intake chamber 58 having an inlet for introducing intake air, and a guide for discharging the second pressurized gas compressed in the second cylinder HP. An air discharge chamber 62 having an outlet is defined by a partition wall 64. The intake chamber 58 and the exhaust chamber 62 communicate with the cylinder 28 through an intake port 66 and an exhaust port 68. The intake port 66 and the exhaust port 68 are each provided with a backflow prevention valve (not shown).
 加圧気体が供給される第1の通路2は、クランクケース6のうち第1の空間36に連通するように接続されるとともに、第1の空間36は、第2の通路70を介して第1の気筒LPの吸入側に接続される。そのため、第1の通路2から供給される加圧気体は、第1の空間36を介して第1の気筒LPに吸入される。これにより、第1の空間36は加圧気体によって、吸気室46と略等しい圧力に加圧される。その結果、第1の空間36と吸気室46との間の圧力差が低減され、駆動時の第1の気筒LPの負荷が軽減される。 The first passage 2 to which the pressurized gas is supplied is connected so as to communicate with the first space 36 in the crankcase 6, and the first space 36 is connected to the first passage 36 via the second passage 70. Connected to the suction side of one cylinder LP. Therefore, the pressurized gas supplied from the first passage 2 is sucked into the first cylinder LP through the first space 36. As a result, the first space 36 is pressurized to approximately the same pressure as the intake chamber 46 by the pressurized gas. As a result, the pressure difference between the first space 36 and the intake chamber 46 is reduced, and the load on the first cylinder LP during driving is reduced.
 第1の気筒LPの吐出側は、第3の通路72によってクランクケース6のうち第2の空間38に接続されるとともに、第2の空間38は第4の通路74によって第2の気筒HPの吸気側に接続される。そのため、第1の気筒LPから吐出される第1の加圧気体は、第2の空間38を介して第2の気筒HPに吸入される。これにより、第2の空間38は第1の加圧気体によって、吸気室58と略等しい圧力に加圧される。その結果、第2の空間38と吸気室58との間の圧力差が低減され、駆動時の第2の気筒HPの負荷が軽減される。尚、第3の通路72には中間冷却器(不図示)が設けられていてもよい。 The discharge side of the first cylinder LP is connected to the second space 38 in the crankcase 6 by the third passage 72, and the second space 38 is connected to the second cylinder HP by the fourth passage 74. Connected to the intake side. Therefore, the first pressurized gas discharged from the first cylinder LP is sucked into the second cylinder HP through the second space 38. As a result, the second space 38 is pressurized to a pressure substantially equal to that of the intake chamber 58 by the first pressurized gas. As a result, the pressure difference between the second space 38 and the intake chamber 58 is reduced, and the load on the second cylinder HP during driving is reduced. Note that an intermediate cooler (not shown) may be provided in the third passage 72.
 ここで第1の空間36及び第2の空間38は、隔壁34によって互いに隔離されているため、第1の空間36及び第2の空間38はそれぞれ独立した圧力を形成することができる。このようにクランクケース6内を各気筒に対応する複数の空間に分割して、各気筒に対応する圧力に設定することができるため、各気筒においてクランクケース6側との圧力差を適切に抑えることができる。そのため、クランク機構8を構成するクランク軸10のベアリング12、14等の部品にかかる負荷を低減することができ、長い製品寿命を達成することができる。更に、高い省エネ効果を得ることもできる。 Here, since the first space 36 and the second space 38 are separated from each other by the partition wall 34, the first space 36 and the second space 38 can form independent pressures. Thus, the crankcase 6 can be divided into a plurality of spaces corresponding to each cylinder and set to a pressure corresponding to each cylinder, so that the pressure difference from the crankcase 6 side is appropriately suppressed in each cylinder. be able to. Therefore, it is possible to reduce the load applied to components such as the bearings 12 and 14 of the crankshaft 10 constituting the crank mechanism 8, and to achieve a long product life. Furthermore, a high energy saving effect can be obtained.
 図2は図1の一変形例である。図2に示されるように、第3の通路72は、第1の気筒LPから吐出された第1の加圧気体が通過する管状部材からなり、その外表面には放熱フィン76が設けられている。第1の気筒LPから吐出される第1の加圧気体は高温であるため、高圧側の第2の気筒HPに供給する際には、冷却されることが好ましい。従来、このような低圧側からの高温の圧縮気体は中間冷却器のような外部装置を用いて行われることが多かったが、本実施形態では、第3の通路72の外表面に放熱フィン76を設けることで、第3の通路72を通過する際に第1の加圧気体を効果的に冷却できる。これにより、第1の気筒LPと第2の気筒HPとの間に中間冷却器(不図示)設けられる場合、その中間冷却器を小型化することができる。または、放熱フィン76による冷却効果が十分であれば、中間冷却器を設ける必要がなくなる。その結果、装置を小型化することができる。 FIG. 2 is a modification of FIG. As shown in FIG. 2, the third passage 72 is made of a tubular member through which the first pressurized gas discharged from the first cylinder LP passes, and heat radiating fins 76 are provided on the outer surface thereof. Yes. Since the first pressurized gas discharged from the first cylinder LP has a high temperature, it is preferably cooled when supplied to the second cylinder HP on the high pressure side. Conventionally, such a high-temperature compressed gas from the low-pressure side has often been performed using an external device such as an intercooler, but in the present embodiment, the radiating fins 76 are formed on the outer surface of the third passage 72. By providing, the first pressurized gas can be effectively cooled when passing through the third passage 72. Thereby, when an intermediate cooler (not shown) is provided between the first cylinder LP and the second cylinder HP, the intermediate cooler can be reduced in size. Alternatively, if the cooling effect by the radiating fins 76 is sufficient, there is no need to provide an intermediate cooler. As a result, the apparatus can be reduced in size.
 また第3の通路72は、クランクケース6のうち隔壁34及び第2の気筒HP間に接続されており、その出口側がシール部材42に向けて開口している。シール部材42は、クランク軸10を回転可能に支持しながら、隔壁34に設けられた開口部32を封止するため、駆動時に高温になりやすい。そこで、このようなシール部材42に対して第1の空間36に導入される第1の加圧空気をシール部材42に向けて噴射することで、第2の空間38の加圧とともにシール部材42の冷却を行うことができる。特に図2のように第3の通路72に放熱フィン76を設ける場合、第3の通路72から冷却後の第1の加圧気体を供給できるため、シール部材42をより効果的に冷却できる。 Further, the third passage 72 is connected between the partition wall 34 and the second cylinder HP in the crankcase 6, and an outlet side thereof opens toward the seal member 42. Since the seal member 42 seals the opening 32 provided in the partition wall 34 while rotatably supporting the crankshaft 10, the seal member 42 tends to become high temperature during driving. Therefore, the first pressurized air introduced into the first space 36 is jetted toward the seal member 42 with respect to the seal member 42, so that the seal member 42 is pressurized together with the second space 38. Can be cooled. In particular, when the heat dissipating fins 76 are provided in the third passage 72 as shown in FIG. 2, since the first pressurized gas after cooling can be supplied from the third passage 72, the seal member 42 can be cooled more effectively.
 尚、第1の通路2もまた上述の第3の通路72と同様に、クランクケース6のうち隔壁34及び第1の気筒LP間に接続され、その出口側がシール部材42に向けて開口するように構成してもよい。このように第1の空間36においても、導入される加圧気体がシール部材42に向けて噴射することで、第1の空間36の加圧とともにシール部材42を冷却できる。 The first passage 2 is also connected between the partition wall 34 and the first cylinder LP in the crankcase 6 in the same manner as the third passage 72 described above, and its outlet side opens toward the seal member 42. You may comprise. As described above, also in the first space 36, the introduced pressurized gas is jetted toward the seal member 42, so that the seal member 42 can be cooled together with the pressurization of the first space 36.
 特に第1の通路2及び第3の通路72がともにその出口側がシール部材42に向けて開口するように構成した場合、シール部材42は、両側(第1の空間36及び第2の空間38)から冷却されるため、より効果的に温度を抑制することができる。 In particular, when both the first passage 2 and the third passage 72 are configured so that the outlet sides thereof open toward the seal member 42, the seal member 42 has both sides (first space 36 and second space 38). Therefore, the temperature can be more effectively suppressed.
<第2実施形態>
 図3は第2実施形態に係る往復動式ブースター圧縮機(以下、適宜「圧縮機」と称する)の構成を示す断面図である。尚、図3では上述の第1実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
Second Embodiment
FIG. 3 is a cross-sectional view showing a configuration of a reciprocating booster compressor (hereinafter referred to as “compressor” as appropriate) according to the second embodiment. In FIG. 3, the components corresponding to those of the first embodiment described above are denoted by the same reference numerals, and redundant descriptions are omitted as appropriate.
 第2実施形態では、第1の気筒LPの吐出側の吐気室50は、第5の通路82によって、第2の気筒HPの吸入側の吸気室58に接続されている。つまり、第1実施形態では第1の気筒LPの吐気側は第2の空間38を経由して第2の気筒HPの吸気側に接続されていたが、第2実施形態では、第2の空間38を経由することなく、直接接続されている。 In the second embodiment, the discharge-side exhaust chamber 50 of the first cylinder LP is connected to the intake-side intake chamber 58 of the second cylinder HP by a fifth passage 82. That is, in the first embodiment, the exhaust side of the first cylinder LP is connected to the intake side of the second cylinder HP via the second space 38, but in the second embodiment, the second space It is directly connected without going through 38.
 そして第5の通路82の途中の分岐点84からは、第2の空間38に接続される第6の通路86が分岐する。これにより、第5の通路82を流れる第1の加圧気体の一部が、第6の通路86を介して第2の空間38に供給される。このように、第2の気筒HPに第1の加圧気体を供給するための第5の通路82とは独立に、第6の通路86を設計できるため、より柔軟な装置構成が得られる。 Then, a sixth passage 86 connected to the second space 38 branches from a branch point 84 in the middle of the fifth passage 82. As a result, a part of the first pressurized gas flowing through the fifth passage 82 is supplied to the second space 38 via the sixth passage 86. Thus, since the sixth passage 86 can be designed independently of the fifth passage 82 for supplying the first pressurized gas to the second cylinder HP, a more flexible device configuration can be obtained.
 第2の空間38に接続される第6の通路86には、図2に示される第3の通路72と同様に、その外表面に放熱フィン76が設けられていてもよい。これにより、第2の空間38に供給される第1の加圧気体を冷却でき、第2の空間38(特に、シール部材42)の冷却効果を高めることができる。 The sixth passage 86 connected to the second space 38 may be provided with radiating fins 76 on the outer surface thereof, similarly to the third passage 72 shown in FIG. Thereby, the 1st pressurized gas supplied to the 2nd space 38 can be cooled, and the cooling effect of the 2nd space 38 (especially seal member 42) can be heightened.
 また第2の空間38に接続される第6の通路86もまた、第1実施形態の第3の通路72と同様に、第6の通路86から第2の空間38に供給される第1の加圧気体が、第2の空間38側から隔壁34に設けられたシール部材42に向けて噴射されるように構成されてもよい。この場合もまた、第6の通路86から供給される第1の加圧気体がシール部材42に供給されることで、シール部材42が効果的に冷却される。 Further, the sixth passage 86 connected to the second space 38 is also the first passage supplied from the sixth passage 86 to the second space 38 in the same manner as the third passage 72 of the first embodiment. The pressurized gas may be configured to be injected from the second space 38 side toward the seal member 42 provided in the partition wall 34. Also in this case, the first pressurized gas supplied from the sixth passage 86 is supplied to the seal member 42, so that the seal member 42 is effectively cooled.
<第3実施形態>
 図4は第3実施形態に係る往復動式ブースター圧縮機の構成を示す断面図である。尚、図4では上述の各実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
<Third Embodiment>
FIG. 4 is a cross-sectional view showing a configuration of a reciprocating booster compressor according to the third embodiment. In FIG. 4, components corresponding to the above-described embodiments are denoted by common reference numerals, and redundant descriptions are omitted as appropriate.
 本実施形態では、第1の空間36には、第1の気筒LPから吐出される第1の加圧気体が導入される。第1の空間36に導入される第1の加圧気体は、少なくとも第1の空間36より高圧な圧力を有する。図4の例では、第1の空間36に供給される第1の加圧気体は、第1の気筒LPの吐出側と第2の気筒HPの吸気側とを連通する第5の通路82から分岐する第6の通路86を介して導入されるように構成されている。 In the present embodiment, the first pressurized gas discharged from the first cylinder LP is introduced into the first space 36. The first pressurized gas introduced into the first space 36 has a pressure that is at least higher than that of the first space 36. In the example of FIG. 4, the first pressurized gas supplied to the first space 36 is from a fifth passage 82 that connects the discharge side of the first cylinder LP and the intake side of the second cylinder HP. It is configured to be introduced through a sixth passage 86 that branches.
 尚、第1の空間36に第1の加圧気体を供給するための第6の通路86上には、第1の加圧気体の圧力を適切な値に調整するための減圧弁が配置されていてもよい。これにより、第1の空間36は、第1の気筒LPから吐出される第1の加圧気体を用いて加圧されることで、第1の気筒LPと第1の空間36との間における圧力差を抑えることができる。 A pressure reducing valve for adjusting the pressure of the first pressurized gas to an appropriate value is disposed on the sixth passage 86 for supplying the first pressurized gas to the first space 36. It may be. Accordingly, the first space 36 is pressurized using the first pressurized gas discharged from the first cylinder LP, so that the first space 36 is interposed between the first cylinder LP and the first space 36. The pressure difference can be suppressed.
 一方の第2の空間38には、第2の気筒HPから吐出される第2の加圧気体が導入される。第2の空間38に導入される第2の加圧気体は、少なくとも第2の空間38より高圧な圧力を有する。図4の例では、第2の空間38に供給される第2の加圧気体は、第2の気筒HPの吐出管4から分岐する第7の通路88を介して導入されるように構成されている。 The second pressurized gas discharged from the second cylinder HP is introduced into one second space 38. The second pressurized gas introduced into the second space 38 has a pressure that is at least higher than that of the second space 38. In the example of FIG. 4, the second pressurized gas supplied to the second space 38 is configured to be introduced through a seventh passage 88 branched from the discharge pipe 4 of the second cylinder HP. ing.
 尚、第2の空間38に第1の加圧気体を供給するための第7の通路88上には、第2の加圧気体の圧力を適切な値に調整するための減圧弁が配置されていてもよい。これにより、第2の空間38は、第2の気筒HPから吐出される第2の加圧気体を用いて加圧されることで、第2の気筒HPと第2の空間38との間における圧力差を抑えることができる。 A pressure reducing valve for adjusting the pressure of the second pressurized gas to an appropriate value is disposed on the seventh passage 88 for supplying the first pressurized gas to the second space 38. It may be. Accordingly, the second space 38 is pressurized using the second pressurized gas discharged from the second cylinder HP, so that the space between the second cylinder HP and the second space 38 is increased. The pressure difference can be suppressed.
<第4実施形態>
 図5は第4実施形態に係る往復動式ブースター圧縮機の構成を示す断面図である。尚、図5では上述の各実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
<Fourth embodiment>
FIG. 5 is a cross-sectional view showing a configuration of a reciprocating booster compressor according to the fourth embodiment. In FIG. 5, components corresponding to the above-described embodiments are denoted by common reference numerals, and redundant descriptions are omitted as appropriate.
 本実施形態では、第1の空間36には、上述の第1及び第2実施形態と同様に、第1の通路(供給管)2から供給される加圧気体が導入される。これにより、第1の空間36は、供給管2から供給される加圧気体を用いて加圧されることで、第1の気筒LPと第1の空間36との間における圧力差を抑えることができる。 In the present embodiment, the pressurized gas supplied from the first passage (supply pipe) 2 is introduced into the first space 36 as in the first and second embodiments described above. Thereby, the first space 36 is pressurized using the pressurized gas supplied from the supply pipe 2, thereby suppressing a pressure difference between the first cylinder LP and the first space 36. Can do.
 一方の第2の空間38には、第2の気筒HPから吐出される第2の加圧気体が導入される。第2の空間38に導入される第2の加圧気体は、少なくとも第2の空間38より高圧な圧力を有する。図5の例では、上述の第3実施形態と同様に、第2の空間38に供給される第2の加圧気体は、第2の気筒HPの吐出管4から分岐する第7の通路88を介して導入されるように構成されている。 The second pressurized gas discharged from the second cylinder HP is introduced into one second space 38. The second pressurized gas introduced into the second space 38 has a pressure that is at least higher than that of the second space 38. In the example of FIG. 5, as in the third embodiment described above, the second pressurized gas supplied to the second space 38 is the seventh passage 88 branched from the discharge pipe 4 of the second cylinder HP. It is comprised so that it may be introduced via.
 尚、第2の空間38に第1の加圧気体を供給するための第7の通路88上には、第2の加圧気体の圧力を適切な値に調整するための減圧弁が配置されていてもよい。これにより、第2の空間38は、第2の気筒HPから吐出される第2の加圧気体を用いて加圧されることで、第2の気筒HPと第2の空間38との間における圧力差を抑えることができる。 A pressure reducing valve for adjusting the pressure of the second pressurized gas to an appropriate value is disposed on the seventh passage 88 for supplying the first pressurized gas to the second space 38. It may be. Accordingly, the second space 38 is pressurized using the second pressurized gas discharged from the second cylinder HP, so that the space between the second cylinder HP and the second space 38 is increased. The pressure difference can be suppressed.
<第5実施形態>
 図6は第5実施形態に係る往復動式ブースター圧縮機の構成を示す断面図である。尚、図6では上述の各実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
<Fifth Embodiment>
FIG. 6 is a cross-sectional view showing a configuration of a reciprocating booster compressor according to the fifth embodiment. In FIG. 6, components corresponding to the above-described embodiments are denoted by common reference numerals, and redundant descriptions are omitted as appropriate.
 本実施形態では、第1の空間36には、第2の気筒HPから吐出される第2の加圧気体が導入される。第1の空間36に導入される第2の加圧気体は、少なくとも第1の空間36より高圧な圧力を有する。図6の例では、第1の空間36に供給される第2の加圧気体は、第2の気筒HPの吐出管4から分岐する第8の通路90を介して導入されるように構成されている。 In the present embodiment, the second pressurized gas discharged from the second cylinder HP is introduced into the first space 36. The second pressurized gas introduced into the first space 36 has a pressure that is at least higher than that of the first space 36. In the example of FIG. 6, the second pressurized gas supplied to the first space 36 is configured to be introduced through an eighth passage 90 branched from the discharge pipe 4 of the second cylinder HP. ing.
 尚、第1の空間36に第2の加圧気体を供給するための第8の通路90上には、第2の加圧気体の圧力を適切な値に調整するための減圧弁が配置されていてもよい。これにより、第1の空間36は、第2の気筒HPから吐出される第2の加圧気体を用いて加圧されることで、第1の気筒LPと第1の空間36との間における圧力差を抑えることができる。 A pressure reducing valve for adjusting the pressure of the second pressurized gas to an appropriate value is disposed on the eighth passage 90 for supplying the second pressurized gas to the first space 36. It may be. Thus, the first space 36 is pressurized using the second pressurized gas discharged from the second cylinder HP, so that the first space 36 is interposed between the first cylinder LP and the first space 36. The pressure difference can be suppressed.
 一方の第2の空間38には、第2の気筒HPから吐出される第2の加圧気体が導入される。第2の空間38に導入される第2の加圧気体は、少なくとも第2の空間38より高圧な圧力を有する。図6の例では、上述の第3及び第4実施形態と同様に、第2の空間38に供給される第2の加圧気体は、第2の気筒HPの吐出管4から分岐する第7の通路88を介して導入されるように構成されている。 The second pressurized gas discharged from the second cylinder HP is introduced into one second space 38. The second pressurized gas introduced into the second space 38 has a pressure that is at least higher than that of the second space 38. In the example of FIG. 6, as in the third and fourth embodiments described above, the second pressurized gas supplied to the second space 38 is branched from the discharge pipe 4 of the second cylinder HP. It is configured to be introduced through the passage 88.
 尚、第2の空間38に第1の加圧気体を供給するための第7の通路88上には、第2の加圧気体の圧力を適切な値に調整するための減圧弁が配置されていてもよい。これにより、第2の空間38は、第2の気筒HPから吐出される第2の加圧気体を用いて加圧されることで、第2の気筒HPと第2の空間38との間における圧力差を抑えることができる。 A pressure reducing valve for adjusting the pressure of the second pressurized gas to an appropriate value is disposed on the seventh passage 88 for supplying the first pressurized gas to the second space 38. It may be. Accordingly, the second space 38 is pressurized using the second pressurized gas discharged from the second cylinder HP, so that the space between the second cylinder HP and the second space 38 is increased. The pressure difference can be suppressed.
 以上説明したように上記実施形態によれば、多段圧縮を行う各気筒において、クランクケースの内部圧力を適切に設定することにより、長寿命化を達成でき、かつ高い省エネ効果を得ることが可能な往復動式ブースター圧縮機を提供できる。 As described above, according to the above embodiment, in each cylinder that performs multi-stage compression, it is possible to achieve a long life and obtain a high energy saving effect by appropriately setting the internal pressure of the crankcase. A reciprocating booster compressor can be provided.
 本発明の少なくとも一実施形態は、外部から供給される加圧気体を、シリンダ内のピストンの往復動により更に圧縮可能な往復動式ブースター圧縮機に利用可能である。 At least one embodiment of the present invention can be used in a reciprocating booster compressor capable of further compressing pressurized gas supplied from the outside by reciprocating movement of a piston in a cylinder.
1 圧縮機
2 第1の通路(供給管)
4 吐出管
5 入力軸
6 クランクケース
8 クランク機構
10 クランク軸
12,14 ベアリング
16,22,24,42 シール部材
18,20 コネクティングロッド
26,28 シリンダ
30,32 ピストン
34 隔壁
36 第1の空間
38 第2の空間
70 第2の通路
72 第3の通路
74 第4の通路
76 放熱フィン
82 第5の通路
86 第6の通路
88 第7の通路
90 第8の通路
LP 第1の気筒
HP 第2の気筒
1 Compressor 2 First passage (supply pipe)
4 Discharge pipe 5 Input shaft 6 Crankcase 8 Crank mechanism 10 Crankshaft 12, 14 Bearing 16, 22, 24, 42 Seal member 18, 20 Connecting rod 26, 28 Cylinder 30, 32 Piston 34 Partition 36 First space 38 First 2 space 70 2nd passage 72 3rd passage 74 4th passage 76 Radiation fin 82 5th passage 86 6th passage 88 7th passage 90 8th passage LP 1st cylinder HP 2nd cylinder

Claims (14)

  1.  動力が入力される入力軸の回転運動を往復運動に変換するためのクランク機構と、
     前記クランク機構を収容するクランクケースと、
     前記クランク機構で変換された往復運動によって駆動されることで、気体を圧縮可能な複数の気筒と、
    を備え、
     前記複数の気筒は、
      外部から供給される加圧気体を圧縮することにより、前記加圧気体より高圧な第1の加圧気体を生成する第1の気筒と、
      前記第1の気筒に直列に接続され、前記第1の加圧気体を更に圧縮することにより、前記第1の加圧気体より高圧な第2の加圧気体を生成する第2の気筒と、
     を含み、
     前記クランクケースは、前記第1の気筒に対応する第1の空間と、前記第2の気筒に対応する第2の空間とを含み、
     前記第1の空間及び前記第2の空間は、前記クランクケースの内側に設けられた隔壁によって互いに隔離され、
     前記第1の空間又は前記第2の空間の少なくとも一方は、前記加圧気体、前記第1の加圧気体或いは前記第2の加圧気体のいずれか一つが導入されることにより加圧される、往復動式ブースター圧縮機。
    A crank mechanism for converting the rotational motion of the input shaft to which power is input into reciprocating motion;
    A crankcase that houses the crank mechanism;
    A plurality of cylinders capable of compressing gas by being driven by a reciprocating motion converted by the crank mechanism;
    With
    The plurality of cylinders are
    A first cylinder that generates a first pressurized gas having a pressure higher than that of the pressurized gas by compressing the pressurized gas supplied from the outside;
    A second cylinder connected in series to the first cylinder and generating a second pressurized gas higher in pressure than the first pressurized gas by further compressing the first pressurized gas;
    Including
    The crankcase includes a first space corresponding to the first cylinder and a second space corresponding to the second cylinder;
    The first space and the second space are separated from each other by a partition wall provided inside the crankcase,
    At least one of the first space and the second space is pressurized by introducing any one of the pressurized gas, the first pressurized gas, and the second pressurized gas. , Reciprocating booster compressor.
  2.  前記第1の空間には、前記加圧気体が導入され、
     前記第2の空間には、前記第1の加圧気体が導入される、請求項1に記載の往復動式ブースター圧縮機。
    The pressurized gas is introduced into the first space,
    The reciprocating booster compressor according to claim 1, wherein the first pressurized gas is introduced into the second space.
  3.  前記加圧気体の吸気口と前記第1の空間とを接続する第1の通路と、
     前記第1の空間と前記第1の気筒の吸入側とを接続する第2の通路と、
    を備える、請求項2に記載の往復動式ブースター圧縮機。
    A first passage connecting the inlet of the pressurized gas and the first space;
    A second passage connecting the first space and the suction side of the first cylinder;
    The reciprocating booster compressor according to claim 2, comprising:
  4.  前記第1の気筒の吐出側と前記第2の空間とを接続する第3の通路と、
     前記第2の空間と前記第2の気筒の吸入側とを接続する第4の通路と、
    を備える、請求項2又は3に記載の往復動式ブースター圧縮機。
    A third passage connecting the discharge side of the first cylinder and the second space;
    A fourth passage connecting the second space and the suction side of the second cylinder;
    A reciprocating booster compressor according to claim 2, comprising:
  5.  前記第3の通路の外表面には放熱フィンが設けられている、請求項4に記載の往復動式ブースター圧縮機。 The reciprocating booster compressor according to claim 4, wherein heat radiation fins are provided on an outer surface of the third passage.
  6.  前記第1の気筒の吐出側と前記第2の気筒の吸入側とを接続する第5の通路と、
     前記第5の通路から分岐し、前記第2の空間に接続される第6の通路と、
    を備える、請求項2又は3に記載の往復動式ブースター圧縮機。
    A fifth passage connecting the discharge side of the first cylinder and the suction side of the second cylinder;
    A sixth passage branched from the fifth passage and connected to the second space;
    A reciprocating booster compressor according to claim 2, comprising:
  7.  前記第6の通路の外表面には放熱フィンが設けられている、請求項6に記載の往復動式ブースター圧縮機。 The reciprocating booster compressor according to claim 6, wherein heat radiation fins are provided on an outer surface of the sixth passage.
  8.  前記隔壁は、
      前記入力軸が貫通する開口部と、
      前記入力軸が回転可能に支持しながら、前記開口部を封止するシール部材と、
     を備える、請求項1から7のいずれか一項に記載の往復動式ブースター圧縮機。
    The partition is
    An opening through which the input shaft passes;
    A seal member that seals the opening while the input shaft is rotatably supported;
    A reciprocating booster compressor according to any one of claims 1 to 7, comprising:
  9.  前記第1の空間は、前記第1の空間に導入される前記加圧空気が前記シール部材に向けて噴射されるように構成される、請求項8に記載の往復動式ブースター圧縮機。 The reciprocating booster compressor according to claim 8, wherein the first space is configured such that the pressurized air introduced into the first space is injected toward the seal member.
  10.  前記第2の空間は、前記第2の空間に導入される前記第1の加圧空気が前記シール部材に向けて噴射されるように構成される、請求項8又は9に記載の往復動式ブースター圧縮機。 The reciprocating type according to claim 8 or 9, wherein the second space is configured such that the first pressurized air introduced into the second space is jetted toward the seal member. Booster compressor.
  11.  前記第1の空間には、前記第1の加圧気体が導入され、
     前記第2の空間には、前記第2の加圧気体が導入される、請求項1に記載の往復動式ブースター圧縮機。
    The first pressurized gas is introduced into the first space,
    The reciprocating booster compressor according to claim 1, wherein the second pressurized gas is introduced into the second space.
  12.  前記第1の空間には、前記加圧気体が導入され、
     前記第2の空間には、前記第2の加圧気体が導入される、請求項1に記載の往復動式ブースター圧縮機。
    The pressurized gas is introduced into the first space,
    The reciprocating booster compressor according to claim 1, wherein the second pressurized gas is introduced into the second space.
  13.  前記第1の空間及び前記第2の空間には、前記第2の加圧気体が導入される、請求項1に記載の往復動式ブースター圧縮機。 The reciprocating booster compressor according to claim 1, wherein the second pressurized gas is introduced into the first space and the second space.
  14.  オイルフリー圧縮機である、請求項1から13のいずれか一項に記載の往復動式ブースター圧縮機。 The reciprocating booster compressor according to any one of claims 1 to 13, which is an oil-free compressor.
PCT/JP2018/013815 2017-03-31 2018-03-30 Reciprocating booster compressor WO2018181975A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019509400A JPWO2018181975A1 (en) 2017-03-31 2018-03-30 Reciprocating booster compressor
EP18777319.7A EP3604807A4 (en) 2017-03-31 2018-03-30 Reciprocating booster compressor
CN201880018655.8A CN110431306A (en) 2017-03-31 2018-03-30 Reciprocating booster compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070592 2017-03-31
JP2017070592 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181975A1 true WO2018181975A1 (en) 2018-10-04

Family

ID=63676267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013815 WO2018181975A1 (en) 2017-03-31 2018-03-30 Reciprocating booster compressor

Country Status (4)

Country Link
EP (1) EP3604807A4 (en)
JP (1) JPWO2018181975A1 (en)
CN (1) CN110431306A (en)
WO (1) WO2018181975A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963404B (en) * 2020-08-26 2022-06-14 长治凌燕机械厂 Piston type air compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135806U (en) * 1975-04-24 1976-11-02
JP2008286067A (en) * 2007-05-16 2008-11-27 Anest Iwata Corp Gas multiple stage pressurizing device
JP2009133282A (en) 2007-11-30 2009-06-18 Hitachi Ltd Booster compressor
JP2011106373A (en) * 2009-11-18 2011-06-02 Hitachi Industrial Equipment Systems Co Ltd Compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2641317Y (en) * 2003-09-18 2004-09-15 李竞 Reciproating type gas compressor
JP2008082241A (en) * 2006-09-27 2008-04-10 Anest Iwata Corp Multistage booster
JP2011247099A (en) * 2010-05-24 2011-12-08 Anest Iwata Corp Electric motor integrated booster compressor
CN103422893B (en) * 2012-05-25 2015-07-08 周登荣 Aerodynamic engine assembly used for pneumatic automobile
JP6170396B2 (en) * 2013-09-27 2017-07-26 アネスト岩田株式会社 Pressurized booster compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135806U (en) * 1975-04-24 1976-11-02
JP2008286067A (en) * 2007-05-16 2008-11-27 Anest Iwata Corp Gas multiple stage pressurizing device
JP2009133282A (en) 2007-11-30 2009-06-18 Hitachi Ltd Booster compressor
JP2011106373A (en) * 2009-11-18 2011-06-02 Hitachi Industrial Equipment Systems Co Ltd Compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604807A4 *

Also Published As

Publication number Publication date
CN110431306A (en) 2019-11-08
EP3604807A1 (en) 2020-02-05
EP3604807A4 (en) 2020-08-26
JPWO2018181975A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP2008286067A (en) Gas multiple stage pressurizing device
EP3392507B1 (en) Variable-capacity cylinder with sliding vane control structure and variable-capacity compressor
US8376717B2 (en) Multi-stage compressor
GB2394259A (en) Multistage compressor for compressing gases
WO2018181975A1 (en) Reciprocating booster compressor
US6655935B2 (en) Gas compressor comprising a double acting piston, an elongate chamber, multiple inlets mounted within heads on both sides of the chamber, and one central outlet
US20180195503A1 (en) Fluid compressor
KR101458614B1 (en) Multi-stage reciprocating air compressor
KR101248437B1 (en) Volumetric compressors
US20170074259A1 (en) Compressor Piston Shape to Reduce Clearance Volume
JP4327019B2 (en) Reciprocating compressor
CN209724598U (en) A kind of Oil-free Mechanical Vacuum Pump double end intermediate pressure compressor
CZ306346B6 (en) Compressor
CN104114959B (en) Compressor
JP4825519B2 (en) Expansion compressor
US11187218B2 (en) Two stage air compressor
JP7058523B2 (en) Reciprocating compressor
US9982666B2 (en) Vacuum pump system including scroll pump and secondary pumping mechanism
CN110242543B (en) Reciprocating compressor
JP6654388B2 (en) Compressor
JP2005325731A (en) High pressure screw compressor, and gas supply facility using the same
RU2554162C2 (en) Gas compressor
JP3894201B2 (en) Compression device
JP2008082241A (en) Multistage booster
US1324056A (en) lippert

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018777319

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018777319

Country of ref document: EP

Effective date: 20191031